More stories

  • in

    A new understanding and evaluation of food sustainability in six different food systems in Kenya and Bolivia

    Food sustainability indicators
    The indicators of the five dimensions of food sustainability that were collectively defined and assessed in the six food systems are presented in Table 2 and in the Supplementary Data (sheets 1–9). Relevant across contexts, the indicators represent a consensual output of the research process with scientists from the Global North and South and non-academic actors related to the different food systems (see Methods). The indicators cover different activities, from production to consumption, and some are transversal, i.e. occurring along the value chain.
    How the six food systems scored
    Food systems B3 (Agroecological food system) and K3 (Local food system) had the highest overall sustainability scores. In addition, these scores were more equally distributed across the five dimensions than in the other food systems. The greatest contributor to these high scores was environmental performance: both food systems demonstrated a high capacity to provide agroecosystem services (e.g. through crop diversity or combining livestock with trees29,33); low external inputs and recycling of organic materials; a low carbon footprint; and perceived positive health impacts by producers, workers and consumers. The food system that scored highest (4.0) in environmental performance is the Domestic–indigenous food system (B2). However, it obtained the lowest scores in poverty and inequality (1.6, with particularly low ratings for incomes, livelihood capitals and social protection), pulling down its overall score.
    Figures 1 and 2 display the aggregated qualitative and quantitative research results on a five-point Likert scale from 0 (very low) to 4 (very high). The area covered by one food system reflects its overall sustainability, while the axes reflect the five dimensions. The median is calculated as an average value for one dimension from all its indicators; for each food system it represents strengths (comparatively high scores) and weaknesses (comparatively low scores) of food sustainability of the six assessed food systems.
    Figure 1

    Overall food sustainability scores and median scores of five dimensions for three food systems in Kenya, rated from 0 (very low), 1 (low), 2 (medium), 3 (high) to 4 (very high). For detailed results, see Supplementary Data.

    Full size image

    Figure 2

    Overall food sustainability scores and median scores of five dimensions for three food systems in Bolivia, from 0 (very low), 1 (low), 2 (medium), 3 (high) to 4 (very high). For detailed results, see Supplementary Data.

    Full size image

    The lowest overall sustainability scores were obtained by the Agro-industrial food systems, B1 (scoring 1.6) and K1 (scoring 1.8). This was mainly due to their poor environmental performance on pesticide and resource use. Of the pesticides documented during this study, 65% in Bolivia and 67% in Kenya contained substances considered “highly hazardous” jointly by the FAO and WHO36. Additionally, resource use along the value chain was high, with examples including water, packaging material, electricity and diesel, and, in Kenya, aviation turbine oil30,37. Lowest-scoring B1 demonstrated a low diversity of crops and breeds, high greenhouse gas emissions and perceived negative health impacts. Right to food was particularly low in B1 due to low quality and accessibility of land and water resources for the local population, low food diversity and access to seeds, low access for women to land and finance, and a lack of participation in decision-making. In second-lowest scoring K1, water use was around 100 times higher than in K3, pesticide use seven times higher, and the carbon footprint of exported vegetables 67 times higher than for vegetables consumed in K330.
    Food security of local households in the study areas was highest in the Agroecological food system (B3), with better scores than the other food systems for access to land and water, contribution to local consumption, accessibility of food, and capacity to provide what is considered to constitute a “good diet”. In general, household food security was high in the study area in Bolivia, and low to medium in the study area in Kenya. Food security was lowest in the Agro-industrial system in Kenya (K1). This is because K1 exports almost all the food it produces and does not engage in processing or storage activities, implying low accessibility to, and consumption of, the produced food locally. Households involved in K1 through labour had medium food security and a low perception of the food system’s capacity to provide a “good diet”.
    Contrary to expectations, the Agro-industrial food systems obtained medium (B1) and above-medium (K1) resilience scores. Key factors were a high or very high level of self-organization in interest groups, knowledge on threats and opportunities, and functioning feedback mechanisms between system components, such as supportive policies that translated into subsidies, relief payments and reduced tax rates24. This social dimension of resilience somewhat mitigated the low scores that B1 and K1 obtained for agroecosystem resilience and their high dependence on external inputs and monocultures (which, in turn, rendered them vulnerable to e.g. climate impacts or price fluctuations).
    The weakest dimensions across food systems
    The weakest dimension was right to food. K1 and B1 both scored particularly low in this dimension due to high land concentration (e.g. average land plot size was 90 ha in K1, compared to 2 ha in K324) and a lack of food diversity, supply of nutritional needs, and local food traditions. All food systems obtained low scores for women’s access to land and credit (in Kenya, only 5% and in Bolivia 17% of landowners are women38). K3 obtained slightly higher scores, as more women had access to land (although this did not mean they held the property deeds) and because of the prevalence of women’s groups that operated a system of microcredits.
    The second-weakest dimension was poverty and inequality. This was due to low farming incomes and high income inequality (e.g. salaries for selling agricultural inputs in B1 were 220% higher than for the other activities in this food system24). Salaries for workers (e.g. farm workers in Kenya39) were around the minimum wage, and workers throughout the value chain were excluded from social protection. Nevertheless, the Agro-industrial food systems obtained a high (K1) and a medium score (B1) for the reduction of poverty and inequality, due to high scores for physical capital (infrastructure, fulfilment of basic needs, transport and storage facilities, livestock) and human capital (education, experience, health), and relatively low household expenditure on food.
    Contributions of food system activities to sustainability
    To understand the contribution of different food system activities to the overall sustainability scores, the indicators for each food system are grouped according to activity: production, processing and storage, retail and trade, consumption, and transversal (across activities, e.g. carbon footprint of a food product). Figure 3 shows the sum of the medians according to activity, and Fig. 4 shows the range of scores for each activity in each food system.
    Figure 3

    Median food system activity score of food sustainability. “Transversal” means across all food system activities. The maximum score for each food system activity is 4 (or “very high” on the Likert scale), and the overall maximum score is 20.

    Full size image

    Figure 4

    Distribution of sustainability scores for each food system according to food system activity: production, processing/storage, retail/trade, consumption and transversal indicators.

    Full size image

    In the food systems with a comparably high overall sustainability score (B3, K3), all activities obtained relatively high scores (e.g. consumption in B3: locally produced food, provision of food to food system actors, a perceived “good diet”, contribution to food diversity, information and participation). The “transversal” category recorded similar scores across food systems. It comprised household food security, livelihood assets, material and energy use along the value chain, and resilience indicators (e.g. organization in interest groups, also along the value chain). The food system with the lowest cumulative score, K1, scored 0 in processing/storage and retail/trade, and it obtained low scores for production (due to low incomes), access to productive resources, environmental performance, and consumption (due to low contributions to the local food system and its diversity). Transversal scored higher than the other activities in K1, mainly due to the positive social resilience scores mentioned above. Figure 4 shows the per-activity contribution to the overall food sustainability rating for each food system.
    Most food system activities (especially production, consumption and transversal) had a high variability of scores, ranging from 0–3 or even from 0–4 (minimum to maximum value). In B3, every activity obtained a comparably high score, although all but retail and trade were still very variable. Processing and storage (capacity in the food system to provide both processing and storage) was medium to high in B2, but storage was low in K3 and B3 (weakening overall food security) and K1 (freshly sold perishable produce). Retail and trade (affordable food prices, above-medium retail employee wages) contributed strongly to overall food sustainability in B3 and K3, at a medium level to B1 and K2, and little to B2. Consumption obtained a medium or above-medium score, which means that it played an important role in overall sustainability (e.g. in the form of food diversity in K3). An exception was K1, where consumption took place so far away that most of the related indicators obtained low scores for the food system context under study. Scores obtained for the “transversal” category also varied highly, but augmented overall food sustainability mainly through resilience (K1, B1) and environmental performance indicators (K2, K3, B3, K3).
    Most decisive indicators for food sustainability
    To identify general trends, we further analysed the importance of individual indicators for overall food sustainability across all six food systems (Fig. 5).
    Figure 5

    Frequency of difference from the median (to the left of 0: frequency with which the indicators across all six food systems scored worse than the median; to the right of 0: frequency with which they scored better than the median).

    Full size image

    Resilience indicators often had a strongly positive influence on overall sustainability, especially the knowledge of threats and opportunities indicator, with above-median scores in five of the six food systems, and the indicators on functioning feedback mechanisms, interest groups and shared vision, which achieved above-median scores in four of the food systems. A notable exception was diversity of crops and breeds, a resilience indicator which scored lower than the overall median in five food systems. Several indicators from the food security dimension scored better than the median in four food systems: ability to provide food to food system actors, capacity to process food, access to land, access to water, and household food security.
    In addition, environmental performance indicators were often high (e.g. use of energy, soil quality, use of materials, water footprint, Agroecosystem Service Capacity Index, carbon footprint), but mainly for the more local and diversified food systems. Exceptions were formed by the water footprint and use of materials along the value chain or food system stages, which were low also in B1 (as calculated up to the first consumption stage, e.g. use of soybeans for feed in meat and dairy production).
    Low-scoring dimensions—those that pulled down the overall food sustainability score, i.e. poverty and inequality, and right to food—included indicators that most frequently scored lower than the median. These were related to gender, dwindling agrobiodiversity and food diversity, and precarious work conditions at the production level. Of these, women’s access to credit and diversity of crops and breeds scored five times below the median. The second-worst indicators (four times below the median) with no positive score were social protection and local food traditions, and the third-worst were the proportion of women with land rights, remedies for violations of the right to food, and liveable wage.
    A principal component analysis (PCA) providing information on which combinations of indicators are most decisive for overall food sustainability in our case studies confirmed the trend shown in Fig. 5. Four principal components retained based on their eigenvalues explained 99% of variance (Supplementary Table S1). By retaining indicators with component loadings  > 0.45, the first principal component was most influenced by human capital, social protection, remedies for violations of the right to food, local food traditions, access to information, landscape heterogeneity, water quality for domestic consumption, and women’s access to credit. Most of these indicators belong to the right to food and poverty inequality dimensions and are related to diversity and quality of human and natural resources that households, and especially women, have access to. The second principal component was most influenced by the capacity to process food, accessibility of water for domestic consumption, farmer incomes, ability to provide food to food system actors, use of materials, use of energy, and the capacity to cover nutritional needs, and was thus mainly linked to environmental performance and food security. The third principal component was dominated by resilience indicators: interest groups, knowledge of threats and opportunities, decent and safe working conditions, use of energy, shared vision, and ecological self-regulation. The fourth principal component was mostly influenced by access to water for domestic consumption and for irrigation, wages in retail, household food security, the proportion of women with land rights, and reflective and shared learning, and was thus strongly related to access to resources and incomes, particularly for women.
    From the two analyses (frequency of positive/negative scoring of indicators, and PCA), we can identify the indicators with the greatest influence across the food systems under study. Six of these contributed positively, meaning that they were in a rather good state in several of the food systems. Four of the six indicators were from the food security dimension (capacity of the food system to process food, ability of the food system to provide food to food system actors, household food security, access to water) and two were from the environmental performance dimension (use of materials and use of energy). We identify six indicators, all but diversity of crops and breeds from the right to food dimension, which had a strongly negative influence (women’s access to credit, social protection, local food traditions, women’s land rights, and remedies for violations of the right to food). This means that these indicators were in an undesirable state in most of the food systems. More

  • in

    Low genetic diversity indicating the threatened status of Rhizophora apiculata (Rhizophoraceae) in Malaysia: declined evolution meets habitat destruction

    1.
    Gandhi, S. & Jones, T. G. Identifying mangrove deforestation hotspots in South Asia, Southeast Asia and Asia-Pacific. Remote Sens. 11, 728 (2019).
    ADS  Article  Google Scholar 
    2.
    Hamdan, O., Khali-Aziz, H., Shamsudin, I. & Raja-Barizan, R.S. Status of Mangroves in Peninsular Malaysia. 153 (Forest Research Institute Malaysia, 2012).

