Assessing ecological uncertainty and simulation model sensitivity to evaluate an invasive plant species’ potential impacts to the landscape
1.
Sofaer, H. R., Jarnevich, C. S. & Pearse, I. S. The relationship between invader abundance and impact. Ecosphere 9, e02415. https://doi.org/10.1002/ecs2.2415 (2018).
Article Google Scholar
2.
Parker, I. M. et al. Impact: Toward a framework for understanding the ecological effects of invaders. Biol. Invasions 1, 3–19. https://doi.org/10.1023/a:1010034312781 (1999).
Article Google Scholar
3.
Fusco, E. J., Finn, J. T., Balch, J. K., Nagy, R. C. & Bradley, B. A. Invasive grasses increase fire occurrence and frequency across US ecoregions. Proc. Natl. Acad. Sci. 116, 23594–23599. https://doi.org/10.1073/pnas.1908253116 (2019).
ADS CAS Article PubMed Google Scholar
4.
Hellmann, J. J., Byers, J. E., Bierwagen, B. G. & Dukes, J. S. Five potential consequences of climate change for invasive species. Conserv. Biol. 22, 534–543. https://doi.org/10.1111/j.1523-1739.2008.00951.x (2008).
Article PubMed Google Scholar
5.
Clark, J. S. et al. Ecological forecasts: An emerging imperative. Science 293, 657–660. https://doi.org/10.1126/science.293.5530.657 (2001).
CAS Article PubMed Google Scholar
6.
Andrew, M. E. & Ustin, S. L. The role of environmental context in mapping invasive plants with hyperspectral image data. Remote Sens. Environ. 112, 4301–4317. https://doi.org/10.1016/j.rse.2008.07.016 (2008).
ADS Article Google Scholar
7.
Chesson, P. et al. Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141, 236–253. https://doi.org/10.1007/s00442-004-1551-1 (2004).
ADS Article PubMed Google Scholar
8.
Theoharides, K. A. & Dukes, J. S. Plant invasion across space and time: Factors affecting nonindigenous species success during four stages of invasion. New Phytol. 176, 256–273. https://doi.org/10.1111/j.1469-8137.2007.02207.x (2007).
Article PubMed Google Scholar
9.
Daniel, C., Frid, L., Sleeter, B. & Fortin, M.-J. State-and-transition simulation models: A framework for forecasting landscape change. Methods Ecol. Evol. 7, 1413–1423. https://doi.org/10.1111/2041-210x.12597 (2016).
Article Google Scholar
10.
Frid, L. & Wilmshurst, J. F. Decision analysis to evaluate control strategies for crested wheatgrass (Agropyron cristatum) in Grasslands National Park of Canada. Invasive Plant Sci. Manag. 2, 324–336 (2009).
Article Google Scholar
11.
Jarnevich, C. S., Holcombe, T. R., Cullinane Thomas, C., Frid, L. & Olsson, A. Simulating long-term effectiveness and efficiency of management scenarios for an invasive grass. AIMS Environ. Sci. 2, 427–447, https://doi.org/10.3934/environsci.2015.2.427 (2015).
12.
Frid, L. et al. Using state and transition modeling to account for imperfect knowledge in invasive species management. Invasive Plant Sci. Manag. 6, 36–47 (2013).
Article Google Scholar
13.
Grechi, I. et al. A decision framework for management of conflicting production and biodiversity goals for a commercially valuable invasive species. Agric. Syst. 125, 1–11. https://doi.org/10.1016/j.agsy.2013.11.005 (2014).
Article Google Scholar
14.
Miller, B. W., Symstad, A. J., Frid, L., Fisichelli, N. A. & Schuurman, G. W. Co-producing simulation models to inform resource management: A case study from southwest South Dakota. Ecosphere 8, e02020, https://doi.org/10.1002/ecs2.2020 (2017).
15.
Cullinane Thomas, C., Sofaer, H. R., Cline, S. & Jarnevich, C. S. Integrating landscape simulation models with economic and decision tools for invasive species control. Manag. Biol. Invasions 10, 6–22 (2019).
16.
