More stories

  • in

    The resilience of weed seedbank regulation by carabid beetles, at continental scales, to alternative prey

    1.
    Begg, G. S. et al. A functional overview of conservation biological control. Crop Prot. 97, 145–158 (2017).
    Article  Google Scholar 
    2.
    Shields, M. W. et al. History, current situation and challenges for conservation biological control. Biol. Control 131, 25–35 (2019).
    Article  Google Scholar 

    3.
    Petit, S., Boursault, A. & Bohan, D. A. Weed seed choice by carabid beetles (Coleoptera: Carabidae): Linking field measurements with laboratory diet assessments. Eur. J. Entomol. 111, 1–6 (2014).
    Article  Google Scholar 

    4.
    Saska, P., Honěk, A. & Martinková, Z. Preferences of carabid beetles (Coleoptera: Carabidae) for herbaceous seeds. Acta Zool. Acad. Sci. Hung. 65, 57–76 (2019).
    Article  Google Scholar 

    5.
    Honěk, A., Martinkova, Z., Saska, P. & Pekar, S. Size and taxonomic constraints determine the seed preferences of Carabidae (Coleoptera). Basic Appl. Ecol. 8, 343–353 (2007).
    Article  Google Scholar 

    6.
    Honěk, A., Martinkova, Z. & Jarosik, V. Ground beetles (Carabidae) as seed predators. Eur. J. Entomol. 100, 531–544 (2003).
    Article  Google Scholar 

    7.
    Kulkarni, S. S., Dosdall, L. M. & Willenborg, C. J. The role of ground beetles (Coleoptera: Carabidae) in weed seed consumption: A review. Weed Sci. 63, 355–376 (2015).
    Article  Google Scholar 

    8.
    Petit, S., Trichard, A., Biju-Duval, L., McLaughlin, B. & Bohan, D. A. Interactions between conservation agricultural practice and landscape composition promote weed seed predation by invertebrates. Agric. Ecosyst. Environ. 240, 45–53 (2017).
    Article  Google Scholar 

    9.
    Kromp, B. Carabid beetles in sustainable agriculture: A review on pest control efficacy, cultivation impacts and enhancement. Agric. Ecosyst. Environ. 74, 187–228 (1999).
    Article  Google Scholar 

    10.
    Firbank, L. G. & Watkinson, A. R. On the analysis of competition within two-species mixtures of plants. J. Appl. Ecol. 22, 503–517 (1985).
    Article  Google Scholar 

    11.
    Westerman, P. R. et al. Are many little hammers effective? Velvetleaf (Abutilon theophrasti) population dynamics in two- and four-year crop rotation systems. Weed Sci. 53, 382–392 (2005).
    CAS  Article  Google Scholar 

    12.
    Petit, S. et al. Biodiversity-based options for arable weed management. A review. Agron. Sustain. Dev. 38, 48 (2018).
    Article  Google Scholar 

    13.
    Westerman, P. R., Dixon, P. M. & Liebman, M. Burial rates of surrogate seeds in arable fields. Weed Res. 49, 142–152 (2009).
    Article  Google Scholar 

    14.
    Trichard, A., Ricci, B., Ducourtieux, C. & Petit, S. The spatio-temporal distribution of weed seed predation differs between conservation agriculture and conventional tillage. Agric. Ecosyst. Environ. 188, 40–47 (2014).
    Article  Google Scholar 

    15.
    Carbonne, B., Bohan, D. A. & Petit, S. Key carabid species drive spring weed seed predation of Viola arvensis. Biol. Control 141, 104148 (2020).
    CAS  Article  Google Scholar 

    16.
    Westerman, P. R., Wes, J. S., Kropff, M. J. & Van Der Werf, W. Annual losses of weed seeds due to predation in organic cereal fields. J. Appl. Ecol. 40, 824–836 (2003).
    Article  Google Scholar 

    17.
    Blubaugh, C. K. & Kaplan, I. Invertebrate seed predators reduce weed emergence following seed rain. Weed Sci. 64, 80–86 (2016).
    Article  Google Scholar 

    18.
    Pannwitt, H., Westerman, P. R. & Gerowitt, B. Post-dispersal seed predation can limit the number of seedlings of Echinochloa crus-galli. Biol. Control 143, 95–98 (2019).
    Google Scholar 

    19.
    Bohan, D. A., Boursault, A., Brooks, D. R. & Petit, S. National-scale regulation of the weed seedbank by carabid predators. J. Appl. Ecol. 48, 888–898 (2011).
    Article  Google Scholar 

    20.
    Saska, P., Van Der Werf, W., De Vries, E. & Westerman, P. R. Spatial and temporal patterns of carabid activity-density in cereals do not explain levels of predation on weed seeds. Bull. Entomol. Res. 98, 169–181 (2008).
    CAS  Article  PubMed  Google Scholar 

    21.
    Mauchline, A. L., Watson, S. J., Brown, V. K. & Froud-Williams, R. J. Post-dispersal seed predation of non-target weeds in arable crops. Weed Res. 45, 157–164 (2005).
    Article  Google Scholar 

    22.
    Davis, A. S. & Raghu, S. Weighing abiotic and biotic influences on weed seed predation. Weed Res. 50, 402–412 (2010).
    Article  Google Scholar 

    23.
    Davis, A. S., Taylor, E. C., Haramoto, E. R. & Renner, K. A. Annual postdispersal weed seed predation in contrasting field environments. Weed Sci. 61, 296–302 (2013).
    CAS  Article  Google Scholar 

    24.
    Lövei, G. L. & Szentkiralyi, F. Carabids climbing maize plants. Z. Angew. Entomol. 97, 107–110 (1984).
    Article  Google Scholar 

    25.
    Frei, B., Guenay, Y., Bohan, D. A., Traugott, M. & Wallinger, C. Molecular analysis indicates high levels of carabid weed seed consumption in cereal fields across Central Europe. J. Pest Sci. 2004(92), 935–942 (2019).
    Article  Google Scholar 

    26.
    Roubinet, E. et al. High redundancy as well as complementary prey choice characterize generalist predator food webs in agroecosystems. Sci. Rep. 8, 8054 (2018).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    27.
    Staudacher, K. et al. Habitat heterogeneity induces rapid changes in the feeding behaviour of generalist arthropod predators. Funct. Ecol. 32, 809–819 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    28.
    Evans, E. W. Multitrophic interactions among plants, aphids, alternate prey and shared natural enemies – A review. Eur. J. Entomol. 105, 369–380 (2008).
    Article  Google Scholar 

    29.
    Snyder, W. E. Give predators a complement: Conserving natural enemy biodiversity to improve biocontrol. Biol. Control 135, 73–82 (2019).
    Article  Google Scholar 

    30.
    Harwood, J. D. et al. Invertebrate biodiversity affects predator fitness and hence potential to control pests in crops. Biol. Control 51, 499–506 (2009).
    Article  Google Scholar 

    31.
    Chailleux, A., Mohl, E. K., Teixeira Alves, M., Messelink, G. J. & Desneux, N. Natural enemy-mediated indirect interactions among prey species: Potential for enhancing biocontrol services in agroecosystems. Pest Manag. Sci. 70, 1769–1779 (2014).

    32.
    von Berg, K., Thies, C., Tscharntke, T. & Scheu, S. Cereal aphid control by generalist predators in presence of belowground alternative prey: Complementary predation as affected by prey density. Pedobiologia (Jena). 53, 41–48 (2009).
    Article  Google Scholar 

    33.
    Mair, J. & Port, G. R. Predation by the carabid beetles Pterostichus madidus and Nebria brevicollis is affected by size and condition of the prey slug Deroceras reticulatum. Agric. For. Entomol. 3, 99–106 (2001).
    Article  Google Scholar 

    34.
    Symondson, W. O. C. et al. Biodiversity vs. biocontrol: positive and negative effects of alternative prey on control of slugs by carabid beetles. Bull. Entomol. Res. 96, 637–645 (2006).

    35.
    Prasad, R. P. & Snyder, W. E. Polyphagy complicates conservation biological control that targets generalist predators. J. Appl. Ecol. 43, 343–352 (2006).
    Article  Google Scholar 

    36.
    Renkema, J. M., Lynch, D. H., Cutler, G. C., MacKenzie, K. & Walde, S. J. Predation by Pterostichus melanarius (Illiger) (Coleoptera: Carabidae) on immature Rhagoletis mendax Curran (Diptera: Tephritidae) in semi-field and field conditions. Biol. Control 60, 46–53 (2012).
    Article  Google Scholar 

    37.
    Roubinet, E. et al. Diet of generalist predators reflects effects of cropping period and farming system on extra- and intraguild prey. Ecol. Appl. 27, 1167–1177 (2017).
    Article  Google Scholar 

    38.
    Honěk, A., Saska, P. & Martinkova, Z. Seasonal variation in seed predation by adult carabid beetles. Entomol. Exp. Appl. 118, 157–162 (2006).
    Article  Google Scholar 

    39.
    Talarico, F., Giglio, A., Pizzolotto, R. & Brandmayr, P. A synthesis of feeding habits and reproduction rhythm in Italian seed-feeding ground beetles (Coleoptera: Carabidae). Eur. J. Entomol. 113, 325–336 (2016).
    Article  Google Scholar 

    40.
    Charalabidis, A., Dechaume-Moncharmont, F.-X., Carbonne, B., Bohan, D. A. & Petit, S. Diversity of foraging strategies and responses to predator interference in seed-eating carabid beetles. Basic Appl. Ecol. 36, 13–24 (2019).
    Article  Google Scholar 

    41.
    Pilipaviius, V. Weed seed rain dynamics and ecological control ability in agrophytocenosis. in Herbicides—Advances in Research (ed. Price, A.) 51–83 (InTech, 2013). https://doi.org/10.5772/55972.

