More stories

  • in

    Assessing ecological uncertainty and simulation model sensitivity to evaluate an invasive plant species’ potential impacts to the landscape

    1.
    Sofaer, H. R., Jarnevich, C. S. & Pearse, I. S. The relationship between invader abundance and impact. Ecosphere 9, e02415. https://doi.org/10.1002/ecs2.2415 (2018).
    Article  Google Scholar 
    2.
    Parker, I. M. et al. Impact: Toward a framework for understanding the ecological effects of invaders. Biol. Invasions 1, 3–19. https://doi.org/10.1023/a:1010034312781 (1999).
    Article  Google Scholar 

    3.
    Fusco, E. J., Finn, J. T., Balch, J. K., Nagy, R. C. & Bradley, B. A. Invasive grasses increase fire occurrence and frequency across US ecoregions. Proc. Natl. Acad. Sci. 116, 23594–23599. https://doi.org/10.1073/pnas.1908253116 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 

    4.
    Hellmann, J. J., Byers, J. E., Bierwagen, B. G. & Dukes, J. S. Five potential consequences of climate change for invasive species. Conserv. Biol. 22, 534–543. https://doi.org/10.1111/j.1523-1739.2008.00951.x (2008).
    Article  PubMed  Google Scholar 

    5.
    Clark, J. S. et al. Ecological forecasts: An emerging imperative. Science 293, 657–660. https://doi.org/10.1126/science.293.5530.657 (2001).
    CAS  Article  PubMed  Google Scholar 

    6.
    Andrew, M. E. & Ustin, S. L. The role of environmental context in mapping invasive plants with hyperspectral image data. Remote Sens. Environ. 112, 4301–4317. https://doi.org/10.1016/j.rse.2008.07.016 (2008).
    ADS  Article  Google Scholar 

    7.
    Chesson, P. et al. Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141, 236–253. https://doi.org/10.1007/s00442-004-1551-1 (2004).
    ADS  Article  PubMed  Google Scholar 

    8.
    Theoharides, K. A. & Dukes, J. S. Plant invasion across space and time: Factors affecting nonindigenous species success during four stages of invasion. New Phytol. 176, 256–273. https://doi.org/10.1111/j.1469-8137.2007.02207.x (2007).
    Article  PubMed  Google Scholar 

    9.
    Daniel, C., Frid, L., Sleeter, B. & Fortin, M.-J. State-and-transition simulation models: A framework for forecasting landscape change. Methods Ecol. Evol. 7, 1413–1423. https://doi.org/10.1111/2041-210x.12597 (2016).
    Article  Google Scholar 

    10.
    Frid, L. & Wilmshurst, J. F. Decision analysis to evaluate control strategies for crested wheatgrass (Agropyron cristatum) in Grasslands National Park of Canada. Invasive Plant Sci. Manag. 2, 324–336 (2009).
    Article  Google Scholar 

    11.
    Jarnevich, C. S., Holcombe, T. R., Cullinane Thomas, C., Frid, L. & Olsson, A. Simulating long-term effectiveness and efficiency of management scenarios for an invasive grass. AIMS Environ. Sci. 2, 427–447, https://doi.org/10.3934/environsci.2015.2.427 (2015).

    12.
    Frid, L. et al. Using state and transition modeling to account for imperfect knowledge in invasive species management. Invasive Plant Sci. Manag. 6, 36–47 (2013).
    Article  Google Scholar 

    13.
    Grechi, I. et al. A decision framework for management of conflicting production and biodiversity goals for a commercially valuable invasive species. Agric. Syst. 125, 1–11. https://doi.org/10.1016/j.agsy.2013.11.005 (2014).
    Article  Google Scholar 

    14.
    Miller, B. W., Symstad, A. J., Frid, L., Fisichelli, N. A. & Schuurman, G. W. Co-producing simulation models to inform resource management: A case study from southwest South Dakota. Ecosphere 8, e02020, https://doi.org/10.1002/ecs2.2020 (2017).

    15.
    Cullinane Thomas, C., Sofaer, H. R., Cline, S. & Jarnevich, C. S. Integrating landscape simulation models with economic and decision tools for invasive species control. Manag. Biol. Invasions 10, 6–22 (2019).

    16.
    Marshall, V. M., Lewis, M. M. & Ostendorf, B. Buffel grass (Cenchrus ciliaris) as an invader and threat to biodiversity in arid environments: A review. J. Arid Environ. 78, 1–12. https://doi.org/10.1016/j.jaridenv.2011.11.005 (2012).
    ADS  Article  Google Scholar 

    17.
    Jarnevich, C. S., Young, N. E., Talbert, M. & Talbert, C. Forecasting an invasive species’ distribution with global distribution data, local data, and physiological information. Ecosphere 9, e02279. https://doi.org/10.1002/ecs2.2279 (2018).
    Article  Google Scholar 

    18.
    Martin, T. et al. Buffel grass and climate change: A framework for projecting invasive species distributions when data are scarce. Biol. Invasions 17, 3197–3210. https://doi.org/10.1007/s10530-015-0945-9 (2015).
    Article  Google Scholar 

    19.
    de Albuquerque, F. S., Macías-Rodríguez, M. Á., Búrquez, A. & Astudillo-Scalia, Y. Climate change and the potential expansion of buffelgrass (Cenchrus ciliaris L., Poaceae) in biotic communities of Southwest United States and northern Mexico. Biol. Invasions 21, 3335–3347, https://doi.org/10.1007/s10530-019-02050-5 (2019).

    20.
    Castellanos, A. E., Celaya-Michel, H., Rodríguez, J. C. & Wilcox, B. P. Ecohydrological changes in semiarid ecosystems transformed from shrubland to buffelgrass savanna. Ecohydrology 9, 1663–1674. https://doi.org/10.1002/eco.1756 (2016).
    Article  Google Scholar 

    21.
    McDonald, C. J. & McPherson, G. R. Fire behavior characteristics of buffelgrass-fueled fires and native plant community composition in invaded patches. J. Arid Environ. 75, 1147–1154. https://doi.org/10.1016/j.jaridenv.2011.04.024 (2011).
    ADS  Article  Google Scholar 

    22.
    McDonald, C. J. & McPherson, G. R. Creating hotter fires in the Sonoran Desert: Buffelgrass produces copious fuels and high fire temperatures. Fire Ecol. 9, 26–39 (2013).
    Article  Google Scholar 

    23.
    Bracamonte, J. A., Tinoco-Ojanguren, C., Sanchez Coronado, M. E. & Molina-Freaner, F. Germination requirements and the influence of buffelgrass invasion on a population of Mammillaria grahamii in the Sonoran Desert. J Arid Environ. 137, 50–59, https://doi.org/10.1016/j.jaridenv.2016.11.003 (2017).

    24.
    Lyons, K. G., Maldonado-Leal, B. G. & Owen, G. Community and ecosystem effects of buffelgrass (Pennisetum ciliare) and nitrogen deposition in the Sonoran Desert. Invasive Plant Sci. Manag. 6, 65–78. https://doi.org/10.1614/ipsm-d-11-00071.1 (2013).
    CAS  Article  Google Scholar 

    25.
    Olsson, A. D., Betancourt, J., McClaran, M. P. & Marsh, S. E. Sonoran Desert Ecosystem transformation by a C4 grass without the grass/fire cycle. Divers. Distrib. 18, 10–21. https://doi.org/10.1111/j.1472-4642.2011.00825.x (2012).
    Article  Google Scholar 

    26.
    Miller, G., Friedel, M., Adam, P. & Chewings, V. Ecological impacts of buffel grass (Cenchrus ciliaris L.) invasion in central Australia—Does field evidence support a fire-invasion feedback? Rangeland J. 32, 353–365, https://doi.org/10.1071/rj09076 (2010).

    27.
    Fensham, R. J., Wang, J. & Kilgour, C. The relative impacts of grazing, fire and invasion by buffel grass (Cenchrus ciliaris) on the floristic composition of a rangeland savanna ecosystem. Rangeland J. 37, 227–237. https://doi.org/10.1071/RJ14097 (2015).
    Article  Google Scholar 

    28.
    Schlesinger, C., White, S. & Muldoon, S. Spatial pattern and severity of fire in areas with and without buffel grass (Cenchrus ciliaris) and effects on native vegetation in central Australia. Austral. Ecol. 38, 831–840. https://doi.org/10.1111/aec.12039 (2013).
    Article  Google Scholar 

    29.
    Jarnevich, C. S. et al. Developing an expert elicited simulation model to evaluate invasive species and fire management alternatives. Ecosphere 10, e02730. https://doi.org/10.1002/ecs2.2730 (2019).
    Article  Google Scholar 

    30.
    Esque, T. C., Schwartz, M. W., Lissow, J. A., Haines, D. F. & Garnett, M. C. Buffelgrass fuel loads in Saguaro National Park, Arizona, increase fire danger and threaten native species. Park Sci. 24, 33–37,56 (2007).

    31.
    Wallace, C. S. et al. Mapping presence and predicting phenological status of invasive buffelgrass in Southern Arizona using MODIS, climate and citizen science observation data. Remote Sens. 8, 524 (2016).
    ADS  Article  Google Scholar 

    32.
    Martin-R, M. H., Cox, J. R. & Ibarra-F, F. Climatic effects on buffelgrass productivity in the Sonoran Desert. J. Range Manag. 48, 60–63 (1995).
    Article  Google Scholar 

    33.
    Stillman, S. et al. Spatiotemporal variability of summer precipitation in Southeastern Arizona. J. Hydrometeorol. 14, 1944–1951. https://doi.org/10.1175/jhm-d-13-017.1 (2013).
    ADS  Article  Google Scholar 

    34.
    Arias, P. A., Fu, R. & Mo, K. C. Decadal variation of rainfall seasonality in the North American monsoon region and its potential causes. J. Clim. 25, 4258–4274. https://doi.org/10.1175/jcli-d-11-00140.1 (2012).
    ADS  Article  Google Scholar 

    35.
    R Core Team. R: A Language and Environment for Statistical Computing. (Foundation for Statistical Computing. Vienna, https://www.R-project.org/. Version 3.4.3., 2017).

    36.
    Finney, M. A. FARSITE: Fire area simulator-model development and evaluation. in Research Paper RMRS-RP-4, Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. (2004).

