Ecology
Subterms
More stories
225 Shares179 Views
in EcologySmall-scale alpine topography at low latitudes and high altitudes: refuge areas of the genus Chrysanthemum and its allies
1.
Hirakawa, H. et al. De novo whole-genome assembly in Chrysanthemum seticuspe, a model species of Chrysanthemums, and its application to genetic and gene discovery analysis. DNA Res. 26, 195–203 (2019).
CAS PubMed Article PubMed Central Google Scholar
2.
Stevenson, T. Chrysanthemums. Nature 90, 248 (1912).
Google Scholar3.
Ministry of Agriculture and Fisheries UK. Control of the Chrysanthemum midge. Nature 144, 280 (1939).4.
Cockshull, K. E. & Hughes, A. P. Distribution of dry matter to flowers in Chrysanthemum morifolium. Nature 215, 780–781 (1976).
Article Google Scholar5.
Courtney-Gutterson, N. et al. Modification of flower color in florist’s Chrysanthemum: production of a white–flowering variety through molecular genetics. Nat. Biotechnol. 12, 268–271 (1994).
CAS Article Google Scholar6.
Gamalero, E. Effects of Pseudomonas putida S1Pf1Rif against Chrysanthemum yellows phytoplasma infection. Phytopathology 100, 805–813 (2010).
PubMed Article PubMed Central Google Scholar7.
Wei, Q. et al. Control of chrysanthemum flowering through integration with an aging pathway. Nat. Commun. 8, 829 (2017).
PubMed Article CAS PubMed Central Google Scholar8.
Yang, L., Wen, X., Fu, J. & Dai, S. ClCRY2 facilitates floral transition in Chrysanthemum lavandulifolium by affecting the transcription of circadian clock-related genes under short-day photoperiods. Hortic. Res. 5, 58 (2018).
PubMed Article CAS PubMed Central Google Scholar9.
Su, J. et al. Current achievements and future prospects in the genetic breeding of chrysanthemum: a review. Hortic. Res. 6, 109 (2019).
PubMed Article CAS PubMed Central Google Scholar10.
Kubitzki, K. The families and genera of vascular plants, Vol. VIII Flowering Plants・Eudicots (eds Kadereit, J. W. & Jeffrey, C.) Compositae (eds. Anderberg, A. A. et al.) (Springer-Verlag Berlin Heidelberg, 2007).11.
Poljakov, P. P. Duo genere novae fam. Compositae. Not. Syst. Herb. Inst. Bot. Akad. Sci. URSS 17, 418–431 (1955).
Google Scholar12.
Muldashev, A. A. A new genus Phaeostigma (Asteraceae) from the East Asia. Botanischeskii Zh . 66, 584–588 (1981).
Google Scholar13.
Muldashev, A. A. A critical review of the genus Ajania (Asteraceae-Anthemideae). Botanischeskii Zh . 68, 207–214 (1983).
Google Scholar14.
Bremer, K. & Humphries, C. J. The generic monograph of the Asteraceae-Anthemideae. Bull. Nat. Hist. Mus. Lond. 23, 71–177 (1993).
Google Scholar15.
Huang, Y., An, Y. M., Meng, S. Y., Guo, Y. P. & Rao, G. Y. Taxonomic status and phylogenetic position of Phaeostigma in the subtribe Artemisiinae (Asteraceae). J. Syst. Evol. 55, 426–436 (2017).
Article Google Scholar16.
Zhao, H. B., Chen, F. D., Chen, S. M., Wu, G. S. & Guo, W. M. Molecular phylogeny of Chrysanthemum, Ajania and its allies (Anthemideae, Asteraceae) as inferred from nuclear ribosomal ITS and chloroplast trnL-F IGS sequences. Plant Syst. Evol. 284, 153–169 (2010).
CAS Article Google Scholar17.
