The resilience of weed seedbank regulation by carabid beetles, at continental scales, to alternative prey
1.
 Begg, G. S. et al. A functional overview of conservation biological control. Crop Prot. 97, 145–158 (2017).
 Article  Google Scholar 
 2.
 Shields, M. W. et al. History, current situation and challenges for conservation biological control. Biol. Control 131, 25–35 (2019).
 Article  Google Scholar 
3.
 Petit, S., Boursault, A. & Bohan, D. A. Weed seed choice by carabid beetles (Coleoptera: Carabidae): Linking field measurements with laboratory diet assessments. Eur. J. Entomol. 111, 1–6 (2014).
 Article  Google Scholar 
4.
 Saska, P., Honěk, A. & Martinková, Z. Preferences of carabid beetles (Coleoptera: Carabidae) for herbaceous seeds. Acta Zool. Acad. Sci. Hung. 65, 57–76 (2019).
 Article  Google Scholar 
5.
 Honěk, A., Martinkova, Z., Saska, P. & Pekar, S. Size and taxonomic constraints determine the seed preferences of Carabidae (Coleoptera). Basic Appl. Ecol. 8, 343–353 (2007).
 Article  Google Scholar 
6.
 Honěk, A., Martinkova, Z. & Jarosik, V. Ground beetles (Carabidae) as seed predators. Eur. J. Entomol. 100, 531–544 (2003).
 Article  Google Scholar 
7.
 Kulkarni, S. S., Dosdall, L. M. & Willenborg, C. J. The role of ground beetles (Coleoptera: Carabidae) in weed seed consumption: A review. Weed Sci. 63, 355–376 (2015).
 Article  Google Scholar 
8.
 Petit, S., Trichard, A., Biju-Duval, L., McLaughlin, B. & Bohan, D. A. Interactions between conservation agricultural practice and landscape composition promote weed seed predation by invertebrates. Agric. Ecosyst. Environ. 240, 45–53 (2017).
 Article  Google Scholar 
9.
 Kromp, B. Carabid beetles in sustainable agriculture: A review on pest control efficacy, cultivation impacts and enhancement. Agric. Ecosyst. Environ. 74, 187–228 (1999).
 Article  Google Scholar 
10.
 Firbank, L. G. & Watkinson, A. R. On the analysis of competition within two-species mixtures of plants. J. Appl. Ecol. 22, 503–517 (1985).
 Article  Google Scholar 
11.
 Westerman, P. R. et al. Are many little hammers effective? Velvetleaf (Abutilon theophrasti) population dynamics in two- and four-year crop rotation systems. Weed Sci. 53, 382–392 (2005).
 CAS  Article  Google Scholar 
12.
 Petit, S. et al. Biodiversity-based options for arable weed management. A review. Agron. Sustain. Dev. 38, 48 (2018).
 Article  Google Scholar 
13.
 Westerman, P. R., Dixon, P. M. & Liebman, M. Burial rates of surrogate seeds in arable fields. Weed Res. 49, 142–152 (2009).
 Article  Google Scholar 
14.
 Trichard, A., Ricci, B., Ducourtieux, C. & Petit, S. The spatio-temporal distribution of weed seed predation differs between conservation agriculture and conventional tillage. Agric. Ecosyst. Environ. 188, 40–47 (2014).
 Article  Google Scholar 
15.
 Carbonne, B., Bohan, D. A. & Petit, S. Key carabid species drive spring weed seed predation of Viola arvensis. Biol. Control 141, 104148 (2020).
 CAS  Article  Google Scholar 
16.
 Westerman, P. R., Wes, J. S., Kropff, M. J. & Van Der Werf, W. Annual losses of weed seeds due to predation in organic cereal fields. J. Appl. Ecol. 40, 824–836 (2003).
 Article  Google Scholar 
17.
 Blubaugh, C. K. & Kaplan, I. Invertebrate seed predators reduce weed emergence following seed rain. Weed Sci. 64, 80–86 (2016).
 Article  Google Scholar 
18.
