More stories

  • in

    First molecular examination of Vietnamese mudflat snails in the genus Naranjia Golding, Ponder & Byrne, 2007 (Gastropoda: Amphibolidae)

    1.
    IUCN. A Study on Aid to the Environment Sector in Vietnam. (Ministry of Planning and Investment and UNDP, 1999).
    2.
    Myers, N. et al. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).
    ADS  CAS  Article  Google Scholar 

    3.
    Sterling, E. J. & Hurley, M. M. Conserving biodiversity in Vietnam: applying biogeography to conservation research. Proc. Calif. Acad. Sci. 56, Supplement I, No.9, 98–118 (2005).

    4.
    Thuoc, P. & Long, N. Overview of the coastal fisheries of Vietnam. In Status and Management of Tropical Coastal Fisheries in Asia. (eds. Silvestre, G. & Pauly, D.) 96–106 (ICLARM, 1997).

    5.
    Ng, P. K. L. & Tan, K. S. The state of marine biodiversity in the South China Sea. Raffles Bull. Zool. (Supplement No. 8), 3–7 (2000).

    6.
    Burke, L., Selig, E. & Spalding, M. Reefs at Risk in Southeast Asia. (Resource for the Future, 2002).

    7.
    Benthem, W., van Lavieren, L. P. & Verheugt, W. J. M. Mangrove rehabilitation in the costal Mekong Delta, Vietnam. In An International Perspective on Wetland Rehabilitation. (ed. Streever, W.) 29–36 (Springer, 1999).

    8.
    McNally, R., McEwin, A. & Holland, T. The Potential for Mangrove Carbon Projects in Vietnam. (Netherlands Development Organization [SNV], 2011).

    9.
    Veettil, B. K. et al. Mangroves of Vietnam: historical development, current state of research and future threats. Estuar. Coast. Shelf Sci. 218, 212–236 (2019).
    ADS  Article  Google Scholar 

    10.
    Duke, N. C. Mangroves of the Kien Giang Biosphere Reserve Viet Nam. (Deutsche Gesellschaft fur International Zusammenarbeit GmbH, 2012).

    11.
    Cuong, C. V., Russell, M., Brown, S. & Dart, P. Using shoreline video assessment for coastal planning and restoration in the context of climate change in Kien Giang, Vietnam. Ocean Sci. J. 50, 413–432 (2015).
    ADS  Article  Google Scholar 

    12.
    Nguyen, T. P., Luom, T. T. & Parnell, K. E. Mangrove allocation for coastal protection and livelihood improvement in Kien Giang Province, Vietnam: constraints and recommendations. Land Use Policy 63, 401–407 (2017).
    Article  Google Scholar 

    13.
    Tue, N. T. et al. Food sources of macro-invertebrates in an important mangrove ecosystem of Vietnam determined by dual stable isotope signatures. J. Sea Res. 72, 14–21 (2012).
    ADS  Article  Google Scholar 

    14.
    Thanh, N. V. et al. The Zoobenthos of the Can Gio Mangrove Ecosystem (Publishing House for Science and Technology, 2013).

    15.
    Zvonareva, S. & Kantor, Y. Checklist of gastropod molluscs in mangroves of Khanh Hoa province, Vietnam. Zootaxa 4162, 401–437 (2016).
    Article  Google Scholar 

    16.
    Thach, N. N. Shells of Vietnam (Conchbooks, 2005).

    17.
    Thach, N. N. Recently Collected Shells of Vietnam (L’Informatore Piceno, 2007).

    18.
    Thach, N. N. New Shells of Southeast Asia. Sea Shells & Land Snails (48HrBooks Company, 2017).

    19.
    Raven, H. & Vermeulen, J. J. Notes on molluscs from NW Borneo and Singapore. 2. A synopsis of the Ellobiidae (Gastropoda, Pulmonata). Vita Malacol. 4, 29–62 (2007).
    Google Scholar 

    20.
    Lutaenko, K. A., Prozorova, L. A., Ngo, X. Q. & Bogatov, V. V. First reliable record of Mytilopsis sallei (Récluz, 1849) (Bivalvia: Dreissenidae) in Vietnam. Korean J. Malacol. 35, 355–360 (2019).
    Google Scholar 

    21.
    Prozorova, L. A. et al. Mangrove mollusk fauna of the Kien Giang Province in the Mekong River delta (South Vietnam). In The 1st International Conference on North East Asia Biodiversity, Vol. 1, 67 (2018a).

    22.
    Prozorova, L. A. et al. New for the Mekong Delta and Vietnam fauna mollusk families. In The 1st International Conference on North East Asia Biodiversity Vol. 1, 65–66 (2018b).

    23.
    Prendergast, J. R. et al. Rare species, the coincidence of diversity hotspots and conservation strategies. Nature 365, 335–337 (1993).
    ADS  Article  Google Scholar 

    24.
    Raphael, M. G. & Molina, R. Conservation of Rare or Little-known Species: Biological, Social, and Economic Considerations (Island Press, Washington, D.C., 2013).
    Google Scholar 

    25.
    Mouillot, D. et al. Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biol. 11, e1001569 (2013).
    CAS  Article  Google Scholar 

    26.
    Golding, R. E. Molecular phylogenetic analysis of mudflat snails (Gastropoda: Euthyneura: Amphiboloidea) supports an Australasian centre of origin. Mol. Phylogenet. Evol. 63, 72–81 (2012).
    Article  Google Scholar 

    27.
    Thach, N. N. Vietnamese New Mollusks. Seashells-Land Snails-Cephalopods, with 59 New Species. (Thach, N. N., 2016).

    28.
    Golding, R. E., Ponder, W. F. & Byrne, M. Taxonomy and anatomy of Amphiboloidea (Gastropoda: Heterobranchia: Archaeopulmonata). Zootaxa 1476, 1–50 (2007).
    Article  Google Scholar 

    29.
    Golding, R. E., Byrne, M. & Ponder, W. F. Novel copulatory structures and reproductive functions in Amphiboloidea (Gastropoda, Heterobranchia, Pulmonata). Invertebr. Biol. 127, 168–180 (2008).
    Article  Google Scholar 

    30.
    Davis, G. M. Mollusks as indicators of the effects of herbicides on mangroves in South Vietnam. In The Effects of Herbicides in South Vietnam: Part B, Working papers. (ed. National Academy of Sciences, National Research Council) 1–29 (National Academy of Sciences, National Research Council, 1974).

    31.
    Academy of Natural Sciences. MAL. Occurrence dataset. GBIF. https://doi.org/10.15468/xp1dhx (2019a).

    32.
    Academy of Natural Sciences. ANSP Malacology Collection. The Academy of Natural Sciences, Philadelphia. https://clade.ansp.org/malacology/collections/index.html (2019b).

    33.
    Akiba, M. & Sasaki, T. Mollusca specimens of Ryukyu University Museum (Fujukan). Version 1.1. National Museum of Nature and Science, Japan. GBIF. https://doi.org/10.15468/qgmdhb (2019).

    34.
    Creuwels, J. Naturalis Biodiversity Center (NL) – Mollusca. Naturalis Biodiversity Center. GBIF. https://doi.org/10.15468/yefvnk (2019).

    35.
    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
    CAS  Article  Google Scholar 

    36.
    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
    Article  Google Scholar 

    37.
    Lanfear, R. et al. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2017).
    CAS  PubMed  Google Scholar 

    38.
    Tanabe, A. S. Phylogears version 2.2.2012.02.13. 2012. Life is fifthdimension. https://www.fifthdimension.jp/ (2012).

    39.
    Ronquist, F. & Huelsenbeck, J. P. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).
    CAS  Article  Google Scholar 

    40.
    Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
    CAS  Article  Google Scholar 

    41.
    Rambaut, A., Drummond, A. J. & Suchard, M. Tracer v1.6. Molecular evolution, phylogenetics and epidemiology. https://tree.bio.ed.ac.uk/software/tracer/ (2013).

    42.
    Minh, B. Q., Nguyen, M. A. T. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013).
    CAS  Article  Google Scholar 

    43.
    Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).
    CAS  Article  Google Scholar 

    44.
    Kuroda, T. Two families new to the Molluscan fauna of Japan. Venus 1, 10–15 (1928).
    Google Scholar 

    45.
    GADM. GADM database, version 3.4. GDAM maps and data. https://gadm.org/index.html (2018).

    46.
    QGIS development team. QGIS geographic information system version 2.18, open source geospatial foundation project. QGIS. https://qgis.osgeo.org (2018). More

  • in

    Helminth eggs from early cretaceous faeces

    1.
    Araújo, A. et al. Invited review: Paleoparasitology—Perspectives with new techniques. Rev. Inst. Med. Trop. S. P. 40(6), 371–376 (1998).
    Article  Google Scholar 
    2.
    De Baets, K., Dentzien-Dias, P., Harrison, G. W. M., Littlewood, D. T. J. & Parry, L. A. 2020) Identification and macroevolution of parasites (topics in geobiology. In The Evolution and Fossil Record of Parasitism (eds De Baets, K. & Huntley, J.) (Springer, New York, 2020).
    Google Scholar 

    3.
    Dentzien-Dias, P. C. et al. Tapeworm eggs in a 270 million-year-old shark coprolite. PLoS ONE 8(1), e55007. https://doi.org/10.1371/journal.pone.0055007 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    4.
    Hugot, J. P. et al. Discovery of a 240 million-year-old nematode parasite egg in a cynodont coprolite sheds light on the early origin of pinworms in vertebrates. Parasite Vector 7(1), 486. https://doi.org/10.1186/s13071-014-0486-6 (2014).
    Article  Google Scholar 

    5.
    Da Silva, P. A. et al. A new ascarid species in cynodont coprolite dated of 240 million years. An. Acad. Bras. Cienc. 86(1), 265–296 (2014).
    Article  PubMed  Google Scholar 

    6.
    Cardia, D. F. F., Bertini, R. J., Camossi, L. G. & Letizio, L. A. The first record of ascaridoidea eggs discovered in crocodyliformes hosts from the upper Cretaceous of Brazil. Rev. Bras. Paleontol. 21(3), 238–244 (2018).
    Article  Google Scholar 

    7.
    Poinar, G. Jr. & Boucot, A. J. Evidence of intestinal parasites of dinosaurs. Parasitology 133(2), 245–249 (2006).
    Article  PubMed  Google Scholar 

    8.
    Beltrame, M. O., Fugassa, M. H., Barberena, R., Udrizar-Sauthier, D. E. & Sardella, N. H. New record of anoplocephalid eggs (Cestoda: Anoplocephalidae) collected from the rodent coprolites from archaeological and paleontological sites of Patagonia, Argentina. Parasitol. Int. 62, 431–434 (2013).
    Article  PubMed  Google Scholar 

    9.
    Beltrame, M. O., Tietze, E., Pérez, A. E., Bellusci, A. & Sardella, N. H. Ancient parasites from endemic deer from “Cueva Parque Diana” archeological site, Patagonia, Argentina. Parasitol. Res. 116(2), 1523–1531 (2017).
    Article  PubMed  Google Scholar 

    10.
    Fugassa, M. H., Petrigh, R. S., Fernández, P. M., Carballido Calatayud, M. & Belleli, C. Fox parasites in pre-Columbian times: Evidence from the past to understand the current helminth assemblages. Acta Trop. 185, 380–384 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    11.
    Sianto, L. et al. Helminths in feline coprolites up to 9000 years in the Brazilian Northeast. Parasitol. Int. 63, 851–857 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    12.
    Barrios-de Pedro, S. Integrative Study of the Coprolites from Las Hoyas (upper Barremian; La Huérguina Formation, Cuenca, Spain). Unpublished PhD thesis. Universidad Autónoma de Madrid (Spain) (2019).

    13.
    Poyato-Ariza, F. J. & Buscalioni, A. D. Las Hoyas: A Cretaceous Wetland (Dr. Friedrich Pfeil Verlag, München, 2016).
    Google Scholar 

    14.
    Martin, T. et al. A Cretaceous eutricondont and integument evolution in early mammals. Nature 526, 380–384 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    15.
    Iniesto, M. et al. A.I. Involvement of microbial mats in early fossilization by decay delay and formation of impressions and replicas of vertebrates and invertebrates. Sci. Rep. 6, 1–12. https://doi.org/10.1038/srep25716 (2016).
    CAS  Article  Google Scholar 

    16.
    Iniesto, M. et al. Plant tissue decay in long-term experiments with microbial mats. Geosci. J. 8(11), 387. https://doi.org/10.3390/geosciences8110387 (2018).
    ADS  CAS  Article  Google Scholar 

    17.
    Poyato-Ariza, F. J., Talbot, M. R., Fregenal-Martínez, M. A., Meléndez, N. & Wenz, S. First isotopic and multidisciplinary evidence for nonmarine coelacanths and pycnodontiform fishes: Palaeoenvironmental implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 144, 64–84 (1998).
    Article  Google Scholar 

    18.
    Buscalioni, A. D. & Fregenal-Martínez, M. A. A holistic approach to the palaeoecology of Las Hoyas Konservat-Lagerstätte (La Huérguina Formation, Lower Cretaceous, Iberian ranges, Spain). J. Iber. Geol. 36(2), 297–326 (2010).
    Article  Google Scholar 

    19.
    Fregenal-Martínez, M. A., Meléndez, N., Muñoz-García, M. B., Elez, J. & de la Horra, R. The stratigraphic record of the late Jurassic-early Cretaceous rifting in the Alto Tajo-Serranía de Cuenca region (Iberian Ranges, Spain): Genetic and structural evidences for a revision and a new lithostratigraphic proposal. Rev. Soc. Geol. Esp. 30(1), 113–142 (2017).
    Google Scholar 