Liu, P. L., Wan, Q., Guo, Y. P., Yang, J. & Rao, G. Y. Phylogeny of the Genus Chrysanthemum L.: evidence from single-copy nuclear gene and chloroplast DNA sequences. PLoS ONE 7, e48970 (2012).
CAS PubMed Article PubMed Central Google Scholar18.
Ohashi, H. & Yonekura, K. New combinations in Chrysanthemum (Compositae-Anthemideae) of Asia with a list of Japanese Specie. J. Jpn. Bot. 79, 186–195 (2004).
Google Scholar19.
Sanz, M. et al. Molecular phylogeny and evolution of floral characters of Artemisia and allies (Anthemideae, Asteraceae): evidence from nrDNA ETS and ITS sequences. Taxon 57, 1–13 (2008).
Google Scholar20.
An, Y. M. Studies on the Phylogeny and Biogeography of the Genus Ajania and Its Allies. Master’s thesis. Peking University (2012).21.
Barreda, V. D. et al. Eocene Patagonia fossils of the daisy family. Science 329, 1621–1621 (2010).
CAS PubMed Article PubMed Central Google Scholar22.
Wefferling, K. M. & Hoot, S. B. Dated phylogeography of western North American subalpine marshmarigolds (Caltha spp. Ranunculaceae): Miocene-Pliocene divergence of hexaploids, multiple origins of allododecaploids during the Pleistocene, and repeated recolonization of Last Glacial Maxim. J. Biogeogr. 45, 1077–1089 (2018).
Article Google Scholar23.
Wiens, J. J. Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution 58, 193–197 (2004).
PubMed Article PubMed Central Google Scholar24.
Ricklefs, R. E. Evolutionary diversification and the origin of the diversity-environment relationship. Ecology 87, S3–S13 (2006).
PubMed Article PubMed Central Google Scholar25.
Li, J., Wan, Q., Guo, Y. P., Abbott, R. J. & Rao, G. Y. Should I stay or should I go: biogeographic and evolutionary history of a polyploid complex (Chrysanthemum indicum complex) in response to Pleistocene climate change in China. N. Phytol. 201, 1031–1044 (2014).
CAS Article Google Scholar26.
Rahbek, C. et al. Humboldt’s enigma: What causes global patterns of mountain biodiversity? Science 365, 1108–1113 (2019).
CAS PubMed Article PubMed Central Google Scholar27.
Rahbek, C. et al. Building mountain biodiversity: Geological and evolutionary processes. Science 365, 1114–1119 (2019).
CAS PubMed Article PubMed Central Google Scholar28.
Cosacov, A., Sérsic, A. N., Sosa, V., Johnson, L. A. & Cocucci, A. A. Multiple periglacial refugia in the Patagonian steppe and post-glacial colonization of the Andes: the phylogeography of Calceolaria polyrhiza. J. Biogeogr. 37, 1463–1477 (2010).
Google Scholar29.
García-Aloy, S. et al. North-west Africa as a source and refuge area of plant biodiversity: a case study on Campanula kremeri and Campanula occidentalis. J. Biogeogr. 44, 2057–2068 (2017).
Article Google Scholar30.
Pérez-Escobar, O. A. et al. Recent origin and rapid speciation of Neotropical orchids in the world’s richest plant biodiversity hotspot. N. Phytol. 215, 891–905 (2017).
Article Google Scholar31.
Zhao, Y. P. et al. Resequencing 545 ginkgo genomes across the world reveals the evolutionary history of the living fossil. Nat. Commun. 10, 4201 (2019).
PubMed Article CAS PubMed Central Google Scholar32.
Xing, Y. & Ree, R. H. Uplift-driven diversification in the Hengduan mountains, a temperate biodiversity hotspot. Proc. Natl Acad. Sci. USA 114, E3444 (2017).
CAS PubMed Article PubMed Central Google Scholar33.
Sun, H. 2002. Evolution of arctic-tertiary flora in Himalayan-Hengduan mountains. Acta Bot. Yunnanica. 24, 671–688 (2002).
Google Scholar34.