Marshall, V. M., Lewis, M. M. & Ostendorf, B. Buffel grass (Cenchrus ciliaris) as an invader and threat to biodiversity in arid environments: A review. J. Arid Environ. 78, 1–12. https://doi.org/10.1016/j.jaridenv.2011.11.005 (2012).
ADS Article Google Scholar
17.
Jarnevich, C. S., Young, N. E., Talbert, M. & Talbert, C. Forecasting an invasive species’ distribution with global distribution data, local data, and physiological information. Ecosphere 9, e02279. https://doi.org/10.1002/ecs2.2279 (2018).
Article Google Scholar
18.
Martin, T. et al. Buffel grass and climate change: A framework for projecting invasive species distributions when data are scarce. Biol. Invasions 17, 3197–3210. https://doi.org/10.1007/s10530-015-0945-9 (2015).
Article Google Scholar
19.
de Albuquerque, F. S., Macías-Rodríguez, M. Á., Búrquez, A. & Astudillo-Scalia, Y. Climate change and the potential expansion of buffelgrass (Cenchrus ciliaris L., Poaceae) in biotic communities of Southwest United States and northern Mexico. Biol. Invasions 21, 3335–3347, https://doi.org/10.1007/s10530-019-02050-5 (2019).
20.
Castellanos, A. E., Celaya-Michel, H., Rodríguez, J. C. & Wilcox, B. P. Ecohydrological changes in semiarid ecosystems transformed from shrubland to buffelgrass savanna. Ecohydrology 9, 1663–1674. https://doi.org/10.1002/eco.1756 (2016).
Article Google Scholar
21.
McDonald, C. J. & McPherson, G. R. Fire behavior characteristics of buffelgrass-fueled fires and native plant community composition in invaded patches. J. Arid Environ. 75, 1147–1154. https://doi.org/10.1016/j.jaridenv.2011.04.024 (2011).
ADS Article Google Scholar
22.
McDonald, C. J. & McPherson, G. R. Creating hotter fires in the Sonoran Desert: Buffelgrass produces copious fuels and high fire temperatures. Fire Ecol. 9, 26–39 (2013).
Article Google Scholar
23.
Bracamonte, J. A., Tinoco-Ojanguren, C., Sanchez Coronado, M. E. & Molina-Freaner, F. Germination requirements and the influence of buffelgrass invasion on a population of Mammillaria grahamii in the Sonoran Desert. J Arid Environ. 137, 50–59, https://doi.org/10.1016/j.jaridenv.2016.11.003 (2017).
24.
Lyons, K. G., Maldonado-Leal, B. G. & Owen, G. Community and ecosystem effects of buffelgrass (Pennisetum ciliare) and nitrogen deposition in the Sonoran Desert. Invasive Plant Sci. Manag. 6, 65–78. https://doi.org/10.1614/ipsm-d-11-00071.1 (2013).
CAS Article Google Scholar
25.
Olsson, A. D., Betancourt, J., McClaran, M. P. & Marsh, S. E. Sonoran Desert Ecosystem transformation by a C4 grass without the grass/fire cycle. Divers. Distrib. 18, 10–21. https://doi.org/10.1111/j.1472-4642.2011.00825.x (2012).
Article Google Scholar
26.
Miller, G., Friedel, M., Adam, P. & Chewings, V. Ecological impacts of buffel grass (Cenchrus ciliaris L.) invasion in central Australia—Does field evidence support a fire-invasion feedback? Rangeland J. 32, 353–365, https://doi.org/10.1071/rj09076 (2010).
27.
Fensham, R. J., Wang, J. & Kilgour, C. The relative impacts of grazing, fire and invasion by buffel grass (Cenchrus ciliaris) on the floristic composition of a rangeland savanna ecosystem. Rangeland J. 37, 227–237. https://doi.org/10.1071/RJ14097 (2015).
Article Google Scholar
28.
Schlesinger, C., White, S. & Muldoon, S. Spatial pattern and severity of fire in areas with and without buffel grass (Cenchrus ciliaris) and effects on native vegetation in central Australia. Austral. Ecol. 38, 831–840. https://doi.org/10.1111/aec.12039 (2013).
Article Google Scholar
29.
