More stories

  • in

    The impact of rising sea temperatures on an Arctic top predator, the narwhal

    1.
    Alexander, M. A. et al. Projected sea surface temperatures over the 21st century: changes in the mean, variability and extremes for large marine ecosystem regions of Northern Oceans. Elem. Sci. Anth. 6, 9 (2018).
    Article  Google Scholar 
    2.
    National Snow & Ice Data Center. State of the cryosphere: is the cryosphere sending signals about climate change? https://nsidc.org/cryosphere/sotc/sea_ice.html (2020). Accessed 24 Apr 2020.

    3.
    Michel, C. et al. Biodiversity of Arctic marine ecosystems and responses to climate change. Biodiversity 13, 200–214 (2012).
    Article  Google Scholar 

    4.
    Hauser, D. D. W., Laidre, K. L. & Stern, H. L. Vulnerability of Arctic marine mammals to vessel traffic in the increasingly ice-free Northwest Passage and Northern Sea Route. Proc. Natl. Acad. Sci. 115, 7617–7622 (2018).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    5.
    Albouy, C. et al. Global vulnerability of marine mammals to global warming. Sci. Rep. 10, 1–12 (2020).
    Article  CAS  Google Scholar 

    6.
    Dietz, R., Heide-Jørgensen, M. P., Glahder, C. & Born, E. Occurrence of narwhals (Monodon monoceros) and white whales (Delphinapterus leucas) in East Greenland. Meddr. Grønl. Biosci. 39, 69–86 (1994).
    Google Scholar 

    7.
    Dietz, R., Heide-Jørgensen, M. P., Richard, P. R. & Acquarone, M. Summer and Fall Movements of Narwhals (Monodon monoceros) from Northeastern Baffin Island Towards Northern Davis Strait. Arctic 54, 244–261 (2001).
    Article  Google Scholar 

    8.
    Richard, P., Weaver, P., Dueck, L. & Barber, D. Distribution and numbers of Canadian High Arctic narwhals (Monodon monoceros) in August 1984. Meddr. Grønl. Biosci. 39, 41–50 (1994).
    Google Scholar 

    9.
    Dietz, R. & Heide-Jørgensen, M. P. Movements and swimming speed of narwhals, Monodon monoceros, equipped with satellite transmitters in Melville Bay, northwest Greenland. Can. J. Zool. 73, 2106–2119 (1995).
    Article  Google Scholar 

    10.
    Belikov, S. E. & Boltunov, A. N. Distribution and migrations of cetaceans in the Russian Arctic according to observations from aerial ice reconnaissance. NAMMCO Sci. Publ. 4, 69–86 (2002).
    Article  Google Scholar 

    11.
    Vacquié-Garcia, J. et al. Late summer distribution and abundance of ice-associated whales in the Norwegian High Arctic. Endanger. Species Res. 32, 59–70 (2017).
    Article  Google Scholar 

    12.
    Heide-Jørgensen, M., Richard, P. R., Dietz, R. & Laidre, K. L. A metapopulation model for Canadian and West Greenland narwhals. Anim. Conserv. 16, 331–343 (2013).
    Article  Google Scholar 

    13.
    Hobbs, R. C. et al. Global review of the conservation status of Monodontid stocks. Mar. Fish. Rev. 81, 1–41 (2020).
    Article  Google Scholar 

    14.
    Kovacs, K. M. & Lydersen, C. Climate change impacts on seals and whales in the North Atlantic Arctic and adjacent shelf seas. Sci. Prog. 91, 117–150 (2008).
    PubMed  Article  Google Scholar 

    15.
    Laidre, K. L. et al. Quantifying the sensitivity of Arctic marine mammals to climate-induced habitat change. Ecol. Appl. 18, S97–S125 (2008).
    PubMed  Article  Google Scholar 

    16.
    Heide-Jørgensen, M. et al. Abundance of narwhals (Monodon monoceros) on the hunting grounds in Greenland. J. Mammal. 91, 1135–1151 (2010).
    Article  Google Scholar 

    17.
    Doniol-Valcroze, T. et al. Abundance Estimates of Narwhal Stocks in the Canadian High Arctic in 2013 (NAMMCO Sci. Publ. 11, in press).

    18.
    Münchow, A., Falkner, K. K. & Melling, H. Baffin Island and West Greenland Current Systems in northern Baffin Bay. Prog. Oceanogr. 132, 305–317 (2015).
    ADS  Article  Google Scholar 

    19.
    Sutherland, D. A. & Pickart, R. S. The East Greenland coastal current: structure, variability, and forcing. Prog. Oceanogr. 78, 58–77 (2008).
    ADS  Article  Google Scholar 

    20.
    Håvik, L. et al. Structure and variability of the Shelfbreak East Greenland current North of Denmark Strait. J. Phys. Oceanogr. 47, 2631–2646 (2017).
    ADS  Article  Google Scholar 

    21.
    Heide-Jørgensen, M. P. et al. Some like it cold: temperature-dependent habitat selection by narwhals. Ecol. Evol. 10, 8073–8090 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    22.
    Heide-Jørgensen, M. P. et al. The migratory behaviour of narwhals (Monodon monoceros). Can. J. Zool. 81, 1298–1305 (2003).
    Article  Google Scholar 

    23.
    Dietz, R. et al. Movements of narwhals (Monodon monoceros) from Admiralty Inlet monitored by satellite telemetry. Polar Biol. 31, 1295–1306 (2008).
    Article  Google Scholar 

    24.
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2018). Accessed 24 Apr 2019.

    25.
    Albertsen, C. M., Whoriskey, K., Yurkowski, D., Nielsen, A. & Flemming, J. M. Fast fitting of non-Gaussian state-space models to animal movement data via template model builder. Ecology 96, 2598–2604 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    26.
    Albertsen, C. M. argosTrack: Fit Movement Models to Argos Data for Marine Animals. R package version 1.2.2. https://doi.org/10.5281/zenodo.1420418, https://github.com/calbertsen/argosTrack/tree/v1.2.2 (2018). Accessed 20 Aug 2019.

    27.
    Bryant, E. 2D Location Accuracy Statistics for Fastloc® Cores Running Firmware Versions 2.2 & 2.3. (2007).

    28.
    Tomkiewicz, S. M., Fuller, M. R., Kie, J. G. & Bates, K. K. Global positioning system and associated technologies in animal behaviour and ecological research. Philos. Trans. R. Soc. B Biol. Sci. 365, 2163–2176 (2010).
    Article  Google Scholar 

    29.
    Pohlert, T. Trend: non-parametric trend tests and change-point detection. R package version, 1(0). https://cran.r-project.org/web/packages/trend/trend.pdf (2018). Accessed 10 Aug 2019.

    30.
    Heide-Jørgensen, M., Richard, P., Dietz, R. & Laidre, K. A metapopulation model for Canadian and West Greenland narwhals. Anim. Conserv. 16, 331–343 (2012).
    Article  Google Scholar 

    31.
    Komsta, L. & Komsta, M. L. Package ‘mblm’. https://cran.pau.edu.tr/web/packages/mblm/mblm.pdf (2013). Accessed 10 Aug 2019.

    32.
    Chambault, P. et al. Sea surface temperature predicts the movements of an Arctic cetacean: the bowhead whale. Sci. Rep. 8, 9658 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    33.
    Heide-Jørgensen, L. M. P. & Nielsen, T. G. Role of the bowhead whale as a predator in West Greenland. Mar. Ecol. Prog. Ser. 346, 285–297 (2008).
    Google Scholar 

    34.
    Laidre, K. L. & Heide-Jørgensen, M. P. Winter feeding intensity of narwhals (Monodon monoceros). Mar. Mammal. Sci. 21, 45–57 (2005).
    Article  Google Scholar 

    35.
    Forster, C. Spatial Patterns, Environmental Correlates, and Potential Seasonal Migration Triangle of Arctic cod (Boreogadus saida) Distribution in the Chukchi and Beaufort seas (2019).

    36.
    Laurel, B. J., Copeman, L. A., Spencer, M. & Iseri, P. Temperature-dependent growth as a function of size and age in juvenile Arctic cod (Boreogadus saida). ICES J. Mar. Sci. 74, 1614–1621 (2017).
    Article  Google Scholar 

    37.
    Laidre, K. L. et al. Seasonal narwhal habitat associations in the high Arctic. Mar. Biol. 145, 821–831 (2004).
    Google Scholar 

    38.
    Schmidt-Nielsen, K. Animal Physiology: Adaptation and Environment (Cambridge University Press, Cambridge, 1997).
    Google Scholar 

    39.
    Castellini, M. Thermoregulation. in Encyclopedia of Marine Mammals (eds Perrin, W. F. et al.) 1166–1171 (Academic Press, Cambridge, 2009).
    Google Scholar 

    40.
    Kanwisher, J. W. & Ridgway, S. H. The physiological ecology of Whales and Porpoises. Sci. Am. 248, 110–121 (1983).
    Article  Google Scholar 

    41.
    Williams, T. M., Noren, S. R. & Glenn, M. Extreme physiological adaptations as predictors of climate-change sensitivity in the narwhal Monodon monoceros. Mar. Mammal Sci. 27, 334–349 (2010).
    Article  Google Scholar 

    42.
    McLaughlin, F. A., Carmack, E. C., Ingram, R. G., Williams, W. & Michel, C. Oceanography of the Northwest Passage. in The Sea 26 (ed. Banville, J.) 1211–1242 (President and Fellows of Harvard College, Boston, 2004).
    Google Scholar 

    43.
    Kern, S., Kaleschke, L. & Spreen, G. Climatology of the Nordic (Irminger, Greenland, Barents, Kara and White/Pechora) Seas ice cover based on 85 GHz satellite microwave radiometry: 1992–2008. Tellus Dyn. Meteorol. Oceanogr. 62, 411–434 (2010).
    Article  Google Scholar 

    44.
    Hansen, R. G., Borchers, D. L. & Heide-Jørgensen, M. P. Abundance of narwhals summering in East Greenland and narwhals wintering in the North Water and Northeast Water polynyas. J. Mammal. 91, 1135–1151 (2019).
    Google Scholar 

    45.
    Riewe, R. Inuit land in the high Canadian Arctic. in Report Inuit land use and occupancy project 173–184 (1976).

    46.
    Riewe, R. The utilisation of wildlife in the Jones Sound region by Grise Fjord Inuit. in Truelove Lowland, Devon Island, Canada: A high Arctic Ecosystem 623–644 (1977).

    47.
    Riewe, R. Nunavut atlas. Canadian Circumpolar Institute and Tungavik Federation of Nunavut (1992).

    48.
    Watt, C. A., Doniol-Valcroze, T., Witting, L., Hobbs, R. C., Hansen, R. G., Lee, D. S., … & Heide-Jorgensen, M. P. (2019). Hunt allocation modeling for migrating animals: The case of Baffin Bay narwhal, Monodon monoceros. Mar. Fish. Rev, 81(3–4), 125–136.

    49.
    Witting, L., Doniol-Valcroze, T., Hobbs, R. C., Ditlevsen, S. & Heide-Jørgensen, M. Meta-population modelling of narwhals, Monodon monoceros, in East Canada and West Greenland. Mar. Fish. Rev. 81, 116–138 (2019) (in press).
    Google Scholar 

    50.
    NAMMCO. Report of the Ad hoc Working Group on Narwhal in East Greenland. https://nammco.no/wp-content/uploads/2018/05/report-global-review-of-monodontids-nammco-2018_after-erratum-060518_with-appendices_2.pdf (2019). Accessed 10 Aug 2019.