    42.
    Saska, P., Koprdová, S., Martinková, Z. & Honěk, A. Comparing methods of weed seed exposure to predators. Ann. Appl. Biol. 164, 301–312 (2014).
    Article  Google Scholar 

    43.
    Johnson, N. E. & Cameron, R. S. Phytophagous ground beetles. Ann. Entomol. Soc. Am. 62, 909–914 (1969).
    Article  Google Scholar 

    44.
    Russell, M. C., Lambrinos, J., Records, E. & Ellen, G. Seasonal shifts in ground beetle (Coleoptera: Carabidae) species and functional composition maintain prey consumption in Western Oregon agricultural landscapes. Biol. Control 106, 54–63 (2017).
    Article  Google Scholar 

    45.
    Williams, C. L. et al. Over-winter predation of Abutilon theophrasti and Setaria faberi seeds in arable land. Weed Res. 49, 439–447 (2009).
    Article  Google Scholar 

    46.
    Westerman, P., Luijendijk, C. D., Wevers, J. D. A. & Van Der Werf, W. Weed seed predation in a phenologically late crop. Weed Res. 51, 157–164 (2011).
    Article  Google Scholar 

    47.
    Winder, L. et al. Predatory activity and spatial pattern: The response of generalist carabids to their aphid prey. J. Anim. Ecol. 74, 443–454 (2005).
    Article  Google Scholar 

    48.
    Bohan, D. A. et al. Spatial dynamics of predation by carabid beetles on slugs. J. Anim. Ecol. 69, 367–379 (2000).
    Article  Google Scholar 

    49.
    Frank, S. D., Shrewsbury, P. M. & Denno, R. F. Plant versus prey resources: Influence on omnivore behavior and herbivore suppression. Biol. Control 57, 229–235 (2011).
    Article  Google Scholar 

    50.
    Abrams, P. A. & Matsuda, H. Positive indirect effects between prey species that share predators. Ecology 77, 610–616 (1996).
    Article  Google Scholar 

    51.
    Boetzl, F. A., Konle, A. & Krauss, J. Aphid cards – Useful model for assessing predation rates or bias prone nonsense?. J. Appl. Entomol. 144, 74–80 (2020).
    Article  Google Scholar 

    52.
    Bilde, T. & Toft, S. Consumption by carabid beetles of three cereal aphid species relative to other prey types. Entomophaga 42, 21–32 (1997).
    Article  Google Scholar 

    53.
    Madsen, M., Terkildsen, S. & Toft, S. Microcosm studies on control of aphids by generalist arthropod predators: Effects of alternative prey. Biocontrol 49, 483–504 (2004).
    Article  Google Scholar 

    54.
    Fawki, S. & Toft, S. Food preferences and the value of animal food for the carabid beetle Amara similata (Gyll.) (Col., Carabidae). J. Appl. Entomol. 129, 551–556 (2005).

    55.
    Saska, P. Effect of diet on the fecundity of three carabid beetles. Physiol. Entomol. 33, 188–192 (2008).
    ADS  Article  Google Scholar 

    56.
    Haschek, C., Drapela, T., Schuller, N., Fiedler, K. & Frank, T. Carabid beetle condition, reproduction and density in winter oilseed rape affected by field and landscape parameters. J. Appl. Entomol. 136, 665–674 (2012).
    Article  Google Scholar 

    57.
    Symondson, W. O. C., Sunderland, K. D. & Greenstone, M. H. Can generalist predators be effective biocontrol agents?. Annu. Rev. Entomol. 47, 561–594 (2002).
    CAS  Article  PubMed  Google Scholar 

    58.
    Lundgren, J. G. Chapter 18: Biological control of weed seeds in agriculture using omnivorous insects. in Relationships of Natural Enemies and Non-Prey Foods 333–351 (Springer Netherlands, 2009).

    59.
    Löbl, I. & Smetana, A. Catalogue of Palaearctic Colcoptera. Vol. 1 (2003).

    60.
    Homburg, K., Homburg, N., Schäfer, F., Schuldt, A. & Assmann, T. Carabids.org—A dynamic online database of ground beetle species traits (Coleoptera, Carabidae). Insect Conserv. Divers. 7, 195–205 (2014).

    61.
    Penell, A., Raub, F. & Höfer, H. Estimating biomass from body size of European spiders based on regression models. J. Arachnol. 46, 413 (2018).
    Article  Google Scholar 

    62.
    Pey, B. et al. A thesaurus for soil invertebrate trait-based approaches. PLoS ONE 9, e108985 (2014).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    63.
    Nentwig, W., Blick, T., Gloor, D., Hänggi, A. & Kropf, C. Araneae: Spiders of Europe. https://araneae.nmbe.ch, https://www.araneae.nmbe.ch (2019).

    64.
    Caballero, M., Baquero, E., Ariño, A. H. & Jordana, R. Indirect biomass estimations in Collembola. Pedobiologia (Jena). 48, 551–557 (2004).
    Article  Google Scholar 

    65.
    Migui, S. M. & Lamb, R. J. Sources of variation in the interaction between three cereal aphids (Hemiptera: Aphididae) and wheat (Poaceae). Bull. Entomol. Res. 96, 235–241 (2006).
    CAS  Article  PubMed  Google Scholar 

    66.
    Brooks, D. R. et al. Invertebrate responses to the management of genetically modified herbicide-tolerant and conventional spring crops. I. Soil-surface-active invertebrates. Philos. Trans. R. Soc. B Biol. Sci. 358, 1847–1862 (2003).

    67.
    Bohan, D. A. et al. Effects on weed and invertebrate abundance and diversity of herbicide management in genetically modified herbicide-tolerant winter-sown oilseed rape. Proc. R. Soc. B Biol. Sci. 272, 463–474 (2005).
    Article  Google Scholar 

    68.
    John, F. & Weisberg, S. An R Companion to Applied Regression. (Sage, 2019).

    69.
    Long, J. jtools: Analysis and Presentation of Social Scientific Data. R package version 2.0.1. (2019).

    70.
    Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. (2020).

    71.
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    72.
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org (2019). More

  • in

    Life history and population regulation shape demographic competence and influence the maintenance of endemic disease

    1.
    Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife—threats to biodiversity and human health. Science 287, 443–449 (2000).
    CAS  PubMed  Google Scholar 
    2.
    Wiethoelter, A. K., Beltrán-Alcrudo, D., Kock, R. & Mor, S. M. Global trends in infectious diseases at the wildlife–livestock interface. Proc. Natl Acad. Sci. USA 112, 9662–9667 (2015).
    CAS  PubMed  Google Scholar 

    3.
    Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).
    CAS  PubMed  PubMed Central  Google Scholar 

    4.
    Narrod, C., Zinsstag, J. & Tiongco, M. A One Health framework for estimating the economic costs of zoonotic diseases on society. Ecohealth 9, 150–162 (2012).
    PubMed  PubMed Central  Google Scholar 

    5.
    Cunningham, A. A., Daszak, P. & Wood, J. L. N. One Health, emerging infectious diseases and wildlife: two decades of progress? Phil. Trans. R. Soc. B 372, 20160167 (2017).
    PubMed  Google Scholar 

    6.
    Park, A. W. Phylogenetic aggregation increases zoonotic potential of mammalian viruses. Biol. Lett. 15, 20190668 (2019).
    PubMed  Google Scholar 

    7.
    Davies, T. J. & Pedersen, A. B. Phylogeny and geography predict pathogen community similarity in wild primates and humans. Proc. R. Soc. B 275, 1695–1701 (2008).
    PubMed  Google Scholar 

    8.
    Dallas, T., Park, A. W. & Drake, J. M. Predictability of helminth parasite host range using information on geography, host traits and parasite community structure. Parasitology 144, 200–205 (2017).
    PubMed  Google Scholar 

    9.
    Martin, L. B., Burgan, S. C., Adelman, J. S. & Gervasi, S. S. Host competence: an organismal trait to integrate immunology and epidemiology. Integr. Comp. Biol. 56, 1225–1237 (2016).
    PubMed  Google Scholar 

    10.
    Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).
    PubMed  PubMed Central  Google Scholar 

    11.
    Faust, C. L. et al. Pathogen spillover during land conversion. Ecol. Lett. 21, 471–483 (2018).
    PubMed  Google Scholar 

    12.
    Martin, G. et al. Climate change could increase the geographic extent of Hendra virus spillover risk. Ecohealth 15, 509–525 (2018).
    PubMed  PubMed Central  Google Scholar 

    13.
    Plowright, R. K. et al. Pathways to zoonotic spillover. Nat. Rev. Microbiol. 15, 502–510 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    14.
    Viana, M. et al. Assembling evidence for identifying reservoirs of infection. Trends Ecol. Evol. 29, 270–279 (2014).
    PubMed  PubMed Central  Google Scholar 

    15.
    Thrall, P. H., Antonovics, J. & Hall, D. W. Host and pathogen coexistence in sexually transmitted and vector-borne diseases characterized by frequency-dependent disease transmission. Am. Nat. 142, 543–552 (1993).
    Google Scholar 

    16.
    Anderson, R. M. & May, R. M. The population dynamics of microparasites and their invertebrate hosts. Phil. Trans. R. Soc. Lond. B 291, 451–524 (1981).
    Google Scholar 

    17.
    Stearns, S. C. Life-history tactics: a review of the ideas. Q. Rev. Biol. 51, 3–47 (1976).
    CAS  PubMed  Google Scholar 

    18.
    Solomon, M. E. The natural control of animal populations. J. Anim. Ecol. 18, 1–35 (1949).

    19.
    McDonald, J. L. et al. Demographic buffering and compensatory recruitment promotes the persistence of disease in a wildlife population. Ecol. Lett. 19, 443–449 (2016).

    20.
    Promislow, D. E. L. & Harvey, P. H. Living fast and dying young: a comparative analysis of life-history variation among mammals. J. Zool. 220, 417–437 (1990).
    Google Scholar 

    21.
    Pfister, C. A. Patterns of variance in stage-structured populations: evolutionary predictions and ecological implications. Proc. Natl Acad. Sci. USA 95, 213–218 (1998).
    CAS  PubMed  Google Scholar 

    22.
    Johnson, P. T. J. et al. Living fast and dying of infection: host life history drives interspecific variation in infection and disease risk. Ecol. Lett. 15, 235–242 (2012).
    PubMed  Google Scholar 

    23.
    Cronin, J. P., Rúa, M. A. & Mitchell, C. E. Why is living fast dangerous? Disentangling the roles of resistance and tolerance of disease. Am. Nat. 184, 172–187 (2014).
    PubMed  Google Scholar 

    24.
    Lachish, S., McCallum, H. & Jones, M. Demography, disease and the devil: life-history changes in a disease-affected population of Tasmanian devils (Sarcophilus harrisii). J. Anim. Ecol. 78, 427–436 (2009).
    PubMed  Google Scholar 

    25.
    Muths, E., Scherer, R. D. & Pilliod, D. S. Compensatory effects of recruitment and survival when amphibian populations are perturbed by disease. J. Appl. Ecol. 48, 873–879 (2011).
    Google Scholar 

    26.
    Arthur, A., Ramsey, D. & Efford, M. Impact of bovine tuberculosis on a population of brushtail possums (Trichosurus vulpecula Kerr) in the Orongorongo Valley, New Zealand. Wildl. Res. 31, 389–395 (2004).
    Google Scholar 

    27.
    Gaillard, J.-M. & Yoccoz, N. G. Temporal variation in survival of mammals: a case of environmental canalization? Ecology 84, 3294–3306 (2003).
    Google Scholar 

    28.
    Korpimäki, E., Brown, P. R., Jacob, J. & Pech, R. P. The puzzles of population cycles and outbreaks of small mammals solved? BioScience 54, 1071–1079 (2004).
    Google Scholar 

    29.
    Gaillard, J.-M., Festa-Bianchet, M. & Yoccoz, N. G. Population dynamics of large herbivores: variable recruitment with constant adult survival. Trends Ecol. Evol. 13, 58–63 (1998).
    CAS  PubMed  Google Scholar 

    30.
    McCallum, H., Barlow, N. & Hone, J. How should pathogen transmission be modelled? Trends Ecol. Evol. 16, 295–300 (2001).
    CAS  PubMed  Google Scholar 

    31.
    De Castro, F. & Bolker, B. Mechanisms of disease‐induced extinction. Ecol. Lett. 8, 117–126 (2005).
    Google Scholar 

    32.
    McCallum, H. Disease and the dynamics of extinction. Phil. Trans. R. Soc. B 367, 2828–2839 (2012).
    PubMed  Google Scholar 