Sun, H. & Li, Z. M. Qinghai-Tibet Plateau uplift and its impact on Tethys flora. Adv. Earth. Sci. 18, 852–862 (2003).
Google Scholar35.
Zhang, D. C., Zhang, Y. H., Boufford, D. E. & Sun, H. Elevational patterns of species richness and endemism for some important taxa in the Hengduan mountains, southwestern China. Biodivers. Conserv. 18, 699–716 (2009).
Article Google Scholar36.
Royer, D. L., McElwain, J. C., Adams, J. M. & Wilf, P. Sensitivity of leaf size and shape to climate within Acer rubrum and Quercus kelloggii. N. Phytol. 179, 808–817 (2008).
Article Google Scholar37.
Opedal, Ø. H., Armbruster, W. S. & Graae, B. J. Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape. Plant Ecol. Divers. 8, 305–315 (2015).
Article Google Scholar38.
Tölgyesi, C. Tree-herb co-existence and community assembly in natural forest-steppe transitions. Plant Ecol. Divers. 11, 465–477 (2018).
Article Google Scholar39.
Rumpf, S. B. Range dynamics of mountain plants decrease with elevation. Proc. Natl Acad. Sci. USA 115, 1848–1853 (2018).
CAS PubMed Article PubMed Central Google Scholar40.
Camarero, J. J., Gutiérrez, E. & Fortin, M. J. Spatial patterns of plant richness across treeline ecotones in the Pyrenees reveal different locations for richness and tree cover boundaries. Glob. Ecol. Biogeogr. 15, 182–191 (2006).
Article Google Scholar41.
Liang, E. et al. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proc. Natl Acad. Sci. USA 113, 4380–4385 (2016).
CAS PubMed Article PubMed Central Google Scholar42.
Li, P. et al. Genetic diversity, population structure and association analysis in cut chrysanthemum (Chrysanthemum morifolium Ramat.). Mol. Genet. Genomics. 291, 1117–1125 (2016).
CAS PubMed Article PubMed Central Google Scholar43.
Murray, M. G. & Thompson, W. F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321–4325 (1980).
CAS PubMed Article PubMed Central Google Scholar44.
Zhang, F. et al. SRAP-based mapping and QTL detection for inflorescence-related traits in chrysanthemum (Dendranthema morifolium). Mol. Breed. 27, 11–23 (2011).
CAS Article Google Scholar45.
Li, G. & Quiros, C. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor. Appl. Genet. 103, 455–461 (2001).
CAS Article Google Scholar46.
Shen, J. et al. Lake sediment records on climate change and human activities since the Holocene in Erhai catchment, Yunnan Province, China. Sci. China Ser. D. Earth Sci. 48, 353–363 (2005).
CAS Article Google Scholar47.
Hoorn, C. et al. Eocene palynological record of climate change and Tibetan Plateau uplift (Xining Basin, China). Palaeogeogr. Palaeoclimatol. Palaeoecol. 344–345, 16–38 (2012).
Article Google Scholar48.
Cao, X., Ni, J., Herzschuh, U., Wang, Y. & Zhao, Y. A late Quaternary pollen dataset from eastern continental Asia for vegetation and climate reconstructions: Set up and evaluation. Rev. Palaeobot. Palyno. 194, 21–37 (2013).
Article Google Scholar49.
Li, S. et al. Magnetostratigraphy of the Dali Basin in Yunnan and implications for late Neogene rotation of the southeast margin of the Tibetan Plateau. J. Geophys. Res-Sol. Ea. 118, 791–807 (2013).
Article Google Scholar50.
Gourbet, L. et al. Reappraisal of the Jianchuan Cenozoic basin stratigraphy and its implications on the SE Tibetan plateau evolution. Tectonophysics 700–701, 162–179 (2017).
Article CAS Google Scholar51.
Wu, J. et al. Paleoelevations in the Jianchuan Basin of the southeastern Tibetan Plateau based on stable isotope and pollen grain analyses. Palaeogeogr. Palaeoclimatol. Palaeoecol. 510, 93–108 (2018).