    51.
    Kvadsheim, P. H. & Folkow, L. P. Blubber and flipper heat transfer in harp seals. Acta Physiol. Scand. 161, 385–395 (1997).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    52.
    Kvadsheim, P. H., Gotaas, A. R. L., Folkow, L. P. & Blix, A. S. An Experimental validation of heat loss models for marine mammals. J. Theor. Biol. 184, 15–23 (1997).
    Article  Google Scholar 

    53.
    Scholander, P. Evolution of climatic adaptation in homeotherms. Evolution 9, 15–26 (1955).
    Article  Google Scholar 

    54.
    Noren, D. P., Williams, T. M., Berry, P. & Butler, E. Thermoregulation during swimming and diving in bottlenose dolphins Tursiops truncatus. J. Comp. Physiol. B 169, 93–99 (1999).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    55.
    Innes, S. et al. Surveys of belugas and narwhals in the Canadian High Arctic in 1996. NAMMCO Sci. Publ. 4, 169–190 (2002).
    Article  Google Scholar 

    56.
    Richard, P. et al. Baffin Bay Narwhal population distribution and numbers: aerial surveys in the Canadian high Arctic, 2002–04. Arctic 63, 85–99 (2010).
    Article  Google Scholar 

    57.
    Asselin, N. C. & Richard, P. Results of narwhal (Monodon monoceros) aerial surveys in Admiralty Inlet (2011).

    58.
    Hansen, R. et al. Abundance of narwhals in Melville Bay in 2012 and 2014. (2015).

    59.
    Hansen, R. & Heide-Jørgensen, M. P. Re-calculations of abundance of narwhals to three management units in East Greenland (2019). More

  • in

    Analysis of molecular diversity within single cyanobacterial colonies from environmental samples

    Genotypic heterogeneity in single Rivularia-like colonies
    Rivularia-like colonies have a global distribution, occurring in marine or freshwater habitats, where they are usually attached to a rocky substrate; however, many studies have reported that Rivularia spp. are associated with unpolluted environments14. In addition, the relationships between some morphological or physiological features and the environment make these species excellent environmental indicators of changes in running water quality, mainly related to eutrophication processes14,30. Therefore, they have been included in biomonitoring programs21,31,32. On the other hand, because Rivularia colonies sometimes persist for very long periods, avoiding grazing, the toxicity of these colonies is being investigated33. It is undoubted that in all of these approaches, where genera and species must be strictly identified from environmental samples, accurate cyanobacterial characterization is essential.
    Traditional identification of cyanobacteria involves assigning a colony to a morphospecies, and conventionally, a bacterial colony is defined as a visible mass of clonal microorganisms, all of which originated from a single cell. However, the results from the present study show that the majority of the analyzed colonies consist of different clones growing together. Among the 28 Rivularia-like colonies, the phylotype corresponding to Rivularia sp. was present in 19 colonies, with abundances ranging from 59.4 to 99.8% depending on the studied colony. Nevertheless, it should also be noted that in most of the colonies, this phylotype dominated, whereby in 14 colonies, it presented an abundance of ≥ 90% (and within 7 of these colonies, the abundance was close to 99%). However, in three colonies, the abundance ranged from 72 to 85%, and in two of them, the abundance decreased to approximately 60%. The other highly abundant phylotypes found in these colonies, which reached abundances up to approximately 21%, corresponded to Calothrix sp. and Oculatella sp., the latter a genus morphologically similar to Leptolyngbya but separated from it because of genetic differences34. These results indicated great variability in the abundance of the phylotype corresponding to Rivularia depending on the analyzed colony, as well as variation in the other phylotypes and their abundances found in these colonies.
    One of the surprising findings was that among the twenty-eight analyzed Rivularia-like colonies, seven corresponded to the new, recently described genus Cyanomargarita, which as the authors described, is virtually indistinguishable from Rivularia in field samples15. In these colonies, genotypic heterogeneity was also found, in which the abundance of the phylotype corresponding to Cyanomargarita varied from 57,28% in a colony with clear lamination resembling R. haematites (see Fig. 3b) to 99.2% in a soft colony resembling R. biasolettiana. Interestingly, in these colonies, Phormidium sp. was the dominant nonheterocystous cyanobacterium instead of Oculatella from Rivularia colonies, but the phylotype corresponding to Calothrix was also found.
    Furthermore, phylotypes corresponding to Cyanomargarita and Rivularia were never found together in the same colony, although both types of colonies coexisted in the same rivers (e.g., Gordale Beck and Endrinales). Allelopathic effects could explain these results, as previously suggested for other cyanobacteria35. In fact, García-Espín et al.33 showed that extracts obtained from Rivularia colonies affected the photosynthetic activity of several diatoms and a red alga. Further experiments with extracts from both colonies would confirm this possible effect.
    Another very surprising finding was that two Rivularia-like colonies did not present any phylotypes corresponding to Rivularia or Cyanomargarita (or contained them at an abundance ≤ 0.7%). In one of these colonies (colony BAT4), five different phylotypes were found at similar abundances (approximately 15–20%), of which three corresponded to different Calothix spp. and the others corresponded to other Nostocaceae and Leptolyngbyaceae. In the other colony (BAT13), the dominant phylotype corresponded to the new genus Macrochaete16. This genus has been described only from cultures, so to the best of our knowledge, this is the first report in which a natural population is morphologically and genetically characterized. Nevertheless, it is noteworthy that the morphological characteristics of filaments and trichomes in this environmental sample were different from those reported in the description of this new genus, in which the phenotypic features resembled those of Calothrix. However, these features corresponded only to isolated strains, which are known to exhibit morphological variability and differences from natural populations7,12,13.
    R. biasolettiana vs R. haematites
    However, what was very interesting and deserves to be highlighted is that when we tried to differentiate the two typical Rivularia colonies found in calcareous streams, R. biasolettiana and R. haematites, we did not find genetic differences, at least at the studied level, the 16S rRNA gene.
    16S rRNA is the most widely used marker gene36,37, which fits the criteria of ubiquity, regions of strong conservation, and regions of hypervariability38,39. This gene is supported by reference databases containing over a million full-length 16S rRNA sequences, therefore spanning a broad phylogenetic spectrum40. The 16S rRNA gene has served as the general framework and as the benchmark for the taxonomy of prokaryotes41. Advances in high-throughput sequencing technologies have enabled almost comprehensive descriptions of bacterial diversity through 16S rRNA gene amplicons, which have been used in surveys of microbial communities to characterize the composition of microorganisms present in environments worldwide42,43,44,45. Although some issues have been raised, such as identification of metabolic or other functional capabilities of microorganisms when studies focus only on this gene, recent studies have shown that the phylogenetic information contained in 16S marker gene sequences is sufficiently well correlated with genomic content to yield accurate predictions when related reference genomes are available46,47,48,49. Therefore, the 16S rRNA gene continues to be the mainstay of sequence-based bacterial analysis, vastly expanding our understanding of the microbial world50.
    In particular, in cyanobacteria, as in other prokaryotes, the 16S rDNA gene is currently the most commonly used marker for molecular and phylogenetic studies51,52. The information obtained from 16S rDNA gene phylogenetic reconstructions, together with morphological, ultrastructural, and ecological data, led Komárek et al.53 to propose the current accepted classification of cyanobacteria. There have also been specific studies by this group concerning the problems associated with single-gene phylogenies, in which robust phylogenomic trees of cyanobacteria derived from multiple conserved proteins have also shown congruence between the multilocus and 16S rRNA gene phylogenies, which once again demonstrates the considerable strength of the 16S rRNA gene for phylogenetic inference and evaluation of prokaryote diversity54,55,56,57.
    In this study, in contrast to the genetic identity found in R. biasolettiana and R. haematites colonies, showing a dominance of OTU1, the remainder of the studied representatives of Rivulariaceae showed a wide range of variation in the 16S rDNA sequences and with OTU1. Sequence identity between OTU1 and the remaining OTUs belonging to this family was as low as approximately 90%, ranging from 90.73 to 93.41%, and when it was compared with other Rivulariaceae from the databases, in the different clusters of the phylogenetic tree, this value ranged from 87.12 to 93.90%. A large difference between the sequences of this gene was also found in other studies on Rivulariaceae15,16,17,29,58. In fact, several new genera are emerging on the basis of these differences15,16,17. Comparisons of phylogenies using other markers, such as the phycocyanin operon and the intervening intergenic spacer (cpcBA-IGS) with the 16S rRNA gene in previous studies in Rivulariaceae, have shown largely consistent results, with a high level of divergence between the components of this family11.
    In addition, the results of the present study showed correlations between morphological characteristics and the analyzed genes in all the cyanobacterial colonies/tufts, except for those of R. biasolettiana and R. haematites. In these two cyanobacteria, only distinct macroscopic phenotypic features were observed due to zonation and different degrees of calcification since no significant differences were found in the size measurements or other microscopic characteristics.
    Therefore, although the remainder of the genome has not been studied in these populations, the genetic identity of the studied marker, phenotypic features, together with environmental preferences point out that R. biasolettiana and R. haematites are ecotypes of the same species, as previously suggested59.
    R. biasolettiana and R. haematites have very similar morphotypes, and traditional taxonomical classification and studies have distinguished them primarily by their degrees of calcification. R. biasolettiana-type colonies are described as more gelatinous and less calcified, and the crystals are disseminated; however, R. haematites colonies are very hard and exhibit extensive calcification in concentric zones, which leads to clear lamination24,25,60,61. Because of its heavy mineralization, R. haematites is a model for stromatolite-binding organisms25,26.
    Microscopic observations from this study showed that some colonies presented typical R. haematites morphology with concentric bands of intense calcification (see Fig. 2a,b), and others were soft and less calcified, such as R. biasolettiana, although all of them presented the same dominant phylotype. Many others with this dominant phylotype have also shown ambiguous morphology with no clear lamination, although some dark/light zones could be observed (see, e.g., Fig. 4b,d, f). Even in Cyanomargarita colonies, whose genotype was clearly separated from that of Rivularia, concentric zones and extensive calcification could be observed (see, e.g., Fig. 3b,d). These results suggested that these phenotypic features are not diagnostic characteristics for further identification.
    In a two-year study, Obenlüneschloss and Schneider61 found that not all analyzed R. haematites colonies showed distinct concentric calcification layers. In the stromatolites of both types of Rivularia, the same lamination was observed, and the differences in calcification appeared later60. Pentecost and Franke26 compared populations of R. biasolettiana and R. haematites and argued that although both could be distinguished by their form of calcification and their trichome diameter, some populations of R. biasolettiana were more intensely calcified than others, suggesting that a continuity of forms may exist, even within the same stream, and therefore, a continuum of colony forms probably occurs between these taxa.
    Differences in the calcification pattern have been attributed to seasonality and cyanobacterial activity, in particular to photosynthesis24,26,62. The calcification in R. haematites occurred in concentric bands, which varied in thickness and the density of crystals. Since characteristic zonation is formed by filaments of different successive generations, the thickness will vary depending on the growth rate, while crystal density will depend on the rate of calcification. Calcification is the result of photosynthesis (with a maximum of 14%) and evaporation during the warmer seasons, while it is entirely abiogenic during winter as a result of CO2 evasion63. Therefore, dense calcified bands similar to those formed in winter have been described that are caused by a reduction in trichome growth and EPS production, allowing the development of abiotic surface precipitate, and less calcified layers are formed during spring and summer, when calcification is associated with photosynthesis in zones of growth with cell division24,26. Thus, differences in climatic conditions and/or biological activity seem to lead to differences in the degrees of zonation and calcification.
    The growth of Rivularia colonies is seasonal and strongly correlated with water temperature24,26. The colony growth rates were 12–14 µm/day in summer and 2 µm/day in winter24. The occurrence of R. biasolettiana was more closely related to high temperatures than that of R. haematites21. Moreover, colonies of R. haematites were generally collected under temperatures below 15 °C in mountain running waters64, and R. haematites stromatolites have been described as preferentially developed in wet periods, particularly in autumn and winter60. Our own field observations during the sampling for this and previous studies were that the gelatinous and weakly calcified R. biasolettiana type was more abundant in warmer locations, and in contrast, R. haematites was dominant in cold locations (data not shown).
    One possible explanation for the results found in this study could be related to these differences in the degree of zonation and calcification in relation to climate, which could include microclimatic conditions. In warmer sites or climatic conditions, when growth is rapid, the number of filaments will increase, moving towards the surface in a weakly dense and unaligned arrangement, on which calcite crystals spread, providing a lighter and less calcified structure. Thus, increased growth of Rivularia colonies can lead to the R. biasolettiana type. Under colder conditions, such as in winter, or microclimatic conditions, when growth slows down for other reasons, such as low light, filaments become more densely packed, allowing the development of extensive precipitates and leading to a dark band. When these conditions change, e.g., in the spring and summer, increases in temperatures and/or light will result in increasing and faster growth, leading to a less calcified new layer, and successive seasonal and/or microenvironmental changes will result in the typical lamination of R. haematites. Therefore, warmer places with high temperatures and/or light will allow the occurrence of the R. biasolettiana type, while in colder sites and/or sites with alternating environmental conditions, the R. haematites type will develop. Shaded colonies and colonies that lie in the supratidal spraywater zone often contain small, irregular and more densely packed crystals61.
    Cyanobacteria are known to modify EPS production, pigments, and morphology under environmental stimuli6. The production of EPS also varies depending on the cyanobacteria, whereby Rivularia has shown a well-developed exopolymer layer65, which is of great importance for this epilithic cyanobacteria, as it acts as an adhesive that allows cells to stick to the stones in the running waters, and it holds the filaments together, minimizing cell damage during intermittent drying exposure to the air and evaporation in the warmer seasons66. The C/N ratio is an important parameter for the variation in EPS production since high amounts of fixed C compared to N levels drive EPS synthesis to store excess C67,68. Therefore, Rivularia colonies that are exposed, in spring and summer, to high light intensities and temperatures will increase their photosynthetic rates and therefore the amount of EPS, as shown by the R. biasolettiana morphotype. In addition, most of the analyzed populations were dark in color, probably in relation to the accumulation of the yellow–brown scytonemin pigment in the sheaths or EPS, as previously observed in shallow and clear oligotrophic ecosystems, where water clarity allows UV radiation to penetrate well, protecting the cells from the damaging effects of this radiation69,70.
    In conclusion, environmental factors can lead to differences in macroscopic phenotypic features, such as those found in the Rivularia colonies studied here. However, further sampling under different climatic conditions and/or microenvironmental conditions or of Rivularia cultures grown under distinct temperature and/or illumination conditions, as well as analysis of other genes, are needed to confirm this hypothesis. More