    37.
    Sofaer, H. R. et al. The development and delivery of species distribution models to inform decision-making. Bioscience 69, 544–557. https://doi.org/10.1093/biosci/biz045 (2019).
    Article  Google Scholar 

    38.
    Chevan, A. & Sutherland, M. Hierarchical partitioning. Am. Stat. 45, 90–96. https://doi.org/10.1080/00031305.1991.10475776 (1991).
    Article  Google Scholar 

    39.
    Wickham, H. tidyverse: Easily Install and Load the ‘Tidyverse’. R package version 1.2.1. https://CRAN.R-project.org/package=tidyverse. (2017).

    40.
    Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 2.5-2. https://CRAN.R-project.org/package=raster. (2015).

    41.
    Walsh, C. & MacNally, R. hier.part: Hierarchical Partitioning. R package version 1.0-4. https://CRAN.R-project.org/package=hier.part. (2013).

    42.
    Jarnevich, C. J., Cullinane Thomas, C. M. & Young, N. E. State-and-Transition Simulation Models of Buffelgrass in Saguaro National Park (2014–2044) to explore ecological uncertainties: U.S. Geological Survey data release. https://doi.org/10.5066/P9IZKB25.

    43.
    Daniel, C. J., Ter-Mikaelian, M. T., Wotton, B. M., Rayfield, B. & Fortin, M.-J. Incorporating uncertainty into forest management planning: Timber harvest, wildfire and climate change in the boreal forest. For Ecol Manag 400, 542–554. https://doi.org/10.1016/j.foreco.2017.06.039 (2017).
    Article  Google Scholar 

    44.
    Ford, P. L., Reeves, M. C. & Frid, L. A tool for projecting Rangeland vegetation response to management and climate. Rangelands 41, 49–60. https://doi.org/10.1016/j.rala.2018.10.010 (2019).
    Article  Google Scholar 

    45.
    Olsson, A. D., Betancourt, J. L., Crimmins, M. A. & Marsh, S. E. Constancy of local spread rates for buffelgrass (Pennisetum ciliare L.) in the Arizona Upland of the Sonoran Desert. J Arid Environ 87, 136–143, https://doi.org/10.1016/j.jaridenv.2012.06.005 (2012).

    46.
    Weston, J. D., McClaran, M. P., Whittle, R. K., Black, C. W. & Fehmi, J. S. Satellite patches, patch expansion, and doubling time as decision metrics for invasion control: Pennisetum ciliare expansion in southwestern Arizona. Invasive Plant Sci. Manag. 12, 36–42 (2019).
    Article  Google Scholar 

    47.
    Cox, J. R. et al. The influence of climate and soils on the distribution of four African grasses. J Range Manag 41, 127–139. https://doi.org/10.2307/3898948 (1988).
    Article  Google Scholar 

    48.
    de la Barrera, E. & Castellanos, A. E. High temperature effects on gas exchange for the invasive buffel grass (Pennisetum ciliare [L.] Link). Weed Biol Manag 7, 128–131, https://doi.org/10.1111/j.1445-6664.2007.00248.x (2007).

    49.
    Reichmann, L. G., Sala, O. E. & Peters, D. P. C. Precipitation legacies in desert grassland primary production occur through previous-year tiller density. Ecology 94, 435–443. https://doi.org/10.1890/12-1237.1 (2013).
    Article  PubMed  Google Scholar 

    50.
    Colorado-Ruiz, G., Cavazos, T., Salinas, J. A., De Grau, P. & Ayala, R. Climate change projections from Coupled Model Intercomparison Project phase 5 multi-model weighted ensembles for Mexico, the North American monsoon, and the mid-summer drought region. Int. J. Climatol. 38, 5699–5716. https://doi.org/10.1002/joc.5773 (2018).
    Article  Google Scholar 

    51.
    Pascale, S. et al. Weakening of the North American monsoon with global warming. Nat. Clim. Change 7, 806, https://doi.org/10.1038/nclimate3412, https://www.nature.com/articles/nclimate3412#supplementary-information (2017).

    52.
    Pascale, S., Kapnick, S. B., Bordoni, S. & Delworth, T. L. The influence of CO2 FORCING on North American monsoon moisture surges. J. Clim. 31, 7949–7968 (2018).
    ADS  Article  Google Scholar 

    53.
    Pascale, S., Carvalho, L. M. V., Adams, D. K., Castro, C. L. & Cavalcanti, I. F. A. Current and future variations of the monsoons of the Americas in a warming climate. Curr. Clim. Change Rep. 5, 125–144. https://doi.org/10.1007/s40641-019-00135-w (2019).
    Article  Google Scholar 

    54.
    Abatzoglou, J. T. & Kolden, C. A. Climate change in Western US Deserts: Potential for increased wildfire and invasive annual grasses. Rangeland Ecol. Manag. 64, 471–478. https://doi.org/10.2111/rem-d-09-00151.1 (2011).
    Article  Google Scholar 

    55.
    Poulin, J., Sakai, A. K., Weller, S. G. & Nguyen, T. Phenotypic plasticity, precipitation, and invasiveness in the fire-promoting grass Pennisetum setaceum (Poaceae). Am J Bot 94, 533–541. https://doi.org/10.3732/ajb.94.4.533 (2007).
    Article  PubMed  Google Scholar 

    56.
    Goergen, E. & Daehler, C. C. Factors affecting seedling recruitment in an invasive grass (Pennisetum setaceum) and a native grass (Heteropogon contortus) in the Hawaiian Islands. Plant Ecol 161, 147–156. https://doi.org/10.1023/a:1020368719136 (2002).
    Article  Google Scholar 

    57.
    Eschtruth, A. K. & Battles, J. J. Assessing the relative importance of disturbance, herbivory, diversity, and propagule pressure in exotic plant invasion. Ecol Monogr 79, 265–280. https://doi.org/10.1890/08-0221.1 (2009).
    Article  Google Scholar 

    58.
    Klinger, R. & Brooks, M. Alternative pathways to landscape transformation: Invasive grasses, burn severity and fire frequency in arid ecosystems. J Ecol 105, 1521–1533. https://doi.org/10.1111/1365-2745.12863 (2017).
    Article  Google Scholar 

    59.
    Brooks, M. L. et al. Effects of invasive alien plants on fire regimes. Bioscience 54, 677–688 (2004).
    Article  Google Scholar 

    60.
    D’Antonio, C. M. & Vitousek, P. M. Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu Rev Ecol Syst 23, 63–87 (1992).
    Article  Google Scholar 

    61.
    Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52. https://doi.org/10.1038/nature11018 (2012).
    ADS  CAS  Article  PubMed  Google Scholar  More

  • in

    Investigating the impact of captivity and domestication on limb bone cortical morphology: an experimental approach using a wild boar model

    1.
    Magny, M. Aux racines de l’Anthropocène: une crise écologique reflet d’une crise de l’homme (2019).
    2.
    Turcotte, M. M., Araki, H., Karp, D. S., Poveda, K. & Whitehead, S. R. The eco-evolutionary impacts of domestication and agricultural practices on wild species. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160033 (2017).
    Article  Google Scholar 

    3.
    Vigne, J.-D. The origins of animal domestication and husbandry: A major change in the history of humanity and the biosphere. C. R. Biol. 334, 171–181 (2011).
    Article  Google Scholar 

    4.
    Vigne, J.-D. Early domestication and farming: What should we know or do for a better understanding?. Anthropozoologica 50, 123–150 (2015).
    Article  Google Scholar 

    5.
    Zeder, M. A. Archaeological approaches to documenting animal domestication. Doc. Domest. New Genet. Archaeol. Paradig. 666, 171–180 (2006).
    Google Scholar 

    6.
    Darwin, C. The Variation of Animals and Plants Under Domestication (John Murray, Albermale, 1868).
    Google Scholar 

    7.
    Belyaev, D. K., Plyusnina, I. Z. & Trut, L. N. Domestication in the silver fox (Vulpes fulvus Desm): Changes in physiological boundaries of the sensitive period of primary socialization. Appl. Anim. Behav. Sci. 13, 359–370 (1985).
    Article  Google Scholar 

    8.
    Belyaev, D. K. et al. Destabilizing selection as a factor in domestication. J. Hered. 70, 301–308 (1979).
    CAS  Article  Google Scholar 

    9.
    Trut, L. N. Early canid domestication: The farm-fox experiment: Foxes bred for tamability in a 40-year experiment exhibit remarkable transformations that suggest an interplay between behavioral genetics and development. Am. Sci. 87, 160–169 (1999).
    Article  Google Scholar 

    10.
    Trut, L., Oskina, I. & Kharlamova, A. Animal evolution during domestication: The domesticated fox as a model. BioEssays 31, 349–360 (2009).
    Article  Google Scholar 

    11.
    Wilkins, A. S., Wrangham, R. W. & Fitch, W. T. The ‘Domestication Syndrome’ in mammals: A unified explanation based on neural crest cell behavior and genetics. Genetics 197, 795–808 (2014).
    Article  Google Scholar 

    12.
    Frantz, L. A. et al. Evidence of long-term gene flow and selection during domestication from analyses of Eurasian wild and domestic pig genomes. Nat. Genet. 47, 1141–1148 (2015).
    CAS  Article  Google Scholar 

    13.
    Marshall, F. B., Dobney, K., Denham, T. & Capriles, J. M. Evaluating the roles of directed breeding and gene flow in animal domestication. Proc. Natl. Acad. Sci. 111, 6153–6158 (2014).
    ADS  CAS  Article  Google Scholar 

    14.
    Lord, K. A., Larson, G., Coppinger, R. P. & Karlsson, E. K. The history of farm foxes undermines the animal domestication syndrome. Trends. Ecol. Evol. 35, 125 (2019).
    Article  Google Scholar 

    15.
    Clutton-Brock, J. The process of domestication. Mammal Rev. 22, 79–85 (1992).
    Article  Google Scholar 

    16.
    Clutton-Brock, J. Domesticated Animals from Early Times (British Museum (Natural History) and William Heinemann Ltd., London, 1981).
    Google Scholar 

    17.
    Schlichting, C. D. & Pigliucci, M. Phenotypic Evolution: A Reaction Norm Perspective (Sinauer Associates Incorporated, New York, 1998).
    Google Scholar 

