A new understanding and evaluation of food sustainability in six different food systems in Kenya and Bolivia
Food sustainability indicators
The indicators of the five dimensions of food sustainability that were collectively defined and assessed in the six food systems are presented in Table 2 and in the Supplementary Data (sheets 1–9). Relevant across contexts, the indicators represent a consensual output of the research process with scientists from the Global North and South and non-academic actors related to the different food systems (see Methods). The indicators cover different activities, from production to consumption, and some are transversal, i.e. occurring along the value chain.
How the six food systems scored
Food systems B3 (Agroecological food system) and K3 (Local food system) had the highest overall sustainability scores. In addition, these scores were more equally distributed across the five dimensions than in the other food systems. The greatest contributor to these high scores was environmental performance: both food systems demonstrated a high capacity to provide agroecosystem services (e.g. through crop diversity or combining livestock with trees29,33); low external inputs and recycling of organic materials; a low carbon footprint; and perceived positive health impacts by producers, workers and consumers. The food system that scored highest (4.0) in environmental performance is the Domestic–indigenous food system (B2). However, it obtained the lowest scores in poverty and inequality (1.6, with particularly low ratings for incomes, livelihood capitals and social protection), pulling down its overall score.
Figures 1 and 2 display the aggregated qualitative and quantitative research results on a five-point Likert scale from 0 (very low) to 4 (very high). The area covered by one food system reflects its overall sustainability, while the axes reflect the five dimensions. The median is calculated as an average value for one dimension from all its indicators; for each food system it represents strengths (comparatively high scores) and weaknesses (comparatively low scores) of food sustainability of the six assessed food systems.
Figure 1
Overall food sustainability scores and median scores of five dimensions for three food systems in Kenya, rated from 0 (very low), 1 (low), 2 (medium), 3 (high) to 4 (very high). For detailed results, see Supplementary Data.
Full size image
Figure 2
Overall food sustainability scores and median scores of five dimensions for three food systems in Bolivia, from 0 (very low), 1 (low), 2 (medium), 3 (high) to 4 (very high). For detailed results, see Supplementary Data.
Full size image
The lowest overall sustainability scores were obtained by the Agro-industrial food systems, B1 (scoring 1.6) and K1 (scoring 1.8). This was mainly due to their poor environmental performance on pesticide and resource use. Of the pesticides documented during this study, 65% in Bolivia and 67% in Kenya contained substances considered “highly hazardous” jointly by the FAO and WHO36. Additionally, resource use along the value chain was high, with examples including water, packaging material, electricity and diesel, and, in Kenya, aviation turbine oil30,37. Lowest-scoring B1 demonstrated a low diversity of crops and breeds, high greenhouse gas emissions and perceived negative health impacts. Right to food was particularly low in B1 due to low quality and accessibility of land and water resources for the local population, low food diversity and access to seeds, low access for women to land and finance, and a lack of participation in decision-making. In second-lowest scoring K1, water use was around 100 times higher than in K3, pesticide use seven times higher, and the carbon footprint of exported vegetables 67 times higher than for vegetables consumed in K330.
Food security of local households in the study areas was highest in the Agroecological food system (B3), with better scores than the other food systems for access to land and water, contribution to local consumption, accessibility of food, and capacity to provide what is considered to constitute a “good diet”. In general, household food security was high in the study area in Bolivia, and low to medium in the study area in Kenya. Food security was lowest in the Agro-industrial system in Kenya (K1). This is because K1 exports almost all the food it produces and does not engage in processing or storage activities, implying low accessibility to, and consumption of, the produced food locally. Households involved in K1 through labour had medium food security and a low perception of the food system’s capacity to provide a “good diet”.
Contrary to expectations, the Agro-industrial food systems obtained medium (B1) and above-medium (K1) resilience scores. Key factors were a high or very high level of self-organization in interest groups, knowledge on threats and opportunities, and functioning feedback mechanisms between system components, such as supportive policies that translated into subsidies, relief payments and reduced tax rates24. This social dimension of resilience somewhat mitigated the low scores that B1 and K1 obtained for agroecosystem resilience and their high dependence on external inputs and monocultures (which, in turn, rendered them vulnerable to e.g. climate impacts or price fluctuations).
The weakest dimensions across food systems
The weakest dimension was right to food. K1 and B1 both scored particularly low in this dimension due to high land concentration (e.g. average land plot size was 90 ha in K1, compared to 2 ha in K324) and a lack of food diversity, supply of nutritional needs, and local food traditions. All food systems obtained low scores for women’s access to land and credit (in Kenya, only 5% and in Bolivia 17% of landowners are women38). K3 obtained slightly higher scores, as more women had access to land (although this did not mean they held the property deeds) and because of the prevalence of women’s groups that operated a system of microcredits.
The second-weakest dimension was poverty and inequality. This was due to low farming incomes and high income inequality (e.g. salaries for selling agricultural inputs in B1 were 220% higher than for the other activities in this food system24). Salaries for workers (e.g. farm workers in Kenya39) were around the minimum wage, and workers throughout the value chain were excluded from social protection. Nevertheless, the Agro-industrial food systems obtained a high (K1) and a medium score (B1) for the reduction of poverty and inequality, due to high scores for physical capital (infrastructure, fulfilment of basic needs, transport and storage facilities, livestock) and human capital (education, experience, health), and relatively low household expenditure on food.
Contributions of food system activities to sustainability
To understand the contribution of different food system activities to the overall sustainability scores, the indicators for each food system are grouped according to activity: production, processing and storage, retail and trade, consumption, and transversal (across activities, e.g. carbon footprint of a food product). Figure 3 shows the sum of the medians according to activity, and Fig. 4 shows the range of scores for each activity in each food system.
