More stories

  • in

    Small-scale alpine topography at low latitudes and high altitudes: refuge areas of the genus Chrysanthemum and its allies

    1.
    Hirakawa, H. et al. De novo whole-genome assembly in Chrysanthemum seticuspe, a model species of Chrysanthemums, and its application to genetic and gene discovery analysis. DNA Res. 26, 195–203 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Stevenson, T. Chrysanthemums. Nature 90, 248 (1912).
    Google Scholar 

    3.
    Ministry of Agriculture and Fisheries UK. Control of the Chrysanthemum midge. Nature 144, 280 (1939).

    4.
    Cockshull, K. E. & Hughes, A. P. Distribution of dry matter to flowers in Chrysanthemum morifolium. Nature 215, 780–781 (1976).
    Article  Google Scholar 

    5.
    Courtney-Gutterson, N. et al. Modification of flower color in florist’s Chrysanthemum: production of a white–flowering variety through molecular genetics. Nat. Biotechnol. 12, 268–271 (1994).
    CAS  Article  Google Scholar 

    6.
    Gamalero, E. Effects of Pseudomonas putida S1Pf1Rif against Chrysanthemum yellows phytoplasma infection. Phytopathology 100, 805–813 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    7.
    Wei, Q. et al. Control of chrysanthemum flowering through integration with an aging pathway. Nat. Commun. 8, 829 (2017).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    8.
    Yang, L., Wen, X., Fu, J. & Dai, S. ClCRY2 facilitates floral transition in Chrysanthemum lavandulifolium by affecting the transcription of circadian clock-related genes under short-day photoperiods. Hortic. Res. 5, 58 (2018).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    9.
    Su, J. et al. Current achievements and future prospects in the genetic breeding of chrysanthemum: a review. Hortic. Res. 6, 109 (2019).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    10.
    Kubitzki, K. The families and genera of vascular plants, Vol. VIII Flowering Plants・Eudicots (eds Kadereit, J. W. & Jeffrey, C.) Compositae (eds. Anderberg, A. A. et al.) (Springer-Verlag Berlin Heidelberg, 2007).

    11.
    Poljakov, P. P. Duo genere novae fam. Compositae. Not. Syst. Herb. Inst. Bot. Akad. Sci. URSS 17, 418–431 (1955).
    Google Scholar 

    12.
    Muldashev, A. A. A new genus Phaeostigma (Asteraceae) from the East Asia. Botanischeskii Zh . 66, 584–588 (1981).
    Google Scholar 

    13.
    Muldashev, A. A. A critical review of the genus Ajania (Asteraceae-Anthemideae). Botanischeskii Zh . 68, 207–214 (1983).
    Google Scholar 

    14.
    Bremer, K. & Humphries, C. J. The generic monograph of the Asteraceae-Anthemideae. Bull. Nat. Hist. Mus. Lond. 23, 71–177 (1993).
    Google Scholar 

    15.
    Huang, Y., An, Y. M., Meng, S. Y., Guo, Y. P. & Rao, G. Y. Taxonomic status and phylogenetic position of Phaeostigma in the subtribe Artemisiinae (Asteraceae). J. Syst. Evol. 55, 426–436 (2017).
    Article  Google Scholar 

    16.
    Zhao, H. B., Chen, F. D., Chen, S. M., Wu, G. S. & Guo, W. M. Molecular phylogeny of Chrysanthemum, Ajania and its allies (Anthemideae, Asteraceae) as inferred from nuclear ribosomal ITS and chloroplast trnL-F IGS sequences. Plant Syst. Evol. 284, 153–169 (2010).
    CAS  Article  Google Scholar 

    17.
    Liu, P. L., Wan, Q., Guo, Y. P., Yang, J. & Rao, G. Y. Phylogeny of the Genus Chrysanthemum L.: evidence from single-copy nuclear gene and chloroplast DNA sequences. PLoS ONE 7, e48970 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Ohashi, H. & Yonekura, K. New combinations in Chrysanthemum (Compositae-Anthemideae) of Asia with a list of Japanese Specie. J. Jpn. Bot. 79, 186–195 (2004).
    Google Scholar 