    18.
    Pigliucci, M., Murren, C. J. & Schlichting, C. D. Phenotypic plasticity and evolution by genetic assimilation. J. Exp. Biol. 209, 2362–2367 (2006).
    Article  Google Scholar 

    19.
    Ehrlich, P. J. & Lanyon, L. E. mechanical strain and bone cell function: A review. Osteoporos. Int. 13, 688–700 (2002).
    CAS  Article  Google Scholar 

    20.
    Pearson, O. M. & Lieberman, D. E. The aging of Wolff’s “law”: Ontogeny and responses to mechanical loading in cortical bone. Am. J. Phys. Anthropol. 125, 63–99 (2004).
    Article  Google Scholar 

    21.
    Pöllath, N., Schafberg, R. & Peters, J. Astragalar morphology: Approaching the cultural trajectories of wild and domestic sheep applying Geometric Morphometrics. J. Archaeol. Sci. Rep. 23, 810–821 (2019).
    Google Scholar 

    22.
    Drew, I. M., Perkins, D. Jr. & Daly, P. Prehistoric domestication of animals: Effects on bone structure. Science 171, 280–282 (1971).
    ADS  CAS  Article  Google Scholar 

    23.
    Mainland, I., Schutkowski, H. & Thomson, A. F. Macro-and micromorphological features of lifestyle differences in pigs and wild boar. Anthropozoologica 42, 89–106 (2007).
    Google Scholar 

    24.
    Scheidt, A., Wölfer, J. & Nyakatura, J. A. The evolution of femoral cross-sectional properties in sciuromorph rodents: Influence of body mass and locomotor ecology. J. Morphol. 280, 1156–1169 (2019).
    PubMed  Google Scholar 

    25.
    Kilbourne, B. M. & Hutchinson, J. R. Morphological diversification of biomechanical traits: mustelid locomotor specializations and the macroevolution of long bone cross-sectional morphology. BMC Evol. Biol. 19, 1–16 (2019).
    Article  Google Scholar 

    26.
    Parsi-Pour, P. & Kilbourne, B. M. Functional morphology and morphological diversification of hind limb cross-sectional traits in mustelid mammals. Integr. Org. Biol. 2, obz032 (2020).
    Article  Google Scholar 

    27.
    Houssaye, A. & Botton-Divet, L. From land to water: Evolutionary changes in long bone microanatomy of otters (Mammalia: Mustelidae). Biol. J. Linn. Soc. 125, 240–249 (2018).
    Article  Google Scholar 

    28.
    Ruff, C. B. Biomechanical analyses of archaeological human skeletons. Biol. Anthropol. Hum. Skelet. Second Ed. 2, 183–206 (2007).
    Google Scholar 

    29.
    Henderson, C. Subsistence strategy changes: The evidence of entheseal changes. HOMO J. Comp. Hum. Biol. 64, 491–508 (2013).
    CAS  Article  Google Scholar 

    30.
    Jurmain, R., Cardoso, F. A., Henderson, C. & Villotte, S. Bioarchaeology’s Holy Grail: The reconstruction of activity. Companion Paleopathol. 666, 531–552 (2011).
    Google Scholar 

    31.
    Niinimäki, S. The relationship between musculoskeletal stress markers and biomechanical properties of the humeral diaphysis. Am. J. Phys. Anthropol. 147, 618–628 (2012).
    Article  Google Scholar 

    32.
    Villotte, S. & Knüsel, C. J. Understanding entheseal changes: Definition and life course changes. Int. J. Osteoarchaeol. 23, 135–146 (2013).
    Article  Google Scholar 

    33.
    Bayle, P. et al. Three-dimensional imaging and quantitative characterization of human fossil remains. Examples from the NESPOS database. Pleistocene Databases Acquis. Storing Shar. Mettmann Wiss. Schriften Neanderthal Mus. 4, 29–46 (2011).
    Google Scholar 

    34.
    Bondioli, L. et al. Morphometric maps of long bone shafts and dental roots for imaging topographic thickness variation. Am. J. Phys. Anthropol. 142, 328–334 (2010).
    Google Scholar 

    35.
    Bondioli, L. et al. Technical note: Morphometric maps of long bone shafts and dental roots for imaging topographic thickness variation. Am. J. Phys. Anthropol. 142, 328–334 (2010).
    Google Scholar 

    36.
    Cazenave, M. et al. Inner structural organization of the distal humerus in Paranthropus and Homo. C.R. Palevol 16, 521–532 (2017).
    Article  Google Scholar 

    37.
    Morimoto, N., De León, M. S. P. & Zollikofer, C. P. Exploring femoral diaphyseal shape variation in wild and captive chimpanzees by means of morphometric mapping: A test of Wolff’s law. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 294, 589–609 (2011).
    Article  Google Scholar 

    38.
    Puymerail, L. The functionally-related signatures characterizing the endostructural organisation of the femoral shaft in modern humans and chimpanzee. C.R. Palevol 12, 223–231 (2013).
    Article  Google Scholar 

    39.
    Puymerail, L. et al. Structural analysis of the Kresna 11 Homo erectus femoral shaft (Sangiran, Java). J. Hum. Evol. 63, 741–749 (2012).
    Article  Google Scholar 

    40.
    Rabey, K. N. et al. Locomotor activity influences muscle architecture and bone growth but not muscle attachment site morphology. J. Hum. Evol. 78, 91–102 (2015).
    Article  Google Scholar 

    41.
    Wallace, I. J., Winchester, J. M., Su, A., Boyer, D. M. & Konow, N. Physical activity alters limb bone structure but not entheseal morphology. J. Hum. Evol. 107, 14–18 (2017).
    Article  Google Scholar 

    42.
    Zumwalt, A. A new method for quantifying the complexity of muscle attachment sites. Anat. Rec. Part B New Anat. Off. Publ. Am. Assoc. Anat. 286, 21–28 (2005).
    Google Scholar 

    43.
    Karakostis, F. A., Wallace, I. J., Konow, N. & Harvati, K. Experimental evidence that physical activity affects the multivariate associations among muscle attachments (entheses). J. Exp. Biol. 222, jeb213058 (2019).
    Article  Google Scholar 

    44.
    Hecker, H. M. Domestication revisited: Its implications for faunal analysis. J. Field Archaeol. 9, 217–236 (1982).
    Google Scholar 

    45.
    Lyman, R. L. & Lyman, C. Vertebrate Taphonomy (Cambridge University Press, Cambridge, 1994).
    Google Scholar 

    46.
    Zhou, X. L., Xu, Y. C., Yang, S. H., Hua, Y. & Stott, P. Effectiveness of femur bone indexes to segregate wild from captive minks, mustela vison, and forensic implications for small mammals. J. Forensic Sci. 60, 72–75 (2015).
    Article  Google Scholar 

    47.
    Barone, R. Anatomie comparée des mammifères domestiques, Vol. 3 (Vigot, Paris, 1976).
    Google Scholar 

    48.
    Wood, S. N. Thin plate regression splines. J. R Stat. Soc. Ser. B Stat. Methodol. 65, 95–114 (2003).
    MathSciNet  MATH  Article  Google Scholar 

    49.
    Wood, S. N. Generalized Additive Models: An Introduction with R (CRC Press, Boca Raton, 2017).
    Google Scholar 

    50.
    Grant, A. The use of tooth wear as a guide to the age of domestic ungulates. In Ageing and Sexing Animal Bones from Archaeological Sites (eds Wilson, B. et al.) 91–108 (B.A.R, New York, 1982).
    Google Scholar 

    51.
    Horard-Herbin, M.-P. Le village celtique des Arènes à Levroux. L’élevage et les productions animales dans l’économie de la fin du second âge du Fer-Levroux 4. vol. 12 (Fédération pour l’édition de la Revue archéologique du Centre de la France, Paris, 1997).

    52.
    Koolstra, J. H., van Eijden, T. M. G. J., Weijs, W. A. & Naeije, M. A three-dimensional mathematical model of the human masticatory system predicting maximum possible bite forces. J. Biomech. 21, 563–576 (1988).
    CAS  Article  Google Scholar 

    53.
    Bookstein, F. L. Morphometric Tools for Landmark Data (Cambridge University Press, New York, 1991).
    Google Scholar 

    54.
    Rohlf, F. J. & Corti, M. Use of two-block partial least-squares to study covariation in shape. Syst. Biol. 49, 740–753 (2000).
    CAS  Article  Google Scholar 

    55.
    Mitteroecker, P. & Bookstein, F. Linear discrimination, ordination, and the visualization of selection gradients in modern morphometrics. Evol. Biol. 38, 100–114 (2011).
    Article  Google Scholar 

    56.
    Adams, D. C. & Otárola-Castillo, E. geomorph: An R package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4, 393–399 (2013).
    Article  Google Scholar 

    57.
    Schlager, S. Chapter 9—Morpho and Rvcg—shape analysis in R: R-packages for geometric morphometrics, shape analysis and surface manipulations. In Statistical Shape and Deformation Analysis (eds Zheng, G. et al.) 217-256 (Academic Press, London, 2017). https://doi.org/10.1016/B978-0-12-810493-4.00011-0.
    Google Scholar 

    58.
    Carter, D. R., Van der Meulen, M. C. H. & Beaupré, G. S. Mechanical factors in bone growth and development. Bone 18, S5–S10 (1996).
    Article  Google Scholar 

    59.
    Gosman, J. H., Stout, S. D. & Larsen, C. S. Skeletal biology over the life span: A view from the surfaces. Am. J. Phys. Anthropol. 146, 86–98 (2011).
    Article  Google Scholar 

    60.
    van Der Meulen, M. C., Beaupre, G. S. & Carter, D. R. Mechanobiologic influences in long bone cross-sectional growth. Bone 14, 635–642 (1993).
    Article  Google Scholar 

    61.
    O’Regan, H. J. & Kitchener, A. C. The effects of captivity on the morphology of captive, domesticated and feral mammals. Mammal Rev. 35, 215–230 (2005).
    Article  Google Scholar 

    62.
    Kimura, T. & Hamada, Y. Growth of wild and laboratory born chimpanzees. Primates 37, 237–251 (1996).
    Article  Google Scholar 

    63.
    Armitage, P. L. Jawbone of a South American monkey from Brooks Wharf, City of London (London Archaeologist Association, London, 1983).
    Google Scholar 