 Pannwitt, H., Westerman, P. R. & Gerowitt, B. Post-dispersal seed predation can limit the number of seedlings of Echinochloa crus-galli. Biol. Control 143, 95–98 (2019).
 Google Scholar 
19.
 Bohan, D. A., Boursault, A., Brooks, D. R. & Petit, S. National-scale regulation of the weed seedbank by carabid predators. J. Appl. Ecol. 48, 888–898 (2011).
 Article  Google Scholar 
20.
 Saska, P., Van Der Werf, W., De Vries, E. & Westerman, P. R. Spatial and temporal patterns of carabid activity-density in cereals do not explain levels of predation on weed seeds. Bull. Entomol. Res. 98, 169–181 (2008).
 CAS  Article  PubMed  Google Scholar 
21.
 Mauchline, A. L., Watson, S. J., Brown, V. K. & Froud-Williams, R. J. Post-dispersal seed predation of non-target weeds in arable crops. Weed Res. 45, 157–164 (2005).
 Article  Google Scholar 
22.
 Davis, A. S. & Raghu, S. Weighing abiotic and biotic influences on weed seed predation. Weed Res. 50, 402–412 (2010).
 Article  Google Scholar 
23.
 Davis, A. S., Taylor, E. C., Haramoto, E. R. & Renner, K. A. Annual postdispersal weed seed predation in contrasting field environments. Weed Sci. 61, 296–302 (2013).
 CAS  Article  Google Scholar 
24.
 Lövei, G. L. & Szentkiralyi, F. Carabids climbing maize plants. Z. Angew. Entomol. 97, 107–110 (1984).
 Article  Google Scholar 
25.
 Frei, B., Guenay, Y., Bohan, D. A., Traugott, M. & Wallinger, C. Molecular analysis indicates high levels of carabid weed seed consumption in cereal fields across Central Europe. J. Pest Sci. 2004(92), 935–942 (2019).
 Article  Google Scholar 
26.
 Roubinet, E. et al. High redundancy as well as complementary prey choice characterize generalist predator food webs in agroecosystems. Sci. Rep. 8, 8054 (2018).
 ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 
27.
 Staudacher, K. et al. Habitat heterogeneity induces rapid changes in the feeding behaviour of generalist arthropod predators. Funct. Ecol. 32, 809–819 (2018).
 Article  PubMed  PubMed Central  Google Scholar 
28.
 Evans, E. W. Multitrophic interactions among plants, aphids, alternate prey and shared natural enemies – A review. Eur. J. Entomol. 105, 369–380 (2008).
 Article  Google Scholar 
29.
 Snyder, W. E. Give predators a complement: Conserving natural enemy biodiversity to improve biocontrol. Biol. Control 135, 73–82 (2019).
 Article  Google Scholar 
30.
 Harwood, J. D. et al. Invertebrate biodiversity affects predator fitness and hence potential to control pests in crops. Biol. Control 51, 499–506 (2009).
 Article  Google Scholar 
31.
 Chailleux, A., Mohl, E. K., Teixeira Alves, M., Messelink, G. J. & Desneux, N. Natural enemy-mediated indirect interactions among prey species: Potential for enhancing biocontrol services in agroecosystems. Pest Manag. Sci. 70, 1769–1779 (2014).
32.
 von Berg, K., Thies, C., Tscharntke, T. & Scheu, S. Cereal aphid control by generalist predators in presence of belowground alternative prey: Complementary predation as affected by prey density. Pedobiologia (Jena). 53, 41–48 (2009).
 Article  Google Scholar 
33.
 Mair, J. & Port, G. R. Predation by the carabid beetles Pterostichus madidus and Nebria brevicollis is affected by size and condition of the prey slug Deroceras reticulatum. Agric. For. Entomol. 3, 99–106 (2001).
 Article  Google Scholar 
34.
 Symondson, W. O. C. et al. Biodiversity vs. biocontrol: positive and negative effects of alternative prey on control of slugs by carabid beetles. Bull. Entomol. Res. 96, 637–645 (2006).
