More stories

  • in

    Water strider females use individual experience to adjust jumping behaviour to their weight within physical constraints of water surface tension

    Study animals
    Between June and August 2014, male and female Gerris latiabdominis were collected using insect nets from small ponds and an old swimming pool at Seoul National University, Seoul, South Korea. The number of water strider collected weekly varied depending on the current experimental requirements. In total, we collected near 100 individuals and used 62 of them in the experiments reported here. Collected water striders were housed in plastic containers (52 × 42 × 18 cm, 2–4 individuals/container) with aerated water, foam resting platforms, and two frozen large crickets per container per day. Each water strider’s thorax was marked with three unique color-coded dots using enamel paints. Females and males were housed separately.
    Experiments
    Effect of weight addition on the performance of first jumps
    Experimental design is graphically summarized in Fig. 1b (also see Supplementary Materials PART 4). To determine the effect of increase in body mass on the behaviour, we tested water striders in two conditions of the Additional weight treatment: weight-added (11 females and 16 males) and weight-not-added (20 females and 15 males). After measuring the weight with an Ohaus electronic scale with the precision of 0.1 mg, the water striders were randomly assigned to either of the treatment group. In weight-added group, a flat coiled aluminum wire (~ 7.5 mg weight in males, ~ 10.5 mg weight in females) was secured to the backs of water striders with a tiny drop of non-water soluble glue gel (applied only on top of thorax). Added weights caused an increase of body mass by about 50% (54.5% ± 9.2 (mean ± SD) in males and 52.8% ± 5.7 in females). The body weight of a male is about 70% of female body weight on average (similar based on median or average body weights). Preliminary theoretical calculations using the model of surface-tension dominated jumping3 suggested that an average female with the extra weight equivalent to the average male body mass would be able to jump and to achieve take-off velocity of about 0.75 m/s for the leg angular velocity of about 40 rad/s. However, based on our observations, when a male sits on the female’s back during copulation and mate guarding the male’s hindlegs are always on the water, probably adding to the support for the mating pair on the water surface. The tips of male midlegs can also be on the water surface, possibly also helping in support on the water surface. All evidence suggests that the male’s support on the water surface contributes to some extent to the forces maintaining the mating pair on the surface of water. Hence, the female does not perceive the full body weight of the mating male. Our preliminary trials with additional weight of different masses indicated that the weight similar to the male body mass is too heavy for the purpose of our experiments because some females were not able to stay on the surface for extended time periods. This was not observed for the extra weights used in our experiments.
    After the weight was added to the water strider, the animal was allowed to rest with 2–3 other individuals of the same sex in a container filled with water (20 × 14 × 10 cm). After three hours, the water strider was placed in a box where the 3-D slow motion movie of the jump was recorded (labeled as the First jump; see below for the details). In weight-not-added group the individuals were treated similarly and handled for similar duration but no extra weight (neither wire nor the glue) was put on their backs. Triggering repeated jumps successively many times in the small container in which they were filmed likely leads to changes in performance due to repeated jumps within relatively short time and due to accumulated effect of the heat of the lights needed for high speed filming. We decided to use the design in which we took one jump per individual. The final sample sizes differ between treatments because some movies were discarded at the analysis stage for technical reasons.
    Effect of jumping experience on adjustment of jumping performance
    In order to test the effect of individual’s experience on adjustments of jumping behaviour we subjected the males and females from the preceding First jump to two conditions of Jumping experience [JE] treatment: presence and absence of frequent jumping during a three-day period (Fig. 1). For three days following the filming of First jump, water striders were kept in groups of 3–4 individuals per container (20 × 14 × 10 cm; filled with aerated water) and fed two frozen crickets per day. Each container was assigned to either JE-present or JE-absent treatment. In the former, we used an aluminum wire bent in the shape of a hook to touch or poke the insect’s underside in order to trigger 3–5 jumps/hour over 5 h/day. Jumps provide individuals with repeated experience of their jumping performance and the opportunity to adjust jumping behaviour. In the latter, individuals were not exposed to these procedures. At the end of the three days, the jumps (Second jump) were recorded in the same manner as for First jump. Sample sizes (listed in caption to Fig. 3 and in Supplementary Table 7 in Supplementary Materials PART 4) differ between treatments because some movies were discarded for technical reasons (see below) and some animals escaped or died.
    High speed filming of jumps
    We used three synchronized high-speed cameras (FasTec Troubleshooter Model #: TS1000ME), with lens axes perpendicular to one another (Supplementary Fig. 2b in Supplementary Materials PART 4). Lights (Photon Super Energy Light, Aurora CCD-250 W, and PLTHINK Photo Light Think with Metal Halide bulbs) were placed directly opposite to each camera lens (Supplementary Fig. 2b). At the center of the setup was a 10 × 10 × 10 cm clear Plexiglas box filled with water. The jumps were invoked by an aluminum wire bent in the shape of a hook underneath the water surface. Jumps were recorded at 500 frames per second. Clips with insects that were accidentally pushed upward by the wire were excluded from the analyses. Examples of jumps extracted for the movies are shown in the Supplementary Movie.
    Variables extracted from the videos
    We tracked the locations of body parts of water striders frame by frame in a three dimensional x, y, z, coordinate system (x, y are horizontal axes, z-coordinates are on the vertical axis, and origin is located at the level of undisturbed water surface) using video tracking software MaxTRAQ 3D (Innovision Systems). We tracked three markers; body center (defined as point between midleg and hindlegs), right midleg dimple depth, and left midleg dimple depth. Dimple depth is the deepest point of water surface deflection under the pressure from a midleg. From this data we calculated upward (vertical) and forward (horizontal) body velocities. For each pair of consecutive frames, we calculated the raw upward velocity of body center (along the vertical axis z) by dividing the vertical shift of body center (vertical distance between z coordinates of body center in the two consecutive frames) by the duration (2 ms between frames in 500 fps movie). Then, we calculated smoothed vertical velocity (m/s) by using rolling three-point average of three successive velocities. In an analogical manner we calculated the values of smoothed horizontal velocity (m/s) during a jump. From the data we extracted four variables used in analyses:
    Angular leg speed (rad/s): Legs move downward as a result of downward angular femur movement powered by insect’s muscles, and the rotational rate of the leg downward movement is termed Angular leg speed (rad/s). To match the angular leg speed calculations in the theoretical model3, we calculated the Angular leg speed in several steps using empirical data and theoretical formulas from the existing model3. The coordinate system included vertical axis (z) with origin (z = 0) at the level of undisturbed water surface. First, for each frame we calculated average dimple depth as an average z from the left and right dimple depths’ z values, and the downward leg reach as the distance between body center’s z and the average dimple depth. Then, for each pair of consecutive frames, we calculated the downward velocity of dimple depth relative to body center (along the vertical axis z) by dividing the change in the downward leg reach between two consecutive frames by the duration (2 ms between frames in 500 fps movie). By using rolling three-point average from three successive downward velocities we obtained smoothed leg speed (m/s). Finally, we calculated the maximal downward speed of legs vs,max (m/s) as an average from the three largest smoothed velocity values. The downward Angular leg speed (ω) was calculated according to Yang et al.3 by approximation starting from the previously approved formula3 for the maximal downward speed of legs vs,max containing leg length ll: (v_{s,max } approx omega *left( { l_{l} – y_{i} } right)*sin left( {2omega t} right)) (yi indicates distance from the surface to insect body at rest and t indicates time during jump). See “Physical constraint from water surface: theoretical upper threshold of performance” below for more details about the model. The calculations resulted in the variable (Angular leg speed) that was directly relevant to the theoretical predictions of the optimal jumping behaviour3.
    Take-off angle (deg): We defined take-off angle (deg) as the angle of trajectory to the water surface when the water strider leaves the surface of water. Takeoff angle was calculated from the ratio of horizontal and vertical vectors of the smoothed body center velocities.
    Take-off velocity (m/s): Take-off velocity (m/s) is the vertical velocity of body center when the water strider leaves the surface of water. We determined the moment of leaving the water surface as the frame when legs disengage from the surface. Vertical velocity indicates how fast the animal removes itself from surface of water. A high take-off velocity is important when predators attack from underneath the water surface. This variable is a crucial component of the theoretical model of optimal jumping performance by water striders3.
    Meniscus breaking (binary): Sometimes jumping water striders break the water surface. When left or right midleg pierced the water surface by more than a quarter of its full leg length the jump was categorized as a jump with meniscus breaking-present. Otherwise the jump was categorized as a jump with meniscus breaking-absent.
    Statistical analyses
    Effect of weight addition on jumping performance—To analyze the effect of Additional weight on jumping performance of First jumps, we used Wilcoxon rank sum tests (Mann–Whitney test) to compare weight-added with weight-not-added groups for each sex separately. We used nonparametric statistical methods here because of small sample size that does not allow to confirm the parametric methods’ assumptions with high reliability (nevertheless the tests indicated that the parametric assumptions were probably met and in Supplementary Materials PART 1we also provide results from parametric comparisons: t-tests and Welch’s t-tests. In order to investigate whether Additional weight effect is statistically significantly different between sexes we switched to parametric analyses and run two-way ANOVA tests including the interaction effect between two independent variables (Additional weight and Sex) separately for the three dependent variables: Angular leg speed, Take-off angle and Take-off velocity.
    Effect of jumping experience on adjustments of jumping performance—For each individual, we calculated three indices of adjustment (change) in performance between First and Second jumps. For each of the three dependent variables, we subtracted the value at First jump from the value at Second jump (for analysis of Second jump solely—see Supplementary Materials PART 3). Linear regression model was used to investigate the effect of Jumping experience and Additional weight treatments on jumping adjustments. Because of the small sample sizes, estimates and 95% confidence intervals of regression coefficients were reported using nonparametric bootstrap procedure with 10,000 replications of each linear model (‘boot’ package in R).
    Meniscus breaking—To analyze the effect of Jumping experience and Additional weight treatments on the probability of breaking of the water surface (Meniscus breaking-present) we used Fisher’s exact test. To determine the effect of Meniscus breaking on Take-off velocity we used Wilcoxon rank sum test separately for males and females. All statistical analyses were performed using R (version 3.3.2;43).
    Physical constraint from water surface: theoretical upper threshold of performance
    During a water strider’s jump, the water surface can be pushed downward only so much before breaking. Thus, a theoretical upper threshold of performance exists. The mathematical model of surface tension dominated jumping3 allows to predict the moment of surface breaking and the optimal behaviour of vertically jumping water striders without surface breaking. The model contains a non-dimensional variable: ΩM1/2. Its value depends, among others, on the Angular leg speed used by water striders during jump and on morphology: body mass and midleg’s tibia and tarsus length—the leg parts on which water strider’s body is supported on the water surface. The theory predicts that for a given total length of midlegs there is a threshold value of ΩM1/2 above which surface breaking will occur and the jump will be inefficient. We determined if water striders used Angular leg speed values that resulted in theoretical values of ΩM1/2 below this critical threshold. In order to more precisely predict the theoretical threshold value of ΩM1/2we modified the original model3. The original model used a simple average length of all four legs (mid-legs and hind-legs) and did not reflect a difference between the length of hind and mid legs. We changed the original equation into systems of differential equations using information about midlegs and hindlegs separately. Modified predicted threshold values of ΩM1/2 were compared with empirically observed values of ΩM1/2in order to determine if the observed adjustments of leg speed by water striders lie within the theoretical limit of performance set by physical properties of water. We used the same parameters as in3 for, lc, capillary length, g, gravitational acceleration, ρ, density of water. Because of the short length of legs, we approximated C, flexibility factor, as 1. Downward angular velocity of leg rotation, ω, was calculated by approximation, (v_{s,max} approx omega {Delta }lsin left( {2omega t} right)). The averaged length of femur, tibia and tarsus were measured from 24 individuals of each sex in G. latiabdominis and yi, the distance from body center to the undisturbed water surface in the resting position of the water strider was measured from 4 movie clips of each sex. Measured variables were averaged (Supplementary Table 8 in Supplementary Materials Part 4) and used to determine lt, average length of tibia plus tarsus, ll, average leg length, and Δl = ll − yi, maximal reach of the leg. Note that, the average length of tibia plus tarsus of hind and mid legs, lth, ltm, and the average length of maximal reach of leg of hind and mid legs, Δlh, Δlm, can be represented as:

    $$l_{th} = 0.77l_{t} ,l_{tm} = 1.23l_{t} ,Delta l_{h} = 0.84Delta l,Delta l_{m} = 1.16Delta l$$

    $$ frac{{d^{2} H_{m} }}{{dleft( {omega t} right)^{2} }} + frac{4 cdot 1.23}{{{Omega }^{2} M}}H_{m} left( {1 – H_{m}^{2} /4} right)^{1/2} + frac{4 cdot 0.77}{{{Omega }^{2} M}}H_{h} left( {1 – H_{h}^{2} /4} right)^{1/2} – 2 cdot 1.16Lcos left( {2omega t} right) = 0, $$
    (1)

    $$ frac{{d^{2} H_{h} }}{{dleft( {omega t} right)^{2} }} + frac{4 cdot 1.23}{{{Omega }^{2} M}}H_{m} left( {1 – H_{m}^{2} /4} right)^{1/2} + frac{4 cdot 0.77}{{{Omega }^{2} M}}H_{h} left( {1 – H_{h}^{2} /4} right)^{1/2} – 2 cdot 0.84Lcos left( {2omega t} right) = 0, $$
    (2)

    where (H_{m} = h_{m} /l_{c} ) is the dimensionless dimple depth of mid legs (hm, dimple depth of mid legs), (H_{h} = h_{h} /l_{c}) is the dimensionless dimple depth of hind legs (h1, dimple depth of hind legs), ({Omega } = omega left( {l_{c} /g} right)^{1/2}) is the dimensionless angular velocity of leg rotation, (M = m/left( {rho l_{c}^{2} Cl_{t} } right)) is the dimensionless index of insect body mass (m, insect body mass), and (L = {Delta }l/l_{c}) is the dimensionless maximum downward reach of leg. The variable ΩM1/2 is calculated, as the name suggests, by multiplying the above-defined Ω by square root of M3. For a given L, the optimal value of ΩM1/2 for maximal take-off velocity is achieved when the maximal hm is equal to the critical depth, (sqrt 2 l_{C}), just before meniscus breaking. Wetted leg length, ls, was measured from 24 individuals of each sex in G. latiabdominis and initial height, yi, was measured from 12 recorded videos of females (6 individuals) and 9 recorded videos of males (5 individuals) (Supplementary Table 8 in Supplementary Materials Part 4). The ode45 function in Matlab was used to solve Eqs. (1) and (2) to get the optimal ΩM1/2 of male and female water striders (red lines in Fig. 4). More

  • in

    Expansion of US wood pellet industry points to positive trends but the need for continued monitoring

    1.
    Solomon, S., Manning, M., Marquis, M. & Qin, D. Climate Change 2007-the Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC Vol 4 (Cambridge university Press, 2007).
    2.
    Parliament, E. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Off. J. Eur. Union Belgium 20, 20 (2009).
    Google Scholar 

    3.
    Parliament, E. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources. Off. J. Eur Union Belgium 20, 2 (2018).
    Google Scholar 

    4.
    United Nations Climate Change Conference. Paris Agreement (2015).

    5.
    Eurostat. Supply, transformation and consumption of renewable energies: Annual data. Eurostat Website. https://ec.europa.eu/eurostat/web/energy/data/database (2019).

    6.
    European Commission. National renewable energy action plans 2020. https://ec.europa.eu/energy/en/topics/renewable-energy/national-renewable-energy-action-plans-2020 (2020).

    7.
    Camia, A. et al. Biomass production, supply, uses and flows in the European Union. 1–126 (2018) https://doi.org/10.2760/181536.

    8.
    Evans, A., Strezov, V. & Evans, T. J. Biomass Processing Technologies (CRC Press, Boca Raton, 2014). https://doi.org/10.1201/b17093.
    Google Scholar 

    9.
    Goerndt, M. E., Aguilar, F. X. & Skog, K. Resource potential for renewable energy generation from co-firing of woody biomass with coal in the Northern US. Biomass Bioenergy 59, 348–361 (2013).
    Article  Google Scholar 

    10.
    Spelter, H. & Toth, D. North America’s Wood Pellet Sector. USDA, Forest Products Laboratory. https://www.fs.usda.gov/treesearch/pubs/35060 (2009). https://doi.org/10.2737/FPL-RP-656.

    11.
    Eurostat. International trade, EU trade since 1988 by HS6. Product 440131. Eurostat Website. https://ec.europa.eu/eurostat/web/international-trade-in-goods/data/database (2019).