  • in

    Male Antarctic fur seals: neglected food competitors of bioindicator species in the context of an increasing Antarctic krill fishery

    1.
    Zhou, S. et al. Ecosystem-based fisheries management requires a change to the selective fishing philosophy. Proc. Natl. Acad. Sci. U.S.A. 107, 9485–9489 (2010).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Fulton, E. A., Smith, A. D. M., Smith, D. C. & Johnson, P. An integrated approach is needed for ecosystem based fisheries management: insights from ecosystem-level management strategy evaluation. PLoS ONE 9, e84242 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    3.
    Murphy, E. J. et al. Understanding the structure and functioning of polar pelagic ecosystems to predict the impacts of change. Proc. R. Soc. B Biol. Sci. 283, 20161646 (2016).
    Article  Google Scholar 

    4.
    Schofield, O. et al. Changes in the upper ocean mixed layer and phytoplankton productivity along the West Antarctic Peninsula. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376, 20170173 (2018).
    ADS  Article  CAS  Google Scholar 

    5.
    Nicol, S., Foster, J. & Kawaguchi, S. The fishery for Antarctic krill-recent developments. Fish Fish. 13, 30–40 (2012).
    Article  Google Scholar 

    6.
    Trathan, P. N. et al. Managing fishery development in sensitive ecosystems: identifying penguin habitat use to direct management in Antarctica. Ecosphere 9, e02392 (2018).
    Article  Google Scholar 

    7.
    Warwick-Evans, V. et al. Using habitat models for chinstrap penguins Pygoscelis antarctica to advise krill fisheries management during the penguin breeding season. Divers. Distrib. 24, 1756–1771 (2018).
    Article  Google Scholar 

    8.
    Santa Cruz, F., Ernst, B., Arata, J. A. & Parada, C. Spatial and temporal dynamics of the Antarctic krill fishery in fishing hotspots in the Bransfield Strait and South Shetland Islands. Fish. Res. 208, 157–166 (2018).
    Article  Google Scholar 

    9.
    Sylvester, Z. T. & Brooks, C. M. Protecting Antarctica through Co-production of actionable science: lessons from the CCAMLR marine protected area process. Mar. Policy 111, 103720 (2020).
    Article  Google Scholar 

    10.
    Agnew, D. J. Review: the CCAMLR ecosystem monitoring programme. Antarct. Sci. 9, 235–242 (1997).
    ADS  Article  Google Scholar 

    11.
    Boyd, I. L., McCafferty, D. J., Reid, K., Taylor, R. & Walker, T. R. Dispersal of male and female antarctic fur seals (Arctocephalus gazella). Can. J. Fish. Aquat. Sci. 55, 845–852 (1998).
    Article  Google Scholar 

    12.
    Vergani, D. F. & Coria, N. R. Increase in numbers of male fur seals Arctocephalus gazella during the summer autumn period at Mossman Peninsula (Laurie Island). Polar Biol. 9, 487–488 (1989).
    Article  Google Scholar 

    13.
    Plagányi, É. E. & Butterworth, D. S. The Scotia Sea krill fishery and its possible impacts on dependent predators: modeling localized depletion of prey. Ecol. Appl. 22, 748–761 (2012).
    PubMed  Article  Google Scholar 

    14.
    Watters, G. M., Hill, S. L., Hinke, J. T., Matthews, J. & Reid, K. Decision-making for ecosystem-based management: evaluating options for a krill fishery with an ecosystem dynamics model. Ecol. Appl. 23, 710–725 (2013).
    CAS  PubMed  Article  Google Scholar 

    15.
    Trivelpiece, W. Z. et al. Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. Proc. Natl. Acad. Sci. U.S.A. 108, 7625–7628 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Watters, G. M., Hinke, J. T. & Reiss, C. S. Long-term observations from Antarctica demonstrate that mismatched scales of fisheries management and predator–prey interaction lead to erroneous conclusions about precaution. Sci. Rep. 10, 1–9 (2020).
    Article  CAS  Google Scholar 

    17.
    Hill, S. L., Reid, K., Thorpe, S. E., Hinke, J. & Watters, G. M. A compilation of parameters for ecosystem dynamics models of the Scotia Sea—Antarctic Peninsula region. CCAMLR Sci. 14, 1–25 (2007).
    Google Scholar 

    18.
    Lowther, A. D., Trathan, P., Tarroux, A., Lydersen, C. & Kovacs, K. M. The relationship between coastal weather and foraging behaviour of chinstrap penguins Pygoscelis antarctica. ICES J. Mar. Sci. 75, 1940–1948 (2018).
    Article  Google Scholar 

    19.
    Boehme, L. et al. Technical note: animal-borne CTD-satellite relay data loggers for real-time oceanographic data collection. Ocean Sci. 5, 685–695 (2009).
    ADS  Article  Google Scholar 

    20.
    Lowther, A. D., Lydersen, C., Fedak, M. A., Lovell, P. & Kovacs, K. M. The Argos-CLS Kalman filter: error structures and state-space modelling relative to Fastloc GPS data. PLoS ONE 10, e0124754 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    21.
    Johnson, D. S., London, J. M., Lea, M. A. & Durban, J. W. Continuous-time correlated random walk model for animal telemetry data. Ecology 89, 1208–1215 (2008).
    PubMed  Article  Google Scholar 

    22.
    Benhamou, S. Dynamic approach to space and habitat use based on biased random bridges. PLoS ONE 6, e14592 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Schlitzer, R. Ocean Data View. https://odv.awi.de (2018).

    24.
    Hill, S. L., Trathan, P. N. & Agnew, D. J. The risk to fishery performance associated with spatially resolved management of Antarctic krill (Euphausia superba) harvesting. ICES J. Mar. Sci. 66, 2148–2154 (2009).
    Article  Google Scholar 

    25.
    Trivelpiece, W. Z., Trivelpiece, S. G. & Volkman, N. J. Ecological segregation of Adelie, gentoo, and chinstrap penguins at King George Island Antarctica. Ecology 68, 351–361 (1987).
    Article  Google Scholar 

    26.
    Black, C. E. A comprehensive review of the phenology of Pygoscelis penguins. Polar Biol. 39, 405–432 (2016).
    Article  Google Scholar 

    27.
    Payne, M. R. Growth in the Antarctic fur seal Arctocephalus gazella. J. Zool. 187, 1–20 (1979).
    Article  Google Scholar 

    28.
    Reiss, C. S. et al. Overwinter habitat selection by Antarctic krill under varying sea-ice conditions: implications for top predators and fishery management. Mar. Ecol. Prog. Ser. 568, 1–16 (2017).
    ADS  CAS  Article  Google Scholar 

    29.
    Carlini, A. R., Daneri, G. A., Casaux, R. & Márquez, M. E. I. Haul-out pattern of itinerant male Antarctic fur seals (Arctocephalus gazella) at Laurie Island South Orkney Islands. Polar Res. 25, 139–144 (2006).
    Article  Google Scholar 

    30.
    Waluda, C. M., Gregory, S. & Dunn, M. J. Long-term variability in the abundance of Antarctic fur seals Arctocephalus gazella at Signy Island South Orkneys. Polar Biol. 33, 305–312 (2010).
    Article  Google Scholar 

    31.
    Casaux, R., Juares, M., Carlini, A. & Corbalán, A. The diet of the Antarctic fur seal Arctocephalus gazella at the South Orkney Islands in ten consecutive years. Polar Biol. 39, 1197–1206 (2016).
    Article  Google Scholar 

    32.
    Reid, K. & Arnould, J. P. Y. Y. The diet of Antarctic fur seals Arctocephalus gazella during the breeding season at South Georgia. Polar Biol. 16, 105–114 (1996).
    Article  Google Scholar 

    33.
    Boyd, I. L. Estimating food consumption of marine predators: Antarctic fur seals and macaroni penguins. J. Appl. Ecol. 39, 103–119 (2002).
    Article  Google Scholar 

    34.
    CCAMLR. Krill Fishery Report. Commission for the Conservation of Antarctic Marine Living Resources. https://www.ccamlr.org/en/system/files/00%20KRI48%202016%20v1_1.pdf (2016).

    35.
    Dias, M. P. et al. Identification of marine important bird and biodiversity areas for penguins around the South Shetland Islands and South Orkney Islands. Ecol. Evol. 8, 10520–10529 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    36.
    Lynch, H. J., Naveen, R. & Casanovas, P. Antarctic site inventory breeding bird survey data, 1994–2013. Ecology 94, 2653–2653 (2013).
    Article  Google Scholar 

    37.
    Humphries, G. R. W. et al. Mapping application for penguin populations and projected dynamics (MAPPPD): data and tools for dynamic management and decision support. Polar Rec. (Gr. Brit) 53, 160–166 (2017).
    Article  Google Scholar 

    38.
    Lea, M. A. et al. Colony-based foraging segregation by Antarctic fur seals at the Kerguelen Archipelago. Mar. Ecol. Prog. Ser. 358, 273–287 (2008).
    ADS  Article  Google Scholar 

    39.
    Staniland, I. J., Reid, K. & Boyd, I. L. Comparing individual and spatial influences on foraging behaviour in Antarctic fur seals Arctocephalus gazella. Mar. Ecol. Prog. Ser. 275, 263–274 (2004).
    ADS  Article  Google Scholar 

    40.
    Bonadonna, F., Lea, M. A. & Guinet, C. Foraging routes of Antarctic fur seals (Arctocephalus gazella) investigated by the concurrent use of satellite tracking and time-depth recorders. Polar Biol. 23, 149–159 (2000).
    Article  Google Scholar 

    41.
    Richerson, K., Santora, J. A. & Mangel, M. Climate variability and multi-scale assessment of the krill preyscape near the north Antarctic Peninsula. Polar Biol. 40, 697–711 (2017).
    Article  Google Scholar 

    42.
    Cleary, A. C., Durbin, E. G., Casas, M. C. & Zhou, M. Winter distribution and size structure of Antarctic krill Euphausia superba populations in-shore along the West Antarctic Peninsula. Mar. Ecol. Prog. Ser. 552, 115–129 (2016).
    ADS  Article  Google Scholar 

    43.
    Lynch, H. J., Naveen, R., Trathan, P. N. & Fagan, W. F. Spatially integrated assessment reveals widespread changes in penguin populations on the Antarctic Peninsula. Ecology 93, 1367–1377 (2012).
    PubMed  Article  Google Scholar 

    44.
    Kokubun, N., Takahashi, A., Mori, Y., Watanabe, S. & Shin, H. C. Comparison of diving behavior and foraging habitat use between chinstrap and gentoo penguins breeding in the South Shetland Islands Antarctica. Mar. Biol. 157, 811–825 (2010).
    Article  Google Scholar 

    45.
    Miller, A. K. & Trivelpiece, W. Z. Chinstrap penguins alter foraging and diving behavior in response to the size of their principle prey Antarctic krill. Mar. Biol. 154, 201–208 (2008).
    Article  Google Scholar 

    46.
    Hinke, J. T., Santos, M. M., Korczak-Abshire, M., Milinevsky, G. & Watters, G. M. Individual variation in migratory movements of chinstrap penguins leads to widespread occupancy of ice-free winter habitats over the continental shelf and deep ocean basins of the Southern Ocean. PLoS ONE 14, e0226207 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Orgeret, F., Weimerskirch, H. & Bost, C. A. Early diving behaviour in juvenile penguins: improvement or selection processes. Biol. Lett. 12, 20160490 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    48.
    Marchetti, K. & Price, T. Differences in the foraging of juvenile and adult birds: the importance of developmental constraints. Biol. Rev. Camb. Philos. Soc. 64, 51–70 (1989).
    Article  Google Scholar 

    49.
    Boyd, I. L. Pup production and distribution of breeding antarctic fur seals (Arctocephalus gazella) at South Georgia. Antarct. Sci. 5, 17–24 (1993).
    ADS  Article  Google Scholar 

    50.
    Casaux, R. et al. Geographical variation in the diet of the Antarctic fur seal Arctocephalus gazella. Polar Biol. 26, 753–758 (2003).
    Article  Google Scholar 

    51.
    CCAMLR. Statistical Bulletin. Vol. 31. www.ccamlr.org (2019).

    52.
    Kawaguchi, S. & Nicol, S. Krill fishery. Fish. Aquac. 9, 137 (2020).
    Google Scholar 

    53.
    Vaughan, D. Fishing effort displacement and the consequences of implementing marine protected area management: an English perspective. Mar. Policy 84, 228–234 (2017).
    Article  Google Scholar 