35.
 Prasad, R. P. & Snyder, W. E. Polyphagy complicates conservation biological control that targets generalist predators. J. Appl. Ecol. 43, 343–352 (2006).
 Article  Google Scholar 
36.
 Renkema, J. M., Lynch, D. H., Cutler, G. C., MacKenzie, K. & Walde, S. J. Predation by Pterostichus melanarius (Illiger) (Coleoptera: Carabidae) on immature Rhagoletis mendax Curran (Diptera: Tephritidae) in semi-field and field conditions. Biol. Control 60, 46–53 (2012).
 Article  Google Scholar 
37.
 Roubinet, E. et al. Diet of generalist predators reflects effects of cropping period and farming system on extra- and intraguild prey. Ecol. Appl. 27, 1167–1177 (2017).
 Article  Google Scholar 
38.
 Honěk, A., Saska, P. & Martinkova, Z. Seasonal variation in seed predation by adult carabid beetles. Entomol. Exp. Appl. 118, 157–162 (2006).
 Article  Google Scholar 
39.
 Talarico, F., Giglio, A., Pizzolotto, R. & Brandmayr, P. A synthesis of feeding habits and reproduction rhythm in Italian seed-feeding ground beetles (Coleoptera: Carabidae). Eur. J. Entomol. 113, 325–336 (2016).
 Article  Google Scholar 
40.
 Charalabidis, A., Dechaume-Moncharmont, F.-X., Carbonne, B., Bohan, D. A. & Petit, S. Diversity of foraging strategies and responses to predator interference in seed-eating carabid beetles. Basic Appl. Ecol. 36, 13–24 (2019).
 Article  Google Scholar 
41.
 Pilipaviius, V. Weed seed rain dynamics and ecological control ability in agrophytocenosis. in Herbicides—Advances in Research (ed. Price, A.) 51–83 (InTech, 2013). https://doi.org/10.5772/55972.
42.
 Saska, P., Koprdová, S., Martinková, Z. & Honěk, A. Comparing methods of weed seed exposure to predators. Ann. Appl. Biol. 164, 301–312 (2014).
 Article  Google Scholar 
43.
 Johnson, N. E. & Cameron, R. S. Phytophagous ground beetles. Ann. Entomol. Soc. Am. 62, 909–914 (1969).
 Article  Google Scholar 
44.
 Russell, M. C., Lambrinos, J., Records, E. & Ellen, G. Seasonal shifts in ground beetle (Coleoptera: Carabidae) species and functional composition maintain prey consumption in Western Oregon agricultural landscapes. Biol. Control 106, 54–63 (2017).
 Article  Google Scholar 
45.
 Williams, C. L. et al. Over-winter predation of Abutilon theophrasti and Setaria faberi seeds in arable land. Weed Res. 49, 439–447 (2009).
 Article  Google Scholar 
46.
 Westerman, P., Luijendijk, C. D., Wevers, J. D. A. & Van Der Werf, W. Weed seed predation in a phenologically late crop. Weed Res. 51, 157–164 (2011).
 Article  Google Scholar 
47.
 Winder, L. et al. Predatory activity and spatial pattern: The response of generalist carabids to their aphid prey. J. Anim. Ecol. 74, 443–454 (2005).
 Article  Google Scholar 
48.
 Bohan, D. A. et al. Spatial dynamics of predation by carabid beetles on slugs. J. Anim. Ecol. 69, 367–379 (2000).
 Article  Google Scholar 
49.
 Frank, S. D., Shrewsbury, P. M. & Denno, R. F. Plant versus prey resources: Influence on omnivore behavior and herbivore suppression. Biol. Control 57, 229–235 (2011).
 Article  Google Scholar 
50.
 Abrams, P. A. & Matsuda, H. Positive indirect effects between prey species that share predators. Ecology 77, 610–616 (1996).
 Article  Google Scholar 
51.
 Boetzl, F. A., Konle, A. & Krauss, J. Aphid cards – Useful model for assessing predation rates or bias prone nonsense?. J. Appl. Entomol. 144, 74–80 (2020).
