1.
Hewitt, G. M. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58, 247–276. https://doi.org/10.1006/bijl.1996.0035 (1996).
Article Google Scholar
2.
Hewitt, G. M. Genetic consequences of climatic oscillations in the quaternary. Philos. Trans. R. Soc. B Biol. Sci. 359, 183–195. https://doi.org/10.1098/rstb.2003.1388 (2004).
CAS Article Google Scholar
3.
Patton, H. et al. Deglaciation of the Eurasian ice sheet complex. Quat. Sci. Rev. 169, 148–172. https://doi.org/10.1016/j.quascirev.2017.05.019 (2017).
ADS Article Google Scholar
4.
Hewitt, G. M. Postglacial re-colonisation of European biota. Biol. J. Linn. Soc. 68, 87–112 (1999).
Article Google Scholar
5.
Sworobowicz, L. et al. Revisiting the phylogeography of Asellus aquaticus in Europe: insights into cryptic diversity and spatiotemporal diversification. Freshw. Biol. 60, 1824–1840. https://doi.org/10.1111/fwb.12613 (2015).
Article Google Scholar
6.
Schmitt, T. & Varga, Z. Extra-Mediterranean refugia: the rule and not the exception?. Front. Zool. 9, 1–12. https://doi.org/10.1186/1742-9994-9-22 (2012).
Article Google Scholar
7.
Verovnik, R., Sket, B. & Trontelj, P. The colonization of Europe by the freshwater crustacean Asellus aquaticus (Crustacea: Isopoda) proceeded from ancient refugia and was directed by habitat connectivity. Mol. Ecol. 14, 4355–4369. https://doi.org/10.1111/j.1365-294X.2005.02745.x (2005).
CAS Article PubMed Google Scholar
8.
Sworobowicz, L., Mamos, T., Grabowski, M. & Wysocka, A. Lasting through the ice age: the role of the proglacial refugia in the maintenance of genetic diversity, population growth, and high dispersal rate in a widespread freshwater crustacean. Freshw. Biol. https://doi.org/10.1111/fwb.13487 (2020).
Article Google Scholar
9.
Neumann, K. et al. Genetic spatial structure of European common hamsters (Cricetus cricetus)—a result of repeated range expansion and demographic bottlenecks. Mol. Ecol. 14, 1473–1483. https://doi.org/10.1111/j.1365-294X.2005.02519.x (2005).
CAS Article PubMed Google Scholar
10.
Fussi, B., Lexer, C. & Heinze, B. Phylogeography of Populus alba (L.) and Populus tremula (L.) in Central Europe: secondary contact and hybridisation during recolonisation from disconnected refugia. Tree Genet. Genomes 6, 439–450. https://doi.org/10.1007/s11295-009-0262-5 (2010).
Article Google Scholar
11.
Grabowski, M., Mamos, T., Bącela-Spychalska, K., Rewicz, T. & Wattier, R. A. Neogene paleogeography provides context for understanding the origin and spatial distribution of cryptic diversity in a widespread Balkan freshwater amphipod. PeerJ 5, e3016. https://doi.org/10.7717/peerj.3016 (2017).
Article PubMed PubMed Central Google Scholar
12.
Hou, Z., Sket, B., Fiser, C. & Li, S. Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. Proc. Natl. Acad. Sci. 108, 14533–14538. https://doi.org/10.1073/pnas.1104636108 (2011).
ADS Article PubMed Google Scholar
13.
Mamos, T., Wattier, R., Burzyński, A. & Grabowski, M. The legacy of a vanished sea: a high level of diversification within a European freshwater amphipod species complex driven by 15 My of Paratethys regression. Mol. Ecol. 25, 795–810. https://doi.org/10.1111/mec.13499 (2016).
Article PubMed Google Scholar
14.
Perea, S. et al. Phylogenetic relationships and biogeographical patterns in Circum-Mediterranean subfamily Leuciscinae (Teleostei, Cyprinidae) inferred from both mitochondrial and nuclear data. BMC Evol. Biol. 10, 1–27. https://doi.org/10.1186/1471-2148-10-265 (2010).
CAS Article Google Scholar
15.
Saito, T. et al. Phylogeography of freshwater planorbid snails reveals diversification patterns in Eurasian continental islands. BMC Evol. Biol. https://doi.org/10.1186/s12862-018-1273-3 (2018).
Article PubMed PubMed Central Google Scholar
16.