    64.
    Felson, D. T., Zhang, Y., Hannan, M. T. & Anderson, J. J. Effects of weight and body mass index on bone mineral density in men and women: The Framingham study. J. Bone Miner. Res Off. J. Am. Soc. Bone Miner. Res. 8, 567–573 (1993).
    CAS  Article  Google Scholar 

    65.
    Ravn, P. et al. Low body mass index is an important risk factor for low bone mass and increased bone loss in early postmenopausal women Early Postmenopausal Intervention Cohort (EPIC) study group. J. Bone Miner. Res Off. J. Am. Soc. Bone Miner. Res. 14, 1622–1627 (1999).
    CAS  Article  Google Scholar 

    66.
    Niinimäki, S. & Salmi, A.-K. Entheseal changes in free-ranging versus zoo reindeer—Observing activity status of reindeer. Int. J. Osteoarchaeol. 26, 314–323 (2016).
    Article  Google Scholar 

    67.
    Harbers, H. et al. The mark of captivity: Plastic responses in the ankle bone of a wild ungulate (Sus scrofa). R. Soc. Open Sci. 7, 192039 (2020).
    ADS  Article  Google Scholar 

    68.
    Michopoulou, E., Nikita, E. & Valakos, E. D. Evaluating the efficiency of different recording protocols for entheseal changes in regards to expressing activity patterns using archival data and cross-sectional geometric properties. Am. J. Phys. Anthropol. 158, 557–568 (2015).
    Article  Google Scholar 

    69.
    Milella, M., Giovanna Belcastro, M., Zollikofer, C. P. & Mariotti, V. The effect of age, sex, and physical activity on entheseal morphology in a contemporary Italian skeletal collection. Am. J. Phys. Anthropol. 148, 379–388 (2012).
    Article  Google Scholar 

    70.
    Seeman, E. Bone quality: The material and structural basis of bone strength. J. Bone Miner. Metab. 26, 1–8 (2008).
    Article  Google Scholar 

    71.
    Wilkinson, S. et al. Signatures of diversifying selection in European pig breeds. PLOS Genet. 9, e1003453 (2013).
    CAS  Article  Google Scholar 

    72.
    Pelletier, F. & Coltman, D. W. Will human influences on evolutionary dynamics in the wild pervade the Anthropocene?. BMC Biol. 16, 7 (2018).
    Article  Google Scholar 

    73.
    O’Higgins, P. et al. Combining geometric morphometrics and functional simulation: An emerging toolkit for virtual functional analyses. J. Anat. 218, 3–15 (2011).
    Article  Google Scholar  More

  • in

    Spatial distribution of stygobitic crustacean harpacticoids at the boundaries of groundwater habitat types in Europe

    1.
    Griebler, C., Avramov, M. & Hose, G. Groundwater Ecosystems and Their Services: Current Status and Potential Risks. In Atlas of Ecosystem Services (eds Schröter, M. et al.) 197–203 (Springer, Berlin, 2019).
    Google Scholar 
    2.
    Di Lorenzo, T., Cifoni, M., Lombardo, P., Fiasca, B. & Galassi, D. M. P. Ammonium threshold values for groundwater quality in the EU may not protect groundwater fauna: evidence from an alluvial aquifer in Italy. Hydrobiologia 743, 139–150 (2015).
    Article  CAS  Google Scholar 

    3.
    Banks, E., Simmons, C., Love, A. & Shand, P. Assessing spatial and temporal connectivity between surface water and groundwater in a regional catchment: Implications for regional scale water quantity and quality. J. Hydrol. 404, 30–49 (2011).
    ADS  CAS  Article  Google Scholar 

    4.
    Di Lorenzo, T., Stoch, F. & Galassi, D. M. P. Incorporating the hyporheic zone within the river discontinuum: longitudinal patterns of subsurface copepod assemblages in an Alpine stream. Limnologica 43, 288–296 (2013).
    Article  CAS  Google Scholar 

    5.
    Hose, G. C. & Stumpp, C. Architects of the underworld: bioturbation by groundwater invertebrates influences aquifer hydraulic properties. Aquat. Sci. 81, 20 (2019).
    Article  Google Scholar 

    6.
    Di Lorenzo, T. & Galassi, D. M. P. Effect of temperature rising on the stygobitic crustacean species Diacyclops belgicus: Does global warming affect groundwater populations?. Water 9, 951 (2017).
    ADS  Article  CAS  Google Scholar 

    7.
    Strona, G. et al. AQUALIFE software: a new tool for a standardized ecological assessment of groundwater dependent ecosystems. Water 11, 2574 (2019).
    Article  Google Scholar 

    8.
    Mammola, S. et al. Scientists’ warning on the conservation of subterranean ecosystems. Bioscience 69, 641–650 (2019).
    Article  Google Scholar 

    9.
    Castellarini, F., Malard, F., Dole-Olivier, M.-J. & Gibert, J. Modelling the distribution of stygobionts in the Jura Mountains (eastern France). Implications for the protection of ground waters. Divers. Distrib. 13, 213–224 (2007).
    Article  Google Scholar 

    10.
    Deharveng, L. et al. Groundwater biodiversity in Europe. Freshw. Biol. 54, 709–726 (2009).
    Article  Google Scholar 

    11.
    Fattorini, S., Fiasca, B., Di Lorenzo, T., Di Cicco, M. & Galassi, D. M. P. A new protocol for assessing the conservation priority of groundwater dependent ecosystems. Aquat. Conserv. 30, 1483–1504 (2020).
    Article  Google Scholar 

    12.
    Pipan, T., Culver, D. C., Papi, F. & Kozel, P. Partitioning diversity in subterranean invertebrates: the epikarst fauna of Slovenia. PLoS ONE 13, e0195991 (2018).
    Article  CAS  Google Scholar 

    13.
    Iannella, M. et al. Jumping into the grids: mapping biodiversity hotspots in groundwater habitat types across Europe. Ecography 43, 1–17. https://doi.org/10.1111/ecog.05323 (2020).
    Article  Google Scholar 

    14.
    Cantonati, M. et al. Characteristics, main impacts, and stewardship of natural and artificial freshwater environments: consequences for biodiversity conservation. Water 12, 260 (2020).
    Article  Google Scholar 

    15.
    Galassi, D. M. P., Huys, R. & Reid, J. W. Diversity, ecology and evolution of groundwater copepods. Freshw. Biol. 54, 691–708 (2009).
    Article  Google Scholar 

    16.
    Galassi, D. M. P. Groundwater copepods: diversity patterns over ecological and evolutionary scales. Hydrobiologia 453, 227–253 (2001).
    Article  Google Scholar 

    17.
    Fiasca, B. et al. The dark side of springs: what drives small-scale spatial patterns of subsurface meiofaunal assemblages. J. Limnol. 73, 71–80 (2014).
    Article  Google Scholar 

    18.
    Galassi, D. M. P. et al. Earthquakes trigger the loss of groundwater biodiversity. Sci. Rep. 4, 6273 (2014).
    CAS  Article  Google Scholar 

    19.
    Fattorini, S., Di Lorenzo, T. & Galassi, D. M. P. Earthquake impacts on microcrustacean communities inhabiting groundwater-fed springs alter species-abundance distribution patterns. Sci. Rep. 8, 1501 (2018).
    ADS  Article  CAS  Google Scholar 

    20.
    Boxshall, G. A., Kihara, T. C. & Huys, R. Collecting and processing non-planktonic copepods. J. Crustacean Biol. 36, 576–583 (2016).
    Article  Google Scholar 

    21.
    Korbel, K. L., Stephenson, S. & Hose, G. C. Sediment size influences habitat selection and use by groundwater macrofauna and meiofauna. Aquat. Sci. 81, 39 (2019).
    Article  CAS  Google Scholar 

    22.
    Giere, O. Meiobenthology: The Microscopic motile Fauna of Aquatic Sediments 2nd edn. (Springer, Berlin, 2009).
    Google Scholar 

    23.
    Galassi, D. M. P. et al. Groundwater biodiversity in a chemoautotrophic cave ecosystem: how geochemistry regulates microcrustacean community structure. Aquat. Ecol. 51, 75–90 (2017).
    CAS  Article  Google Scholar 

    24.
    Lamoreux, J. Stygobites are more wide-ranging than troglobites. J. Cave Karst. Stud. 66, 18–19 (2004).
    Google Scholar 

    25.
    Kubisch, A., Holt, R. D., Poethke, H. J. & Fronhofer, E. A. Where am I and why? Synthesizing range biology and the eco-evolutionary dynamics of dispersal. Oikos 123, 5–22 (2014).
    Article  Google Scholar 

    26.
    Strayer, D. L., Power, M. E., Fagan, W. F., Pickett, S. T. & Belnap, J. A classification of ecological boundaries. Bioscience 53, 723–729 (2003).
    Article  Google Scholar 

    27.
    Mazzucco, R., Doebeli, M. & Dieckmann, U. The influence of habitat boundaries on evolutionary branching along environmental gradients. Evol. Ecol. 32, 563–585 (2018).
    Article  Google Scholar 

    28.
    Potts, J. R., Hillen, T. & Lewis, M. A. The, “edge effect” phenomenon: deriving population abundance patterns from individual animal movement decisions. Theor. Ecol. 9, 233–247 (2016).
    Article  Google Scholar 

    29.
    Ries, L., Fletcher, R. J. Jr., Battin, J. & Sisk, T. D. Ecological responses to habitat edges: mechanisms, models, and variability explained. Annu. Rev. Ecol. Evol. Syst. 35, 491–522 (2004).
    Article  Google Scholar 

    30.
    Cornu, J.-F., Eme, D. & Malard, F. The distribution of groundwater habitats in Europe. Hydrogeol. J. 21, 949–960 (2013).
    ADS  Article  Google Scholar 

    31.
    Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 6783 (2000).
    Article  Google Scholar 

    32.
    Eme, D. et al. Multi-causality and spatial non-stationarity in the determinants of groundwater crustacean diversity in Europe. Ecography 38, 531–540 (2015).
    Article  Google Scholar 

    33.
    Brunetti, M., Magoga, G., Iannella, M., Biondi, M. & Montagna, M. Phylogeography and species distribution modelling of Cryptocephalus barii (Coleoptera: Chrysomelidae): is this alpine endemic species close to extinction?. ZooKeys 856, 3 (2019).
    Article  Google Scholar 

    34.
    Iannella, M., Liberatore, L. & Biondi, M. The effects of a sudden urbanization on micromammal communities: a case study of post-earthquake L’Aquila (Abruzzi Region, Italy). Ital. J. Zool. 83, 255–262 (2016).
    Article  Google Scholar 

    35.
    Shen, X. et al. Effectiveness of management zoning designed for flagship species in protecting sympatric species. Conserv. Biol. 34, 158–167 (2020).
    Article  Google Scholar 

    36.
    Zagmajster, M. et al. Geographic variation in range size and beta diversity of groundwater crustaceans: insights from habitats with low thermal seasonality. Glob. Ecol. Biogeogr. 23, 1135–1145 (2014).
    Article  Google Scholar 

    37.
    Stoch, F. & Galassi, D. M. P. Stygobiotic crustacean species richness: a question of numbers, a matter of scale. Hydrobiologia 653, 217–234 (2010).
    CAS  Article  Google Scholar 

    38.
    Stein, H. et al. Stygoregions—a promising approach to a bioregional classification of groundwater systems. Sci. Rep. 2, 673 (2012).
    Article  CAS  Google Scholar 

    39.
    Council of the European Communities. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. O. J. L. 206, 7–50 (1992).