    54.
    Suuronen, P., Jounela, P. & Tschernij, V. Fishermen responses on marine protected areas in the Baltic cod fishery. Mar. Policy 34, 237–243 (2010).
    Article  Google Scholar 

    55.
    Godø, O. R., Reiss, C., Siegel, V. & Watkins, J. L. Commercial fishing vessel as research vessels in the Antarctic: requirements and solutions exemplified with a new vessel. CCAMLR Sci. 21, 11–18 (2014).
    Google Scholar 

    56.
    Niklitschek, E. J. & Skaret, G. Distribution, density and relative abundance of Antarctic krill estimated by maximum likelihood geostatistics on acoustic data collected during commercial fishing operations. Fish. Res. 178, 114–121 (2016).
    Article  Google Scholar 

    57.
    Watkins, J. L. et al. The use of fishing vessels to provide acoustic data on the distribution and abundance of Antarctic krill and other pelagic species. Fish. Res. 178, 93–100 (2016).
    Article  Google Scholar 

    58.
    Melbourne-Thomas, J., Constable, A., Wotherspoon, S. & Raymond, B. Testing paradigms of ecosystem change under climate warming in Antarctica. PLoS ONE 8, e55093 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Matsuoka, K., Skoglund, A. & Roth, G. Quantarctica [Data set]. Norwegian Polar Institute. https://doi.org/10.21334/npolar.2018.8516e961 (2018). More

  • in

    Increasing temperatures accentuate negative fitness consequences of a marine parasite

    1.
    Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife: threats to biodiversity and human health. Science 287, 443–449 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Fey, S. B. et al. Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events. Proc. Natl. Acad. Sci. 112, 1083–1088 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    3.
    Fry, W. E. Principles of Plant Disease Management (Academic Press, Cambridge, 2012).
    Google Scholar 

    4.
    Tomley, F. M. & Shirley, M. W. Livestock infectious diseases and zoonoses. Philos. Trans. R. Soc. Lond. B Biol. Sci. (2009).

    5.
    Frick, W. F. et al. An emerging disease causes regional population collapse of a common North American bat species. Science 329, 679–682 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    6.
    Singh, B., Dhand, N. K. & Gill, J. Economic losses occurring due to brucellosis in Indian livestock populations. Prev. Vet. Med. 119, 211–215 (2015).
    CAS  PubMed  Article  Google Scholar 

    7.
    Lafferty, K. D. The ecology of climate change and infectious diseases. Ecology 90, 888–900 (2009).
    PubMed  Article  Google Scholar 

    8.
    Bett, B. et al. Effects of climate change on the occurrence and distribution of livestock diseases. Prev. Vet. Med. 137, 119–129 (2017).
    CAS  PubMed  Article  Google Scholar 

    9.
    Rohr, J. R. et al. Frontiers in climate change-disease research. Trends Ecol. Evol. 26, 270–277 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    10.
    Harvell, C. D. et al. Climate warming and disease risks for terrestrial and marine biota. Science 296, 2158–2162 (2002).
    ADS  CAS  PubMed  Article  Google Scholar 

    11.
    Boyett, H. V., Bourne, D. G. & Willis, B. L. Elevated temperature and light enhance progression and spread of black band disease on staghorn corals of the Great Barrier Reef. Mar. Biol. 151, 1711–1720 (2007).
    Article  Google Scholar 

    12.
    Paillard, C., Allam, B. & Oubella, R. Effect of temperature on defense parameters in Manila clam Ruditapes philippinarum challenged with Vibrio tapetis. Dis. Aquat. Org. 59, 249–262 (2004).
    Article  Google Scholar 

    13.
    Dalton, S. J., Godwin, S., Smith, S. & Pereg, L. Australian subtropical white syndrome: a transmissible, temperature-dependent coral disease. Mar. Freshwat. Res. 61, 342–350 (2010).
    CAS  Article  Google Scholar 

    14.
    Korkut, G. G., Noonin, C. & Söderhäll, K. The effect of temperature on white spot disease progression in a crustacean Pacifastacus leniusculus. Dev. Comp. Immunol. 89, 7–13 (2018).
    PubMed  Article  Google Scholar 

    15.
    Verant, M. L., Boyles, J. G., Waldrep, W. Jr., Wibbelt, G. & Blehert, D. S. Temperature-dependent growth of Geomyces destructans, the fungus that causes bat white-nose syndrome. PLoS ONE 7, e46280 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Ward, J. R., Kim, K. & Harvell, C. D. Temperature affects coral disease resistance and pathogen growth. Mar. Ecol. Prog. Ser. 329, 115–121 (2007).
    ADS  Article  Google Scholar 

    17.
    Albert, V. & Ransangan, J. Effect of water temperature on susceptibility of culture marine fish species to vibriosis. Int. J. Res. Pure Appl. Microbiol. 3, 48–52 (2013).
    Google Scholar 

    18.
    Case, R. J. et al. Temperature induced bacterial virulence and bleaching disease in a chemically defended marine macroalga. Environ. Microbiol. 13, 529–537 (2011).
    CAS  PubMed  Article  Google Scholar 

    19.
    Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722 (2015).
    PubMed  Article  CAS  Google Scholar 

    20.
    Laffoley, D. D. A. & Baxter, J. Explaining Ocean Warming: Causes, Scale, Effects and Consequences (IUCN Gland, Switzerland, 2016).
    Google Scholar 

    21.
    Burge, C. A. et al. Climate change influences on marine infectious diseases: implications for management and society. Annu. Rev. Mar. Sci. 6, 249–277 (2014).
    ADS  Article  Google Scholar 

    22.
    Miller, J. et al. Coral disease following massive bleaching in 2005 causes 60% decline in coral cover on reefs in the US Virgin Islands. Coral Reefs 28, 925 (2009).
    ADS  Article  Google Scholar 

    23.
    Eisenlord, M. E. et al. Ochre star mortality during the 2014 wasting disease epizootic: role of population size structure and temperature. Philos. Trans. R. Soc. Lond. B Biol. Sci 371, 20150212 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    24.
    Moore, J. D., Robbins, T. T. & Friedman, C. S. Withering syndrome in farmed red abalone Haliotis rufescens: thermal induction and association with a gastrointestinal rickettsiales-like prokaryote. J. Aquat. Anim. Health 12, 26–34 (2000).
    PubMed  Article  Google Scholar 

    25.
    Harvell, D., Altizer, S., Cattadori, I. M., Harrington, L. & Weil, E. Climate change and wildlife diseases: when does the host matter the most?. Ecology 90, 912–920 (2009).
    PubMed  Article  Google Scholar 

    26.
    Malek, J. C. & Byers, J. E. Responses of an oyster host (Crassostrea virginica) and its protozoan parasite (Perkinsus marinus) to increasing air temperature. PeerJ 6, e5046 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    27.
    Staehli, A., Schaerer, R., Hoelzle, K. & Ribi, G. Temperature induced disease in the starfish Astropecten jonstoni. Mar. Biodiv. Rec. 2, e78 (2009).
    Article  Google Scholar 

    28.
    Gehman, A.-L.M., Hall, R. J. & Byers, J. E. Host and parasite thermal ecology jointly determine the effect of climate warming on epidemic dynamics. Proc. Natl. Acad. Sci. 115, 744–749 (2018).
    CAS  PubMed  Article  Google Scholar 

    29.
    Studer, A., Thieltges, D. & Poulin, R. Parasites and global warming: net effects of temperature on an intertidal host–parasite system. Mar. Ecol. Prog. Ser. 415, 11–22 (2010).
    ADS  Article  Google Scholar 

    30.
    McCallum, H., Harvell, D. & Dobson, A. Rates of spread of marine pathogens. Ecol. Lett. 6, 1062–1067 (2003).
    Article  Google Scholar 

    31.
    Harvell, C. et al. Emerging marine diseases-climate links and anthropogenic factors. Science 285, 1505–1510 (1999).
    CAS  PubMed  Article  Google Scholar 

    32.
    Morton, J. P., Silliman, B. R. & Lafferty, K. D. In Marine Disease Ecology (eds D.C. Behringer, B.R. Silliman, & K.D. Lafferty) (Oxford University Press, Oxford, 2020).

    33.
    Lafferty, K. D. et al. Infectious diseases affect marine fisheries and aquaculture economics. Annu. Rev. Mar. Sci. 7, 471–496 (2015).
    ADS  Article  Google Scholar 

    34.
    Food and Agriculture Organization of the United Nations. The state of world fisheries and aquaculture. https://www.fao.org/3/i9540en/i9540en.pdf (2018).

    35.
    Food and Agriculture Organization of the United Nations. Global aquaculture production statistics, 1950–2017-Fisheries and Aquaculture Information and Statistics Branch. https://www.fao.org/fishery/statistics/global-aquaculture-production/query/en (2017).

    36.
    Abolofia, J., Asche, F. & Wilen, J. E. The cost of lice: quantifying the impacts of parasitic sea lice on farmed salmon. Mar. Resour. Econ. 32, 329–349 (2017).
    Article  Google Scholar 

    37.
    Jakob, E., Sweeten, T., Bennett, W. & Jones, S. Development of the salmon louse Lepeophtheirus salmonis and its effects on juvenile sockeye salmon Oncorhynchus nerka. Dis. Aquat. Org. 106, 217–227 (2013).
    CAS  Article  Google Scholar 

    38.
    Jones, S. R., Kim, E. & Bennett, W. Early development of resistance to the salmon louse, Lepeophtheirus salmonis (Krøyer), in juvenile pink salmon, Oncorhynchus gorbuscha (Walbaum). J. Fish Dis. 31, 591–600 (2008).
    CAS  PubMed  Article  Google Scholar 

    39.
    Costello, M. J. The global economic cost of sea lice to the salmonid farming industry. J. Fish Dis. 32, 115–118 (2009).
    PubMed  Article  Google Scholar 

    40.
    Skilbrei, O. T. & Wennevik, V. Survival and growth of sea-ranched Atlantic salmon, Salmo salar L., treated against sea lice before release. ICES J. Mar. Sci. 63, 1317–1325 (2006).
    Article  Google Scholar 

    41.
    Grimnes, A. & Jakobsen, P. The physiological effects of salmon lice infection on post-smolt of Atlantic salmon. J. Fish Biol. 48, 1179–1194 (1996).
    Article  Google Scholar 

    42.
    Krkosek, M. et al. Effects of parasites from salmon farms on productivity of wild salmon. Proc. Natl. Acad. Sci. 108, 14700–14704 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    43.
    Krkosek, M. et al. Impact of parasites on salmon recruitment in the Northeast Atlantic Ocean. Proc. Biol. Sci. 280, 20122359 (2013).
    PubMed  PubMed Central  Google Scholar 

    44.
    Vollset, K. W. et al. Impacts of parasites on marine survival of Atlantic salmon: a meta-analysis. Fish Fish. 17, 714–730 (2016).
    Article  Google Scholar 

    45.
    Bricknell, I. R., Dalesman, S. J., O’Shea, B., Pert, C. C. & Luntz, A. J. M. Effect of environmental salinity on sea lice Lepeophtheirus salmonis settlement success. Dis. Aquat. Org. 71, 201–212 (2006).
    Article  Google Scholar 

    46.
    Brooks, K. M. The effects of water temperature, salinity, and currents on the survival and distribution of the infective copepodid stage of sea lice (Lepeophtheirus salmonis) originating on Atlantic salmon farms in the Broughton Archipelago of British Columbia Canada. Rev. Fish. Sci. 13, 177–204 (2005).
    ADS  Article  Google Scholar 

    47.
    Hamre, L. A., Bui, S., Oppedal, F., Skern-Mauritzen, R. & Dalvin, S. Development of the salmon louse Lepeophtheirus salmonis parasitic stages in temperatures ranging from 3 to 24 C. Aquacult. Environ. Interact. 11, 429–443 (2019).
    Article  Google Scholar 

    48.
    Johnson, S. & Albright, L. Development, growth, and survival of Lepeophtheirus salmonis (Copepoda: Caligidae) under laboratory conditions. J. Mar. Biol. Assoc. U.K. 71, 425–436 (1991).
    Article  Google Scholar 

    49.
    Bateman, A. W. et al. Recent failure to control sea louse outbreaks on salmon in the Broughton Archipelago, British Columbia. Can. J. Fish. Aquat. Sci. 73, 1164–1172 (2016).
    Article  Google Scholar 

    50.
    Godwin, S. C., Krkosek, M., Reynolds, J. D. & Bateman, A. W. Sea-louse abundance on salmon farms in relation to parasite-control policy and climate change. ICES J. Mar. Sci. (In press).