    19.
    Sanz, M. et al. Molecular phylogeny and evolution of floral characters of Artemisia and allies (Anthemideae, Asteraceae): evidence from nrDNA ETS and ITS sequences. Taxon 57, 1–13 (2008).
    Google Scholar 

    20.
    An, Y. M. Studies on the Phylogeny and Biogeography of the Genus Ajania and Its Allies. Master’s thesis. Peking University (2012).

    21.
    Barreda, V. D. et al. Eocene Patagonia fossils of the daisy family. Science 329, 1621–1621 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Wefferling, K. M. & Hoot, S. B. Dated phylogeography of western North American subalpine marshmarigolds (Caltha spp. Ranunculaceae): Miocene-Pliocene divergence of hexaploids, multiple origins of allododecaploids during the Pleistocene, and repeated recolonization of Last Glacial Maxim. J. Biogeogr. 45, 1077–1089 (2018).
    Article  Google Scholar 

    23.
    Wiens, J. J. Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution 58, 193–197 (2004).
    PubMed  Article  PubMed Central  Google Scholar 

    24.
    Ricklefs, R. E. Evolutionary diversification and the origin of the diversity-environment relationship. Ecology 87, S3–S13 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    25.
    Li, J., Wan, Q., Guo, Y. P., Abbott, R. J. & Rao, G. Y. Should I stay or should I go: biogeographic and evolutionary history of a polyploid complex (Chrysanthemum indicum complex) in response to Pleistocene climate change in China. N. Phytol. 201, 1031–1044 (2014).
    CAS  Article  Google Scholar 

    26.
    Rahbek, C. et al. Humboldt’s enigma: What causes global patterns of mountain biodiversity? Science 365, 1108–1113 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Rahbek, C. et al. Building mountain biodiversity: Geological and evolutionary processes. Science 365, 1114–1119 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Cosacov, A., Sérsic, A. N., Sosa, V., Johnson, L. A. & Cocucci, A. A. Multiple periglacial refugia in the Patagonian steppe and post-glacial colonization of the Andes: the phylogeography of Calceolaria polyrhiza. J. Biogeogr. 37, 1463–1477 (2010).
    Google Scholar 

    29.
    García-Aloy, S. et al. North-west Africa as a source and refuge area of plant biodiversity: a case study on Campanula kremeri and Campanula occidentalis. J. Biogeogr. 44, 2057–2068 (2017).
    Article  Google Scholar 

    30.
    Pérez-Escobar, O. A. et al. Recent origin and rapid speciation of Neotropical orchids in the world’s richest plant biodiversity hotspot. N. Phytol. 215, 891–905 (2017).
    Article  Google Scholar 

    31.
    Zhao, Y. P. et al. Resequencing 545 ginkgo genomes across the world reveals the evolutionary history of the living fossil. Nat. Commun. 10, 4201 (2019).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    32.
    Xing, Y. & Ree, R. H. Uplift-driven diversification in the Hengduan mountains, a temperate biodiversity hotspot. Proc. Natl Acad. Sci. USA 114, E3444 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Sun, H. 2002. Evolution of arctic-tertiary flora in Himalayan-Hengduan mountains. Acta Bot. Yunnanica. 24, 671–688 (2002).
    Google Scholar 

    34.
    Sun, H. & Li, Z. M. Qinghai-Tibet Plateau uplift and its impact on Tethys flora. Adv. Earth. Sci. 18, 852–862 (2003).
    Google Scholar 

    35.
    Zhang, D. C., Zhang, Y. H., Boufford, D. E. & Sun, H. Elevational patterns of species richness and endemism for some important taxa in the Hengduan mountains, southwestern China. Biodivers. Conserv. 18, 699–716 (2009).
    Article  Google Scholar 