    33.
    Anderson, R. M. & May, R. M. Coevolution of hosts and parasites. Parasitology 85, 411–426 (1982).
    PubMed  Google Scholar 

    34.
    Alizon, S., Hurford, A., Mideo, N. & Van Baalen, M. Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J. Evol. Biol. 22, 245–259 (2009).
    CAS  PubMed  Google Scholar 

    35.
    De Roode, J. C., Yates, A. J. & Altizer, S. Virulence-transmission trade-offs and population divergence in virulence in a naturally occurring butterfly parasite. Proc. Natl Acad. Sci. USA 105, 7489–7494 (2008).
    PubMed  Google Scholar 

    36.
    Anderson, R. M. Parasite pathogenicity and the depression of host population equilibria. Nature 279, 150 (1979).
    Google Scholar 

    37.
    Anderson, R. M. & May, R. M. Infectious Diseases of Humans: Dynamics and Control (Oxford Univ. Press, 1991).

    38.
    Lloyd-Smith, J. O. et al. Should we expect population thresholds for wildlife disease? Trends Ecol. Evol. 20, 511–519 (2005).
    PubMed  Google Scholar 

    39.
    Calvete, C. Modeling the effect of population dynamics on the impact of rabbit hemorrhagic disease. Conserv. Biol. 20, 1232–1241 (2006).
    PubMed  Google Scholar 

    40.
    Gutiérrez, J. S., Piersma, T. & Thieltges, D. W. Micro- and macroparasite species richness in birds: the role of host life history and ecology. J. Anim. Ecol. 88, 1226–1239 (2019).
    PubMed  Google Scholar 

    41.
    Calisher, C. H. et al. Do unusual site-specific population dynamics of rodent reservoirs provide clues to the natural history of hantaviruses? J. Wildl. Dis. 37, 280–288 (2001).
    CAS  PubMed  Google Scholar 

    42.
    Rickman, S. J., Dulvy, N. K., Jennings, S. & Reynolds, J. D. Recruitment variation related to fecundity in marine fishes. Can. J. Fish. Aquat. Sci. 57, 116–124 (2000).
    Google Scholar 

    43.
    Sæther, B.-E. & Bakke, Ø. Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81, 642–653 (2000).
    Google Scholar 

    44.
    Bielby, J. et al. The fast–slow continuum in mammalian life history: an empirical reevaluation. Am. Nat. 169, 748–757 (2007).
    CAS  PubMed  Google Scholar 

    45.
    Godfray, H. C. J. et al. A restatement of the natural science evidence base relevant to the control of bovine tuberculosis in Great Britain. Proc. R. Soc. Lond. B 280, 20131634 (2013).
    Google Scholar 

    46.
    Gaillard, J.-M. et al. Generation time: a reliable metric to measure life-history variation among mammalian populations. Am. Nat. 166, 119–123 (2005).
    PubMed  Google Scholar 

    47.
    Earn, D. J. D., Rohani, P. & Grenfell, B. T. Persistence, chaos and synchrony in ecology and epidemiology. Proc. R. Soc. Lond. B 265, 7–10 (1998).
    CAS  Google Scholar 

    48.
    Rohani, P., Earn, D. J. D. & Grenfell, B. T. Opposite patterns of synchrony in sympatric disease metapopulations. Science 286, 968–971 (1999).
    CAS  PubMed  Google Scholar 

    49.
    Salathé, M. & Jones, J. H. Dynamics and control of diseases in networks with community structure. PLoS Comput. Biol. 6, e1000736 (2010).
    PubMed  PubMed Central  Google Scholar 

    50.
    Sah, P., Leu, S. T., Cross, P. C., Hudson, P. J. & Bansal, S. Unraveling the disease consequences and mechanisms of modular structure in animal social networks. Proc. Natl Acad. Sci. USA 114, 4165–4170 (2017).

    51.
    Silk, M. J. et al. Integrating social behaviour, demography and disease dynamics in network models: applications to disease management in declining wildlife populations. Phil. Trans. R. Soc. B 374, 20180211 (2019).
    PubMed  Google Scholar 

    52.
    Hopkins, S. R., Fleming‐Davies, A. E., Belden, L. K. & Wojdak, J. M. Systematic review of modelling assumptions and empirical evidence: does parasite transmission increase nonlinearly with host density? Methods Ecol. Evol. 11, 476–486 (2020).
    Google Scholar 

    53.
    Froissart, R., Doumayrou, J., Vuillaume, F., Alizon, S. & Michalakis, Y. The virulence–transmission trade-off in vector-borne plant viruses: a review of (non-) existing studies. Phil. Trans. R. Soc. B 365, 1907–1918 (2010).
    CAS  PubMed  Google Scholar 

    54.
    Wickham, M. E., Brown, N. F., Boyle, E. C., Coombes, B. K. & Finlay, B. B. Virulence is positively selected by transmission success between mammalian hosts. Curr. Biol. 17, 783–788 (2007).
    CAS  PubMed  Google Scholar 

    55.
    Paul, R. E. L. et al. Experimental evaluation of the relationship between lethal or non-lethal virulence and transmission success in malaria parasite infections. BMC Evol. Biol. 4, 30 (2004).
    CAS  PubMed  PubMed Central  Google Scholar 

    56.
    Agnew, P. & Koella, J. C. Virulence, parasite mode of transmission, and host fluctuating asymmetry. Proc. R. Soc. Lond. B 264, 9–15 (1997).
    CAS  Google Scholar 

    57.
    Medica, D. L. & Sukhdeo, M. V. K. Estimating transmission potential in gastrointestinal nematodes (Order: Strongylida). J. Parasitol. 87, 442–446 (2001).
    CAS  PubMed  Google Scholar 

    58.
    Jäkel, T. et al. Reduction of transmission stages concomitant with increased host immune responses to hypervirulent Sarcocystis singaporensis, and natural selection for intermediate virulence. Int. J. Parasitol. 31, 1639–1647 (2001).
    PubMed  Google Scholar 

    59.
    Stott, I., Hodgson, D. J. & Townley, S. popdemo: an R package for population demography using projection matrix analysis. Methods Ecol. Evol. 3, 797–802 (2012).
    Google Scholar 

    60.
    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019). More

  • in

    The politics of biodiversity offsetting across time and institutional scales

    1.
    Bull, J. W., Gordon, A., Watson, J. E. M. & Maron, M. Seeking convergence on the key concepts in ‘no net loss’ policy. J. Appl. Ecol. 53, 1686–1693 (2016).
    Article  Google Scholar 
    2.
    Maron, M. et al. The many meanings of no net loss in environmental policy. Nat. Sustain 1, 19–27 (2018).
    Article  Google Scholar 

    3.
    Bull, J. W. & Strange, N. The global extent of biodiversity offset implementation under no net loss policies. Nat. Sustain 1, 790–798 (2018).
    Article  Google Scholar 

    4.
    von Hase, A. & ten Kate, K. Correct framing of biodiversity offsets and conservation: a response to Apostolopoulou & Adams. Oryx 51, 32–34 (2017).
    Article  Google Scholar 

    5.
    Standard on Biodiversity Offsets (BBOP, Forest Trends, 2012).

    6.
    Zu Ermgassen, S. O. S. E. et al. The ecological outcomes of biodiversity offsets under “no net loss” policies: a global review. Conserv. Lett. https://doi.org/10.1111/conl.12664 (2019).

    7.
    Moreno-Mateos, D., Maris, V., Béchet, A. & Curran, M. The true loss caused by biodiversity offsets. Biol. Conserv. 192, 552–559 (2015).
    Article  Google Scholar 

    8.
    Bonneuil, C. Tell me where you come from, I will tell you who you are: a genealogy of biodiversity offsetting mechanisms in historical context. Biol. Conserv. 192, 485–491 (2015).
    Article  Google Scholar 

    9.
    Boon, P. I. & Prahalad, V. Ecologists, economics and politics: problems and contradictions in applying neoliberal ideology to nature conservation in Australia. Pac. Conserv. Biol. 23, 115–132 (2017).
    Article  Google Scholar 

    10.
    Penca, J. Marketing the market: the ideology of market mechanisms for biodiversity conservation. Transnatl Environ. Law 2, 235–257 (2013).
    Article  Google Scholar 

    11.
    Lapeyre, R., Froger, G. & Hrabanski, M. Biodiversity offsets as market-based instruments for ecosystem services? From discourses to practices. Ecosyst. Serv. 15, 125–133 (2015).
    Article  Google Scholar 

    12.
    Hackett, R. Market-based environmental governance and public resources in Alberta, Canada. Ecosyst. Serv. 15, 174–180 (2015).
    Article  Google Scholar 

    13.
    Zero Draft of the Post-2020 Global Biodiversity Framework (CBD, 2020).

    14.
    Feindt, P. H. & Oels, A. Does discourse matter? Discourse analysis in environmental policy making. J. Environ. Policy Plan. 7, 161–173 (2005).
    Article  Google Scholar 

    15.
    Leipold, S., Feindt, P. H., Winkel, G. & Keller, R. Discourse analysis of environmental policy revisited: traditions, trends, perspectives. J. Environ. Policy Plan. 21, 445–463 (2019).
    Article  Google Scholar 

    16.
    Hajer, M. & Versteeg, W. A decade of discourse analysis of environmental politics: achievements, challenges, perspectives. J. Environ. Policy Plan. 7, 175–184 (2005).
    Article  Google Scholar 

    17.
    Bacchi, C. & Goodwin, S. Poststructural Policy Analysis: A Guide to Practice (Springer, 2016).

    18.
    Dryzek, J. S. The Politics of the Earth: Environmental Discourses (Oxford Univ. Press, 2013).

    19.
    Foucault, M. The History of Sexuality: An Introduction Vol. 1(Penguin Group, 2008).

    20.
    Hajer, M. A. in Words Matter in Policy and Planning: Discource Theory and Method in the Social Sciences (eds Van den Brink, M. & Metze, T.) 65–76 (Netherlands Graduate School of Urban and Regional Research, 2006).

    21.
    Hajer, M. A. The Politics of Environmental Discourse: Ecological Modernization and the Policy Process (Clarendon Press, 1995).

    22.
    Hopwood, B., Mellor, M. & O’Brien, G. Sustainable development: mapping different approaches. Sustain. Dev. 13, 38–52 (2005).
    Article  Google Scholar 

    23.
    Carson, R. Silent Spring (Houghton Mifflin, 1962).

    24.
    Our Common Future (United Nations World Commission on Environment and Development, Oxford Univ. Press, 1987).

    25.
    Robertson, M. M. The neoliberalization of ecosystem services: wetland mitigation banking and problems in environmental governance. Geoforum 35, 361–373 (2004).
    Article  Google Scholar 

    26.
    Clapp, J. & Dauvergne, P. in Paths to a Green World: The Political Economy of the Global Environment (eds Clapp, J. & Dauvergne, P.) 161–191 (MIT Press, 2011).