    12.
    Proskurina, S., Junginger, M., Heinimö, J., Tekinel, B. & Vakkilainen, E. Global biomass trade for energy—Part 2: Production and trade streams of wood pellets, liquid biofuels, charcoal, industrial roundwood and emerging energy biomass. Biofuels Bioprod. Biorefining 13, 371–387 (2019).
    CAS  Article  Google Scholar 

    13.
    Abt, K. L., Abt, R. C., Galik, C. S. & Skog, K. E. Effect of policies on pellet production and forests in the US South: A technical document supporting the forest service update of the 2010 RPA assessment. Gen. Tech. Rep. SRS-202 Asheville NC US Dep. Agric. For. Serv. South. Res. Stn. 202, 33 (2014).
    Google Scholar 

    14.
    Dale, V. H., Parish, E., Kline, K. L. & Tobin, E. How is wood-based pellet production affecting forest conditions in the southeastern United States?. For. Ecol. Manag. 396, 143–149 (2017).
    Article  Google Scholar 

    15.
    Singh, D., Cubbage, F., Gonzalez, R. & Abt, R. Locational determinants for wood pellet plants: A review and case study of North and South America. BioResources 11, 7928–7952 (2016).
    Google Scholar 

    16.
    U.S. Energy Information Administration (EIA). Monthly Densified Biomass Fuel Report. https://www.eia.gov/biofuels/biomass/#dashboard (2019).

    17.
    Birdsey, R. et al. Climate, economic, and environmental impacts of producing wood for bioenergy. Environ. Res. Lett. 13, 050201 (2018).
    ADS  Article  CAS  Google Scholar 

    18.
    Strange Olesen, A., Bager, L., Kittler, B., Price, W. & Aguilar, F. Environmental implications of increased reliance of the EU on biomass from the south east US. Brussels DG Environ. https://doi.org/10.2779/30897 (2015).
    Article  Google Scholar 

    19.
    Duden, A. S. et al. Modeling the impacts of wood pellet demand on forest dynamics in southeastern United States. Biofuels Bioprod. Biorefining 11, 1007–1029 (2017).
    CAS  Article  Google Scholar 

    20.
    Sedjo, R. & Tian, X. Does wood bioenergy increase carbon stocks in forests?. J. For. 110, 304–311 (2012).
    Google Scholar 

    21.
    de Oliveira Garcia, W., Amann, T. & Hartmann, J. Increasing biomass demand enlarges negative forest nutrient budget areas in wood export regions. Sci. Rep. 8, 5280 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    22.
    Searchinger, T. D. et al. Europe’s renewable energy directive poised to harm global forests. Nat. Commun. 9, 3741 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    23.
    Galik, C. S. & Abt, R. C. Sustainability guidelines and forest market response: An assessment of European Union pellet demand in the southeastern United States. GCB Bioenergy 8, 658–669 (2016).
    Article  Google Scholar 

    24.
    FORISK. Global Industrial Wood Pellet Demand Forecast and U.S. Wood Bioenergy Update: Q3 2017. https://forisk.com/blog/2017/08/08/global-industrial-wood-pellet-demand-forecast-u-s-wood-bioenergy-update-q3-2017/ (2017).

    25.
    Aguilar, F. X., Song, N. & Shifley, S. Review of consumption trends and public policies promoting woody biomass as an energy feedstock in the US. Biomass Bioenergy 35, 3708–3718 (2011).
    Article  Google Scholar 

    26.
    Robinson, G., McNulty, J. E. & Krasno, J. S. Observing the counterfactual? The search for political experiments in nature. Polit. Anal. 17, 341–357 (2009).
    Article  Google Scholar 

    27.
    Romijn, E. et al. Assessing change in national forest monitoring capacities of 99 tropical countries. For. Ecol. Manag. 352, 109–123 (2015).
    Article  Google Scholar 

    28.
    Cornwall, W. Is wood a green source of energy? Scientists are divided. Science (80) 355, 18–21 (2017).
    ADS  CAS  Article  Google Scholar 

    29.
    Glasenapp, S. & McCusker, A. Wood energy data: The joint wood energy enquiry. in Wood Energy in the ECE Region Data, Trends and Outlook in Europe, the Commonwealth of Independent States and North America 12 (United Nations Economic Commission for Europe, 2017).

    30.
    Wackernagel, M. & Yount, J. D. The ecological footprint: An indicator of progress toward regional sustainability. Environ. Monit. Assess. 51, 511–529 (1998).
    Article  Google Scholar 

    31.
    McCann, P. The Economics of Industrial Location: A Logistics-Costs Approach (Springer, Berlin, 2013).
    Google Scholar 

    32.
    Goerndt, M. E., Aguilar, F. X. & Skog, K. Drivers of biomass co-firing in US coal-fired power plants. Biomass Bioenergy 58, 158–167 (2013).
    Article  Google Scholar 

    33.
    Perez-Verdin, G., Grebner, D. L., Munn, I. A., Sun, C. & Grado, S. C. Economic impacts of woody biomass utilization for bioenergy in Mississippi. For. Prod. J. 58, 75–83 (2008).
    Google Scholar 

    34.
    European Commission Joint Research Centre. Renewable Energy—Recast to 2030 (RED II). https://ec.europa.eu/jrc/en/jec/renewable-energy-recast-2030-red-ii (2019).

    35.
    FORISK. U.S. Wood Bioenergy Database: Q1 2018. https://forisk.com/ (2018).

    36.
    U.S. International Trade Commission (USITC). Domestic Exports 2012–2018 for HS 44 and HS 440131. https://dataweb.usitc.gov/trade (2019).

    37.
    U.S. Department of Transportation (USDOT). Major Ports. https://data-usdot.opendata.arcgis.com/datasets/major-ports (2019).

    38.
    Blackman, A., Corral, L., Lima, E. S. & Asner, G. P. Titling indigenous communities protects forests in the Peruvian Amazon. Proc. Natl. Acad. Sci. 114, 4123–4128 (2017).
    CAS  PubMed  Article  Google Scholar 

    39.
    Mohebalian, P. M. & Aguilar, F. X. Beneath the canopy: Tropical forests enrolled in conservation payments reveal evidence of less degradation. Ecol. Econ. 143, 64–73 (2018).
    Article  Google Scholar 

    40.
    Burrill, E. A. et al. The Forest Inventory and Analysis Database: Database description and user guide version 8.0 for Phase 2. US Dep. Agric. For. Serv. 946, 20 (2018).
    Google Scholar 

    41.
    Guldin, R. W., King, S. L. & Scott, C. T. Vision for the Future of FIA: Paean to Progress, Possibilities, and Partners. Proceedings of Sixth Annual For. Invent. Anal. Symp. 2004 Sept. 21–24; Denver, CO. Gen. Tech. Rep. WO-70. Washington, DC U.S. Dep. Agric. For. Serv. 20090, 126 (2006).

    42.
    U.S. Department of Agriculture Forest Service. Forest Inventory and Analysis National Program. https://www.fia.fs.fed.us/tools-data/ (2019).

    43.
    Bechtold, W. A. & Patterson, P. L. The Enhanced Forest Inventory and Analysis Program—National Sampling Design and Estimation Procedures. Gen. Tech. Rep. SRS-80. Asheville, NC: US Department of Agriculture, Forest Service, Southern Research Station. 85 vol. 80. https://www.fs.usda.gov/treesearch/pubs/20371 (2015).

    44.
    Barbe, G. Methods of transporting timber in the southern United States. Rep. to Louisiana For. Prod. Dev. Cent. (1993).

    45.
    Ferraro, P. J. Counterfactual thinking and impact evaluation in environmental policy. New Dir. Eval. 2009, 75–84 (2009).
    Article  Google Scholar 

    46.
    Dundar, B., McGarvey, R. G. & Aguilar, F. X. Identifying Optimal Multi-state collaborations for reducing CO2 emissions by co-firing biomass in coal-burning power plants. Comput. Ind. Eng. 101, 403–415 (2016).
    Article  Google Scholar 

    47.
    Woodall, C. W. et al. An overview of the forest products sector downturn in the United States. For. Prod. J. 61, 595–603 (2011).
    Google Scholar 

    48.
    U.S. Drought Monitor. GIS Data Files. https://droughtmonitor.unl.edu/Data/GISData.aspx (2019).

    49.
    U.S. Department of Agriculture Forest Service. U.S. Forest Change Assessment Viewer ForWarn. https://forwarn.forestthreats.org/fcav2/ (2019).

    50.
    Fisher, M., Chaudhury, M. & McCusker, B. Do forests help rural households adapt to climate variability? Evidence from Southern Malawi. World Dev. 38, 1241–1250 (2010).
    Article  Google Scholar 

    51.
    Wooldridge, J. M. Econometric Analysis of Cross Section and Panel Data (MIT Press, London, 2010).
    Google Scholar 

    52.
    Millo, G. & Piras, G. splm: Spatial panel data models in R. J. Stat. Softw. 47, 1–38 (2012).
    Article  Google Scholar 

    53.
    Kapoor, M., Kelejian, H. H. & Prucha, I. R. Panel data models with spatially correlated error components. J. Econom. 140, 97–130 (2007).
    MathSciNet  MATH  Article  Google Scholar 

    54.
    Baltagi, B. Econometric Analysis of Panel Data (Wiley, Oxford, 2008).
    Google Scholar 

    55.
    Hausman, J. A. Specification tests in econometrics. Econometrica 46, 1251 (1978).
    MathSciNet  MATH  Article  Google Scholar 

    56.
    Crouchet, S. E., Jensen, J., Schwartz, B. F. & Schwinning, S. Tree mortality after a hot drought: Distinguishing density-dependent and -independent drivers and why it matters. Front. For. Glob. Chang. 2, 21 (2019).
    Article  Google Scholar 

    57.
    European Commission. Directorate General for Energy. https://ec.europa.eu/energy/en/topics/renewable-energy/biomass (2019).

    58.
    European Commission. Memo: The Revised Renewable Energy Directive. https://ec.europa.eu/energy/sites/ener/files/documents/technical_memo_renewables.pdf (2016).

    59.
    The Sustainable Biomass Program. Standards. https://sbp-cert.org/documents/standards-documents/standards (2015).

    60.
    Stephens, S. L. et al. The effects of forest fuel-reduction treatments in the United States. Bioscience 62, 549–560 (2012).
    Article  Google Scholar 

    61.
    Berger, A. L. et al. Ecological impacts of energy-wood harvests: Lessons from whole-tree harvesting and natural disturbance. J. For. 111, 139–153 (2013).
    Google Scholar 

    62.
    Janowiak, M. & Webster, C. Promoting ecological sustainability in woody biomass harvesting. J. For. 108, 16–23 (2010).
    Google Scholar 

    63.
    Powers, R. F. et al. The North American long-term soil productivity experiment: Findings from the first decade of research. For. Ecol. Manag. 220, 31–50 (2005).
    Article  Google Scholar 

    64.
    Parliament, E. Commission Delegated Regulation (EU) 2019/807 of 13 March 2019 supplementing Directive (EU) 2018/2001 of the European Parliament and of the Council as regards the determination of high indirect land-use change-risk feedstock for which a significant expans. Off. J. Eur Union Belgium 20, 20 (2019).
    Google Scholar 

    65.
    Hanssen, S. V., Duden, A. S., Junginger, M., Dale, V. H. & van der Hilst, F. Wood pellets, what else? Greenhouse gas parity times of European electricity from wood pellets produced in the south-eastern United States using different softwood feedstocks. GCB Bioenergy 9, 1406–1422 (2017).
    CAS  Article  Google Scholar 

    66.
    Wang, W., Dwivedi, P., Abt, R. & Khanna, M. Carbon savings with transatlantic trade in pellets: Accounting for market-driven effects. Environ. Res. Lett. 10, 114019 (2015).
    ADS  Article  Google Scholar 

    67.
    U.S. Energy Information Administration (EIA). Monthly Energy Review: Renewable Energy Consumption: Electric power sector (Wood Energy Consumed by the Electric Power Sector). https://www.eia.gov/totalenergy/data/monthly/#renewable (2019).

    68.
    Sedjo, R. A. The biomass crop assistance program (BCAP): Some implications for the forest industry. SSRN Electron. J. 20, 10–22. https://doi.org/10.2139/ssrn.1581551 (2010).
    Article  Google Scholar 

    69.
    Evans, A. M., Perschel, R. T. & Kittler, B. A. Overview of forest biomass harvesting guidelines. J. Sustain. For. 32, 89–107 (2013).
    Article  Google Scholar 

    70.
    Flach, B., Lieberz, S. & Bolla, S. Report: Biofuels Annual. US Foreign Agricultural Service. https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=BiofuelsAnnual_TheHague_EuropeanUnion_06-29-2020.(2020).

    71.
    European Environment Agency. Renewable Energy in Europe: Key for Climate Objectives, But Air Pollution Needs Attention. https://www.eea.europa.eu/themes/energy/renewable-energy/renewable-energy-in-europe-key (2019).

    72.
    U.S. Energy Information Administration (EIA). Annual Energy Outlook 2018 Table: Renewable Energy Generation by Fuel Case: Reference Case|Region: United States. https://www.eia.gov/outlooks/aeo/data/browser/#/?id=67-AEO2018&linechart=~ref2018-d121317a.9-67-AEO2018.3-0 (2018).

    73.
    U.S. Environmental Protection Agency (EPA). Emissions and Generation Resource Integrated Database (eGRID). https://www.epa.gov/energy/emissions-generation-resource-integrated-database-egrid. (2019).

    74.
    National Conference of State Legislatures. State Renewable Portfolio Standards and Goals. https://www.ncsl.org/research/energy/renewable-portfolio-standards.aspx (2018).

    75.
    Shifley, S. R. et al. Five anthropogenic factors that will radically alter forest conditions and management needs in the Northern United States. For. Sci. 60, 914–925 (2014).
    Article  Google Scholar 

    76.
    Wear, D. N. & Greis, J. G. The Southern Forest Futures Project : Summary report/David N. Wear and John G. Greis. General technical report SRS: 168 vol. 168. https://proxy-remote.galib.uga.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edsgpr&AN=gprocn839703115&site=eds-live. https://www.srs.fs.fed.us/pubs/gtr/gtrsrs168.pdf (2012).

    77.
    Ruta, G. Monitoring Environmental Sustainability (World Bank, Geneva, 2010). https://doi.org/10.1596/27445.
    Google Scholar 

    78.
    European Commission. A Sustainable Bioeconomy for Europe: Strengthening the Connection Between Economy, Society and the Environment. https://ec.europa.eu/research/bioeconomy/pdf/ec_bioeconomy_strategy_2018.pdf (2018).

    79.
    Council of the European Communities & Commission of the European Communities. Treaty on European Union-Maastricht Treaty. 253 (1993).

    80.
    European Union. Treaty of Amsterdam. 144 (1997).

    81.
    Dyer, J. M. Revisiting the deciduous forests of eastern North America. Bioscience 56, 341–352 (2006).
    Article  Google Scholar 

    82.
    U.S. Energy Information Administration. From EIA-860 Detailed Data with Previous form Data (EIA-860A/860B). https://www.eia.gov/electricity/data/eia860/ (2019).

    83.
    U.S. Energy Information Administration. Form EIA-923 Detailed Data with Previous form Data (EIA-906/920). https://www.eia.gov/electricity/data/eia923/ (2019).

    84.
    Gray, J. A., Bentley, J. W., Cooper, J. A. & Wall, D. J. United States Department of Agriculture Southern Pulpwood Production, 2016. e-Resource Bulletin SRS–222. Asheville, NC: U.S. Department of Agriculture Forest Service, Southern Research Station https://www.fs.usda.gov/treesearch/pubs/56531 (2018).

    85.
    Piva, R. J., Bentley, J. W. & Hayes, S. W. National pulpwood production, 2010. Resour. Bull. NRS-89. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station https://www.fs.usda.gov/treesearch/pubs/45928 (2014). https://doi.org/10.2737/NRS-RB-89.

    86.
    Prestemon, J. et al. Locations of Wood-Using Mills in the Continental U.S. https://www.srs.fs.usda.gov/econ/data/mills/ (2005).

    87.
    Johnson, T. G. & Steppleton, C. D. United States Department of Agriculture Southern Pulpwood Production, 2005. Resour. Bull. SRS-116. Asheville, NC: U.S. Department of Agriculture Forest Service, Southern Research Station. https://www.fs.usda.gov/treesearch/pubs/27728 (2007).

    88.
    Johnson, T. G., Steppleton, C. D. & Bentley, J. W. United States Department of Agriculture Southern Pulpwood Production, 2008. Resour. Bull. SRS–165. Asheville, NC: U.S. Department of Agriculture Forest Service, Southern Research Station. https://www.fs.usda.gov/treesearch/pubs/34565 (2010).

    89.
    Bentley, J. W. & Steppleton, C. D. Southern pulpwood production, 2011. Resour. Bull. SRS-RB-194. Asheville, NC: U.S. Department of Agriculture Forest Service, Southern Research Station. https://www.fs.usda.gov/treesearch/pubs/43626 (2013).

    90.
    Gray, J. A., Bentley, J. W., Cooper, J. A. & Wall, D. J. United States Department of Agriculture Southern Pulpwood Production, 2014. e-Resource Bulletin SRS–219. Asheville, NC: U.S. Department of Agriculture Forest Service, Southern Research Station. https://www.fs.usda.gov/treesearch/pubs/56235 (2018).