Jarnevich, C. S. et al. Developing an expert elicited simulation model to evaluate invasive species and fire management alternatives. Ecosphere 10, e02730. https://doi.org/10.1002/ecs2.2730 (2019).
Article Google Scholar
30.
Esque, T. C., Schwartz, M. W., Lissow, J. A., Haines, D. F. & Garnett, M. C. Buffelgrass fuel loads in Saguaro National Park, Arizona, increase fire danger and threaten native species. Park Sci. 24, 33–37,56 (2007).
31.
Wallace, C. S. et al. Mapping presence and predicting phenological status of invasive buffelgrass in Southern Arizona using MODIS, climate and citizen science observation data. Remote Sens. 8, 524 (2016).
ADS Article Google Scholar
32.
Martin-R, M. H., Cox, J. R. & Ibarra-F, F. Climatic effects on buffelgrass productivity in the Sonoran Desert. J. Range Manag. 48, 60–63 (1995).
Article Google Scholar
33.
Stillman, S. et al. Spatiotemporal variability of summer precipitation in Southeastern Arizona. J. Hydrometeorol. 14, 1944–1951. https://doi.org/10.1175/jhm-d-13-017.1 (2013).
ADS Article Google Scholar
34.
Arias, P. A., Fu, R. & Mo, K. C. Decadal variation of rainfall seasonality in the North American monsoon region and its potential causes. J. Clim. 25, 4258–4274. https://doi.org/10.1175/jcli-d-11-00140.1 (2012).
ADS Article Google Scholar
35.
R Core Team. R: A Language and Environment for Statistical Computing. (Foundation for Statistical Computing. Vienna, https://www.R-project.org/. Version 3.4.3., 2017).
36.
Finney, M. A. FARSITE: Fire area simulator-model development and evaluation. in Research Paper RMRS-RP-4, Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. (2004).
37.
Sofaer, H. R. et al. The development and delivery of species distribution models to inform decision-making. Bioscience 69, 544–557. https://doi.org/10.1093/biosci/biz045 (2019).
Article Google Scholar
38.
Chevan, A. & Sutherland, M. Hierarchical partitioning. Am. Stat. 45, 90–96. https://doi.org/10.1080/00031305.1991.10475776 (1991).
Article Google Scholar
39.
Wickham, H. tidyverse: Easily Install and Load the ‘Tidyverse’. R package version 1.2.1. https://CRAN.R-project.org/package=tidyverse. (2017).
40.
Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 2.5-2. https://CRAN.R-project.org/package=raster. (2015).
41.
Walsh, C. & MacNally, R. hier.part: Hierarchical Partitioning. R package version 1.0-4. https://CRAN.R-project.org/package=hier.part. (2013).
42.
Jarnevich, C. J., Cullinane Thomas, C. M. & Young, N. E. State-and-Transition Simulation Models of Buffelgrass in Saguaro National Park (2014–2044) to explore ecological uncertainties: U.S. Geological Survey data release. https://doi.org/10.5066/P9IZKB25.
43.
Daniel, C. J., Ter-Mikaelian, M. T., Wotton, B. M., Rayfield, B. & Fortin, M.-J. Incorporating uncertainty into forest management planning: Timber harvest, wildfire and climate change in the boreal forest. For Ecol Manag 400, 542–554. https://doi.org/10.1016/j.foreco.2017.06.039 (2017).
Article Google Scholar
44.
Ford, P. L., Reeves, M. C. & Frid, L. A tool for projecting Rangeland vegetation response to management and climate. Rangelands 41, 49–60. https://doi.org/10.1016/j.rala.2018.10.010 (2019).
Article Google Scholar
45.
Olsson, A. D., Betancourt, J. L., Crimmins, M. A. & Marsh, S. E. Constancy of local spread rates for buffelgrass (Pennisetum ciliare L.) in the Arizona Upland of the Sonoran Desert. J Arid Environ 87, 136–143, https://doi.org/10.1016/j.jaridenv.2012.06.005 (2012).
46.