Utevsky, S. & Trontelj, P. Phylogeography of the southern medicinal leech, Hirudo verbana: a response to Živić et al. (2015). Aquat. Ecol. 50, 97–100. https://doi.org/10.1007/s10452-015-9553-0 (2016).
CAS Article Google Scholar
17.
Grabowski, M., Jażdżewski, K. & Konopacka, A. Alien crustacea in polish waters—Amphipoda. Aquat. Invas. 2, 25–38. https://doi.org/10.3391/ai.2007.2.1.3 (2007).
Article Google Scholar
18.
Kontula, T. & Väinölä, R. Postglacial colonization of Northern Europe by distinct phylogeographic lineages of the bullhead, Cottus gobio. Mol. Ecol. 10, 1983–2002. https://doi.org/10.1046/j.1365-294X.2001.01328.x (2001).
CAS Article PubMed Google Scholar
19.
Mateus, C. S., Almeida, P. R., Mesquita, N., Quintella, B. R. & Alves, M. J. European lampreys: new insights on postglacial colonization, gene flow and speciation. PLoS ONE 11, 1–22. https://doi.org/10.1371/journal.pone.0148107 (2016).
CAS Article Google Scholar
20.
Jażdżewski, K. Range extensions of some gammaridean species in European inland waters caused by human activity. 10–16 (1980).
21.
Bij de Vaate, A., Jażdżewski, K., Ketelaars, H. A. M., Gollasch, S. & Van der Velde, G. Geographical patterns in range extension of Ponto-Caspian macroinvertebrate species in Europe. Can. J. Fish. Aquat. Sci. 59, 1159–1174. https://doi.org/10.1139/f02-098 (2002).
Article Google Scholar
22.
Panov, V. E. et al. Assessing the risks of aquatic species invasions via European inland waterways: from concepts to environmental indicators. Integr. Environ. Assess. Manag. 5, 110–126. https://doi.org/10.1897/IEAM_2008-034.1 (2009).
CAS Article PubMed Google Scholar
23.
Väinölä, R. et al. Global diversity of amphipods (Amphipoda; Crustacea) in freshwater. Hydrobiologia 595, 241–255. https://doi.org/10.1007/s10750-007-9020-6 (2008).
Article Google Scholar
24.
Weiss, M. & Leese, F. Widely distributed and regionally isolated! Drivers of genetic structure in Gammarus fossarum in a human-impacted landscape. BMC Evol. Biol. 16, 153. https://doi.org/10.1186/s12862-016-0723-z (2016).
CAS Article PubMed PubMed Central Google Scholar
25.
Weigand, A. M., Michler-Kozma, D., Kuemmerlen, M. & Jourdan, J. Substantial differences in genetic diversity and spatial structuring among (cryptic) amphipod species in a mountainous river basin. Freshw. Biol. 65, 1641–1656. https://doi.org/10.1111/fwb.13529 (2020).
CAS Article Google Scholar
26.
Rachalewski, M., Banha, F., Grabowski, M. & Anastácio, P. M. Ectozoochory as a possible vector enhancing the spread of an alien amphipod Crangonyx pseudogracilis. Hydrobiologia 717, 109–117. https://doi.org/10.1007/s10750-013-1577-7 (2013).
Article Google Scholar
27.
Peck, S. B. Amphipod dispersal in the fur of aquatic mammals. Can. F. Nat. 89, 181–182 (1975).
Google Scholar
28.
Sainte-Marie, B. A review of the reproductive bionomics of aquatic gammaridean amphipods: variation of life history traits with latitude, depth, salinity and superfamily. Hydrobiologia 223, 189–227. https://doi.org/10.1007/BF00047641 (1991).
Article Google Scholar
29.
Rewicz, T., Grabowski, M., MacNeil, C. & Bącela-Spychalska, K. The profile of a ‘perfect’ invader—the case of killer shrimp, Dikerogammarus villosus. Aquat. Invas. 9, 267–288. https://doi.org/10.3391/ai.2014.9.3.04 (2014).
Article Google Scholar
30.
Vader, W. & Tandberg, A. H. S. Gammarid amphipods (Crustacea) in Norway, with a key to the species. Fauna Nor. 39, 12–25. https://doi.org/10.5324/fn.v39i0.2873 (2019).
Article Google Scholar
31.
Macdonald, K. S., Yampolsky, L. & Duffy, J. E. Molecular and morphological evolution of the amphipod radiation of Lake Baikal. Mol. Phylogenet. Evol. 35, 323–343. https://doi.org/10.1016/j.ympev.2005.01.013 (2005).