    20.
    Buscalioni, A. D. et al. The wetlands of Las Hoyas. In Las Hoyas: A Cretaceous Wetland (eds Poyato-Ariza, F. J. & Buscalioni, A. D.) 238–253 (Dr. Friedrich Pfeil Verlag, München, 2016).
    Google Scholar 

    21.
    Timm, T., Vinn, O. & Buscalioni, A. D. Soft-bodied annelids (Oligochaeta) from the lower Cretaceous (La Huerguina formation) of the Las Hoyas Konservat-Lagerstätte, Spain. Neues. Jahrb. Geol. P.-A. 280(3), 315–324 (2016).
    Article  Google Scholar 

    22.
    Buatois, L. A., Fregenal-Martínez, M. A. & de Gibert, J. M. Short-term colonization trace-fossil assemblages in a carbonate lacustrine Konservat-Lagerstätte (Las Hoyas fossil site, Lower Cretaceous, Cuenca, centra Spain). Facies 43, 145–156 (2000).
    Article  Google Scholar 

    23.
    de Gibert, J. M., Moratalla, J. J., Mángano, M. G. & Buatois, L. A. Ichnoassemblage (trace fossils). In Las Hoyas: A Cretaceous Wetland (eds Poyato-Ariza, F. J. & Buscalioni, A. D.) 195–201 (Dr. Friedrich Pfeil Verlag, München, 2016).
    Google Scholar 

    24.
    Barrios-de-Pedro, S., Poyato-Ariza, F. J., Moratalla, J. J. & Buscalioni, A. D. Exceptional coprolite association from the early Cretaceous continental Lagerstätte of Las Hoyas, Cuenca, Spain. PLoS ONE 13(5), E0196982. https://doi.org/10.1371/journal.pone.0196982 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    25.
    Barrios-de Pedro, S., Chin, K. & Buscalioni, A. D. The late Barremian ecosystem of Las Hoyas sustained by fishes and shrimps as inferred from coprofabrics. Cretac. Res. 110, 104409. https://doi.org/10.1016/j.cretres.2020.104409 (2020).
    Article  Google Scholar 

    26.
    Poyato-Ariza, F. J. & Martín-Abad, H. Osteichthyan fishes. In Las Hoyas: A Cretaceous Wetland (eds Poyato-Ariza, F. J. & Buscalioni, A. D.) 114–132 (Dr. Friedrich Pfeil Verlag, München, 2016).
    Google Scholar 

    27.
    de Gibert, J. M. et al. The fish trace fossil Undichnafrom the Cretaceous of Spain. Paleontol. 42, 409–427 (2003).
    Article  Google Scholar 

    28.
    Sprent, J. F. A. Ascaridoid nematodes of amphibians and reptiles: Dujardinascaris. Supplementary review article. J. Helminthol. 51, 251–285 (1977).
    Google Scholar 

    29.
    Foreyt, W. J. Veterinary Parasitology. Reference Manual (Blackwell Publishing Profesional, Iowa, 2001).
    Google Scholar 

    30.
    Sullivan, T. A Color Atlas of Parasitology (University of San Francisco, San Francisco, 2004).
    Google Scholar 

    31.
    Rajesh, N. V., Kalpana Devi, R., Jayathangaraj, M. G., Raman, M. & Sridhar, R. Intestinal parasites in captive mugger crocodiles (Crocodylus palustris) in south India. J. Trop. Med. Parasit. 37(2), 69–73 (2014).
    Google Scholar 

    32.
    King, S. & Scholz, T. Trematodes of the family Opisthorchiidae: A minireview, Korean. J. Parasitol. 39(3), 209–221 (2001).
    CAS  Google Scholar 

    33.
    Olsen, O. W. Animal Parasites: Their Life Cycles and Ecology 3rd edn. (University Park Press, Baltimore, London, 1974).
    Google Scholar 

    34.
    Chen, T. C. General Parasitology 2nd edn. (Academic Press Inc., Florida, 1986).
    Google Scholar 

    35.
    Gegenbaur, C. Gundriss der Vergleichenden Anatomie (Wilhelm Engelmann, Leipzig, 1859).
    Google Scholar 

    36.
    Rudolphi, C. A. Entozoorum Sive Vermium Intesstinalium (Historia Naturalis, Amsterdam, 1808).
    Google Scholar 

    37.
    Yamaguti, S. The Digenetic-Trematodes of Vertebrates Volume I (Parts 1 and 2) (Interscience Publisjers Inc., New York, 1958).
    Google Scholar 

    38.
    Ditrich, O., Giboda, M., Scholz, T. & Beer, S. A. Comparative morphology of eggs of the Haplorchiinae (Trematoda: Heterophyidae) and some other medically important heterophyid and opisthorchiid flukes. Folia. Parasit. 39, 123–132 (1992).
    CAS  Google Scholar 

    39.
    Cobb, N. A. The english word “nema”. J. A. M. A. 98, 75 (1932).
    Google Scholar 

    40.
    Skrjabin, K. I. & Karokhin, V. I. On the rearrangement of nematodes of the order Ascaridata Skrjabin, 1915. Dokl. Akad. Nauk. Soiuza. Sov. Sotsialisticheskikh. Resp. 48(4), 297–299 (1945).
    CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Ubelaker, J. E. & Allison, V. F. Scanning electron microscopy of the eggs of Ascaris lumbricoides, A. suum, Toxocara canis, and T. mystax. J. Parasitol. 61(5), 802–807 (1975).
    CAS  Article  PubMed  Google Scholar 

    42.
    Dujardin, F. Histoire Naturelle des Helminthes ou Vers Intestinaux (Librairie Encyclopedique de Roret, Paris, 1845).
    Google Scholar 

    43.
    Cardoso, A. M. C., de Souza, A. J. S., Menezes, R. C., Pereira, W. L. A. & Tortelly, R. Gastric lesions in free-ranging black caimans (Melanosuchus niger) associated with Brevimulticaecum species. Vet. Pathol. 50(4), 582–584 (2013).
    CAS  Article  PubMed  Google Scholar 

    44.
    Tellez, M. & Nifong, J. Gastric nematode diversity between estuarine and inland freshwater populations of the American alligator (Alligator mississippienses, daudin 1802), and the prediction of intermediate hosts. Int. J. Parasitol.-Par. 3, 227–235 (2014).
    Article  Google Scholar 

    45.
    Villegas, A. & González-Solís, D. Gastrointestinal helminth parasites of the American crocodile (Crocodylus Acutus) in southern Quintana, Roo, Mexico. Herpetol. Conserv. Biol. 4(3), 346–351 (2009).
    Google Scholar 

    46.
    Cardia, D. F. F., Bertini, R. J., Camossi, L. G. & Letizio, L. A. First record of Acanthocephala parasites eggs in coprolites preliminary assigned to Crocodyliformes from the Adamantina Formation (Bauru Group, upper Cretaceous), Sao Paulo, Brazil. An. Acad. Bras. Cienc. 91(2), e20170848. https://doi.org/10.1590/0001-3765201920170848 (2019).
    Article  Google Scholar 

    47.
    Qvarnström, M., Niedźwiedzki, G. & Žigaitė, Ž. Vertebrate coprolites (fossil faeces): An underexplored Konservat-Lagerstätte. Earth Sci. Rev. 162, 44–57 (2016).
    ADS  Article  Google Scholar 

    48.
    Uddin, M. H., Bae, Y. M., Choi, M. H. & Hong, S. T. Production and deformation of Clonorchis sinensis eggs during in vitro maintenance. PLoS ONE 7(12), e52676. https://doi.org/10.1371/journal.pone.0052676 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    49.
    Grobbelaar, A., Van As, L. L., Butler, H. J. B. & Van As, J. G. Ecology of Diplostomid (Trematoda: Digenea) infection in freshwater fish in Southern Africa. Afr. Zool. 49(2), 222–232 (2014).
    Article  Google Scholar 

    50.
    Schell, S. C. How to Know the Trematodes (William C. Brown Company Publishers, Iowa, 1970).
    Google Scholar 

    51.
    McConnaughey, M. Life Cycle of Parasites. Reference Module in Biomedical Sciences (Elsevier, Amsterdam, 2014).
    Google Scholar 

    52.
    Tsubokawa, D. et al. Collection methods of trematode eggs using experimental animal models. Parasitol. Int. 65, 584–587 (2016).
    Article  PubMed  Google Scholar 

    53.
    Wolf, D. et al. Diagnosis of gastrointestinal parasites in reptiles: Comparison of two coprological methods. Acta. Vet. Scand. 56(1), 44. https://doi.org/10.1186/s13028-014-0044-4 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    54.
    Mehlhorn, H. Encyclopedia of Parasitology (Springer, Berlin, 2016).
    Google Scholar 

    55.
    Dai, W. et al. Phylogenomic perspective on the relationships and evolutionary history of the major otocephalan lineages. Sci. Rep. 8, 205. https://doi.org/10.1038/s41598-017-18432-5 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    56.
    Kappas, I., Vittas, S., Pantzartzi, C. N., Drosopoulou, E. & Scouras, Z. G. A time-calibrated mitogenome phylogeny of catfish (Teleostei: Siluriformes). PLoS ONE 11(12), E0166988. https://doi.org/10.1371/journal.pone.0166988 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    57.
    Anderson, R. C. Nematode Parasites of Vertebrates: Their Development and Transmission 2nd edn. (CABI Publishing, Wallingford, 2000).
    Google Scholar 

    58.
    Valles-Vega, I., Molina-Fernández, D., Benítez, R., Hernández-Trujillo, S. & Adroher, F. J. Early development and life cycle of Contracaecum multipapillatum s.l. from a brown pelican Pelecanus occidentalis in the Gulf of California, Mexico. Dis. Aquat. Organ. 125, 167–178 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    59.
    Klimpel, S., Palm, H. W., Rückert, S. & Piatkowski, U. The life cycle of Anisakis simplex in the Norwegian Deep (northern North Sea). Parasitol. Res. 94(1), 1–9 (2004).
    Article  PubMed  PubMed Central  Google Scholar 

    60.
    Cardia, D. F. F., Bertini, R. J., Camossi, L. G. & Letizio, L. A. Two new species of ascaridoid nematodes in Brazilian Crocodylomorpha from the upper Cretaceous. Parasitol. Int. 72, 101947. https://doi.org/10.1016/j.parint.2019.101947 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    61.
    Buscalioni, A. D. & Chamero, B. Crocodylomorpha. In Las Hoyas: A Cretaceous Wetland (eds Poyato-Ariza, F. J. & Buscalioni, A. D.) 162–169 (Dr. Friedrich Pfeil Verlag, München, 2016).
    Google Scholar 

    62.
    Esch, G. W., Barger, M. A. & Fellis, K. J. The transmission of digenetic trematodes: Style, elegance, complexity. Integr. Comp. Biol. 42, 304–312 (2002).
    Article  PubMed  Google Scholar 

    63.
    Delvene, G. & Clive Munt, M. Mollusca. In Las Hoyas: A Cretaceous Wetland (eds Poyato-Ariza, F. J. & Buscalioni, A. D.) 57–63 (Dr. Friedrich Pfeil Verlag, München, 2016).
    Google Scholar 

    64.
    Delclós, X. & Soriano, C. Insecta. In Las Hoyas: A Cretaceous Wetland (eds Poyato-Ariza, F. J. & Buscalioni, A. D.) 70–88 (Dr. Friedrich Pfeil Verlag, München, 2016).
    Google Scholar 

    65.
    Garassino, A. Decapoda. In Las Hoyas: A Cretaceous Wetland (eds Poyato-Ariza, F. J. & Buscalioni, A. D.) 98–102 (Dr. Friedrich Pfeil Verlag, München, 2016).
    Google Scholar 

    66.
    Heimhofer, U. et al. Deciphering the depositional environment of the laminated Crato fossil beds (early Cretaceous, Araripe Basin, North-eastern Brazil. Sedimentology 57(2), 677–694 (2010).
    ADS  CAS  Article  Google Scholar 

    67.
    de Gibert, J. M., Fregenal-Martínez, M. A., Buatois, L. A. & Mángano, M. G. Trace fossils and their palaeoecological significance in lower Cretaceous lacustrine conservation deposits, El Montsec, Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 156, 89–101 (2000).
    Article  Google Scholar 

    68.
    Ferreira, L. F., Reinhard, K. & Araújo, A. Fundamentos da Paleoparasitología 1st edn. (Editora Fiocruz, Rio de Janeiro, 2011).
    Google Scholar 

    69.
    Ritchie, L. S. An ether sedimentation technique for routine stool examination. Bull. U. S. Army. Med. Dep. 8, 326 (1948).
    CAS  PubMed  PubMed Central  Google Scholar 

    70.
    Rasband, W.S. ImageJ. (U.S. National Institutes of Health, Bethesda, 1997–2018). https://imagej.nih.gov/ij/. More

  • in

    Characterising the effect of crop species and fertilisation treatment on root fungal communities

    1.
    Ramankutty, N. et al. Trends in global agricultural land use: Implications for environmental health and food security. Annu. Rev. Plant Biol. 69, 789–815 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 108, 20260–20264 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Bender, S. F., Wagg, C. & van der Heijden, M. G. A. An underground revolution: Biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31, 440–452 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Schröder, P. et al. Discussion paper: Sustainable increase of crop production through improved technical strategies, breeding and adapted management—A European perspective. Sci. Total Environ. 678, 146–161 (2019).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    5.
    Bardgett, R. D., Mommer, L. & De Vries, F. T. Going underground: Root traits as drivers of ecosystem processes. Trends Ecol. Evol. 29, 692–699 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    6.
    Berendsen, R. L., Pieterse, C. M. J. & Bakker, P. A. H. M. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Wissuwa, M., Mazzola, M. & Picard, C. Novel approaches in plant breeding for rhizosphere-related traits. Plant Soil 321, 409–430 (2009).
    CAS  Article  Google Scholar 

    8.
    Backer, R. et al. Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci. 871, 1–17 (2018).
    Google Scholar 

    9.
    Bulgarelli, D. et al. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17, 392–403 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Chaparro, J. M., Badri, D. V. & Vivanco, J. M. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 8, 790–803 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Edwards, J. et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. USA 112, E911–E920 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Food and Agriculture Organization of United Nations. World Food and Agriculture Statistical Workbook 2018 https://www.fao.org/3/ca1796en/ca1796en.pdf (2018).