    27.
    Werksman, J. The clean development mechanism: unwrapping the Kyoto surprise. Rev. Eur. Comp. Int. Environ. Law 7, 147–158 (1998).
    Article  Google Scholar 

    28.
    Christoff, P. Ecological modernisation, ecological modernities. Environ. Polit. 5, 476–500 (1996).
    Article  Google Scholar 

    29.
    Breaking New Ground: The Report of the Mining, Minerals and Sustainable Development Project (International Institute for Environment and Development, World Business Council for Sustainable Development, Earthscan Publications, 2002).

    30.
    Hrabanski, M. The biodiversity offsets as market-based instruments in global governance: origins, success and controversies. Ecosyst. Serv. 15, 143–151 (2015).
    Article  Google Scholar 

    31.
    Ecosystems and Human Well-Being: Our Human Planet: Summary for Decision Makers (Millennium Ecosystem Assessment, 2005); http://millenniumassessment.org/en/Global.html

    32.
    The Economics of Ecosystems and Biodiversity: Mainstreaming the Economics of Nature: A Synthesis of the Approach, Conclusions and Recommendations of TEEB (TEEB, 2010); http://teebweb.org/publications/teeb-for/synthesis/

    33.
    Bassey, N. et al. IUCN Withdrawal (Friends of the Earth International, 2009).

    34.
    WWC 10 Final Resolution 12: Building a Global Alliance to Assert ‘No-Go Areas’ for Mining and Other Extractive Industries and Destructive Activities Threatening World Heritage Sites, and Protected Areas, including Indigenous Peoples’ and Local Communities Conserved Areas and Territories (ICCAs) and Sacred Natural Sites and Territories (WWC, 2013).

    35.
    WCC-2012-Res-110-EN: Biodiversity Offsets and Related Compensatory Approaches (WCC, 2012).

    36.
    IUCN Resolutions, Recommendations and Other Decisions (IUCN, 2016).

    37.
    Permitted Clearing of Native Vegetation: Biodiversity Assessment Guidelines (The Victorian Government, Department of Environment and Primary Industries, 2013).

    38.
    NSW Biodiversity Offsets Policy for Major Projects (State of NSW, Office of Environment and Heritage, 2014).

    39.
    Our Evolving Approach to Biodiversity: The Next Chapter in Biodiversity Management (Rio Tinto, 2017); http://www.riotinto.com/ourcommitment/spotlight-18130_21621.aspx

    40.
    Konisky, D. M. & Woods, N. D. Environmental federalism and the Trump presidency: a preliminary assessment. Publius 48, 345–371 (2018).
    Article  Google Scholar 

    41.
    Working for Biodiversity Net Gain: An Overview of the Business and Biodiversity Offsets Programme (BBOP) 2004–2018 (BBOP, Forest Trends, 2018).

    42.
    Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).

    43.
    Leipold, S. & Winkel, G. Discursive agency: (re-)conceptualizing actors and practices in the analysis of discursive policymaking. Policy Stud. J. 45, 510–534 (2017).
    Article  Google Scholar 

    44.
    Foucault, M. The History of Sexuality: The Will to Knowledge Vol. I (Penguin Group, 2008).

    45.
    Walker, S., Brower, A. L., Stephens, R. T. T. & Lee, W. G. Why bartering biodiversity fails. Conserv. Lett. 2, 149–157 (2009).
    Article  Google Scholar 

    46.
    Bäckstrand, K. & Lövbrand, E. The road to Paris: contending climate governance discourses in the post-Copenhagen era. J. Environ. Policy Plan. 21, 519–532 (2016).
    Article  Google Scholar 

    47.
    Griggs, S. & Howarth, D. Discourse, policy and the environment: hegemony, statements and the analysis of UK airport expansion. J. Environ. Policy Plan. 21, 464–478 (2019).
    Article  Google Scholar 

    48.
    Reflections on the Zero Draft Post-2020 Global Biodiversity Framework (BirdLife International, 2020).

    49.
    IUCN Position: Zero Draft of the Post-2020 Global Biodiversity Framework (IUCN, 2020); https://go.nature.com/3kEA4rP

    50.
    Dingler, J. The discursive nature of nature: towards a post-modern concept of nature. J. Environ. Policy Plan. 7, 209–225 (2005).
    Article  Google Scholar 

    51.
    Sharp, L. & Richardson, T. Reflections on Foucauldian discourse analysis in planning and environmental policy research. J. Environ. Policy Plan. 3, 193–209 (2001).
    Article  Google Scholar 

    52.
    Moon, K. & Blackman, D. A guide to understanding social science research for natural scientists. Conserv. Biol. 28, 1167–1177 (2014).
    Article  Google Scholar 

    53.
    Fairclough, N. Critical discourse analysis. Marges Linguist. 9, 76–94 (2005).
    Google Scholar 

    54.
    NVivo qualitative data analysis software (QSR International, 2019); https://www.qsrinternational.com/nvivo/home

    55.
    Calvet, C., Ollivier, G. & Napoleone, C. Tracking the origins and development of biodiversity offsetting in academic research and its implications for conservation: a review. Biol. Conserv. 192, 492–503 (2015).
    Article  Google Scholar 

    56.
    Darier, É. (ed.) Discourses of the Environment (Blackwell, 1999).

    57.
    Bäckstrand, K. & Lövbrand, E. in The Social Construction of Climate Change: Power, Knowledge, Norms, Discourses (ed. Pettenger, M. E.) 123–147 (Taylor & Francis Group, 2007).

    58.
    Mol, A. P. J., Spaargaren, G. & Sonnenfeld, D. A. in The Ecological Modernisation Reader. Environmental Reform in Theory and Practice (eds Mol, A. P. J. et al.) 3–14 (Routledge, 2009).

    59.
    Nilsen, H. R. The joint discourse ‘reflexive sustainable development’—from weak towards strong sustainable development. Ecol. Econ. 69, 495–501 (2010).
    Article  Google Scholar 

    60.
    Jacobs, M. in The Handbook of Global Climate and Environment Policy (ed. Falkner, R.) 197–214 (John Wiley & Sons, 2013); https://doi.org/10.1002/9781118326213.ch12

    61.
    Ferguson, P. The green economy agenda: business as usual or transformational discourse? Environ. Polit. 24, 17–37 (2015).
    Article  Google Scholar 

    62.
    Coffey, B. Unpacking the politics of natural capital and economic metaphors in environmental policy discourse. Environ. Polit. 25, 203–222 (2016).
    Article  Google Scholar 

    63.
    Bakker, K. The limits of ‘neoliberal natures’: debating green neoliberalism. Prog. Hum. Geogr. 34, 715–735 (2010).
    Article  Google Scholar  More

  • in

    Cryopreservation of testicular tissue from Murray River Rainbowfish, Melanotaenia fluviatilis

    Animal husbandry and sample collection
    All animal handling and experimental procedures were approved by the Animal Ethics Committee B at Monash Medical Centre (MMCB/2017/39) and conducted in accordance with the Australian Code of Practice for the Care and Use of Animals for Scientific Purposes. Melanotaenia fluviatilis (Aquarium Industries, Victoria, Australia) were held at 25 °C ± 1 °C on a 12:12 light–dark cycle. At the time of experimentation, fish 5.76 cm ± 1.00 cm in length and weighing 3.25 g ± 1.38 g, were humanely killed by anesthetic overdose using aquatic anaesthetic AQUI-S (Primo Aquaculture, Queensland, Australia) and death was confirmed by destruction of the brain. The gonads were removed and placed into handling medium composed of Eagles minimum essential media (EMEM, SigmaAldrich) supplemented with 5% FBS (ThermoFisher Scientific, Victoria Australia), and 25 mM HEPES (ThermoFisher Scientific; pH 7.8) and kept on ice.
    Histology and immunohistochemistry
    Whole testes were fixed in 10% neutral buffered formalin (Merck, Victoria, Australia) for 48 h and processed by the Monash Histology Platform which included standard hematoxylin and eosin staining. Unstained sections were stained for Vasa using a zebrafish-specific anti-Vasa antibody (Sapphire Bioscience Pty. Ltd, New South Wales, Australia) and counter-stained with Hoechst (ThermoFisher Scientific). De-paraffinised sections were rehydrated through changes of xylene and a standard series of decreasing ethanol dilutions before antigen retrieval in 10 mM citrate buffer (pH 6), microwaved to boiling point for 10 min. Sections were rested in citrate buffer for 30 min prior to blocking with CAS Block (Invitrogen) for one hour followed by incubation with anti-Vasa antibody (1:200) in 5% BSA in PBS at 4 °C overnight. Sections were washed in PBS and incubated with secondary antibody, Alexa Fluor 488-conjugated goat anti-rabbit IgG (1:500; Invitrogen), and Hoechst nuclear counterstain (1:1000) in 5% BSA and PBS for one hour at room temperature.
    Images were captured using the EVOS FL Auto 2 Imaging system (ThermoFisher Scientific) and an Olympus BX43 Upright Microscope with an X-Cite Series 120 Q laser (Lumen Dynamics). Approximate cell sizes were measured using cellSens Standard imaging software (Software version: 1.16, build 15,404, Olympus) and images were analysed in FIJI23 (Software version: 2.0.0-rc-69/1.52p, Image J).
    Validation of size-based cell sorting by flow cytometry
    Using cell measurements taken from histological analysis as a guide, a size-based cell sorting method was developed to isolate our target spermatogonial cells. A set of five size-specific beads (16.5 μm, 10.2 μm, 7.56 μm, 5.11 μm, 3.3 μm, Spherotech, Lake Forest, IL, USA) were analysed on a FACS Aria Fusion flow cytometer (BD Biosciences, New South Wales, Australia). These sizes cover the range of cell sizes seen in the testis, with sperm heads being approximately 2–3 μm and spermatogonia being over 10 μm in M.fluviatilis. Due to differences in the light scattering properties of plastic beads in comparison to live cells, these bead sizes can only be interpreted as a guide of scale and not as an exact size indication for cells in suspension. Using the scatter profile produced by these beads, two gates were set: the “A” gate surrounded events in the high forward scatter region on the scatter plot, approximately 9 μm and larger to capture larger cells such as spermatogonia; the “B” gate surrounded events in a low forward scatter region, between 2—5 μm, to capture smaller germ cells such as spermatids and spermatocytes. An unstained cell suspension was then sorted through these gates and sorted cells were pelleted by centrifugation (500 g for 15mins). Images were taken of live cells in suspension using the EVOS FL Auto 2 Imaging system (ThermoFisher Scientific) and cell sizes were measured in FIJI. Samples were then fixed in 2% PFA (Thermo Fisher Scientific) for 10 min and suspended in PBS.
    Aliquots of each sample (A gate, B gate and an unsorted control) were smeared onto Superfrost Plus slides (ThermoFisher Scientific), baked overnight at 37 °C and stained with anti-Vasa antibody to determine the number of Vasa-positive cells in each sample. Briefly, the slides were washed with MilliQ water to remove any salt that was present and irrigated with wash buffer (0.1% BSA in PBS) before blocking with 10% goat serum, 0.1% Triton X in PBS for 45 min. Sections were stained with anti-Vasa antibody (1:200) in PBS containing 5% BSA for 1 h at room temperature, washed with wash buffer, incubated with Alexa Fluor 488-conjugated goat anti-rabbit IgG (1:500), and counterstained with Hoechst (1:1000). Sections were imaged on the EVOS FL Auto 2 and analysed using FIJI.
    Cryopreservation protocol
    This cryopreservation method was adapted from research described by Lee et al.14,15. Whole gonads weighing 0.0124 g ± 0.0095 g were transferred into 1.2-ml CryoTubes with 500 μl of cryomedia containing a permeating cryoprotectant, dimethyl sulfoxide (DMSO), ethylene glycol (EG), methanol or glycerol (all purchased from Merck), at concentrations ranging between 1.0 M and 2.0 M, with 0.1 M trehalose (Merck), and 1.5% BSA (Bovogen Biologicals Pty. Ltd, Victoria, Australia) in a mixed salt solution (~ 296 mOsm, pH 7.8) previously described by Lee et al.14. Control samples contained all components except the permeating cryoprotectant. Samples were equilibrated on ice for one hour and then cooled at a rate of -1 °C/minute in a CoolCell (Merck) in a -80 °C freezer for at least 3 h before being plunged into liquid nitrogen. Samples were held in liquid nitrogen for at least 24 h before thawing.
    Thawing and cell suspension preparation
    Samples were thawed in a 30 °C water bath for 1 min. The gonad was removed and gently blotted on a Kim-wipe to remove excess cryoprotectant residue and then rehydrated in three changes of handling medium (as described under “Animal husbandry and sample collection”) for 20 min per change (60 min total). After rehydration, the testis was placed in a tissue grinder with 500 μl of PBS and crushed. The tissue grinder was washed with another 500 μl of PBS resulting in a final volume of 1 ml. The cell suspension was passed through a 40 μm nylon filter to remove any large particulates prior to flow cytometry.
    Viability assessment by flow cytometry
    Cell suspensions were stained with the LIVE/DEAD Sperm Viability Kit (ThermoFisher Scientific) which included a membrane-permeating SYBR14 nucleic acid dye for detecting live cells and membrane-impermeable Propidium Iodide (PI) nucleic acid dye to detect membrane-compromised, presumably dead cells. SYBR14 was added and incubated for 5 min in the dark, followed by PI for a further 5-min incubation.
    Prior to the assessment of experimental samples, the sized beads (Spherotech) were analysed on the FACS Aria Fusion flow cytometer. Using these beads as a guide, a gate was set for the approximate size of the spermatogonial cells based on our own histological analysis of this species and previous publications on fish in general24. An unstained control and two single stain controls (PI only or SYBR14 only) were included with the experimental samples in the analysis. The sample used for the PI-only control was flash frozen in liquid nitrogen three times to ensure a high percentage of dead cell to provide an adequate count for PI staining. Flow cytometry output was analysed in FlowJoTM25. Events captured by the gate were analysed for SYBR14 and PI spectra and divided into quartiles based on the absorbance of single stain controls (Fig. 1).
    Figure 1