Article Google Scholar52.
Li, Q., Wu, H., Yu, Y., Sun, A. & Luo, Y. Large-scale vegetation history in China and its response to climate change since the Last Glacial Maximum. Quat. Int. 500, 108–119 (2019).
Article Google Scholar53.
Mutanga, O. et al. Explaining grass-nutrient patterns in a savanna rangeland of southern Africa. J. Biogeogr. 31, 819–829 (2004).
Article Google Scholar54.
Rowe, R. J. Elevational gradient analyses and the use of historical museum specimens:a cautionary tale. J. Biogeogr. 32, 1883–1897 (2005).
Article Google Scholar55.
Barbo, D. N., Chappelka, A. H., Somers, G. L., Miller-Goodman, M. S. & Stolte, K. Diversity of an early successional plant community as influenced by ozone. N. Phytol. 138, 653–662 (1998).
CAS Article Google Scholar56.
Liang, J. et al. Positive biodiversity-productivity relationship predominant in global forests. Science 354, aaf8957 (2016).
PubMed Article CAS PubMed Central Google Scholar57.
Vermeer, J. & Peterson, R. L. Glandular trichomes on the inflorescence of Chrysanthemum morifolium cv. Dramatic (Compositae). II. Ultrastruct. Histochem. Can. J. Bot. 57, 705–713 (1979).
Google Scholar58.
Ren, J. B. & Guo, Y. P. Behind the diversity: Ontogenies of radiate, disciform, and discoid capitula of Chrysanthemum and its allies. J. Syst. Evol. 53, 520–528 (2015).
Article Google Scholar59.
Li, J., Guo, Y. & Romane, F. Environmental heterogeneity and population variability of Sclerophyllous Oaks (Quercus Sec. suber) in East Himalayan region. Forestry Stud. China 2, 1–15 (2000).
CAS Google Scholar60.
Wright, A. J. et al. Plants are less negatively affected by flooding when growing in species-rich plant communities. N. Phytol. 213, 645–656 (2017).
Article Google Scholar61.
Hughes, C. E. & Atchison, G. W. The ubiquity of alpine plant radiations: from the Andes to the Hengduan mountains. N. Phytol. 207, 275–282 (2015).
Article Google Scholar62.
Pfister, C. A. & Hay, M. E. Associational plant refuges: convergent patterns in marine and terrestrial communities result from differing mechanisms. Oecologia 77, I18–I129 (1988).
Article Google Scholar63.
Zhang, Y. C., Shi, G. R. & Shen, S. Z. A review of Permian stratigraphy, palaeobiogeography and palaeogeography of the Qinghai–Tibet plateau. Gondwana Res. 24, 55–76 (2013).
CAS Article Google Scholar64.
Zhou, X. et al. Vegetation change and evolutionary response of large mammal fauna during the mid-Pleistocene transition in temperate northern East Asia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 505, 287–294 (2018).
Article Google Scholar65.
Barreda, V. D. et al. Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica. Proc. Natl Acad. Sci. USA 112, 10989–10994 (2105).
Article CAS Google Scholar66.
Huang, C. H. et al. Multiple polyploidization events across asteraceae with two nested events in the early history revealed by nuclear phylogenomics. Mol. Biol. Evol. 33, 2820–2835 (2016).67.
Credner, W. Geography Investigation Report in 1931. In: Report Collecton of Department of Geography, Vol. 1, 1–35 (National Sun Yat-sen University, 1931).68.
Credner, W. Observation on geology and morphology of Yunnan. Geol. Surv. Kwangtung Kwangshi, Spec. Publ. No. X, 51 (1932).
Google Scholar69.
Yang, J. Q., Cui, Z. J., Yi, C. L., Sun, J. M. & Yang, L. R. “Tali Glaciation” on Massif Diancang. Sci. China Ser. D 50, 1685–1692 (2007).