    3.
    Taillardat, P., Friess, D. A. & Lupascu, M. Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biol. Lett. 14, 20180251 (2018).
    Article  CAS  Google Scholar 

    4.
    Richards, D. R. & Friess, D. A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA 113, 344–349 (2016).
    ADS  CAS  Article  Google Scholar 

    5.
    Friess, D. A. et al. Mangroves give cause for conservation optimism, for now. Curr. Biol. 30, R153–R154 (2020).
    CAS  Article  Google Scholar 

    6.
    Polidoro, B. A. et al. The loss of species: mangrove extinction risk and geographic areas of global concern. PLoS ONE 5, e10095 (2010).
    ADS  Article  CAS  Google Scholar 

    7.
    Matesanz, S., Rubio-Teso, M. L., García-Fernández, A. & Escudero, A. Habitat fragmentation differentially affects genetic variation, phenotypic plasticity and survival in populations of a gypsum endemic. Front. Plant Sci. 8, 843 (2017).
    Article  Google Scholar 

    8.
    Furches, M. S., Small, R. L. & Furches, A. Genetic diversity in three endangered pitcher plant species (Sarracenia; Sarraceniaceae) is lower than widespread congeners. Am. J. Bot. 100, 2092–2101 (2013).
    Article  Google Scholar 

    9.
    Yan, Y. B., Duke, N. C. & Sun, M. Comparative analysis of the pattern of population genetic diversity in three Indo-West Pacific Rhizophora mangrove species. Front. Plant Sci. 7, 1434 (2016).
    PubMed  Google Scholar 

    10.
    Wan-Ismail, W. N., Wan-Ahmad, W. J., Salam, M. R. & Latiff, A. Structural and floristic pattern in a disturbed mangrove tropical swamp forest: a case study from the Langkawi UNESCO Global Geopark Forest, Peninsular Malaysia. Sains Malays. 47, 861–869 (2018).
    Article  Google Scholar 

    11.
    Setyawan, A.D., Ulumuddin, Y.I. & Ragavan, P. Mangrove hybrid of Rhizophora and its parentals species in Indo-Malayan region. Nusantara Biosci. 6 (2014).

    12.
    Lahjie, A.M., Nouval, B., Lahjie, A.A., Ruslim, Y. & Kristiningrum, R. Economic valuation from direct use of mangrove forest restoration in Balikpapan Bay, East Kalimantan, Indonesia. F1000Res. 8 (2019).

    13.
    Omar, H., Misman, M.A. & Musa, S. GIS and remote sensing for mangroves mapping and monitoring. Geographic Information Systems and Science. IntechOpen https://www.intechopen.com/books/geographic-information-systems-and-science/gis-and-remote-sensing-for-mangroves-mapping-and-monitoring (2019).

    14.
    Takayama, K., Tamura, M., Tateishi, Y., Webb, E. L. & Kajita, T. Strong genetic structure over the American continents and transoceanic dispersal in the mangrove genus Rhizophora (Rhizophoraceae) revealed by broad-scale nuclear and chloroplast DNA analysis. Am. J. Bot. 100, 1191–1201 (2013).
    CAS  Article  Google Scholar 

    15.
    Ng, W. L. et al. Closely related and sympatric but not all the same: genetic variation of Indo-West Pacific Rhizophora mangroves across the Malay Peninsula. Conserv. Genet. 16, 137–150 (2015).
    Article  Google Scholar 

    16.
    Yahya, A. F. et al. Genetic variation and population genetic structure of Rhizophora apiculata (Rhizophoraceae) in the greater Sunda Islands, Indonesia using microsatellite markers. J. Plant Res. 127, 287–297 (2014).
    CAS  Article  Google Scholar 

    17.
    Chen, Y. et al. Applications of multiple nuclear genes to the molecular phylogeny, population genetics and hybrid identification in the mangrove genus Rhizophora. PLoS ONE. 10 (2015).

    18.
    Guo, Z. et al. Genetic discontinuities in a dominant mangrove Rhizophora apiculata (Rhizophoraceae) in the Indo-Malesian region. J. Biogeogr. 43, 1856–1868 (2016).
    Article  Google Scholar 

    19.
    Cheng, A. et al. Molecular marker technology for genetic improvement of underutilised crops. In Crop improvement (eds Abdullah, S. et al.) 47–70 (Springer, Cham, 2017).
    Google Scholar 

    20.
    Ali, A. et al. Genetic diversity and population structure analysis of Saccharum and Erianthus genera using microsatellite (SSR) markers. Sci. Rep. 9, 1–10 (2019).
    Article  CAS  Google Scholar 

    21.
    Shinmura, Y. et al. Isolation and characterization of 14 microsatellite markers for Rhizophora mucronata (Rhizophoraceae) and their potential use in range-wide population studies. Conserv. Genet. Resour. 4, 951–954 (2012).
    Article  Google Scholar 

    22.
    Xu, S. et al. The origin, diversification and adaptation of a major mangrove clade (Rhizophoraceae) revealed by whole-genome sequencing. Natl. Sci. Rev. 4, 721–734 (2017).
    CAS  Article  Google Scholar 

    23.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).
    CAS  Article  Google Scholar 

    24.
    Nei, M., Tajima, F. & Tateno, Y. Accuracy of estimated phylogenetic trees from molecular data. J. Mol. Evol. 19, 153–170 (1983).
    ADS  CAS  Article  Google Scholar 

    25.
    Maguire, T.L., Edwards, K.J., Saenger, P. & Henry, R. Characterisation and analysis of microsatellite loci in a mangrove species, Avicennia marina (Forsk.) Vierh. (Avicenniaceae). Theor. Appl. Genet. 101, 279–285 (2000).

    26.
    Torre, S. et al. RNA-seq analysis of Quercus pubescens leaves: de novo transcriptome assembly, annotation and functional markers development. PLoS ONE 9, e112487 (2014).
    ADS  Article  CAS  Google Scholar 

    27.
    Ye, Y. et al. Characterization, validation, and cross-species transferability of newly developed EST-SSR markers and their application for genetic evaluation in crape myrtle (Lagerstroemia spp). Mol. Breed. 39, 26 (2019).
    Article  CAS  Google Scholar 

    28.
    Nei, M. Molecular Evolutionary Genetics (Columbia University Press, London, 1987).
    Google Scholar 

    29.
    Wee, A. K. et al. Vicariance and oceanic barriers drive contemporary genetic structure of widespread mangrove species Sonneratia alba, J. Sm in the Indo-West Pacific. Forests 8, 483 (2017).
    Article  Google Scholar 

    30.
    Ellstrand, N. C. & Elam, D. R. Population genetic consequences of small population size: implications for plant conservation. Annu. Rev. Ecol. Evol. Syst. 24, 217–242 (1993).
    Article  Google Scholar 

    31.
    Feder, J. L., Gejji, R., Yeaman, S. & Nosil, P. Establishment of new mutations under divergence and genome hitchhiking. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367, 461–474 (2012).
    Article  Google Scholar 

    32.
    Annuar, A. S. & Latip, N. A. Mangrove contributions towards environmental conservation and tourism in Balik Pulau. Adv. Conserv. Sci. Technol. 1, 1–7 (2020).
    Google Scholar 

    33.
    Wee, A.K. et al. Oceanic currents, not land masses, maintain the genetic structure of the mangrove Rhizophora mucronata Lam. (Rhizophoraceae) in Southeast Asia. J. Biogeogr. 41, 954–964 (2014).

    34.
    Ismail, M. H., Zaki, P. H. & Hamed, A. A. Wood density and carbon estimates of mangrove species in Kuala Sepetang, Perak, Malaysia. Malays. For. 78, 115–124 (2015).
    Google Scholar 

    35.
    Vitorino, C. A., Nogueira, F., Souza, I. L., Araripe, J. & Venere, P. C. Low genetic diversity and structuring of the Arapaima (Osteoglossiformes, Arapaimidae) population of the Araguaia-Tocantins basin. Front. Genet. 8, 159 (2017).
    Article  Google Scholar 

    36.
    Wright, S. The genetical structure of populations. Ann. Eugen. 15, 323–354 (1951).
    MathSciNet  CAS  MATH  Article  Google Scholar 

    37.
    Slatkin, M. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139, 457–462 (1995).
    CAS  PubMed  Google Scholar 

    38.
    Goodman, S. J. RST calc: a collection of computer programs for calculating estimates of genetic differentiation from microsatellite data and determining their significance. Mol. Ecol. 6, 881–885 (1997).
    CAS  Article  Google Scholar 

    39.
    Moulin, N. L., Wyttenbach, A., Brüunner, H., Goudet, J. & Hausser, J. Study of gene flow through a hybrid zone in the common shrew (Sorex araneus) using microsatellites. Hereditas. 125, 159–168 (1996).
    Article  Google Scholar 

    40.
    Ge, X. J. & Sun, M. Population genetic structure of Ceriops tagal (Rhizophoraceae) in Thailand and China. Wetl. Ecol. Manag. 9, 213–219 (2001).
    Article  Google Scholar 

    41.
    Dodd, R.S., Afzal-Rafii, Z., Kashani, N. & Budrick, J. Land barriers and open oceans: effects on gene diversity and population structure in Avicennia germinans L. (Avicenniaceae). Mol. Ecol. 11, 1327–1338 (2002).

    42.
    Rizal, S. et al. General circulation in the Malacca strait and Andaman Sea: a numerical model study. Am. J. Environ. Sci. 8, 479–488 (2012).
    Article  Google Scholar 

    43.
    Nathan, R. et al. Mechanisms of long-distance seed dispersal. Trends Ecol. Evol. 23, 638–647 (2008).
    Article  Google Scholar 

    44.
    Drexler, J.Z. Maximum longevities of Rhizophora apiculata and R. mucronata propagules. Pac. Sci. 55, 17–22 (2001).

    45.
    Li, J. et al. Pronounced genetic differentiation and recent secondary contact in the mangrove tree Lumnitzera racemosa revealed by population genomic analyses. Sci. Rep. 6, 29486 (2016).
    ADS  CAS  Article  Google Scholar 

    46.
    Murray, M. G. & Thompson, W. F. Rapid isolation of high molecular weight plant DNA. Nucl. Acids Res. 8, 4321–4326 (1980).
    CAS  Article  Google Scholar 

    47.
    Andrews, S. FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics https://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).

    48.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinform. 30, 2114–2120 (2014).
    CAS  Article  Google Scholar 

    49.
    Grabherr, M. G. et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 29, 644 (2011).
    CAS  Article  Google Scholar 

    50.
    Varshney, R. K., Thiel, T., Stein, N., Langridge, P. & Graner, A. In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cell Mol. Biol. Lett. 7, 537–546 (2002).
    CAS  PubMed  Google Scholar 

    51.
    Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers in Bioinformatics methods and protocols. 365–386 (Humana Press, 2000).

    52.
    Van-Oosterhout, C., Hutchinson, W. F., Wills, D. P. & Shipley, P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes. 4, 535–538 (2004).
    CAS  Article  Google Scholar 

    53.
    Lewis, P.O. & Zaykin, D. Genetic Data Analysis (GDA) version 1.1: a computer program for the analysis of allelic data. UConn https://phylogeny.uconn.edu/software/ (2002).

    54.
    Rice, W. R. Analyzing tables of statistical tests. Evol. 43, 223–225 (1989).
    Article  Google Scholar 

    55.
    Park, S.D.E. Trypanotolerance in West African cattle and the population genetic effects of selection. Ph. D (University of Dublin, 2001).

    56.
    Goudet, J. FSTAT version 2.9.3.2: a program to estimate and test gene diversities and fixation indices. Unil https://www2.unil.ch/popgen/softwares/fstat.htm (2002).