Weston, J. D., McClaran, M. P., Whittle, R. K., Black, C. W. & Fehmi, J. S. Satellite patches, patch expansion, and doubling time as decision metrics for invasion control: Pennisetum ciliare expansion in southwestern Arizona. Invasive Plant Sci. Manag. 12, 36–42 (2019).
Article Google Scholar
47.
Cox, J. R. et al. The influence of climate and soils on the distribution of four African grasses. J Range Manag 41, 127–139. https://doi.org/10.2307/3898948 (1988).
Article Google Scholar
48.
de la Barrera, E. & Castellanos, A. E. High temperature effects on gas exchange for the invasive buffel grass (Pennisetum ciliare [L.] Link). Weed Biol Manag 7, 128–131, https://doi.org/10.1111/j.1445-6664.2007.00248.x (2007).
49.
Reichmann, L. G., Sala, O. E. & Peters, D. P. C. Precipitation legacies in desert grassland primary production occur through previous-year tiller density. Ecology 94, 435–443. https://doi.org/10.1890/12-1237.1 (2013).
Article PubMed Google Scholar
50.
Colorado-Ruiz, G., Cavazos, T., Salinas, J. A., De Grau, P. & Ayala, R. Climate change projections from Coupled Model Intercomparison Project phase 5 multi-model weighted ensembles for Mexico, the North American monsoon, and the mid-summer drought region. Int. J. Climatol. 38, 5699–5716. https://doi.org/10.1002/joc.5773 (2018).
Article Google Scholar
51.
Pascale, S. et al. Weakening of the North American monsoon with global warming. Nat. Clim. Change 7, 806, https://doi.org/10.1038/nclimate3412, https://www.nature.com/articles/nclimate3412#supplementary-information (2017).
52.
Pascale, S., Kapnick, S. B., Bordoni, S. & Delworth, T. L. The influence of CO2 FORCING on North American monsoon moisture surges. J. Clim. 31, 7949–7968 (2018).
ADS Article Google Scholar
53.
Pascale, S., Carvalho, L. M. V., Adams, D. K., Castro, C. L. & Cavalcanti, I. F. A. Current and future variations of the monsoons of the Americas in a warming climate. Curr. Clim. Change Rep. 5, 125–144. https://doi.org/10.1007/s40641-019-00135-w (2019).
Article Google Scholar
54.
Abatzoglou, J. T. & Kolden, C. A. Climate change in Western US Deserts: Potential for increased wildfire and invasive annual grasses. Rangeland Ecol. Manag. 64, 471–478. https://doi.org/10.2111/rem-d-09-00151.1 (2011).
Article Google Scholar
55.
Poulin, J., Sakai, A. K., Weller, S. G. & Nguyen, T. Phenotypic plasticity, precipitation, and invasiveness in the fire-promoting grass Pennisetum setaceum (Poaceae). Am J Bot 94, 533–541. https://doi.org/10.3732/ajb.94.4.533 (2007).
Article PubMed Google Scholar
56.
Goergen, E. & Daehler, C. C. Factors affecting seedling recruitment in an invasive grass (Pennisetum setaceum) and a native grass (Heteropogon contortus) in the Hawaiian Islands. Plant Ecol 161, 147–156. https://doi.org/10.1023/a:1020368719136 (2002).
Article Google Scholar
57.
Eschtruth, A. K. & Battles, J. J. Assessing the relative importance of disturbance, herbivory, diversity, and propagule pressure in exotic plant invasion. Ecol Monogr 79, 265–280. https://doi.org/10.1890/08-0221.1 (2009).
Article Google Scholar
58.
Klinger, R. & Brooks, M. Alternative pathways to landscape transformation: Invasive grasses, burn severity and fire frequency in arid ecosystems. J Ecol 105, 1521–1533. https://doi.org/10.1111/1365-2745.12863 (2017).
Article Google Scholar
59.
Brooks, M. L. et al. Effects of invasive alien plants on fire regimes. Bioscience 54, 677–688 (2004).
Article Google Scholar
60.
D’Antonio, C. M. & Vitousek, P. M. Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu Rev Ecol Syst 23, 63–87 (1992).
Article Google Scholar
61.
Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52. https://doi.org/10.1038/nature11018 (2012).
ADS CAS Article PubMed Google Scholar More