    13.
    International Potato Centre. Annual Report 2017 https://cipotato.org/annualreport2017/ (2017).

    14.
    Busby, P. E. et al. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol. 15, 1–14 (2017).
    Article  CAS  Google Scholar 

    15.
    Lareen, A., Burton, F. & Schäfer, P. Plant root-microbe communication in shaping root microbiomes. Plant Mol. Biol. 90, 575–587 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Adair, K. L. & Douglas, A. E. Making a microbiome: The many determinants of host-associated microbial community composition. Curr. Opin. Microbiol. 35, 23–29 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    17.
    Donn, S., Kirkegaard, J. A., Perera, G., Richardson, A. E. & Watt, M. Evolution of bacterial communities in the wheat crop rhizosphere. Environ. Microbiol. 17, 610–621 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    18.
    Grayston, S. J., Wang, S., Campbell, C. D. & Edwards, A. C. Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol. Biochem. 30, 369–378 (1998).
    CAS  Article  Google Scholar 

    19.
    Esperschütz, J., Gattinger, A., Mäder, P., Schloter, M. & Fließbach, A. Response of soil microbial biomass and community structures to conventional and organic farming systems under identical crop rotations. FEMS Microbiol. Ecol. 61, 26–37 (2007).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    20.
    Francioli, D. et al. Mineral vs. organic amendments: Microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. 7, 1–16 (2016).
    Article  Google Scholar 

    21.
    Lupatini, M., Korthals, G. W., de Hollander, M., Janssens, T. K. S. & Kuramae, E. E. Soil microbiome is more heterogeneous in organic than in conventional farming system. Front. Microbiol. 7, 1–13 (2017).
    Article  Google Scholar 

    22.
    Kätterer, T., Börjesson, G. & Kirchmann, H. Changes in organic carbon in topsoil and subsoil and microbial community composition caused by repeated additions of organic amendments and N fertilisation in a long-term field experiment in Sweden. Agric. Ecosyst. Environ. 189, 110–118 (2014).
    Article  Google Scholar 

    23.
    Liu, B., Tu, C., Hu, S., Gumpertz, M. & Ristaino, J. B. Effect of organic, sustainable, and conventional management strategies in grower fields on soil physical, chemical, and biological factors and the incidence of Southern blight. Appl. Soil Ecol. 37, 202–214 (2007).
    Article  Google Scholar 

    24.
    Liu, Y. et al. Direct and indirect influences of 8 year of nitrogen and phosphorus fertilisation on glomeromycota in an alpine meadow ecosystem. New Phytol. 194, 523–535 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Liu, W. et al. Arbuscular mycorrhizal fungi in soil and roots respond differently to phosphorus inputs in an intensively managed calcareous agricultural soil. Sci. Rep. 6, 1–11 (2016).
    Article  CAS  Google Scholar 

    26.
    Beauregard, M. S. et al. Various forms of organic and inorganic P fertilizers did not negatively affect soil- and root-inhabiting AM fungi in a maize–soybean rotation system. Mycorrhiza 23, 143–154 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Wemheuer, B., Thomas, T. & Wemheuer, F. Fungal endophyte communities of three agricultural important grass species differ in their response towards management regimes. Microorganisms 7, 37 (2019).
    CAS  Article  Google Scholar 

    28.
    Hartman, K. et al. Erratum: Correction to: Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming (Microbiome (2018) 6 1 (14)). Microbiome 6, 74 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    29.
    Estonian Weather Service. Meteorological Yearbook of Estonia 2017 https://www.ilmateenistus.ee/wp-content/uploads/2018/03/aastaraamat_2017.pdf (2018).

    30.
    De Leon, D. G. et al. Different wheat cultivars exhibit variable responses to inoculation with arbuscular mycorrhizal fungi from organic and conventional farms. PLoS ONE 15, 1–17 (2020).
    Google Scholar 

    31.
    Van Reeuwijk, L. P. Nitrogen in Procedures for soil analysis 6th edn (ed. Van Reeuwijk L. P.) (International Soil Reference and Information Centre, Wageningen, 2002).
    Google Scholar 

    32.
    Nikitin, B. A. Methods for soil humus determination. Agric.Chem. (Agrokhimya) 3, 156–158 (1999) in Russian
    Google Scholar 

    33.
    Egnér, H., Riehm, H. & Domingo, W. R. Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extraktionsmethoden zur Phosphor- und Kaliumbestimmung 199–215 (The Annals of the Royal Agricultural College of Sweden, 1960) in German

    34.
    Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    35.
    Riit, T. et al. Oomycete-specific ITS primers for identification and metabarcoding. MycoKeys 14, 17–30 (2016).
    Article  Google Scholar 

    36.
    Anslan, S., Bahram, M., Hiiesalu, I. & Tedersoo, L. PipeCraft: Flexible open-source toolkit for bioinformatics analysis of custom high-throughput amplicon sequencing data. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.12692 (2017).
    Article  PubMed  Google Scholar 

    37.
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 1–22 (2016).
    Google Scholar 

    38.
    Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Abarenkov, K. et al. The UNITE database for molecular identification of fungi—Recent updates and future perspectives. New Phytol 186, 281–285 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    40.
    Bengtsson-Palme, J. et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 4, 914–919 (2013).
    Google Scholar 

    41.
    Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinform. 10, 1–9 (2009).
    Article  CAS  Google Scholar 

    43.
    Nguyen, N. H. et al. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).
    Article  Google Scholar 

    44.
    Agrios, G. N. In Plant Pathology 5th edn (ed. Agrios, G. N.) (Elsevier Academic Press, Amsterdam, 2005).

    45.
    Jensen, B., Lübeck, P. S. & Jørgensen, H. J. L. Clonostachys rosea reduces spot blotch in barley by inhibiting prepenetration growth and sporulation of Bipolaris sorokiniana without inducing resistance. Pest Manag. Sci. 72, 2231–2239 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Knudsen, I. M. B., Hockehull, J. & Jensen, D. N. Biocontrol of seedling diseases of barley and wheat caused by Fusarium culmorum and Bipolaris sorokiniana: Effects of selected fungal antagonists on growth and yield components. Plant Pathol 44, 467–477 (1995).
    Article  Google Scholar 

    47.
    Bálint, M. et al. Millions of reads, thousands of taxa: Microbial community structure and associations analyzed via marker genesa. FEMS Microbiol. Rev. 40, 686–700 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    48.
    Clarke, K. R. & Gorley, R. N. PRIMERv7: User Manual/Tutorial (PRIMER-E, Plymouth, 2015).
    Google Scholar 

    49.
    Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods 1–214 (PRIMER-E, Plymouth, 2008).
    Google Scholar 

    50.
    Anderson, M. J. & Willis, T. J. Canonical analysis of principal coordinates: A useful method of constrained ordination for ecology. Ecology 84, 511–525 (2003).
    Article  Google Scholar 

    51.
    Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    52.
    McArdle, B. H. & Anderson, M. J. Fitting multivariate models to community data. Ecology 82, 290–297 (2001).
    Article  Google Scholar 

    53.
    Broeckling, C. D., Broz, A. K., Bergelson, J., Manter, D. K. & Vivanco, J. M. Root exudates regulate soil fungal community composition and diversity. Appl. Environ. Microbiol. 74, 738–744 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    54.
    Hu, L. et al. Root exudate metabolites drive plant–soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat. Commun. 9, 1–13 (2018).
    ADS  Article  CAS  Google Scholar 

    55.
    Badri, D. V. & Vivanco, J. M. Regulation and function of root exudates. Plant Cell Environ. 32, 666–681 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Emmett, B. D., Youngblut, N. D., Buckley, D. H. & Drinkwater, L. E. Plant phylogeny and life history shape rhizosphere bacterial microbiome of summer annuals in an agricultural field. Front. Microbiol. 8, 1–16 (2017).
    Article  Google Scholar 

    57.
    Hawes, M. C., Gunawardena, U., Miyasaka, S. & Zhao, X. The role of root border cells in plant defense. Trends Plant Sci. 5, 128–133 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Hawes, M. C., Bengough, G., Cassab, G. & Ponce, G. Root caps and rhizosphere. J. Plant Growth Regul. 21, 352–367 (2002).
    CAS  Article  Google Scholar 

    59.
    Koroney, A. S. et al. Root exudate of Solanum tuberosum is enriched in galactose-containing molecules and impacts the growth of pectobacterium atrosepticum. Ann. Bot. 118, 797–808 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    60.
    Moody, S. F., Clarke, A. E. & Bacic, A. Structural analysis of secreted slime from wheat and cowpea roots. Phytochemistry 27, 2857–2861 (1988).
    CAS  Article  Google Scholar 

    61.
    Wang, Q., Wang, N., Wang, Y., Wang, Q. & Duan, B. Differences in root-associated bacterial communities among fine root branching orders of poplar (Populus × euramericana (Dode) Guinier.). Plant Soil 421, 123–135 (2017).
    CAS  Article  Google Scholar 

    62.
    Tedersoo, L., Mett, M., Ishida, T. A. & Bahram, M. Phylogenetic relationships among host plants explain differences in fungal species richness and community composition in ectomycorrhizal symbiosis. New Phytol. 199, 822–831 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    63.
    Rich, S. M. & Watt, M. Soil conditions and cereal root system architecture: Review and considerations for linking Darwin and Weaver. J. Exp. Bot. 64, 1193–1208 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Watt, M., Magee, L. J. & McCully, M. E. Types, structure and potential for axial water flow in the deepest roots of field-grown cereals. New Phytol. 178, 135–146 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    65.
    Watt, M., Schneebeli, K., Dong, P. & Wilson, I. W. The shoot and root growth of Brachypodium and its potential as a model for wheat and other cereal crops. Funct. Plant Biol. 36, 960–969 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    66.
    Yamaguchi, J. Measurement of root diameter in field-grown crops under a microscope without washing. Soil Sci. Plant Nutr. 48, 625–629 (2002).
    Article  Google Scholar 

    67.
    Yamaguchi, J., Tanaka, A. & Tanaka, A. Quantitative observation on the root system of various crops growing in the field. Soil Sci. Plant Nutr. 36, 483–493 (1990).
    Article  Google Scholar 

    68.
    Detheridge, A. P. et al. The legacy effect of cover crops on soil fungal populations in a cereal rotation. Agric. Ecosyst. Environ. 228, 49–61 (2016).
    Article  Google Scholar 

    69.
    Tedersoo, L. et al. Tree diversity and species identity effects on soil fungi, protists and animals are context dependent. ISME J. 10, 346–362 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Chen, M. et al. Soil eukaryotic microorganism succession as affected by continuous cropping of peanut—Pathogenic and beneficial fungi were selected. PLoS ONE 7, e40659 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    71.
    Song, X., Pan, Y., Li, L., Wu, X. & Wang, Y. Composition and diversity of rhizosphere fungal community in Coptis chinensis Franch. Continuous cropping fields. PLoS ONE 13, 1–14 (2018).
    Google Scholar 

    72.
    Bennett, A. J., Bending, G. D., Chandler, D., Hilton, S. & Mills, P. Meeting the demand for crop production: The challenge of yield decline in crops grown in short rotations. Biol. Rev. 87, 52–71 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    73.
    Öpik, M., Moora, M., Liira, J. & Zobel, M. Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J. Ecol. 94, 778–790 (2006).
    Article  Google Scholar 

    74.
    Sýkorová, Z., Wiemken, A. & Redecker, D. Cooccurring Gentiana verna and Gentiana acaulis and their neighboring plants in two Swiss upper montane meadows harbor distinct arbuscular mycorrhizal fungal communities. Appl. Environ. Microbiol. 73, 5426–5434 (2007).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    75.
    Francioli, D. et al. Plant functional group drives the community structure of saprophytic fungi in a grassland biodiversity experiment. Plant Soil https://doi.org/10.1007/s11104-020-04454-y (2020).
    Article  Google Scholar 

    76.
    Mariotte, P. et al. Plant–soil feedback: Bridging natural and agricultural sciences. Trends Ecol. Evol. 33, 129–142 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    77.
    Banerjee, S. et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 13, 1722–1736 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    78.
    Paungfoo-Lonhienne, C. et al. Nitrogen fertilizer dose alters fungal communities in sugarcane soil and rhizosphere. Sci. Rep. 5, 1–6 (2015).
    Article  CAS  Google Scholar 

    79.
    Rousk, J. et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4, 1340–1351 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    80.
    Rousk, J., Brookes, P. C. & Bååth, E. Fungal and bacterial growth responses to N fertilization and pH in the 150-year ‘Park Grass’ UK grassland experiment. FEMS Microbiol. Ecol. 76, 89–99 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    81.
    Strickland, M. S. & Rousk, J. Considering fungal: Bacterial dominance in soils—Methods, controls, and ecosystem implications. Soil Biol. Biochem. 42, 1385–1395 (2010).
    CAS  Article  Google Scholar 

    82.
    Marschner, P., Kandeler, E. & Marschner, B. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol. Biochem. 35, 453–461 (2003).
    CAS  Article  Google Scholar 

    83.
    Ai, C. et al. Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation. Geoderma 319, 156–166 (2018).
    ADS  CAS  Article  Google Scholar 