    57.
    Nei, M., Tajima, F. & Tateno, Y. Accuracy of estimated phylogenetic trees from molecular data. J. Mol. Evol. 19, 153–170 (1983).

    58.
    Liu, K. & Muse, S. V. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinform. 21, 2128–2129 (2005).
    CAS  Article  Google Scholar 

    59.
    Nei, M. F-statistics and analysis of gene diversity in subdivided populations. Ann. Hum. Genet. 41, 225–233 (1977).
    CAS  MATH  Article  Google Scholar 

    60.
    Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinform. 28, 2537–2539 (2012).
    CAS  Article  Google Scholar 

    61.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS  PubMed  Google Scholar 

    62.
    Li, Y. L. & Liu, J. X. StructureSelector: a web-based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 18, 176–177 (2018).
    Article  Google Scholar 

    63.
    Goudet, J. PCAGEN version 1.2: a program to perform a principal component analysis (PCA) on genetic data. Unil https://www2.unil.ch/popgen/softwares/pcagen.htm (1999).

    64.
    Tamura, K. et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739 (2011).
    CAS  Article  Google Scholar  More

  • in

    Transcriptomic and life history responses of the mayfly Neocloeon triangulifer to chronic diel thermal challenge

    1.
    Angilletta, M. J. Jr. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, Oxford, 2009).
    Google Scholar 
    2.
    Atkinson, D. Temperature and organism size: a biological law for ectortherms?. Adv. Ecol. Res. 25, 1–58 (1994).
    Article  Google Scholar 

    3.
    Atkinson, D. & Sibly, R. M. Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends Ecol. Evol. 12, 235–239 (1997).
    CAS  Article  PubMed  Google Scholar 

    4.
    Hynes, H. B. N. The ecology of stream insects. Ann. Rev. Entomol. 15, 25–42 (1970).
    Article  Google Scholar 

    5.
    Sweeney, B. W. & Vannote, R. L. Size variation and the distribution of hemimetabolous aquatic insects: two thermal equilibrium hypotheses. Science 200, 444–446 (1978).
    ADS  CAS  Article  PubMed  Google Scholar 

    6.
    Sweeney, B. W. & Vannote, R. L. Ephemerella mayflies of Whie Clay Creek: bioenergetic and ecological relationships among six coexisting species. Ecology 62, 1353–1369 (1981).
    Article  Google Scholar 

    7.
    Sweeney, B. W. & Vannote, R. L. Influence of food quality and temperature on life-history characteristics of the parthenogenetic mayfly Cloeon triangulifer. Freshw. Biol. 14, 621–630 (1984).
    Article  Google Scholar 

    8.
    Sweeney, B. W., Funk, D. H., Jackson, J. K., Camp, A. A. & Buchwalter, D. Why a mayfly Cloeon dipterum (Ephemeroptera: Baetidae) gets smaller as temperatures warm. Freshw. Sci. 37, 64–81 (2018).
    Article  Google Scholar 

    9.
    Caissie, D. The thermal regime of rivers: a review. Freshw. Biol. 51, 1389–1406 (2006).
    Article  Google Scholar 

    10.
    Haidekker, A. & Hering, D. Relationship between benthic insects (Ephemeroptera, Plecoptera, Coleoptera, Trichoptera) and temperature in small and medium-sized streams in Germany: a multivariate study. Aquat. Ecol. 42, 463–481 (2008).
    Article  Google Scholar 

    11.
    Woodward, G., Perkins, D. M. & Brown, L. E. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos. Trans. R. Soc. B Biol. Sci. 365, 2093–2106 (2010).
    Article  Google Scholar 

    12.
    Woodward, G. et al. The effects of climatic fluctuations and extreme events on running water ecosystems. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150274 (2016).
    Article  Google Scholar 

    13.
    Carpenter, S. R., Fisher, S. G., Grimm, N. B. & Ktchell, J. F. Global change and freshwater ecosystems. Annu. Rev. Ecol. Syst. 23, 119–139 (1992).
    Article  Google Scholar 

    14.
    El-Jabi, N., Caissie, D. & Turkkan, N. Water quality index assessment under climate change. J. Water Resour. Prot. 06, 533–542 (2014).
    Article  CAS  Google Scholar 

    15.
    Madden, N., Lewis, A. & Davis, M. Thermal effluent from the power sector: an analysis of once-through cooling system impacts on surface water temperature. Environ. Res. Lett. 8, 035006 (2013).
    ADS  Article  Google Scholar 

    16.
    Null, S. E., Ligare, S. T. & Viers, J. H. A method to consider whether dams mitigate climate change effects on stream temperatures. JAWRA J. Am. Water Resour. Assoc. 49, 1456–1472 (2013).
    ADS  Article  Google Scholar 

    17.
    Schulte, P. M., Healy, T. M. & Fangue, N. A. Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integr. Comp. Biol. 51, 691–702 (2011).
    Article  PubMed  Google Scholar 

    18.
    Sweeney, B. W., Jackson, J. K., Newbold, J. D. & Funk, D. H. Climate change and the life histories and biogeography of aquatic insects in Eastern North America. In Global Cilmate Change and Freshwater Ecosystems (eds Firth, P. & Fisher, S.) 143–176 (Springer, Berlin, 1990).
    Google Scholar 

    19.
    Hawkins, C. P., Norris, R. H., Hogue, J. N. & Feminella, J. W. Development and evaluation of predictive models for measuring the biological integrity of streams. Ecol. Appl. 10, 1456–1477 (2000).
    Article  Google Scholar 

    20.
    Hodkinson, I. D. & Jackson, J. K. Terrestrial and aquatic invertebrates as bioindicators for environmental monitoring, with particular reference to mountain ecosystems. Environ. Manag. 35, 649–666 (2005).
    Article  Google Scholar 

    21.
    Bonada, N., Prat, N., Resh, V. H. & Statzner, B. Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annu. Rev. Entomol. 51, 495–523 (2006).
    CAS  Article  PubMed  Google Scholar 

    22.
    Atkinson, D. Effects of temperature on the size of aquatic ectotherms: exceptions to the general rule. J. Therm. Biol. 20, 61–74 (1995).
    Article  Google Scholar 

    23.
    Kingsolver, J. G. & Huey, R. B. Size, temperature, and fitness: three rules. Evol. Ecol. Res. 10, 251–268 (2008).
    Google Scholar 

    24.
    Colinet, H., Sinclair, B. J., Vernon, P. & Renault, D. Insects in fluctuating thermal environments. Annu. Rev. Entomol. 60, 123–140 (2015).
    CAS  Article  PubMed  Google Scholar 

    25.
    Conley, J. M., Funk, D. H. & Buchwalter, D. B. Selenium bioaccumulation and maternal transfer in the mayfly Centroptilum triangulifer in a life-cycle, periphyton-biofilm trophic assay. Environ. Sci. Technol. 43, 7952–7957 (2009).
    ADS  CAS  Article  PubMed  Google Scholar 

    26.
    Conley, J. M., Funk, D. H., Cariello, N. J. & Buchwalter, D. B. Food rationing affects dietary selenium bioaccumulation and life cycle performance in the mayfly Centroptilum triangulifer. Ecotoxicology 20, 1840–1851 (2011).
    CAS  Article  PubMed  Google Scholar 

    27.
    Xie, L. T. et al. Cadmium biodynamics in the oligochaete Lumbriculus variegatus and its implications for trophic transfer. Aquat. Toxicol. 86, 265–271 (2008).
    CAS  Article  PubMed  Google Scholar 

    28.
    Xie, L. & Buchwalter, D. B. Cadmium exposure route affects antioxidant responses in the mayfly Centroptilum triangulifer. Aquat. Toxicol. 105, 199–205 (2011).
    CAS  Article  PubMed  Google Scholar 

    29.
    Kim, K. S., Funk, D. H. & Buchwalter, D. B. Dietary (periphyton) and aqueous Zn bioaccumulation dynamics in the mayfly Centroptilum triangulifer. Ecotoxicology 21, 2288–2296 (2012).
    CAS  Article  PubMed  Google Scholar 

    30.
    Wesner, J. S., Kraus, J. M., Schmidt, T. S., Walters, D. M. & Clements, W. H. Metamorphosis enhances the effects of metal exposure on the mayfly Centroptilum triangulifer. Environ. Sci. Technol. 48, 10415–10422 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    31.
    Soucek, D. J. & Dickinson, A. Full-life chronic toxicity of sodium salts to the mayfly Neocloeon triangulifer in tests with laboratory cultured food. Environ. Toxicol. Chem. 34, 2126–2137 (2015).
    CAS  Article  PubMed  Google Scholar 

    32.
    Kunz, J. L. et al. Use of reconstituted waters to evaluate effects of elevated major ions associated with mountaintop coal mining on freshwater invertebrates. Environ. Toxicol. Chem. 32, 2826–2835 (2013).
    CAS  Article  PubMed  Google Scholar 

    33.
    Orr, S. E. & Buchwalter, D. B. It’s all about the fluxes: temperature influences ion transport and toxicity in aquatic insects. Aquat. Toxicol. 221, 105405 (2020).
    CAS  Article  PubMed  Google Scholar 

    34.
    Buchwalter, D., Scheibener, S., Chou, H., Soucek, D. & Elphick, J. Are sulfate effects in the mayfly Neocloeon triangulifer driven by the cost of ion regulation?. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180013 (2018).
    Article  CAS  PubMed  Google Scholar 

    35.
    Jackson John, K. & Funk David, H. Temperature affects acute mayfly responses to elevated salinity: implications for toxicity of road de-icing salts. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180081 (2019).
    Article  CAS  Google Scholar 

    36.
    Kim, K. S. et al. Physiological responses to short-term thermal stress in mayfly (Neocloeon triangulifer) larvae in relation to upper thermal limits. J. Exp. Biol. 220, 2598–2605 (2017).
    Article  PubMed  Google Scholar 

    37.
    Chou, H., Pathmasiri, W., Deese-Spruill, J., Sumner, S. & Buchwalter, D. B. Metabolomics reveal physiological changes in mayfly larvae (Neocloeon triangulifer) at ecological upper thermal limits. J. Insect. Physiol. https://doi.org/10.1016/j.jinsphys.2017.07.008 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    38.
    Chou, H. et al. The good, the bad, and the lethal: gene expression and metabolomics reveal physiological mechanisms underlying chronic thermal effects in mayfly larvae (Neocloeon triangulifer). Front. Ecol. Evol. 101, 107–112 (2018).
    ADS  Google Scholar 

    39.
    Funk, D. H., Jackson, J. K. & Sweeney, B. W. Taxonomy and genetics of the parthenogenetic mayfly Centroptilum triangulifer and its sexual sister Centroptilum alamance (Ephemeroptera: Baetidae). J. North Am. Benthol. Soc. 25, 417–429 (2006).
    Article  Google Scholar 

    40.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
    CAS  Article  PubMed  Google Scholar 

    41.
    Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).
    CAS  Article  PubMed  Google Scholar 

    42.
    Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009).
    Article  CAS  Google Scholar 

    43.
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
    Article  CAS  PubMed  Google Scholar 

    44.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).
    MathSciNet  MATH  Google Scholar 

    45.
    Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M. & Gilad, Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 18, 1509–1517 (2008).
    CAS  Article  PubMed  Google Scholar 

    46.
    Nagalakshmi, U. et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320, 1344–1349 (2008).
    ADS  CAS  Article  PubMed  Google Scholar 

    47.
    Ramani, A. K. et al. High resolution transcriptome maps for wild-type and nonsense-mediated decay-defective Caenorhabditis elegans. Genome Biol. 10, R101 (2009).
    Article  CAS  PubMed  Google Scholar 

    48.
    Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).
    CAS  Article  PubMed  Google Scholar 

