Variation in the susceptibility of urban Aedes mosquitoes infected with a densovirus
1.
Weaver, S. C., Charlier, C., Vasilakis, N. & Lecuit, M. Zika, chikungunya, and other emerging vector-borne viral diseases. Annu. Rev. Med. 69, 395–408 (2018).
Article CAS Google Scholar
2.
Kilpatrick, A. M. & Randolph, S. E. Drivers, dynamics, and control of emerging vector-borne zoonotic diseases. Lancet 380, 1946–1955 (2012).
PubMed Central Article PubMed Google Scholar
3.
Koureas, M., Tsakalof, A., Tsatsakis, A. & Hadjichristodoulou, C. Systematic review of biomonitoring studies to determine the association between exposure to organophosphorus and pyrethroid insecticides and human health outcomes. Toxicol. Lett. 210, 155–168 (2012).
Article CAS Google Scholar
4.
Peterson Robert, K. D., Macedo Paula, A. & Davis Ryan, S. A human-health risk assessment for West Nile Virus and insecticides used in mosquito management. Environ. Health Perspect. 114, 366–372 (2006).
Article CAS Google Scholar
5.
Han, W., Tian, Y. & Shen, X. Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: an overview. Chemosphere 192, 59–65 (2018).
ADS Article CAS Google Scholar
6.
Hernández, A. F. et al. Toxic effects of pesticide mixtures at a molecular level: their relevance to human health. Toxicology 307, 136–145 (2013).
Article CAS Google Scholar
7.
Sanchez-Bayo, F. P. Insecticides mode of action in relation to their toxicity to non-target organisms. J. Environ. Anal. Toxicol. s4, 002 (2012).
Google Scholar
8.
Rivero, A., Vézilier, J., Weill, M., Read, A. F. & Gandon, S. Insecticide control of vector-borne diseases: when is insecticide resistance a problem?. PLoS Pathog. 6, e1001000 (2010).
PubMed Central Article CAS PubMed Google Scholar
9.
Hemingway, J., Hawkes, N. J., McCarroll, L. & Ranson, H. The molecular basis of insecticide resistance in mosquitoes. Insect Biochem. Mol. Biol. 34, 653–665 (2004).
Article CAS Google Scholar
10.
Liu, N., Xu, Q., Zhu, F. & Zhang, L. Pyrethroid resistance in mosquitoes. Insect Sci. 13, 159–166 (2006).
Article CAS Google Scholar
11.
Dusfour, I. et al. Management of insecticide resistance in the major Aedes vectors of arboviruses: advances and challenges. PLoS Negl. Trop. Dis. 13, e0007615 (2019).
PubMed Central Article CAS PubMed Google Scholar
12.
Faraji, A. & Unlu, I. The eye of the tiger, the thrill of the fight: effective larval and adult control measures against the Asian tiger mosquito, Aedesalbopictus (Diptera: Culicidae), in North America. J. Med. Entomol. 53, 1029–1047 (2016).
Article Google Scholar
13.
Chan, K. L., Ho, B. C. & Chan, Y. C. Aedesaegypti (L.) and Aedesalbopictus (Skuse) in Singapore City. Bull. World Health Organ. 44, 629–633 (1971).
PubMed Central CAS PubMed Google Scholar
14.
Sansinenea, E. Bacillusthuringiensis Biotechnology (Springer, New York, 2012).
Google Scholar
15.
Mulla, M. S., Darwazeh, H. A. & Zgomba, M. Effect of some environmental factors on the efficacy of Bacillussphaericus 2362 and Bacillusthuringiensis (H-14) against mosquitoes. Bull. Soc. Vector Ecol. 15, 166–175 (1990).
Google Scholar
16.
Marina, C. F., Arredondo-Jiménez, J. I., Castillo, A. & Williams, T. Sublethal effects of iridovirus disease in a mosquito. Oecologia 119, 383–388 (1999).
ADS Article Google Scholar
17.
Delhon, G. et al. Genome of invertebrate iridescent virus type 3 (mosquito iridescent virus). J. Virol. 80, 8439–8449 (2006).
PubMed Central Article CAS PubMed Google Scholar
18.
Linley, J. R. & Nielsen, H. T. Transmission of a mosquito iridescent virus in Aedestaeniorhynchus: I. Laboratory experiments. J. Invertebr. Pathol. 12, 7–16 (1968).
Article CAS Google Scholar
19.
Carlson, J., Suchman, E. & Buchatsky, L. Densoviruses for control and genetic manipulation of mosquitoes. In Advances in Virus Research, Vol. 68 361–392 (Academic Press, 2006).
20.
Johnson, R. M. & Rasgon, J. L. Densonucleosis viruses (‘densoviruses’) for mosquito and pathogen control. Curr. Opin. Insect Sci. 28, 90–97 (2018).