Article Google Scholar70.
Hoke, G. D., Zeng, J. L., Hren, M. T., Wissink, G. K. & Garzione, C. N. Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene. Earth Planet. Sc. Lett. 394, 270–278 (2014).
CAS Article Google Scholar71.
Li, S., Currie, B. S., Rowley, D. B. & Ingalls, M. Cenozoic paleoaltimetry of the SE margin of the Tibetan Plateau: constraints on the tectonic evolution of the region. Earth Planet. Sc. Lett. 432, 415–424 (2015).
CAS Article Google Scholar72.
Kuang, M. et al. Study on the Palaeovegation and Palaeoclimate Since Late Pleistocene in the Dianchang Mountain Area in Dali of YunNan Province. J. Southwest China Norm. Univ 27, 759–765 (2002).
Google Scholar73.
Xiao, X. et al. Latest Pleistocene and Holocene vegetation and climate history inferred from an alpine lacustrine record, northwestern Yunnan Province, southwestern China. Quat. Sci. Rev. 86, 35–48 (2014).
Article Google Scholar74.
Mandela, J. R. et al. A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae. Proc. Natl Acad. Sci. USA 116, 14083–14088 (2019).
Article CAS Google Scholar75.
Sheldon, N. D. Quaternary glacial-interglacial climate cycles in Hawaii. J. Geol. 114, 367–376 (2006).
Article Google Scholar76.
Milbau, A., Shevtsova, A., Osler, N., Mooshammer, M. & Graae, B. J. Plant community type and small-scale disturbances, but not altitude, influence the invasibility in subarctic ecosystems. N. Phytol. 197, 1002–1011 (2013).
Article Google Scholar77.
Wang, W. M. On the origin and development of Artemisia (Asteraceae) in the geological past. Bot. J. Linn. Soc. 145, 331–336 (2004).
Article Google Scholar78.
Pellicer, J. et al. Palynological study of Ajania and related genera (Asteraceae, Anthemideae). Bot. J. Linn. Soc. 161, 171–189 (2009).
Article Google Scholar79.
Friedman, J. & Barrett, S. C. H. Wind of change: new insights on the ecology and evolution of pollination and mating in wind-pollinated plants. Ann. Bot.-Lond. 103, 1515–1527 (2009).
Article Google Scholar80.
Watson, L. E., Bates, P. L., Evans, T. M., Unwin, M. M. & Estes, R. J. Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera. BMC Evol. Biol. 2, 17–28 (2002).
PubMed Article PubMed Central Google Scholar More175 Shares139 Views
in EcologyHistological evidence for secretory bioluminescence from pectoral pockets of the American Pocket Shark (Mollisquama mississippiensis)
1.
Dolganov, V. N. A new shark from the family Squalidae caught on the Naska Submarine Ridge. Zool. Zh. 63, 1589–1591 (1984).
Google Scholar
2.
Grace, M. A., Doosey, M. H, Bart, H. L., Naylor, G. J. First record of Mollisquama sp. (Chondrichthyes: Squaliformes: Dalatiidae) from the Gulf of Mexico, with a morphological comparison to the holotype description of Mollisquama parini Dolganov. Zootaxa 3948,587–600 (2015).3.
Grace, M. A. et al. A new Western North Atlantic Ocean kitefin shark (Squaliformes: Dalatiidae) from the Gulf of Mexico. Zootaxa 4619, 109–120 (2019).
Article Google Scholar4.
Denton, J. S. et al. Cranial morphology in Mollisquama sp. (Squaliformes; Dalatiidae) and patterns of cranial evolution in dalatiid sharks. J. Anat. 233, 15–32 (2018).
PubMed PubMed Central Article Google Scholar5.
Munk, O. & Jorgensen, J. M. Putatively luminous tissue in the abdominal pouch of a male dalatiine shark, Euprotomicroides zantedeschia Hulley & Penrith, 1966. Acta Zool. (Stockh) 69, 247–251 (1988).