CAS Article PubMed Google Scholar
32.
Grabowski, M., Wysocka, A. & Mamos, T. Molecular species delimitation methods provide new insight into taxonomy of the endemic gammarid species flock from the ancient Lake Ohrid. Zool. J. Linn. Soc. 181, 272–285. https://doi.org/10.1093/zoolinnean/zlw025 (2017).
Article Google Scholar
33.
Jabłońska, A., Wrzesińska, W., Zawal, A., Pešić, V. & Grabowski, M. Long-term within-basin isolation patterns, different conservation units, and interspecific mitochondrial DNA introgression in an amphipod endemic to the ancient Lake Skadar system, Balkan Peninsula. Freshw. Biol. 65, 209–225. https://doi.org/10.1111/fwb.13414 (2020).
CAS Article Google Scholar
34.
Copilaş-Ciocianu, D. & Petrusek, A. The southwestern Carpathians as an ancient centre of diversity of freshwater gammarid amphipods: insights from the Gammarus fossarum species complex. Mol. Ecol. 24, 3980–3992. https://doi.org/10.1111/mec.13286 (2015).
Article PubMed Google Scholar
35.
Copilaş-Ciocianu, D. & Petrusek, A. Phylogeography of a freshwater crustacean species complex reflects a long-gone archipelago. J. Biogeogr. 44, 421–432. https://doi.org/10.1111/jbi.12853 (2017).
Article Google Scholar
36.
Leuven, R. S. E. W. et al. The river Rhine: a global highway for dispersal of aquatic invasive species. Biol. Invas. 11, 1989–2008. https://doi.org/10.1007/s10530-009-9491-7 (2009).
Article Google Scholar
37.
Kelly, D. W., Muirhead, J. R., Heath, D. D. & Macisaac, H. J. Contrasting patterns in genetic diversity following multiple invasions of fresh and brackish waters. Mol. Ecol. 15, 3641–3653. https://doi.org/10.1111/j.1365-294X.2006.03012.x (2006).
CAS Article PubMed Google Scholar
38.
Panov, V. & Berezina, N. Invasive aquatic species of Europe. Distribution, impacts and management. Invas. Aquat. Species Eur. Distrib. Impacts Manag. https://doi.org/10.1007/978-94-015-9956-6 (2002).
Article Google Scholar
39.
Csabai, Z. et al. Mass appearance of the Ponto-Caspian invader Pontogammarus robustoides in the River Tisza catchment: bypass in the southern invasion corridor?. Knowl. Manag. Aquat. Ecosyst. https://doi.org/10.1051/kmae/2020003 (2020).
Article Google Scholar
40.
Rewicz, T., Wattier, R., Grabowski, M., Rigaud, T. & Bącela-Spychalska, K. Out of the Black sea: phylogeography of the invasive killer shrimp Dikerogammarus villosus across Europe. PLoS ONE 10, 1–20. https://doi.org/10.1371/journal.pone.0118121 (2015).
CAS Article Google Scholar
41.
Rewicz, T. et al. The killer shrimp, Dikerogammarus villosus, invading European Alpine Lakes: a single main source but independent founder events with an overall loss of genetic diversity. Freshw. Biol. 62, 1036–1051. https://doi.org/10.1111/fwb.12923 (2017).
CAS Article Google Scholar
42.
Jażdżewska, A. M. et al. Cryptic diversity and mtDNA phylogeography of the invasive demon shrimp, Dikerogammarus haemobaphes (Eichwald, 1841), in Europe. NeoBiota 57, 53–86. https://doi.org/10.3897/neobiota.57.46699 (2020).
Article Google Scholar
43.
Jażdżewski, K. & Roux, A. L. Biogéographie de Gammarus roeseli Gervais en Europe, en particulier répartition en France et en Pologne (1988).
44.
Piscart, C. & Bollache, L. Crustacés amphipodes de surface : gammares d’eau douce.. Association Française de Limnologie, Introduction pratique à la systématique des organismes des eaux continentales de France (2012).
45.
Paganelli, D., Gazzola, A., Marchini, A. & Sconfietti, R. The increasing distribution of Gammarus roeselii Gervais, 1835: first record of the non-indigenous freshwater amphipod in the sub-lacustrine Ticino River basin (Lombardy, Italy). Bioinvas. Rec. 4, 37–41. https://doi.org/10.3391/bir.2015.4.1.06 (2015).
Article Google Scholar
46.