    Flow cytometry scatter plots and gating method. (a) Analysis of size-specific beads shows five distinct clusters. (b) A gate is set to capture events from the 9 μm measurement and above. (c) Events detected in this region are replotted to determine SYB14 and PI absorbance. Events in the Q3 region are SYB14 positive and PI negative and therefore viable. In samples treated with a negative control (d), the majority of events falls in the Q1 region, with only propidium iodide detected (e).

    Full size image

    Statistical analysis
    Statistical analysis was performed using GraphPad Prism version 8.1.2 for MacOS, GraphPad Software, La Jolla California USA, www.graphpad.com. Data is presented as mean ± standard deviation, with a p-value less than 0.05 considered statistically significant.
    For cell gating data, the proportion of cell sizes in live cell suspensions in each treatment group was analysed using a chi-square. The percentage of Vasa-positive cells in the unsorted sample and the “A” gate was analysed using an un-paired t-test; data for the “B” gate was excluded as no Vasa-positive cells were detected.
    For percentage viability data assumptions for normality and variance were met using the Shapiro–Wilk test and the Brown-Forsythe test, respectively. Following this, treatment groups were compared by one-way ANOVA and Tukey’s post hoc test. More

  • in

    Impact of local and landscape complexity on the stability of field-level pest control

    1.
    Fahrig, L. et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 14, 101–112 (2011).
    Article  Google Scholar 
    2.
    Fahrig, L. et al. Farmlands with smaller crop fields have higher within-field biodiversity. Agric. Ecosyst. Environ. 200, 219–234 (2015).
    Article  Google Scholar 

    3.
    Sirami, C. et al. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proc. Natl Acad. Sci. USA 116, 16442–16447 (2019).
    CAS  Article  Google Scholar 

    4.
    Martin, E. A., Seo, B., Park, C.-R., Reineking, B. & Steffan-Dewenter, I. Scale-dependent effects of landscape composition and configuration on natural enemy diversity, crop herbivory, and yields. Ecol. Appl. 26, 448–462 (2016).
    Article  Google Scholar 

    5.
    Root, R. B. Organization of a plant–arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol. Monogr. 43, 95–124 (1973).
    Article  Google Scholar 

    6.
    McCann, K. The diversity–stability debate. Nature 405, 228–233 (2000).
    CAS  Article  Google Scholar 

    7.
    MacArthur, R. Fluctuations of animal populations and a measure of community stability. Ecology 36, 533–536 (1955).
    Article  Google Scholar 

    8.
    Tilman, D. Biodiversity: population versus ecosystem stability. Ecology 77, 350–363 (1996).
    Article  Google Scholar 

    9.
    Tilman, D. & Wedin, D. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718–720 (1996).
    CAS  Google Scholar 

    10.
    McNaughton, S. Diversity and stability of ecological communities: a comment on the role of empiricism in ecology. Am. Natur. 111, 515–525 (1977).
    Article  Google Scholar 

    11.
    Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).
    CAS  Article  Google Scholar 

    12.
    Landis, D. A., Wratten, S. D. & Gurr, G. M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45, 175–201 (2000).
    CAS  Article  Google Scholar 

    13.
    Chaplin-Kramer, R., O’Rourke, M. E., Blitzer, E. J. & Kremen, C. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 14, 922–932 (2011).
    Article  Google Scholar 

    14.
    Karp, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl Acad. Sci. USA 111, E7863–E7870 (2018).
    Article  CAS  Google Scholar 

    15.
    Martin, E. A. et al. The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1083–1094 (2019).
    Article  Google Scholar 

    16.
    Larsen, A. E. & Noack, F. Identifying the landscape drivers of agricultural insecticide use leveraging evidence from 100,000 fields. Proc. Natl Acad. Sci. USA 114, 5473–5478 (2017).
    CAS  Article  Google Scholar 

    17.
    Sexton, S. E., Lei, Z. & Zilberman, D. The economics of pesticides and pest control. Int. Rev. Envir. Resour. Econ. 1, 271–326 (2007).
    Article  Google Scholar 

    18.
    Waterfield, G. & Zilberman, D. Pest management in food systems: an economic perspective. Annu. Rev. 37, 223–245 (2012).

    19.
    O’Rourke, M. E. & Jones, L. E. Analysis of landscape-scale insect pest dynamics and pesticide use: an empirical and modeling study. Ecol. Appl. 21, 3199–3210 (2011).
    Article  Google Scholar 

    20.
    Gross, K. & Rosenheim, J. A. Quantifying secondary pest outbreaks in cotton and their monetary cost with causal-inference statistics. Ecol. Appl. 21, 2770–2780 (2011).
    Article  Google Scholar 

    21.
    Rosenheim, J. A. & Meisner, M. H. Ecoinformatics can reveal yield gaps associated with crop–pest interactions: a proof-of-concept. PLoS ONE 8, e80518 (2013).
    Article  CAS  Google Scholar 

    22.
    Meisner, M. H., Zaviezo, T. & Rosenheim, J. A. Landscape crop composition effects on cotton yield, Lygus hesperus densities and pesticide use. Pest Manag. Sci. 73, 232–239 (2016).
    Article  CAS  Google Scholar 

    23.
    Farrar, J. J., Baur, M. E. & Elliott, S. F. Adoption of IPM practices in grape, tree fruit, and nut production in the western United States. J. Integr. Pest Manag. 7, 8 (2016).

    24.
    Rosenheim, J. A., Cass, B. N., Kahl, H. & Steinmann, K. P. Variation in pesticide use across crops in California agriculture: economic and ecological drivers. Sci. Total Environ. 733, 138683 (2020).
    CAS  Article  Google Scholar 

    25.
    Möhring, N., Bozzola, M., Hirsch, S. & Finger, R. Are pesticides risk decreasing? The relevance of pesticide indicator choice in empirical analysis. Agric. Econ. 51, 429–444 (2020).
    Article  Google Scholar 

    26.
    Larsen, A. E., Patton, M. & Martin, E. A. High highs and low lows: elucidating striking seasonal variability in pesticide use and its environmental implications. Sci. Total Environ. 651, 828–837 (2019).
    CAS  Article  Google Scholar 

    27.
    Dudley, N. et al. How should conservationists respond to pesticides as a driver of biodiversity loss in agroecosystems? Biol. Conserv. 209, 449–453 (2017).
    Article  Google Scholar 

    28.
    Kim, K.-H., Kabir, E. & Jahan, S. A. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 575, 525–535 (2017).
    CAS  Article  Google Scholar 

    29.
    Chay, K. Y. & Greenstone, M. The impact of air pollution on infant mortality: evidence from the Clean Air Act of 1970. Q. J. Econ. 118, 1121–1167 (2003).
    Article  Google Scholar 

    30.
    Larsen, A. E., Gaines, S. D. & Deschenes, O. Agricultural pesticide use and adverse birth outcomes in the San Joaquin Valley of California. Nat. Commun. 8, 302 (2017).

    31.
    California Agricultural Statistics Review 2017–2018 1–105 (California Department of Food & Agriculture, 2018).

    32.
    Summary of Pesticide Use Report Data 2017 (California Department of Pesticide Regulation, 2018).

    33.
    Bourque, K. et al. Balancing agricultural production, groundwater management, and biodiversity goals: a multi-benefit optimization model of agriculture in Kern County, California. Sci. Total Environ. 670, 865–875 (2019).
    CAS  Article  Google Scholar 

    34.
    Larsen, A. E., Meng, K. & Kendall, B. E. Causal analysis in control–impact ecological studies with observational data. Methods Ecol. Evol. 10, 924–934 (2019).
    Article  Google Scholar 

    35.
    Just, R. E. & Pope, R. D. Stochastic specification of production functions and economic implications. J. Econ. 7, 67–86 (1978).
    Article  Google Scholar 

    36.
    Murdoch, W. W. Diversity, complexity, stability and pest control. J. Appl. Ecol. 12, 795–807 (1975).
    Article  Google Scholar 

    37.
    Van Emden, H. F. & Williams, G. Insect stability and diversity in agro-ecosystems. Annu. Rev. Entomol. 19, 455–475 (1974).
    Article  Google Scholar 

    38.
    Edwards, C. B., Rosenheim, J. A. & Segoli, M. Aggregating fields of annual crops to form larger-scale monocultures can suppress dispersal-limited herbivores. Theor. Ecol. 11, 321–331.