Article Google Scholar6.
Stehmann, M. & Krefft, G. Results of the research cruises of FRV “Walter Herwig” to South America. LXVIII. Complementary redescription of the dalatiine shark Euprotomicroides zantedeschia Hulley & Penrith, 1966 (Chondrichthyes, Squalidae), based on a second specimen from the western south Atlantic. Arch. Fisch. Wiss. 30, 1–30 (1988).7.
Stehmann, M. F. W., Van Oijen, M. & Kamminga, P. Re-description of the rare taillight shark Euprotomicroides zantedeschia (Squaliformes, Dalatiidae), based on third and fourth record from off Chile. Cybium 40, 187–197 (2016).
Google Scholar8.
Haddock, S. H. D., Moline, M. A. & Case, J. F. Bioluminescence in the sea. Annu. Rev. Mar. Sci. 2, 443–493 (2009).
ADS Article Google Scholar9.
Widder, E. A. Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity. Science 328, 704–708 (2010).
ADS CAS PubMed Article PubMed Central Google Scholar10.
Pollerspöck, J. & Straube, N. Bibliography Database|Shark-References. www.shark-references.com (2015).11.
Straube, N., Li, C., Claes, J. M., Corrigan, S. & Naylor, G. J. Molecular phylogeny of Squaliformes and first occurrence of bioluminescence in sharks. BMC Evol. Biol. 15, 162 (2015).
PubMed PubMed Central Article CAS Google Scholar12.
Gruber, D. F. et al. Biofluorescence in catsharks (Scyliorhinidae): fundamental description and relevance for elasmobranch visual ecology. Sci. Rep. 6, 24751 (2016).
ADS CAS PubMed PubMed Central Article Google Scholar13.
Bowlby, M. R. & Case, J. F. Ultrastructure and neuronal control of luminous cells in the copepod Gaussia princeps. Biol. Bull. 180, 440–446 (1991).
CAS PubMed Article PubMed Central Google Scholar14.
Robison, B. H., Reisenbichler, K. R., Hunt, J. C. & Haddock, S. H. Light production by the arm tips of the deep-sea cephalopod Vampyroteuthis infernalis. Biol. Bull. 205, 102–109 (2003).
PubMed Article PubMed Central Google Scholar15.
Haddock, S. H. D., Dunn, C. W., Pugh, P. R. & Schnitzler, C. E. Bioluminescent and red-fluorescent lures in a deep-sea siphonophore. Science 309, 263 (2005).
CAS PubMed Article PubMed Central Google Scholar16.
Claes, J. M., Krönström, J., Holmgren, S. & Mallefet, J. Nitric oxide in the control of luminescence from lantern shark (Etmopterus spinax) photophores. J. Exp. Biol. 17, 3005–3011 (2010).
Article CAS Google Scholar17.
Denton, E. J., Herring, P. J., Widder, E. A., Latz, M. F. & Case, J. F. The roles of filters in the photophores of oceanic animals and their relation to vision in the oceanic environment. Proc. R. Soc. B 225, 63–97 (1985).
ADS Google Scholar18.
Herring, P. J. Depth distribution of the carotenoid pigments and lipids of some oceanic animals. 2. Decapod crustaceans. J. Mar. Biol. Assoc. UK 53, 539–562 (1973).19.
Herring, P. J. Bioluminescent signals and the role of reflectors. J. Opt. A Pure Appl. Op. 2, R29 (2000).
ADS Article Google Scholar20.
Anctil, M. The epithelial luminescent system of Chaetopterus variopedatus. Can. J. Zool. 57, 1290–1310 (1979).
Article Google Scholar21.
Huvard, A. L. Ultrastructure of the light organ and immunocytochemical localization of luciferase in luminescent marine ostracods (Crustacea: Ostracoda: Cypridinidae). J. Morphol. 218, 181–193 (1993).
PubMed Article PubMed Central Google Scholar22.