    40.
    Galassi, D. M. P., Stoch, F., Fiasca, B., Di Lorenzo, T. & Gattone, E. Groundwater biodiversity patterns in the Lessinian Massif of northern Italy. Freshw. Biol. 54, 830–847 (2009).
    CAS  Article  Google Scholar 

    41.
    Rouch, R. Sur la répartition spatiale des Crustacés dans le sous-écoulement d’un ruisseau des Pyrénées. Ann. Limnol. 24, 213–234 (1988).
    Article  Google Scholar 

    42.
    Gibert, J., Malard, F., Turquin, M. J. & Laurent, R. Karst Ecosystems in the Rhône River Basin. In Subterranean Ecosystems. Ecosystems of the World (eds Wilkens, H. et al.) 533–558 (Elsevier, Amsterdam, 2000).
    Google Scholar 

    43.
    Boulton, A. J. Conservation of groundwaters and their dependent ecosystems: Integrating molecular taxonomy, systematic reserve planning and cultural values. Aquat. Conserv. 30, 1–7 (2020).
    Article  Google Scholar 

    44.
    Smith, T. B., Kark, S., Schneider, C. J., Wayne, R. K. & Moritz, C. Biodiversity hotspots and beyond: the need for preserving environmental transitions. Trends Ecol. Evol. 16, 431 (2001).
    Article  Google Scholar 

    45.
    Álvarez-Martínez, J. M. et al. Modelling the area of occupancy of habitat types with remote sensing. Methods Ecol. Evol. 9, 580–593 (2018).
    Article  Google Scholar 

    46.
    Armstrong, D. P. Integrating the metapopulation and habitat paradigms for understanding broad-scale declines of species. Conserv. Biol. 19, 1402–1410 (2005).
    Article  Google Scholar 

    47.
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).
    ADS  CAS  Article  Google Scholar 

    48.
    Malard, F. et al. Diversity patterns of stygobiotic crustaceans across multiple spatial scales in Europe. Freshw. Biol. 54, 756–776 (2009).
    Article  Google Scholar 

    49.
    Stoch, F. et al. Exploring copepod distribution patterns at three nested spatial scales in a spring system: Habitat partitioning and potential for hydrological bioindication. J. Limnol. 75, 1–13 (2016).
    Google Scholar 

    50.
    Di Lorenzo, T., Cipriani, D., Fiasca, B., Rusi, S. & Galassi, D. M. P. Groundwater drift monitoring as a tool to assess the spatial distribution of groundwater species into karst aquifers. Hydrobiologia 813, 137–156 (2018).
    Article  CAS  Google Scholar 

    51.
    Illies, J. Limnofauna Europaea (Fischer, Stuttgart, 1978).
    Google Scholar 

    52.
    Botosaneanu, L. Stygofauna Mundi (Brill, Leiden, 1986).
    Google Scholar 

    53.
    Knight, L. Hypogean Crustacea Recording Scheme. (Accessed 1 October 2020); https://hcrs.freshwaterlife.org (2012).

    54.
    Ruffo, S. & Stoch, F. Checklist e distribuzione della fauna italiana. (2005).

    55.
    ESRI. ArcMap 10.0. ESRI, Redlands, California (2010).

    56.
    Wang, Y. et al. Comparing the performance of approaches for testing the homogeneity of variance assumption in one-factor ANOVA models. Educ. Psychol. Meas. 77, 305–329 (2017).
    Article  Google Scholar 

    57.
    Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).
    MathSciNet  MATH  Google Scholar  More

  • in

    Plasmid- and strain-specific factors drive variation in ESBL-plasmid spread in vitro and in vivo

    1.
    Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010;74:1092–2172.
    Article  Google Scholar 
    2.
    Stevenson C, Hall JPJ, Harrison E, Wood AJ, Brockhurst MA. Gene mobility promotes the spread of resistance in bacterial populations. ISME J. 2017;11:1930.
    CAS  Article  Google Scholar 

    3.
    Sommer MOA, Munck C, Toft-Kehler RV, Andersson DI. Prediction of antibiotic resistance: time for a new preclinical paradigm? Nat Rev Microbiol. 2017;15:689–96.
    CAS  Article  Google Scholar 

    4.
    Pitout JD, Laupland KB. Extended-spectrum β-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis. 2008;8:159–66.
    CAS  Article  Google Scholar 

    5.
    Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019;19:56–66.
    Article  Google Scholar 

    6.
    Carattoli A. Resistance plasmid families in Enterobacteriaceae. Antimicrob Agents Chemother. 2009;53:2227–38.
    CAS  Article  Google Scholar 

    7.
    Bajaj P, Singh NS, Virdi JS. Escherichia coli β-lactamases: what really matters. Front Microbiol. 2016;7:417.
    Article  Google Scholar 

    8.
    San Millan A. Evolution of plasmid-mediated antibiotic resistance in the clinical context. Trends Microbiol. 2018;26:978–85.
    CAS  Article  Google Scholar 

    9.
    Sørensen SJ, Bailey M, Hansen LH, Kroer N, Wuertz S. Studying plasmid horizontal transfer in situ: a critical review. Nat Rev Microbiol. 2005;3:700–10.
    Article  Google Scholar 

    10.
    Tenaillon O, Skurnik D, Picard B, Denamur E. The population genetics of commensal Escherichia coli. Nat Rev Microbiol. 2010;8:207–17.
    CAS  Article  Google Scholar 

    11.
    Frost LS, Ippen-Ihler K, Skurray RA. Analysis of the sequence and gene products of the transfer region of the F sex factor. Microbiol Rev. 1994;5:162–210.
    Article  Google Scholar 

    12.
    Garcillán-Barcia MP, de la Cruz F. Why is entry exclusion an essential feature of conjugative plasmids? Plasmid. 2008;60:1–18.
    Article  Google Scholar 

    13.
    San Millan A, Heilbron K, MacLean RC. Positive epistasis between co-infecting plasmids promotes plasmid survival in bacterial populations. ISME J. 2014;8:601–12.
    CAS  Article  Google Scholar 

    14.
    Smillie C, Garcillan-Barcia MP, Francia MV, Rocha EPC, de la Cruz F. Mobility of plasmids. Microbiol Mol Biol Rev. 2010;74:434–52.
    CAS  Article  Google Scholar 

    15.
    Dionisio F, Zilhão R, Gama JA. Interactions between plasmids and other mobile genetic elements affect their transmission and persistence. Plasmid. 2019;102:29–36.

    16.
    Zhong Z, Helinski D, Toukdarian A. Plasmid host-range: restrictions to F replication in pseudomonas. Plasmid. 2005;54:48–56.
    CAS  Article  Google Scholar 

    17.
    Wein T, Hülter NF, Mizrahi I, Dagan T. Emergence of plasmid stability under non-selective conditions maintains antibiotic resistance. Nat Commun. 2019;10:1–13.
    CAS  Article  Google Scholar 

    18.
    Purdy D, O’Keeffe TAT, Elmore M, Herbert M, McLeod A, Bokori-Brown M, et al. Conjugative transfer of clostridial shuttle vectors from Escherichia coli to Clostridium difficile through circumvention of the restriction barrier. Mol Microbiol. 2002;46:439–52.
    CAS  Article  Google Scholar 

    19.
    Thomas CM, Nielsen KM. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol. 2005;3:711–21.
    CAS  Article  Google Scholar 

    20.
    Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A, Keren M, et al. Systematic discovery of antiphage defense systems in the microbial pangenome. Science. 2018;359:0–12.
    CAS  Article  Google Scholar 

    21.
    Price VJ, Mcbride SW, Hullahalli K, Chatterjee A, Duerkop BA, Palmer KL. Enterococcus faecalis CRISPR-Cas is a robust barrier to conjugative antibiotic resistance dissemination in the murine intestine. mSphere. 2019;4:e00464–19.

    22.
    Hayes F. Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science (80-). 2003;301:1496–9.
    CAS  Article  Google Scholar 

    23.
    San Millan A, MacLean RC. Fitness costs of plasmids: a limit to plasmid transmission. Microbiol Spectr. 2017;5:MTBP- 0016-2017.

    24.
    Harrison E, Guymer D, Spiers AJ, Paterson S, Brockhurst MA. Parallel compensatory evolution stabilizes plasmids across the parasitism-mutualism continuum. Curr Biol. 2015;25:2034–9.
    CAS  Article  Google Scholar 

    25.
    Lopatkin AJ, Meredith HR, Srimani JK, Pfeiffer C, Durrett R, You L/ Persistence and reversal of plasmid-mediated antibiotic resistance. Nat Commun. 2017;8:1689.

    26.
    Hardiman CA, Weingarten RA, Conlan S, Khil P, Dekker JP, Mathers AJ, et al. Horizontal transfer of carbapenemase-encoding plasmids and comparison with hospital epidemiology data. Antimicrob Agents Chemother. 2016;60:4910–9.
    CAS  Article  Google Scholar 

    27.
    Lopatkin AJ, Huang S, Smith RP, Srimani JK, Sysoeva TA, Bewick S, et al. Antibiotics as a selective driver for conjugation dynamics. Nat Microbiol. 2016;1:1–22.
    Article  Google Scholar 

    28.
    Dimitriu T, Marchant L, Buckling A, Raymond B. Bacteria from natural populations transfer plasmids mostly towards their kin. Proc R Soc B Biol Sci. 2019;286.