Article Google Scholar
21.
Grenet, A.-S.G. et al. Les densovirus: une «massive attaque» chez les arthropodes. Virologie 19, 19–31 (2015).
Google Scholar
22.
Hewson, I. et al. Densovirus associated with sea-star wasting disease and mass mortality. Proc. Natl. Acad. Sci. 111, 17278–17283 (2014).
ADS Article CAS Google Scholar
23.
Afanasiev, B. N., Galyov, E. E., Buchatsky, L. P. & Kozlov, Y. V. Nucleotide sequence and genornic organization of aedes densonucleosis virus. Virology 185, 323–336 (1991).
Article CAS Google Scholar
24.
Sivaram, A. et al. Isolation and characterization of densonucleosis virus from Aedes aegypti mosquitoes and its distribution in India. Intervirology 52, 1–7 (2009).
Article CAS Google Scholar
25.
Chen, S. et al. Genetic, biochemical, and structural characterization of a new densovirus isolated from a chronically infected Aedesalbopictus C6/36 cell line. Virology 318, 123–133 (2004).
Article CAS Google Scholar
26.
Zhai, Y.-G. et al. Isolation and characterization of the full coding sequence of a novel densovirus from the mosquito Culexpipienspallens. J. Gen. Virol. 89, 195–199 (2008).
Article CAS Google Scholar
27.
Ren, X., Hoiczyk, E. & Rasgon, J. L. Viral Paratransgenesis in the malaria vector Anophelesgambiae. PLoS Pathog. 4, e1000135 (2008).
PubMed Central Article CAS PubMed Google Scholar
28.
Jousset, F.-X., Barreau, C., Boublik, Y. & Cornet, M. A Parvo-like virus persistently infecting a C6/36 clone of Aedesalbopictus mosquito cell line and pathogenic for Aedesaegypti larvae. Virus Res. 29, 99–114 (1993).
Article CAS Google Scholar
29.
Afanasiev, B. N. & Carlson, J. O. A new mosquito densovirus from Peru: genomic sequence and in vitro growth characteristics of wild type and hybrid viruses. (2003).
30.
O’Neill, S. L. et al. Insect densoviruses may be widespread in mosquito cell lines. J. Gen. Virol. 76, 2067–2074 (1995).
Article Google Scholar
31.
Jousset, F.-X., Baquerizo, E. & Bergoin, M. A new densovirus isolated from the mosquito Culexpipiens (Diptera: Culicidae). Virus Res. 67, 11–16 (2000).
Article CAS Google Scholar
32.
Sangdee, K. & Pattanakitsakul, S. New genetic variation of Aedesalbopictus Densovirus isolated from mosquito C6/36 cell line. Southeast Asian J. Trop. Med. Public Health 43, 12 (2012).
Google Scholar
33.
Li, J. et al. A novel densovirus isolated from the asian tiger mosquito displays varied pathogenicity depending on its host species. Front. Microbiol. 10, 1549 (2019).
PubMed Central Article PubMed Google Scholar
34.
Kittayapong, P., Baisley, K. J. & O’Neill, S. L. A mosquito densovirus infecting Aedesaegypti and Aedesalbopictus from Thailand. Am. J. Trop. Med. Hyg. 61, 612–617 (1999).
Article CAS Google Scholar
35.
Barreau, C., Jousset, F. X. & Bergoin, M. Venereal and vertical transmission of the Aedesalbopictus parvovirus in Aedesaegypti mosquitoes. Am. J. Trop. Med. Hyg. 57, 126–131 (1997).
Article CAS Google Scholar
36.
De Valdez, M. R. W., Suchman, E. L., Carlson, J. O. & Black, W. C. A Large Scale Laboratory Cage Trial of Aedes Densonucleosis Virus (AeDNV). J. Med. Entomol. 47, 392–399 (2010).
Article Google Scholar
37.
Altinli, M. et al. Sharing cells with Wolbachia: the transovarian vertical transmission of Culexpipiens densovirus. Environ. Microbiol. 21, 3284–3298 (2019).
Article CAS Google Scholar
38.
Wei, W. et al. The pathogenicity of mosquito densovirus (C6/36DNV) and its interaction with dengue virus type II in Aedesalbopictus. Am. J. Trop. Med. Hyg. 75, 1118–1126 (2006).
Article Google Scholar
39.
Bouyer, J., Chandre, F., Gilles, J. & Baldet, T. Alternative vector control methods to manage the Zika virus outbreak: more haste, less speed. Lancet Glob. Health 4, e364 (2016).
Article Google Scholar
40.