    84.
    Giacometti, C. et al. Chemical and microbiological soil quality indicators and their potential to differentiate fertilization regimes in temperate agroecosystems. Appl. Soil Ecol. 64, 32–48 (2013).
    Article  Google Scholar 

    85.
    Liu, M. et al. Organic amendments with reduced chemical fertilizer promote soil microbial development and nutrient availability in a subtropical paddy field: The influence of quantity, type and application time of organic amendments. Appl. Soil. Ecol. 42, 166–175 (2009).
    Article  Google Scholar 

    86.
    Lin, X. et al. Long-term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in north China revealed by 454 pyrosequencing. Environ. Sci. Technol. 46, 5764–5771 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    87.
    Mäder, P., Edenhofer, S., Boller, T., Wiemken, A. & Niggli, U. Arbuscular mycorrhizae in a long-term field trial comparing low-input (organic, biological) and high-input (conventional) farming systems in a crop rotation. Biol. Fertil. Soils 31, 150–156 (2000).
    Article  Google Scholar 

    88.
    Song, G. et al. Contrasting effects of long-term fertilization on the community of saprotrophic fungi and arbuscular mycorrhizal fungiin a sandy loam soil. Plant Soil Environ. 61, 127–136 (2015).
    CAS  Article  Google Scholar 

    89.
    Sun, R. et al. Fungal community composition in soils subjected to long-term chemical fertilization is most influenced by the type of organic matter. Environ. Microbiol. 18, 5137–5150 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    90.
    Setälä, H. & McLean, M. A. Decomposition rate of organic substrates in relation to the species diversity of soil saprophytic fungi. Oecologia 139, 98–107 (2004).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    91.
    van Agtmaal, M. et al. Exploring the reservoir of potential fungal plant pathogens in agricultural soil. Appl. Soil Ecol. 121, 152–160 (2017).
    Article  Google Scholar 

    92.
    Chung, Y. R., Hoitink, H. A. H. & Lipps, P. E. Interactions between organic-matter decomposition level and soilborne disease severity. Agric. Ecosyst. Environ. 24, 183–193 (1988).
    Article  Google Scholar  More

  • in

    Seascape connectivity of European anchovy in the Central Mediterranean Sea revealed by weighted Lagrangian backtracking and bio-energetic modelling

    Ichthyoplanktonic dataset
    Spatial distribution of anchovy early-life stage was estimated from ichthyoplanktonic surveys in the GSA 16 from 2009 to 2012. During each survey, the same systematic sampling was carried out following a regular grid of stations (1/10° × 1/10° on the continental shelf and 1/5° × 1/5° further offshore). Mesozooplanktonic samples were collected in the study area using a bongo net (40-cm opening) towed obliquely from the surface to a 100-m depth, equipped with a 200-µm mesh size net. In each tow, the volume of filtered water was estimated using mechanical flowmeters (General Oceanics Inc., FL, USA). Over the period included in the analyses for anchovy eggs data, the average number of sampling stations was 154.
    Samples were immediately fixed after collection and preserved in a 70% alcohol solution for further analysis in laboratory by stereomicroscopy. Anchovy larvae were identified in a land-based laboratory and otoliths were extracted for the age determination. Both sagittae were extracted using insect pins and fixed on a slide using a mounting medium for microscopy. Daily rings were counted at 1000× magnification (oil immersion) starting from the spawning mark31; each otolith was read blind (i.e., with no size or collection location information available) by a single reader43. When all otoliths were completed, the process was repeated. If the difference in age between the 2 readings was {rho }_{min}^{Chl}), where ({rho }_{min}^{Chl}=frac{1}{2}K) and (K) = 0.09 mg m−3, i.e., half of the saturation value for anchovy larvae feeding50.
    This idea is justified by the relationship between the pelagic growth rate and the Chlorophyll concentration: only those individuals that travel within Chlorophyll-rich marine waters have a significant survival probability. In this way, we have a criterion to rule out all the final positions of the simulated backward trajectories, which have poor or null Chlorophyll content.
    Bioenergetic modeling
    DEB represents a reliable and powerful tool to mechanistically describe the whole life cycle of an organism individual performance and to make predictions of life-history traits27, 40,50,51,52. In particular, DEB is a complex mechanistic model that relies on several differential equations that are solved to obtain the final amount of energy allocated to vital functions, such as metabolic maintenance and to growth and reproduction53. Here we adapted this model to the European anchovy and we adopted the standard version of the DEB model, which considers one reserve, one structure compartment and isomorphic growth54.
    The energy gathered through feeding processes is stored in a reserve pool, from which it is allocated according to the κ-rule: part of the energy (κ) sustains the somatic tissues and the growth of structures, while the rest (1 − κ) maintains the maturity level and maturation or gamete production in adults. Temperature controls the rates of all energetic flows and it follows the Arrhenius rules within the thermal-tolerance range26,54,55. The Type II functional response56 instead models the relationship between food density and ingestion rate54. DEB theory therefore allows, through the explicit modeling of energy and mass fluxes through organisms, to derivate individual performance in terms of the most important life-history traits of a species such as, for instance, the total reproductive output (TRO) and maximum length.
    In the present study, we followed a well-tested spatially explicit contextualized approach already successfully adopted in several companion studies27,40,57. This approach consists in running DEB models in each spatial pixel of the study area using organismal body temperature (which is assumed to be similar to the Sea Surface Temperature, as extracted through satellite imagery for every single pixel) and environmental food availability. Food availability was expressed as density (wet mass mg m−3), which for anchovy primarily comprise zooplankton, and obtained as a spatially continuous dataset on the distribution of food throughout the study area40. Nevertheless, to run DEB model in each pixel with local temperature and food density is a long computational process. Thus, due to the large number of pixels of the study area, we moved the standard DEB model from the original Kooijman’s Matlab code (https://www.bio.vu.nl/thb/)—once adapted it using anchovy DEB parameters40—to an R code. In doing so, we were able to automatize and speed up the process since R coding improve the computational effort and allows running DEB models at larger spatial and temporal scales27,40,58. The coding re-arrangement was performed by the Ecology Lab of the University of Palermo, which is one among the DEB node of the DEB world net (https://www.debtheory.org/wiki/index.php?title=DEBnet).
    Our simulations were restricted to the continental shelf, based on depth (from 0 to 200 m below sea level). A vector polygon grid feature class of 346 square cells (having a size of 0.11° × 0.11° [~ 150 km2]) covering the study area was used. Food availability is an important forcing of the model and, for anchovy, primarily comprises zooplankton52. Since locally collected data for zooplankton were spatially and temporally fragmented due to sampling effort, we followed the recent approach proposed by Strömberg et al.59 and applied by Mangano et al.28,40 to obtain a continuous (space and time wise) dataset on the distribution of food throughout the study area and across time (i.e. weekly Net Primary Productivity was transformed into wet mass of zooplankton). Due to the short life span of the anchovy (~ 4 years), we extracted daily sea surface temperatures (SST; 1 km resolution) from JPL MUR SST data (2010) (https://podaac.jpl.nasa.gov/Multi-scale_Ultra-high_Resolution_MUR-SST) over a time range of 4 years (2009–2012) for each cell (see the recent proof of concept by Mangano et al.40 for a detailed presentation of the model and its validation).
    TRO values are validated by using in situ data, collected during ad-hoc oceanographic surveys40. This approach assumes stationarity in biological parameters (i.e. DEB parameter values estimated for populations in one location/time are valid for populations elsewhere). We adopted the DEB parameters designed for the Mediterranean anchovy by Pethybridge et al.50, the degree of uncertainty of our simulations was low (see Fig. 2 in Mangano et al.40) and sufficiently robust to allow reliable predictions of anchovy life-history traits. We are aware that phenotypic plasticity and/or local adaptation have the potential to increase the degree of uncertainty of modeling outcomes and we suggest the use of DEB parameters values that, to the extent possible, realistically match those of local populations rather than global (species specific) parameters. More

  • in

    Variation in the susceptibility of urban Aedes mosquitoes infected with a densovirus

    1.
    Weaver, S. C., Charlier, C., Vasilakis, N. & Lecuit, M. Zika, chikungunya, and other emerging vector-borne viral diseases. Annu. Rev. Med. 69, 395–408 (2018).
    Article  CAS  Google Scholar 
    2.
    Kilpatrick, A. M. & Randolph, S. E. Drivers, dynamics, and control of emerging vector-borne zoonotic diseases. Lancet 380, 1946–1955 (2012).
    PubMed Central  Article  PubMed  Google Scholar 

    3.
    Koureas, M., Tsakalof, A., Tsatsakis, A. & Hadjichristodoulou, C. Systematic review of biomonitoring studies to determine the association between exposure to organophosphorus and pyrethroid insecticides and human health outcomes. Toxicol. Lett. 210, 155–168 (2012).
    Article  CAS  Google Scholar 

    4.
    Peterson Robert, K. D., Macedo Paula, A. & Davis Ryan, S. A human-health risk assessment for West Nile Virus and insecticides used in mosquito management. Environ. Health Perspect. 114, 366–372 (2006).
    Article  CAS  Google Scholar 

    5.
    Han, W., Tian, Y. & Shen, X. Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: an overview. Chemosphere 192, 59–65 (2018).
    ADS  Article  CAS  Google Scholar 

    6.
    Hernández, A. F. et al. Toxic effects of pesticide mixtures at a molecular level: their relevance to human health. Toxicology 307, 136–145 (2013).
    Article  CAS  Google Scholar 

    7.
    Sanchez-Bayo, F. P. Insecticides mode of action in relation to their toxicity to non-target organisms. J. Environ. Anal. Toxicol. s4, 002 (2012).
    Google Scholar 

    8.
    Rivero, A., Vézilier, J., Weill, M., Read, A. F. & Gandon, S. Insecticide control of vector-borne diseases: when is insecticide resistance a problem?. PLoS Pathog. 6, e1001000 (2010).
    PubMed Central  Article  CAS  PubMed  Google Scholar 

    9.
    Hemingway, J., Hawkes, N. J., McCarroll, L. & Ranson, H. The molecular basis of insecticide resistance in mosquitoes. Insect Biochem. Mol. Biol. 34, 653–665 (2004).
    Article  CAS  Google Scholar 

    10.
    Liu, N., Xu, Q., Zhu, F. & Zhang, L. Pyrethroid resistance in mosquitoes. Insect Sci. 13, 159–166 (2006).
    Article  CAS  Google Scholar 

    11.
    Dusfour, I. et al. Management of insecticide resistance in the major Aedes vectors of arboviruses: advances and challenges. PLoS Negl. Trop. Dis. 13, e0007615 (2019).
    PubMed Central  Article  CAS  PubMed  Google Scholar 

    12.
    Faraji, A. & Unlu, I. The eye of the tiger, the thrill of the fight: effective larval and adult control measures against the Asian tiger mosquito, Aedesalbopictus (Diptera: Culicidae), in North America. J. Med. Entomol. 53, 1029–1047 (2016).
    Article  Google Scholar 

    13.
    Chan, K. L., Ho, B. C. & Chan, Y. C. Aedesaegypti (L.) and Aedesalbopictus (Skuse) in Singapore City. Bull. World Health Organ. 44, 629–633 (1971).
    PubMed Central  CAS  PubMed  Google Scholar 

    14.
    Sansinenea, E. Bacillusthuringiensis Biotechnology (Springer, New York, 2012).
    Google Scholar 

    15.
    Mulla, M. S., Darwazeh, H. A. & Zgomba, M. Effect of some environmental factors on the efficacy of Bacillussphaericus 2362 and Bacillusthuringiensis (H-14) against mosquitoes. Bull. Soc. Vector Ecol. 15, 166–175 (1990).
    Google Scholar 

    16.
    Marina, C. F., Arredondo-Jiménez, J. I., Castillo, A. & Williams, T. Sublethal effects of iridovirus disease in a mosquito. Oecologia 119, 383–388 (1999).
    ADS  Article  Google Scholar 

    17.
    Delhon, G. et al. Genome of invertebrate iridescent virus type 3 (mosquito iridescent virus). J. Virol. 80, 8439–8449 (2006).
    PubMed Central  Article  CAS  PubMed  Google Scholar 

    18.
    Linley, J. R. & Nielsen, H. T. Transmission of a mosquito iridescent virus in Aedestaeniorhynchus: I. Laboratory experiments. J. Invertebr. Pathol. 12, 7–16 (1968).
    Article  CAS  Google Scholar 

    19.
    Carlson, J., Suchman, E. & Buchatsky, L. Densoviruses for control and genetic manipulation of mosquitoes. In Advances in Virus Research, Vol. 68 361–392 (Academic Press, 2006).

    20.
    Johnson, R. M. & Rasgon, J. L. Densonucleosis viruses (‘densoviruses’) for mosquito and pathogen control. Curr. Opin. Insect Sci. 28, 90–97 (2018).
    Article  Google Scholar 

    21.
    Grenet, A.-S.G. et al. Les densovirus: une «massive attaque» chez les arthropodes. Virologie 19, 19–31 (2015).
    Google Scholar 

    22.
    Hewson, I. et al. Densovirus associated with sea-star wasting disease and mass mortality. Proc. Natl. Acad. Sci. 111, 17278–17283 (2014).
    ADS  Article  CAS  Google Scholar 

    23.
    Afanasiev, B. N., Galyov, E. E., Buchatsky, L. P. & Kozlov, Y. V. Nucleotide sequence and genornic organization of aedes densonucleosis virus. Virology 185, 323–336 (1991).
    Article  CAS  Google Scholar 

    24.
    Sivaram, A. et al. Isolation and characterization of densonucleosis virus from Aedes aegypti mosquitoes and its distribution in India. Intervirology 52, 1–7 (2009).
    Article  CAS  Google Scholar 

    25.
    Chen, S. et al. Genetic, biochemical, and structural characterization of a new densovirus isolated from a chronically infected Aedesalbopictus C6/36 cell line. Virology 318, 123–133 (2004).
    Article  CAS  Google Scholar 

    26.
    Zhai, Y.-G. et al. Isolation and characterization of the full coding sequence of a novel densovirus from the mosquito Culexpipienspallens. J. Gen. Virol. 89, 195–199 (2008).
    Article  CAS  Google Scholar 

    27.
    Ren, X., Hoiczyk, E. & Rasgon, J. L. Viral Paratransgenesis in the malaria vector Anophelesgambiae. PLoS Pathog. 4, e1000135 (2008).
    PubMed Central  Article  CAS  PubMed  Google Scholar 

    28.
    Jousset, F.-X., Barreau, C., Boublik, Y. & Cornet, M. A Parvo-like virus persistently infecting a C6/36 clone of Aedesalbopictus mosquito cell line and pathogenic for Aedesaegypti larvae. Virus Res. 29, 99–114 (1993).
    Article  CAS  Google Scholar 

    29.
    Afanasiev, B. N. & Carlson, J. O. A new mosquito densovirus from Peru: genomic sequence and in vitro growth characteristics of wild type and hybrid viruses. (2003).