Hubbs, C. L., Iwai, T. & Matsubara, K. External and internal characters, horizontal and vertical distribution, luminescence, and food of the dwarf pelagic shark Euprotomicrurus bispinatus. Bull. Scripps Inst. Ocenogr. 10, 1–81 (1967).
Google Scholar23.
Schorno, S. Biogenesis of Hagfish Slime: Timing and Process of Slime Gland Refilling in Hagfishes (Eptatretus stoutii and Myxine glutinosa). (Doctoral dissertation, University of Guelph, USA, 2018).24.
Clarke, G. L., Conover, R. J., David, C. N. & Nicol, J. A. C. Comparative studies of luminescence in copepods and other pelagic marine animals. J. Mar. Biol. Assoc. UK 42, 541–564 (1962).
Article Google Scholar25.
Dilly, P. N. & Herring, P. J. The light organ and ink sac of Heteroteuthis dispar (Mollusca: Cephalopoda). J. Zool. 186, 47–59 (1978).
Article Google Scholar26.
Bowlby, M. R., Widder, E. A. & Case, J. F. Disparate forms of bioluminescence from the amphipods Cyphocaris faurei, Scina crassicornis and S. borealis. Mar. Biol. 108, 247−253 (1991).27.
Gosliner, T. M. & Vallès, Y. Shedding light onto the genera (Mollusca: Nudibranchia) Kaloplocamus and Plocamopherus with description of new species belonging to these unique bioluminescent dorids. Veliger 48, 178–205 (2006).
Google Scholar28.
Nicol, J. A. C. Histology of the light organs of Pholas dactylus (Lamellibranchia). J. Mar. Biol. Assoc. UK 39, 109–115 (1960).
Article Google Scholar29.
Nicol, J. A. C. Observations on luminescence in pelagic animals. J. Mar. Biol. Assoc. UK 37, 705–752 (1958).
Article Google Scholar30.
Sivan, G. Fish venom: pharmacological features and biological significance. Fish Fish. 10, 159–172 (2009).
Article Google Scholar31.
Ziegman, R. & Alewood, P. Bioactive components in fish venoms. Toxins 7, 1497–1531 (2015).32.
Borges, M. H. et al. Combined proteomic and functional analysis reveals rich sources of protein diversity in skin mucus and venom from the Scorpaena plumieri fish. J. Proteom. 187, 200–211 (2018).
CAS Article Google Scholar33.
Gorman, L. M. et al. The venoms of the lesser (Echiichthys vipera) and greater (Trachinus draco) weever fish—a review. Toxicon 6, 100025 (2020).
Article Google Scholar34.
Duchatelet, L., Claes, J. M. & Mallefet, J. Embryonic expression of encephalopsin supports bioluminescence perception in lanternshark photophores. Mar. Biol. 166, 21 (2019).
Article Google Scholar35.
Duchatelet, L., Pinte, N., Tomita, T., Sato, K. & Mallefet, J. Etmopteridae bioluminescence: dorsal pattern specificity and aposematic use. Zool. Lett. 5, 9 (2019).
Article Google Scholar36.
Morin, J. G. Luminaries of the reef: The history of luminescent ostracods and their courtship displays in the Caribbean. J. Crust. Biol. 39, 227–243 (2019).
Article Google Scholar37.
Galloway, T. W. & Welch, P. S. Studies on a phosphorescent bermudian annelid, Odontosyllis enopla Verill. Trans. Am. Microsc. Soc. 30, 13–39 (1911).
Article Google Scholar38.
Markert, R. E., Markert, B. J. & Vertrees, N. J. Lunar periodicity in spawning and luminescence in Odontosyllis enopla. Ecology 42, 414–415 (1961).
Article Google Scholar39.
Gabe, M. Techniques histologiques (Masson et Cie Editeurs, Paris, 1968).
Google Scholar40.
Letunic, I. PhyloT. https://phlot.biobyte.de (2015).41.