    91.
    U.S. Census Bureau. Cartographic Boundary Files. https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html (2019).

    92.
    U.S. Census Bureau. County Population Totals. https://www.census.gov/data/tables/time-series/demo/popest/2010s-counties-total.html (2020).

    93.
    R Core Team. R: A Language and Environment for Statistical Computing. https://www.r-project.org/ (2019).

    94.
    Pebesma, E. Simple features for R: Standardized support for spatial vector data. R J. 10, 439 (2018).
    Article  Google Scholar 

    95.
    Flowerdew, R. & Green, M. Areal interpolation and types of data. In Spatial Analysis and GIS (eds Fotheringham, S. & Rogerson, P.) 73–75 (CRC Press, Boca Raton, 2014).
    Google Scholar 

    96.
    Goerndt, M. E., Wilson, B. T. & Aguilar, F. X. Comparison of small area estimation methods applied to biopower feedstock supply in the Northern US region. Biomass Bioenergy 121, 64–77 (2019).
    Article  Google Scholar  More

  • in

    A rigorous assessment and comparison of enumeration methods for environmental viruses

    Bacteriophages
    Four lytic E. coli-specific phages were used in the present study: MS2 (DSM 13767), T4 (DSM 4505), T7 (DSM 4623), and ϕX174 (DSM 4497). The genomic and structural properties of the phages as well as their bacterial hosts are listed in Table 2. For preparation of the virus isolate stocks, the respective bacterial host was grown in sterile LB medium (LB broth Miller, Sigma-Aldrich, St. Louis, Missouri) until an optical density of 0.3 measured at 600 nm was reached, then inoculated with phages at a virus-to-bacteria-ratio of 0.1, followed by overnight incubation. Remaining bacterial cells were killed by the addition of 1/10 volume of chloroform for 1 h. After separation from the bacterial cell debris, virus stocks were filtered with 0.22 µm syringe filters (Millex-GP, Merck-Millipore, Billerica, Massachusetts) and filtration was repeated prior preparation of samples for measurements.
    Environmental samples
    Environmental samples were collected from four different aquatic habitats: the income water tank of a wastewater treatment plant (Gut Großlappen, Munich, Germany), an on-site groundwater collection well (48°13′25.8″ N 11°35′45.4″ E, Munich, Germany), a lake (Feldmochinger See; 48°12′56.0″ N 11°30′49.4″ E, Munich, Germany), and a river (Isar; 48°32′59.3″ N, 12°10′42.4″ E, Landshut, Germany). To remove particles the size of bacteria and larger, all water samples were filtered with 0.22 µm syringe filters (Millex-GP). Measurements with flow cytometer and nanoparticle tracking analysis were performed simultaneously and on the sampling day. Quantification with epifluorescence microscopy as well as DNA extraction was conducted on the next day. Samples were stored in 4 °C.
    Additionally, a mixed water sample (lake and wastewater) with an approximate concentration of 108 virus-like particles per mL (VLP mL–1) was prepared. This sample was spiked with 1× 108, 5× 108 and 1× 109 T4 particles mL−1. Before the addition, phage T4 stock has been quantified with qPCR.
    Viral quantification
    All measurements were performed in biological and technical duplicates.
    Plaque assay (PA)
    The PA was performed using a soft agar overlay technique as described elsewhere24. Briefly, 0.5 mL of appropriate dilutions of phages were mixed with an equal volume of fresh cultures of the corresponding hosts, grown overnight (incubated in LB medium at 37 °C until an optical density of 0.3 measured at 600 nm was reached). The phage-bacteria-suspension was mixed with 3 mL warm soft agar (0.75% w/v agar and 2.5% w/v LB) and gently poured on a petri dish already containing an LB agar layer (1.5% w/v agar and 2.5% w/v LB) in biological and technical replicates. Upon solidification, the petri dishes were incubated bottom up for overnight at 37 °C. After 15–20 h, depending on the bacterial growth efficiency, the plaques formed were manually counted and the phage titers as plaque-forming units per mL (PFU mL–1) were calculated.
    Flow cytometry (FCM)
    All samples were prepared as described previously with some adaptations14. We decided on these modifications based on the publications of Tomaru and Nagasaki (2007) and Brum and colleagues (2013). More precisely, samples were not fixed with glutaraldehyde after sampling as this may decrease the fluorescence intensity as well as the viral counts. Tomaru and Nagasaki concluded, that a fixation does not necessarily improve the staining ability of the virus particles20. Besides, our samples were measured immediately on the day of sampling, thus a preservation of the viral particles was not necessary. Another step recommended by Brussaard (2004) we did not follow is the flash freezing of the viral sample in liquid nitrogen. It has been shown that nitrogen fixation hampers the preparation procedure for TEM resulting inter alia in morphology changes25. To what extent particles would be enumerated correctly after fixation and nitrogen treatment with nanoparticle tracking analysis where particle integrity would certainly play a role during the enumeration process, is also debatable. As consequence, we decided, to omit this step in order to maintain a consistent sample handling and accomplish comparable conditions for all methods.
    In brief, samples were diluted appropriately with sterile, filtered PBS buffer (0.02 µm Anotop 25 syringe filter, Whatman, Maidstone, UK; Sigma Aldrich) to fulfill the instrument’s optimal concentration requirements of approximately 106 VLP mL–1 (Table 1). Fluorescent TRUCOUNT beads (BD, Becton, Dickinson and Company, Franklin Lakes, New Jersey) were added to each sample as an internal reference. The samples were stained with 1 × SYBR gold nucleic acid stain (Thermo Fisher, Waltham, Massachusetts) and incubated either for 10 min at 80 °C (FCM80) or for 1 h at 30 °C (FCM30) prior to measurement. Tomaru & Nagasaki recommended an incubation at room temperature, as higher temperatures reduced the viral counts. We chose therefore two staining temperatures, one at 80 °C, following the suggestion of Brussaard14 and one at 30 °C, following the reference of Tomaru & Nagasaki20.
    All samples were measured with a FC500 flow cytometer equipped with an air-cooled 488 nm Argon ion laser (Beckman Coulter, Brea, California) in biological and technical replicates. Analysis and evaluation of the samples was performed using StemCXP Cytometer software (v2.2).
    Nanoparticle tracking analysis (NTA)
    Viral isolate samples were diluted appropriately with sterile phage buffer (10 mM Tris [pH 7.5], 10 mM MgSO4, and 0.4% w/v NaCl) to obtain the optimal concentration range of 107–109 VLP mL–1 (Table 1). Afterwards, samples were either untreated or stained with 1 × SYBR gold for 10 min at 80 °C or 1 h at 30 °C (NTA80 or NTA30, respectively). Each sample was injected manually into the machine’s specimen chamber with a sterile 1 mL syringe (Braun, Melsungen, Germany), and measured three times for 20 sec at room temperature in three independent preparations. Samples were measured using a NanoSight NS300 (Malvern Pananalytical Ltd., Malvern, United Kingdom) equipped with a B488 nm laser module and a sCMOS camera, following the manufacturer’s protocol. Analysis was performed with the NTA 3.1 Analytical software (release version build 3.1.45).
    Epifluorescence microscopy (EPI)
    Staining of the samples was carried out as described by Patel et al.26. Briefly, all samples were diluted appropriately with 0.02 µm filtered 1 × TE buffer (pH 7.5, AppliChem, Darmstadt, Germany) to a concentration of 107 particles mL–1. For environmental samples with lower concentrations, a volume of 10 mL was used.
    Then, 1 mL of each diluted sample (10 mL of environmental samples) was passed through a 0.02 µm Anodisc filter (Whatman) in duplicates. After complete desiccation, the filter was stained using a drop of 2 × SYBR gold dye (Thermo Fisher) with the virus side up, and incubated at room temperature for 15 min in the dark. Stained filters were mounted on a glass slide with 20 µL antifade solution (Thermo Fisher). Slides were analyzed using an Axiolab fluorescence microscope (Carl Zeiss, Oberkochen, Germany) equipped with a 488 nm laser. A camera was used to take ten pictures per sample, which were analyzed using ImageJ (version 1.50i). Numbers of particles on the whole filter were calculated by multiplying the counts with the quotient of the area of the filter by area of the pictures.
    Quantitative real-time PCR (qRT-PCR)
    Prior to the DNA extraction 1 mL of sample has been treated with DNase as described previously with a modified incubation procedure for one hour at 37 °C27. The DNA extraction has been conducted from the complete volume after DNase treatment using the Wizard® PCR Preps DNA Purification Resin and Minicolumns (Promega, Madison, Wisconsin) as previously described28. RNA was extracted with a QIAmp MinElute Virus Spin Kit (total volume of 1 mL sample) (Qiagen, Hilden, Germany) and cDNA was synthesized using a DyNAmo cDNA Synthesis Kit (Thermo Fisher) according to the manufacturers protocols. For all samples, DNA or RNA was isolated in duplicates.
    T4 was quantified using primers amplifying a 163 bp region of the gp18 tail protein (T4F 5′-AAGCGAAAGAAGTCGGTGAA-3′ and T4R 5′-CGCTGTCATAGCAGCTTCAG-3′)29. For T7, primers amplifying a 555 bp segment of gene 1 (T7_4453F 5′-CTGTGTCAATGTTCAACCCG-3′ and T7_5008R 5 ‘-GTGCCCAGCTTGACTTTCTC-3′)30. ϕX174 was quantified using primers specific for the capsid protein F (ϕX174F 5′-ACAAAGTTTGGATTGCTACTGACC-3′ and ϕX174R 5′-CGGCAGCAATAAACTCAACAGG-3′) resulting in a 122 bp fragment31. For MS2, primers amplifying a 314-bp fragment (MS2_2717F 5′-CTGGGCAATAGTCAAA-3′ and MS2_3031R 5′-CGTGGATCTGACATAC-3′) were used32. Quantitative PCR was performed in a total volume of 20 µL consisting of 10 µL Brilliant III Ultra-Fast QPCR Master Mix (Agilent, Santa Clara, California), 5 µL DNA template or PCR-grade water as a negative control, as well as the following optimized primer concentrations (supporting information): 0.5 µM primers T4F and T4R, 0.8 µM primers T7_4453F and T7_5008R, 0.6 µM primers ϕX174F and ϕX174R, or 0.3 µM primers MS2_2717F and MS2_3031R, respectively. The amplifications were run on a Mx3000P qPCR system (FAM/SYBR® Green I filter [492 nm–516 nm], OS v7.10, Stratagene, San Diego, California) with the following cycling conditions: T4: 95 °C for 10 min, (95 °C for 15 sec, 60 °C for 1 min, 72 °C for 1 min) for a total of 45 cycles, T7: 95 °C for 12 min, (95 °C for 30 sec, 58 °C for 30 sec, 72 °C for 1 min) for a total of 30 cycles, ϕX174: 94 °C for 3 min, (94 °C for 15 sec, 60 °C for 1 min) for a total of 40 cycles, and MS2: 95 °C for 10 min, (95 °C for 15 sec, 50 °C for 30 sec, 72 °C for 30 sec) for a total of 45 cycles. Each replicate was measured four times. Analysis of the melting curves confirmed the specificity of the chosen primer as no variations compared to the standard melting curves could be observed. Standard curves were prepared using the appropriate dilutions of gblocks gene fragments (IDT, Coralville, Iowa) of the respective viral DNA in PCR-grade water (supporting information, Tables S1 and S2). Data analysis was performed using the manufacturer’s MxPro Mx3000P software (v4.10).
    TEM preparation
    Although TEM may be used for quantification, only the virus morphology and integrity upon applying the staining conditions were monitored. Therefore, the phages MS2 and T7 were either incubated for 10 min at 80 °C or further processed without any temperature treatment. Ten µL of the sample were then applied to the carbon side of a carbon-coated copper grid. Excessive water was blotted dry with a filter paper and washed two times with double-distilled water. After each washing step grids were again blotted dry onto a filter paper before negative staining with 2% uranyl acetate for 20 sec. The staining liquid was blotted onto a filter paper and the grids were air-dried as described previously33. Transmission electron microscopy was carried out using a Zeiss EM 912 with an integrated OMEGA filter in zero-loss mode. The acceleration voltage was set to 80 kV and images were recorded using a Tröndle 2 k × 2 k slow-scan CCD camera (Tröndle Restlichtverstärker Systeme, Moorenweis, Germany).
    Sample stability test
    In order to substantiate our decision of omitting a fixative step for FCM measurements and to confirm a certain stability of the virus concentration over a short time range (few days), phage T4 and wastewater samples were measured with FCM at time 0, after 24 h and after 48 h. The samples were either kept in 4 °C or were fixed with 0.5% glutaraldehyde for 30 min in 4 °C followed by freezing in liquid nitrogen with adjacent storage at -80 °C, as suggested by Brussaard (2004). At each time point, samples were prepared for FCM as described above with two different staining procedures (30 °C and 80 °C). Additionally, a fixed T4 phage sample was prepared for NTA measurements in the same way in order to test the usability of glutaraldehyde fixation. For phage T4, measurements of the 4 °C, unfixed samples were mostly slightly higher compared to the fixed samples (Fig. S6a,b). Comparing the initial quantification with the results after 48 h, the decrease in counted particles was minor. For the wastewater samples, viral numbers of the unfixed samples were marginally lower, however, a general decline in particle numbers over time could be observed (Fig. S6c,d). This decline was in all cases less than one order of magnitude. As both, fixed and unfixed samples declined only to a small extent and no trend of a stronger decrease of viral particles in the unfixed samples could be observed, omitting the fixation with glutaraldehyde and liquid nitrogen is not supposed to have a wide influence on the enumeration within 48 h.
    Statistical analysis
    Statistical analysis was carried out in R (v3.4.3) and RStudio (v1.1.383). Data were log transformed and analysis of variance (ANOVA) was conducted. Normal distribution of data was confirmed by density plots and quantile–quantile plots; homogeneity of variances was confirmed with Levene’s test. Afterwards, multiple pairwise comparisons were calculated with a post-hoc Tukey honest significant differences test. In addition, similarities in viral isolate quantification methods were assessed using principal coordinate analysis. More

  • in

    Anemonefish facilitate bleaching recovery in a host sea anemone

    1.
    Muscatine, L. & Porter, J. W. Reef corals: Mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27, 454–460 (1977).
    Google Scholar 
    2.
    Smith, D. C. & Douglas, A. E. The Biology of Symbiosis (Edward Arnold Ltd., London, 1987).
    Google Scholar 

    3.
    Rao, H. Interorganizational Ecology: Haygreeva. In The Blackwell Companion to Organisations (ed. Baum, J. A.) 541–556 (Backwell, Oxford, 2017).
    Google Scholar 

    4.
    Martínez-García, L. B., De Deyn, G. B., Pugnaire, F. I., Kothamasi, D. & van der Heijden, M. G. Symbiotic soil fungi enhance ecosystem resilience to climate change. Glob. Chang. Biol. 23, 5228–5236 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    5.
    Compant, S., Van Der Heijden, M. G. & Sessitsch, A. Climate change effects on beneficial plant–microorganism interactions. FEMS Microbiol. Ecol. 73, 197–214 (2010).
    CAS  PubMed  Google Scholar 

    6.
    Chase, T., Pratchett, M., Frank, G. & Hoogenboom, M. Coral-dwelling fish moderate bleaching susceptibility of coral hosts. PLoS ONE 13, e0208545 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    7.
    Redman, R. S. et al. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: A strategy for mitigating impacts of climate change. PLoS ONE 6, e14823 (2011).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    8.
    Stewart, H. L., Holbrook, S. J., Schmitt, R. J. & Brooks, A. J. Symbiotic crabs maintain coral health by clearing sediments. Coral Reefs 25, 609–615 (2006).
    ADS  Google Scholar 

    9.
    Pachauri, R. K. et al. Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. (IPCC, Switzerland, 2014).

    10.
    Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 50, 839–866 (1999).
    Google Scholar 

    11.
    Mieog, J. C. et al. The roles and interactions of symbiont, host and environment in defining coral fitness. PLoS ONE 4(7), e6364 (2009).
    ADS  PubMed  PubMed Central  Google Scholar 

    12.
    Davies, P. S. The role of zooxanthellae in the nutritional energy requirements of Pocillopora eydouxi. Coral Reefs 2, 181–186 (1984).
    ADS  Google Scholar 

    13.
    Cook, C., D’Elia, C. & Muller-Parker, G. Host feeding and nutrient sufficiency for zooxanthellae in the sea anemone Aiptasia pallida. Mar. Biol. 98, 253–262 (1988).
    CAS  Google Scholar 

    14.
    Roopin, M., Henry, R. P. & Chadwick, N. E. Nutrient transfer in a marine mutualism: Patterns of ammonia excretion by anemonefish and uptake by giant sea anemones. Mar. Biol. 154, 547–556 (2008).
    CAS  Google Scholar 