    36.
    Royer, D. L., McElwain, J. C., Adams, J. M. & Wilf, P. Sensitivity of leaf size and shape to climate within Acer rubrum and Quercus kelloggii. N. Phytol. 179, 808–817 (2008).
    Article  Google Scholar 

    37.
    Opedal, Ø. H., Armbruster, W. S. & Graae, B. J. Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape. Plant Ecol. Divers. 8, 305–315 (2015).
    Article  Google Scholar 

    38.
    Tölgyesi, C. Tree-herb co-existence and community assembly in natural forest-steppe transitions. Plant Ecol. Divers. 11, 465–477 (2018).
    Article  Google Scholar 

    39.
    Rumpf, S. B. Range dynamics of mountain plants decrease with elevation. Proc. Natl Acad. Sci. USA 115, 1848–1853 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Camarero, J. J., Gutiérrez, E. & Fortin, M. J. Spatial patterns of plant richness across treeline ecotones in the Pyrenees reveal different locations for richness and tree cover boundaries. Glob. Ecol. Biogeogr. 15, 182–191 (2006).
    Article  Google Scholar 

    41.
    Liang, E. et al. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proc. Natl Acad. Sci. USA 113, 4380–4385 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Li, P. et al. Genetic diversity, population structure and association analysis in cut chrysanthemum (Chrysanthemum morifolium Ramat.). Mol. Genet. Genomics. 291, 1117–1125 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Murray, M. G. & Thompson, W. F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321–4325 (1980).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    44.
    Zhang, F. et al. SRAP-based mapping and QTL detection for inflorescence-related traits in chrysanthemum (Dendranthema morifolium). Mol. Breed. 27, 11–23 (2011).
    CAS  Article  Google Scholar 

    45.
    Li, G. & Quiros, C. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor. Appl. Genet. 103, 455–461 (2001).
    CAS  Article  Google Scholar 

    46.
    Shen, J. et al. Lake sediment records on climate change and human activities since the Holocene in Erhai catchment, Yunnan Province, China. Sci. China Ser. D. Earth Sci. 48, 353–363 (2005).
    CAS  Article  Google Scholar 

    47.
    Hoorn, C. et al. Eocene palynological record of climate change and Tibetan Plateau uplift (Xining Basin, China). Palaeogeogr. Palaeoclimatol. Palaeoecol. 344–345, 16–38 (2012).
    Article  Google Scholar 

    48.
    Cao, X., Ni, J., Herzschuh, U., Wang, Y. & Zhao, Y. A late Quaternary pollen dataset from eastern continental Asia for vegetation and climate reconstructions: Set up and evaluation. Rev. Palaeobot. Palyno. 194, 21–37 (2013).
    Article  Google Scholar 

    49.
    Li, S. et al. Magnetostratigraphy of the Dali Basin in Yunnan and implications for late Neogene rotation of the southeast margin of the Tibetan Plateau. J. Geophys. Res-Sol. Ea. 118, 791–807 (2013).
    Article  Google Scholar 

    50.
    Gourbet, L. et al. Reappraisal of the Jianchuan Cenozoic basin stratigraphy and its implications on the SE Tibetan plateau evolution. Tectonophysics 700–701, 162–179 (2017).
    Article  CAS  Google Scholar 

    51.
    Wu, J. et al. Paleoelevations in the Jianchuan Basin of the southeastern Tibetan Plateau based on stable isotope and pollen grain analyses. Palaeogeogr. Palaeoclimatol. Palaeoecol. 510, 93–108 (2018).
    Article  Google Scholar 

    52.
    Li, Q., Wu, H., Yu, Y., Sun, A. & Luo, Y. Large-scale vegetation history in China and its response to climate change since the Last Glacial Maximum. Quat. Int. 500, 108–119 (2019).
    Article  Google Scholar 