    51.
    Jansen, P. A. et al. Sea lice as a density-dependent constraint to salmonid farming. Proc. Biol. Sci. 279, 2330–2338 (2012).
    PubMed  PubMed Central  Google Scholar 

    52.
    Vollset, K. W. Parasite induced mortality is context dependent in Atlantic salmon: insights from an individual-based model. Sci. Rep. 9, 1–15 (2019).
    CAS  Article  Google Scholar 

    53.
    Brewer-Dalton, K., Page, F. H., Chandler, P. & Ratsimandresy, A. Oceanographic conditions of salmon farming areas with attention to those factors that may influence the biology and ecology of sea lice, Lepeophtherius salmonis and Caligus spp., and their control. https://publications.gc.ca/collections/collection_2015/mpo-dfo/Fs70-5-2014-048-eng.pdf (2014).

    54.
    Greenan, B. J. W. et al. In Canada’s changing climate report (eds E. Bush & D.S. Lemmen) 343–423 (Government of Canada, 2018).

    55.
    Atlantic Canada Fish Farmers Association. 2017 New Brunswick annual sea lice management report. (2018).

    56.
    Atlantic Canada Fish Farmers Association. 2018 New Brunswick annual sea lice management report. (2019).

    57.
    Karlsen, Ø. et al. En vurdering av lakselusinfestasjonen i produksjonsområdene i 2018 og 2019. Report from Marine Research, (2020).

    58.
    Costello, M. J. Ecology of sea lice parasitic on farmed and wild fish. Trends Parasitol. 22, 475–483 (2006).
    PubMed  Article  Google Scholar 

    59.
    Best, A., White, A. & Boots, M. Maintenance of host variation in tolerance to pathogens and parasites. Proc. Natl. Acad. Sci. 105, 20786–20791 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    60.
    Handeland, S. O., Imsland, A. K. & Stefansson, S. O. The effect of temperature and fish size on growth, feed intake, food conversion efficiency and stomach evacuation rate of Atlantic salmon post-smolts. Aquaculture 283, 36–42 (2008).
    Article  Google Scholar 

    61.
    Alzahrani, S. M. & Ebert, P. R. Stress pre-conditioning with temperature, UV and gamma radiation induces tolerance against phosphine toxicity. PLoS ONE 13, e0195349 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    62.
    Beitinger, T. L. & Bennett, W. A. Quantification of the role of acclimation temperature in temperature tolerance of fishes. Environ. Biol. Fishes 58, 277–288 (2000).
    Article  Google Scholar 

    63.
    Fischer, K. et al. Environmental effects on temperature stress resistance in the tropical butterfly Bicyclus anynana. PLoS ONE 5, e15284 (2010).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    64.
    Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367, 1665–1679 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    65.
    Raffel, T. R., Halstead, N. T., McMahon, T. A., Davis, A. K. & Rohr, J. R. Temperature variability and moisture synergistically interact to exacerbate an epizootic disease. Proc. Biol. Sci. 282, 20142039 (2015).
    PubMed  PubMed Central  Google Scholar 

    66.
    Studer, A. & Poulin, R. Differential effects of temperature variability on the transmission of a marine parasite. Mar. Biol. 160, 2763–2773 (2013).
    Article  Google Scholar 

    67.
    Aaen, S. M., Helgesen, K. O., Bakke, M. J., Kaur, K. & Horsberg, T. E. Drug resistance in sea lice: a threat to salmonid aquaculture. Trends Parasitol. 31, 72–81 (2015).
    CAS  PubMed  Article  Google Scholar 

    68.
    Gargan, P. et al. Evidence for sea lice-induced marine mortality of Atlantic salmon (Salmo salar) in western Ireland from experimental releases of ranched smolts treated with emamectin benzoate. Can. J. Fish. Aquat. Sci. 69, 343–353 (2012).
    CAS  Article  Google Scholar 

    69.
    Beamish, R., Mahnken, C. & Neville, C. Evidence that reduced early marine growth is associated with lower marine survival of coho salmon. Trans. Am. Fish. Soc. 133, 26–33 (2004).
    Article  Google Scholar 

    70.
    Peyronnet, A., Friedland, K., Maoileidigh, N., Manning, M. & Poole, W. Links between patterns of marine growth and survival of Atlantic salmon Salmo salar L. J. Fish Biol. 71, 684–700 (2007).
    Article  Google Scholar 

    71.
    Battin, J. et al. Projected impacts of climate change on salmon habitat restoration. Proc. Natl. Acad. Sci. 104, 6720–6725 (2007).
    ADS  CAS  PubMed  Article  Google Scholar 

    72.
    Otero, J. et al. Basin-scale phenology and effects of climate variability on global timing of initial seaward migration of Atlantic salmon (Salmo salar). Global Change Biol. 20, 61–75 (2014).
    ADS  Article  Google Scholar 

    73.
    Lande, R. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Nat. 142, 911–927 (1993).
    PubMed  Article  Google Scholar 

    74.
    Allendorf, F. W. et al. Prioritizing Pacific salmon stocks for conservation. Conserv. Biol. 11, 140–152 (1997).
    Article  Google Scholar 

    75.
    Chaput, G. Overview of the status of Atlantic salmon (Salmo salar) in the North Atlantic and trends in marine mortality. ICES J. Mar. Sci. 69, 1538–1548 (2012).
    Article  Google Scholar 

    76.
    Nehlsen, W., Williams, J. E. & Lichatowich, J. A. Pacific salmon at the crossroads: stocks at risk from California, Oregon, Idaho, and Washington. Fisheries 16, 4–21 (1991).
    Article  Google Scholar 

    77.
    Parrish, D. L., Behnke, R. J., Gephard, S. R., McCormick, S. D. & Reeves, G. H. Why aren’t there more Atlantic salmon (Salmo salar)?. Can. J. Fish. Aquat. Sci. 55, 281–287 (1998).
    Article  Google Scholar 

    78.
    Groner, M. L. et al. Managing marine disease emergencies in an era of rapid change. Philos. Trans. R. Soc. Lond. B Biol. 371, 20150364 (2016).
    Article  CAS  Google Scholar 

    79.
    Altizer, S., Ostfeld, R. S., Johnson, P. T., Kutz, S. & Harvell, C. D. Climate change and infectious diseases: from evidence to a predictive framework. Science 341, 514–519 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    80.
    Columbia Basin Fish and Wildlife Authority PIT Tag Steering Committee. PIT tag marking procedures manual. Columbia Basin Fish and Wildlife Authority, Portland, Oregon, (1999).

    81.
    Poley, J. D. et al. High level efficacy of lufenuron against sea lice (Lepeophtheirus salmonis) linked to rapid impact on moulting processes. Int. J. Parasitol. Drugs Drug Res. 8, 174–188 (2018).
    Article  Google Scholar 

    82.
    Whyte, S. et al. iAvermectin treatment for Lepeophtheirus salmonis: impacts on host (Salmo salar) and parasite immunophysiology. Aquaculture 501, 488–501 (2019).
    CAS  Article  Google Scholar 

    83.
    Groner, M. L., Gettinby, G., Stormoen, M., Revie, C. W. & Cox, R. Modelling the impact of temperature-induced life history plasticity and mate limitation on the epidemic potential of a marine ectoparasite. PLoS ONE 9, e88465 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    84.
    Chezik, K. A., Lester, N. P. & Venturelli, P. A. Fish growth and degree-days I: selecting a base temperature for a within-population study. Can. J. Fish. Aquat. Sci. 71, 47–55 (2013).
    Article  Google Scholar 

    85.
    Neuheimer, A. B. & Grønkjær, P. Climate effects on size-at-age: growth in warming waters compensates for earlier maturity in an exploited marine fish. Global Change Biol. 18, 1812–1822 (2012).
    ADS  Article  Google Scholar 

    86.
    Jonsson, N., Jonsson, B. & Hansen, L. P. Does climate during embryonic development influence parr growth and age of seaward migration in Atlantic salmon (Salmo salar)?. Can. J. Fish. Aquat. Sci. 62, 2502–2508 (2005).
    Article  Google Scholar 

    87.
    Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).
    ADS  MathSciNet  MATH  Article  Google Scholar 

    88.
    Le Cren, E. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). J. Anim. Ecol. 201–219, (1951).

    89.
    Hurvich, C. M. & Tsai, C.-L. Regression and time series model selection in small samples. Biometrika 76, 297–307 (1989).
    MathSciNet  MATH  Article  Google Scholar 

    90.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria (2019).

    91.
    Pinheiro J, Bates D, DebRoy S, Sarkar D & R Core Team. nlme: linear and nonlinear mixed effects models. R package version 3.1-139 (2019).

    92.
    Therneau, T. M. coxme: mixed effects Cox models. R package 2.2-14 (2019). More

  • in

    Veteran trees are a source of natural enemies

    1.
    IPBES. Intergovernmental science-policy platform on biodiversity and ecosystem services. ttps://ipbes.net (2018).
    2.
    Kadykalo, A. N. et al. Disentangling ‘ecosystem services’ and ‘nature’s contributions to people’. Ecosyst. People 15(1), 269–287 (2019).
    Article  Google Scholar 

    3.
    Díaz, S. et al. Assessing nature’s contributions to people. Science 359(6373), 270–272 (2018).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6(1), 8568 (2015).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    5.
    Wilson, C. & Tisdell, C. Why farmers continue to use pesticides despite environmental, health and sustainability costs. Ecol. Econ. 39(3), 449–462 (2001).
    Article  Google Scholar 

    6.
    Pimentel, D. et al. Environmental and economic costs of pesticide use. Bioscience 42(10), 750–760 (1992).
    Article  Google Scholar 

    7.
    Horrigan, L., Lawrence, R. & Walker, P. How sustainable agriculture can address the environmental and human health harms of industrial agriculture. Environ Health Perspect 110(5), 445–456 (2002).
    PubMed  PubMed Central  Article  Google Scholar 

    8.
    Popp, J., Pető, K. & Nagy, J. Pesticide productivity and food security. A review. Agron. Sustain. Dev. 33(1), 243–255 (2013).
    Article  Google Scholar 

    9.
    Barbosa, P. Conservation Biological Control (Academic Press, Cambridge, 1998).
    Google Scholar 

    10.
    Greenop, A., Woodcock, B., Wilby, A., Cook, S. & Pywell, R. Functional diversity positively affects prey suppression by invertebrate predators: A meta-analysis. Ecology 99(8), 1771–1782 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    11.
    Snyder, W. E. Give predators a complement: Conserving natural enemy biodiversity to improve biocontrol. Biol. Control 135, 73–82 (2019).
    Article  Google Scholar 

    12.
    Perez-Alvarez, R., Nault, B. A. & Poveda, K. Effectiveness of augmentative biological control depends on landscape context. Sci. Rep. 9(1), 8664 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    13.
    Hageneder, F. The Heritage of Trees: History, Culture and Symbolism (Floris Books, 2001).

    14.
    Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures. J. Biogeogr. 31, 79–92 (2004).
    Article  Google Scholar 

    15.
    Müller, J., Jarzabek-Müller, A., Bussler, H. & Gossner, M. M. Hollow beech trees identified as keystone structures for saproxylic beetles by analyses of functional and phylogenetic diversity. Anim. Conserv. 17(2), 154–162 (2013).
    Article  Google Scholar 

    16.
    Jim, C. Urban heritage trees: Natural-cultural significance informing management and conservation. In Greening Cities Advances in 21st Century Human Settlements (eds. Tan, P. & Jim, C.) (Springer, Berlin, 2017).

    17.
    Hu, L., Li, Z., Liao, W. & Fan, Q. Values of village fengshui forest patches in biodiversity conservation in the Pearl River Delta, China. Biol. Conserv. 144(5), 1553–1559 (2011).
    Article  Google Scholar 

    18.
    Skarpaas, O., Blumentrath, S., Evju, M. & Sverdrup-Thygeson, A. Prediction of biodiversity hotspots in the Anthropocene: The case of veteran oaks. Ecol. Evol. 7(19), 7987–7997 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Siitonen, J., Ranius, T. The Importance of Veteran Trees for Saproxylic Insects. In Europe’s Changing Woods and Forests: From Wildwood to Managed Landscapes (eds. Kirby, K. & Watkins, C.) 140–53 (CAB International, Wallingford, 2015).