    29.
    Finbarr H. Toxins-antitoxins: plasmid maintenance, programmed cell death in bacterial populations. Science. 1995;267:836–7. Feb 10
    Article  Google Scholar 

    30.
    Bradley DE, Taylor DE, Cohen DR. Specification of surface mating systems among conjugative drug resistance plasmids in Escherichia coli K-12. J Bacteriol. 1980;143:1466–70.
    CAS  Article  Google Scholar 

    31.
    Bradley DE. Characteristics and function of thick and thin conjugative pili determined by transfer-derepressed plasmids of incompatibility groups I1, I2, I5, B, K and Z. J Gen Microbiol. 1984;130:1489–502.
    CAS  PubMed  PubMed Central  Google Scholar 

    32.
    Stalder T, Top E. Plasmid transfer in biofilms: a perspective on limitations and opportunities. npj Biofilms Microbiomes. 2016;2:16022.

    33.
    Beaber JW, Hochhut B, Waldor MK. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature. 2004;427:72–4.
    CAS  Article  Google Scholar 

    34.
    Hall JPJ, Williams D, Paterson S, Harrison E, Brockhurst MA. Positive selection inhibits gene mobilisation and transfer in soil bacterial communities Europe PMC Funders Group. Nat Ecol Evol. 2017;1:1348–53.
    Article  Google Scholar 

    35.
    Knudsen PK, Gammelsrud KW, Alfsnes K, Steinbakk M, Abrahamsen TG, Müller F, et al. Transfer of a bla CTX-M-1-carrying plasmid between different Escherichia coli strains within the human gut explored by whole genome sequencing analyses. Sci Rep. 2018;8:280.
    Article  Google Scholar 

    36.
    Liebana E, Batchelor M, Hopkins KL, Clifton-Hadley FA, Teale CJ, Foster A, et al. Longitudinal farm study of extended-spectrum beta-lactamase-mediated resistance. J Clin Microbiol. 2006;44:1630–4.
    CAS  Article  Google Scholar 

    37.
    Stoesser N, Sheppard AE, Moore CE, Golubchik T, Parry CM, Nget P, et al. Extensive within-host diversity in fecally carried extended-spectrum-beta-lactamase-producing Escherichia coli Isolates: Implications for transmission analyses. J Clin Microbiol. 2015;53:2122–31.
    CAS  Article  Google Scholar 

    38.
    Ott LC, Stromberg ZR, Redweik GAJ, Wannemuehler MJ, Mellata M. Mouse genetic background affects transfer of an antibiotic resistance plasmid in the gastrointestinal tract. mSphere. 2020;5:e00847–19.

    39.
    García-Quintanilla M, Ramos-Morales F, Casadesús J. Conjugal transfer of the Salmonella enterica virulence plasmid in the mouse intestine. J Bacteriol. 2008;190:1922–7.
    Article  Google Scholar 

    40.
    Duval-Iflah Y, Raibaud P, Tancrede C, Rousseau M. R-plasmic transfer from Serratia liquefaciens to Escherichia coli in vitro and in vivo in the digestive tract of gnotobiotic mice associated with human fecal flora. Infect Immun. 1980;28:981–90.
    CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Duval-Iflah Y, Gainche I, Ouriet MF, Lett MC. Recombinant DNA transfer to Escherichia coli of human faecal origin in vitro and in digestive tract of gnotobiotic mice. FEMS Microbiol Ecol. 1994;15:79–87.
    CAS  Article  Google Scholar 

    42.
    Diard M, Bakkeren E, Cornuault JK, Moor K, Hausmann A, Sellin ME, et al. Inflammation boosts bacteriophage transfer between Salmonella spp. Science. 2017;355:1211–5.
    CAS  Article  Google Scholar 

    43.
    Moor K, Diard M, Sellin ME, Felmy B, Wotzka SY, Toska A, et al. High-avidity IgA protects the intestine by enchaining growing bacteria. Nature. 2017;544:498–502.
    CAS  Article  Google Scholar 

    44.
    Bakkeren E, Huisman JS, Many O, Bonhoeffer S, Regoes RR, Diard M, et al. Salmonella persisters promote the spread of antibiotic resistance plasmids in the gut. Nature. 2019;573:276–80.
    CAS  Article  Google Scholar 

    45.
    Stecher B, Denzler R, Maier L, Bernet F, Sanders MJ, Pickard DJ, et al. Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae. Proc Natl Acad Sci. 2012;109:1269–74.
    CAS  Article  Google Scholar 

    46.
    Wotzka SY, Kreuzer M, Maier L, Arnoldini M, Nguyen BD, Brachmann AO, et al. Escherichia coli limits Salmonella Typhimurium infections after diet shifts and fat-mediated microbiota perturbation in mice. Nat Microbiol. 2019;4:2164–74.
    Article  Google Scholar 

    47.
    Roca I, Akova M, Baquero F, Carlet J, Cavaleri M, Coenen S, et al. The global threat of antimicrobial resistance: science for intervention. N Microbes N Infect. 2015;6:22–9.
    CAS  Article  Google Scholar 

    48.
    Rozwandowicz M, Brouwer MSM, Fischer J, Wagenaar JA, Gonzalez-Zorn B, Guerra B, et al. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J Antimicrob Chemother. 2018;73:1121–37.
    CAS  Article  Google Scholar 

    49.
    Komano T, Yoshida T, Narahara K, Furuya N. The transfer region of Incl1 plasmid R64: similarities between R64 tra and Legionella icm/dot genes. Mol Microbiol. 2000;35:1348–59.
    CAS  Article  Google Scholar 

    50.
    Takahashi H, Shao M, Furuya N, Komano T. The genome sequence of the incompatibility group Iγ plasmid R621a: evolution of IncI plasmids. Plasmid. 2011;66:112–21.
    CAS  Article  Google Scholar 

    51.
    Koraimann G. Spread and persistence of virulence and antibiotic resistance genes: a ride on the F plasmid conjugation module. EcoSal Plus. 2018;8.

    52.
    Tschudin-Sutter S, Frei R, Schwahn F, Tomic M, Conzelmann M, Stranden A, et al. Prospective validation of cessation of contact precautions for extended-spectrum beta-lactamase-producing Escherichia coli. Emerg Infect Dis. 2016;22:1094–7.
    CAS  Article  Google Scholar 

    53.
    Wotzka SY, Kreuzer M, Maier L, Zünd M, Schlumberger M, Nguyen B, et al. Microbiota stability in healthy individuals after single-dose lactulose challenge—a randomized controlled study. Staley C, editor. PLoS One. 201813:e0206214.

    54.
    Spratt BG, Hedge J, Heesen P, te, Edelman S, Broome-Smith A, Kanamycin-resistant JK. vectors that are analogues of plasmids pUC8, pUC9, pEMBL8 and pEMBL9. Gene. 1986;41:337–42.
    CAS  Article  Google Scholar 

    55.
    Lundquist PD, Levin BR. Transitory derepression and the maintenance of conjugative plasmids. Genetics 1986;113:483–97.
    CAS  PubMed  PubMed Central  Google Scholar 

    56.
    Sheppard RJ, Beddis AE, Barraclough TG. The role of hosts, plasmids and environment in determining plasmid transfer rates: a meta-analysis. Plasmid. 2020;108:102489.

    57.
    Sprouffske K, Wagner A. Growthcurver: an R package for obtaining interpretable metrics from microbial growth curves. BMC Bioinform. 2016;17:172.
    Article  Google Scholar 

    58.
    Barthel M, Hapfelmeier S, Quintanilla-Martínez L, Kremer M, Rohde M, Hogardt M, et al. Pretreatment of mice with streptomycin provides a Salmonella enterica Serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect Immun. 2003;71:2839–58.
    CAS  Article  Google Scholar 

    59.
    Brugiroux S, Beutler M, Pfann C, Garzetti D, Ruscheweyh HJ, Ring D, et al. Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium. Nat Microbiol. 2016;2:1–12.
    Google Scholar 

    60.
    Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13:1–22.
    Article  Google Scholar 

    61.
    Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27:2987–93.
    CAS  Article  Google Scholar 

    62.
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.
    Article  Google Scholar 

    63.
    Barrick JE, Colburn G, Deatherage DE, Traverse CC, Strand MD, Borges JJ, et al. Identifying structural variation in haploid microbial genomes from short-read resequencing data using breseq. BMC Genom. 2014;15:1–17.
    Article  Google Scholar 

    64.
    Compain F, Poisson A, Le Hello S, Branger C, Weill FX, Arlet G, et al. Targeting relaxase genes for classification of the predominant plasmids in Enterobacteriaceae. Int J Med Microbiol. 2014;304:236–42.
    CAS  Article  Google Scholar 

    65.
    Silva M, Machado MP, Silva DN, Rossi M, Moran-Gilad J, Santos S, et al. chewBBACA: a complete suite for gene-by-gene schema creation and strain identification. Micro Genom. 2018;4:1–7.
    Google Scholar 

    66.
    Alikhan NF, Zhou Z, Sergeant MJ, Achtman M. A genomic overview of the population structure of Salmonella. PLoS Genet. 2018;14:1–13.
    Article  Google Scholar 

    67.
    Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 2014;10:1–6.
    Article  Google Scholar 

    68.
    Wielgoss S, Barrick JE, Tenaillon O, Cruveiller S, Chane-Woon-Ming B, Médigue C, et al. Mutation rate inferred from synonymous substitutions in a long-term evolution experiment with Escherichia coli. G3 Genes, Genomes, Genet. 2011;1:183–6.
    CAS  Google Scholar 

    69.
    Seemann T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.
    CAS  Article  Google Scholar 

    70.
    Jolley KA, Maiden MCJ. BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinform. 2010;11:595.

    71.
    Beghain J, Bridier-Nahmias A, Le Nagard H, Denamur E, Clermont O. ClermonTyping: an easy-to-use and accurate in silico method for Escherichia genus strain phylotyping. Microb Genom. 2018;4:1–8.
    Google Scholar 

    72.
    Carattoli A, Zankari E, Garcia-Fernandez A, Larsen MV, Lund O, Villa L, et al. In silico detection and typing of plasmids using plasmidfinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother. 2014;58:3895–903.
    Article  Google Scholar 