    53.
    Mutanga, O. et al. Explaining grass-nutrient patterns in a savanna rangeland of southern Africa. J. Biogeogr. 31, 819–829 (2004).
    Article  Google Scholar 

    54.
    Rowe, R. J. Elevational gradient analyses and the use of historical museum specimens:a cautionary tale. J. Biogeogr. 32, 1883–1897 (2005).
    Article  Google Scholar 

    55.
    Barbo, D. N., Chappelka, A. H., Somers, G. L., Miller-Goodman, M. S. & Stolte, K. Diversity of an early successional plant community as influenced by ozone. N. Phytol. 138, 653–662 (1998).
    CAS  Article  Google Scholar 

    56.
    Liang, J. et al. Positive biodiversity-productivity relationship predominant in global forests. Science 354, aaf8957 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    57.
    Vermeer, J. & Peterson, R. L. Glandular trichomes on the inflorescence of Chrysanthemum morifolium cv. Dramatic (Compositae). II. Ultrastruct. Histochem. Can. J. Bot. 57, 705–713 (1979).
    Google Scholar 

    58.
    Ren, J. B. & Guo, Y. P. Behind the diversity: Ontogenies of radiate, disciform, and discoid capitula of Chrysanthemum and its allies. J. Syst. Evol. 53, 520–528 (2015).
    Article  Google Scholar 

    59.
    Li, J., Guo, Y. & Romane, F. Environmental heterogeneity and population variability of Sclerophyllous Oaks (Quercus Sec. suber) in East Himalayan region. Forestry Stud. China 2, 1–15 (2000).
    CAS  Google Scholar 

    60.
    Wright, A. J. et al. Plants are less negatively affected by flooding when growing in species-rich plant communities. N. Phytol. 213, 645–656 (2017).
    Article  Google Scholar 

    61.
    Hughes, C. E. & Atchison, G. W. The ubiquity of alpine plant radiations: from the Andes to the Hengduan mountains. N. Phytol. 207, 275–282 (2015).
    Article  Google Scholar 

    62.
    Pfister, C. A. & Hay, M. E. Associational plant refuges: convergent patterns in marine and terrestrial communities result from differing mechanisms. Oecologia 77, I18–I129 (1988).
    Article  Google Scholar 

    63.
    Zhang, Y. C., Shi, G. R. & Shen, S. Z. A review of Permian stratigraphy, palaeobiogeography and palaeogeography of the Qinghai–Tibet plateau. Gondwana Res. 24, 55–76 (2013).
    CAS  Article  Google Scholar 

    64.
    Zhou, X. et al. Vegetation change and evolutionary response of large mammal fauna during the mid-Pleistocene transition in temperate northern East Asia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 505, 287–294 (2018).
    Article  Google Scholar 

    65.
    Barreda, V. D. et al. Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica. Proc. Natl Acad. Sci. USA 112, 10989–10994 (2105).
    Article  CAS  Google Scholar 

    66.
    Huang, C. H. et al. Multiple polyploidization events across asteraceae with two nested events in the early history revealed by nuclear phylogenomics. Mol. Biol. Evol. 33, 2820–2835 (2016).

    67.
    Credner, W. Geography Investigation Report in 1931. In: Report Collecton of Department of Geography, Vol. 1, 1–35 (National Sun Yat-sen University, 1931).

    68.
    Credner, W. Observation on geology and morphology of Yunnan. Geol. Surv. Kwangtung Kwangshi, Spec. Publ. No. X, 51 (1932).
    Google Scholar 

    69.
    Yang, J. Q., Cui, Z. J., Yi, C. L., Sun, J. M. & Yang, L. R. “Tali Glaciation” on Massif Diancang. Sci. China Ser. D 50, 1685–1692 (2007).
    Article  Google Scholar 

    70.
    Hoke, G. D., Zeng, J. L., Hren, M. T., Wissink, G. K. & Garzione, C. N. Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene. Earth Planet. Sc. Lett. 394, 270–278 (2014).
    CAS  Article  Google Scholar 