Barreau, C., Jousset, F.-X. & Bergoin, M. Pathogenicity of the Aedesalbopictus parvovirus (AaPV), a denso-like virus, for Aedes aegypti mosquitoes. J. Invertebr. Pathol. 68, 299–309 (1996).
Article CAS Google Scholar
41.
Barreau, C., Jousset, F.-X. & Cornet, M. An efficient and easy method of infection of mosquito larvae from virus-contaminated cell cultures. J. Virol. Methods 49, 153–156 (1994).
Article CAS Google Scholar
42.
Igarashi, A. Isolation of a Singh’s Aedesalbopictus cell clone sensitive to dengue and chikungunya viruses. J. Gen. Virol. 40, 531–544 (1978).
Article CAS Google Scholar
43.
Brackney, D. E. et al. C6/36 Aedesalbopictus cells have a dysfunctional antiviral RNA interference response. PLoS Negl. Trop. Dis. 4, e856 (2010).
PubMed Central Article CAS PubMed Google Scholar
44.
Ostfeld, R. S. & Keesing, F. Effects of host diversity on infectious disease. Annu. Rev. Ecol. Evol. Syst. 43, 157–182 (2012).
Article Google Scholar
45.
Lambrechts, L., Scott, T. W. & Gubler, D. J. Consequences of the expanding global distribution of aedes albopictus for dengue virus transmission. PLoS Negl. Trop. Dis. 4, e646 (2010).
PubMed Central Article PubMed Google Scholar
46.
Ledermann, J. P., Suchman, E. L., Black, W. C. & Carlson, J. O. Infection and pathogenicity of the mosquito densoviruses AeDNV, HeDNV, and APeDNV in Aedesaegypti mosquitoes (Diptera: Culicidae). J. Econ. Entomol. 97, 1828–1835 (2004).
Article Google Scholar
47.
Hirunkanokpun, S., Carlson, J. O. & Kittayapong, P. Evaluation of mosquito densoviruses for controlling Aedesaegypti (Diptera: Culicidae): variation in efficiency due to virus strain and geographic origin of mosquitoes. Am. J. Trop. Med. Hyg. 78, 784–790 (2008).
Article CAS Google Scholar
48.
Ogoyi, D. O. et al. Linkage and mapping analysis of a non-susceptibility gene to densovirus (nsd-2) in the silkworm, Bombyxmori. Insect Mol. Biol. 12, 117–124 (2003).
Article CAS Google Scholar
49.
Watanabe, H. & Maeda, S. Genetically determined nonsusceptibility of the silkworm, Bombyxmori, to infection with a densonucleosis virus (Densovirus). J. Invertebr. Pathol. 38, 370–373 (1981).
Article Google Scholar
50.
Rudolf, V. H. W. & Antonovics, J. Disease transmission by cannibalism: rare event or common occurrence?. Proc. R. Soc. B Biol. Sci. 274, 1205–1210 (2007).
Article Google Scholar
51.
Parry, R., Bishop, C., De Hayr, L. & Asgari, S. Density-dependent enhanced replication of a densovirus in Wolbachia-infected Aedes cells is associated with production of piRNAs and higher virus-derived siRNAs. Virology 528, 89–100 (2019).
Article CAS Google Scholar
52.
Rwegoshora, R. T., Baisley, K. J. & Kittayapong, P. Seasonal and spatial variation in natural densovirus infection in Anophelesminimus s.l. in Thailand. Southeast Asian J. Trop. Med. Public Health 31, 7 (2000).
Google Scholar
53.
Clements, A. N. The biology of mosquitoes: sensory reception and behaviour. Behaviour and aspects of the biology of larvae (1999).
54.
Hajek, A. E. & Shapiro-Ilan, D. I. Ecology of Invertebrate Diseases (Wiley, New York, 2018).
Google Scholar
55.
Ren, X. & Rasgon, J. L. Potential for the Anophelesgambiae densonucleosis virus to act as an “evolution-proof” biopesticide. J. Virol. 84, 7726–7729 (2010).
PubMed Central Article CAS PubMed Google Scholar
56.
Buchatsky, L. P. Densonucleosis of blood sucking mosquitoes. Dis. Aquat. Organ. 6, 145–150 (1989).
Article Google Scholar
57.
Brengues, C. et al. Pyrethroid and DDT cross-resistance in Aedesaegypti is correlated with novel mutations in the voltage-gated sodium channel gene. Med. Vet. Entomol. 17, 87–94 (2003).
Article CAS Google Scholar
58.
Boublik, Y., Jousset, F.-X. & Bergoin, M. Complete nucleotide sequence and genomic organization of the Aedesalbopictus parvovirus (AaPV) pathogenic for Aedesaegypti larvae. Virology 200, 752–763 (1994).
Article CAS Google Scholar More