    20.
    Lindenmayer, D. B. et al. New policies for old trees: Averting a global crisis in a keystone ecological structure. Conserv. Lett. 7(1), 61–69 (2014).
    Article  Google Scholar 

    21.
    Tscharntke, T. et al. Multifunctional shade-tree management in tropical agroforestry landscapes—A review. J. Appl. Ecol. 48(3), 619–629 (2011).
    Article  Google Scholar 

    22.
    Wetherbee, R., Birkemoe, T., Skarpaas, O. & Sverdrup-Thygeson, A. Hollow oaks and beetle functional diversity: Significance of surroundings extends beyond taxonomy. Ecol. Evol. 10(2), 819–831 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Pilskog, H., Birkemoe, T., Framstad, E. & Sverdrup-Thygeson, A. Effect of habitat size, quality, and isolation on functional groups of beetles in hollow oaks. Insect Sci. 16, 1–8 (2016).
    Article  CAS  Google Scholar 

    24.
    Lefcheck, J. & Duffy, J. E. Multitrophic functional diversity predicts ecosystem functioning in experimental assemblages of estuarine consumers. Ecology 96(11), 2973–2983 (2015).
    PubMed  Article  Google Scholar 

    25.
    Heemsbergen, D. A. et al. Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science 306(5698), 1019–1020 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    26.
    Ferrante, M., Lo Cacciato, A. & Lovei, G. L. Quantifying predation pressure along an urbanisation gradient in Denmark using artificial caterpillars. Eur. J. Entomol. 111(5), 649–654 (2014).
    Article  Google Scholar 

    27.
    Lovei, G. L. & Ferrante, M. A. Review of the sentinel prey method as a way of quantifying invertebrate predation under field conditions. Insect Sci. 24(4), 528–542 (2017).
    PubMed  Article  Google Scholar 

    28.
    Kidd, N. A., Jervis, M. A. Population dynamics in Insects as Natural Enemies (ed. Jervis, M. A.) 435–523 (Springer, 2005).

    29.
    Low, P. A., Sam, K., McArthur, C., Posa, M. R. C. & Hochuli, D. F. Determining predator identity from attack marks left in model caterpillars: Guidelines for best practice. Entomol. Exp. Appl. 152(2), 120–126 (2014).
    Article  Google Scholar 

    30.
    Howe, A., Lovei, G. & Nachman, G. Dummy caterpillars as a simple method to assess predation rates on invertebrates in a tropical agroecosystem. Entomol. Exp. Appl. 131, 325–329 (2009).
    Article  Google Scholar 

    31.
    Sam, K., Remmel, T. & Molleman, F. Material affects attack rates on dummy caterpillars in tropical forest where arthropod predators dominate: An experiment using clay and dough dummies with green colourants on various plant species. Entomol. Exp. Appl. 157(3), 317–324 (2015).
    Article  Google Scholar 

    32.
    Moretti, M. et al. Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Funct. Ecol. 31(3), 558–567 (2017).
    Article  Google Scholar 

    33.
    Mico, E. et al. Contrasting functional structure of saproxylic beetle assemblages associated to different microhabitats. Sci. Rep. 10(1), 1520 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Ranius, T. & Jansson, N. The influence of forest regrowth, original canopy cover and tree size on saproxylic beetles associated with old oaks. Biol. Conserv. 95(1), 85–94 (2000).
    Article  Google Scholar 

    35.
    Parmain, G. & Bouget, C. Large solitary oaks as keystone structures for saproxylic beetles in European agricultural landscapes. Insect Conservation and Diversity 11, 100–115 (2018).
    Article  Google Scholar 

    36.
    Ferrante, M., Barone, G., Kiss, M., Bozóné-Borbáth, E. & Lövei, G. L. Ground-level predation on artificial caterpillars indicates no enemy-free time for lepidopteran larvae. Community Ecol. 18(3), 280–286 (2017).
    Article  Google Scholar 

    37.
    Lövei, G. L. & Sunderland, K. D. Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annu. Rev. Entomol. 41(1), 231–256 (1996).
    PubMed  Article  PubMed Central  Google Scholar 

    38.
    Sverdrup-Thygeson, A., Skarpaas, O. & Ødegaard, F. Hollow oaks and beetle conservation: The significance of the surroundings. Biodivers. Conserv. 19(3), 837–852 (2010).
    Article  Google Scholar 

    39.
    Sverdrup-Thygeson, A., Skarpaas, O., Blumentrath, S., Birkemoe, T. & Evju, M. Habitat connectivity affects specialist species richness more than generalists in veteran trees. For. Ecol. Manag. 403, 96–102 (2017).
    Article  Google Scholar 

    40.
    Gough, L. A., Birkemoe, T. & Sverdrup-Thygeson, A. Reactive forest management can also be proactive for wood-living beetles in hollow oak trees. Biol. Conserv. 180, 75–83 (2014).
    Article  Google Scholar 

    41.
    Hagge, J. et al. Congruent patterns of functional diversity in saproxylic beetles and fungi across European beech forests. J. Biogeogr. 46(5), 1054–1065 (2019).
    Article  Google Scholar 

    42.
    Tschumi, M., Albrecht, M., Entling, M. H. & Jacot, K. High effectiveness of tailored flower strips in reducing pests and crop plant damage. Proc. R. Soc. B. 282(1814), 20151369 (2015).
    Article  Google Scholar 

    43.
    Bowdish, T. I. & Bultman, T. L. Visual cues used by mantids in learning aversion to aposematically colored prey. Am. Midl. Nat. 129(2), 215–222 (1993).
    Article  Google Scholar 

    44.
    Kauppinen, J. & Mappes, J. Why are wasps so intimidating: Field experiments on hunting dragonflies (Odonata: Aeshna grandis). Anim. Behav. 66(3), 505–511 (2003).
    Article  Google Scholar 

    45.
    Prudic, K. L., Stoehr, A. M., Wasik, B. R. & Monteiro, A. Eyespots deflect predator attack increasing fitness and promoting the evolution of phenotypic plasticity. Proc. R. Soc. B. 282(1798), 20141531 (2015).
    PubMed  Article  Google Scholar 

    46.
    Micó, E. Saproxylic insects in tree hollows. In Saproxylic Insects: Diversity, Ecology and Conservation (ed. Ulyshen, M. D.) 693–727 (Springer, Berlin, 2018).

    47.
    Harmon, J. P., Losey, J. E. & Ives, A. R. The role of vision and color in the close proximity foraging behavior of four coccinellid species. Oecologia 115(1), 287–292 (1998).
    ADS  PubMed  Article  Google Scholar 

    48.
    Hartel, T., Réti, K. O. & Craioveanu, C. Valuing scattered trees from wood-pastures by farmers in a traditional rural region of Eastern Europe. Agric. Ecosyst. Environ. 236, 304–311 (2017).
    Article  Google Scholar 

    49.
    Hougner, C., Colding, J. & Söderqvist, T. Economic valuation of a seed dispersal service in the Stockholm National Urban Park, Sweden. Ecol. Econ. 59(3), 364–374 (2006).
    Article  Google Scholar 

    50.
    Lindenmayer, D. B. & Laurance, W. F. The ecology, distribution, conservation and management of large old trees. Biol. Rev. 92(3), 1434–1458 (2017).
    PubMed  Article  Google Scholar 

    51.
    ARKO. Hule eiker—et hotspot-habitat Sluttrapport under ARKO-prosjektets periode II. https://www.miljodirektoratet.no/globalassets/publikasjoner/dirnat2/attachment/2557/nina-rapport-710_hotspot-hule-eiker_sverdrup-thygeson_2011.pdf. The Norwegian Institute for Nature Research (2011).

    52.
    NBIC. Norwegian Biodiversity Information Centre. https://www.biodiversity.no (2018).

    53.
    Majekova, M. et al. Evaluating functional diversity: Missing trait data and the importance of species abundance structure and data transformation. PLoS ONE 11(2), 1–17 (2016).
    Article  CAS  Google Scholar 

    54.
    Laliberte, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91(1), 299–305 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    55.
    Zuur, A., Ieno, E., Walker, N., Saveliev, A. & Smith, G. Mixed Effect Models and Extensions in Ecology with R (Springer, New York, 2009).
    Google Scholar 

    56.
    R Development Core Team. R: A language and environment for statistical computing. 3.4.0 ed. (R Foundation for Statistical Computing, Vienna, 2017).

    57.
    Cailliez, F. The analytical solution of the additive constant problem. Psychometrika 48(2), 305–308 (1983).
    MathSciNet  MATH  Article  Google Scholar 

    58.
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9(2), 378–400 (2017).
    Article  Google Scholar 

    59.
    Bolker, B. M. Tools for General Maximum Likelihood Estimation. CRAN.R. R package version 1.0.20 (2017).

    60.
    Barton, K. MuMIn: Multi-Model Inference. R package version 1421. https://CRAN.R-project.org/package=MuMIn (2018).

    61.
    Hardin, J. W. & Hilbe, J. M. Generalized Linear Models and Extensions (Stata Press, College Station, 2007).
    Google Scholar 

    62.
    Bolker BM. Linear and generalized linear mixed models. In Ecological Statistics: Contemporary Theory and Application (eds. Fox, G. A., Negrete-Yankelevich, S., Sosa, V. J.) (Oxford University Press, Oxford, 2015).

    63.
    Sarkar, D. Lattice:Multivariate Data Visualization with R (Springer, New York, 2008).
    Google Scholar 

    64.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2016).
    Google Scholar 

    65.
    Wickham H. François R. Henry L. Müller K. dplyr: A Grammar of Data Manipulation. R package version 078. https://CRAN.R-project.org/package=dplyr (2018). More

  • in

    Conservation of vegetable genetic diversity in Transylvania-Romania

    1.
    Negri, V., Maxted, N., & Veteläinen, M. European landrace conservation: an introduction. European landraces: on farm conservation, management and use. European Cooperative Programme for Plant Genetic Resources. Rome, Italy. Biodivers. Tech. Bull. 15, 1–22 (2009).
    2.
    Polegri, L., Negri, V. Molecular markers for promoting agro-biodiversity conservation: a case study from Italy. How cowpea landraces were saved from extinction. Genet. Resour. Crop Evol. 57, 867–880 (2010).

    3.
    Maxim, A. Conservation of genetic diversity in culture plants. ProEnvironment 5, 50–54 (2010).
    Google Scholar 

    4.
    Nyadanu, D., Aboagye, L. M., Akromah, R. & Dansi, A. Agro-biodiversity and challenges of on-farm conservation: the case of plant genetic resources of neglected and underutilized crop species in Ghana. Genet. Resour. Crop Evol. 63, 1397–1409 (2016).
    Article  Google Scholar 

    5.
    Sanchez, E., Sifres, A., Casanas, F., and Nuez, F. The endangered future of organoleptically prestigious European landraces: Ganxet bean (Phaseolus vulgaris L.) as an example of a crop originating in the Americas. Genet. Resour. Crop Evol. 55, 45–52 (2008).

    6.
    Bertoldo, J. G., Coimbra, J. L. M., Guidolin, A. F., Braatz de Andrade, L. R. & Nodari, R. O. Agronomic potential of genebank landrace elite accessions for common bean genetic breeding. Sci. Agric. 71(2), 120–125 (2014).
    Article  Google Scholar 

    7.
    Derpsch, R., Roth, C.H., Sidiras, N., Köpke, U. Controle de erosão no Paraná, Brasil: Sistema de cobertura do solo, plantio direto e preparo conservacionista do solo. Sonderpublikation der GTZ, No. 245. Rossdorf, Germany, TZ-Verlagsgesellschaft GmbH., 272 (1991).

    8.
    Maxted, N., Dulloo, M.E., Ford-Lloyd, B.V. Enhancing crop genepool use: capturing wild relative and landrace diversity for crop improvement. CAB eBooks (2016).

    9.
    Negri, V. Landraces in central Italy: Where and why they are conserved and perspectives for their on farm conservation. Genet. Resour. Crop Evol. 50, 871–885 (2003).
    Article  Google Scholar 

    10.
    German, L., Ramisch, J.J., Verma, R. Beyond the biophysical: knowledge, culture, and power in agriculture and natural resource management. Springer (2010).

    11.
    Negri, V. Agro-biodiversity conservation in Europe: ethical issues. J. Agric. Environ. Ethics. 18, 3 (2005).
    Article  Google Scholar 

    12.
    Sthapit, B., Lamers, H., Rao, R., & Bailey, A. Tropical fruit tree diversity: good practices for in situ and on-farm conservation. Routledge (2016).

    13.
    Veteläinen, M., Negri, V., Maxted, N. A European strategic approach to conserving crop landraces. European cooperative programme for plant genetic resources, Rome, Italy. Biodivers. Tech. Bull. 15 (2009).

    14.
    Spataro, G. & Negri, V. The European seed legislation on conservation varieties: focus, implementation, present and future impact on landrace on farm conservation. Genet. Resour. Crop Evol. 60, 2421–2430 (2013).
    Article  Google Scholar 

    15.
    Lorenzetti, F., Lorenzetti, S., & Negri, V. The Italian Laws on Conservation Varieties and the National Implementation of Commision Directive 2008/62/EC. European landraces: on farm conservation, management and use. European Cooperative Programme for Plant Genetic Resources. Rome, Italy. Biodivers. Tech. Bull. 15, 300–304 (2009).