    71.
    Li, S., Currie, B. S., Rowley, D. B. & Ingalls, M. Cenozoic paleoaltimetry of the SE margin of the Tibetan Plateau: constraints on the tectonic evolution of the region. Earth Planet. Sc. Lett. 432, 415–424 (2015).
    CAS  Article  Google Scholar 

    72.
    Kuang, M. et al. Study on the Palaeovegation and Palaeoclimate Since Late Pleistocene in the Dianchang Mountain Area in Dali of YunNan Province. J. Southwest China Norm. Univ 27, 759–765 (2002).
    Google Scholar 

    73.
    Xiao, X. et al. Latest Pleistocene and Holocene vegetation and climate history inferred from an alpine lacustrine record, northwestern Yunnan Province, southwestern China. Quat. Sci. Rev. 86, 35–48 (2014).
    Article  Google Scholar 

    74.
    Mandela, J. R. et al. A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae. Proc. Natl Acad. Sci. USA 116, 14083–14088 (2019).
    Article  CAS  Google Scholar 

    75.
    Sheldon, N. D. Quaternary glacial-interglacial climate cycles in Hawaii. J. Geol. 114, 367–376 (2006).
    Article  Google Scholar 

    76.
    Milbau, A., Shevtsova, A., Osler, N., Mooshammer, M. & Graae, B. J. Plant community type and small-scale disturbances, but not altitude, influence the invasibility in subarctic ecosystems. N. Phytol. 197, 1002–1011 (2013).
    Article  Google Scholar 

    77.
    Wang, W. M. On the origin and development of Artemisia (Asteraceae) in the geological past. Bot. J. Linn. Soc. 145, 331–336 (2004).
    Article  Google Scholar 

    78.
    Pellicer, J. et al. Palynological study of Ajania and related genera (Asteraceae, Anthemideae). Bot. J. Linn. Soc. 161, 171–189 (2009).
    Article  Google Scholar 

    79.
    Friedman, J. & Barrett, S. C. H. Wind of change: new insights on the ecology and evolution of pollination and mating in wind-pollinated plants. Ann. Bot.-Lond. 103, 1515–1527 (2009).
    Article  Google Scholar 

    80.
    Watson, L. E., Bates, P. L., Evans, T. M., Unwin, M. M. & Estes, R. J. Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera. BMC Evol. Biol. 2, 17–28 (2002).
    PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Histological evidence for secretory bioluminescence from pectoral pockets of the American Pocket Shark (Mollisquama mississippiensis)

    1.
    Dolganov, V. N. A new shark from the family Squalidae caught on the Naska Submarine Ridge. Zool. Zh. 63, 1589–1591 (1984).
    Google Scholar 
    2.
    Grace, M. A., Doosey, M. H, Bart, H. L., Naylor, G. J. First record of Mollisquama sp. (Chondrichthyes: Squaliformes: Dalatiidae) from the Gulf of Mexico, with a morphological comparison to the holotype description of Mollisquama parini Dolganov. Zootaxa 3948,587–600 (2015).

    3.
    Grace, M. A. et al. A new Western North Atlantic Ocean kitefin shark (Squaliformes: Dalatiidae) from the Gulf of Mexico. Zootaxa 4619, 109–120 (2019).
    Article  Google Scholar 

    4.
    Denton, J. S. et al. Cranial morphology in Mollisquama sp. (Squaliformes; Dalatiidae) and patterns of cranial evolution in dalatiid sharks. J. Anat. 233, 15–32 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    5.
    Munk, O. & Jorgensen, J. M. Putatively luminous tissue in the abdominal pouch of a male dalatiine shark, Euprotomicroides zantedeschia Hulley & Penrith, 1966. Acta Zool. (Stockh) 69, 247–251 (1988).
    Article  Google Scholar 

    6.
    Stehmann, M. & Krefft, G. Results of the research cruises of FRV “Walter Herwig” to South America. LXVIII. Complementary redescription of the dalatiine shark Euprotomicroides zantedeschia Hulley & Penrith, 1966 (Chondrichthyes, Squalidae), based on a second specimen from the western south Atlantic. Arch. Fisch. Wiss. 30, 1–30 (1988).