Figure 3
Median food system activity score of food sustainability. “Transversal” means across all food system activities. The maximum score for each food system activity is 4 (or “very high” on the Likert scale), and the overall maximum score is 20.
Full size image
Figure 4
Distribution of sustainability scores for each food system according to food system activity: production, processing/storage, retail/trade, consumption and transversal indicators.
Full size image
In the food systems with a comparably high overall sustainability score (B3, K3), all activities obtained relatively high scores (e.g. consumption in B3: locally produced food, provision of food to food system actors, a perceived “good diet”, contribution to food diversity, information and participation). The “transversal” category recorded similar scores across food systems. It comprised household food security, livelihood assets, material and energy use along the value chain, and resilience indicators (e.g. organization in interest groups, also along the value chain). The food system with the lowest cumulative score, K1, scored 0 in processing/storage and retail/trade, and it obtained low scores for production (due to low incomes), access to productive resources, environmental performance, and consumption (due to low contributions to the local food system and its diversity). Transversal scored higher than the other activities in K1, mainly due to the positive social resilience scores mentioned above. Figure 4 shows the per-activity contribution to the overall food sustainability rating for each food system.
Most food system activities (especially production, consumption and transversal) had a high variability of scores, ranging from 0–3 or even from 0–4 (minimum to maximum value). In B3, every activity obtained a comparably high score, although all but retail and trade were still very variable. Processing and storage (capacity in the food system to provide both processing and storage) was medium to high in B2, but storage was low in K3 and B3 (weakening overall food security) and K1 (freshly sold perishable produce). Retail and trade (affordable food prices, above-medium retail employee wages) contributed strongly to overall food sustainability in B3 and K3, at a medium level to B1 and K2, and little to B2. Consumption obtained a medium or above-medium score, which means that it played an important role in overall sustainability (e.g. in the form of food diversity in K3). An exception was K1, where consumption took place so far away that most of the related indicators obtained low scores for the food system context under study. Scores obtained for the “transversal” category also varied highly, but augmented overall food sustainability mainly through resilience (K1, B1) and environmental performance indicators (K2, K3, B3, K3).
Most decisive indicators for food sustainability
To identify general trends, we further analysed the importance of individual indicators for overall food sustainability across all six food systems (Fig. 5).
Figure 5
Frequency of difference from the median (to the left of 0: frequency with which the indicators across all six food systems scored worse than the median; to the right of 0: frequency with which they scored better than the median).
Full size image
Resilience indicators often had a strongly positive influence on overall sustainability, especially the knowledge of threats and opportunities indicator, with above-median scores in five of the six food systems, and the indicators on functioning feedback mechanisms, interest groups and shared vision, which achieved above-median scores in four of the food systems. A notable exception was diversity of crops and breeds, a resilience indicator which scored lower than the overall median in five food systems. Several indicators from the food security dimension scored better than the median in four food systems: ability to provide food to food system actors, capacity to process food, access to land, access to water, and household food security.
In addition, environmental performance indicators were often high (e.g. use of energy, soil quality, use of materials, water footprint, Agroecosystem Service Capacity Index, carbon footprint), but mainly for the more local and diversified food systems. Exceptions were formed by the water footprint and use of materials along the value chain or food system stages, which were low also in B1 (as calculated up to the first consumption stage, e.g. use of soybeans for feed in meat and dairy production).
Low-scoring dimensions—those that pulled down the overall food sustainability score, i.e. poverty and inequality, and right to food—included indicators that most frequently scored lower than the median. These were related to gender, dwindling agrobiodiversity and food diversity, and precarious work conditions at the production level. Of these, women’s access to credit and diversity of crops and breeds scored five times below the median. The second-worst indicators (four times below the median) with no positive score were social protection and local food traditions, and the third-worst were the proportion of women with land rights, remedies for violations of the right to food, and liveable wage.
A principal component analysis (PCA) providing information on which combinations of indicators are most decisive for overall food sustainability in our case studies confirmed the trend shown in Fig. 5. Four principal components retained based on their eigenvalues explained 99% of variance (Supplementary Table S1). By retaining indicators with component loadings > 0.45, the first principal component was most influenced by human capital, social protection, remedies for violations of the right to food, local food traditions, access to information, landscape heterogeneity, water quality for domestic consumption, and women’s access to credit. Most of these indicators belong to the right to food and poverty inequality dimensions and are related to diversity and quality of human and natural resources that households, and especially women, have access to. The second principal component was most influenced by the capacity to process food, accessibility of water for domestic consumption, farmer incomes, ability to provide food to food system actors, use of materials, use of energy, and the capacity to cover nutritional needs, and was thus mainly linked to environmental performance and food security. The third principal component was dominated by resilience indicators: interest groups, knowledge of threats and opportunities, decent and safe working conditions, use of energy, shared vision, and ecological self-regulation. The fourth principal component was mostly influenced by access to water for domestic consumption and for irrigation, wages in retail, household food security, the proportion of women with land rights, and reflective and shared learning, and was thus strongly related to access to resources and incomes, particularly for women.
From the two analyses (frequency of positive/negative scoring of indicators, and PCA), we can identify the indicators with the greatest influence across the food systems under study. Six of these contributed positively, meaning that they were in a rather good state in several of the food systems. Four of the six indicators were from the food security dimension (capacity of the food system to process food, ability of the food system to provide food to food system actors, household food security, access to water) and two were from the environmental performance dimension (use of materials and use of energy). We identify six indicators, all but diversity of crops and breeds from the right to food dimension, which had a strongly negative influence (women’s access to credit, social protection, local food traditions, women’s land rights, and remedies for violations of the right to food). This means that these indicators were in an undesirable state in most of the food systems. More