    49.
    Yassour, M. et al. Ab initio construction of a eukaryotic transcriptome by massively parallel mRNA sequencing. Proc. Natl. Acad. Sci. U. S. A. 106, 3264–3269 (2009).
    ADS  CAS  Article  PubMed  Google Scholar 

    50.
    Katz, B. & Minke, B. Drosophila photoreceptors and signaling mechanisms. Front. Cell. Neurosci. 3, 2 (2009).
    Article  CAS  PubMed  Google Scholar 

    51.
    Shen, W. L. et al. Function of rhodopsin in temperature discrimination in drosophila. Science 331, 1333–1336 (2011).
    ADS  CAS  Article  PubMed  Google Scholar 

    52.
    Wheeler, D. A., Hamblen-Coyle, M. J., Dushay, M. S. & Hall, J. C. Behavior in light–dark cycles of drosophila mutants that are arrhythmic, blind, or both. J. Biol. Rhythms https://doi.org/10.1177/074873049300800106 (2016).
    Article  Google Scholar 

    53.
    Miyasako, Y., Umezaki, Y. & Tomioka, K. Separate sets of cerebral clock neurons are responsible for light and temperature entrainment of drosophila circadian locomotor rhythms. J. Biol. Rhythms 22, 115–126 (2007).
    Article  PubMed  Google Scholar 

    54.
    Verberk, W. C. & Bilton, D. T. Oxygen-limited thermal tolerance is seen in a plastron-breathing insect and can be induced in a bimodal gas exchanger. J. Exp. Biol. 218, 2083–2088 (2015).
    Article  PubMed  Google Scholar 

    55.
    Verberk, W. C., Bilton, D. T., Calosi, P. & Spicer, J. I. Oxygen supply in aquatic ectotherms: partial pressure and solubility together explain biodiversity and size patterns. Ecology 92, 1565–1572 (2011).
    Article  PubMed  Google Scholar 

    56.
    Verberk, W. C. E. P., Sommer, U., Davidson, R. L. & Viant, M. R. Anaerobic metabolism at thermal extremes: a metabolomic test of the oxygen limitation hypothesis in an aquatic insect. Integr. Comp. Biol. 53, 609–619 (2013).
    CAS  Article  PubMed  Google Scholar 

    57.
    Merzendorfer, H. & Zimoch, L. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J. Exp. Biol. 206, 4393–4412 (2003).
    CAS  Article  PubMed  Google Scholar 

    58.
    White, B. J. et al. Localization of candidate regions maintaining a common polymorphic inversion (2La) in Anopheles gambiae. PLoS Genet. preprint, e217 (2005).

    59.
    Zhao, L., Wit, J., Svetec, N. & Begun, D. J. Parallel gene expression differences between low and high latitude populations of drosophila melanogaster and D. simulans. PLOS Genet. 11, e1005184 (2015).
    Article  CAS  PubMed  Google Scholar 

    60.
    Beament, J. W. L. The waterproofing mechanism of arthropods: I. The effect of temperature on cuticle permeability in terrestrial insects and ticks. J. Exp. Biol. 36, 391–422 (1959).
    CAS  Google Scholar 

    61.
    Dennis, A. B., Dunning, L. T., Sinclair, B. J. & Buckley, T. R. Parallel molecular routes to cold adaptation in eight genera of New Zealand stick insects. Sci. Rep. 5, 13965 (2015).
    ADS  Article  PubMed  Google Scholar 

    62.
    Camp, A. A., Funk, D. H. & Buchwalter, D. B. A sressful shortness of breath: molting disrupts breathing in the mayfly Cloeon dipterum. Freshw. Sci. 33, 695–699 (2014).
    Article  Google Scholar 

    63.
    Butenandt, A. & Karlson, P. Über die Isolierung eines Metamorphose-Hormons der Insekten in kristallisierter Form. Z. Für Naturforschung B 9, 389–391 (1954).
    Article  Google Scholar 

    64.
    Charles, J. P. The regulation of expression of insect cuticle protein genes. Insect. Biochem. Mol. Biol. 40, 205–213 (2010).
    CAS  Article  PubMed  Google Scholar 

    65.
    Rees, H. H. Zooecdysteroids: structure and occurrence. In Ecdysone: From Chemistry to Mode of Action (ed. Koolman, J.) (Thieme, Berlin, 1989).
    Google Scholar 

    66.
    Davenport, A. P. & Evans, P. D. Stress-induced changes in the octopamine levels of insect haemolymph. Insect. Biochem. 14, 135–143 (1984).
    CAS  Article  Google Scholar  More

  • in

    Crystalline iron oxides stimulate methanogenic benzoate degradation in marine sediment-derived enrichment cultures

    1.
    Arndt S, Jørgensen BB, LaRowe DE, Middelburg J, Pancost R, Regnier P. Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth Sci Rev. 2013;123:53–86.
    CAS  Article  Google Scholar 
    2.
    Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta. 1979;43:1075–90.
    CAS  Article  Google Scholar 

    3.
    Calvert S. Oceanographic controls on the accumulation of organic matter in marine sediments. Geol Soc Spec Publ. 1987;26:137–51.
    Article  Google Scholar 

    4.
    De Leeuw J, Largeau C. A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal, and petroleum formation. Org Geochem. 1993;11:23–72.

    5.
    Mackenzie FT, Lerman A, Andersson AJ. Past and present of sediment and carbon biogeochemical cycling models. Biogeosciences. 2004;1:11–32.
    CAS  Article  Google Scholar 

    6.
    Oni OE, Miyatake T, Kasten S, Richter-Heitmann T, Fischer D, Wagenknecht L, et al. Distinct microbial populations are tightly linked to the profile of dissolved iron in the methanic sediments of the Helgoland Mud Area, North Sea. Front Microbiol. 2015;6:365.
    PubMed Central  PubMed  Google Scholar 

    7.
    Egger M, Hagens M, Sapart CJ, Dijkstra N, van Helmond NA, Mogollón JM, et al. Iron oxide reduction in methane-rich deep Baltic Sea sediments. Geochim Cosmochim Acta. 2017;207:256–76.
    CAS  Article  Google Scholar 

    8.
    Riedinger N, Pfeifer K, Kasten S, Garming JFL, Vogt C, Hensen C. Diagenetic alteration of magnetic signals by anaerobic oxidation of methane related to a change in sedimentation rate. Geochim Cosmoch Acta. 2005;69:4117–26.
    CAS  Article  Google Scholar 

    9.
    Riedinger N, Formolo MJ, Lyons TW, Henkel S, Beck A, Kasten S. An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments. Geobiology. 2014;12:172–81.
    CAS  Article  Google Scholar 

    10.
    März C, Hoffmann J, Bleil U, De Lange G, Kasten S. Diagenetic changes of magnetic and geochemical signals by anaerobic methane oxidation in sediments of the Zambezi deep-sea fan (SW Indian Ocean). Mar Geol. 2008;255:118–30.
    Article  CAS  Google Scholar 

    11.
    Hensen C, Zabel M, Pfeifer K, Schwenk T, Kasten S, Riedinger N, et al. Control of sulfate pore-water profiles by sedimentary events and the significance of anaerobic oxidation of methane for the burial of sulfur in marine sediments. Geochim Cosmochim Acta. 2003;67:2631–47.
    CAS  Article  Google Scholar 

    12.
    Flood RD, Piper DJW, Klaus A, Party SS. Initial Reports. Proc. Ocean Drill. Progam. 1995;155. https://doi.org/10.2973/odp.proc.ir.155.1995.

    13.
    Kasten S, Freudenthal T, Gingele FX, Schulz HD. Simultaneous formation of iron-rich layers at different redox boundaries in sediments of the Amazon deep-sea fan. Geochim Cosmochim Acta. 1998;62:2253–64.
    CAS  Article  Google Scholar 

    14.
    Meyers SR. Production and preservation of organic matter: the significance of iron. Paleoceanography. 2007;22:PA4211.

    15.
    Barber A, Brandes J, Leri A, Lalonde K, Balind K, Wirick S, et al. Preservation of organic matter in marine sediments by inner-sphere interactions with reactive iron. Sci Rep. 2017;7:1–10.
    CAS  Article  Google Scholar 

    16.
    Lalonde K, Mucci A, Ouellet A, Gélinas Y. Preservation of organic matter in sediments promoted by iron. Nature. 2012;483:198–200.
    CAS  Article  Google Scholar 

    17.
    Middelburg JJ. A simple rate model for organic matter decomposition in marine sediments. Geochim Cosmochim Acta. 1989;53:1577–81.
    CAS  Article  Google Scholar 

    18.
    Biddle JF, Lipp JS, Lever MA, Lloyd KG, Sørensen KB, Anderson R, et al. Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proc Natl Acad Sci USA. 2006;103:3846–51.
    CAS  Article  Google Scholar 

    19.
    Aromokeye DA, Kulkarni AC, Elvert M, Wegener G, Henkel S, Coffinet S, et al. Rates and microbial players of iron-driven anaerobic oxidation of methane in methanic marine sediments. Front Microbiol. 2020;10:3041.
    PubMed Central  Article  PubMed  Google Scholar 

    20.
    Lovley DR, Phillips EJ. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol. 1986;51:683–9.
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    21.
    Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJ, Woodward JC. Humic substances as electron acceptors for microbial respiration. Nature. 1996;382:445–8.
    CAS  Article  Google Scholar 

    22.
    Lovley D. Dissimilatory Fe (III)-and Mn (IV)-reducing prokaryotes, In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryotes. Springer: Berlin Heidelberg; 2006, Vol. 2, p. 635–58.

    23.
    Lovley DR, Phillips EJ. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol. 1988;54:1472–80.
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    24.
    Kato S, Hashimoto K, Watanabe K. Methanogenesis facilitated by electric syntrophy via (semi) conductive iron‐oxide minerals. Environ Microbiol. 2012;14:1646–54.
    CAS  Article  Google Scholar 

    25.
    Jiang S, Park S, Yoon Y, Lee J-H, Wu W-M, Phuoc Dan N, et al. Methanogenesis facilitated by geobiochemical iron cycle in a novel syntrophic methanogenic microbial community. Environ Sci Technol. 2013;47:10078–84.
    CAS  Article  Google Scholar 

    26.
    Aromokeye DA, Richter-Heitmann T, Oni O, Emmanuel, Kulkarni A, Yin X, et al. Temperature controls crystalline iron oxide utilization by microbial communities in methanic ferruginous marine sediment incubations. Front Microbiol. 2018;9:2574.
    PubMed Central  Article  PubMed  Google Scholar 

    27.
    Zhuang L, Tang J, Wang Y, Hu M, Zhou S. Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation. J Hazard Mater. 2015;293:37–45.
    CAS  Article  Google Scholar 

    28.
    Hebbeln D, Scheurle C, Lamy F. Depositional history of the Helgoland Mud Area, German Bight, North Sea. Geo Mar Lett. 2003;23:81–90.
    Article  Google Scholar 

    29.
    Oni OE, Schmidt F, Miyatake T, Kasten S, Witt M, Hinrichs K-U, et al. Microbial communities and organic matter composition in surface and subsurface sediments of the Helgoland Mud Area, North Sea. Front Microbiol. 2015;6:1290.
    PubMed Central  PubMed  Google Scholar 

    30.
    Gan S, Schmidt F, Heuer VB, Goldhammer T, Witt M, Hinrichs K-U. Impacts of redox conditions on dissolved organic matter (DOM) quality in marine sediments off the River Rhône, Western Mediterranean Sea. Geochim Cosmochim Acta. 2020;276:151–69.
    CAS  Article  Google Scholar 

    31.
    Carmona M, Zamarro MT, Blázquez B, Durante-Rodríguez G, Juárez JF, Valderrama JA, et al. Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiol Mol Biol Rev. 2009;73:71–133.
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    32.
    Fuchs G, Boll M, Heider J. Microbial degradation of aromatic compounds—from one strategy to four. Nat Rev Microbiol. 2011;9:803–16.
    CAS  Article  Google Scholar 

    33.
    Gibson J, Harwood SC. Metabolic diversity in aromatic compound utilization by anaerobic microbes. Annu Rev Microbiol. 2002;56:345–69.
    CAS  Article  Google Scholar 

    34.
    Hopkins BT, McInerney MJ, Warikoo V. Evidence for anaerobic syntrophic benzoate degradation threshold and isolation of the syntrophic benzoate degrader. Appl Environ Microbiol. 1995;61:526.
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    35.
    Schink B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev. 1997;61:262–80.
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    36.
    Schöcke L, Schink B. Energetics of methanogenic benzoate degradation by Syntrophus gentianae in syntrophic coculture. Microbiology. 1997;143:2345–51.
    Article  Google Scholar 

    37.
    Widdel F, Kohring G-W, Mayer F. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov. Arch Microbiol. 1983;134:286–94.
    CAS  Article  Google Scholar 

    38.
    Widdel F. Anaerober Abbau von Fettsäuren und Benzoesäure durch neu isolierte Arten sulfat-reduzierender Bakterien [PhD Thesis]. Göttingen, Germany: Georg-August-Universität zu Göttingen; 1980.