Karaman, G. S. & Pinkster, S. Freshwater gammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea-Amphipoda) Part II. Gammarus roeseli-group and related species. Bijdragen tot de dierkunde 57, 207–260. https://doi.org/10.1163/26660644-05702005 (1977).
Article Google Scholar
47.
Moret, Y., Bollache, L., Wattier, R. & Rigaud, T. Is the host or the parasite the most locally adapted in an amphipod-acanthocephalan relationship? A case study in a biological invasion context. Int. J. Parasitol. 37, 637–644. https://doi.org/10.1016/j.ijpara.2006.12.006 (2007).
Article PubMed Google Scholar
48.
Copilaş-Ciocianu, D., Borza, P. & Petrusek, A. Extensive variation in the morphological anti-predator defense mechanism of Gammarus roeselii Gervais, 1835 (Crustacea:Amphipoda). Freshw. Sci. 39, 47–55. https://doi.org/10.1086/707259 (2020).
Article Google Scholar
49.
Miller, B. J., von der Heyden, S. & Gibbons, M. J. Significant population genetic structuring of the holoplanktic scyphozoan Pelagia noctiluca in the Atlantic Ocean. Afr. J. Mar. Sci. 34, 425–430. https://doi.org/10.2989/1814232X.2012.726646 (2012).
Article Google Scholar
50.
Brown, W. M., George, M. Jr. & Wilson, A. C. Rapid evolution of animal mitochondrial DNA. Genetics 76, 1967–1971. https://doi.org/10.1002/(sici)1097-4555(199706)28:6%3c433::aid-jrs125%3e3.3.co;2-5 (1979).
CAS Article Google Scholar
51.
Kázmér, M. Birth, life and death of the Pannonian Lake. Palaeogeogr. Palaeoclimatol. Palaeoecol. 79, 171–188. https://doi.org/10.1016/0031-0182(90)90111-J (1990).
Article Google Scholar
52.
Hewitt, G. M. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 68, 87–112. https://doi.org/10.1006/bijl.1999.0332 (1999).
Article Google Scholar
53.
Rudolph, K., Coleman, C. O., Mamos, T. & Grabowski, M. Description and post-glacial demography of Gammarus jazdzewskii sp. nov. (Crustacea: Amphipoda) from Central Europe. Syst. Biodivers. 16, 587–603. https://doi.org/10.1080/14772000.2018.1470118 (2018).
Article Google Scholar
54.
Copilaş-Ciocianu, D., Fišer, C., Borza, P. & Petrusek, A. Is subterranean lifestyle reversible? Independent and recent large-scale dispersal into surface waters by two species of the groundwater amphipod genus Niphargus. Mol. Phylogenet. Evol. 119, 37–49. https://doi.org/10.1016/j.ympev.2017.10.023 (2018).
Article PubMed Google Scholar
55.
Antal, L. et al. Phylogenetic evidence for a new species of Barbus in the Danube River basin. Mol. Phylogenet. Evol. 96, 187–194. https://doi.org/10.1016/j.ympev.2015.11.023 (2016).
CAS Article PubMed Google Scholar
56.
Walker, M. J. C. Climatic changes in Europe during the last glacial/interglacial transition. Quat. Int. 28, 63–76. https://doi.org/10.1016/1040-6182(95)00030-M (1995).
Article Google Scholar
57.
Pawłowski, D. et al. The response of flood-plain ecosystems to the Late Glacial and Early Holocene hydrological changes: a case study from a small Central European river valley. CATENA 147, 411–428. https://doi.org/10.1016/j.catena.2016.07.034 (2016).
CAS Article Google Scholar
58.
Notebaert, B. & Verstraeten, G. Sensitivity of West and Central European river systems to environmental changes during the Holocene: a review. Earth Sci. Rev. 103, 163–182. https://doi.org/10.1016/j.earscirev.2010.09.009 (2010).
ADS Article Google Scholar
59.
Gibling, M. R. River systems and the anthropocene: a late pleistocene and holocene timeline for human influence. Quaternary 1, 21. https://doi.org/10.3390/quat1030021 (2018).
Article Google Scholar
60.
Gherardi, F. Biological invaders in inland waters: profiles, distribution, and threats. https://doi.org/10.1007/978-1-4020-6029-8 (2007).
61.
Jazdzewski, K., Konopacka, A. & Grabowski, M. Recent drastic changes in the gammarid fauna (Crustacea, Amphipoda) of the Vistula River deltaic system in Poland caused by alien invaders. Divers. Distrib. 10, 81–87. https://doi.org/10.1111/j.1366-9516.2004.00062.x (2004).