    39.
    O’Rourke, M. E., Rienzo-Stack, K. & Power, A. G. A multi-scale, landscape approach to predicting insect populations in agroecosystems. Ecol. Appl. 21, 1782–1791 (2011).
    Article  Google Scholar 

    40.
    Hass, A. L. et al. Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in Western Europe. Proc. R. Soc. B 285, 1872 (2018).
    Article  Google Scholar 

    41.
    Holzschuh, A., Dewenter, I. S. & Tscharntke, T. How do landscape composition and configuration, organic farming and fallow strips affect the diversity of bees, wasps and their parasitoids? J. Anim. Ecol. 79, 491–500 (2010).
    Article  Google Scholar 

    42.
    Rusch, A. et al. Agricultural landscape simplification reduces natural pest control: a quantitative synthesis. Agric. Ecosyst. Environ. 221, 198–204 (2016).
    Article  Google Scholar 

    43.
    Rusch, A., Bommarco, R., Jonsson, M., Smith, H. G. & Ekbom, B. Flow and stability of natural pest control services depend on complexity and crop rotation at the landscape scale. J. Appl. Ecol. 50, 345–354 (2013).
    Article  Google Scholar 

    44.
    Zhao, Z. & Reddy, G. V. P. Semi-natural habitats mediate influence of inter-annual landscape variation on cereal aphid-parasitic wasp system in an agricultural landscape. Biol. Control 128, 17–23 (2019).
    Article  Google Scholar 

    45.
    Costello, C., Quérou, N. & Tomini, A. Private eradication of mobile public bads. Eur. Econ. Rev. 94, 23–44 (2017).
    Article  Google Scholar 

    46.
    Noack, F. & Larsen, A. The contrasting effects of farm size on farm incomes and food production. Environ. Res. Lett. 14, 084024 (2019).
    Article  Google Scholar 

    47.
    Gong, Y., Baylis, K., Kozak, R. & Bull, G. Farmers’ risk preferences and pesticide use decisions: evidence from field experiments in China. Agric. Econ. 47, 411–421 (2016).
    Article  Google Scholar 

    48.
    Möhring, N., Wuepper, D., Musa, T. & Finger, R. Why farmers deviate from recommended pesticide timing: the role of uncertainty and information. Pest Manag. Sci. 76, 2787–2798 (2020).
    Article  CAS  Google Scholar 

    49.
    Larsen, A. E., Farrant, D. N. & MacDonald, A. J. Spatiotemporal overlap of pesticide use and species richness hotspots in California. Agric. Ecosyst. Environ. 289, 106741 (2020).
    CAS  Article  Google Scholar 

    50.
    Gavrilescu, M. Fate of pesticides in the environment and its bioremediation. Eng. Life Sci. 5, 497–526 (2005).
    CAS  Article  Google Scholar 

    51.
    Haan, N. L., Zhang, Y. & Landis, D. A. Predicting landscape configuration effects on agricultural pest suppression. Trends Ecol. Evol. 35, 175–186 (2020).
    Article  Google Scholar 

    52.
    Damalas, C. A. & Eleftherohorinos, I. G. Pesticide exposure, safety issues, and risk assessment indicators. Int. J. Environ. Res. Public Health 8, 1402–1419 (2011).
    CAS  Article  Google Scholar 

    53.
    Mullin, C. A., Fine, J. D., Reynolds, R. D. & Frazier, M. T. Toxicological risks of agrochemical spray adjuvants: organosilicone surfactants may not be safe. Front. Public Health 4, 320–328 (2016).
    Article  Google Scholar 

    54.
    Kniss, A. R. Long-term trends in the intensity and relative toxicity of herbicide use. Nat. Commun. 8, 14865–14867 (2017).
    CAS  Article  Google Scholar 

    55.
    Estrada, J. Mean-semivariance optimization: a heuristic approach. J. Appl. Financ. 18, 1–16 (2008).
    Article  Google Scholar 

    56.
    Finger, R., Dalhaus, T., Allendorf, J. & Hirsch, S. Determinants of downside risk exposure of dairy farms. Eur. Rev. Agric. Econ. 45, 641–674 (2018).
    Article  Google Scholar 

    57.
    Miranda, M. J. & Glauber, J. W. Providing crop disaster assistance through a modified deficiency payment program. Am. J. Agric. Econ. 73, 1233–1243 (1991).
    Article  Google Scholar 

    58.
    Wooldridge, J. M. Econometric Analysis of Cross Section and Panel Data (MIT Press, 2002).

    59.
    Cabas, J., Weersink, A. & Olale, E. Crop yield response to economic, site and climatic variables. Clim. Change 101, 599–616 (2009).
    Article  CAS  Google Scholar 

    60.
    Isik, M. & Devadoss, S. An analysis of the impact of climate change on crop yields and yield variability. Appl. Econ. 38, 835–844 (2006).
    Article  Google Scholar 

    61.
    Arellano, M. & Bond, S. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev. Econ. Stud. 58, 277–297 (1991).
    Article  Google Scholar 

    62.
    Bellemare, M. F. & Wichman, C. J. Elasticities and the inverse hyperbolic sine transformation. Oxf. Bull. Econ. Stat. 82, 50–61 (2019).
    Article  Google Scholar 

    63.
    Conley, T. G. & Molinari, F. Spatial correlation robust inference with errors in location or distance. J. Econ. 140, 76–96 (2007).
    Article  Google Scholar 

    64.
    Hsiang, S. M. Temperatures and cyclones strongly associated with economic production in the Caribbean and Central America. Proc. Natl Acad. Sci. USA 107, 15367–15372 (2010).
    CAS  Article  Google Scholar 

    65.
    Fetzer, T. Can Workfare Programs Moderate Conflict? Evidence from India The Warwick Economics Research Paper Series (TWERPS) 1220 (University of Warwick, Department of Economics, 2019); https://ideas.repec.org/p/wrk/warwec/1220.html More

  • in

    Vibrational modes of water predict spectral niches for photosynthesis in lakes and oceans

    1.
    Engelmann, T. W. Über Sauerstoffausscheidung von Pflanzenzellen im Mikrospektrum. Bot. Zeit. 40, 419–426 (1882).
    Google Scholar 
    2.
    Engelmann, T. W. Farbe und assimilation. Bot. Zeit. 41, 1–29 (1883).
    Google Scholar 

    3.
    Stomp, M. et al. Adaptive divergence in pigment composition promotes phytoplankton biodiversity. Nature 432, 104–107 (2004).
    CAS  Google Scholar 

    4.
    Stomp, M., Huisman, J., Stal, L. J. & Matthijs, H. C. P. Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule. ISME J. 1, 271–282 (2007).
    CAS  Google Scholar 

    5.
    Pick, F. R. The abundance and composition of freshwater picocyanobacteria in relation to light penetration. Limnol. Oceanogr. 36, 1457–1462 (1991).
    CAS  Google Scholar 

    6.
    Vörös, L., Callieri, C., Balogh, K. V. & Bertoni, R. Freshwater picocyanobacteria along a trophic gradient and light quality range. Hydrobiologia 369–370, 117–125 (1998).
    Google Scholar 

    7.
    Stomp, M. et al. Colourful coexistence of red and green picocyanobacteria in lakes and seas. Ecol. Lett. 10, 290–298 (2007).
    Google Scholar 

    8.
    Ting, C. S., Rocap, G., King, J. & Chisholm, S. W. Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends Microbiol. 10, 134–142 (2002).
    CAS  Google Scholar 

    9.
    Grébert, T. et al. Light color acclimation is a key process in the global ocean distribution of Synechococcus cyanobacteria. Proc. Natl Acad. Sci. USA 115, E2010–E2019 (2018).
    Google Scholar 

    10.
    Luimstra, V. M., Verspagen, J. M. H., Xu, T., Schuurmans, J. M. & Huisman, J. Changes in water color shift competition between phytoplankton species with contrasting light-harvesting strategies. Ecology 101, e02951 (2020).
    PubMed  PubMed Central  Google Scholar 

    11.
    Mobley, C. D. Light and Water: Radiative Transfer in Natural Waters (Academic Press, 1994).

    12.
    Kirk, J. T. O. Light and Photosynthesis in Aquatic Ecosystems 3rd edn (Cambridge Univ. Press, 2011).

    13.
    Dall’Olmo, G., Westberry, T. K., Behrenfeld, M. J., Boss, E. & Slade, W. H. Significant contribution of large particles to optical backscattering in the open ocean. Biogeosciences 6, 947–967 (2009).
    Google Scholar 

    14.
    Morel, A. et al. Optical properties of the “clearest” natural waters. Limnol. Oceanogr. 52, 217–229 (2007).
    CAS  Google Scholar 

    15.
    Pegau, W. S., Gray, D. & Zaneveld, J. R. Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity. Appl. Opt. 36, 6035–6046 (1997).
    CAS  Google Scholar 

    16.
    Sogandares, F. M. & Fry, E. S. Absorption spectrum (340–640 nm) of pure water. I. Photothermal measurements. Appl. Opt. 36, 8699–8709 (1997).
    CAS  Google Scholar 

    17.
    Pope, R. M. & Fry, E. S. Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl. Opt. 36, 8710–8723 (1997).
    CAS  Google Scholar 

    18.
    Mason, J. D., Cone, M. T. & Fry, E. S. Ultraviolet (250–550 nm) absorption spectrum of pure water. Appl. Opt. 55, 7163–7172 (2016).
    CAS  Google Scholar 

    19.
    Mobley, C. D. & Sundman, L. K. HydroLight 5.3—EcoLight 5.3 (Sequoia Scientific Inc., 2016).

    20.
    Sathyendranath, S., Brewin, R. J., Jackson, T., Mélin, F. & Platt, T. Ocean-colour products for climate-change studies: what are their ideal characteristics? Remote Sens. Environ. 203, 125–138 (2017).
    Google Scholar 

    21.
    Neeley, A. R. & Mannino, A. (eds) IOCCG Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation, Volume 1.0. Inherent Optical Property Measurements and Protocols: Absorption Coefficient (IOCCG, 2018).