    39.
    Widdel F, Pfennig N. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. Arch Microbiol. 1981;129:395–400.
    CAS  Article  Google Scholar 

    40.
    Viollier E, Inglett P, Hunter K, Roychoudhury A, Van, Cappellen P. The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Appl Geochem. 2000;15:785–90.
    CAS  Article  Google Scholar 

    41.
    Heuer VB, Pohlman JW, Torres ME, Elvert M, Hinrichs K-U. The stable carbon isotope biogeochemistry of acetate and other dissolved carbon species in deep subseafloor sediments at the northern Cascadia Margin. Geochim Cosmochim Acta. 2009;73:3323–36.
    CAS  Article  Google Scholar 

    42.
    Lin Y-S, Heuer VB, Goldhammer T, Kellermann MY, Zabel M, Hinrichs K-U. Towards constraining H2 concentration in subseafloor sediment: a proposal for combined analysis by two distinct approaches. Geochim Cosmochim Acta. 2012;77:186–201.
    CAS  Article  Google Scholar 

    43.
    Lueders T, Manefield M, Friedrich MW. Enhanced sensitivity of DNA‐and rRNA‐based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients. Environ Microbiol. 2004;6:73–8.
    CAS  Article  Google Scholar 

    44.
    Amann R, Fuchs BM, Behrens S. The identification of microorganisms by fluorescence in situ hybridisation. Curr Opin Biotechnol. 2001;12:231–6.
    CAS  Article  Google Scholar 

    45.
    Poulton SW, Krom MD, Raiswell R. A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide. Geochim Cosmochim Acta. 2004;68:3703–15.
    CAS  Article  Google Scholar 

    46.
    Herndon EM, Yang Z, Bargar J, Janot N, Regier TZ, Graham DE, et al. Geochemical drivers of organic matter decomposition in arctic tundra soils. Biogeochemistry. 2015;126:397–414.
    CAS  Article  Google Scholar 

    47.
    Yang Z, Wullschleger SD, Liang L, Graham DE, Gu B. Effects of warming on the degradation and production of low-molecular-weight labile organic carbon in an Arctic tundra soil. Soil Biol Biochem. 2016;95:202–11.
    CAS  Article  Google Scholar 

    48.
    Yang Z, Shi X, Wang C, Wang L, Guo R. Magnetite nanoparticles facilitate methane production from ethanol via acting as electron acceptors. Sci Rep. 2015;5;16118. https://doi.org/10.1038/srep16118.

    49.
    McInerney MJ, Struchtemeyer CG, Sieber J, Mouttaki H, Stams AJ, Schink B, et al. Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann N Y Acad Sci. 2008;1125:58–72.
    CAS  Article  Google Scholar 

    50.
    Sieber J, McInerney M, Plugge C, Schink B, Gunsalus R. Methanogenesis: syntrophic metabolism. In: Timmis KN (ed), Handbook of hydrocarbon and lipid microbiology. Springer: Berlin, Heidelberg; 2010. p. 337–55.

    51.
    Vandieken V, Mußmann M, Niemann H, Jørgensen BB. Desulfuromonas svalbardensis sp. nov. and Desulfuromusa ferrireducens sp. nov., psychrophilic, Fe(III)-reducing bacteria isolated from Arctic sediments, Svalbard. Int J Syst Evol Microbiol. 2006;56:1133–9.
    CAS  Article  Google Scholar 

    52.
    Jones DL, Edwards AC. Influence of sorption on the biological utilization of two simple carbon substrates. Soil Biol Biochem. 1998;30:1895–902.
    CAS  Article  Google Scholar 

    53.
    Bray MS, Wu J, Reed BC, Kretz CB, Belli KM, Simister RL, et al. Shifting microbial communities sustain multiyear iron reduction and methanogenesis in ferruginous sediment incubations. Geobiology. 2017;15:678–89.
    CAS  Article  Google Scholar 

    54.
    Dolfing J, Tiedje JM. Acetate inhibition of methanogenic, syntrophic benzoate degradation. Appl Environ Microbiol. 1988;54:1871–3.
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    55.
    Warikoo V, McInerney MJ, Robinson JA, Suflita JM. Interspecies acetate transfer influences the extent of anaerobic benzoate degradation by syntrophic consortia. Appl Environ Microbiol. 1996;62:26–32.
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    56.
    Elshahed MS, McInerney MJ. Benzoate Fermentation by the anaerobic bacterium Syntrophus aciditrophicus in the absence of hydrogen-using microorganisms. Appl Environ Microbiol. 2001;67:5520–5.
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    57.
    Watanabe M, Kojima H, Fukui M. Review of Desulfotomaculum species and proposal of the genera Desulfallas gen. nov., Desulfofundulus gen. nov., Desulfofarcimen gen. nov. and Desulfohalotomaculum gen. nov. Int J Syst Evol Microbiol. 2018;68:2891–9.
    CAS  Article  Google Scholar 

    58.
    Harwood CS, Burchhardt G, Herrmann H, Fuchs G. Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway. FEMS Microbiol Rev. 1998;22:439–58.
    CAS  Article  Google Scholar 

    59.
    Rabus R, Boll M, Heider J, Meckenstock RU, Buckel W, Einsle O, et al. Anaerobic microbial degradation of hydrocarbons: from enzymatic reactions to the environment. J Mol Microbiol Biotechnol. 2016;26:5–28.
    CAS  Google Scholar 

    60.
    Podosokorskaya OA, Kadnikov VV, Gavrilov SN, Mardanov AV, Merkel AY, Karnachuk OV, et al. Characterization of Melioribacter roseus gen. nov., sp. nov., a novel facultatively anaerobic thermophilic cellulolytic bacterium from the class Ignavibacteria, and a proposal of a novel bacterial phylum Ignavibacteriae. Environ Microbiol. 2013;15:1759–71.
    CAS  Article  Google Scholar 

    61.
    Kadnikov VV, Mardanov AV, Podosokorskaya OA, Gavrilov SN, Kublanov IV, Beletsky AV, et al. Genomic analysis of Melioribacter roseus, facultatively anaerobic organotrophic bacterium representing a novel deep lineage within Bacteriodetes/Chlorobi group. PLoS ONE 8:e53047. https://doi.org/10.1371/journal.pone.0053047.

    62.
    Zavarzina DG, Sokolova TG, Tourova TP, Chernyh NA, Kostrikina NA, Bonch-Osmolovskaya EA. Thermincola ferriacetica sp. nov., a new anaerobic, thermophilic, facultatively chemolithoautotrophic bacterium capable of dissimilatory Fe(III) reduction. Extremophiles. 2007;11:1–7.
    CAS  Article  Google Scholar 

    63.
    Wrighton KC, Agbo P, Warnecke F, Weber KA, Brodie EL, DeSantis TZ, et al. A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells. ISME J. 2008;2:1146–56.
    CAS  Article  Google Scholar 

    64.
    Byrne-Bailey KG, Wrighton KC, Melnyk RA, Agbo P, Hazen TC, Coates JD. Complete genome sequence of the electricity-producing “Thermincola potens” strain JR. J Bacteriol. 2010;192:4078–9.
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    65.
    Wrighton KC. Following electron flow: from a gram-positive community to mechanisms of electron transfer. Berkeley, CA, USA: UC Berkeley; 2010.

    66.
    Poser A, Lohmayer R, Vogt C, Knoeller K, Planer-Friedrich B, Sorokin D, et al. Disproportionation of elemental sulfur by haloalkaliphilic bacteria from soda lakes. Extremophiles. 2013;17:1003–12.
    CAS  Article  Google Scholar 

    67.
    Sorokin DY, Tourova TP, Mußmann M, Muyzer G. Dethiobacter alkaliphilus gen. nov. sp. nov., and Desulfurivibrio alkaliphilus gen. nov. sp. nov.: two novel representatives of reductive sulfur cycle from soda lakes. Extremophiles. 2008;12:431–9.
    CAS  Article  Google Scholar 

    68.
    Zhuang L, Tang Z, Ma J, Yu Z, Wang Y, Tang J. Enhanced anaerobic biodegradation of benzoate under sulfate-reducing conditions with conductive iron-oxides in sediment of Pearl River Estuary. Front Microbiol. 2019;10:374.
    PubMed Central  Article  PubMed  Google Scholar 

    69.
    Kamagata Y, Kitagawa N, Tasaki M, Nakamura K, Mikami E. Degradation of benzoate by an anaerobic consortium and some properties of a hydrogenotrophic methanogen and sulfate-reducing bacterium in the consortium. J Ferment Bioeng. 1992;73:213–8.
    CAS  Article  Google Scholar 

    70.
    Junghare M, Schink B. Desulfoprunum benzoelyticum gen. nov., sp. nov., a gram-negative benzoate-degrading sulfate-reducing bacterium isolated from the wastewater treatment plant. Int J Syst Evol Microbiol. 2015;65:77–84.
    CAS  Article  Google Scholar 

    71.
    Oren A. The order Halanaerobiales, and the families Halanaerobiaceae and Halobacteroidaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The prokaryotes: firmicutes and tenericutes. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 153–77.

    72.
    Hatamoto M, Imachi H, Yashiro Y, Ohashi A, Harada H. Detection of active butyrate-degrading microorganisms in methanogenic sludges by RNA-based stable isotope probing. Appl Environ Microbiol. 2008;74:3610–4.
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    73.
    Nobu MK, Narihiro T, Liu M, Kuroda K, Mei R, Liu WT. Thermodynamically diverse syntrophic aromatic compound catabolism. Environ Microbiol. 2017;19:4576–86.
    CAS  Article  Google Scholar 

    74.
    Lentini CJ, Wankel SD, Hansel CM. Enriched iron(III)-reducing bacterial communities are shaped by carbon substrate and iron oxide mineralogy. Front Microbiol. 2012;3:404.
    PubMed Central  Article  PubMed  Google Scholar 

    75.
    Newsome L, Lopez Adams R, Downie HF, Moore KL, Lloyd JR. NanoSIMS imaging of extracellular electron transport processes during microbial iron(III) reduction. FEMS Microbiol Ecol. 2018;94:fiy104.