    15.
    Delia, C., Domotor, S. & Webb, K. Nutrient uptake kinetics of freshly isolated zooxanthellae. Mar. Biol. 75, 157–167 (1983).
    CAS  Google Scholar 

    16.
    Steen, R. G. & Muscatine, L. Low temperature evokes rapid exocytosis of symbiotic algae by a sea anemone. Biol. Bull. 172, 246–263 (1987).
    Google Scholar 

    17.
    Roopin, M. & Chadwick, N. E. Benefits to host sea anemones from ammonia contributions of resident anemonefish. J. Exp. Mar. Biol. Ecol. 370, 27–34 (2009).
    CAS  Google Scholar 

    18.
    Brown, B. E. Coral bleaching: Causes and consequences. Coral Reefs 16, 129–138 (1997).
    Google Scholar 

    19.
    Glynn, P. W. Widespread coral mortality and the 1982–83 El Niño warming event. Environ. Conserv. 11, 133–146 (1984).
    Google Scholar 

    20.
    McClanahan, T. R., Ateweberhan, M., Muhando, C. A., Maina, J. & Mohammed, M. S. Effects of climate and seawater temperature variation on coral bleaching and mortality. Ecol. Monogr. 77, 503–525 (2007).
    Google Scholar 

    21.
    Vinoth, R., Gopi, M., Kumar, T. T. A., Thangaradjou, T. & Balasubramanian, T. Coral reef bleaching at Agatti Island of Lakshadweep Atolls India. J. Ocean Univ. China 11, 105–110 (2012).
    ADS  Google Scholar 

    22.
    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nat. 556, 492–496 (2018).
    ADS  CAS  Google Scholar 

    23.
    Death, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. 109, 17995–17999 (2012).
    ADS  CAS  Google Scholar 

    24.
    Hughes, T. P. Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265, 1547–1551 (1994).
    ADS  CAS  PubMed  Google Scholar 

    25.
    McManus, J. W. & Polsenberg, J. F. Coral–algal phase shifts on coral reefs: Ecological and environmental aspects. Prog. Oceanogr. 60, 263–279 (2004).
    ADS  Google Scholar 

    26.
    Hughes, T. P., Graham, N. A., Jackson, J. B., Mumby, P. J. & Steneck, R. S. Rising to the challenge of sustaining coral reef resilience. Trends Ecol. Evol. 25, 633–642 (2010).
    PubMed  Google Scholar 

    27.
    Garpe, K. C., Yahya, S. A., Lindahl, U. & Öhman, M. C. Long-term effects of the 1998 coral bleaching event on reef fish assemblages. Mar. Ecol. Prog. Ser. 315, 237–247 (2006).
    ADS  Google Scholar 

    28.
    Pratchett, M. S. et al. Effects of climate-induced coral bleaching on coral-reef fishes—ecological and economic consequences. Oceanogr. Mar. Biol. 46, 257–302 (2008).
    Google Scholar 

    29.
    Pratchett, M. S., Hoey, A. S., Wilson, S. K., Messmer, V. & Graham, N. A. Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Divers. 3, 424–452 (2011).
    Google Scholar 

    30.
    Dunn, D. F. The clownfish sea anemones: Stichodactylidae (Coelenterata: Actiniaria) and other sea anemones symbiotic with pomacentrid fishes. Trans. Am. Philos. Soc. 71, 3–115 (1981).
    Google Scholar 

    31.
    Jones, A., Gardner, S. & Sinclair, W. Losing “Nemo”: Bleaching and collection appear to reduce inshore populations of anemonefishes. J. Fish Biol. 73, 753–761 (2008).
    Google Scholar 

    32.
    Scott, A. & Hoey, A. S. Severe consequences for anemonefishes and their host sea anemones during the 2016 bleaching event at Lizard Island, Great Barrier Reef. Coral Reefs 36, 873–873 (2017).
    ADS  Google Scholar 

    33.
    Hobbs, J. P. A. et al. Taxonomic, spatial and temporal patterns of bleaching in anemones inhabited by anemonefishes. PLoS ONE 8, e70966 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    34.
    Hattori, A. Small and large anemonefishes can coexist using the same patchy resources on a coral reef, before habitat destruction. J. Anim. Ecol. 71, 824–831 (2002).
    Google Scholar 

    35.
    Weis, V. M. Cellular mechanisms of Cnidarian bleaching: Stress causes the collapse of symbiosis. J. Exp. Biol. 211, 3059–3066 (2008).
    CAS  PubMed  Google Scholar 

    36.
    Saenz-Agudelo, P., Jones, G., Thorrold, S. & Planes, S. Detrimental effects of host anemone bleaching on anemonefish populations. Coral Reefs 30, 497–506 (2011).
    ADS  Google Scholar 

    37.
    Lönnstedt, O. M. & Frisch, A. J. Habitat bleaching disrupts threat responses and persistence in anemonefish. Mar. Ecol. Prog. Ser. 517, 265–270 (2014).
    ADS  Google Scholar 

    38.
    Beldade, R., Blandin, A., O’Donnell, R. & Mills, S. C. Cascading effects of thermally-induced anemone bleaching on associated anemonefish hormonal stress response and reproduction. Nat. Commun. 8, 716 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    39.
    Hoegh-Guldberg, O. & Smith, G. J. Influence of the population density of zooxanthellae and supply of ammonium on the biomass and metabolic characteristics of the reef corals Seriatopora hystrix and Stylophora pistillata. Mar. Ecol. Prog. Ser. 2, 173–186 (1989).
    ADS  Google Scholar 

    40.
    Holbrook, S. J. & Schmitt, R. J. Growth, reproduction and survival of a tropical sea anemone (Actiniaria): Benefits of hosting anemonefish. Coral Reefs 24, 67–73 (2005).
    Google Scholar 

    41.
    Porat, D. & Chadwick-Furman, N. Effects of anemonefish on giant sea anemones: Expansion behavior, growth, and survival. Hydrobiologia 530, 513–520 (2004).
    Google Scholar 

    42.
    Cleveland, A., Verde, E. A. & Lee, R. W. Nutritional exchange in a tropical tripartite symbiosis: Direct evidence for the transfer of nutrients from anemonefish to host anemone and zooxanthellae. Mar. Biol. 158, 589–602 (2011).
    Google Scholar 

    43.
    Fautin, D. G. & Allen, G. R. Field Guide to Anemonefishes and Their Host Sea Anemones (Western Australian Museum, Perth, 1992).
    Google Scholar 

    44.
    Hill, R. & Scott, A. The influence of irradiance on the severity of thermal bleaching in sea anemones that host anemonefish. Coral Reefs 31, 273–284 (2012).
    ADS  Google Scholar 

    45.
    Roughgarden, J. Evolution of marine symbiosis—a simple cost-benefit model. Ecology 56, 1201–1208 (1975).
    Google Scholar 

    46.
    Hobbs, J., Neilson, J. & Gilligan, J. Distribution, abundance, habitat association and extinction risk of marine fishes endemic to the Lord Howe Island region (Report to Lord Howe Island Marine Park (James Cook University, Townsville, 2009).
    Google Scholar 

    47.
    Porat, D. & Chadwick-Furman, N. Effects of anemonefish on giant sea anemones: Ammonium uptake, zooxanthella content and tissue regeneration. Mar. Freshw. Behav. Physiol. 38, 43–51 (2005).
    CAS  Google Scholar 

    48.
    Grottoli, A. G., Rodrigues, L. J. & Palardy, J. E. Heterotrophic plasticity and resilience in bleached corals. Nature 440, 1186–1189 (2006).
    ADS  CAS  Google Scholar 

    49.
    Borell, E. M. & Bischof, K. Feeding sustains photosynthetic quantum yield of a scleractinian coral during thermal stress. Oecologia 157, 593 (2008).
    ADS  PubMed  Google Scholar 

    50.
    Borell, E. M., Yuliantri, A. R., Bischof, K. & Richter, C. The effect of heterotrophy on photosynthesis and tissue composition of two scleractinian corals under elevated temperature. J. Exp. Mar. Biol. Ecol. 364, 116–123 (2008).
    Google Scholar 

    51.
    Nakamura, T. & Van Woesik, R. Water-flow rates and passive diffusion partially explain differential survival of corals during the 1998 bleaching event. Mar. Ecol. Prog. Ser. 212, 301–304 (2001).
    ADS  Google Scholar 

    52.
    Gleason, D. F. & Wellington, G. M. Ultraviolet radiation and coral bleaching. Nature 365, 836 (1993).
    ADS  Google Scholar 

    53.
    Zepp, R. G. et al. Spatial and temporal variability of solar ultraviolet exposure of coral assemblages in the Florida Keys: Importance of colored dissolved organic matter. Limnol. Oceanogr. 53, 1909–1922 (2008).
    ADS  CAS  Google Scholar 

    54.
    Minasian, L. L. Jr. The relationship of size and biomass to fission rate in a clone of the sea anemone, Haliplanella luciae (Verrill). J. Exp. Mar. Biol. Ecol. 58, 151–162 (1982).
    Google Scholar 

    55.
    Miyawaki, M. Temperature as a factor influencing upon the fission of the orange-striped sea-anemone, Diadumene luciae. Zool. 11, 77–80 (1952).
    Google Scholar 

    56.
    Atoda, K. Pedal laceration of the sea anemone, Haliplanella luciae. Pub. Seto Mar. Biol. Lab. 20, 299–313 (1973).
    Google Scholar 

    57.
    Minasian, L. L. Jr. & Mariscal, R. N. Characteristics and regulation of fission activity in clonal cultures of the cosmopolitan sea anemone, Haliplanella luciae (Verrill). Biol. Bull. 157, 478–493 (1979).
    PubMed  Google Scholar 

    58.
    Holbrook, S. J., Brooks, A. J., Schmitt, R. J. & Stewart, H. L. Effects of sheltering fish on growth of their host corals. Mar. Biol. 155, 521–530 (2008).
    Google Scholar 

    59.
    Johnson, L. L. & Shick, J. M. Effects of fluctuating temperature and immersion on asexual reproduction in the intertidal sea anemone Hauplanella luciae (Verrill) in laboratory culture. J. Exp. Mar. Biol. Ecol. 28, 141–149 (1977).
    Google Scholar 

    60.
    Hand, C. & Uhlinger, K. R. Asexual reproduction by transverse fission and some anomalies in the sea anemone Nematostella vectensis. Invertebr. Biol. 2, 9–18 (1995).
    Google Scholar 

    61.
    Tsuchida, C. B. & Potts, D. C. The effects of illumination, food and symbionts on growth of the sea anemone Anthopleura elegantissima (Brandt, 1835). II. Clonal growth. J. Exp. Mar. Biol. Ecol. 183, 243–258 (1994).
    Google Scholar 

    62.
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).
    ADS  CAS  PubMed  Google Scholar 

    63.
    Holbrook, S. J., Forrester, G. E. & Schmitt, R. J. Spatial patterns in abundance of a damselfish reflect availability of suitable habitat. Oecologia 122, 109–120 (2000).
    ADS  CAS  PubMed  Google Scholar 

    64.
    Munday, P. L. Interactions between habitat use and patterns of abundance in coral-dwelling fishes of the genus Gobiodon. Environ. Biol. Fish. 58, 355–369 (2000).
    Google Scholar 

    65.
    Pontasch, S. et al. Photochemical efficiency and antioxidant capacity in relation to Symbiodinium genotype and host phenotype in a symbiotic cnidarian. Mar. Ecol. Prog. Ser. 516, 195–208 (2014).
    ADS  CAS  Google Scholar 

    66.
    IPCC. Climate Change 2014–Impacts, Adaptation and Vulnerability: Regional Aspect (Cambridge University Press, Cambridge, 2014).
    Google Scholar 

    67.
    Siebeck, U., Marshall, N., Klüter, A. & Hoegh-Guldberg, O. Monitoring coral bleaching using a colour reference card. Coral Reefs 25, 453–460 (2006).
    ADS  Google Scholar 

    68.
    Marshall, N. J., Kleine, D. A. & Dean, A. J. CoralWatch: Education, monitoring, and sustainability through citizen science. Front Ecol Environ 10, 332–334 (2012).
    Google Scholar 

    69.
    Association, A. P. H. Standard Methods for the Examination of Water and Wastewater (American Public Health Association, Washington, 2005).
    Google Scholar 

    70.
    AOAC. Official Methods of Analysis of AOAC International (Association of Official Analytical Chemists, Rockville, 2000).
    Google Scholar 

    71.
    Jeffrey, S. T. & Humphrey, G. F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und physiologie der pflanzen 167, 191–194 (1974).
    Google Scholar  More

  • in

    A sciaenid swim bladder with long skinny fingers produces sound with an unusual frequency spectrum

    1.
    Froese, R. & Pauley, D. (2020) FishBase. World Wide Web electronic publication. https://www.fishbase.org, version (02/2012).
    2.
    Connaughton, M. A. & Taylor, M. H. Seasonal and daily cycles in sound production associated with spawning in the weakfish, Cynoscion regalis. Environ. Biol. Fish 42, 233–240 (1995).
    Article  Google Scholar 

    3.
    Ueng, J. P., Huang, B. Q. & Mok, H. K. Sexual differences in spawning sounds of the Japanese croaker Argyrosomus japonicus (Sciaenidae). Zool. Stud. 46, 103–110 (2007).
    Google Scholar 

    4.
    Parmentier, E., Tock, J., Falguière, J. C. & Beauchaud, M. Sound production in Sciaenops ocellatus: preliminary study for the development of acoustic cues in aquaculture. Aquaculture 432, 204–211 (2014).
    Article  Google Scholar 

    5.
    Parsons, M. J. G., McCauley, R. D. & Mackie, M. C. Characterisation of mulloway Argyrosomus japonicus advertisement sounds. Acoustics Aust. 41, 196–201 (2013).
    Google Scholar 

    6.
    Bolgan, M. et al. Calling activity and calls’ temporal features inform about fish reproductive condition and spawning in three cultured Sciaenidae species. Aquaculture 524, 1–14 (2020).
    Article  CAS  Google Scholar 

    7.
    Tower, R. W. The production of sound in the drumfishes, the sea-robin and the toadfish. Ann. N. Y. Acad. Sci. 18, 149–180 (1908).
    ADS  Article  Google Scholar 

    8.
    Connaughton, M. A., Taylor, M. H. & Fine, M. L. Effects of fish size and temperature on weakfish disturbance calls: implications for the mechanism of sound generation. J. Exp. Biol. 203, 1503–1512 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    9.
    Ladich, F. & Fine, M. L. Sound-generating mechanisms in fishes: a unique diversity in vertebrates. In Communication in Fishes (eds Ladich, F. et al.) 3–43 (Science Publishers, Enfield, 2006).
    Google Scholar 

    10.
    Chao, L. N. A basis for classifying Western Atlantic Sciaenidae (Teleostei: Perciformes). NOAA Technical Report, Circular 415 (National Oceanic and Atmospheric Administration, Washington, 1978).
    Google Scholar 

    11.
    Ono, R. D. & Poss, S. G. Structure and innervation of the swimbladder musculature in the weakfish, Cynoscionregalis. Can. J. Zool. 60, 1955–1967 (1982).
    Article  Google Scholar 

    12.
    Hill, G. L., Fine, M. L. & Musick, J. A. Ontogeny of the sexually dimorphic sonic muscle in three sciaenid species. Copeia 1987, 708–713 (1987).
    Article  Google Scholar 

    13.
    Sasaki, K. Phylogeny of the family Sciaenidae, with notes on its zoogeography (Teleostei, Perciformes). Mem. Fac. Fish. Hokkaido Univ. 36, 1–137 (1989).
    Google Scholar 

    14.
    Mok, H. K. et al. An intermediate in the evolution of superfast sonic muscles. Front. Zool. 8, 1–8 (2011).
    Article  Google Scholar 

    15.
    Lin, Y. C., Mok, H. K. & Huang, B. Q. Sound characteristics of big-snout croaker, Johnius macrorhynus (Sciaenidae). J. Acoust. Soc. Am er. 121, 586–593 (2007).
    ADS  Article  Google Scholar 

    16.
    Griffiths, M. H. & Hecht, T. Age and growth of South African dusky kob Argyrosomus japonicus (Sciaenidae) based on otoliths. S. Afr. J. Mar. Sci. 16, 119–128 (1995).
    Article  Google Scholar 

    17.
    Lo P. C. Sound characteristics of the large yellow croaker, Larimichthys crocea and phylogeny of the Western Pacific sciaenid genera inferred by molecular evidence. Master’s Thesis. National Sun Yat-sen University, Taiwan (2011).