    22.
    Farrant, G. K. et al. Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria. Proc. Natl Acad. Sci. USA 113, E3365–E3374 (2016).
    CAS  Google Scholar 

    23.
    Chisholm, S. W. et al. Prochlorococcus marinus nov. gen. nov. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b. Arch. Microbiol. 157, 297–300 (1992).
    CAS  Google Scholar 

    24.
    Partensky, F., Hess, W. R. & Vaulot, D. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol. Mol. Biol. Rev. 63, 106–127 (1999).
    CAS  PubMed  PubMed Central  Google Scholar 

    25.
    Moore, L. R., Goericke, R. & Chisholm, S. W. Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties. Mar. Ecol. Prog. Ser. 116, 259–275 (1995).
    Google Scholar 

    26.
    Tandeau de Marsac, N. Phycobiliproteins and phycobilisomes: the early observations. Photosynth. Res. 76, 193–205 (2003).
    Google Scholar 

    27.
    Six, C. et al. Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study. Genome Biol. 8, R259 (2007).
    PubMed  PubMed Central  Google Scholar 

    28.
    Watanabe, M. & Ikeuchi, M. Phycobilisome: architecture of a light-harvesting supercomplex. Photosynth. Res. 116, 265–276 (2013).
    CAS  Google Scholar 

    29.
    Sanfilippo, J. E., Garczarek, L., Partensky, F. & Kehoe, D. M. Chromatic acclimation in cyanobacteria: a diverse and widespread process for optimizing photosynthesis. Annu. Rev. Microbiol. 73, 407–433 (2019).
    CAS  Google Scholar 

    30.
    Palenik, B. Chromatic adaptation in marine Synechococcus strains. Appl. Environ. Microbiol. 67, 991–994 (2001).
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Stomp, M. et al. The timescale of phenotypic plasticity and its impact on competition in fluctuating environments. Am. Nat. 172, E169–E185 (2008).
    Google Scholar 

    32.
    Hirose, Y. et al. Diverse chromatic acclimation processes regulating phycoerythrocyanin and rod-shaped phycobilisome in cyanobacteria. Mol. Plant 12, 715–725 (2019).
    CAS  Google Scholar 

    33.
    Luimstra, V. M. et al. Blue light reduces photosynthetic efficiency of cyanobacteria through an imbalance between photosystems I and II. Photosynth. Res. 138, 177–189 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    34.
    Humily, F. et al. A gene island with two possible configurations is involved in chromatic acclimation in marine Synechococcus. PLoS ONE 8, e84459 (2013).
    PubMed  PubMed Central  Google Scholar 

    35.
    Haverkamp, T. et al. Diversity and phylogeny of Baltic Sea picocyanobacteria inferred from their ITS and phycobiliprotein operons. Environ. Microbiol. 10, 174–188 (2008).
    CAS  Google Scholar 

    36.
    Huisman, J. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471–483 (2018).
    CAS  Google Scholar 

    37.
    Chen, F. et al. Phylogenetic diversity of Synechococcus in the Chesapeake Bay revealed by ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO) large subunit gene (rbcL) sequences. Aquat. Microb. Ecol. 36, 153–164 (2004).
    Google Scholar 

    38.
    Somogyi, B., Felföldi, T., Tóth, L. G., Bernát, G. & Vörös, L. Photoautotrophic picoplankton: a review on their occurrence, role and diversity in Lake Balaton. Biol. Futur. https://doi.org/10.1007/s42977-020-00030-8 (2020).

    39.
    Kardinaal, W. E. A. et al. Competition for light between toxic and nontoxic strains of the harmful cyanobacterium Microcystis. Appl. Environ. Microbiol. 73, 2939–2946 (2007).
    PubMed  PubMed Central  Google Scholar 

    40.
    Bricaud, A., Claustre, H., Ras, J. & Oubelkheir, K. Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations. J. Geophys. Res. 109, C11010 (2004).
    Google Scholar 

    41.
    Monteith, D. T. et al. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450, 537–541 (2007).
    CAS  Google Scholar 

    42.
    Weyhenmeyer, G. A., Müller, R. A., Norman, M. & Tranvik, L. J. Sensitivity of freshwaters to browning in response to future climate change. Clim. Change 134, 225–239 (2016).
    Google Scholar 

    43.
    Kritzberg, E. S. Centennial‐long trends of lake browning show major effect of afforestation. Limnol. Oceanogr. Lett. 2, 105–112 (2017).
    Google Scholar 

    44.
    Leech, D. M., Pollard, A. I., Labou, S. G. & Hampton, S. E. Fewer blue lakes and more murky lakes across the continental U.S.: implications for planktonic food webs. Limnol. Oceanogr. 63, 2661–2680 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    45.
    Ekvall, M. K. et al. Synergistic and species‐specific effects of climate change and water colour on cyanobacterial toxicity and bloom formation. Freshw. Biol. 58, 2414–2422 (2013).
    CAS  Google Scholar 

    46.
    Urrutia‐Cordero, P. et al. Phytoplankton diversity loss along a gradient of future warming and brownification in freshwater mesocosms. Freshw. Biol. 62, 1869–1878 (2017).
    Google Scholar 

    47.
    Wilken, S. et al. Primary producers or consumers? Increasing phytoplankton bacterivory along a gradient of lake warming and browning. Limnol. Oceanogr. 63, S142–S155 (2018).
    Google Scholar 

    48.
    Feuchtmayr, H. et al. Effects of brownification and warming on algal blooms, metabolism and higher trophic levels in productive shallow lake mesocosms. Sci. Tot. Environ. 678, 227–238 (2019).
    CAS  Google Scholar 

    49.
    Deininger, A., Faithfull, C. L. & Bergström, A. K. Phytoplankton response to whole lake inorganic N fertilization along a gradient in dissolved organic carbon. Ecology 98, 982–994 (2017).
    CAS  Google Scholar 

    50.
    Tan, X., Zhang, D., Duan, Z., Parajuli, K. & Hu, J. Effects of light color on interspecific competition between Microcystis aeruginosa and Chlorella pyrenoidosa in batch experiment. Environ. Sci. Pollut. Res. 27, 344–352 (2020).
    CAS  Google Scholar 

    51.
    Burson, A., Stomp, M., Greenwell, E., Grosse, J. & Huisman, J. Competition for nutrients and light: testing advances in resource competition with a natural phytoplankton community. Ecology 99, 1108–1118 (2018).
    Google Scholar 

    52.
    Dutkiewicz, S. et al. Dimensions of marine phytoplankton diversity. Biogeosciences 17, 609–634 (2020).
    Google Scholar 

    53.
    Johnson, Z. I. et al. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311, 1737–1740 (2006).
    CAS  Google Scholar 

    54.
    Malmstrom, R. R. et al. Temporal dynamics of Prochlorococcus ecotypes in the Atlantic and Pacific Oceans. ISME J. 4, 1252–1264 (2010).
    Google Scholar 

    55.
    Lange, P. K. et al. Scratching beneath the surface: a model to predict the vertical distribution of Prochlorococcus using remote sensing. Remote Sens. 10, 847 (2018).
    Google Scholar 

    56.
    Wernand, M. R., van der Woerd, H. J. & Gieskes, W. W. C. Trends in ocean colour and chlorophyll concentration from 1889 to 2000, worldwide. PLoS ONE 8, e63766 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    57.
    Dutkiewicz, S. et al. Ocean colour signature of climate change. Nat. Commun. 10, 578 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    58.
    Bricaud, A., Morel, A. & Prieur, L. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnol. Oceanogr. 26, 43–53 (1981).
    CAS  Google Scholar 

    59.
    Twardowski, M. S., Boss, E., Sullivan, J. M. & Donaghay, P. L. Modeling the spectral shape of absorption by chromophoric dissolved organic matter. Mar. Chem. 89, 69–88 (2004).
    CAS  Google Scholar 

    60.
    Babin, M. et al. Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. J. Geophys. Res. 108, 1–20 (2003).
    Google Scholar 

    61.
    Babin, M., Morel, A., Fournier-Sicre, V., Fell, F. & Stramski, D. Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration. Limnol. Oceanogr. 48, 843–859 (2003).
    Google Scholar 

    62.
    Doxaran, D. et al. Spectral variations of light scattering by marine particles in coastal waters, from the visible to the near infrared. Limnol. Oceanogr. 54, 1257–1271 (2009).
    CAS  Google Scholar 

    63.
    Nechad, B., Ruddick, K. G. & Park, Y. Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sens. Environ. 114, 854–866 (2010).
    Google Scholar 

    64.
    Petzold, T. J. Volume Scattering Functions for Selected Ocean Waters (No. SIO-REF-72-78) (Scripps Institution of Oceanography, 1972).

    65.
    Morel, A. & Gentili, B. Diffuse reflectance of oceanic waters: its dependence on sun angle as influenced by the molecular scattering contribution. Appl. Opt. 30, 4427–4438 (1991).
    CAS  Google Scholar 

    66.
    Sathyendranath, S. et al. An ocean-colour time series for use in climate studies: the experience of the Ocean-Colour Climate Change Initiative (OC-CCI). Sensors 19, 4285 (2019).
    CAS  Google Scholar 

    67.
    Holtrop, T. et al. Data: vibrational modes of water predict spectral niches for photosynthesis in lakes and oceans. https://doi.org/10.6084/m9.figshare.c.5140601.v1 (2020).

    68.
    Sanfilippo, J. E. et al. Interplay between differentially expressed enzymes contributes to light color acclimation in marine Synechococcus. Proc. Natl Acad. Sci. USA 116, 6457–6462 (2019).
    CAS  Google Scholar  More

  • in

    Tree mode of death and mortality risk factors across Amazon forests

    School of Geography, Earth and Enviornmental Sciences, University of Birmingham, Birmingham, UK
    Adriane Esquivel-Muelbert & Thomas A. M. Pugh

    School of Geography, University of Leeds, Leeds, UK
    Adriane Esquivel-Muelbert, Oliver L. Phillips, Roel J. W. Brienen, Martin J. P. Sullivan, Timothy R. Baker, Emanuel Gloor, Aurora Levesley, Simon L. Lewis, Karina Liana Lisboa Melgaço Ladvocat, Gabriela Lopez-Gonzalez, Nadir Pallqui Camacho, Julie Peacock, Georgia Pickavance & David Galbraith

    Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
    Adriane Esquivel-Muelbert & Thomas A. M. Pugh

    School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UK
    Sophie Fauset

    Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
    Martin J. P. Sullivan

    International Master Program of Agriculture, National Chung Hsing University, Taichung, Taiwan
    Kuo-Jung Chao

    Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
    Ted R. Feldpausch

    Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
    Niro Higuchi, Adriano José Nogueira Lima & Carlos Quesada

    School of Mathematics, University of Leeds, Leeds, UK
    Jeanne Houwing-Duistermaat & Haiyan Liu

    Faculty of Natural Sciences, Department of Life, Imperial College London Sciences, London, UK
    Jon Lloyd

    Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
    Yadvinder Malhi & Simone Matias de Almeida Reis

    UNEMAT – Universidade do Estado de Mato Grosso PPG-Ecologia e Conservação, Campus de Nova Xavantina, Nova Xavantina, MT, Brazil
    Beatriz Marimon, Ben Hur Marimon Junior, Paulo Morandi, Edmar Almeida de Oliveira & Simone Matias de Almeida Reis

    Jardín Botánico de Missouri, Oxapampa, Peru
    Abel Monteagudo-Mendoza, Victor Chama Moscoso, Luis Valenzuela Gamarra & Rodolfo Vasquez Martinez

    Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, Netherlands
    Lourens Poorter, Frans Bongers, Marielos Peña-Claros & Pieter Zuidema

    Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, AC, Brazil
    Marcos Silveira

    Instituto de Investigaciones para el Desarrollo Forestal (INDEFOR), Universidad de Los Andes, Mérida, Venezuela
    Emilio Vilanova Torre & Julio Serrano

    University of California, Berkeley, CA, USA
    Emilio Vilanova Torre

    Escuela de Ciencias Agropecuarias y Ambientales, Universidad Nacional Abierta y a Distancia, Boyacá, Colombia
    Esteban Alvarez Dávila