    7.
    Stehmann, M. F. W., Van Oijen, M. & Kamminga, P. Re-description of the rare taillight shark Euprotomicroides zantedeschia (Squaliformes, Dalatiidae), based on third and fourth record from off Chile. Cybium 40, 187–197 (2016).
    Google Scholar 

    8.
    Haddock, S. H. D., Moline, M. A. & Case, J. F. Bioluminescence in the sea. Annu. Rev. Mar. Sci. 2, 443–493 (2009).
    ADS  Article  Google Scholar 

    9.
    Widder, E. A. Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity. Science 328, 704–708 (2010).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Pollerspöck, J. & Straube, N. Bibliography Database|Shark-References. www.shark-references.com (2015).

    11.
    Straube, N., Li, C., Claes, J. M., Corrigan, S. & Naylor, G. J. Molecular phylogeny of Squaliformes and first occurrence of bioluminescence in sharks. BMC Evol. Biol. 15, 162 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    12.
    Gruber, D. F. et al. Biofluorescence in catsharks (Scyliorhinidae): fundamental description and relevance for elasmobranch visual ecology. Sci. Rep. 6, 24751 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Bowlby, M. R. & Case, J. F. Ultrastructure and neuronal control of luminous cells in the copepod Gaussia princeps. Biol. Bull. 180, 440–446 (1991).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Robison, B. H., Reisenbichler, K. R., Hunt, J. C. & Haddock, S. H. Light production by the arm tips of the deep-sea cephalopod Vampyroteuthis infernalis. Biol. Bull. 205, 102–109 (2003).
    PubMed  Article  PubMed Central  Google Scholar 

    15.
    Haddock, S. H. D., Dunn, C. W., Pugh, P. R. & Schnitzler, C. E. Bioluminescent and red-fluorescent lures in a deep-sea siphonophore. Science 309, 263 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Claes, J. M., Krönström, J., Holmgren, S. & Mallefet, J. Nitric oxide in the control of luminescence from lantern shark (Etmopterus spinax) photophores. J. Exp. Biol. 17, 3005–3011 (2010).
    Article  CAS  Google Scholar 

    17.
    Denton, E. J., Herring, P. J., Widder, E. A., Latz, M. F. & Case, J. F. The roles of filters in the photophores of oceanic animals and their relation to vision in the oceanic environment. Proc. R. Soc. B 225, 63–97 (1985).
    ADS  Google Scholar 

    18.
    Herring, P. J. Depth distribution of the carotenoid pigments and lipids of some oceanic animals. 2. Decapod crustaceans. J. Mar. Biol. Assoc. UK 53, 539–562 (1973).

    19.
    Herring, P. J. Bioluminescent signals and the role of reflectors. J. Opt. A Pure Appl. Op. 2, R29 (2000).
    ADS  Article  Google Scholar 

    20.
    Anctil, M. The epithelial luminescent system of Chaetopterus variopedatus. Can. J. Zool. 57, 1290–1310 (1979).
    Article  Google Scholar 

    21.
    Huvard, A. L. Ultrastructure of the light organ and immunocytochemical localization of luciferase in luminescent marine ostracods (Crustacea: Ostracoda: Cypridinidae). J. Morphol. 218, 181–193 (1993).
    PubMed  Article  PubMed Central  Google Scholar 

    22.
    Hubbs, C. L., Iwai, T. & Matsubara, K. External and internal characters, horizontal and vertical distribution, luminescence, and food of the dwarf pelagic shark Euprotomicrurus bispinatus. Bull. Scripps Inst. Ocenogr. 10, 1–81 (1967).
    Google Scholar 

    23.
    Schorno, S. Biogenesis of Hagfish Slime: Timing and Process of Slime Gland Refilling in Hagfishes (Eptatretus stoutii and Myxine glutinosa). (Doctoral dissertation, University of Guelph, USA, 2018).