    18.
    Tellechea, J. S., Martinzez, C., Fine, M. L. & Norbis, W. Sound production in the whitemouth croaker and relationship between fish size and call characteristics. Environ. Biol. Fish. 89, 163–172 (2010).
    Article  Google Scholar 

    19.
    Tellechea, J. S., Norbis, W., Olsson, D. & Fine, M. L. Calls of the black drum (Pogonius chromis: Sciaenidae): Geographical differences in sound production between Northern and Southern Hemisphere populations. J. Exp. Zool. 313A, 1–8 (2010).
    Article  CAS  Google Scholar 

    20.
    Pereira, B. P. et al. Sound production in the Meagre, Argyrosomus regius (Asso, 1801): intraspecific variability associated with size, sex and context. PeerJ 8, e8559 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    Wongratana, T. Boesemania microlepis (Bleeker), a common but misidentified riverine drumfish (Pisces: Sciaenidae) from Thailand and Mekong River. In Proceedings of the 23rd Kasetsart University Conference Fisheries Section, Kasetsart University, Bangkok (Thailand), Vol. 23, 3–20 (1985).

    22.
    Baird, I. G., Phylavanh, B., Vongsenesouk, B. & Xaiyamanivoni, K. The ecology and conservation of the smallscale croaker Boesemania microlepis (Bleeker 1858–59) in the mainstream Mekong River, southern Laos. Nat. Hist. Bull. Siam Soc. 49, 161–176 (2001).
    Google Scholar 

    23.
    Feldberg, E., Porto, J. I. R., Santos, E. B. P. & Vlantim, F. C. S. Cytogenetic studies of two freshwater sciaenids of the genus Plagioscion (Perciformes, Sciaenidae) from the central Amazon. Gen. Mol. Biol. 22, 351–356 (2020).
    Article  Google Scholar 

    24.
    Boeger, W. A. & Kritsky, D. Parasites, fossils and geologic history: Historical biogeography of the South America freshwater croakers, Plagioscion spp. (Teleostei, Sciaenidae). Zool. Scr. 32, 3–11 (2002).
    Article  Google Scholar 

    25.
    Chao, N. L. A synopsis on zoogeography of Sciaenidae. In Indo Pacific Fish Biology. Proceedings of the Second International Conference on Indo-Pacific Fishes (eds Uyeano, T. et al.) (Ichthyological Society of Japan, Tokyo, 1986).
    Google Scholar 

    26.
    Sasaki, K. Comparative anatomy and phylogenetic relationships of the family Sciaenidae (Teleostei, Perciformes) (MS Hokkaido University, Sapporo, 1985).
    Google Scholar 

    27.
    Montie, E. W., Kehrer, C., Yost, J. & Brenkert, K. Long-term monitoring of captive red drum Sciaenops ocellatus reveals that calling incidence and structure correlate with egg deposition. J. Fish Biol. 88, 1776–1795 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Locascio, J. V. & Mann, D. A. Diel periodicity of fish sound production in Charlotte Harbor, Florida. Trans. Am. Fish. Soc. 137, 606–615 (2008).
    Article  Google Scholar 

    29.
    Monczak, A., Berry, A., Kehrer, C. & Montie, E. W. Long-term acoustic monitoring of fish calling provides baseline estimates of reproductive timelines in the May River estuary, southeastern USA. Mar. Ecol. Prog. Ser. 581, 1–19 (2017).
    ADS  Article  Google Scholar 

    30.
    Lagardere, J. P. & Mariani, A. Spawning sounds in meagre Argyrosomus regius recorded in the Gironde estuary, France. J. Fish Biol. 69, 1697–1708 (2006).
    Article  Google Scholar 

    31.
    Skoglund, C. R. Functional analysis of swimbladder muscles engaged in sound productivity of the toadfish. J. Biophys. Biochem. Cytol. 10(Suppl), 187–200 (1961).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Fine, M. L., Malloy, K. L., King, C. B., Mitchell, S. L. & Cameron, T. M. Movement and sound generation by the toadfish swimbladder. J. Comp. Physiol. 187A, 371–379 (2001).
    Article  Google Scholar 

    33.
    Fine, M. L. & Lenhardt, M. L. Shallow-water propagation of the toadfish mating call. Comp. Biochem. Physiol. 76A, 225–231 (1983).
    Article  Google Scholar 

    34.
    Thorson, R. F. & Fine, M. L. Crepuscular changes in emission rate and parameters of the boatwhistle advertisement call of the gulf toadfish, Opsanus beta. Environ. Biol. Fish. 63, 321–331 (2002).
    Article  Google Scholar 

    35.
    Urick, R. J. Principles of Underwater Sound (McGraw-Hill, New York, 1975).
    Google Scholar 

    36.
    Lugli, M. & Fine, M. L. Acoustic communication in two freshwater gobies: ambient noise and short-range propagation in shallow streams. J. Acoust. Soc. Am. 114, 512–521 (2003).
    ADS  CAS  PubMed  Article  Google Scholar 

    37.
    Mann, D. A. Propagation of fish sounds. In Communication in Fishes Vol. 1 (eds Ladich, F. et al.) 107–120 (Science Publishers, Enfield, 2006).
    Google Scholar 

    38.
    Ghahramani, Z. N., Mohajer, Y. J. & Fine, M. L. Developmental variation in sound production in water and air in the blue catfish Ictalurus furcatus. J. Exp. Biol. 217, 4244–4251 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    39.
    Akamatsu, T., Okumura, T., Novarini, N. & Yan, H. Y. Empirical refinements applicable to the recording of fish sounds in small tanks. J. Acoust. Soc. Am. 112, 3073–3082 (2002).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Smith, M. E., Weller, K. K., Kynard, B., Sato, Y. & Godinho, A. L. Mating calls of three prochilodontid fish species from Brazil. Environ. Biol. Fish 101, 327–339 (2018).
    Article  Google Scholar 

    41.
    Minnaert, F. On musical air bubbles and the sounds of running water. Philos. Mag. 16, 235–248 (1933).
    Article  Google Scholar 

    42.
    Weston, D. E. Sound propagation in the presence of bladder fish. In Underwater Acoustics Vol. 2 (ed. Albers, V. M.) 55–88 (Plenum Press, New York, 1967).
    Google Scholar 

    43.
    Batzler, W. E. & Pickwell, G. V. Resonant acoustic scattering from gas-bladder fishes. In Proceedings of an International Symposium on Biological Sound Scattering in the Ocean (ed. Farquhar, G. B.) 168–179 (U.S. Government Printing Office, Washington, 1970).
    Google Scholar 

    44.
    McCartney, B. S. & Stubbs, A. R. Measurement of the target strength of fish in dorsal aspect, including swimbladder resonance. In Proceedings of an International Symposium on Biological Sound Scattering in the Ocean (ed. Farquhar, G. B.) 180–211 (U.S. Government Printing Office, Washington, 1970).
    Google Scholar 

    45.
    Fine, M. L. Seasonal and geographic variation of the mating call of the oyster toadfish Opsanus tau. Oecologia 36, 45–57 (1978).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Fine, M. L., King, T. L., Ali, H., Sidker, N. & Cameron, T. M. Wall structure and material properties cause viscous damping of swimbladder sounds in the oyster toadfish Opsanus tau. Proc. R. Soc. Lond. B 283, 1–9 (2016).
    Google Scholar 

    47.
    Parmentier, E., Lagardère, J. P., Braquegnier, J. B., Vandewalle, P. & Fine, M. L. Sound production mechanism in carapid fish: first example with a slow sonic muscle. J. Exp. Biol. 209, 2952–2960 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    48.
    Parmentier, E., Fine, M. L. & Mok, H. K. Sound production by a recoiling system in the Pempheridae and Terapontidae. J. Morphol. 277, 717–724 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    49.
    Parmentier, E. & Fine, M. L. Fish sound production: insights. In Vertebrate Sound Production and Acoustic Communication (eds Suthers, R. A. & Fitch, T.) 19–49 (Springer, New York, 2016).
    Google Scholar 

    50.
    Ramcharitar, J. U., Deng, X., Ketten, D. & Popper, A. N. Form and function in the unique inner ear of a teleost: the silver perch (Bairdiella chrysoura). J. Comp. Neurol. 475, 531–539 (2004).
    PubMed  Article  PubMed Central  Google Scholar 

    51.
    Robertson, G. N., McGee, C. A. S., Dunbarton, T. C., Croll, R. P. & Smith, F. M. Development of the swimbladder and Its innervation in the zebrafish, Danio rerio. J. Morphol. 268, 967–985 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Birindelli, J. L. O., Sousa, L. M. & Sabaj Perez, M. H. Morphology of the gas bladder in thorny catfishes (Siluriformes: Doradidae). Proc. Acad. Nat. Sci. Philadelphia 158, 261–296 (2009).
    Article  Google Scholar 

    53.
    Borie, A. et al. Disturbance calls of five migratory Characiformes species and advertisement choruses in Amazon spawning sites. J. Fish Biol. 95, 820–832 (2019).
    PubMed  PubMed Central  Google Scholar 

    54.
    King, T. L. The Relationship Between Collagen Fibers and Material Properties of Swim Bladders in Sonic Teleosts. MS Virginia Commonwealth University (2005).

    55.
    Connaughton, M. A., Fine, M. L. & Taylor, M. H. Weakfish sonic muscle: influence of size, temperature and season. J. Exp. Biol. 205, 2183–2188 (2002).
    CAS  PubMed  PubMed Central  Google Scholar 

    56.
    Locascio, J. V. & Mann, D. A. Localization and source level estimates of black drum (Pogonias chromis) calls. J. Acoust. Soc. Am. 130, 1868–1879 (2011).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Bradbury, J. W. & Vehrencamp, S. L. Principles of Animal Communication (Sinauer, Massachusetts, 1998).
    Google Scholar 

    58.
    Ramcharitar, J. U., Higgs, D. M. & Popper, A. N. Audition in sciaenid fishes with different swim bladder-inner ear configurations. J. Acoust. Soc. Am. 119, 439–443 (2006).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Salas, A. K., Wilson, P. S. & Fuiman, L. A. Ontogenetic change in predicted acoustic pressure sensitivity in larval red drum (Sciaenops ocellatus). J. Exp. Biol. 222, 1–12 (2019).
    Article  Google Scholar 

    60.
    Rice, A. N., Soldevilla, M. S. & Quinlan, J. A. Nocturnal patterns in fish chorusing off the coasts of Georgia and eastern Florida. Bull. Mar. Sci. 93, 455–474 (2017).
    Article  Google Scholar 

    61.
    Sprague, M. W. The single sonic muscle twitch model for the sound-production mechanism in the weakfish, Cynoscion regalis. J. Acoust. Soc. Am. 108, 2430–2437 (2000).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    62.
    Picculin, M. et al. Diagnostics of nocturnal calls of Sciaenaumbra (L., fam. Sciaenidae) in a nearshore Mediterranean marine reserve. Bioacoustics 12, 292–294 (2012).
    Google Scholar 

    63.
    Tellechea, J. S. & Norbis, W. Sexual dimorphism in sound production and call characteristics in the striped weakfish Cynoscion guatucupa. Zool. Stud. 51, 946–955 (2012).
    Google Scholar 

    64.
    Rountree, R. A. & Juanes, F. Potential of passive acoustic recording for monitoring invasive species: freshwater drum invasion of the Hudson River via the New York canal system. Biol. Invasions 19, 2075–2088 (2017).
    Article  Google Scholar 

    65.
    Tellechea, J. S., Fine, M. L. & Norbis, W. Passive acoustic monitoring, development of disturbance calls and differentiation of disturbance and advertisement calls in the Argentine croaker Umbrina canosai (Sciaenidae). J. Fish Biol. 90, 1631–1643 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    66.
    Tang, S. K. On Helmholtz resonators with tapered necks. J. Acoust. Soc. Am. 279, 1085–1096 (2005).
    Google Scholar 

    67.
    Pillaia, M. A. & Da, E. Improved acoustic energy harvester using tapered neck Helmholtz resonator and piezoelectric cantilever undergoing concurrent bending and twisting. Procedia Eng. 144, 674–681 (2016).
    Article  Google Scholar 

    68.
    Yoshida, T. et al. (eds) Fishes of Northern Gulf of Thailand (National Museum of Nature and Science, Tuskuba, 2013).
    Google Scholar  More

  • in

    Unravelling the gut bacteriome of Ips (Coleoptera: Curculionidae: Scolytinae): identifying core bacterial assemblage and their ecological relevance

    1.
    Anderegg, W. R., Kane, J. M. & Anderegg, L. D. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Chang. 3, 30–36 (2013).
    ADS  Article  Google Scholar 
    2.
    Huang, J. et al. Tree defence and bark beetles in a drying world: Carbon partitioning, functioning and modelling. New Phytol. 225, 26–36 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    3.
    Kautz, M., Meddens, A. J., Hall, R. J. & Arneth, A. Biotic disturbances in Northern Hemisphere forests—A synthesis of recent data, uncertainties and implications for forest monitoring and modelling. Glob. Ecol. Biogeogr. 26, 533–552 (2017).
    Article  Google Scholar 

    4.
    Netherer, S. et al. Do water-limiting conditions predispose N orway spruce to bark beetle attack?. New Phytol. 205, 1128–1141 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    5.
    Seybold, S. J., Huber, D. P., Lee, J. C., Graves, A. D. & Bohlmann, J. Pine monoterpenes and pine bark beetles: A marriage of convenience for defense and chemical communication. Phytochem. Rev. 5, 143–178 (2006).
    CAS  Article  Google Scholar 

    6.
    Raffa, K. F. & Smalley, E. B. Interaction of pre-attack and induced monoterpene concentrations in host conifer defense against bark beetle-fungal complexes. Oecologia 102, 285–295 (1995).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Reid, M. L. & Purcell, J. Condition-dependent tolerance of monoterpenes in an insect herbivore. Arthropod-Plant Interact. 5, 331–337 (2011).
    Article  Google Scholar 

    8.
    Erbilgin, N., Krokene, P., Christiansen, E., Zeneli, G. & Gershenzon, J. Exogenous application of methyl jasmonate elicits defenses in Norway spruce (Picea abies) and reduces host colonization by the bark beetle Ips typographus. Oecologia 148, 426–436 (2006).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Hayes, J. L. & Strom, B. L. 4-Allylanisole as an inhibitor of bark beetle (Coleoptera: Scolytidae) aggregation. J. Econ. Entomol. 87, 1586–1594 (1994).
    CAS  Article  Google Scholar 

    10.
    Franceschi, V. R., Krokene, P., Christiansen, E. & Krekling, T. Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytol. 167, 353–376 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Zhao, T., Borg-Karlson, A.-K., Erbilgin, N. & Krokene, P. Host resistance elicited by methyl jasmonate reduces emission of aggregation pheromones by the spruce bark beetle, Ips typographus. Oecologia 167, 691–699 (2011).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    12Schmidt, A. et al. In Chemical Ecology and Phytochemistry in Forest Ecosystems (ed Romeo, J. T.) 1–28 (Elsevier, Amsterdam, 2005).

    13.
    Keeling, C. I. & Bohlmann, J. Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol. 170, 657–675 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Despres, L., David, J.-P. & Gallet, C. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 22, 298–307 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    15.
    Raffa, K., Andersson, M. N. & Schlyter, F. In Advances in Insect Physiology, Vol. 50 (ed Blomquist Claus Tittiger, G.J.) 1–74 (Elsevier, Amsterdam, 2016).