Article Google Scholar
62.
Jourdan, J., Piro, K., Weigand, A. & Plath, M. Small-scale phenotypic differentiation along complex stream gradients in a non-native amphipod. Front. Zool. 16, 29. https://doi.org/10.1186/s12983-019-0327-8 (2019).
CAS Article PubMed PubMed Central Google Scholar
63.
Mauchart, P., Bereczki, C., Ortmann-Ajkai, A., Csabai, Z. & Szivák, I. Niche segregation between two closely related Gammarids (Crustacea, Amphipoda)—native vs. naturalised non-native species. Crustaceana 87, 1296–1314. https://doi.org/10.1163/15685403-00003355 (2014).
Article Google Scholar
64.
Lagrue, C. et al. Interspecific differences in drift behaviour between the native Gammarus pulex and the exotic Gammarus roeseli and possible implications for the invader’s success. Biol. Invas. 13, 1409–1421. https://doi.org/10.1007/s10530-010-9899-0 (2011).
Article Google Scholar
65.
Pöckl, M. & Humpesch, U. H. Intra- and inter-specific variations in egg survival and brood development time for Austrian populations of Gammarus fossarum and G. roeseli (Crustacea: Amphipoda). Freshw. Biol. 23, 441–455. https://doi.org/10.1111/j.1365-2427.1990.tb00286.x (1990).
Article Google Scholar
66.
Pöckl, M. Effects of temperature, age and body size on moulting and growth in the freshwater amphipods Gammarus fossarum and G. roeseli. https://doi.org/10.1111/j.1365-2427.1992.tb00534.x (1992).
67.
Pöckl, M. Reproductive potential and lifetime potential fecundity of the freshwater amphipods Gammarus fossarum and G. roeseli in Austrian streams and rivers. Freshw. Biol. 30, 73–91. https://doi.org/10.1111/j.1365-2427.1993.tb00790.x (1993).
Article Google Scholar
68.
Pöckl, M., Webb, B. W. & Sutcliffe, D. W. Life history and reproductive capacity of Gammarus fossarum and G. roeseli (Crustacea: Amphipoda) under naturally fluctuating water temperatures: a simulation study. Freshw. Biol. 48, 53–66. https://doi.org/10.1046/j.1365-2427.2003.00967.x (2003).
Article Google Scholar
69.
Aguilera-Muñoz, F., Lafarga-Cruz, F. & Gallardo-Escárate, C. Molecular analysis in Chilean commercial gastropods based on 16S rRNA, COI and ITS1-5.8S rDNA-ITS2 sequences. Gayana (Concepción) 73, 17–27. https://doi.org/10.4067/s0717-65382009000100003 (2009).
Article Google Scholar
70.
Alvarez, J. M. & Hoy, M. A. Evaluation of the ribosomal ITS2 DNA sequences in separating closely related populations of the Parasitoid Ageniaspis (Hymenoptera: Encyrtidae) article. Ann. Entomol. Soc. Am. https://doi.org/10.1603/0013-8746(2002)095 (2002).
Article Google Scholar
71.
Wesson, D. M., McLain, D. K., Oliver, J. H., Piesman, J. & Collins, F. H. Investigation of the validity of species status of Ixodes dammini (Acari: Ixodidae) using rDNA. Proc. Natl. Acad. Sci. U. S. A. 90, 10221–10225. https://doi.org/10.1073/pnas.90.21.10221 (1993).
ADS CAS Article PubMed PubMed Central Google Scholar
72.
Tang, J., Toè, L., Back, C. & Unnasch, T. R. Intra-specific heterogeneity of the rDNA internal transcribed spacer in the Simulium damnosum (Diptera: Simuliidae) complex. Mol. Biol. Evol. 13, 244–252. https://doi.org/10.1093/oxfordjournals.molbev.a025561 (1996).
CAS Article PubMed Google Scholar
73.
Palandačić, A., Bravničar, J., Zupančić, P., Šanda, R. & Snoj, A. Molecular data suggest a multispecies complex of Phoxinus (Cyprinidae) in the Western Balkan Peninsula. Mol. Phylogenet. Evol. https://doi.org/10.1016/j.ympev.2015.05.024 (2015).
Article PubMed Google Scholar
74.