    30.
    O’Neill, S. L. et al. Insect densoviruses may be widespread in mosquito cell lines. J. Gen. Virol. 76, 2067–2074 (1995).
    Article  Google Scholar 

    31.
    Jousset, F.-X., Baquerizo, E. & Bergoin, M. A new densovirus isolated from the mosquito Culexpipiens (Diptera: Culicidae). Virus Res. 67, 11–16 (2000).
    Article  CAS  Google Scholar 

    32.
    Sangdee, K. & Pattanakitsakul, S. New genetic variation of Aedesalbopictus Densovirus isolated from mosquito C6/36 cell line. Southeast Asian J. Trop. Med. Public Health 43, 12 (2012).
    Google Scholar 

    33.
    Li, J. et al. A novel densovirus isolated from the asian tiger mosquito displays varied pathogenicity depending on its host species. Front. Microbiol. 10, 1549 (2019).
    PubMed Central  Article  PubMed  Google Scholar 

    34.
    Kittayapong, P., Baisley, K. J. & O’Neill, S. L. A mosquito densovirus infecting Aedesaegypti and Aedesalbopictus from Thailand. Am. J. Trop. Med. Hyg. 61, 612–617 (1999).
    Article  CAS  Google Scholar 

    35.
    Barreau, C., Jousset, F. X. & Bergoin, M. Venereal and vertical transmission of the Aedesalbopictus parvovirus in Aedesaegypti mosquitoes. Am. J. Trop. Med. Hyg. 57, 126–131 (1997).
    Article  CAS  Google Scholar 

    36.
    De Valdez, M. R. W., Suchman, E. L., Carlson, J. O. & Black, W. C. A Large Scale Laboratory Cage Trial of Aedes Densonucleosis Virus (AeDNV). J. Med. Entomol. 47, 392–399 (2010).
    Article  Google Scholar 

    37.
    Altinli, M. et al. Sharing cells with Wolbachia: the transovarian vertical transmission of Culexpipiens densovirus. Environ. Microbiol. 21, 3284–3298 (2019).
    Article  CAS  Google Scholar 

    38.
    Wei, W. et al. The pathogenicity of mosquito densovirus (C6/36DNV) and its interaction with dengue virus type II in Aedesalbopictus. Am. J. Trop. Med. Hyg. 75, 1118–1126 (2006).
    Article  Google Scholar 

    39.
    Bouyer, J., Chandre, F., Gilles, J. & Baldet, T. Alternative vector control methods to manage the Zika virus outbreak: more haste, less speed. Lancet Glob. Health 4, e364 (2016).
    Article  Google Scholar 

    40.
    Barreau, C., Jousset, F.-X. & Bergoin, M. Pathogenicity of the Aedesalbopictus parvovirus (AaPV), a denso-like virus, for Aedes aegypti mosquitoes. J. Invertebr. Pathol. 68, 299–309 (1996).
    Article  CAS  Google Scholar 

    41.
    Barreau, C., Jousset, F.-X. & Cornet, M. An efficient and easy method of infection of mosquito larvae from virus-contaminated cell cultures. J. Virol. Methods 49, 153–156 (1994).
    Article  CAS  Google Scholar 

    42.
    Igarashi, A. Isolation of a Singh’s Aedesalbopictus cell clone sensitive to dengue and chikungunya viruses. J. Gen. Virol. 40, 531–544 (1978).
    Article  CAS  Google Scholar 

    43.
    Brackney, D. E. et al. C6/36 Aedesalbopictus cells have a dysfunctional antiviral RNA interference response. PLoS Negl. Trop. Dis. 4, e856 (2010).
    PubMed Central  Article  CAS  PubMed  Google Scholar 

    44.
    Ostfeld, R. S. & Keesing, F. Effects of host diversity on infectious disease. Annu. Rev. Ecol. Evol. Syst. 43, 157–182 (2012).
    Article  Google Scholar 

    45.
    Lambrechts, L., Scott, T. W. & Gubler, D. J. Consequences of the expanding global distribution of aedes albopictus for dengue virus transmission. PLoS Negl. Trop. Dis. 4, e646 (2010).
    PubMed Central  Article  PubMed  Google Scholar 

    46.
    Ledermann, J. P., Suchman, E. L., Black, W. C. & Carlson, J. O. Infection and pathogenicity of the mosquito densoviruses AeDNV, HeDNV, and APeDNV in Aedesaegypti mosquitoes (Diptera: Culicidae). J. Econ. Entomol. 97, 1828–1835 (2004).
    Article  Google Scholar 

    47.
    Hirunkanokpun, S., Carlson, J. O. & Kittayapong, P. Evaluation of mosquito densoviruses for controlling Aedesaegypti (Diptera: Culicidae): variation in efficiency due to virus strain and geographic origin of mosquitoes. Am. J. Trop. Med. Hyg. 78, 784–790 (2008).
    Article  CAS  Google Scholar 

    48.
    Ogoyi, D. O. et al. Linkage and mapping analysis of a non-susceptibility gene to densovirus (nsd-2) in the silkworm, Bombyxmori. Insect Mol. Biol. 12, 117–124 (2003).
    Article  CAS  Google Scholar 

    49.
    Watanabe, H. & Maeda, S. Genetically determined nonsusceptibility of the silkworm, Bombyxmori, to infection with a densonucleosis virus (Densovirus). J. Invertebr. Pathol. 38, 370–373 (1981).
    Article  Google Scholar 

    50.
    Rudolf, V. H. W. & Antonovics, J. Disease transmission by cannibalism: rare event or common occurrence?. Proc. R. Soc. B Biol. Sci. 274, 1205–1210 (2007).
    Article  Google Scholar 

    51.
    Parry, R., Bishop, C., De Hayr, L. & Asgari, S. Density-dependent enhanced replication of a densovirus in Wolbachia-infected Aedes cells is associated with production of piRNAs and higher virus-derived siRNAs. Virology 528, 89–100 (2019).
    Article  CAS  Google Scholar 

    52.
    Rwegoshora, R. T., Baisley, K. J. & Kittayapong, P. Seasonal and spatial variation in natural densovirus infection in Anophelesminimus s.l. in Thailand. Southeast Asian J. Trop. Med. Public Health 31, 7 (2000).
    Google Scholar 

    53.
    Clements, A. N. The biology of mosquitoes: sensory reception and behaviour. Behaviour and aspects of the biology of larvae (1999).

    54.
    Hajek, A. E. & Shapiro-Ilan, D. I. Ecology of Invertebrate Diseases (Wiley, New York, 2018).
    Google Scholar 

    55.
    Ren, X. & Rasgon, J. L. Potential for the Anophelesgambiae densonucleosis virus to act as an “evolution-proof” biopesticide. J. Virol. 84, 7726–7729 (2010).
    PubMed Central  Article  CAS  PubMed  Google Scholar 

    56.
    Buchatsky, L. P. Densonucleosis of blood sucking mosquitoes. Dis. Aquat. Organ. 6, 145–150 (1989).
    Article  Google Scholar 

    57.
    Brengues, C. et al. Pyrethroid and DDT cross-resistance in Aedesaegypti is correlated with novel mutations in the voltage-gated sodium channel gene. Med. Vet. Entomol. 17, 87–94 (2003).
    Article  CAS  Google Scholar 

    58.
    Boublik, Y., Jousset, F.-X. & Bergoin, M. Complete nucleotide sequence and genomic organization of the Aedesalbopictus parvovirus (AaPV) pathogenic for Aedesaegypti larvae. Virology 200, 752–763 (1994).
    Article  CAS  Google Scholar  More

  • in

    High prevalence of mcr-1-encoded colistin resistance in commensal Escherichia coli from broiler chicken in Bangladesh

    1.
    Tenaillon, O., Skurnik, D., Picard, B. & Denamur, E. The population genetics of commensal Escherichia coli. Nat. Rev. Microbiol. 8, 207–217 (2010).
    CAS  PubMed  Article  Google Scholar 
    2.
    Herrero-Fresno, A., Larsen, I. & Olsen, J. E. Genetic relatedness of commensal Escherichia coli from nursery pigs in intensive pig production in Denmark and molecular characterization of genetically different strains. J. Appl. Microbiol. 119, 342–353 (2015).
    CAS  PubMed  Article  Google Scholar 

    3.
    Ahmed, S., Olsen, J. E. & Herrero-Fresno, A. The genetic diversity of commensal Escherichia coli strains isolated from nonantimicrobial treated pigs varies according to age group. PLoS ONE 12, e0178623 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    4.
    Magiorakos, A.-P. et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18, 268–281 (2012).
    CAS  PubMed  Article  Google Scholar 

    5.
    de Been, M. et al. Dissemination of cephalosporin resistance genes between Escherichia coli strains from farm animals and humans by specific plasmid lineages. PLoS Genet. 10, e1004776 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    6.
    Salinas, L. et al. Diverse commensal Escherichia coli clones and plasmids disseminate antimicrobial resistance genes in domestic animals and children in a semirural community in Ecuador. mSphere 4, e00316-19 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    7.
    Marshall, B. M. & Levy, S. B. Food animals and antimicrobials: impacts on human health. Clin. Microbiol. Rev. 24, 718–733 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Hoelzer, K. et al. Antimicrobial drug use in food-producing animals and associated human health risks: what, and how strong, is the evidence?. BMC Vet. Res. 13, 211 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    9.
    Islam, K. B. M. S., Shiraj-Um-Mahmuda, S. & Md, H.-B.-K. Antibiotic usage patterns in selected broiler farms of Bangladesh and their public health implications. J. Public Heal. Dev. Ctries. 2, 276–284 (2016).
    Google Scholar 

    10.
    Mendelson, M. et al. The One Health stewardship of colistin as an antibiotic of last resort for human health in South Africa. Lancet Infect. Dis. 18, e288–e294 (2018).
    PubMed  Article  Google Scholar 

    11.
    Xavier, B. B. et al. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Eurosurveillance 21, 30280 (2016).
    Article  Google Scholar 

    12.
    Yin, W. et al. Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli. MBio 8, e00543-17 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    13.
    Carattoli, A. et al. Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Euro Surveill. 22, 30589 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    14.
    Borowiak, M. et al. Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp enterica serovar Paratyphi B. J. Antimicrob. Chemother. 72, 3317–3324 (2017).
    CAS  PubMed  Article  Google Scholar 

    15.
    AbuOun, M. et al. mcr-1 and mcr-2 variant genes identified in Moraxella species isolated from pigs in Great Britain from 2014 to 2015. J. Antimicrob. Chemother. 72, 2745–2749 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Yang, Y.-Q., Li, Y.-X., Lei, C.-W., Zhang, A.-Y. & Wang, H.-N. Novel plasmid-mediated colistin resistance gene mcr-7.1 in Klebsiella pneumoniae. J. Antimicrob. Chemother. 73, 1791–1795 (2018).
    CAS  PubMed  Article  Google Scholar 

    17.
    Wang, X. et al. Emergence of a novel mobile colistin resistance gene, mcr-8 NDM-producing Klebsiella pneumoniae. Emerg. Microbes Infect. 7, 1–9 (2018).
    PubMed Central  PubMed  Google Scholar 

    18.
    Carroll, L. M. et al. Identification of novel mobilized colistin resistance gene mcr-9 in a multidrug-resistant, colistin-susceptible Salmonella enterica serotype Typhimurium isolate. MBio 10, e00853-e919 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Liu, Y.-Y. et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 16, 161–168 (2016).
    PubMed  Article  CAS  Google Scholar 

    20.
    Ahmed, S., Olsen, J. E. & Herrero-Fresno, A. The genetic diversity of commensal Escherichia coli strains isolated from non-antimicrobial treated pigs varies according to age group. PLoS ONE 12, e0178623 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    21.
    Katouli, M. et al. Phenotypic characterization of intestinal Escherichia coli of pigs during suckling, postweaning, and fattening periods. Appl. Environ. Microbiol. 61, 778–783 (1995).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Bok, E., Mazurek, J. & Stosik, M. P. Age as a factor influencing diversity of commensal E. coli microflora in pigs. Polish J. Microbiol. 62, 165–171 (2013).
    Article  Google Scholar 

    23.
    Eiamphungporn, W. et al. Prevalence of the colistin resistance gene mcr-1 in colistin-resistant Escherichia coli and Klebsiella pneumoniae isolated from humans in Thailand. J. Glob. Antimicrob. Resist. 15, 32–35 (2018).
    PubMed  Article  Google Scholar 

    24.
    Li, X. et al. The prevalence of mcr-1 and resistance characteristics of Escherichia coli isolates from diseased and healthy pigs. Diagn. Microbiol. Infect. Dis. 91, 63–65 (2018).
    CAS  PubMed  Article  Google Scholar 