    16.
    Adams, A. S. et al. Mountain pine beetles colonizing historical and naive host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism. Appl. Environ. Microbiol. 79, 3468–3475 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Six, D. L. Ecological and evolutionary determinants of bark beetle—fungus symbioses. Insects 3, 339–366 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Raffa, K. F. Terpenes tell different tales at different scales: Glimpses into the chemical ecology of conifer-bark beetle-microbial interactions. J. Chem. Ecol. 40, 1–20 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Douglas, A. E. Multiorganismal insects: Diversity and function of resident microorganisms. Annu. Rev. Entomol. 60, 17–34 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Douglas, A. E. The microbial dimension in insect nutritional ecology. Funct. Ecol. 23, 38–47 (2009).
    Article  Google Scholar 

    21.
    Ceja-Navarro, J. A. et al. Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee. Nat. Commun. 6, 7618 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Welte, C. U. et al. Plasmids from the gut microbiome of cabbage root fly larvae encode SaxA that catalyses the conversion of the plant toxin 2-phenylethyl isothiocyanate. Environ. Microbiol. 18, 1379–1390 (2016).
    CAS  PubMed  Article  Google Scholar 

    23.
    Hammer, T. J. & Bowers, M. D. Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia 179, 1–14 (2015).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Bakkali, F., Averbeck, S., Averbeck, D. & Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 46, 446–475 (2008).
    CAS  Article  Google Scholar 

    25.
    Mithöfer, A. & Boland, W. Plant defense against herbivores: Chemical aspects. Annu. Rev. Plant Biol. 63, 431–450 (2012).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    26.
    Douglas, A. Nutritional interactions in insect-microbial symbioses: Aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol. 43, 17–37 (1998).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Ayres, M. P., Wilkens, R. T., Ruel, J. J., Lombardero, M. J. & Vallery, E. Nitrogen budgets of phloem-feeding bark beetles with and without symbiotic fungi. Ecology 81, 2198–2210 (2000).
    Article  Google Scholar 

    28.
    Adams, A., Currie, C., Cardoza, Y., Klepzig, K. & Raffa, K. Effects of symbiotic bacteria and tree chemistry on the growth and reproduction of bark beetle fungal symbionts. Can. J. For. Res. 39, 1133–1147 (2009).
    CAS  Article  Google Scholar 

    29.
    Cardoza, Y. J., Moser, J. C., Klepzig, K. D. & Raffa, K. F. Multipartite symbioses among fungi, mites, nematodes, and the spruce beetle, Dendroctonus rufipennis. Environ. Entomol. 37, 956–963 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    30.
    Therrien, J. et al. Bacteria influence mountain pine beetle brood development through interactions with symbiotic and antagonistic fungi: Implications for climate-driven host range expansion. Oecologia 179, 467–485 (2015).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Morales-Jiménez, J., Zúñiga, G., Ramírez-Saad, H. C. & Hernández-Rodríguez, C. Gut-associated bacteria throughout the life cycle of the bark beetle Dendroctonus rhizophagus Thomas and Bright (Curculionidae: Scolytinae) and their cellulolytic activities. Microb. Ecol. 64, 268–278 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    32.
    Delalibera, I. Jr., Handelsman, J. & Raffa, K. F. Contrasts in cellulolytic activities of gut microorganisms between the wood borer, Saperda vestita (Coleoptera: Cerambycidae), and the bark beetles, Ips pini and Dendroctonus frontalis (Coleoptera: Curculionidae). Environ. Entomol. 34, 541–547 (2005).
    Article  Google Scholar 

    33.
    Hu, X., Yu, J., Wang, C. & Chen, H. Cellulolytic bacteria associated with the gut of Dendroctonus armandi larvae (Coleoptera: Curculionidae: Scolytinae). Forests 5, 455–465 (2014).
    Article  Google Scholar 

    34.
    Menéndez, E. et al. Pseudomonas coleopterorum sp. nov., a cellulase-producing bacterium isolated from the bark beetle Hylesinus fraxini. Int. J. Syst. Evol. Microbiol. 65, 2852–2858 (2015).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    35.
    Boone, C. K. et al. Bacteria associated with a tree-killing insect reduce concentrations of plant defense compounds. J. Chem. Ecol. 39, 1003–1006 (2013).
    CAS  PubMed  Article  Google Scholar 

    36.
    Xu, L. T., Lu, M. & Sun, J. H. Invasive bark beetle-associated microbes degrade a host defensive monoterpene. Insect Sci. 23, 183–190 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Berasategui, A. et al. Gut microbiota of the pine weevil degrades conifer diterpenes and increases insect fitness. Mol. Ecol. 26, 4099–4110 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Engl, T. & Kaltenpoth, M. Influence of microbial symbionts on insect pheromones. Nat. Prod. Rep. 35, 386–397 (2018).
    CAS  PubMed  Article  Google Scholar 

    39.
    Howe, M., Keefover-Ring, K. & Raffa, K. F. Pine engravers carry bacterial communities whose members reduce concentrations of host monoterpenes with variable degrees of redundancy, specificity, and capability. Environ. Entomol. 47, 638–645 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Xu, L., Lou, Q., Cheng, C., Lu, M. & Sun, J. Gut-associated bacteria of Dendroctonus valens and their involvement in verbenone production. Microb. Ecol. 70, 1012–1023 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    41.
    Skrodenytė-Arbačiauskienė, V., Radžiutė, S., Stunžėnas, V. & Būda, V. Erwiniatypographi sp. nov., isolated from bark beetle (Ips typographus) gut. Int. J. Syst. Evol. Microbiol. 62, 942–948 (2012).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    42.
    Smith, D. J., Park, J., Tiedje, J. M. & Mohn, W. W. A large gene cluster in Burkholderia xenovorans encoding abietane diterpenoid catabolism. J. Bacteriol. 189, 6195–6204 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Martin, V. J. & Mohn, W. W. Genetic investigation of the catabolic pathway for degradation of abietane diterpenoids by Pseudomonas abietaniphila BKME-9. J. Bacteriol. 182, 3784–3793 (2000).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Muratoğlu, H., Sezen, K. & Demirbağ, Z. Determination and pathogenicity of the bacterial flora associated with the spruce bark beetle, Ips typographus (L.) (Coleoptera: Curculionidae: Scolytinae). Turk. J. Biol. 35, 9–20 (2011).
    Google Scholar 

    45.
    Skrodenytė-Arbačiauskienė, V., Būda, V., Radžiutė, S. & Stunžėnas, V. Myrcene-resistant bacteria isolated from the gut of phytophagous insect Ips typographus. Ekologija 4, 1–6 (2006).
    Google Scholar 

    46.
    Sevim, A., Gökçe, C., Erbaş, Z. & Özkan, F. Bacteria from Ips sexdentatus (Coleoptera: Curculionidae) and their biocontrol potential. J. Basic Microbiol. 52, 695–704 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    47.
    Vasanthakumar, A. et al. Composition of the bacterial community in the gut of the pine engraver, Ips pini (Say) (Coloptera) colonizing red pine. Symbiosos 43, 97–104 (2007).
    Google Scholar 

    48.
    48Grégoire, J.-C. & Evans, H. In Bark and Wood Boring Insects in Living Trees in Europe, a Synthesis (eds Lieutier, F., Day, K.R., Battisti, A., Grégoire, J.-C., Evans, H.F.) 19–37 (Springer, Berlin, 2007).

    49.
    Kolk, A., Starzyk, J., Kinelski, S. & Dzwonkowski, R. Atlas of Forest Insect Pests. (MULTICO Publishing House Ltd., 1996).

    50.
    Davydenko, K., Vasaitis, R. & Menkis, A. Fungi associated with Ips acuminatus (Coleoptera: Curculionidae) in Ukraine with a special emphasis on pathogenicity of ophiostomatoid species. Eur. J. Entomol. 114, 77–85 (2017).
    Article  Google Scholar 

    51.
    Fettig, C. J. & Hilszczański, J. In Bark Beetles: Biology and Ecology of Native and Invasive Species (eds Vega, F.E, Hofstetter, R.W.) 555–584 (Springer, Berlin, 2015).

    52.
    Knížek, M., Liška, J. & Modlinger, R. Výskyt lesních škodlivých činitelů v roce 2015 a jejich očekávaný stav v roce 2016. Strnady, VÚLHM, Zpravodaj ochrany lesa (2016).

    53.
    Villari, C. et al. Nutritional and pathogenic fungi associated with the pine engraver beetle trigger comparable defenses in Scots pine. Tree Physiol. 32, 867–879 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    54.
    Wermelinger, B., Rigling, A., Schneider Mathis, D. & Dobbertin, M. Assessing the role of bark-and wood-boring insects in the decline of Scots pine (Pinus sylvestris) in the Swiss Rhone valley. Ecol. Entomol. 33, 239–249 (2008).
    Article  Google Scholar 

    55.
    Pineau, X., Bourguignon, M., Jactel, H., Lieutier, F. & Sallé, A. Pyrrhic victory for bark beetles: Successful standing tree colonization triggers strong intraspecific competition for offspring of Ips sexdentatus. For. Ecol. Manag. 399, 188–196 (2017).
    Article  Google Scholar 

    56.
    Engel, P. & Moran, N. A. The gut microbiota of insects–diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Hernández-García, J. A., Briones-Roblero, C. I., Rivera-Orduña, F. N. & Zúñiga, G. Revealing the gut bacteriome of Dendroctonus bark beetles (Curculionidae: Scolytinae): Diversity, core members and co-evolutionary patterns. Sci. Rep. 7, 1–12 (2017).
    Article  CAS  Google Scholar 

    58.
    Morrison, M. & Miron, J. Adhesion to cellulose by Ruminococcus albus: A combination of cellulosomes and Pil-proteins?. FEMS Microbiol. Lett. 185, 109–115 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Fabryová, A. et al. On the bright side of a forest pest-the metabolic potential of bark beetles’ bacterial associates. Sci. Total Environ. 619, 9–17 (2018).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    60.
    Briones-Roblero, C. I. et al. Structure and dynamics of the gut bacterial microbiota of the bark beetle, Dendroctonus rhizophagus (Curculionidae: Scolytinae) across their life stages. PLoS ONE 12, e0175470 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    61.
    Sudachkova, N., Milyutina, I., Romanova, L. & Semenova, G. The annual dynamics of reserve compounds and hydrolitic enzymes activity in the tissues of Pinus sylvestris L. and Larix sibirica Ledeb.: The metabolism of reserve compounds in the tissues of Siberian conifers. Eurasian J. For. Res. 7, 1–10 (2004).
    Google Scholar 

    62.
    Horne, I., Haritos, V. S. & Oakeshott, J. G. Comparative and functional genomics of lipases in holometabolous insects. Insect Biochem. Mol. Biol. 39, 547–567 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    63.
    Arrese, E. L. & Soulages, J. L. Insect fat body: Energy, metabolism, and regulation. Annu. Rev. Entomol. 55, 207–225 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    64.
    García-Fraile, P. Roles of bacteria in the bark beetle holobiont–how do they shape this forest pest?. Ann. Appl. Biol. 172, 111–125 (2018).
    Article  Google Scholar 

    65.
    Morales-Jiménez, J. et al. Nitrogen-fixing and uricolytic bacteria associated with the gut of Dendroctonus rhizophagus and Dendroctonus valens (Curculionidae: Scolytinae). Microb. Ecol. 66, 200–210 (2013).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    66.
    Morales-Jiménez, J., Zúñiga, G., Villa-Tanaca, L. & Hernández-Rodríguez, C. Bacterial community and nitrogen fixation in the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae). Microb. Ecol. 58, 879–891 (2009).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    67.
    Menna, P. M. & Hungria, M. Phylogeny of nodulation and nitrogen-fixation genes in Bradyrhizobium: Supporting evidence for the theory of monophyletic origin, and spread and maintenance by both horizontal and vertical transfer. Int. J. Syst. Evol. Microbiol. 61, 3052–3067 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    68.
    Chen, W.-M. et al. Legume symbiotic nitrogen fixation byβ-proteobacteria is widespread in nature. J. Bacteriol. 185, 7266–7272 (2003).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Gurevitch, J., Scheiner, S. M. & Fox, G. A. The Ecology of Plants (Sinauer Associates, Sunderland, 2002).
    Google Scholar 

    70.
    Gibson, C. M. & Hunter, M. S. Extraordinarily widespread and fantastically complex: Comparative biology of endosymbiotic bacterial and fungal mutualists of insects. Ecol. Lett. 13, 223–234 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    71.
    Six, D. L. & Bentz, B. J. Fungi associated with the North American spruce beetle, Dendroctonus rufipennis. Can. J. For. Res. 33, 1815–1820 (2003).
    Article  Google Scholar 

    72.
    Naik, P. R. & Sakthivel, N. Functional characterization of a novel hydrocarbonoclastic Pseudomonas sp. strain PUP6 with plant-growth-promoting traits and antifungal potential. Res. Microbiol. 157, 538–546 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    73.
    Park, G.-K., Lim, J.-H., Kim, S.-D. & Shim, S.-H. Elucidation of antifungal metabolites produced by Pseudomonas aurantiaca IB5-10 with broad-spectrum antifungal activity. J. Microbiol. Biotechnol. 22, 326–330 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    74.
    Elsden, S. R., Hilton, M. G. & Waller, J. M. The end products of the metabolism of aromatic amino acids by Clostridia. Arch. Microbiol. 107, 283–288 (1976).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    75.
    Byers, J. & Birgersson, G. Pheromone production in a bark beetle independent of myrcene precursor in host pine species. Naturwissenschaften 77, 385–387 (1990).
    ADS  CAS  Article  Google Scholar 

    76.
    Blomquist, G. J. et al. Pheromone production in bark beetles. Insect Biochem. Mol. Biol. 40, 699–712 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    77.
    Cao, Q. et al. Effect of oxygen on verbenone conversion from cis-verbenol by gut facultative anaerobes of Dendroctonus valens. Front. Microbiol. 9, 464 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    78.
    Wang, Y. & Zhang, Y. Investigation of gut-associated bacteria in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae using culture-dependent and DGGE methods. Ann. Entomol. Soc. Am. 108, 941–949 (2015).
    CAS  Article  Google Scholar 

    79.
    Durand, A.-A. et al. Surveying the endomicrobiome and ectomicrobiome of bark beetles: The case of Dendroctonus simplex. Sci. Rep. 5, 17190 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    80.
    Scott, J. J. et al. Bacterial protection of beetle-fungus mutualism. Science 322, 63–63 (2008).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    81.
    Dale, C. & Maudlin, I. Sodalis gen. nov. and Sodalis glossinidius sp. nov., a microaerophilic secondary endosymbiont of the tsetse fly Glossina morsitans morsitans. Int. J. Syst. Evol. Microbiol. 49, 267–275 (1999).
    CAS  Article  Google Scholar 

    82.
    Santos-Garcia, D., Silva, F. J., Morin, S., Dettner, K. & Kuechler, S. M. The all-rounder Sodalis: A new bacteriome-associated endosymbiont of the lygaeoid bug Henestaris halophilus (Heteroptera: Henestarinae) and a critical examination of its evolution. Genome Biol. Evol. 9, 2893–2910 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    83.
    Lawson, E. T., Mousseau, T. A., Klaper, R., Hunter, M. D. & Werren, J. H. Rickettsia associated with male-killing in a buprestid beetle. Heredity 86, 497–505 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    84.
    Hurst, G. & Jiggins, F. M. Male-killing bacteria in insects: Mechanisms, incidence, and implications. Emerg. Infect. Dis. 6, 329 (2000).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    85.
    Stackebrandt, E. & Schumann, P. In The Prokaryotes: Actinobacteria (eds Rosenberg, E. et al.) 163–184 (Springer, Berlin, 2014).

    86.
    Pfeffer, A. Fauna ČSR. Svazek 6: Kůrovci-Scolytoidea. Řád: Brouci-Coleoptera. (Nakladatelství Československé akadmie věd, 1955).

    87.
    Pfeffer, A. Zentral-und westpaläarktische Borken-und Kernkäfer:(Coloptera: Scolytidae, Platypodidae). (Pro Entomologia, 1995).

    88.
    Nunberg, M. Klucze do rozpoznawania owadów Polski [Keys for the identification of Polish Insects]. Część XIX. Chrząszcze–Coleoptera, Korniki–Scolytidae, Wyrynniki–Platypodidae, PWN, Warszawa-Wroclaw. Zeszyt, 99–100 (1981).

    89.
    Chakraborty, A. et al. Core mycobiome and their ecological relevance in the gut of five ips bark beetles (Coleoptera: Curculionidae: Scolytinae). Front. Microbiol. 11, 2134 (2020).
    Google Scholar 

    90.
    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1–e1 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    91.
    Magoč, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    92.
    Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    93.
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    94.
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    95.
    Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    96.
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    97.
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    98.
    Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    99.
    Chao, A., Lee, S.-M. & Chen, T.-C. A generalized Good’s nonparametric coverage estimator. Chin. J. Math. 16, 189–199 (1988).
    MathSciNet  MATH  Google Scholar 

    100.
    Magurran, A. E. Ecological Diversity and its Measurement (Princeton University Press, Princeton, 1988).
    Google Scholar 

    101.
    Team, R. C. R: A Language and Environment for Statistical Computing (Version 2.15. 3) [Computer software] (R Foundation for Statistical Computing, Vienna, 2013).

    102.
    Oksanen, J. et al. Vegan: community ecology package. R package version 1.17–4. https://CRAN.R-project.org/package=vegan (2010).

    103.
    Lozupone, C. A., Hamady, M., Kelley, S. T. & Knight, R. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl. Environ. Microbiol. 73, 1576–1585 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    104.
    Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).
    Article  Google Scholar 

    105.
    Cai, L. Multi-response permutation procedure as an alternative to the analysis of variance: An SPSS implementation. Behav. Res. Methods 38, 51–59 (2006).
    PubMed  Article  Google Scholar 

    106.
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).
    Google Scholar 

    107.
    Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).
    CAS  PubMed  PubMed Central  Google Scholar 

    108.
    D’Argenio, V., Casaburi, G., Precone, V. & Salvatore, F. Comparative metagenomic analysis of human gut microbiome composition using two different bioinformatic pipelines. Biomed. Res. Int. 325340, 1–10 (2014).
    Article  CAS  Google Scholar 

    109.
    Paulson, J. N., Pop, M. & Bravo, H. C. Metastats: An improved statistical method for analysis of metagenomic data. Genome Biol. 12, P17 (2011).
    PubMed Central  Article  PubMed  Google Scholar 

    110.
    Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    111.
    Douglas, G. M., Beiko, R. G. & Langille, M. G. In Microbiome Analysis: Methods and Protocols. (eds Beiko, R. G., Hsiao, W. & Parkinson, J.) 169–177 (Springer, Berlin, 2018).