    76.
    Wang H, Byrne JM, Liu P, Liu J, Dong X, Lu Y. Redox cycling of Fe(II) and Fe(III) in magnetite accelerates aceticlastic methanogenesis by Methanosarcina mazei. Environ Microbiol Rep. 2020;12:97–109.
    CAS  Article  Google Scholar 

    77.
    Dodsworth JA, Blainey PC, Murugapiran SK, Swingley WD, Ross CA, Tringe SG, et al. Single-cell and metagenomic analyses indicate a fermentative and saccharolytic lifestyle for members of the OP9 lineage. Nat Commun. 2013;4:1854.
    PubMed Central  Article  CAS  PubMed  Google Scholar 

    78.
    Nobu MK, Dodsworth JA, Murugapiran SK, Rinke C, Gies EA, Webster G, et al. Phylogeny and physiology of candidate phylum ‘Atribacteria’(OP9/JS1) inferred from cultivation-independent genomics. ISME J. 2016;10:273–86.
    CAS  Article  Google Scholar 

    79.
    Algora C, Vasileiadis S, Wasmund K, Trevisan M, Krüger M, Puglisi E, et al. Manganese and iron as structuring parameters of microbial communities in Arctic marine sediments from the Baffin Bay. FEMS Microbiol Ecol. 2015;91:fiv056.
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    80.
    Lehours A-C, Rabiet M, Morel-Desrosiers N, Morel J-P, Jouve L, Arbeille B, et al. Ferric iron reduction by fermentative strain BS2 isolated from an iron-rich anoxic environment (Lake Pavin, France). Geomicrobiol J. 2010;27:714–22.
    CAS  Article  Google Scholar 

    81.
    Liu D, Wang H, Dong H, Qiu X, Dong X, Cravotta CA. Mineral transformations associated with goethite reduction by Methanosarcina barkeri. Chem Geol. 2011;288:53–60.
    CAS  Article  Google Scholar 

    82.
    Sivan O, Shusta S, Valentine D. Methanogens rapidly transition from methane production to iron reduction. Geobiology. 2016;14:190–203.
    CAS  Article  Google Scholar 

    83.
    Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Nat Acad Sci USA. 1998;95:6578–83.
    CAS  Article  Google Scholar 

    84.
    Aromokeye AD. Iron oxide driven methanogenesis and methanotrophy in methanic sediments of Helgoland Mud Area, North Sea. Bremen, Germany: Universität Bremen; 2018. More

  • in

    Maize sensitivity to drought

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript. More

  • in

    Subgroup level differences of physiological activities in marine Lokiarchaeota

    1.
    Vetriani C, Jannasch HW, MacGregor AJ, Stahl DA, Reysenbach AR. Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments. Appl Environ Microbiol. 1999;65:4375–84.
    CAS  Article  Google Scholar 
    2.
    Jorgensen SL, Thorseth IH, Pedersen RB, Baumberger T, Schleper C. Quantitative and phylogenetic study of the Deep Sea Archaeal Group in sediments of the Arctic mid-ocean spreading ridge. Front Microbiol. 2013;4:299.
    Article  Google Scholar 

    3.
    Inagaki F, Suzuki M, Takai K, Oida H, Sakamoto T, Aoki K, et al. Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk. Appl Environ Microbiol. 2003;69:7224–35.
    CAS  Article  Google Scholar 

    4.
    Seitz KW, Lazar CS, Hinrichs KU, Teske AP, Baker BJ. Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. ISME J. 2016;10:1696–705.
    CAS  Article  Google Scholar 

    5.
    Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Backstrom D, Juzokaite L, Vancaester E, et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature. 2017;541:353–8.
    CAS  Article  Google Scholar 

    6.
    Cai M, Liu Y, Yin X, Zhou Z, Friedrich MW, Richter-Heitmann T, et al. Diverse Asgard archaea including the novel phylum Gerdarchaeota participate in organic matter degradation. Sci China Life Sci. 2020;63:886–97.
    CAS  Article  Google Scholar 

    7.
    Spang A, Saw JH, Jorgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature. 2015;521:173–9.
    CAS  Article  Google Scholar 

    8.
    Cai M, Liu Y, Zhou Z, Yang Y, Pan J, Gu J-D, et al. Asgard archaea are diverse, ubiquitous, and transcriptionally active microbes. BioRxiv. 2018. Preprint at https://doi.org/10.1101/374165.

    9.
    Orsi WD, Vuillemin A, Rodriguez P, Coskun OK, Gomez-Saez GV, Lavik G, et al. Metabolic activity analyses demonstrate that Lokiarchaeon exhibits homoacetogenesis in sulfidic marine sediments. Nat Microbiol. 2019;5:248–55.
    Article  Google Scholar 

    10.
    Spang A, Stairs CW, Dombrowski N, Eme L, Lombard J, Caceres EF, et al. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat Microbiol. 2019;4:1138–48.
    CAS  Article  Google Scholar 

    11.
    Imachi H, Nobu MK, Nakahara N, Morono Y, Ogawara M, Takaki Y, et al. Isolation of an archaeon at the prokaryote-eukaryote interface. Nature. 2020;577:519–25.
    CAS  Article  Google Scholar 

    12.
    Manefield M, Whiteley AS, Griffiths RI, Bailey MJ. RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol. 2002;68:5367–73.
    CAS  Article  Google Scholar 

    13.
    Aoyagi T, Hanada S, Itoh H, Sato Y, Ogata A, Friedrich MW, et al. Ultra-high-sensitivity stable-isotope probing of rRNA by high-throughput sequencing of isopycnic centrifugation gradients. Environ Microbiol Rep. 2015;7:282–7.
    CAS  Article  Google Scholar 

    14.
    Aoyagi T, Morishita F, Sugiyama Y, Ichikawa D, Mayumi D, Kikuchi Y, et al. Identification of active and taxonomically diverse 1,4-dioxane degraders in a full-scale activated sludge system by high-sensitivity stable isotope probing. ISME J. 2018;12:2376–88.
    CAS  Article  Google Scholar 

    15.
    Oni O, Miyatake T, Kasten S, Richter-Heitmann T, Fischer D, Wagenknecht L, et al. Distinct microbial populations are tightly linked to the profile of dissolved iron in the methanic sediments of the Helgoland mud area, North Sea. Front Microbiol. 2015;6:365.
    Google Scholar 

    16.
    Yin X, Wu W, Maeke M, Richter-Heitmann T, Kulkarni AC, Oni OE, et al. CO2 conversion to methane and biomass in obligate methylotrophic methanogens in marine sediments. ISME J. 2019;13:2107–19.
    CAS  Article  Google Scholar 

    17.
    Yin X, Kulkarni AC, Friedrich MW. DNA and RNA stable isotope probing of methylotrophic methanogenic archaea. In: Dumont M, Hernández García M (eds). Stable isotope probing, methods in molecular biology. Springer: New York, 2019, pp 189–206.

    18.
    Faurobert M, Pelpoir E, Chaïb J. Phenol extraction of proteins for proteomic studies of recalcitrant plant tissues. In: Thiellement H, Zivy M, Damerval C, Méchin V (eds) Plant proteomics, methods in molecular biology. Humana Press: Totowa, NJ, USA, 2007, pp 9–14.

    19.
    Lueders T, Manefield M, Friedrich MW. Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients. Environ Microbiol. 2004;6:73–8.
    CAS  Article  Google Scholar 

    20.
    Ovreas L, Forney L, Daae FL, Torsvik V. Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol. 1997;63:3367–73.
    CAS  Article  Google Scholar 

    21.
    Takai K, Horikoshi K. Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol. 2000;66:5066–72.
    CAS  Article  Google Scholar 

    22.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
    CAS  Article  Google Scholar 

    23.
    Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.
    CAS  Article  Google Scholar 

    24.
    Lueders T. DNA- and RNA-based stable isotope probing of hydrocarbon degraders. Hydrocarbon and lipid microbiology protocols. In: Timmis KN (ed.), Handbook of hydrocarbon and lipid microbiology. Springer: Berlin, Heidelberg, 2015, pp 181–97.

    25.
    Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28:1823–9.
    CAS  Article  Google Scholar 

    26.
    Caceres EF, Lewis WH, Homa F, Martin T, Schramm A, Kjeldsen KU, et al. Near-complete Lokiarchaeota genomes from complex environmental samples using long and short read metagenomic analyses. BioRxiv. 2019. Preprint at https://doi.org/10.1101/2019.12.17.879148.

    27.
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
    CAS  Article  Google Scholar 

    28.
    Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics. 2006;23:127–8.
    Article  Google Scholar 

    29.
    Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, et al. ARB: a software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71.
    CAS  Article  Google Scholar 

    30.
    Joshi N, Fass J. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software]. 2011; https://github.com/najoshi/sickle.

    31.
    Peng Y, Leung HC, Yiu SM, Chin FY. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics. 2012;28:1420–8.
    CAS  Article  Google Scholar 

    32.
    Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165.
    Article  Google Scholar 

    33.
    Sieber CM, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836–43.
    CAS  Article  Google Scholar 

    34.
    Zhou Z, Liu Y, Xu W, Pan J, Luo ZH, Li M. Genome- and community-level interaction insights into carbon utilization and element cycling functions of Hydrothermarchaeota in hydrothermal sediment. mSystems. 2020;5:e00795–19.
    CAS  Article  Google Scholar 

    35.
    Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–95.
    Article  Google Scholar 

    36.
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.
    CAS  Article  Google Scholar 

    37.
    Delmont TO, Eren AM. Linking pangenomes and metagenomes: the Prochlorococcus metapangenome. PeerJ. 2018;6:e4320.
    Article  Google Scholar 

    38.
    Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ, Golding SD, et al. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science. 2015;350:432–8.
    Article  Google Scholar 

    39.
    Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.
    Article  Google Scholar 

    40.
    Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.
    CAS  Article  Google Scholar 

    41.
    Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–22.
    CAS  Article  Google Scholar 

    42.
    Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–40.
    CAS  Article  Google Scholar 

    43.
    Vanwonterghem I, Evans PN, Parks DH, Jensen PD, Woodcroft BJ, Hugenholtz P, et al. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat Microbiol. 2016;1:16170.
    CAS  Article  Google Scholar 

    44.
    Rinke C, Rubino F, Messer LF, Youssef N, Parks DH, Chuvochina M, et al. A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.). ISME J. 2019;13:663–75.
    CAS  Article  Google Scholar 

    45.
    Mistry J, Finn RD, Eddy SR, Bateman A, Punta M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 2013;41:e121.
    CAS  Article  Google Scholar 

    46.
    Eddy SR. Accelerated Profile HMM Searches. PLoS Comput Biol. 2011;7:e1002195.
    CAS  Article  Google Scholar 

    47.
    Criscuolo A, Gribaldo S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol. 2010;10:210.
    Article  Google Scholar 

    48.
    Oni OE, Schmidt F, Miyatake T, Kasten S, Witt M, Hinrichs KU, et al. Microbial communities and organic matter composition in surface and subsurface sediments of the Helgoland Mud Area, North Sea. Front Microbiol. 2015;6:1290.
    Google Scholar 

    49.
    Jørgensen BB, Findlay AJ, Pellerin A. The biogeochemical sulfur cycle of marine sediments. Front Microbiol. 2019;10:849.
    Article  Google Scholar 

    50.
    Hesselsoe M, Nielsen JL, Roslev P, Nielsen PH. Isotope labeling and microautoradiography of active heterotrophic bacteria on the basis of assimilation of 14CO2. Appl Environ Microbiol. 2005;71:646–55.
    CAS  Article  Google Scholar 

    51.
    Roslev P, Larsen MB, Jorgensen D, Hesselsoe M. Use of heterotrophic CO2 assimilation as a measure of metabolic activity in planktonic and sessile bacteria. J Microbiol Methods. 2004;59:381–93.
    CAS  Article  Google Scholar 

    52.
    Konstantinidis KT, Rossello-Mora R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J. 2017;11:2399–406.
    Article  Google Scholar 

    53.
    Heider J, Ma K, Adams MWW. Purification, characterization, and metabolic function of tungsten-containing aldehyde ferredoxin oxidoreductase from the hyperthermophilic and proteolytic archaeon Thermococcus strain ES-1. J Bacteriol. 1995;177:4757–64.
    CAS  Article  Google Scholar 