    25.
    Irrgang, A. et al. Prevalence of mcr-1 in E. coli from livestock and food in Germany, 2010–2015. PLoS ONE 11, e0159863 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    26.
    Quan, J. et al. Prevalence of mcr-1 in Escherichia coli and Klebsiella pneumoniae recovered from bloodstream infections in China: a multicentre longitudinal study. Lancet Infect. Dis. 17, 400–410 (2017).
    CAS  PubMed  Article  Google Scholar 

    27.
    Cao, L., Li, X., Xu, Y. & Shen, J. Prevalence and molecular characteristics of mcr-1 colistin resistance in Escherichia coli: isolates of clinical infection from a Chinese University Hospital. Infect. Drug Resist. 11, 1597–1603 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Yi, L., Liu, Y., Wu, R., Liang, Z. & Liu, J.-H. Research progress on the plasmid-mediated colistin resistance gene mcr-1. Yi chuan 39, 110–126 (2017).
    PubMed  Google Scholar 

    29.
    Amin, M. B. et al. Occurrence and genetic characteristics of mcr-1-positive colistin-resistant E. coli from poultry environments in Bangladesh. J. Glob. Antimicrob. Resist. 22, 546–552 (2020).
    PubMed  Article  Google Scholar 

    30.
    Zając, M. et al. Occurrence and characterization of mcr-1-positive Escherichia coli isolated from food-producing animals in Poland, 2011–2016. Front. Microbiol. 10, 1753 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    31.
    Maciuca, I. E. et al. Genetic features of mcr-1 mediated colistin resistance in CMY-2-producing Escherichia coli from Romanian poultry. Front. Microbiol. 10, 2267 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    32.
    Zhang, P. et al. Characterization of five Escherichia coli isolates co-expressing ESBL and mcr-1 resistance mechanisms from different origins in China. Front. Microbiol. 10, 1994 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    33.
    Bengtsson-Palme, J., Kristiansson, E. & Larsson, D. G. J. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol. Rev. 42, 68–80 (2018).
    CAS  Article  Google Scholar 

    34.
    Poulsen, L. L. et al. Longitudinal study of transmission of Escherichia coli from broiler breeders to broilers. Vet. Microbiol. 207, 13–18 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    35.
    Nilsson, O., Börjesson, S., Landén, A. & Bengtsson, B. Vertical transmission of Escherichia coli carrying plasmid-mediated AmpC (pAmpC) through the broiler production pyramid. J. Antimicrob. Chemother. 69, 1497–1500 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Lukjancenko, O., Wassenaar, T. M. & Ussery, D. W. Comparison of 61 sequenced Escherichia coli genomes. Microb. Ecol. 60, 708–720 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Fukiya, S., Mizoguchi, H., Tobe, T. & Mori, H. Extensive genomic diversity in pathogenic Escherichia coli and Shigella strains revealed by comparative genomic hybridization microarray. J. Bacteriol. 186, 3911–3921 (2004).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Touchon, M. et al. Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet. 5, e1000344 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    39.
    Tettelin, H. et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial ‘pan-genome’. Proc. Natl. Acad. Sci. 102, 13950–13955 (2005).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Yamamoto, T. & Echeverria, P. Detection of the enteroaggregative Escherichia coli heat-stable enterotoxin 1 gene sequences in enterotoxigenic E. coli strains pathogenic for humans. Infect. Immun. 64, 1441–1445 (1996).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Levine, M. M. Escherichia coli that cause diarrhea: enterotoxigenic, enteropathogenic, enteroinvasive, enterohemorrhagic, and enteroadherent. J. Infect. Dis. 155, 377–389 (1987).
    CAS  PubMed  Article  Google Scholar 

    42.
    Johnson, T. J., Wannemuehler, Y. M. & Nolan, L. K. Evolution of the iss gene in Escherichia coli. Appl. Environ. Microbiol. 74, 2360–2369 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Kocsis, E., Lo Cascio, G., Piccoli, M., Cornaglia, G. & Mazzariol, A. KPC-3 carbapenemase harbored in FIIk plasmid from Klebsiella pneumoniae ST512 and Escherichia coli ST43 in the same patient. Microb. Drug Resist. 20, 377–382 (2014).
    CAS  PubMed  Article  Google Scholar 

    44.
    Chiluisa-Guacho, C. et al. First detection of the CTXM-15 producing Escherichia coli O25-ST131 pandemic clone in Ecuador. Pathogens 7, 42 (2018).
    PubMed Central  Article  CAS  PubMed  Google Scholar 

    45.
    Karami, N., Nowrouzian, F., Adlerberth, I. & Wold, A. E. Tetracycline resistance in Escherichia coli and persistence in the infantile colonic microbiota. Antimicrob. Agents Chemother. 50, 156–161 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Monira, S. et al. Multi-drug resistant pathogenic bacteria in the gut of young children in Bangladesh. Gut Pathog. 9, 19 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    47.
    Bryan, A., Shapir, N. & Sadowsky, M. J. Frequency and distribution of tetracycline resistance genes in genetically diverse, nonselected, and nonclinical Escherichia coli strains isolated from diverse human and animal sources. Appl. Environ. Microbiol. 70, 2503–2507 (2004).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Birgy, A. et al. CTX-M-55-, MCR-1-, and FosA-producing multidrug-resistant Escherichia coli infection in a child in France. Antimicrob. Agents Chemother. 62, e00127-e218 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Nakamura, S., Nakamura, M., Kojima, T. & Yoshida, H. gyrA and gyrB mutations in quinolone-resistant strains of Escherichia coli. Antimicrob. Agents Chemother. 33, 254–255 (1989).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Vila, J., Ruiz, J., Goñi, P. & De Anta, M. T. Detection of mutations in parC in quinolone-resistant clinical isolates of Escherichia coli. Antimicrob. Agents Chemother. 40, 491–493 (1996).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Heisig, P., Schedletzky, H. & Falkenstein-Paul, H. Mutations in the gyrA gene of a highly fluoroquinolone-resistant clinical isolate of Escherichia coli. Antimicrob. Agents Chemother. 37, 696–701 (1993).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Esperón, F. et al. Detection of plasmid-mediated colistin resistance (mcr-1) in E. coli isolated from pig caecum in Austria. Abstr. Int. J. Infect. Dis. 53, 4–163 (2016).
    Google Scholar 

    53.
    Matamoros, S. et al. Global phylogenetic analysis of Escherichia coli and plasmids carrying the mcr-1 gene indicates bacterial diversity but plasmid restriction. Sci. Rep. 7, 15364 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    54.
    Zurfluh, K., Klumpp, J., Nüesch-Inderbinen, M. & Stephan, R. Full-length nucleotide sequences of mcr-1-harboring plasmids isolated from extended-spectrum-β-lactamase-producing Escherichia coli isolates of different origins. Antimicrob. Agents Chemother. 60, 5589–5591 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Snesrud, E. et al. A Model for transposition of the colistin resistance gene mcr-1 by ISApl1. Antimicrob. Agents Chemother. 60, 6973–6976 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Miles, A. A., Misra, S. S. & Irwin, J. O. The estimation of the bactericidal power of the blood. J. Hyg. (Lond) 38, 732–749 (1938).
    CAS  Google Scholar 

    57.
    Godambe, L. P., Bandekar, J. & Shashidhar, R. Species specific PCR based detection of Escherichia coli from Indian foods. 3 Biotech 7, 130 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    58.
    Rebelo, A. R. et al. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Eurosurveillance 23, 17–00672 (2018).
    PubMed Central  Article  PubMed  Google Scholar 

    59.
    International Standards Organisation. Clinical laboratory testing and in vitro diagnostic test systems—Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices. Part 1: reference method for testing the in vitro activity of antimi. ISO 20776-1 (2006).

    60.
    Mohapatra, B. R., Broersma, K. & Mazumder, A. Comparison of five rep-PCR genomic fingerprinting methods for differentiation of fecal Escherichia coli from humans, poultry and wild birds. FEMS Microbiol. Lett. 277, 98–106 (2007).
    CAS  PubMed  Article  Google Scholar 

    61.
    Heras, J. et al. GelJ—a tool for analyzing DNA fingerprint gel images. BMC Bioinformatics 16, 270 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    62.
    Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).
    MathSciNet  MATH  Article  Google Scholar 

    63.
    Andrews S. No TitleFastQC: A Quality Control Tool for High Throughput Sequence Data. Available online at: https://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).

    64.
    Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res. 44, W3–W10 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLOS Comput. Biol. 13, e1005595 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    66.
    Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    67.
    Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).
    CAS  PubMed  Article  Google Scholar 

    68.
    Page, A. J. et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3693 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    Hadfield, J. et al. Phandango: an interactive viewer for bacterial population genomics. Bioinformatics 34, 292–293 (2018).
    CAS  PubMed  Article  Google Scholar 

    71.
    Wang, R. et al. The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nat. Commun. 9, 1179 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    72.
    Seemann T. snippy: Fast Bacterial Variant Calling from NGS Reads. https://github.com/tseemann/snippy (2015).

    73.
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    74.
    Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Zankari, E. et al. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67, 2640–2644 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    76.
    Joensen, K. G. et al. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J. Clin. Microbiol. 52, 1501–1510 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    77.
    Larsen, M. V. et al. Multilocus sequence typing of total-genome-sequenced bacteria. J. Clin. Microbiol. 50, 1355–1361 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    78.
    Carattoli, A. et al. In Silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 58, 3895–3903 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    79.
    Joensen, K. G., Tetzschner, A. M. M., Iguchi, A., Aarestrup, F. M. & Scheutz, F. Rapid and easy in silico serotyping of Escherichia coli isolates by use of whole-genome sequencing data. J. Clin. Microbiol. 53, 2410–2426 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    80.
    Siguier, P., Perochon, J., Lestrade, L., Mahillon, J. & Chandler, M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 34, D32–D36 (2006).
    CAS  PubMed  Article  Google Scholar 

    81.
    RcoreTeam. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.r-project.org/ (2016).

    82.
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar  More

  • in

    Fine-scale tracking of wild waterfowl and their impact on highly pathogenic avian influenza outbreaks in the Republic of Korea, 2014–2015

    1.
    Webster, R. G., Bean, W. J., Gorman, O. T., Chambers, T. M. & Kawaoka, Y. Evolution and ecology of influenza A viruses. Microbiol. Rev. 56, 152–179 (1992).
    CAS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Russell, C. J., Hu, M. & Okda, F. A. Influenza hemagglutinin protein stability, activation, and pandemic risk. Trends Microbiol. 26(10), 841–853 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Elçi, C. The impact of HPAI of the H5N1 strain on economies of affected countries. In Human and Economic Resources Proceedings Book 101 (2006).

    4.
    Jhung, M. A. & Nelson, D. I. Outbreaks of avian influenza A (H5N2), (H5N8), and (H5N1) among birds—United States, December 2014–January 2015 (2015).

    5.
    Su, S. et al. Epidemiology, evolution, and recent outbreaks of avian influenza virus in China. J. Virol. 89, 8671–8676 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Kim, H.-R. et al. Pathologic changes in wild birds infected with highly pathogenic avian influenza A (H5N8) viruses, South Korea, 2014. Emerg. Infect. Dis. 21, 775 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Feare, C. J. Role of wild birds in the spread of highly pathogenic avian influenza virus H5N1 and implications for global surveillance. Avian Dis. 54, 201–212 (2010).
    PubMed  Article  Google Scholar 

    8.
    Costa, T. P., Brown, J. D., Howerth, E. W. & Stallknecht, D. E. Variation in viral shedding patterns between different wild bird species infected experimentally with low-pathogenicity avian influenza viruses that originated from wild birds. Avian Pathol. 40, 119–124 (2011).
    PubMed  Article  Google Scholar 

    9.
    Bengtsson, D. et al. Does influenza A virus infection affect movement behaviour during stopover in its wild reservoir host?. R. Soc. Open Sci. 3, 150633 (2016).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    10.
    Son, K. et al. Experimental infection of highly pathogenic avian influenza viruses, clade 2.3. 4.4 H5N6 and H5N8, in mandarin ducks from South Korea. Transboundary Emerg. Dis. 65, 899–903 (2018).
    CAS  Article  Google Scholar 

    11.
    van Dijk, J. G. B., Fouchier, R. A. M., Klaassen, M. & Matson, K. D. Minor differences in body condition and immune status between avian influenza virus-infected and noninfected mallards: a sign of coevolution?. Ecol. Evol. 5, 436–449 (2015).
    PubMed  Article  Google Scholar 

    12.
    van Dijk, J. G. B. et al. Weak negative associations between avian influenza virus infection and movement behaviour in a key host species, the mallard Anas platyrhynchos. Oikos 124, 1293–1303 (2015).
    Article  Google Scholar 

    13.
    Lee, Y.-J. et al. Novel reassortant influenza A (H5N8) viruses, South Korea, 2014. Emerg. Infect. Dis. 20, 1087 (2014).
    PubMed  PubMed Central  Google Scholar 

    14.
    Lee, D.-H. et al. Intercontinental spread of Asian-origin H5N8 to North America through Beringia by migratory birds. J. Virol. 89, 6521–6524 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Verhagen, J. J. et al. Wild bird surveillance around outbreaks of highly pathogenic avian influenza A (H5N8) virus in the Netherlands, 2014, within the context of global flyways. Eurosurveillance 20, 21–32 (2015).
    Article  Google Scholar 

    16.
    Shin, J.-H. et al. Prevalence of avian influenza virus in wild birds before and after the HPAI H5N8 outbreak in 2014 in South Korea. J. Microbiol. 53, 475–480 (2015).
    CAS  PubMed  Article  Google Scholar 