Vucić, M., Jelić, D., Žutinić, P., Grandjean, F. & Jelić, M. Distribution of Eurasian minnows (Phoxinus : Cypriniformes) in the Western Balkans. Knowl. Manag. Aquat. Ecosyst. 419, 11. https://doi.org/10.1051/kmae/2017051 (2018).
Article Google Scholar
75.
Buj, I. et al. Peculiar occurrence of Cobitis bilineata Canestrini, 1865 and Sabanejewia larvata (De Filippi, 1859) (Cobitidae, Actinopteri) in the Danube River basin in Croatia. Fundam. Appl. Limnol. https://doi.org/10.1127/fal/2020/1272 (2020).
Article Google Scholar
76.
Manning, J. T. Male discrimination and investment in Asellus aquaticus (L.) and A. meridianus Racovitsza (Crustacea: Isopoda). Behaviour 55(1–2), 1–14 (1975).
CAS Article Google Scholar
77.
Bollache, L. & Cézilly, F. Sexual selection on male body size and assortative pairing in Gammarus pulex (Crustacea: Amphipoda): field surveys and laboratory experiments. J. Zool. 264, 135–141. https://doi.org/10.1017/S0952836904005643 (2004).
Article Google Scholar
78.
Cornet, S., Luquet, G. & Bollache, L. Influence of female moulting status on pairing decisions and size-assortative mating in amphipods. J. Zool. 286, 312–319. https://doi.org/10.1111/j.1469-7998.2011.00882.x (2012).
Article Google Scholar
79.
Grabner, D. S. et al. Invaders, natives and their enemies: distribution patterns of amphipods and their microsporidian parasites in the Ruhr Metropolis, Germany. Parasites Vectors https://doi.org/10.1186/s13071-015-1036-6 (2015).
Article PubMed PubMed Central Google Scholar
80.
Karaman, G. S. & Pinkster, S. Freshwater gammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea-Amphipoda) Part I. Gammarus pulex—group and related species (1977).
81.
Karaman, G. S. & Pinkster, S. Freshwater gammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea-Amphipoda). Part III. Gammarus balcanicus—group and related species (1987).
82.
Hillis, D. M. & Moritz, C. Molecular Systematics (Sinauer Associates Inc., Sunderland, 1996).
Google Scholar
83.
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 (1990).
CAS Article PubMed Google Scholar
84.
Kearse, M. et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649. https://doi.org/10.1093/bioinformatics/bts199 (2012).
Article PubMed PubMed Central Google Scholar
85.
Sequencher version 5.4.6 DNA sequence analysis software, Gene Codes Corporation, Ann Arbor, MI USA https://www.genecodes.com.
86.
Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302. https://doi.org/10.1093/molbev/msx248 (2017).
CAS Article PubMed Google Scholar
87.
Ratnasingham, S. & Hebert, P. D. N. The barcode of life data system. Mol. Ecol. Notes 7, 355–364. https://doi.org/10.1111/j.1471-8286.2006.01678.x (2007).
CAS Article PubMed PubMed Central Google Scholar
88.
Bouckaert, R. et al. BEAST 2: a software platform for bayesian evolutionary analysis. PLoS Comput. Biol. 10, 1–6. https://doi.org/10.1371/journal.pcbi.1003537 (2014).
CAS Article Google Scholar
89.
Bouckaert, R. R. & Drummond, A. J. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 17, 1–11. https://doi.org/10.1186/s12862-017-0890-6 (2017).
Article Google Scholar
90.
Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. Tracer v1.6. Available at https://beast.bio.ed.ac.uk/Tracer (2014).
91.
Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874. https://doi.org/10.1093/molbev/msw054 (2016).
CAS Article PubMed Google Scholar
92.
Leigh, J. W. & Bryant, D. POPART: full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116. https://doi.org/10.1111/2041-210X.12410 (2015).
Article Google Scholar
93.
Tajima, F. Statistical Method for Testing the Neutral Mutation Hypothesis by DNA Polymorphism. (1989).
94.
Fu, Y. X. New statistical tests of neutrality for DNA samples from a population. Genetics 143, 557–570 (1996).
CAS PubMed PubMed Central Google Scholar
95.
Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).
Article PubMed Google Scholar
96.
Copilaş-Ciocianu, D., Grabowski, M., Parvulescu, L. & Petrusek, A. Zoogeography of epigean freshwater Amphipoda (Crustacea) in Romania: fragmented distributions and wide altitudinal variability. Zootaxa 3893, 243. https://doi.org/10.11646/zootaxa.3893.2.5 (2014).
Article PubMed Google Scholar More