    54.
    Radajewski S, McDonald IR, Murrell JC. Stable-isotope probing of nucleic acids: a window to the function of uncultured microorganisms. Curr Opin Biotechnol. 2003;14:296–302.
    CAS  Article  Google Scholar 

    55.
    Meckenstock RU, Boll M, Mouttaki H, Koelschbach JS, Cunha Tarouco P, Weyrauch P, et al. Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. J Mol Microbiol Biotechnol. 2016;26:92–118.
    CAS  Google Scholar 

    56.
    Ulrich AC, Tappenden K, Armstrong J, Biggar KW. Effect of cold temperature on the rate of natural attenuation of benzene, toluene, ethylbenzene, and the three isomers of xylene (BTEX). Can Geotech J. 2010;47:516–27.
    CAS  Article  Google Scholar 

    57.
    Shivani Y, Subhash Y, Sasikala C, Ramana CV. Characterisation of a newly isolated member of a candidatus lineage, Marispirochaeta aestuarii gen. nov., sp. nov. Int J Syst Evol Microbiol. 2017;67:3929–36.
    CAS  Article  Google Scholar 

    58.
    Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S, et al. The physiology and habitat of the last universal common ancestor. Nat Microbiol. 2016;1:16116.
    CAS  Article  Google Scholar 

    59.
    Yu T, Wu W, Liang W, Lever MA, Hinrichs KU, Wang F. Growth of sedimentary Bathyarchaeota on lignin as an energy source. Proc Natl Acad Sci USA. 2018;115:6022–7.
    CAS  Article  Google Scholar 

    60.
    Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J. Prokaryotic sulfur oxidation. Curr Opin Microbiol. 2005;8:253–9.
    CAS  Article  Google Scholar 

    61.
    Arieli B, Shahak Y, Taglicht D, Hauska G, Padan E. Purification and characterization of sulfide-quinone reductase, a novel enzyme driving anoxygenic photosynthesis in Oscillatoria limnetica. J Biol Chem. 1994;269:5705–11.
    CAS  Google Scholar 

    62.
    Manefield M, Whiteley AS, Ostle N, Ineson P, Bailey MJ. Technical considerations for RNA- based stable isotope probing an approach to associating microbial diversity with microbial community function. Rapid Commun Mass Spectrom. 2002;16:2179–83.
    CAS  Article  Google Scholar 

    63.
    Glombitza C, Egger M, Røy H, Jørgensen BB. Controls on volatile fatty acid concentrations in marine sediments (Baltic Sea). Geochim Cosmochim Acta. 2019;258:226–41.
    CAS  Article  Google Scholar 

    64.
    Glombitza C, Pedersen J, Røy H, Jørgensen BB. Direct analysis of volatile fatty acids in marine sediment porewater by two-dimensional ion chromatography-mass spectrometry. Limnol Oceanogr: Methods. 2014;12:455–68.
    CAS  Article  Google Scholar 

    65.
    Heuer VB, Pohlman JW, Torres ME, Elvert M, Hinrichs K-U. The stable carbon isotope biogeochemistry of acetate and other dissolved carbon species in deep subseafloor sediments at the northern Cascadia Margin. Geochim Cosmochim Acta. 2009;73:3323–36.
    CAS  Article  Google Scholar 

    66.
    Stackebrandt E. The family Clostridiaceae, other genera. In: Rosenberg E, et al. (eds). The Prokaryotes—Firmicutes and Tenericutes. Springer: Berlin, Heidelberg, 2014, pp 67–73.

    67.
    Katayama T, Nobu MK, Kusada H, Meng X-Y, Yoshioka H, Kamagata Y, et al. Membrane-bounded nucleoid discovered in a cultivated bacterium of the candidate phylum ‘Atribacteria’. BioRxiv. 2019. Preprint at https://doi.org/10.1101/728279

    68.
    Kuever J. The family Desulfobacteraceae. In: Rosenberg E, et al. (eds). The Prokaryotes—Deltaproteobacteria and Epsilonproteobacteria. Springer: Berlin, Heidelberg, 2014, pp 45–73.

    69.
    Chen NH, Ong CY, O’Sullivan J, Ibranovic I, Davey K, Edwards JL, et al. Two distinct L-lactate dehydrogenases play a role in the survival of Neisseria gonorrhoeae in cervical epithelial cells. J Infect Dis. 2019;221:449–53.
    Google Scholar 

    70.
    Feijo Delgado F, Cermak N, Hecht VC, Son S, Li Y, Knudsen SM, et al. Intracellular water exchange for measuring the dry mass, water mass and changes in chemical composition of living cells. PLoS ONE. 2013;8:e67590.
    Article  Google Scholar 

    71.
    Kuever J. The family Desulfobulbaceae. In: Rosenberg E, et al. (eds). The Prokaryotes—Deltaproteobacteria and Epsilonproteobacteria. Springer: Berlin, Heidelberg, 2014, pp 75–86.

    72.
    Thamdrup B, Finster K, Hansen JW, Bak F. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Appl Environ Microbiol. 1993;59:101–8.
    CAS  Article  Google Scholar 

    73.
    Hipp WM, Pott AS, Thum-Schmitz N, Faath I, Dahl C, Trüper HG. Towards the phylogeny of APS reductases and sirohaem sulfite reductases in sulfate-reducing and sulfur-oxidizing prokaryotes. Microbiol. 1997;143:2891–902.
    CAS  Article  Google Scholar 

    74.
    Choquet CG, Richards JC, Patel GB, Sprott GD. Ribose biosynthesis in methanogenic bacteria. Arch Microbiol. 1994;161:481–8.
    CAS  Article  Google Scholar 

    75.
    Ekiel I, Smith ICP, Sportt GD. Biosynthetic pathways in Methanospirillum hungatei as determined by 13C nuclear magnetic resonance. J Bacteriol. 1983;156:316–26.
    CAS  Article  Google Scholar  More

  • in

    Polyandry blocks gene drive in a wild house mouse population

    1.
    Burt, A. & Trivers, R. Genes in Conflict: The Biology of Selfish Genetic Elements (Belknap Press, Cambridge, 2006).
    2.
    Lindholm, A. K. et al. The ecology and evolutionary dynamics of meiotic drive. Trends Ecol. Evolution 31, 316–326 (2016).
    Google Scholar 

    3.
    Champer, J., Kim, I. K., Champer, S. E., Clark, A. G. & Messer, P. W. Performance analysis of novel toxin-antidote CRISPR gene drive systems. BMC Biol. 18, 1–17 (2020).
    Google Scholar 

    4.
    Godwin, J. et al. Rodent gene drives for conservation: opportunities and data needs. Proc. R. Soc. B 286, 20191606 (2019).
    PubMed  PubMed Central  Google Scholar 

    5.
    Champer, J., Buchman, A. & Akbari, O. S. Cheating evolution: engineering gene drives to manipulate the fate of wild populations. Nat. Rev. Genet. 17, 146 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    6.
    Haig, D. & Bergstrom, C. Multiple mating, sperm competition and meiotic drive. J. Evol. Biol. 8, 265–282 (1995).
    Google Scholar 

    7.
    Manser, A., Lindholm, A. K., König, B. & Bagheri, H. C. Polyandry and the decrease of a selfish genetic element in a wild house mouse population. Evolution 65, 2435–2447 (2011).
    PubMed  PubMed Central  Google Scholar 

    8.
    Holman, L., Price, T. A., Wedell, N. & Kokko, H. Coevolutionary dynamics of polyandry and sex-linked meiotic drive. Evolution 69, 709–720 (2015).
    PubMed  PubMed Central  Google Scholar 

    9.
    Price, T. & Wedell, N. Selfish genetic elements and sexual selection: their impact on male fertility. Genetica 134, 99–111 (2008).
    PubMed  Google Scholar 

    10.
    Wedell, N. The dynamic relationship between polyandry and selfish genetic elements. Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. 368, 1–10 (2013).
    Google Scholar 

    11.
    Sutter, A. & Lindholm, A. K. Detrimental effects of an autosomal selfish genetic element on sperm competitiveness in house mice. Proc. R. Soc. B 282, 20150974 (2015).
    Google Scholar 

    12.
    Manser, A., Lindholm, A. K., Simmons, L. W. & Firman, R. C. Sperm competition suppresses gene drive among experimentally evolving populations of house mice. Mol. Ecol. 20, 5784–5792 (2017).
    Google Scholar 

    13.
    Price, T., Hodgson, D., Lewis, Z., Hurst, G. & Wedell, N. Selfish genetic elements promote polyandry in a fly. Science 332, 1241–1243 (2008).
    ADS  Google Scholar 

    14.
    Price, T. et al. Sex ratio distorter reduces sperm competitive ability in an insect. Evolution 62, 1644–1652 (2008).
    PubMed  Google Scholar 

    15.
    Herrmann, B. G. & Bauer, H. The Mouse t-haplotype: a Selfish Chromosome—Genetics, Molecular Mechanism, and Evolution, Vol. 3, 297–314 (Cambridge University Press, Cambridge, 2012).

    16.
    Lindholm, A. K., Musolf, K., Weidt, A. & König, B. Mate choice for genetic compatibility in the house mouse. Ecol. Evolution 3, 1231–1247 (2013).
    Google Scholar 

    17.
    Dean, M., Ardlie, K. & Nachman, M. The frequency of multiple paternity suggests that sperm competition is common in house mice (Mus domesticus). Mol. Ecol. 15, 4141–4151 (2006).
    CAS  PubMed  PubMed Central  Google Scholar 

    18.
    Firman, R. & Simmons, L. Polyandry facilitates postcopulatory inbreeding avoidance in house mice. Evolution 62, 603–611 (2008).
    PubMed  Google Scholar 

    19.
    Thonhauser, K. E., Thoss, M., Musolf, K., Klaus, T. & Penn, D. J. Multiple paternity in wild house mice (Mus musculus musculus): effects on offspring genetic diversity and body mass. Ecol. Evolution 4, 200–209 (2013).
    Google Scholar 

    20.
    Auclair, Y., König, B. & Lindholm, A. K. Socially mediated polyandry: a new benefit of communal nesting in mammals. Behav. Ecol. 25, 1467–1473 (2014).
    PubMed  PubMed Central  Google Scholar 

    21.
    Rolland, C., Macdonald, D., de Fraipont, M. & Berdoy, M. Free female choice in house mice: leaving best for last. Behaviour 140, 1371–1388 (2003).
    Google Scholar 

    22.
    Thonhauser, K. E., Raveh, S., Hettyey, A., Beissmann, H. & Penn, D. J. Scent marking increases male reproductive success in wild house mice. Anim. Behav. 86, 1013–1021 (2013).
    PubMed  PubMed Central  Google Scholar 

    23.
    Thonhauser, K. E., Raveh, S. & Penn, D. J. Multiple paternity does not depend on male genetic diversity. Anim. Behav. 93, 135–141 (2014).
    PubMed  PubMed Central  Google Scholar 

    24.
    Bronson, F. The reproductive ecology of the house mouse. Q. Rev. Biol. 54, 265–299 (1979).
    CAS  PubMed  Google Scholar 

    25.
    Evans, J. P. & Simmons, L. W. The genetic basis of traits regulating sperm competition and polyandry: can selection favour the evolution of good-and sexy-sperm? Genetica 134, 5 (2008).
    PubMed  Google Scholar 

    26.
    McFarlane, E. S. et al. The heritability of multiple male mating in a promiscuous mammal. Biol. Lett. 7, 368–371 (2011).
    PubMed  Google Scholar 

    27.
    Reid, J. M., Arcese, P., Sardell, R. J. & Keller, L. F. Heritability of female extra-pair paternity rate in song sparrows (Melospiza melodia). Proc. R. Soc. B 278, 1114–1120 (2011).
    PubMed  Google Scholar 