    16.
    Thuiller, T., Lavorel, S., Araújo, M. B., Sykes, M. T. & Prentice, I. C. Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. 102(23), 8245–8250 (2005).
    ADS  CAS  Article  Google Scholar 

    17.
    Hammer, K., and Diederichsen, A. Evolution, status and perspectives for landraces in Europe: European cooperative programme for plant genetic resources. Rome, Italy. Biodivers. Tech. Bull. 15, 23–44 (2009).

    18.
    Maxim, A. et al. Preliminary results concerning the preservation of genetical diversity of different vegetable varieties at USAMV Cluj-Napoca. Bull. UASMV Cluj-Napoca, Agric. 63, 291–296 (2007).
    Google Scholar 

    19.
    Renna, M., Serio, F., Signore, A., Santamaria, P. The yellow–purple Polignano carrot (Daucus carota L.): a multicoloured landrace from the Puglia region (Southern Italy) at risk of genetic erosion. Genet. Resour. Crop Evol. 61, 1611–1619 (2014).

    20.
    Scholten, M., Maxted, N., Ford-Lloyd, B. V. & Green, N. Hebridean and Shetland oat (Avena strigosa Schreb) and Shetland cabbage (Brassica oleracea L.) landraces: occurrence and conservation issues. Plant Genet. Resour. Newsl. 154, 1–5 (2008).
    Google Scholar 

    21.
    Maxted, N., Ford-Lloyd, B.V., & Hawkes, J.G., Plant genetic conservation: the in situ approach. Chapman and Hall, London (1997).

    22.
    Malik, S.K., Singh, P.B., Singh, A., Verma, A., Ameta, N., & Bisht, I.S. Community seed banks: Operation and scientific management. New Delhi, India: National Bureau of Plant Genetic Resources, https://www.rainfedindia.org/issues/images/csb.pdf (2013).

    23.
    Străjeru, S., Ibanescu, M., Constantinovici, D. Landrace Inventories: Nees and Methodologies. European Cooperative Programme for Plant Genetic Resources. Rome, Italy. Biodivers. Tech. Bull. 15, 137–142 (2009).

    24.
    Maxim, A., Bontea, D., Odagiu, A., Mihalescu, L., & Roman, V. The In Situ and Ex Situ Conservation of Pepper Landraces (Capsicum annuum L.). ProEnvironment 8, 564–570 (2015).

    25.
    Bailey, K. Methods of social research (2nd edition) (The Free Press, New York, 1982).
    Google Scholar 

    26.
    Lázaro, A., Villar, B., Aceituno-Mata, L., Tardio, J. & De la Rosa, L. The Sierra Norte of Madrid: an agrobiodiversity refuge for common bean landraces. Genet. Resour. Crop Evol. 60, 1641–1654 (2013).
    Article  Google Scholar 

    27.
    Lebot, V., Tuia, V., Ivancic, A., Jackson, G.V.H., Saborio, F., Reyes, G., Rodriguez, S., Robin, G., Traoré, R. Aboagye, L., Onyeka, J., van Rensburg, W., Andrianavalona, V., Mukherjee, A., Prana, M.S., Ferraren, D., Komolong, B., Lawac, F., Winter, S., Pinheiro de Carvalho, M.A.A., & Iosefa, T. Adapting clonally propagated crops to climatic changes: a global approach for taro (Colocasia esculenta (L.) Schott) Genet. Resour. Crop Evol. 1–16 (2017).

    28.
    Montesano, V., Negro, D., Sarli, G., Logozzo, G. & Zeuli, P. S. Landraces in Inland areas of the Basilicata region, Italy: monitoring and perspectives for on farm conservation. Genet. Resour. Crop Evol. 59, 701–716 (2012).
    Article  Google Scholar 

    29.
    Catalogul oficial al soiurilor de plante din România. Institutul de Stat pentru Testarea și Înregistrarea Soiurilor. Ministerul Agriculturii și Dezvoltării Rurale din România, București, p. 49. Aviable from: https://istis.ro/image/data/download/catalog-oficial/CATALOG%202017.pdf (2017).

    30.
    Paavilainen, K. National Policies and Support Systems for Landrace Cultivation in Finland. European landraces: on farm conservation, management and use. European Cooperative Programme for Plant Genetic Resources. Rome, Italy. Biodivers. Tech. Bull. 15, 296–299 (2009).

    31.
    Joshi, B. K., Gauchan, D. Germplasm rescue. Why and how? Proceedings of Sharingshop, 18 Dec 2017, Kathmandu; NAGRC, BI and Crop Trust Nepal. 41–50 (2017).

    32.
    Joshi, B. K. et al. (eds) Good Practices for Agrobiodiversity Management (NAGRC, LI-BIRD and Alliance of Bioversity International and CIAT, Kathmandu, Nepal, 2020).
    Google Scholar 

    33.
    Kell, S.P., Maxted, N., Allender, C., Astley, D., Ford‐Lloyd, B.V., contributors. Vegetable Landrace Inventory of England and Wales. The University of Birmingham, UK. 117 pp. Available from: https://www.grfa.org.uk/media_files/publications_plant/veg_lr_inventory_england_and_wales.pdf (2009).

    34.
    Krasteva, L., Stoilova, T., Varbanova, K., & Neykov, S. Bulgarian landrace inventory: significance and use.” In Veteläinen M, Negri V and Maxted N (Eds) European landraces: on-farm conservation, management and use. Bioversity International, Rome. Biodivers. Tech. Bull. 15, 53–68 (2009).

    35.
    Maxted, N., Veteläinen, M., & Negri, V. Landrace inventories: needs and methodologies. European landraces: on farm conservation, management and use. Biodivers. Tech. Bull. 15, 45–52 (2009).

    36.
    Mendes Moreira, P.M.R., & Veloso, M.M. Landrace inventory for Portugal. In Veteläinen M., Negri V., and Maxted N., (Eds), European Landraces: On-farm conservation, Management and Use. Bioversity International, Rome. Biovers. Tech. Bull. 15, 124–136 (2009).

    37.
    Negri, V., Maxted, N., Torricelli, R., Heinonen, M., Veteläinen, M., & Dias, S. Draft descriptors for web-enabled national in situ landrace inventories. PGR Secure. Available from: https://www.pgrsecure.bham.ac.uk/sites/default/files/documents/helpdesk/LR_DESCRIPTORS_PGR_Secure_draft.pdf (2011).

    38.
    Paprštein, F. & Kloutvor, J. Inventory of fruit landraces. Vědecké práce ovocnářské. 17, 159–162 (2001).
    Google Scholar 

    39.
    Scholten, M., Maxted, N. & Ford-Lloyd, B. V. UK National Inventory of plant genetic resources for food and agriculture (Unpublished Report, Defra, London, 2004).
    Google Scholar 

    40.
    Balyejusa Kizito, E., Chiwona-Karltun, L., Egwang, T., Fregene, M. & Westerbergh, A. Genetic diversity and variety composition of cassava on small scale farms in Uganda: an interdisciplinary study using genetic markers and farmer interviews. Genetica 130, 301–318 (2007).
    Article  Google Scholar 

    41.
    Pistrick, K., Avramiuc, M., Cherecheș, V. & Friesen, N. Collecting plant genetic resources in Romania (Eastern Carpathians, Maramureș, Munții Apuseni). Plant Genet. Resour. Newsl. 1995(104), 10–15 (1994).
    Google Scholar 

    42.
    Maxim, A., Şandor, M., Sima, R., Mihalescu, L., Hapca, A., Papp, R., Opincariu, A., Şandor, V., & Matiş, N. Research concerning biochemical composition and storage capacity of different local varieties of carrot (Daucus carota L.). Bull. UASMV Cluj-Napoca Agric. 66(2), 138–143 (2009).

    43.
    Maxim, A., Şandor, M., Jidavu, M., Sima, R., Lucian, C., Opincariu, A., Maxim, O., & Bolboacă, V. Research concerning the conservation of genetic diversity of parsley (Petroselinum crispum MILL.). Bull. UASMV Cluj-Napoca Agric. 66(2), 144–149 (2009).

    44.
    Maxim, A. et al. Romanian landraces of tomates. Bull. UASMV Cluj-Napoca Agric. 69(2), 83–91 (2012).
    Google Scholar 

    45.
    Sudré, C.P., Gonçalves, L.S.A., Rodrigues, R., do Amaral Júnior, A.T., Riva-Souza, E.M., & S. Bento, C. Genetic variability in domesticated Capsicum spp. as assessed by morphological and agronomic data in mixed statistical analysis. Genet. Mol. Res. 9(1), 283–294 (2010).

    46.
    Boros, L., Wawer, A. & Borucka, K. Morphological, phenological and agronomical characterization of variability among common bean (Phaseolus vulgaris L.): local populations from the national Centre for plant genetic resources: Polish gene bank. J. Hortic. Res. 22(2), 123–130 (2014).
    CAS  Article  Google Scholar 

    47.
    Sabatino, L., Iapichino, G., Vetrano, F., & D’Anna, F. Morphological and agronomical characterisation of Sicilian bottle gourd Lagenaria siceraria (Mol.) Standley. J. Food Agric. Environ. 12(Issue 2), 587–590 (2014).

    48.
    D’Anna, F. & Sabatino, L. Morphological and agronomical characterization of eggplant genetic resources from the Sicily area. J. Food Agric. Environ. 4–11(1), 401–404 (2013).
    Google Scholar 

    49.
    Dersouni, C. & Chougui, S. Characterisation of two varieties of tomato (Lycopersicon esculentum) with saline resistant. Int. J. Biosci. 12(4), 43–54 (2018).
    CAS  Article  Google Scholar 

    50.
    Casals, J. et al. The risks of succes quality vegetable markets: possible genetic erosion in Marmande tomatoes (Solanum lycopersicum L.) and consumer dissatisfaction. Sci. Hortic. 130, 78–84 (2011).
    Article  Google Scholar 

    51.
    Gibson, R. W., Aritua, V., Byamukama, E., Mpembe, I. & Kayongo, J. Control strategies for sweet potato virus disease in Africa. Virus Res. 100(1), 115–122 (2004).
    CAS  Article  Google Scholar 

    52.
    Onyeka, T. J., Dixon, A. G. O. & Ekpo, E. J. A. Identification of levels of resistance to cassava root rot disease (Botryodiplodia theobromae) in African landraces and improved germplasm using in vitro inoculation method. Euphytica 145, 283–290 (2005).
    Article  Google Scholar 

    53.
    Sarker, A. & Erskine, W. Recent progress in the ancientlentil. J. Agric. Sci. 144, 19–29 (2006).
    Article  Google Scholar 

    54.
    El Tahir, I. M. & Taha, Y. M. Indigenous melons (Cucumis melo L.) in Sudan: a review of their genetic resources and prospects for use as sources of disease and insect resistance. Plant Genet. Res. Newsl. 138, 36–42 (2004).
    Google Scholar 

    55.
    Esquinas-Alcázar, J. Protecting crop genetic diversity for food security: political, ethical and technical challenges. Nature 6, 946–953 (2010).
    Google Scholar 

    56.
    Newton, A.C., Akar, T., Baresel, J.P., Bebeli, P.J., Bettencourt, E., Bladenopoulos, K.V., Czembor, J.H., & Vaz Patto, M.C. Cereal landraces for sustainable agriculture. A review. Agron. Sust. Dev. 30, 237–269 (2010).

    57.
    Ceccarelli, S. “Landraces: importance and use in breeding and environmentally friendly agronomic systems,” in Agrobiodiversity Conservation Securing the Diversity of Crop Wild Relatives and Landraces, ed. N. Maxted (Wallingford: CAB Interenational), 103 (2011).

    58.
    Ceccarelli, S. Landraces: importance and use in breeding and environmentally friendly agronomic systems. In Agrobiodiversity Conservation: Securing the Diversity of Crop Wild Relatives and Landraces (Maxted N. et al, eds), CAB International, 103–117 (2012).

    59.
    QGIS https://qgis.org/en/site/ (2019). More

  • in

    Topographic, soil, and climate drivers of drought sensitivity in forests and shrublands of the Pacific Northwest, USA

    1.
    Clark, J. S. et al. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Glob. Chang. Biol. 22, 2329–2352 (2016).
    ADS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Ahmadalipour, A., Moradkhani, H. & Svoboda, M. Centennial drought outlook over the CONUS using NASA-NEX downscaled climate ensemble. Int. J. Climatol. 37, 2477–2491 (2017).
    Article  Google Scholar 

    3.
    Yu, M., Li, Q., Hayes, M. J., Svoboda, M. D. & Heim, R. R. Are droughts becoming more frequent or severe in China based on the standardized precipitation evapotranspiration index: 1951–2010?. Int. J. Climatol. 34, 545–558 (2014).
    CAS  Article  Google Scholar 

    4.
    Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 1–55 (2015).
    Article  Google Scholar 

    5.
    Huang, C. Y. & Anderegg, W. R. L. Large drought-induced aboveground live biomass losses in southern Rocky Mountain aspen forests. Glob. Chang. Biol. 18, 1016–1027 (2012).
    ADS  Article  Google Scholar 

    6.
    Simeone, C. et al. Coupled ecohydrology and plant hydraulics modeling predicts ponderosa pine seedling mortality and lower treeline in the US Northern Rocky Mountains. New Phytol. 221, 1814–1830 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    7.
    Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science (80-. ). 349, 528–532 (2015).