    24.
    Clarke, G. L., Conover, R. J., David, C. N. & Nicol, J. A. C. Comparative studies of luminescence in copepods and other pelagic marine animals. J. Mar. Biol. Assoc. UK 42, 541–564 (1962).
    Article  Google Scholar 

    25.
    Dilly, P. N. & Herring, P. J. The light organ and ink sac of Heteroteuthis dispar (Mollusca: Cephalopoda). J. Zool. 186, 47–59 (1978).
    Article  Google Scholar 

    26.
    Bowlby, M. R., Widder, E. A. & Case, J. F. Disparate forms of bioluminescence from the amphipods Cyphocaris faurei, Scina crassicornis and S. borealis. Mar. Biol. 108, 247−253 (1991).

    27.
    Gosliner, T. M. & Vallès, Y. Shedding light onto the genera (Mollusca: Nudibranchia) Kaloplocamus and Plocamopherus with description of new species belonging to these unique bioluminescent dorids. Veliger 48, 178–205 (2006).
    Google Scholar 

    28.
    Nicol, J. A. C. Histology of the light organs of Pholas dactylus (Lamellibranchia). J. Mar. Biol. Assoc. UK 39, 109–115 (1960).
    Article  Google Scholar 

    29.
    Nicol, J. A. C. Observations on luminescence in pelagic animals. J. Mar. Biol. Assoc. UK 37, 705–752 (1958).
    Article  Google Scholar 

    30.
    Sivan, G. Fish venom: pharmacological features and biological significance. Fish Fish. 10, 159–172 (2009).
    Article  Google Scholar 

    31.
    Ziegman, R. & Alewood, P. Bioactive components in fish venoms. Toxins 7, 1497–1531 (2015).

    32.
    Borges, M. H. et al. Combined proteomic and functional analysis reveals rich sources of protein diversity in skin mucus and venom from the Scorpaena plumieri fish. J. Proteom. 187, 200–211 (2018).
    CAS  Article  Google Scholar 

    33.
    Gorman, L. M. et al. The venoms of the lesser (Echiichthys vipera) and greater (Trachinus draco) weever fish—a review. Toxicon 6, 100025 (2020).
    Article  Google Scholar 

    34.
    Duchatelet, L., Claes, J. M. & Mallefet, J. Embryonic expression of encephalopsin supports bioluminescence perception in lanternshark photophores. Mar. Biol. 166, 21 (2019).
    Article  Google Scholar 

    35.
    Duchatelet, L., Pinte, N., Tomita, T., Sato, K. & Mallefet, J. Etmopteridae bioluminescence: dorsal pattern specificity and aposematic use. Zool. Lett. 5, 9 (2019).
    Article  Google Scholar 

    36.
    Morin, J. G. Luminaries of the reef: The history of luminescent ostracods and their courtship displays in the Caribbean. J. Crust. Biol. 39, 227–243 (2019).
    Article  Google Scholar 

    37.
    Galloway, T. W. & Welch, P. S. Studies on a phosphorescent bermudian annelid, Odontosyllis enopla Verill. Trans. Am. Microsc. Soc. 30, 13–39 (1911).
    Article  Google Scholar 

    38.
    Markert, R. E., Markert, B. J. & Vertrees, N. J. Lunar periodicity in spawning and luminescence in Odontosyllis enopla. Ecology 42, 414–415 (1961).
    Article  Google Scholar 

    39.
    Gabe, M. Techniques histologiques (Masson et Cie Editeurs, Paris, 1968).
    Google Scholar 

    40.
    Letunic, I. PhyloT. https://phlot.biobyte.de (2015).

    41.
    Harvey, E. N. Studies on bioluminescence: VI. Light production by a Japanese Pennatulid, Cavernularia haberi. Am. J. Physiol. 42, 349–358 (1917).
    CAS  Article  Google Scholar 