Harvey, E. N. Studies on bioluminescence: VI. Light production by a Japanese Pennatulid, Cavernularia haberi. Am. J. Physiol. 42, 349–358 (1917).
CAS Article Google Scholar42.
Haneda, Y. Luminosity in Rocellaria grandis (Deshayes) (Lamellibranchia). Kagaku Nanyo 2, 36–39 (1939).
Google Scholar43.
Herring, P. J. Bioluminescence in decapod crustacea. J. Mar. Biol. Assoc. UK 56, 1029–1047 (1976).
Article Google Scholar44.
Herring, P. J. Studies on bioluminescent marine amphipods. J. Mar. Biol. Assoc. UK 61, 161–176 (1981).
Article Google Scholar45.
Herring, P. J. Bioluminescence in the Crustacea. J. Crust. Biol. 5, 557–573 (1985).
Article Google Scholar46.
Herring, P. J. Systematic distribution of bioluminescence in living organisms. J. Biol. Chem. 1, 147–163 (1987).
CAS Google Scholar47.
Herring, P. J. Copepod luminescence. Hydrobiologia 167, 183–195 (1988).
Article Google Scholar48.
Haddock, S. H. & Case, J. F. Bioluminescence spectra of shallow and deep-sea gelatinous zooplankton: ctenophores, medusae and siphonophores. Mar. Biol. 133, 571–582 (1999).
Article Google Scholar49.
Deheyn, D. D. & Latz, M. I. Internal and secreted bioluminescence of the marine polychaete Odontosyllis phosphorea (Syllidae). Invert. Biol. 128, 31–45 (2009).
Article Google Scholar50.
Thuesen, E. V., Goetz, F. E. & Haddock, S. H. Bioluminescent organs of two deep-sea arrow worms, Eukrohnia fowleri and Caecosagitta macrocephala, with further observations on bioluminescence in chaetognaths. Biol. Bull. 219, 100–111 (2010).
CAS PubMed Article PubMed Central Google Scholar51.
Jones, A. & Mallefet, J. Study of the luminescence in the black brittle-star Ophiocomina nigra: toward a new pattern of light emission in ophiuroids. Zoosymposia 7, 139–145 (2012).
Article Google Scholar52.
Gouveneaux, A. Bioluminescence of Tomopteridae species (Annelida): multidisciplinary approach. (Doctoral dissertation, Centre National de la Recherche Scientifique, Université catholique de Louvain, Belgium, 2016).53.
Paitio, J., Oba, Y. & Meyer-Rochow, V. B. Bioluminescent fishes and their eyes. In Luminescence—An Outlook on the Phenomena and Their Applications. (Thirumalai, J., Ed.) (Intech, London, 2016).54.
Verdes, A. & Gruber, D. F. Glowing worms: Biological, chemical, and functional diversity of bioluminescent annelids. Integr. Comp. Biol. 57, 18–32 (2017).
CAS PubMed Article PubMed Central Google Scholar55.
Poulsen, J. Y. New observations and ontogenetic transformation of photogenic tissues in the tubeshoulder Sagamichthys schnakenbecki (Platytroctidae, Alepocephaliformes). J. Fish Biol. 94, 62–76 (2019).
PubMed Article PubMed Central Google Scholar56.
Robison, B. H. Bioluminescence in the benthopelagic holothurian Enypniastes eximia. J. Mar. Biol. Assoc. UK 72, 463–472 (1992).
Article Google Scholar57.
Claes, J. M., Nilsson, D. E., Straube, N., Collin, S. P. & Mallefet, J. Iso-luminance counterillumination drove bioluminescent shark radiation. Sci. Rep. 4, 4328 (2014).
PubMed PubMed Central Article CAS Google Scholar58.
Parsons, G. R., Ingram, G. W. & Havard, R. First record of the goblin shark Mitsukurina owstoni, Jordan (Family Mitsukurinidae) in the Gulf of Mexico. Southeast. Nat. 1, 189–192 (2002).
Article Google Scholar More