    17.
    Jeong, J. et al. Highly pathogenic avian influenza virus (H5N8) in domestic poultry and its relationship with migratory birds in South Korea during 2014. Vet. Microbiol. 173, 249–257 (2014).
    PubMed  Article  Google Scholar 

    18.
    Fourment, M., Darling, A. E. & Holmes, E. C. The impact of migratory flyways on the spread of avian influenza virus in North America. BMC Evol. Biol. 17, 118 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Kwon, Y. et al. An outbreak of highly pathogenic avian influenza subtype H5N1 in broiler breeders, Korea. J. Vet. Med. Sci. 67, 1193–1196 (2005).
    PubMed  Article  Google Scholar 

    20.
    Lee, Y.-J. et al. Highly pathogenic avian influenza virus (H5N1) in domestic poultry and relationship with migratory birds, South Korea. Emerg. Infect. Dis. 14, 487 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Lycett, S. J. et al. Role for migratory wild birds in the global spread of avian influenza H5N8. Science 354, 213–217 (2016).
    Article  CAS  Google Scholar 

    22.
    Lee, D.-H. et al. Pathogenicity of the Korean H5N8 highly pathogenic avian influenza virus in commercial domestic poultry species. Avian Pathol. 45, 208–211 (2016).
    CAS  PubMed  Article  Google Scholar 

    23.
    Bouwstra, R. J. et al. Phylogenetic analysis of highly pathogenic avian influenza A (H5N8) virus outbreak strains provides evidence for four separate introductions and one between-poultry farm transmission in the Netherlands, November 2014. Eurosurveillance 20, 21174 (2015).
    PubMed  Article  Google Scholar 

    24.
    Hanna, A. et al. Genetic characterization of highly pathogenic avian influenza (H5N8) virus from domestic ducks, England, November 2014. Emerg. Infect. Dis. 21, 879 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Kanehira, K. et al. Characterization of an H5N8 influenza A virus isolated from chickens during an outbreak of severe avian influenza in Japan in April 2014. Adv. Virol. 160, 1629–1643 (2015).
    CAS  Google Scholar 

    26.
    Pohlmann, A. et al. Outbreaks among wild birds and domestic poultry caused by reassorted influenza A (H5N8) clade 2.3. 4.4 viruses, Germany, 2016. Emerg. Infect. Dis. 23, 633 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    27.
    Guinat, C. et al. Spatio-temporal patterns of highly pathogenic avian influenza virus subtype H5N8 spread, France, 2016 to 2017. Eurosurveillance 23, 1700791 (2018).
    PubMed Central  Article  PubMed  Google Scholar 

    28.
    Lee, D.-H. et al. Highly pathogenic avian influenza viruses and generation of novel reassortants, United States, 2014–2015. Emerg. Infect. Dis. 22, 1283 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Kwon, J.-H. et al. Highly pathogenic avian influenza A (H5N8) viruses reintroduced into South Korea by migratory waterfowl, 2014–2015. Emerg. Infect. Dis. 22, 507 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Kang, H.-M. et al. Novel reassortant influenza A (H5N8) viruses among inoculated domestic and wild ducks, South Korea, 2014. Emerg. Infect. Dis. 21, 298 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    Hoye, B. J., Munster, V. J., Nishiura, H., Klaassen, M. & Fouchier, R. A. M. Surveillance of wild birds for avian influenza virus. Emerg. Infect. Dis. 16, 1827–1834 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    32.
    Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, aaa2478 (2015).
    PubMed  Article  CAS  Google Scholar 

    33.
    Hussey, N. E. et al. Aquatic animal telemetry: a panoramic window into the underwater world. Science 348, 1255642 (2015).
    PubMed  Article  CAS  Google Scholar 

    34.
    Goldingay, R. & Kavanagh, R. Home-range estimates and habitat of the yellow-bellied glider (Petaurus australis) at Waratah Creek, New South Wales. Wildl. Res. 20, 387 (1993).
    Article  Google Scholar 

    35.
    Karanth, K. U. & Nichols, J. D. Estimation of tiger densities in india using photographic captures and recaptures. Ecology 79, 2852–2862 (1998).
    Article  Google Scholar 

    36.
    Horne, J. S., Garton, E. O., Krone, S. M. & Lewis, J. S. Analyzing animal movements using Brownian bridges. Ecology 88, 2354–2363 (2007).
    PubMed  Article  Google Scholar 

    37.
    Fischer, J. W., Walter, W. D. & Avery, M. L. Brownian bridge movement models to characterize birds’ home ranges. Condor 115, 298–305 (2013).
    Article  Google Scholar 

    38.
    Kranstauber, B., Kays, R., LaPoint, S. D., Wikelski, M. & Safi, K. A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement. J. Anim. Ecol. 81, 738–746 (2012).
    PubMed  Article  Google Scholar 

    39.
    Takekawa, J. Y. et al. Migration of waterfowl in the East Asian flyway and spatial relationship to HPAI H5N1 outbreaks. Avian Dis. 54, 466–476 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    40.
    Cappelle, J. et al. Risks of avian influenza transmission in areas of intensive free-ranging duck production with wild waterfowl. EcoHealth 11, 109–119 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Gaidet, N. et al. Potential spread of highly pathogenic avian influenza H5N1 by wildfowl: dispersal ranges and rates determined from large-scale satellite telemetry. J. Appl. Ecol. 47, 1147–1157 (2010).
    Article  Google Scholar 

    42.
    Gilbert, M. et al. Could Changes in the agricultural landscape of northeastern China have influenced the long-distance transmission of Highly pathogenic avian influenza H5nx Viruses?. Front. Vet. Sci. 4, 225 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    43.
    Palm, E. C. et al. Mapping migratory flyways in Asia using dynamic Brownian bridge movement models. Movement Ecol. 3, 3 (2015).
    Article  Google Scholar 

    44.
    Viana, D. S., Santamaría, L. & Figuerola, J. Migratory birds as global dispersal vectors. Trends Ecol. Evol. 31, 763–775 (2016).
    PubMed  Article  Google Scholar 

    45.
    Helm, B. & Gwinner, E. Migratory restlessness in an equatorial nonmigratory bird. PLoS Biol. 4, e110 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    46.
    Velkers, F. C., Blokhuis, S. J., Veldhuis Kroeze, E. J. B. & Burt, S. A. The role of rodents in avian influenza outbreaks in poultry farms: a review. Vet. Q. 37, 182–194 (2017).
    PubMed  Article  Google Scholar 

    47.
    Lee, K. et al. Highly pathogenic avian influenza A (H5N6) in domestic cats, South Korea. Emerg. Infect. Dis. 24, 2343 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Hill, S. C. et al. Wild waterfowl migration and domestic duck density shape the epidemiology of highly pathogenic H5N8 influenza in the Republic of Korea. Infect. Genet. Evol. 34, 267–277 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    49.
    Tiensin, T. et al. ecologic risk factor investigation of clusters of avian influenza A (H5N1) virus infection in Thailand. J. Infect. Dis. 199, 1735–1743 (2009).
    PubMed  Article  Google Scholar 

    50.
    Martin, V. et al. Spatial distribution and risk factors of highly pathogenic avian influenza (HPAI) H5N1 in China. PLoS Pathog. 7, e1001308 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Kwon, J.-H. et al. Domestic ducks play a major role in the maintenance and spread of H5N8 highly pathogenic avian influenza viruses in South Korea. Transbound. Emerg. Dis. https://doi.org/10.1111/tbed.13406 (2019).
    Article  PubMed  Google Scholar 

    52.
    Kim, W. et al. Risk factors associated with highly pathogenic avian influenza subtype H5N8 outbreaks on broiler duck farms in South Korea. Transbound. Emerg. Dis. 65, 1329–1338 (2018).
    PubMed  Article  Google Scholar 

    53.
    Hicks, J. T. et al. Agricultural and geographic factors shaped the North American 2015 highly pathogenic avian influenza H5N2 outbreak. PLoS Pathog. 16, e1007857 (2020).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    54.
    Lu, L., Leigh Brown, A. J. & Lycett, S. J. Quantifying predictors for the spatial diffusion of avian influenza virus in China. BMC Evol. Biol. 17, 16 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    55.
    Brown, J. D., Stallknecht, D. E., Beck, J. R., Suarez, D. L. & Swayne, D. E. Susceptibility of North American ducks and gulls to H5N1 highly pathogenic avian influenza viruses. Emerg. Infect. Dis. 12, 1663–1670 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Newman, S. H. et al. Eco-virological approach for assessing the role of wild birds in the spread of avian influenza H5N1 along the Central Asian Flyway. PLoS ONE 7, e30636 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Wikelski, M. & Kays, R. Movebank: Archive, Analysis and Sharing of Animal Movement Data. World Wide Web electronic publication (2014).

    58.
    La Sorte, F. A., Fink, D., Hochachka, W. M. & Kelling, S. Convergence of broad-scale migration strategies in terrestrial birds. Proc. R. Soc. B Biol. Sci. 283, 20152588 (2016).
    Article  CAS  Google Scholar 

    59.
    Németh, B. et al. Comparison of weighting methods used in multicriteria decision analysis frameworks in healthcare with focus on low-and middle-income countries. J. Comp. Effect. Res. 8, 195–204 (2019).
    Article  Google Scholar 

    60.
    Belkhiria, J., Alkhamis, M. A. & Martínez-López, B. Application of Species Distribution Modeling for Avian Influenza surveillance in the United States considering the North America Migratory Flyways. Sci. Rep. 6, 33161 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Belkhiria, J., Hijmans, R. J., Boyce, W., Crossley, B. M. & Martínez-López, B. Identification of high risk areas for avian influenza outbreaks in California using disease distribution models. PLoS ONE 13, e0190824 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    62.
    Stevens, K. B., Gilbert, M. & Pfeiffer, D. U. Modeling habitat suitability for occurrence of highly pathogenic avian influenza virus H5N1 in domestic poultry in Asia: a spatial multicriteria decision analysis approach. Spat. Spatio-temporal Epidemiol. 4, 1–14 (2013).
    Article  Google Scholar 

    63.
    Martin, V. et al. Risk-based surveillance for avian influenza control along poultry market chains in South China: the value of social network analysis. Prev. Vet. Med. 102, 196–205 (2011).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    64.
    Fournié, G. et al. Interventions for avian influenza A (H5N1) risk management in live bird market networks. PNAS 110, 9177–9182 (2013).
    ADS  PubMed  Article  Google Scholar 

    65.
    Poolkhet, C., Chairatanayuth, P., Thongratsakul, S., Kasemsuwan, S. & Rukkwamsuk, T. Social network analysis used to assess the relationship between the spread of avian influenza and movement patterns of backyard chickens in Ratchaburi, Thailand. Res. Vet. Sci. 95, 82–86 (2013).
    PubMed  Article  Google Scholar 

    66.
    Wiratsudakul, A. et al. Modeling the dynamics of backyard chicken flows in traditional trade networks in Thailand: implications for surveillance and control of avian influenza. Trop. Anim. Health Prod. 46, 845–853 (2014).
    PubMed  Article  Google Scholar 

    67.
    Lee, K. et al. Unraveling the contact patterns and network structure of pig shipments in the United States and its association with porcine reproductive and respiratory syndrome virus (PRRSV) outbreaks. Prev. Vet. Med. 138, 113–123 (2017).
    PubMed  Article  Google Scholar 

    68.
    Amirpour Haredasht, S. et al. Modeling the spatio-temporal dynamics of porcine reproductive and respiratory syndrome cases at farm level using geographical distance and pig trade network matrices. BMC Vet. Res. 13, 163 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    69.
    Kim, Y. et al. Livestock trade network: potential for disease transmission and implications for risk-based surveillance on the island of Mayotte. Sci. Rep. 8, 11550 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    70.
    McCue, M. E. & McCoy, A. M. The scope of big data in one medicine: unprecedented opportunities and challenges. Front. Vet. Sci. 4, 194 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    71.
    Boyce, W. M., Sandrock, C., Kreuder-Johnson, C., Kelly, T. & Cardona, C. Avian influenza viruses in wild birds: a moving target. Comp. Immunol. Microbiol. Infect. Dis. 32, 275–286 (2009).
    PubMed  Article  Google Scholar 

    72.
    Gardy, J. L. & Loman, N. J. Towards a genomics-informed, real-time, global pathogen surveillance system. Nat. Rev. Genet. 19, 9 (2018).
    CAS  PubMed  Article  Google Scholar 

    73.
    Hill, N. J. & Runstadler, J. A. A bird’s eye view of influenza a virus transmission: challenges with characterizing both sides of a co-evolutionary dynamic. Integr. Comp. Biol. 56, 304–316 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    74.
    Both, C., Bouwhuis, S., Lessells, C. M. & Visser, M. E. Climate change and population declines in a long-distance migratory bird. Nature 441, 81–83 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    75.
    Rejmanek, D., Hosseini, P. R., Mazet, J. A. K., Daszak, P. & Goldstein, T. Evolutionary dynamics and global diversity of influenza A virus. J. Virol. 89, 10993–11001 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    76.
    Jenni, L. & Kéry, M. Timing of autumn bird migration under climate change: advances in long–distance migrants, delays in short–distance migrants. Proc. R. Soc. Lond. Ser. B Biol. Sci. 270, 1467–1471 (2003).
    Article  Google Scholar 

    77.
    Lee, D.-H. et al. Surveillance and Isolation of HPAI H5N1 from Wild Mandarin Ducks (Aix galericulata). J. Wildl. Dis. 47, 994–998 (2011).
    PubMed  Article  Google Scholar 

    78.
    Kim, H.-R. et al. Highly pathogenic avian influenza (H5N1) outbreaks in wild birds and poultry, South Korea. Emerg. Infect. Dis. 18, 480–483 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    79.
    Kwon, Y. K., Thomas, C. & Swayne, D. E. Variability in pathobiology of South Korean H5N1 high-pathogenicity avian influenza virus infection for 5 species of migratory waterfowl. Vet. Pathol. 47, 495–506 (2010).
    CAS  PubMed  Article  Google Scholar 

    80.
    Kranstauber, B., Smolla, M. & Kranstauber, M. B. Move: visualizing and analyzing animal track data. https://CRAN.R-project.org/package=move (2019).