    73.
    Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O. et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother.2012;67(11):2640–4.
    CAS  Article  Google Scholar 

    74.
    Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–21.
    CAS  Article  Google Scholar 

    75.
    Li J, Yao Y, Xu HH, Hao L, Deng Z, Rajakumar K, et al. SecReT6: a web-based resource for type VI secretion systems found in bacteria. Environ Microbiol. 2015;17:2196–202.
    Article  Google Scholar 

    76.
    Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM, et al. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol. 2014;52:1501–10.
    Article  Google Scholar 

    77.
    Xie Y, Wei Y, Shen Y, Li X, Zhou H, Tai C, et al. TADB 2.0: an updated database of bacterial type II toxin-antitoxin loci. Nucleic Acids Res. 2018;46:D749–53.
    CAS  Article  Google Scholar 

    78.
    Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J, Néron B, et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 2018;46:W246–51.
    CAS  Article  Google Scholar 

    79.
    Roberts RJ, Vincze T, Posfai J, Macelis D. REBASE-a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res. 2015;43:D298–9.
    CAS  Article  Google Scholar 

    80.
    Fernandez-Lopez R, de Toro M, Moncalian G, Garcillan-Barcia MP, de la Cruz F. Comparative genomics of the conjugation region of F-like plasmids: five shades of F. Front Mol Biosci. 2016;3:71.
    Article  Google Scholar 

    81.
    Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA. 2000;97:6640–5.
    CAS  Article  Google Scholar 

    82.
    Venturini C, Zingali T, Wyrsch ER, Bowring B, Iredell J, Partridge SR, et al. Diversity of P1 phage-like elements in multidrug resistant Escherichia coli. Sci Rep. 2019;9:18861.

    83.
    Łobocka MB, Rose DJ, Plunkett G, Rusin M, Samojedny A, Lehnherr H, et al. Genome of bacteriophage P1. J Bacteriol. 2004;186:7032–68.
    Article  Google Scholar 

    84.
    Lawley T, Wilkins BM, Frost LS. Bacterial Conjugation in Gram-Negative Bacteria. In: Plasmid biology. ASM Press Washington, D.C.; 2004. p. 203–26.

    85.
    Furter M, Sellin ME, Hansson GC, Hardt WD. Mucus architecture and near-surface swimming affect distinct Salmonella Typhimurium infection patterns along the murine intestinal tract. Cell Rep. 2019;27:2665–678.e3.
    CAS  Article  Google Scholar 

    86.
    Tarr PI, Bilge SS, Vary JC, Jelacic S, Habeeb RL, Ward TR, et al. Iha: a novel Escherichia coli O157:H7 adherence-conferring molecule encoded on a recently acquired chromosomal island of conserved structure. Infect Immun. 2000;68:1400–7.
    CAS  Article  Google Scholar 

    87.
    Licht TR, Christensen BB, Krogfelt KA, Molin S. Plasmid transfer in the animal intestine and other dynamic bacterial populations: the role of community structure and environment. Microbiology. 1999;145:2615–22.
    CAS  Article  Google Scholar 

    88.
    Lourenço M, Chaffringeon L, Lamy-Besnier Q, Pédron T, Campagne P, Eberl C, et al. The spatial heterogeneity of the gut limits predation and fosters coexistence of bacteria and bacteriophages. Cell Host Microbe. 2020;28:356–8.

    89.
    Aydin S, Personne Y, Newire E, Laverick R, Russell O, Roberts AP, et al. Presence of type I-F CRISPR/Cas systems is associated with antimicrobial susceptibility in Escherichia coli. J Antimicrob Chemother. 2017;72:2213–8.
    CAS  Article  Google Scholar 

    90.
    Pougach K, Semenova E, Bogdanova E, Datsenko KA, Djordjevic M, Wanner BL, et al. Transcription, processing and function of CRISPR cassettes in Escherichia coli. Mol Microbiol. 2010;77:1367–79.
    CAS  Article  Google Scholar 

    91.
    Tock MR, Dryden DTF. The biology of restriction and anti-restriction. Curr Opin Microbiol. 2005;8:466–72.
    CAS  Article  Google Scholar 

    92.
    Liang W, Xie Y, Xiong W, Tang Y, Li G, Jiang X, et al. Anti-restriction protein, KlcAHS, promotes dissemination of carbapenem resistance. Front Cell Infect Microbiol. 2017;7:150.

    93.
    Serfiotis-Mitsa D, Herbert AP, Roberts GA, Soares DC, White JH, Blakely GW, et al. The structure of the KlcA and ArdB proteins reveals a novel fold and antirestriction activity against type I DNA restriction systems in vivo but not in vitro. Nucleic Acids Res. 2009;38:1723–37.
    Article  Google Scholar 

    94.
    Villa L, García-Fernández A, Fortini D, Carattoli A. Replicon sequence typing of IncF plasmids carrying virulence and resistance determinants. J Antimicrob Chemother. 2010;65:2518–29.
    CAS  Article  Google Scholar 

    95.
    Gama JA, Zilhão R, Dionisio F. Conjugation efficiency depends on intra and intercellular interactions between distinct plasmids: plasmids promote the immigration of other plasmids but repress co-colonizing plasmids. Plasmid. 2017;93:6–16.
    CAS  Article  Google Scholar 

    96.
    Barry KE, Wailan AM, Sheppard AE, Crook D, Vegesana K, Stoesser N, et al. Don’t overlook the little guy: an evaluation of the frequency of small plasmids co-conjugating with larger carbapenemase gene containing plasmids. Plasmid. 2019;103:1–8.
    CAS  Article  Google Scholar 

    97.
    Mahérault AC, Kemble H, Magnan M, Gachet B, Roche D, Nagard H Le, et al. Advantage of the F2:A1:B- IncF pandemic plasmid over IncC plasmids in in vitro acquisition and evolution of blaCTX-M gene-bearing plasmids in Escherichia coli. Antimicrob Agents Chemother. 2019;63:e01130–19.
    Article  Google Scholar  More

  • in

    Reanalysis of putative ovarian follicles suggests that Early Cretaceous birds were feeding not breeding

    1.
    Zheng, X. et al. Preservation of ovarian follicles reveals early evolution of avian reproductive behaviour. Nature 495, 507–511 (2013).
    ADS  CAS  Article  Google Scholar 
    2.
    Mayr, G. & Manegold, A. Can ovarian follicles fossilize?. Nature 499, E1 (2013).
    ADS  CAS  Article  Google Scholar 

    3.
    O’Connor, J., Zheng, X. & Zhou, Z. Reply to “Can ovarian follicles fossilize?”. Nature 499, E1–E2 (2013).
    ADS  Article  CAS  Google Scholar 

    4.
    Varricchio, D. J. & Jackson, F. D. Reproduction in Mesozoic birds and evolution of the modern avian reproductive mode. Auk: Ornithol. Adv. 133, 654–684 (2016).
    Article  Google Scholar 

    5.
    O’Connor, J. K., Wang, M., Zheng, X. T., Wang, X. L. & Zhou, Z. H. The histology of two female Early Cretaceous birds. Vertebrata PalAsiatica 52, 112–128 (2014).
    Google Scholar 

    6.
    O’Connor, J. K., Zheng, X., Wang, X., Wang, Y. & Zhou, Z. Ovarian follicles shed new light on dinosaur reproduction during the transition towards birds. Nat. Sci. Rev. 1, 15–17 (2013).
    Article  Google Scholar 

    7.
    Wang, Y. et al. A new Jehol enantiornithine bird with three-dimensional preservation and ovarian follicles. J. Vertebr. Paleontol. 36, e1054496 (2016).
    Article  Google Scholar 

    8.
    Zheng, X. et al. Exceptional preservation of soft tissue in a new specimen of Eoconfuciusornis and its biological implications. Natl. Sci. Rev. 4, 441–452 (2017).
    CAS  Article  Google Scholar 

    9.
    Xu, X. et al. An integrative approach to understanding bird origins. Science 346, 1253293 (2014).
    Article  CAS  Google Scholar 

    10.
    O’Connor, J. & Zhou, Z. Early evolution of the biological bird: perspectives from new fossil discoveries in China. J. Ornithol. 156, 333–342 (2015).
    Article  Google Scholar 

    11.
    Reisdorf, A. G. & Wuttke, M. Re-evaluating Moodie’s opisthotonic-posture hypothesis in fossil vertebrates part I: Reptiles—The taphonomy of the bipedal dinosaurs Compsognathus longipes and Juravenator starki from the Solnhofen Archipelago (Jurassic, Germany). Palaeobiodiversity and Palaeoenvironments 92, 119–168 (2012).
    Article  Google Scholar 

    12.
    Bailleul, A. M. et al. Confirmation of ovarian follicles in an enantiornithine (Aves) from the Jehol biota using soft tissue analyses. Commun. Biol. 3, 1–8 (2020).
    Article  Google Scholar 

    13.
    Saitta, E. T. & Vinther, J. A perspective on the evidence for keratin protein preservation in fossils: An issue of replication versus validation. Palaeontologia Electronica 23.3.2E, 1–30 (2019).
    Google Scholar 

    14.
    Brasier, M., McLoughlin, N., Green, O. & Wacey, D. A fresh look at the fossil evidence for early Archaean cellular life. Philosophical Transactions of the Royal Society B: Biological Sciences 361, 887–902 (2006).
    CAS  Article  Google Scholar 

    15.
    Saitta, E. T., Rogers, C. S., Brooker, R. A. & Vinther, J. Experimental taphonomy of keratin: A structural analysis of early taphonomic changes. Palaios 32, 647–657 (2017).
    ADS  Article  Google Scholar 

    16.
    Saitta, E. T. et al. Preservation of feather fibers from the Late Cretaceous dinosaur Shuvuuia deserti raises concern about immunohistochemical analyses on fossils. Org. Geochem. 125, 142–151 (2018).
    CAS  Article  Google Scholar 

    17.
    Schweitzer, M. H. et al. Beta-keratin specific immunological reactivity in feather-like structures of the Cretaceous Alvarezsaurid, Shuvuuia deserti. J. Exp. Zool. 285, 146–157 (1999).
    CAS  Article  Google Scholar 