    Fundación ConVida, Medellín, Colombia
    Esteban Alvarez Dávila

    Instituto de Investigaciones de la Amazonia Peruana, Iquitos, Peru
    Jhon del Aguila Pasquel, Gerardo A. Aymard C., Nallaret Davila Cardozo & Eurídice Honorio Coronado

    Instituto de Biodiversidade e Florestas, Universidade Federal do Oeste do Pará, Santarém, Brazil
    Everton Almeida

    Center for Tropical Conservation, Nicholas School of the Environment, University in Durham, Durham, NC, USA
    Patricia Alvarez Loayza

    Projeto Dinâmica Biológica de Fragmentos, Instituto Nacional de Pesquisas da Amazônia Florestais, Manaus, AM, Brazil
    Ana Andrade & José Luís Camargo

    National Institute for Space Research (INPE), São José dos Campos, SP, Brazil
    Luiz E. O. C. Aragão

    Museo de Historia Natural Noel Kempff Mercado, Universidad Autónoma Gabriel Rene Moreno, Santa Cruz de la Sierra, Bolivia
    Alejandro Araujo-Murakami & Marisol Toledo

    Wageningen Environmental Research, Wageningen University and Research, Wageningen, Netherlands
    Eric Arets

    Dirección de la Carrera de Biología, Universidad Autónoma Gabriel René Moreno, Santa Cruz de la Sierra, Bolivia
    Luzmila Arroyo

    INRAE, UMR EcoFoG, CNRS, Cirad, AgroParisTech, Université des Antilles, Université de Guyane, Kourou, France
    Michel Baisie, Damien Bonal, Benoit Burban, Aurélie Dourdain, Maxime Rejou-Machain & Clement Stahl

    Department of Biological Sciences, International Center for Tropical Botany, Florida International University, Miami, FL, USA
    Christopher Baraloto

    Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, Brazil
    Plínio Barbosa Camargo

    Universidade Federal do Acre, Campus Floresta, Cruzeiro do Sul, Brazil
    Jorcely Barroso

    UR Forest & Societies, CIRAD, Montpellier, France
    Lilian Blanc

    Department of Biology, Utrecht, Netherlands
    René Boot

    Woods Hole Research Center, Falmouth, MA, USA
    Foster Brown

    Laboratório de Botânica e Ecologia Vegetal, Universidade Federal do Acre, Rio Branco, AC, Brazil
    Wendeson Castro

    Laboratoire Evolution et Diversite Biologique, CNRS, Toulouse, France
    Jerome Chave

    Inventory and Monitoring Program, National Park Service, Fort Collins, CO, USA
    James Comiskey

    Proyecto Castaña, Madre de Dios, Peru
    Fernando Cornejo Valverde

    Instituto de Geociências, Faculdade de Meteorologia, Universidade Federal do Para, Belém, Brazil
    Antonio Lola da Costa

    Department of Anthropology and Primate Molecular Ecology and Evolution Laboratory, University of Texas, Austin, TX, USA
    Anthony Di Fiore

    National Museum of Natural History, Smithsonian Institute, Washington, DC, USA
    Terry Erwin

    Universidad Nacional Jorge Basadre de Grohmann, Tacna, Peru
    Gerardo Flores Llampazo

    Museu Paraense Emílio Goeldi, Belém, Brazil
    Ima Célia Guimarães Vieira & Rafael Salomão

    Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
    Rafael Herrera

    IIAMA, Universitat Politécnica de València, València, Spain
    Rafael Herrera

    Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
    Isau Huamantupa-Chuquimaco

    Instituto Amazónico de Investigaciones Imani, Universidad Nacional de Colombia Sede Amazonia, Leticia, Colombia
    Eliana Jimenez-Rojas

    Agteca, Santa Cruz, Bolivia
    Timothy Killeen

    College of Science and Engineering, James Cook University, Cairns, QLD, Australia
    Susan Laurance & William Laurance

    Department of Geography, University College London, London, UK
    Simon L. Lewis

    Environmental Science and Policy, George Mason University, Fairfax, VA, USA
    Thomas Lovejoy

    Research School of Biology, Australian National University, Canberra, ACT, Australia
    Patrick Meir

    School of Geosciences, University of Edinburgh, Edinburgh, UK
    Patrick Meir

    Escuela de Ciencias Forestales, Unidad Académica del Trópico, Universidad Mayor de San Simón, Cochabamba, Bolivia
    Casimiro Mendoza

    Facultad de Ingeniería Ambiental, Universidad Estatal Amazónica, Puyo, Ecuador
    David Neill

    Universidad Nacional de San Antonio Abad del Cusco, Cusco, Perú
    Percy Nuñez Vargas, Nadir Pallqui Camacho & Javier Silva Espejo

    Universidad Autónoma del Beni José Ballivián, Trinidad, Bolivia
    Guido Pardo & Vincent Vos

    Universidad Regional Amazónica Ikiam, Ikiam, Ecuador
    Maria Cristina Peñuela-Mora

    Broward County Parks Recreation, Oakland Park, FL, USA
    John Pipoly

    Keller Science Action Center, Field Museum, Chicago, IL, USA
    Nigel Pitman

    Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia
    Adriana Prieto & Agustín Rudas

    Institute of Research for Forestry Development (INDEFOR), Universidad de los Andes, Mérida, Venezuela
    Hirma Ramirez-Angulo

    Socioecosistemas y Cambio Climatico, Fundacion Con Vida, Medellín, Colombia
    Zorayda Restrepo Correa

    Centro de Conservacion, Investigacion y Manejo de Areas Naturales, CIMA Cordillera Azul, Lima, Peru
    Lily Rodriguez Bayona

    Universidade Federal Rural da Amazônia, Belém, Brazil
    Rafael Salomão & Natalino Silva

    Departamento de Biología, Universidad de La Serena, La Serena, Chile
    Javier Silva Espejo

    Guyana Forestry Commission, Georgetown, Guyana
    James Singh

    Federal University of Alagoas, Maceió, Brazil
    Juliana Stropp

    Institute for Conservation Research, Escondido, CA, USA
    Varun Swamy

    Institute for Transport Studies, University of Leeds, Leeds, UK
    Joey Talbot

    Biodiversity Dynamics, Naturalis Biodiversity Center, Leiden, The Netherlands
    Hans ter Steege

    Systems Ecology, Free University, De Boelelaan 1087, Amsterdam, Netherlands
    Hans ter Steege

    Department of Biology, University of Florida, Gainesville, FL, USA
    John Terborgh

    Iwokrama International Centre for Rainforest Conservation and Development, Georgetown, Guyana
    Raquel Thomas

    Universidad de los Andes, Mérida, Venezuela
    Armando Torres-Lezama

    School of Geography, University of Nottingham, Nottingham, UK
    Geertje van der Heijden

    Van Hall Larenstein University of Applied Sciences, Leeuwarden, Netherlands
    Peter van der Meer

    Van der Hoult Forestry Consulting, Leeuwarden, The Netherlands
    Peter van der Hout

    Núcleo de Estudos e Pesquisas Ambientais – Universidade Estadual de Campinas, Campinas, Brazil
    Simone Aparecida Vieira

    Herbario del Sur de Bolivia, Universidad de San Francisco Xavier de Chuquisaca, Sucre, Bolivia
    Jeanneth Villalobos Cayo

    Tropenbos International, Wageningen, Netherlands
    Roderick Zagt

    A.E.-M. and D.G. designed the study with contributions from O.L.P., R.J.W.B., S.F. and M.J.P.S. A.E.-M. carried out the analyses with inputs from D.G., O.L.P., R.J.W.B., S.F., M.J.P.S., J.H.-.D. and H.L. A.E.-M. wrote a first draft with contributions from D.G., M.J.P.S., T.A.M.P., S.F. and O.L.P. O.L.P., R.J.W.B., S.F., M.J.P.S., T.R.B., K.-J.C., T.R.F., N.H., Y.M., B.M., B.H.M.J., A.M.-M., L.P., M.S., E.V.T., E.A.D., J.d.A.P., E.A., P.A.L., A.A., L.E.O.CA., A.A.-M., E.Arets, L.A., G.A.A.C., M.B., C.B., P.B.C., J.B., L.B., D.B., F.B., R.J.W.B., F.Brown, B.B., J.L.C., W.C., V.C.M., J.C., J.Comiskey, F.C.V., A.L.d.C., N.D.C., A.D.F., A.D., T.E., G.F.L., I.C.G.V., R.H., E.H.C., I.H.-C., E.J.-R., T.K., S.L., W.L., S.L.L., T.L., P.M., C.M., P.Morandi, D.N., A.J.N.L., P.N.V., E.A.d.O., N.P.C., G.Prado, J.Pipoly, M.P.-C., M.C.P.-M., N.P., A.P., C.Q., H.R.-A., S.M.d.A.R., M.R.-M., Z.R.C., L.R.B., A.R., R.S., J.S., J.S.E., N.S., J.Singh, C.S., J.Stroop, V.S., J.T., H.t.S., J.T., R.T., M.T., A.T.-L., L.V.G., G.v.d.H., P.v.d.M., P.v.d.H., R.V.M., S.A.V., J.V.C., V.V., R.Z. and P.Z. led field expeditions for data collection. O.L.P., J.L. and Y.M. conceived the RAINFOR forest plot network; D.G., E.G. and T.R.B. contributed to its development. O.L.P., R.J.W.B., T.R.F., T.R.B., A.M.‐M., L.E.O.C.A., E.A.D., B.M., B.H.M.J., N.H., E.V.T., J.C., E.G. and Y.M. coordinated data collection with the help of many co‐authors. O.L.P., T.R.B., S.L.L. and G.L.-G. conceived ForestPlots.net, and M.J.P.S., A.L., J.Peacock, G.P., K.L.L.M.L., D.G. and E.G. helped to develop it. All authors read and approved the manuscript (with important insights provided by O.L.P., L.P., H.t.S., T.E., W.C., S.M.d.A.R., E.G., E.A.d.O., P.M., M.J.P.S., D.B., G.v.d.H. and P.Z.). More

  • in

    Microevolution in our megadont relative

    1.
    Broom, R. Nature 142, 377–379 (1938).
    Article  Google Scholar 
    2.
    Grine, F. E. (ed.) Evolutionary History of the “Robust” Australopithecines (Aldine de Gruyter, 1988).

    3.
    Herries, A. I. R. & Adams, J. W. J. Hum. Evol. 65, 676–681 (2013).
    Article  Google Scholar 

    4.
    Pickering, R. et al. Nature 565, 226–229 (2019).
    CAS  Google Scholar 

    5.
    Herries, A. I. R. et al. Science 368, eaaw7293 (2020).
    CAS  Article  Google Scholar 

    6.
    Martin, J. M. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-01319-6 (2020).

    7.
    Wood, B. & Grabowski, M. in Macroevolution (eds Serrelli, E. & Gontier, N.) 345–376 (Springer, 2015).

    8.
    Vrba, E. S. in Paleoclimate and Evolution with Emphasis on Human Origins (eds Vrba, E. S. et al.) 24–45 (Yale Univ. Press, 1995).

    9.
    Potts, R. & Faith, J. T. J. Hum. Evol. 87, 5–20 (2015).
    Article  Google Scholar  More