    81.
    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2019).

    82.
    RStudio Team. RStudio: integrated development for R. RStudio, Inc., Boston, MA https://www.rstudio.com (2019). More

  • in

    The impact of rising sea temperatures on an Arctic top predator, the narwhal

    1.
    Alexander, M. A. et al. Projected sea surface temperatures over the 21st century: changes in the mean, variability and extremes for large marine ecosystem regions of Northern Oceans. Elem. Sci. Anth. 6, 9 (2018).
    Article  Google Scholar 
    2.
    National Snow & Ice Data Center. State of the cryosphere: is the cryosphere sending signals about climate change? https://nsidc.org/cryosphere/sotc/sea_ice.html (2020). Accessed 24 Apr 2020.

    3.
    Michel, C. et al. Biodiversity of Arctic marine ecosystems and responses to climate change. Biodiversity 13, 200–214 (2012).
    Article  Google Scholar 

    4.
    Hauser, D. D. W., Laidre, K. L. & Stern, H. L. Vulnerability of Arctic marine mammals to vessel traffic in the increasingly ice-free Northwest Passage and Northern Sea Route. Proc. Natl. Acad. Sci. 115, 7617–7622 (2018).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    5.
    Albouy, C. et al. Global vulnerability of marine mammals to global warming. Sci. Rep. 10, 1–12 (2020).
    Article  CAS  Google Scholar 

    6.
    Dietz, R., Heide-Jørgensen, M. P., Glahder, C. & Born, E. Occurrence of narwhals (Monodon monoceros) and white whales (Delphinapterus leucas) in East Greenland. Meddr. Grønl. Biosci. 39, 69–86 (1994).
    Google Scholar 

    7.
    Dietz, R., Heide-Jørgensen, M. P., Richard, P. R. & Acquarone, M. Summer and Fall Movements of Narwhals (Monodon monoceros) from Northeastern Baffin Island Towards Northern Davis Strait. Arctic 54, 244–261 (2001).
    Article  Google Scholar 

    8.
    Richard, P., Weaver, P., Dueck, L. & Barber, D. Distribution and numbers of Canadian High Arctic narwhals (Monodon monoceros) in August 1984. Meddr. Grønl. Biosci. 39, 41–50 (1994).
    Google Scholar 

    9.
    Dietz, R. & Heide-Jørgensen, M. P. Movements and swimming speed of narwhals, Monodon monoceros, equipped with satellite transmitters in Melville Bay, northwest Greenland. Can. J. Zool. 73, 2106–2119 (1995).
    Article  Google Scholar 

    10.
    Belikov, S. E. & Boltunov, A. N. Distribution and migrations of cetaceans in the Russian Arctic according to observations from aerial ice reconnaissance. NAMMCO Sci. Publ. 4, 69–86 (2002).
    Article  Google Scholar 

    11.
    Vacquié-Garcia, J. et al. Late summer distribution and abundance of ice-associated whales in the Norwegian High Arctic. Endanger. Species Res. 32, 59–70 (2017).
    Article  Google Scholar 

    12.
    Heide-Jørgensen, M., Richard, P. R., Dietz, R. & Laidre, K. L. A metapopulation model for Canadian and West Greenland narwhals. Anim. Conserv. 16, 331–343 (2013).
    Article  Google Scholar 

    13.
    Hobbs, R. C. et al. Global review of the conservation status of Monodontid stocks. Mar. Fish. Rev. 81, 1–41 (2020).
    Article  Google Scholar 

    14.
    Kovacs, K. M. & Lydersen, C. Climate change impacts on seals and whales in the North Atlantic Arctic and adjacent shelf seas. Sci. Prog. 91, 117–150 (2008).
    PubMed  Article  Google Scholar 

    15.
    Laidre, K. L. et al. Quantifying the sensitivity of Arctic marine mammals to climate-induced habitat change. Ecol. Appl. 18, S97–S125 (2008).
    PubMed  Article  Google Scholar 

    16.
    Heide-Jørgensen, M. et al. Abundance of narwhals (Monodon monoceros) on the hunting grounds in Greenland. J. Mammal. 91, 1135–1151 (2010).
    Article  Google Scholar 

    17.
    Doniol-Valcroze, T. et al. Abundance Estimates of Narwhal Stocks in the Canadian High Arctic in 2013 (NAMMCO Sci. Publ. 11, in press).

    18.
    Münchow, A., Falkner, K. K. & Melling, H. Baffin Island and West Greenland Current Systems in northern Baffin Bay. Prog. Oceanogr. 132, 305–317 (2015).
    ADS  Article  Google Scholar 

    19.
    Sutherland, D. A. & Pickart, R. S. The East Greenland coastal current: structure, variability, and forcing. Prog. Oceanogr. 78, 58–77 (2008).
    ADS  Article  Google Scholar 

    20.
    Håvik, L. et al. Structure and variability of the Shelfbreak East Greenland current North of Denmark Strait. J. Phys. Oceanogr. 47, 2631–2646 (2017).
    ADS  Article  Google Scholar 

    21.
    Heide-Jørgensen, M. P. et al. Some like it cold: temperature-dependent habitat selection by narwhals. Ecol. Evol. 10, 8073–8090 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    22.
    Heide-Jørgensen, M. P. et al. The migratory behaviour of narwhals (Monodon monoceros). Can. J. Zool. 81, 1298–1305 (2003).
    Article  Google Scholar 

    23.
    Dietz, R. et al. Movements of narwhals (Monodon monoceros) from Admiralty Inlet monitored by satellite telemetry. Polar Biol. 31, 1295–1306 (2008).
    Article  Google Scholar 

    24.
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2018). Accessed 24 Apr 2019.

    25.
    Albertsen, C. M., Whoriskey, K., Yurkowski, D., Nielsen, A. & Flemming, J. M. Fast fitting of non-Gaussian state-space models to animal movement data via template model builder. Ecology 96, 2598–2604 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    26.
    Albertsen, C. M. argosTrack: Fit Movement Models to Argos Data for Marine Animals. R package version 1.2.2. https://doi.org/10.5281/zenodo.1420418, https://github.com/calbertsen/argosTrack/tree/v1.2.2 (2018). Accessed 20 Aug 2019.

    27.
    Bryant, E. 2D Location Accuracy Statistics for Fastloc® Cores Running Firmware Versions 2.2 & 2.3. (2007).

    28.
    Tomkiewicz, S. M., Fuller, M. R., Kie, J. G. & Bates, K. K. Global positioning system and associated technologies in animal behaviour and ecological research. Philos. Trans. R. Soc. B Biol. Sci. 365, 2163–2176 (2010).
    Article  Google Scholar 

    29.
    Pohlert, T. Trend: non-parametric trend tests and change-point detection. R package version, 1(0). https://cran.r-project.org/web/packages/trend/trend.pdf (2018). Accessed 10 Aug 2019.

    30.
    Heide-Jørgensen, M., Richard, P., Dietz, R. & Laidre, K. A metapopulation model for Canadian and West Greenland narwhals. Anim. Conserv. 16, 331–343 (2012).
    Article  Google Scholar 

    31.
    Komsta, L. & Komsta, M. L. Package ‘mblm’. https://cran.pau.edu.tr/web/packages/mblm/mblm.pdf (2013). Accessed 10 Aug 2019.

    32.
    Chambault, P. et al. Sea surface temperature predicts the movements of an Arctic cetacean: the bowhead whale. Sci. Rep. 8, 9658 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    33.
    Heide-Jørgensen, L. M. P. & Nielsen, T. G. Role of the bowhead whale as a predator in West Greenland. Mar. Ecol. Prog. Ser. 346, 285–297 (2008).
    Google Scholar 

    34.
    Laidre, K. L. & Heide-Jørgensen, M. P. Winter feeding intensity of narwhals (Monodon monoceros). Mar. Mammal. Sci. 21, 45–57 (2005).
    Article  Google Scholar 

    35.
    Forster, C. Spatial Patterns, Environmental Correlates, and Potential Seasonal Migration Triangle of Arctic cod (Boreogadus saida) Distribution in the Chukchi and Beaufort seas (2019).

    36.
    Laurel, B. J., Copeman, L. A., Spencer, M. & Iseri, P. Temperature-dependent growth as a function of size and age in juvenile Arctic cod (Boreogadus saida). ICES J. Mar. Sci. 74, 1614–1621 (2017).
    Article  Google Scholar 

    37.
    Laidre, K. L. et al. Seasonal narwhal habitat associations in the high Arctic. Mar. Biol. 145, 821–831 (2004).
    Google Scholar 

    38.
    Schmidt-Nielsen, K. Animal Physiology: Adaptation and Environment (Cambridge University Press, Cambridge, 1997).
    Google Scholar 

    39.
    Castellini, M. Thermoregulation. in Encyclopedia of Marine Mammals (eds Perrin, W. F. et al.) 1166–1171 (Academic Press, Cambridge, 2009).
    Google Scholar 

    40.
    Kanwisher, J. W. & Ridgway, S. H. The physiological ecology of Whales and Porpoises. Sci. Am. 248, 110–121 (1983).
    Article  Google Scholar 

    41.
    Williams, T. M., Noren, S. R. & Glenn, M. Extreme physiological adaptations as predictors of climate-change sensitivity in the narwhal Monodon monoceros. Mar. Mammal Sci. 27, 334–349 (2010).
    Article  Google Scholar 

    42.
    McLaughlin, F. A., Carmack, E. C., Ingram, R. G., Williams, W. & Michel, C. Oceanography of the Northwest Passage. in The Sea 26 (ed. Banville, J.) 1211–1242 (President and Fellows of Harvard College, Boston, 2004).
    Google Scholar 

    43.
    Kern, S., Kaleschke, L. & Spreen, G. Climatology of the Nordic (Irminger, Greenland, Barents, Kara and White/Pechora) Seas ice cover based on 85 GHz satellite microwave radiometry: 1992–2008. Tellus Dyn. Meteorol. Oceanogr. 62, 411–434 (2010).
    Article  Google Scholar 

    44.
    Hansen, R. G., Borchers, D. L. & Heide-Jørgensen, M. P. Abundance of narwhals summering in East Greenland and narwhals wintering in the North Water and Northeast Water polynyas. J. Mammal. 91, 1135–1151 (2019).
    Google Scholar 

    45.
    Riewe, R. Inuit land in the high Canadian Arctic. in Report Inuit land use and occupancy project 173–184 (1976).

    46.
    Riewe, R. The utilisation of wildlife in the Jones Sound region by Grise Fjord Inuit. in Truelove Lowland, Devon Island, Canada: A high Arctic Ecosystem 623–644 (1977).

    47.
    Riewe, R. Nunavut atlas. Canadian Circumpolar Institute and Tungavik Federation of Nunavut (1992).

    48.
    Watt, C. A., Doniol-Valcroze, T., Witting, L., Hobbs, R. C., Hansen, R. G., Lee, D. S., … & Heide-Jorgensen, M. P. (2019). Hunt allocation modeling for migrating animals: The case of Baffin Bay narwhal, Monodon monoceros. Mar. Fish. Rev, 81(3–4), 125–136.

    49.
    Witting, L., Doniol-Valcroze, T., Hobbs, R. C., Ditlevsen, S. & Heide-Jørgensen, M. Meta-population modelling of narwhals, Monodon monoceros, in East Canada and West Greenland. Mar. Fish. Rev. 81, 116–138 (2019) (in press).
    Google Scholar 

    50.
    NAMMCO. Report of the Ad hoc Working Group on Narwhal in East Greenland. https://nammco.no/wp-content/uploads/2018/05/report-global-review-of-monodontids-nammco-2018_after-erratum-060518_with-appendices_2.pdf (2019). Accessed 10 Aug 2019.

    51.
    Kvadsheim, P. H. & Folkow, L. P. Blubber and flipper heat transfer in harp seals. Acta Physiol. Scand. 161, 385–395 (1997).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    52.
    Kvadsheim, P. H., Gotaas, A. R. L., Folkow, L. P. & Blix, A. S. An Experimental validation of heat loss models for marine mammals. J. Theor. Biol. 184, 15–23 (1997).
    Article  Google Scholar 

    53.
    Scholander, P. Evolution of climatic adaptation in homeotherms. Evolution 9, 15–26 (1955).
    Article  Google Scholar 

    54.
    Noren, D. P., Williams, T. M., Berry, P. & Butler, E. Thermoregulation during swimming and diving in bottlenose dolphins Tursiops truncatus. J. Comp. Physiol. B 169, 93–99 (1999).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    55.
    Innes, S. et al. Surveys of belugas and narwhals in the Canadian High Arctic in 1996. NAMMCO Sci. Publ. 4, 169–190 (2002).
    Article  Google Scholar 

    56.
    Richard, P. et al. Baffin Bay Narwhal population distribution and numbers: aerial surveys in the Canadian high Arctic, 2002–04. Arctic 63, 85–99 (2010).
    Article  Google Scholar 

    57.
    Asselin, N. C. & Richard, P. Results of narwhal (Monodon monoceros) aerial surveys in Admiralty Inlet (2011).

    58.
    Hansen, R. et al. Abundance of narwhals in Melville Bay in 2012 and 2014. (2015).

    59.
    Hansen, R. & Heide-Jørgensen, M. P. Re-calculations of abundance of narwhals to three management units in East Greenland (2019). More