    18.
    O’Connor, W. N. & Valle, S. A combination Verhoeffs elastic and Masson’s trichrome stain for routine histology. Stain Technol. 57, 207–210 (1982).
    Article  Google Scholar 

    19.
    Suvarna, K. S., Layton, C. & Bancroft, J. D. Bancroft’s Theory and Practice of Histological Techniques E-Book (Elsevier Health Sciences, Amsterdam, 2018).
    Google Scholar 

    20.
    Flint, M. H. & Lyons, M. F. The effect of heating and denaturation on the staining of collagen by the Masson trichrome procedure. Histochem. J. 7, 547–555 (1975).
    CAS  Article  Google Scholar 

    21.
    Alers, J. C., Krijtenburg, P. J., Vissers, K. J. & van Dekken, H. Effect of bone decalcification procedures on DNA in situ hybridization and comparative genomic hybridization: EDTA is highly preferable to a routinely used acid decalcifier. J. Histochem. Cytochem. 47, 703–709 (1999).
    CAS  Article  Google Scholar 

    22.
    Standen, G. et al. Differentiation of German Tertiary brown coal lithotypes (‘amorphous’ and ‘woody’ kerogens) using ruthenium tetroxide oxidation and pyrolysis-gc-ms. Fuel 71, 31–36 (1992).
    CAS  Article  Google Scholar 

    23.
    Stankiewicz, B. A. et al. Molecular taphonomy of arthropod and plant cuticles from the Carboniferous of North America: Implications for the origin of kerogen. J. Geol. Soc. 155, 453–462 (1998).
    ADS  CAS  Article  Google Scholar 

    24.
    Grimes, S. T. et al. Understanding fossilization: Experimental pyritization of plants. Geology 29, 123–126 (2001).
    ADS  CAS  Article  Google Scholar 

    25.
    Leng, Q. & Yang, H. Pyrite framboids associated with the Mesozoic Jehol Biota in northeastern China: Implications for microenvironment during early fossilization. Prog. Nat. Sci. 13, 206–212 (2003).
    Google Scholar 

    26.
    Zhou, Z. The Jehol Biota, an Early Cretaceous terrestrial Lagerstätte: New discoveries and implications. Natl. Sci. Rev. 1, 543–559 (2014).
    Article  Google Scholar 

    27.
    Suk, D., Peacor, D. R. & Van der Voo, R. Replacement of pyrite framboids by magnetite in limestone and implications for palaeomagnetism. Nature 345, 611–613 (1990).
    ADS  CAS  Article  Google Scholar 

    28.
    Wang, B. O., Zhao, F., Zhang, H., Fang, Y. & Zheng, D. Widespread pyritization of insects in the Early Cretaceous Jehol Biota. Palaios 27, 707–711 (2012).
    ADS  Article  Google Scholar 

    29.
    Mccobb, L. M., Briggs, D. E., Evershed, R. P., Hall, A. R. & Hall, R. A. Preservation of fossil seeds from a 10th century AD cess pit at Coppergate, York. J. Archaeol. Sci. 28, 929–940 (2001).
    Article  Google Scholar 

    30.
    Arena, D. A. Exceptional preservation of plants and invertebrates by phosphatization, Riversleigh, Australia. Palaios 23, 495–502 (2008).
    ADS  Article  Google Scholar 

    31.
    Viney, M., Mustoe, G. E., Dillhoff, T. A. & Link, P. K. The Bruneau Woodpile: A miocene phosphatized fossil wood locality in Southwestern Idaho, USA. Geosciences 7, 82 (2017).
    ADS  Article  CAS  Google Scholar 

    32.
    Sharma, R., Kumar, V. & Kumar, R. Distribution of phytoliths in plants: A review. Geol. Ecol. Landsc. 3, 123–148 (2019).
    Article  Google Scholar 

    33.
    Orr, P. J., Briggs, D. E. & Kearns, S. L. Cambrian Burgess Shale animals replicated in clay minerals. Science 281, 1173–1175 (1998).
    ADS  CAS  Article  Google Scholar 

    34.
    Butterfield, N. J., Balthasar, U. W. E. & Wilson, L. A. Fossil diagenesis in the Burgess Shale. Palaeontology 50, 537–543 (2007).
    Article  Google Scholar 

    35.
    Page, A., Gabbott, S. E., Wilby, P. R. & Zalasiewicz, J. A. Ubiquitous Burgess Shale–style “clay templates” in low-grade metamorphic mudrocks. Geology 36, 855–858 (2008).
    ADS  CAS  Article  Google Scholar 

    36.
    Schweitzer, M. H. et al. Biomolecular characterization and protein sequences of the Campanian hadrosaur B. canadensis. Science 324, 626–631 (2009).
    ADS  CAS  Article  Google Scholar 

    37.
    Saitta, E. T. et al. Cretaceous dinosaur bone contains recent organic material and provides an environment conducive to microbial communities. eLIFE 8, e46205 (2019).
    Article  Google Scholar 

    38.
    McLoughlin, S. & Pott, C. Plant mobility in the Mesozoic: Disseminule dispersal strategies of Chinese and Australian Middle Jurassic to Early Cretaceous plants. Palaeogeogr. Palaeoclimatol. Palaeoecol. 515, 47–69 (2019).
    Article  Google Scholar 

    39.
    Sun, G., Zheng, S., Dilcher, D., Wang, Y. & Mei, S. Early Angiosperms and their Associated Plants from Western Liaoning, China (Science and Technology Education Publishing House, Shanghai, 2001).
    Google Scholar 

    40.
    Zheng, X. et al. Fossil evidence of avian crops from the Early Cretaceous of China. Proc. Natl. Acad. Sci. 108, 15904–15907 (2011).
    ADS  CAS  Article  Google Scholar 

    41.
    Kaye, T. G. et al. Laser-stimulated fluorescence in paleontology. PLoS ONE 10(5), e0125923 (2015).
    Article  CAS  Google Scholar 

    42.
    Wang, X. L. et al. Basal paravian functional anatomy illuminated by high-detail body outline. Nat. Commun. 8, 14576 (2017).
    ADS  Article  Google Scholar 

    43.
    Herrera, C. M. Seed dispersal by animals: A role in angiosperm diversification?. Am. Nat. 133, 309–322 (1989).
    Article  Google Scholar 

    44.
    Leng, Q. & Friis, E. M. Sinocarpus decussatus gen. et sp. nov., a new angiosperm with basally syncarpous fruits from the Yixian Formation of Northeast China. Plant Systemat. Evol. 241, 77–88 (2003).
    Article  Google Scholar 

    45.
    Wu, S. A preliminary study of the Jehol Flora from Western Liaoning. Palaeoworld 11, 7–57 (1999).
    Google Scholar 

    46.
    O’Connor, J. K. The trophic habits of early birds. Palaeogeogr. Palaeoclimatol. Palaeoecol. 513, 178–195 (2019).
    Article  Google Scholar 

    47.
    Mayr, G. Late Oligocene mousebird converges on parrots in skull morphology. Ibis 155, 384–396 (2013).
    Article  Google Scholar 

    48.
    Zhou, Z. & Zhang, F. A long-tailed, seed-eating bird from the Early Cretaceous of China. Nature 418, 405–409 (2002).
    ADS  CAS  Article  Google Scholar 

    49.
    Briggs, D. E. & Williams, S. H. The restoration of flattened fossils. Lethaia 14, 157–164 (1981).
    Article  Google Scholar 

    50.
    Farjon, A. A Handbook of the World’s Conifers 1 (Brill, Boston, 2010).
    Google Scholar 

    51.
    Mayr, G. Avian Evolution: The Fossil Record of Birds and its Paleobiological Significance (Wiley-Blackwell, New York, 2017).
    Google Scholar 

    52.
    Miller, C. V. et al. Disassociated rhamphotheca of fossil bird Confuciusornis informs early beak reconstruction, stress regime, and developmental patterns. Commun. Biol. 3, 519 (2020).
    Article  Google Scholar 

    53.
    Elzanowski, A., Peters, D. S. & Mayr, G. Cranial morphology of the Early Cretaceous bird Confuciusornis. J. Vertebr. Paleontol. 38, e1439832 (2018).
    Article  Google Scholar 

    54.
    Fuster, F. & Traveset, A. Evidence for a double mutualistic interaction between a lizard and a Mediterranean gymnosperm Ephedra fragilis. . AoB Plants 1, 2. https://doi.org/10.1093/aobpla/plz001 (2019).
    Article  Google Scholar 

    55.
    Rothwell, G. & Holt, B. Fossils and phenology in the evolution of Ginkgo biloba. In Ginkgo biloba, a global treasure (eds Hori, T. et al.) 223–230 (Springer, Berlin, 1997).
    Google Scholar 

    56.
    Valido, A. & Olesen, J. M. The importance of lizards as frugivores and seed dispersers. In Seed Dispersal: Theory and Its Application in a Changing World (eds Dennis, A. J. et al.) 124–147 (CAB International, Wallingford, 2007).
    Google Scholar 

    57.
    Zhou, S., Zhou, Z. & O’Connor, J. K. Anatomy of the basal ornithuromorph bird Archaeorhynchus spathula from the Early Cretaceous of Liaoning, China. J. Vertebr. Paleontol. 33, 141–152 (2013).
    CAS  Article  Google Scholar 

    58.
    O’Connor, J. K. & Zhou, Z. The evolution of the modern avian digestive system: Insights from paravian fossils from the Yanliao and Jehol biotas. Palaeontology 84, 13–27 (2020).
    Article  Google Scholar 

    59.
    O’Connor, J. et al. First report of gastroliths in the Early Cretaceous basal bird Jeholornis. Cretac. Res. 84, 200–208 (2018).
    Article  Google Scholar 

    60.
    Zhou, Z. & Zhang, F. Anatomy of the primitive bird Sapeornis chaoyangensis from the Early Cretaceous of Liaoning, China. Can. J. Earth Sci. 40, 731–747 (2003).
    ADS  Article  Google Scholar 

    61.
    Gionfriddo, J. P. & Best, L. B. Grit use by birds. Curr. Ornithol. 19, 89–148 (1999).
    Article  Google Scholar 

    62.
    Chiappe, L. M. & Meng, Q. Birds of Stone: Chinese Avian Fossils from the Age of Dinosaurs (Johns Hopkins University Press, Baltimore, 2016).
    Google Scholar  More