    28.
    Sutter, A. & Lindholm, A. K. Meiotic drive changes sperm precedence patterns in house mice: potential for male alternative mating tactics? BMC Evolut. Biol. 16, 133 (2016).
    Google Scholar 

    29.
    Sutter, A. & Lindholm, A. K. The copulatory plug delays ejaculation by rival males and affects sperm competition outcome in house mice. J. Evol. Biol. 29, 1617–1630 (2016).
    CAS  PubMed  Google Scholar 

    30.
    Atlan, A., Joly, D., Capillon, C. & Montchamp-Moreau, C. Sex-ratio distorter of Drosophila simulans reduces male productivity and sperm competition ability. J. Evol. Biol. 17, 744 (2004).
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Wilkinson, G., Johns, P., Kelleher, E., Muscedere, M. & Lorsong, A. Fitness effects of X chromosome drive in the stalk-eyed fly, Cyrtodiopsis dalmanni. J. Evol. Biol. 19, 1851–1860 (2006).
    CAS  PubMed  PubMed Central  Google Scholar 

    32.
    Angelard, C., Montchamp-Moreau, C. & Joly, D. Female-driven mechanisms, ejaculate size and quality contribute to the lower fertility of sex-ratio distorter males in Drosophila simulans. BMC Evol. Biol. 8, 1–12 (2008).
    PubMed  PubMed Central  Google Scholar 

    33.
    Dyer, K. A. & Hall, D. W. Fitness consequences of a non-recombining sex-ratio drive chromosome can explain its prevalence in the wild. Proc. R. Soc. B 286, 20192529 (2019).
    PubMed  PubMed Central  Google Scholar 

    34.
    Keais, G., Lu, S. & Perlman, S. Autosomal suppression and fitness costs of an old driving X chromosome in Drosophila testacea. J. Evol. Biol. 33, 619–628 (2020).

    35.
    Price, T. A., Lewis, Z., Smith, D. T., Hurst, G. D. & Wedell, N. Sex ratio drive promotes sexual conflict and sexual coevolution in the fly Drosophila pseudoobscura. Evolution 64, 1504–1509 (2010).
    PubMed  PubMed Central  Google Scholar 

    36.
    Runge, J.-N. & Lindholm, A. K. Carrying a selfish genetic element predicts increased migration propensity in free-living wild house mice. Proc. R. Soc. B 285, 20181333 (2018).
    PubMed  PubMed Central  Google Scholar 

    37.
    Meade, L., Finnegan, S., Kad, R., Fowler, K. & Pomiankowski, A. Adaptive maintenance of fertility in the face of meiotic drive. Am. Naturalist 195, 743–751 (2019).
    Google Scholar 

    38.
    Zeh, J. & Zeh, D. The evolution of polyandry II: post-copulatory defences against genetic incompatibility. Proc. R. Soc. B 264, 69–75 (1997).
    ADS  Google Scholar 

    39.
    Yasui, Y. A “good-sperm” model can explain the evolution of costly multiple mating by females. Am. Naturalist 149, 573–584 (1997).
    Google Scholar 

    40.
    Ferrari, M., Lindholm, A. K. & König, B. Fitness consequences of female alternative reproductive tactics in house mice (Mus musculus domesticus). Am. Naturalist 193, 106–124 (2019).
    Google Scholar 

    41.
    Ardlie, K. G. & Silver, L. M. Low frequency of t haplotypes in natural populations of house mice (Mus musculus domesticus). Evolution 52, 1185–1196 (1998).
    PubMed  Google Scholar 

    42.
    Ardlie, K. Putting the brake on drive: meiotic drive of t haplotype in natural populations of mice. Trends Genet. 14, 189–193 (1998).
    CAS  PubMed  Google Scholar 

    43.
    Young, S. A proposition on the population dynamics of the sterile t alleles in the house mouse. Evolution 21, 190–192 (1967).
    CAS  PubMed  Google Scholar 

    44.
    Petras, M. & Topping, J. The maintenance of polymorphisms at two loci in house mouse (Mus musculus) populations. Genome 25, 190–201 (1983).
    CAS  Google Scholar 

    45.
    Bull, J. Lethal gene drive selects inbreeding. Evolution 1, 1–16 (2017).

    46.
    van Boven, M. & Weissing, F. J. Segretation distortion in a deme-structured population: opposing demands of gene, individual and group selection. J. Evol. Biol. 12, 80–93 (1999).
    Google Scholar 

    47.
    Nunney, L. The role of deme size, reproductive patterns, and dispersal in the dynamics of t-lethal haplotypes. Evolution 47, 1342–1359 (1993).
    PubMed  Google Scholar 

    48.
    Lenington, S. The t complex: a story of genes, behavior, and populations. Adv. Study Behav. 20, 51–86 (1991).
    Google Scholar 

    49.
    Sutter, A. & Lindholm, A. K. No evidence for female discrimination against male house mice carrying a selfish genetic element. Curr. Zool. 62, zow063 (2016).
    Google Scholar 

    50.
    Manser, A., König, B. & Lindholm, A. Female house mice avoid fertilization by t haplotype incompatible males in a mate choice experiment. J. Evol. Biol. 28, 54–64 (2015).
    CAS  PubMed  Google Scholar 

    51.
    Manser, A., Lindholm, A. K. & Weissing, F. J. The evolution of costly mate choice against segregation distorters. Evolution 71, 2817–2828 (2017).

    52.
    Price, T., Verspoor, R. & Wedell, N. Ancient gene drives: an evolutionary paradox. Proc. R. Soc. B 286, 20192267 (2019).
    CAS  PubMed  Google Scholar 

    53.
    Galizi, R. et al. A synthetic sex ratio distortion system for the control of the human malaria mosquito. Nat. Commun. 5, 3977 (2014).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    54.
    Galizi, R. et al. A CRISPR-Cas9 sex-ratio distortion system for genetic control. Sci. Rep. 6, 31139 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    55.
    Piaggio, A. J. et al. Is it time for synthetic biodiversity conservation? Trends Ecol. Evolution 32, 97–107 (2017).
    Google Scholar 

    56.
    Leitschuh, C. M. et al. Developing gene drive technologies to eradicate invasive rodents from islands. J Responsible Innov. 5, S121–138 (2017).

    57.
    Manser, A. et al. Controlling invasive rodents via synthetic gene drive and the role of polyandry. Proc. R. Soc. B 286, 20190852 (2019).
    PubMed  Google Scholar 

    58.
    Howald, G. et al. Invasive rodent eradication on islands. Conserv. Biol. 21, 1258–1268 (2007).
    PubMed  Google Scholar 

    59.
    Prowse, T. A., Adikusuma, F., Cassey, P., Thomas, P. & Ross, J. V. A Y-chromosome shredding gene drive for controlling pest vertebrate populations. Elife 8, e41873 (2019).
    PubMed  PubMed Central  Google Scholar 

    60.
    König, B. & Lindholm, A. The Complex Social Environment of Female House Mice (Mus domesticus), 114–134 (Cambridge University Press, Cambridge, 2012).

    61.
    Berry, R., Tattersall, F. & Hurst, J. Genus Mus (The Mammal Society Southampton, 2008).

    62.
    Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106 (2007).
    Google Scholar 

    63.
    Brambell, F. The influence of lactation on the implantation of the mammalian embryo. Am. J. Obstet. Gynecol. 33, 942–953 (1937).
    Google Scholar 

    64.
    Schimenti, J. & Hammer, M. Rapid identification of mouse t haplotype by PCR polymorphism (PCRP). Mouse Genome 108 (1990).

    65.
    Wilson, A. J. et al. An ecologist’s guide to the animal model. J. Anim. Ecol. 79, 13–26 (2010).
    PubMed  Google Scholar 

    66.
    Hadfield, J. D. et al. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).
    Google Scholar 

    67.
    Bruck, D. Male segregation ratio advantage as a factor in maintaining lethal alleles in wild populations of house mice. Proc. Natl Acad. Sci. USA 43, 152–158 (1957).
    ADS  CAS  PubMed  Google Scholar  More

  • in

    Get Africa’s Great Green Wall back on track

    Forest land surrounding Ethiopia’s churches are important islands of biodiversity. The government has pledged to restore 15 million hectares of degraded and deforested land by 2030.Credit: Kieran Dodds/Panos

    The Great Green Wall of Africa, a plan to restore a 7,000-kilometre-long stretch of degraded land from Senegal in West Africa to Djibouti in the east, is a bold and ambitious idea intended to help combat drought and desertification, which currently affect around 45% of Africa’s land area. Proposed 13 years ago by two of the continent’s elder statesmen, Nigeria’s then president Olusegun Obasanjo and Senegal’s former president Abdoulaye Wade, it is even more important now, given the threat from climate change and the reliance of the continent’s people on agriculture for their livelihoods.
    But, so far, the project has struggled to reach key goals. Less than one-fifth of the designated land area has been restored or rehabilitated. The African Union’s top decision makers don’t see the green wall as a priority, and inter-national donors seem reluctant to commit further funding. Researchers, governments and international agencies must work together better to rehabilitate this crucial scheme.
    The project’s focus has widened from its founders’ vision because there are more ways to restore degraded land than by reforestation, such as creating communal gardens and nature reserves. But the addition of these and other measures has made the green wall more complex. It has required different ministries in individual countries to work together. That is always difficult, but it becomes even more so when two further variables are added: the African Union and the international donor community. These and other observations are confirmed in an independent assessment of the project, commissioned by the project’s partners and published in September by the United Nations Convention to Combat Desertification (UNCCD).
    The assessment report tries to look on the bright side. It says that 11 countries along the green wall have re-habilitated nearly 4 million hectares of land and created 350,000 jobs in the process. It also confirms that a broader group of 21 African countries is committed to restoring and rehabilitating 100 million hectares of land by 2030, creating 10 million green jobs. But it doesn’t sugar-coat the fact that governments and donors will need to find between US$3.6 billion and $4.3 billion every year for the next decade if the 100-million-hectare target is to be achieved. That will be a tall order — the report calls it a “quantum leap” — considering that the project raised around $2 billion in its first decade. But it is not impossible — and there are several key ways in which researchers can contribute.
    The UNCCD report provides headline information on each country’s progress — such as the numbers of plants and seedlings produced; the area of land reforested; and the numbers of people trained and jobs created. Most of these data were provided by each country. The next step should be for independent researchers — for example, members of IPBES (the Intergovernmental Science–Policy Platform on Biodiversity and Ecosystem Services) — to assess these data and publish their own reviews, to help all sides have more confidence in the data and in the monitoring process.
    Funding is always a challenge in such projects. But although it might seem feasible that the 55 member states of the African Union and their inter-national partners could raise the required amounts, nations have already committed funding to inter-national initiatives with similar goals to those of the green wall. African countries, for example, are signatories to the Aichi Bio-diversity Targets, which include a goal to reduce habitat loss and degradation. Countries have also signed up to the UN Sustainable Development Goals, which include a target of combating desertification and restoring degraded land and soil. And they are also members of the UNCCD, which has pledged to reach what it is calling “land degradation neutrality” by 2030.
    The UNCCD report suggests a single trust fund could be the answer. That would work if countries and international agencies agree to pool their resources and create harmonized reporting requirements. Researchers could help here by developing a method for measuring whether countries are succeeding in meeting their green-wall goals, as well as providing a common accounting framework.
    The need to restore and rehabilitate land is urgent. People in the affected countries are among the world’s poorest. The overwhelming majority earn their living from agriculture or livestock production. Climate change is projected to lift average temperatures by 3–6 °C by the end of the century, compared with a late-twentieth-century baseline. More extremes of weather are expected, and these, in turn, will reduce crop yields.
    The green-wall project needs international agencies to cooperate better, it needs researchers to help, and it needs the present generation of the continent’s leaders to step up and take on a more visible role in championing it, just as its two founding presidents did. More