    112.
    Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–D114 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Population genetics of the brooding coral Seriatopora hystrix reveals patterns of strong genetic differentiation in the Western Indian Ocean

    Adjeroud M, Guerecheau A, Vidal-Dupiol J, Flot JF, Arnaud-Haond S, Bonhomme F (2014) Genetic diversity, clonality and connectivity in the scleractinian coral Pocillopora damicornis: a multi-scale analysis in an insular, fragmented reef system. Mar Biol 161(3):531–541
    Google Scholar 

    Arrigoni R, Berumen ML, Mariappan KG, Beck PSA, Hulver AM, Montano S et al. (2020) Towards a rigorous species delimitation framework for scleractinian corals based on RAD sequencing: the case study of Leptastrea from the Indo-Pacific. Coral Reefs 39:1001–1025

    Baird AH (2001) The ecology of coral larvae: settlement patterns, habitat selection and the length of the larval phase. Doctoral dissertation, James Cook University, Townsville
    Google Scholar 

    Collins C, Hermes JC, Reason CJC (2014) Mesoscale activity in the Comoros Basin from satellite altimetry and a high-resolution ocean circulation model. J Geophys Res Oceans 119:4745–4760
    Google Scholar 

    Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144(4):2001–2014
    CAS  Google Scholar 

    Costanza R, de Groot R, Sutton P, van der Ploeg S, Anderson SJ, Kubiszewski I et al. (2014) Changes in the global value of ecosystem services. Glob Environ Chang 26:152–158
    Google Scholar 

    Cowen R, Sponaugle S (2009) Larval dispersal and marine population connectivity. Ann Rev Mar Sci 1:443–466
    Google Scholar 

    Crochelet E, Roberts J, Lagabrielle E, Obura DO, Petit M, Chabanet P (2016) A model-based assessment of reef larvae dispersal in the Western Indian Ocean reveals regional connectivity patterns—potential implications for conservation policies. Reg Stud Mar Sci 7:159–167
    Google Scholar 

    Dana JD (1846) United States Exploring Expedition. Vol. VII. Zoophytes. C. Sherman, Philadelphia

    Dellicour S, Flot JF (2015) Delimiting species-poor data sets using single molecular markers: a study of barcode gaps, haplowebs and GMYC. Syst Biol 64(6):900–908
    CAS  Google Scholar 

    Dellicour S, Flot JF (2018) The hitchhiker’s guide to single‐locus species delimitation. Mol Ecol Resour 18(6):1234–1246
    Google Scholar 

    DiBattista JD, Berumen ML, Gaither MR, Rocha LA, Eble JA, Choat JH et al. (2013) After continents divide: comparative phylogeography of reef fishes from the Red Sea and Indian Ocean. J Biogeogr 40(6):1170–1181
    Google Scholar 

    DiBattista JD, Roberts MB, Bouwmeester J, Bowen BW, Coker DJ, Lozano-Cortes DF et al. (2016) A review of contemporary patterns of endemism for shallow water reef fauna in the Red Sea. J Biogeogr 43(3):423–439
    Google Scholar 

    Doyle JJ (1995) The irrelevance of allele tree topologies for species delimitation, and a non-topological alternative. Syst Bot 20(4):574

    Earl D, Vonholdt B (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361
    Google Scholar 

    Erickson KL, Pentico A, Quattrini AMMc, Fadden CS (2020) New approaches to species delimitation and population structure of anthozoans: two case studies of octocorals using ultraconserved elements and exons Mol Ecol Resour https://doi.org/10.1111/1755-0998.13241

    Eriksson H, Wickel J, Jamon A (2012) Coral bleaching and associated mortality in Mayotte, Western Indian Ocean. West Indian Ocean J Mar Sci 11:113–118
    Google Scholar 

    Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620
    CAS  Google Scholar 

    Fisher R, O’Leary RA, Low-Choy S, Mengersen K, Knowlton N, Brainard RE et al. (2015) Species richness on coral reefs and the pursuit of convergent global estimates. Curr Biol 25(4):500–505
    CAS  Google Scholar 

    Flot JF (2007) CHAMPURU 1.0: a computer software for unraveling mixtures of two DNA sequences of unequal lengths. Mol Ecol Notes 7(6):974–977
    CAS  Google Scholar 

    Flot JF (2010) SeqPHASE: a web tool for interconverting phase input/output files and fasta sequence alignments. Mol Ecol Resour 10(1):162–166

    Flot JF (2015) Species delimitation’s coming of age. Syst Biol 64(6):897–899
    Google Scholar 

    Flot JF, Couloux A, Tillier S (2010) Haplowebs as a graphical tool for delimiting species: a revival of Doyle’s “field for recombination” approach and its application to the coral genus Pocillopora in Clipperton. BMC Evol Biol 10:372
    Google Scholar 

    Flot JF, Licuanan WY, Nakano Y, Payri C, Cruaud C, Tillier S (2008) Mitochondrial sequences of Seriatopora corals show little agreement with morphology and reveal the duplication of a tRNA gene near the control region. Coral Reefs 27:789–794
    Google Scholar 

    Flot JF, Tillier A, Samadi S, Tillier S (2006) Phase determination from direct sequencing of length-variable DNA regions. Mol Ecol Notes 6(3):627–630
    CAS  Google Scholar 

    Flot JF, Tillier S (2007) The mitochondrial genome of Pocillopora (Cnidaria: Scleractinia) contains two variable regions: the putative D-loop and a novel ORF of unknown function. Gene 401(1–2):80–87
    CAS  Google Scholar 

    Fontaneto D, Flot JF, Tang CQ (2015) Guidelines for DNA taxonomy, with a focus on the meiofauna. Mar Biodivers 45(3):433–451
    Google Scholar 

    Froukh T, Kochzius M (2008) Species boundaries and evolutionary lineages in the blue green damselfishes Chromis viridis and Chromis atripectoralis (Pomacentridae). J Fish Biol 72(2):451–457
    Google Scholar 

    Gamoyo M, Obura DO, Reason CJC (2019) Estimating connectivity through larval dispersal in the Western Indian Ocean. J Geophys Res. 124(8):2446–2459

    Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86(6):485–486
    Google Scholar 

    Hancke L, Roberts MJ, Ternon JF (2014) Surface drifter trajectories highlight flow pathways in the Mozambique Channel. Deep Sea Res II Top Stud Oceanogr 100:27–37
    Google Scholar 

    Hardy OJ, Charbonnel N, Freville H, Heuertz M (2003) Microsatellite allele sizes: a simple test to assess their significance on genetic differentiation. Genetics 163(4):1467–1482
    CAS  Google Scholar 

    Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2(4):618–620
    Google Scholar 

    Harrison PL (2011) Sexual reproduction of scleractinian corals. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Dordrecht. pp 59–85

    Hoegh-Guldberg O, Poloczanska ES, Skirving W, Dove S (2017) Coral reef ecosystems under climate change and ocean acidification. Front Mar Sci 4:158
    Google Scholar 

    Hui M, Kraemer WE, Seidel C, Nuryanto A, Joshi A, Kochzius M (2016) Comparative genetic population structure of three endangered giant clams (Cardiidae: Tridacna species) throughout the Indo-West Pacific: implications for divergence, connectivity and conservation. J Molluscan Stud 82:403–414
    Google Scholar 

    Huyghe F, Kochzius M (2018) Sea surface currents and geographic isolation shape the genetic population structure of a coral reef fish in the Indian Ocean. PLoS ONE 13(3):e0193825
    Google Scholar 

    Iacchei M, Gaither MR, Bowen BW, Toonen RJ (2016) Testing dispersal limits in the sea: range-wide phylogeography of the pronghorn spiny lobster Panulirus penicillatus. J Biogeogr 43(5):1032–1044
    Google Scholar 

    Isomura N, Nishihira M (2001) Size variation of planulae and its effect on the lifetime of planulae in three pocilloporid corals. Coral Reefs 20:309–315
    Google Scholar 

    Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. J Bioinform 24(11):1403–1405

    Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17(18):4015–4026

    Kochzius M, Blohm D (2005) Genetic population structure of the lionfish Pterois miles (Scorpaenidae, Pteroinae) in the Gulf of Aqaba and northern Red Sea. Gene 347(2):295–301

    Lutjeharms J, Bornman T (2010) The importance of the greater Agulhas Current is increasingly being recognised. S Afr J Sci 106(3/4):1–4
    Google Scholar 

    Maier E, Tollrian R, Rinkevich B, Nurnberger B (2005) Isolation by distance in the scleractinian coral Seriatopora hystrix from the Red Sea. Mar Biol 147(5):1109–1120
    Google Scholar 

    Marshall P, Baird AH (2000) Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. Coral Reefs 19(2):155–163
    Google Scholar 

    McClanahan TR, Ateweberhan M, Graham N, Wilson S, Sebastian C, Guillaume M et al. (2007a) Western Indian Ocean coral communities: bleaching responses and susceptibility to extinction. Mar Ecol Prog Ser 337:1–13

    McClanahan TR, Ateweberhan M, Darling ES, Graham NAJ, Muthiga NA (2014) Biogeography and change among regional coral communities across the Western Indian Ocean. PLoS ONE 9(4):e93385
    Google Scholar 

    McClanahan TR, Ateweberhan M, Muhando CA, Maina J, Mohammed SM (2007b) Effects of climate and seawater temperature variation on coral bleaching and mortality. Ecol Monogr 77(4):503–525
    Google Scholar 

    McClanahan TR, Maina JM, Muthiga NA (2011) Associations between climate stress and coral reef diversity in the western Indian Ocean. Glob Change Biol 17(6):2023–2032
    Google Scholar 

    McClanahan TR, Muthiga NA, Mangi S (2001) Coral and algal changes after the 1998 coral bleaching: interaction with reef management and herbivores on Kenyan reefs. Coral Reefs 19(4):380–391
    Google Scholar 

    McLeod E, Anthony KRN, Mumby PJ, Maynard J, Beeden R, Graham NAJ et al. (2019) The future of resilience-based management in coral reef ecosystems. J Environ Manag 233:291–301
    Google Scholar 

    Motta H, Pereira MAM, Gonçalves M, Ridgway T, Schleyer MH (2002) Mozambique coral reef management programme. MICOA/CORDIO/ORI/WWF, Maputo, p 31

    Nakajima Y, Nishikawa A, Iguchi A, Nagata T, Uyeno D, Sakai K et al. (2017) Elucidating the multiple genetic lineages and population genetic structure of the brooding coral Seriatopora (Scleractinia: Pocilloporidae) in the Ryukyu Archipelago. Coral Reefs 36(2):415–426
    Google Scholar 

    Nakajima Y, Nishikawa A, Iguchi A, Sakai K (2010) Gene flow and genetic diversity of a broadcast-spawning coral in northern peripheral populations. PLoS ONE 5:e11149
    Google Scholar 

    Nehemia A, Ngendu Y, Kochzius M (2019) Genetic population structure of the mangrove snails Littoraria subvittata and L. pallescens in the Western Indian Ocean. J Exp Mar Biol Ecol 514-515:27–33
    Google Scholar 

    Obura DO (2012) The diversity and biogeography of Western Indian Ocean reef-building corals. PLoS ONE 7(9):e45013
    CAS  Google Scholar 

    Obura DO, Bandeira SO, Bodin N, Burgener V, Braulik G, Chassot E, et al. (2019) The Northern Mozambique Channel. In: Sheppard W (ed.) World seas: an environmental evaluation. Academic Press, Cambridge. pp 75–99

    Obura DO, Bigot L, Benzoni F (2018) Coral responses to a repeat bleaching event in Mayotte in 2010. PeerJ 6:e5305
    Google Scholar 

    Obura DO, Gudka M, Rabi FA, Gian SB, Bijoux J, Freed S et al. (2017) Coral reef status report for the Western Indian Ocean. Global Coral Reef Monitoring Network (GCRMN)/International Coral Reef Initiative (ICRI). pp 1–144

    Palumbi S (2003) Population genetics, demographic connectivity, and the design of marine reserves. Ecol Appl 13:146–158
    Google Scholar 

    Peakall R, Smouse P (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28(19):2537–2539
    CAS  Google Scholar 

    Peery MZ, Kirby R, Reid BN, Stoelting R, Doucet-Bëer E, Robinson S, Vásquez-Carillo C, Pauli JN, Palsbøll PJ (2012) Reliability of genetic bottleneck tests for detecting recent population declines. Mol Ecol 21:3403–3418
    Google Scholar 

    Pinzón JH, Sampayo E, Cox E, Chauka LJ, Chen CA, Voolstra CR et al. (2013) Blind to morphology: genetics identifies several widespread ecologically common species and few endemics among Indo-Pacific cauliflower corals (Pocillopora, Scleractinia). J Biogeogr 40(8):1595–1608
    Google Scholar 

    Prasetia R, Sinniger F, Hashizume K, Harii S (2017) Reproductive biology of the deep brooding coral Seriatopora hystrix: implications for shallow reef recovery. PLoS ONE 12(5):e0177034
    Google Scholar 

    Pritchard J, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959
    CAS  Google Scholar 

    Ramanantsoa JD, Penven P, Krug M, Gula J, Rouault M (2018) Uncovering a new current: The Southwest Madagascar Coastal Current. Geophys Res Lett 45(4):1930–1938
    Google Scholar 

    Ratsimbazafy HA, Kochzius M (2018) Restricted gene flow among Western Indian Ocean populations of the mangrove whelk Terebralia palustris (Linnaeus, 1767) (Caenogastropoda: Potamididae). J Molluscan Stud 84:163–169
    Google Scholar 

    Richards ZT, Berry O, van Oppen MJH (2016) Cryptic genetic divergence within threatened species of Acropora coral from the Indian and Pacific Oceans. Conserv Genet 17:577–591
    Google Scholar 

    Ridgway T, Riginos C, Davis J, Hoegh-Guldberg O (2008) Genetic connectivity patterns of Pocillopora verrucosa in southern African Marine Protected Areas. Mar Ecol Prog Ser 354:161–168
    Google Scholar 

    Roberts CM, Shepherd ARD, Ormond RFG (1992) Large-scale variation in assemblage structure of Red-Sea butterflyfishes and angelfishes. J Biogeogr 19(3):239–250
    Google Scholar 

    Rumisha C, Huyghe F, Rapanoel D, Mascaux N, Kochzius M (2017) Genetic diversity and connectivity in the East African giant mud crab Scylla serrata: Implications for fisheries management. PLoS ONE 12(10):e0186817
    Google Scholar 

    Schleyer MH, Celliers L (2000) A survey of the coral reefs at Ilha Caldeira in the Segundas Archipelago, Mozambique, and an assessment of the marine environment impacts of a proposed heavy minerals mine. South African Association for Marine Biological Research, vol 190, Durban, 1–18

    Schleyer MH, Celliers L (2005) The coral reefs of Bazaruto Island, Mozambique, with recommendations for their management. West Indian Ocean J Mar Sci 4:227–236
    Google Scholar 

    Schmidt-Roach S, Miller KJ, Lundgren P, Andreakis N (2014) With eyes wide open: a revision of species within and closely related to the Pocillopora damicornis species complex (Scleractinia; Pocilloporidae) using morphology and genetics. Zool J Linn Soc 170(1):1–33
    Google Scholar 

    Schott F, McCreary J (2001) The monsoon circulation of the Indian Ocean. Prog Oceanogr 51(1):1–123
    Google Scholar 

    Shearer TL, Coffroth MA (2008) Barcoding corals: limited by interspecific divergence, not intraspecific variation. Mol Ecol Resour 8(2):247–255
    CAS  Google Scholar 

    Sheets EA, Warner PA, Palumbi SR (2018) Accurate population genetic measurements require cryptic species identification in corals. Coral Reefs 37(2):549–563
    Google Scholar 

    Siddall M, Rohling EJ, Almogi-Labin A, Hemleben C, Meischner D, Schmelzer I et al. (2003) Sea-level fluctuations during the last glacial cycle. Nature 423(6942):853–858
    CAS  Google Scholar 

    Sofianos SS, Johns WE (2003) An Oceanic General Circulation Model (OGCM) investigation of the Red Sea circulation: 2. Three-dimensional circulation in the Red Sea. J Geophys Res Oceans 108(C3):15
    Google Scholar 

    Souter P, Grahn M (2008) Spatial genetic patterns in lagoonal, reef-slope and island populations of the coral Platygyra daedalea in Kenya and Tanzania. Coral Reefs 27(2):433–439
    Google Scholar 

    Souter P, Henriksson O, Olsson N, Grahn M (2009) Patterns of genetic structuring in the coral Pocillopora damicornis on reefs in East Africa. BMC Ecol 9(19):13
    Google Scholar 

    Spalding MD, Fox HE, Halpern BS, McManus MA, Molnar J, Allen GR et al. (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57(7):573–583
    Google Scholar 