    42.
    Haneda, Y. Luminosity in Rocellaria grandis (Deshayes) (Lamellibranchia). Kagaku Nanyo 2, 36–39 (1939).
    Google Scholar 

    43.
    Herring, P. J. Bioluminescence in decapod crustacea. J. Mar. Biol. Assoc. UK 56, 1029–1047 (1976).
    Article  Google Scholar 

    44.
    Herring, P. J. Studies on bioluminescent marine amphipods. J. Mar. Biol. Assoc. UK 61, 161–176 (1981).
    Article  Google Scholar 

    45.
    Herring, P. J. Bioluminescence in the Crustacea. J. Crust. Biol. 5, 557–573 (1985).
    Article  Google Scholar 

    46.
    Herring, P. J. Systematic distribution of bioluminescence in living organisms. J. Biol. Chem. 1, 147–163 (1987).
    CAS  Google Scholar 

    47.
    Herring, P. J. Copepod luminescence. Hydrobiologia 167, 183–195 (1988).
    Article  Google Scholar 

    48.
    Haddock, S. H. & Case, J. F. Bioluminescence spectra of shallow and deep-sea gelatinous zooplankton: ctenophores, medusae and siphonophores. Mar. Biol. 133, 571–582 (1999).
    Article  Google Scholar 

    49.
    Deheyn, D. D. & Latz, M. I. Internal and secreted bioluminescence of the marine polychaete Odontosyllis phosphorea (Syllidae). Invert. Biol. 128, 31–45 (2009).
    Article  Google Scholar 

    50.
    Thuesen, E. V., Goetz, F. E. & Haddock, S. H. Bioluminescent organs of two deep-sea arrow worms, Eukrohnia fowleri and Caecosagitta macrocephala, with further observations on bioluminescence in chaetognaths. Biol. Bull. 219, 100–111 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Jones, A. & Mallefet, J. Study of the luminescence in the black brittle-star Ophiocomina nigra: toward a new pattern of light emission in ophiuroids. Zoosymposia 7, 139–145 (2012).
    Article  Google Scholar 

    52.
    Gouveneaux, A. Bioluminescence of Tomopteridae species (Annelida): multidisciplinary approach. (Doctoral dissertation, Centre National de la Recherche Scientifique, Université catholique de Louvain, Belgium, 2016).

    53.
    Paitio, J., Oba, Y. & Meyer-Rochow, V. B. Bioluminescent fishes and their eyes. In Luminescence—An Outlook on the Phenomena and Their Applications. (Thirumalai, J., Ed.) (Intech, London, 2016).

    54.
    Verdes, A. & Gruber, D. F. Glowing worms: Biological, chemical, and functional diversity of bioluminescent annelids. Integr. Comp. Biol. 57, 18–32 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Poulsen, J. Y. New observations and ontogenetic transformation of photogenic tissues in the tubeshoulder Sagamichthys schnakenbecki (Platytroctidae, Alepocephaliformes). J. Fish Biol. 94, 62–76 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    56.
    Robison, B. H. Bioluminescence in the benthopelagic holothurian Enypniastes eximia. J. Mar. Biol. Assoc. UK 72, 463–472 (1992).
    Article  Google Scholar 

    57.
    Claes, J. M., Nilsson, D. E., Straube, N., Collin, S. P. & Mallefet, J. Iso-luminance counterillumination drove bioluminescent shark radiation. Sci. Rep. 4, 4328 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    58.
    Parsons, G. R., Ingram, G. W. & Havard, R. First record of the goblin shark Mitsukurina owstoni, Jordan (Family Mitsukurinidae) in the Gulf of Mexico. Southeast. Nat. 1, 189–192 (2002).
    Article  Google Scholar  More