 Article  Google Scholar 
52.
 Bilde, T. & Toft, S. Consumption by carabid beetles of three cereal aphid species relative to other prey types. Entomophaga 42, 21–32 (1997).
 Article  Google Scholar 
53.
 Madsen, M., Terkildsen, S. & Toft, S. Microcosm studies on control of aphids by generalist arthropod predators: Effects of alternative prey. Biocontrol 49, 483–504 (2004).
 Article  Google Scholar 
54.
 Fawki, S. & Toft, S. Food preferences and the value of animal food for the carabid beetle Amara similata (Gyll.) (Col., Carabidae). J. Appl. Entomol. 129, 551–556 (2005).
55.
 Saska, P. Effect of diet on the fecundity of three carabid beetles. Physiol. Entomol. 33, 188–192 (2008).
 ADS  Article  Google Scholar 
56.
 Haschek, C., Drapela, T., Schuller, N., Fiedler, K. & Frank, T. Carabid beetle condition, reproduction and density in winter oilseed rape affected by field and landscape parameters. J. Appl. Entomol. 136, 665–674 (2012).
 Article  Google Scholar 
57.
 Symondson, W. O. C., Sunderland, K. D. & Greenstone, M. H. Can generalist predators be effective biocontrol agents?. Annu. Rev. Entomol. 47, 561–594 (2002).
 CAS  Article  PubMed  Google Scholar 
58.
 Lundgren, J. G. Chapter 18: Biological control of weed seeds in agriculture using omnivorous insects. in Relationships of Natural Enemies and Non-Prey Foods 333–351 (Springer Netherlands, 2009).
59.
 Löbl, I. & Smetana, A. Catalogue of Palaearctic Colcoptera. Vol. 1 (2003).
60.
 Homburg, K., Homburg, N., Schäfer, F., Schuldt, A. & Assmann, T. Carabids.org—A dynamic online database of ground beetle species traits (Coleoptera, Carabidae). Insect Conserv. Divers. 7, 195–205 (2014).
61.
 Penell, A., Raub, F. & Höfer, H. Estimating biomass from body size of European spiders based on regression models. J. Arachnol. 46, 413 (2018).
 Article  Google Scholar 
62.
 Pey, B. et al. A thesaurus for soil invertebrate trait-based approaches. PLoS ONE 9, e108985 (2014).
 ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 
63.
 Nentwig, W., Blick, T., Gloor, D., Hänggi, A. & Kropf, C. Araneae: Spiders of Europe. https://araneae.nmbe.ch, https://www.araneae.nmbe.ch (2019).
64.
 Caballero, M., Baquero, E., Ariño, A. H. & Jordana, R. Indirect biomass estimations in Collembola. Pedobiologia (Jena). 48, 551–557 (2004).
 Article  Google Scholar 
65.
 Migui, S. M. & Lamb, R. J. Sources of variation in the interaction between three cereal aphids (Hemiptera: Aphididae) and wheat (Poaceae). Bull. Entomol. Res. 96, 235–241 (2006).
 CAS  Article  PubMed  Google Scholar 
66.
 Brooks, D. R. et al. Invertebrate responses to the management of genetically modified herbicide-tolerant and conventional spring crops. I. Soil-surface-active invertebrates. Philos. Trans. R. Soc. B Biol. Sci. 358, 1847–1862 (2003).
67.
 Bohan, D. A. et al. Effects on weed and invertebrate abundance and diversity of herbicide management in genetically modified herbicide-tolerant winter-sown oilseed rape. Proc. R. Soc. B Biol. Sci. 272, 463–474 (2005).
 Article  Google Scholar 
68.
 John, F. & Weisberg, S. An R Companion to Applied Regression. (Sage, 2019).
69.
 Long, J. jtools: Analysis and Presentation of Social Scientific Data. R package version 2.0.1. (2019).
70.
 Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. (2020).
71.
 Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
 Article  Google Scholar 
72.
 R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org (2019). More
 
 