    Spöri Y, Flot JF (2020) HaplowebMaker and CoMa: two web tools to delimit species using haplowebs and conspecificity matrices. Methods Ecol Evol. https://doi.org/10.1111/2041-210X.13454

    Stephens M, Scheet P (2005) Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet 76(3):449–462
    CAS  Google Scholar 

    Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68(4):978–989
    CAS  Google Scholar 

    Underwood JN, Smith LD, van Oppen MJH, Gilmour JP (2007) Multiple scales of genetic connectivity in a brooding coral on isolated reefs following catastrophic bleaching. Mol Ecol 16(4):771–784
    CAS  Google Scholar 

    Underwood JN, Smith LD, van Oppen MJH, Gilmour JP (2009) Ecologically relevant dispersal of corals on isolated reefs: implications for managing resilience. Ecol Appl 19(1):18–29
    Google Scholar 

    van der Ven RM, Triest L, De Ryck DJR, Mwaura JM, Mohammed MS, Kochzius M (2016) Population genetic structure of the stony coral Acropora tenuis shows high but variable connectivity in East Africa. J Biogeogr 43(3):510–519
    Google Scholar 

    van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4(3):535–538
    Google Scholar 

    van Oppen MJH, Bongaerts P, Underwood JN, Peplow LM, Cooper TF (2011) The role of deep reefs in shallow reef recovery: an assessment of vertical connectivity in a brooding coral from west and east Australia. Mol Ecol 20(8):1647–1660
    Google Scholar 

    van Oppen MJH, Gates RD (2006) Conservation genetics and the resilience of reef-building corals. Mol Ecol 15:3863–3883
    Google Scholar 

    van Oppen MJH, Lutz A, De’ath G, Peplow L, Kininmonth S (2008) Genetic traces of recent long-distance dispersal in a predominantly self-recruiting coral. PLoS ONE 3(10):e3401
    Google Scholar 

    Veron JEN (2000) Corals of the world. Australian Institute of Marine science, Townsville

    Vogler C, Benzie J, Lessios H, Barber PH, Wörheide G (2008) A threat to coral reefs multiplied? Four species of crown-of-thorns starfish. Biol Lett 4(6):696–699
    Google Scholar 

    Vollmer SV, Palumbi SR (2002) Hybridization and the evolution of reef coral diversity. Science 296:2023–2025
    CAS  Google Scholar 

    Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10(1):249–256
    CAS  Google Scholar 

    Warner PA, van Oppen MJH, Willis BL (2015) Unexpected cryptic species diversity in the widespread coral Seriatopora hystrix masks spatial-genetic patterns of connectivity. Mol Ecol 24(12):2993–3008
    Google Scholar 

    Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population-structure. Evolution 38(6):1358–1370

    Wilkinson C (2002) Status of coral reefs of the world. Coral Reef Monitoring Network, Townsville
    Google Scholar 

    Wörheide G, Epp LS, Macis L (2008) Deep genetic divergences among Indo-Pacific populations of the coral reef sponge Leucetta chagosensis (Leucettidae): founder effects, vicariance, or both? BMC Evol Biol 8:24 More

  • in

    Long-term survey of sea turtles (Caretta caretta) reveals correlations between parasite infection, feeding ecology, reproductive success and population dynamics

    1.
    Brooks, D. R. & Hoberg, E. P. How will global climate change affect parasite-host assemblages?. Trends Parasitol. 23, 571–574 (2007).
    PubMed  Article  PubMed Central  Google Scholar 
    2.
    Brunner, F. S. & Eizaguirre, C. Can environmental change affect host/parasite-mediated speciation?. Zoology 119, 384–394 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    3.
    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    4.
    Lachish, S., Knowles, S. C. L., Alves, R., Wood, M. J. & Sheldon, B. C. Infection dynamics of endemic malaria in a wild bird population: parasite species-dependent drivers of spatial and temporal variation in transmission rates. J. Anim. Ecol. 80, 1207–1216 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    5.
    Lachish, S., Knowles, S. C. L., Alves, R., Wood, M. J. & Sheldon, B. C. Fitness effects of endemic malaria infections in a wild bird population: the importance of ecological structure. J. Anim. Ecol. 80, 1196–1206 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    6.
    Coltman, D. W., Pilkington, J. G., Smith, J. A. & Pemberton, J. M. Parasite-mediated selection against inbred Soay sheep in a free-living, island population. Evolution 53, 1259–1267 (1999).
    Google Scholar 

    7.
    Harvell, C. D. et al. Climate warming and disease risks for terrestrial and marine biota. Science 296, 2158–2162 (2002).
    ADS  CAS  Article  Google Scholar 

    8.
    Goedknegt, M. A., Welsh, J. E., Drent, J. & Thieltges, D. W. Climate change and parasite transmission: how temperature affects parasite infectivity via predation on infective stages. Ecosphere 6, 1–9 (2015).
    Article  Google Scholar 

    9.
    Watson, M. J. What drives population-level effects of parasites? Meta-analysis meets life-history. Int. J. Parasitol. Parasites Wildl. 2, 190–196 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    10.
    De Castro, F. & Bolker, B. Mechanisms of disease-induced extinction. Ecol. Lett. 8, 117–126 (2005).
    Article  Google Scholar 

    11.
    Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459–1463 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    McCallum, H. & Dobson, A. Detecting disease and parasite threats to endangered species and ecosystems. Trends Ecol. Evol. 10, 190–194 (1995).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Godwin, S. C., Dill, L. M., Reynolds, J. D. & Krkošek, M. Sea lice, sockeye salmon, and foraging competition: Lousy fish are lousy competitors. Can. J. Fish. Aquat. Sci. 72, 1113–1120 (2015).
    Article  Google Scholar 

    14.
    Werner, E. E. & Anholt, B. R. Ecological consequences of the trade-off between growth and mortality rates mediated by foraging activity. Am. Nat. 142, 242–272 (1993).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Simpson, S. J., Sibly, K. P. L., Behmer, S. T. & Raubenheimer, D. Optimal foraging when regulating intake of multiple nutrients. Anim. Behav. 68, 1299–1311 (2004).
    Article  Google Scholar 

    16.
    Povey, S., Cotter, S. C., Simpson, S. J., Lee, K. P. & Wilson, K. Can the protein costs of bacterial resistance be offset by altered feeding behaviour?. J. Anim. Ecol. 78, 437–446 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    17.
    Brunner, F. S., Anaya-Rojas, J. M., Matthews, B. & Eizaguirre, C. Experimental evidence that parasites drive eco-evolutionary feedbacks. Proc. Natl. Acad. Sci. 114, 3678–3683 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Milinski, M. Parasites determine a predator’s optimal feeding strategy. Behav. Ecol. Sociobiol. 15, 35–37 (1984).
    Article  Google Scholar 

    19.
    Herbst, L. H. Fibropapillomatosis of marine turtles. Annu. Rev. Fish Dis. 4, 389–425 (1994).
    Article  Google Scholar 

    20.
    Aguirre, A. & Lutz, P. L. Marine turtles as sentinels of ecosystem health: is fibropapillomatosis an indicator?. EcoHealth 1, 275–283 (2004).
    Google Scholar 

    21.
    Médoc, V., Piscart, C., Maazouzi, C., Simon, L. & Beisel, J. N. Parasite-induced changes in the diet of a freshwater amphipod: field and laboratory evidence. Parasitology 138, 537–546 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    22.
    Britton, J. R. & Andreou, D. Parasitism as a driver of trophic niche specialisation. Trends Parasitol. 32, 437–445 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    23.
    Rabinovich, J. E. et al. Ecological patterns of blood-feeding by kissing-bugs (Hemiptera: Reduviidae: Triatominae). Mem. Inst. Oswaldo Cruz 106, 479–494 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    24.
    Post, D. M. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703–718 (2002).
    Article  Google Scholar 

    25.
    Lochmiller, R. L. & Deerenberg, C. Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos 18, 87–98 (2000).
    Article  Google Scholar 

    26.
    Durso, A. M. & French, S. S. Stable isotope tracers reveal a trade-off between reproduction and immunity in a reptile with competing needs. Funct. Ecol. 32, 648–656 (2018).
    Article  Google Scholar 

    27.
    Richner, H., Oppliger, A. & Christe, P. Effect of an ectoparasite on reproduction in great tits. J. Anim. Ecol. 62, 703–710 (1993).
    Article  Google Scholar 

    28.
    Eizaguirre, C., Yeates, S. E., Lenz, T. L., Kalbe, M. & Milinski, M. MHC-based mate choice combines good genes and maintenance of MHC polymorphism. Mol. Ecol. 18, 3316–3329 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Schwanz, L. E. Persistent effects of maternal parasitic infection on offspring fitness: implications for adaptive reproductive strategies when parasitized. Funct. Ecol. 22, 691–698 (2008).
    Article  Google Scholar 

    30.
    Kalbe, M. et al. Lifetime reproductive success is maximized with optimal major histocompatibility complex diversity. Proc. R. Soc. B Biol. Sci. 276, 925–934 (2009).
    Article  Google Scholar 

    31.
    Duffield, K. R., Bowers, E. K., Sakaluk, S. K. & Sadd, B. M. A dynamic threshold model for terminal investment. Behav. Ecol. Sociobiol. 71, 185 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    32.
    Hurd, H. Host fecundity reduction: a strategy for damage limitation?. Trends Parasitol. 17, 363–368 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Uller, T., Isaksson, C. & Olsson, M. Immune challenge reduces reproductive output and growth in a lizard. Funct. Ecol. 20, 873–879 (2006).
    Article  Google Scholar 

    34.
    Velando, A., Drummond, H. & Torres, R. Senescent birds redouble reproductive effort when ill: confirmation of the terminal investment hypothesis. Proc. R. Soc. B Biol. Sci. 273, 1443–1448 (2006).
    Article  Google Scholar 

    35.
    Kaufmann, J., Lenz, T. L., Milinski, M. & Eizaguirre, C. Experimental parasite infection reveals costs and benefits of paternal effects. Ecol. Lett. 17, 1409–1417 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    36.
    Pigeault, R., Garnier, R., Rivero, A. & Gandon, S. Evolution of transgenerational immunity in invertebrates. Proc. R. Soc. B Biol. Sci. 283, 20161136 (2016).
    Article  CAS  Google Scholar 

    37.
    Roth, O., Beemelmanns, A., Barribeau, S. M. & Sadd, B. M. Recent advances in vertebrate and invertebrate transgenerational immunity in the light of ecology and evolution. Heredity (Edinb). 121, 225–238 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    38.
    Mcgowin, A. E. et al. Genetic barcoding of marine leeches (Ozobranchus spp.) from Florida sea turtles and their divergence in host specificity. Mol. Ecol. Resour. 11, 271–278 (2011).
    CAS  PubMed  Article  Google Scholar 

    39.
    Davies, R. W. & Chapman, C. G. First record from North America of the Piscicolid Leech, Ozobranchus margoi, a parasite of Marine Turtles. J. Fish. Res. Board Canada 31, 104–106 (1974).
    Article  Google Scholar 

    40.
    Bunkley-Williams, L. et al. New leeches and diseases for the hawksbill sea turtle and the West Indies. Comp. Parasitol. 75, 263–270 (2008).
    Article  Google Scholar 

    41.
    Greenblatt, R. J. et al. Genomic variation of the fibropapilloma-associated marine turtle herpesvirus across seven geographic areas and three host species. J. Virol. 79, 1125–1132 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Jones, K., Ariel, E., Burgess, G. & Read, M. A review of fibropapillomatosis in green turtles (Chelonia mydas). Vet. J. 212, 48–57 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Marco, A., Abella, E., Martins, S., López, O. & Medina, M. Abundance and exploitation of loggerhead turtles nesting in Boa Vista island, Cape Verde: the only substantial rookery in the eastern Atlantic. Anim. Conserv. 15, 351–360 (2012).
    Article  Google Scholar 

    44.
    Stiebens, V. A. et al. Living on the edge: how philopatry maintains adaptive potential. Proc. R. Soc. 280, 1–9 (2013).
    Google Scholar 

    45.
    Baltazar-Soares, M. et al. Distribution of genetic diversity reveals colonization and philopatry of the loggerhead sea turtles across geographic scales. Sci. Rep. https://doi.org/10.1038/s41598-020-74141-6 (2020).
    Article  Google Scholar 

    46.
    Light, J. E. & Siddall, M. E. Phylogeny of the Leech family glossiphoniidae based on mitochondrial gene sequences and morphological data. J. Parasitol. 85, 815–823 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499 (1988).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Cameron, S. J. K. et al. Diversity of feeding strategies in loggerhead sea turtles from the Cape Verde archipelago. Mar. Biol. 166, 130 (2019).
    Article  Google Scholar 

    49.
    Scott, R., Biastoch, A., Roder, C., Stiebens, V. A. & Eizaguirre, C. Nano-tags for neonates and ocean-mediated swimming behaviours linked to rapid dispersal of hatchling sea turtles. Proc. R. Soc. 281, 20141209 (2014).
    Google Scholar 

    50.
    Maulany, R. I., Booth, D. T. & Baxter, G. S. The effect of incubation temperature on hatchling quality in the olive ridley turtle, Lepidochelys olivacea, from Alas Purwo National Park, East Java, Indonesia: Implications for hatchery management. Mar. Biol. 159, 2651–2661 (2012).
    Article  Google Scholar 

    51.
    Hays, G. C. & Speakman, J. R. Clutch size for Mediterranean loggerhead turtles (Caretta caretta). J. Zool. 226, 321–327 (1992).
    Article  Google Scholar 

    52.
    Rodenbusch, C. R., Marks, F. S., Canal, C. W. & Reck, J. Marine leech Ozobranchus margoi parasitizing loggerhead turtle (Caretta caretta) in Rio Grande do Sul Brazil. Rev. Bras. Parasitol. Vet. 21, 301–303 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    53.
    Eder, E. et al. Foraging dichotomy in loggerhead sea turtles Caretta caretta off northwestern Africa. Mar. Ecol. Prog. Ser. 470, 113–122 (2012).
    ADS  Article  Google Scholar 

    54.
    Decaestecker, E. et al. Host-parasite ‘Red Queen’ dynamics archived in pond sediment. Nature 450, 870–873 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Van Velan, L. A new evolutionary law. Evol. Theory 1, 1–30 (1973).
    Google Scholar 

    56.
    Altizer, S. et al. Seasonality and the dynamics of infectious diseases. Ecol. Lett. 9, 467–484 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    57.
    Greenblatt, R. J. et al. The Ozobranchus leech is a candidate mechanical vector for the fibropapilloma-associated turtle herpesvirus found latently infecting skin tumors on Hawaiian green turtles (Chelonia mydas). Virology 321, 101–110 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Bertrand, M., Marcogliese, D. J. & Magnan, P. Trophic polymorphism in brook charr revealed by diet, parasites and morphometrics. J. Fish Biol. 72, 555–572 (2008).
    Article  Google Scholar 

    59.
    Venesky, M. D., Parris, M. J. & Storfer, A. Impacts of Batrachochytrium dendrobatidis infection on tadpole foraging performance. EcoHealth 6, 565–575 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    60.
    Naug, D. Infected honeybee foragers incur a higher loss in efficiency than in the rate of energetic gain. Biol. Lett. 10, 1–4 (2014).
    Article  Google Scholar 

    61.
    Frick, M. G., Williams, K. L., Bolten, A. B., Bjorndal, K. A. & Martins, H. R. Foraging ecology of oceanic-stage loggerhead turtles Caretta caretta. Endanger. Species Res. 9, 91–97 (2009).
    Article  Google Scholar 

    62.
    Hawkes, L. A. et al. Phenotypically linked dichotomy in sea turtle foraging requires multiple conservation approaches. Curr. Biol. 16, 990–995 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    63.
    Zuk, M. & Stoehr, A. M. Immune defense and host life history. Am. Nat. 160, S9–S22 (2002).
    PubMed  Article  PubMed Central  Google Scholar 

    64.
    Bonneaud, C. et al. Assessing the cost of mounting an immune response. Am. Nat. 161, 367–379 (2003).
    PubMed  Article  PubMed Central  Google Scholar 

    65.
    Omeyer, L. C. M., Godley, B. J. & Broderick, A. C. Growth rates of adult sea turtles. Endanger. Species Res. 34, 357–371 (2017).
    Article  Google Scholar 

    66.
    Agnew, P., Koella, J. C. & Michalakis, Y. Host life history responses to parasitism. Microbes Infect. 2, 891–896 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    Sorci, G., Massot, M. & Clobert, J. Maternal parasite load increases sprint speed and philopatry in female offspring of the common lizard. Am. Nat. 144, 153–164 (1994).
    Article  Google Scholar 

    68.
    Booth, D. T., Feeney, R. & Shibata, Y. Nest and maternal origin can influence morphology and locomotor performance of hatchling green turtles (Chelonia mydas) incubated in field nests. Mar. Biol. 160, 127–137 (2013).
    Article  Google Scholar  More