    8.
    Yu, Z. et al. Global gross primary productivity and water use efficiency changes under drought stress. Environ. Res. Lett. 12 (2017).

    9.
    Smettem, K. R. J., Waring, R. H., Callow, J. N., Wilson, M. & Mu, Q. Satellite-derived estimates of forest leaf area index in southwest Western Australia are not tightly coupled to interannual variations in rainfall: Implications for groundwater decline in a drying climate. Glob. Chang. Biol. 19, 2401–2412 (2013).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Kath, J. et al. Groundwater salinization intensifies drought impacts in forests and reduces refuge capacity. J. Appl. Ecol. 52, 1116–1125 (2015).
    CAS  Article  Google Scholar 

    11.
    Hoylman, Z. H. et al. The topographic signature of ecosystem climate sensitivity in the western United States. Geophys. Res. Lett. 46, 14508–14520 (2019).
    ADS  Article  Google Scholar 

    12.
    Hahm, W. J. et al. Low subsurface water storage capacity relative to annual rainfall decouples Mediterranean plant productivity and water use from rainfall variability. Geophys. Res. Lett. 46, 6544–6553 (2019).
    ADS  Article  Google Scholar 

    13.
    Chaves, M. M., Maroco, J. P. & Pereira, J. S. Understanding plant responses to drought: From genes to the whole plant. Funct. Plant Biol. 30, 239–264 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Maherali, H., Pockman, W. & Jackson, R. Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology 85, 2184–2199 (2004).
    Article  Google Scholar 

    15.
    McDowell, N. et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?. New Phytol. 178, 719–739 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    16.
    Yang, Y. et al. Contrasting responses of water use efficiency to drought across global terrestrial ecosystems. Sci. Rep. 6, 1–8 (2016).
    Article  CAS  Google Scholar 

    17.
    Malone, S. L. et al. Drought resistance across California ecosystems: Evaluating changes in carbon dynamics using satellite imagery. Ecosphere 7, 1–19 (2016).
    ADS  Article  Google Scholar 

    18.
    Ponce Campos, G. E. et al. Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature 494, 349–352 (2013).

    19.
    Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. 110, 52–57 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Ahmadi, B., Ahmadalipour, A., Tootle, G. & Moradkhani, H. Remote sensing of water use efficiency and terrestrial drought recovery across the Contiguous United States. Remote Sens. 11 (2019).

    22.
    Barnes, M. L. et al. Vegetation productivity responds to sub-annual climate conditions across semiarid biomes. Ecosphere 7, e01339 (2016).
    Article  Google Scholar 

    23.
    Susan Moran, M. et al. Functional response of U.S. grasslands to the early 21st-century drought. Ecology 95, 2121–2133 (2014).

    24.
    Zhang, Y., Voigt, M. & Liu, H. Contrasting responses of terrestrial ecosystem production to hot temperature extreme regimes between grassland and forest. Biogeosciences 12, 549–556 (2015).
    ADS  CAS  Article  Google Scholar 

    25.
    Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).
    ADS  Article  Google Scholar 

    26.
    Zhang, Y. et al. Extreme precipitation patterns and reductions of terrestrial ecosystem production across biomes. J. Geophys. Res. Biogeosci. 118, 148–157 (2013).
    ADS  Article  Google Scholar 

    27.
    Norman, S., Koch, F. & Hargrove, W. Detecting and monitoring large-scale drought effects on forests: Toward an integrated approach. in Effects of Drought on Forests and Rangelands in the United States: A Comprehensive Science Synthesis. General Technical Report WO-93b (eds. Vose, J., Clark, J., Luce, C. & Patel-Weynand, T.) 195–230 (U.S. Forest Service, 2015).

    28.
    Sims, D. A., Brzostek, E. R. & Rahman, A. F. An improved approach for remotely sensing water stress impacts on forest C uptake. Glob. Chang. Biol. 1–11, https://doi.org/10.1111/gcb.12537 (2014).

    29.
    Brodrick, P. G., Anderegg, L. D. L. & Asner, G. P. Forest drought resistance at large geographic scales. Geophys. Res. Lett. 46, 2752–2760 (2019).
    ADS  Article  Google Scholar 

    30.
    Ma, X., Huete, A., Moran, S., Ponce-Campos, G. & Eamus, D. Abrupt shifts in phenology and vegetation productivity under climate extremes. J. Geophys. Res. Biogeosci. 120, 2036–2052 (2015).
    Article  Google Scholar 

    31.
    McLaughlin, B. et al. Hydrologic refugia, plants and climate change. Glob. Chang. Biol. 23, 1–21 (2017).
    Article  Google Scholar 

    32.
    Tague, C. L. & Moritz, M. A. Plant accessible water storage capacity and tree-scale root interactions determine how forest density reductions alter forest water use and productivity. Front. For. Glob. Chang. 2, 1–18 (2019).
    Article  Google Scholar 

    33.
    Peterman, W., Waring, R., Seager, T. & Pollock, W. Soil properties affect pinyon pine–juniper response to drought. Ecohydrology 6, 455–463 (2013).
    Article  Google Scholar 

    34.
    Law, B. E. & Waring, R. H. Carbon implications of current and future effects of drought, fire and management on Pacific Northwest forests. For. Ecol. Manag. 355, 4–14 (2015).
    Article  Google Scholar 

    35.
    Marlier, M. E. et al. The 2015 drought in Washington State: A harbinger of things to come? Environ. Res. Lett. 12 (2017).

    36.
    Buttrick, S. et al. Conserving Nature’s Stage: Identifying Resilient Terrestrial Landscapes in the Pacific Northwest. (The Nature Conservancy, 2015).

    37.
    Potithep, S., Nasahara, N. K., Muraoka, H., Nagai, S. & Suzuki, R. What is the actual relationship between LAI and VI in a deciduous broadleaf forest? Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 38, 609–614 (2010).

    38.
    Bigler, C., Gavin, D. G., Gunning, C. & Veblen, T. T. Drought induces lagged tree mortality in a subalpine forest in the Rocky Mountains. Oikos 116, 1983–1994 (2007).
    Article  Google Scholar 

    39.
    Berdanier, A. & Clark, J. Multiyear drought-induced morbidity preceding tree death in southeastern U.S. forests. Ecol. Appl. 26, 17–23 (2016).

    40.
    Ficklin, D. L. & Novick, K. A. Historic and projected changes in vapor pressure deficit suggest a continental-scale drying of the United States atmosphere. J. Geophys. Res. 122, 2061–2079 (2017).
    Article  Google Scholar 

    41.
    Assal, T. J., Anderson, P. J. & Sibold, J. Spatial and temporal trends of drought effects in a heterogeneous semi-arid forest ecosystem. For. Ecol. Manag. 365, 137–151 (2016).
    Article  Google Scholar 

    42.
    Guarín, A. & Taylor, A. H. Drought triggered tree mortality in mixed conifer forests in Yosemite National Park, California, USA. For. Ecol. Manag. 218, 229–244 (2005).
    Article  Google Scholar 

    43.
    Crausbay, S. D. et al. Defining ecological drought for the twenty-first century. Bull. Am. Meteorol. Soc. 98, 2543–2550 (2017).
    ADS  Article  Google Scholar 

    44.
    Van Loon, A. F. Hydrological drought explained. WIREs. Water 2, 359–392 (2015).
    ADS  Google Scholar 

    45.
    Peterman, W., Waring, R. H., Seager, T. & Pollock, W. L. Soil properties affect pinyon pine-juniper response to drought. Ecohydrology 6, 455–463 (2013).
    Article  Google Scholar 

    46.
    Mildrexler, D., Yang, Z., Cohen, W. B. & Bell, D. M. A forest vulnerability index based on drought and high temperatures. Remote Sens. Environ. 173, 314–325 (2016).
    ADS  Article  Google Scholar 

    47.
    Berner, L. T. & Law, B. E. Water limitations on forest carbon cycling and conifer traits along a steep climatic gradient in the Cascade Mountains, Oregon. Biogeosci. Discuss. 12, 14507–14553 (2015).
    ADS  Article  Google Scholar 

    48.
    Kerns, B. K., Powell, D. C., Mellmann-Brown, S., Carnwath, G. & Kim, J. B. Effects of projected climate change on vegetation in the Blue Mountains ecoregion, USA. Clim. Serv. 10, 33–43 (2018).
    Article  Google Scholar 

    49.
    Michalak, J. L., Withey, J. C., Lawler, J. J. & Case, M. J. Future climate vulnerability—Evaluating multiple lines of evidence. Front. Ecol. Environ. 15, 367–376 (2017).
    Article  Google Scholar 

    50.
    Young, D. J. N. et al. Long-term climate and competition explain forest mortality patterns under extreme drought. Ecol. Lett. 20, 78–86 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    51.
    Clifford, M. J., Cobb, N. S. & Buenemann, M. Long-term tree cover dynamics in a pinyon-juniper woodland: climate-change-type drought resets successional clock. Ecosystems 14, 949–962 (2011).
    Article  Google Scholar 

    52.
    Baker, W. L. Transitioning western U.S. dry forests to limited committed warming with bet-hedging and natural disturbances. Ecosphere 9 (2018).

    53.
    Walck, J. L., Hidayati, S. N., Dixon, K. W., Thompson, K. & Poschlod, P. Climate change and plant regeneration from seed. Glob. Chang. Biol. 17, 2145–2161 (2011).
    ADS  Article  Google Scholar 

    54.
    Krawchuk, M. A. et al. Disturbance refugia within mosaics of forest fire, drought, and insect outbreaks. Front. Ecol. Environ. 18, 235–244 (2020).
    Article  Google Scholar 

    55.
    Cartwright, J. Landscape topoedaphic features create refugia from drought and insect disturbance in a lodgepole and whitebark pine forest. Forests 9, 715 (2018).
    Article  Google Scholar 

    56.
    Millar, C. I. et al. Do low-elevation ravines provide climate refugia for subalpine limber pine (Pinus flexilis) in the Great Basin, USA?. Can. J. For. Res. 48, 663–671 (2018).
    Article  Google Scholar 

    57.
    Jaeger, K. L. et al. Probability of streamflow permanence model (PROSPER): A spatially continuous model of annual streamflow permanence throughout the Pacific Northwest. J. Hydrol. X 2, 100005 (2019).
    Article  Google Scholar 

    58.
    AdaptWest Project. Gridded current and future climate data for North America at 1 km resolution. (2015). https://adaptwest.databasin.org/pages/adaptwest-climatena. Accessed 5 Oct 2018.

    59.
    National Aeronautics and Space Administration (NASA). EarthData Search. (2020). https://search.earthdata.nasa.gov/search. Accessed 8 Jan 2017.

    60.
    Franklin, S. et al. Building the United States national vegetation classification. Ann. Bot. 2, 1–9 (2012).
    Google Scholar 

    61.
    Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).
    ADS  Article  Google Scholar 

    62.
    Vogelmann, J. E., Tolk, B. & Zhu, Z. Monitoring forest changes in the southwestern United States using multitemporal Landsat data. Remote Sens. Environ. 113, 1739–1748 (2009).
    ADS  Article  Google Scholar 

    63.
    De’ath, G. & Fabricius, K. E. Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology 81, 3178–3192 (2000).

    64.
    Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Hijmans, R., Phillips, S., Leathwick, J. & Elith, J. dismo: Species Distribution Modeling, R package version 1.1–4. (2016). https://cran.r-project.org/web/packages/dismo/dismo.pdf. Accessed: 1 May 2017.

    66.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2017). https://www.r-project.org. Accessed 1 Feb 2017.

    67.
    Cartwright, J. Analysis of Drought Sensitivity in the Pacific Northwest (Washington, Oregon, and Idaho) from 2000 Through 2016: U.S. Geological Survey Data Release. (2019). https://doi.org/10.5066/P9UNYG2R. Accessed 6 Nov 2019.

    68.
    Omernik, J. & Griffith, G. Ecoregions of the conterminous United States: Evolution of a hierarchical spatial framework. Environ. Manag. 54, 1249–1266 (2014).
    ADS  Article  Google Scholar 

    69.
    U.S. Geological Survey. GAP/LANDFIRE National Terrestrial Ecosystems Dataset (2010). https://gapanalysis.usgs.gov/gaplandcover/featured-post-1/. Accessed 16 Mar 2017.

    70.
    U.S. Geological Survey. Global 30 arc-second elevation (GTOPO30). U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center (2015). https://lta.cr.usgs.gov/GTOPO30. Accessed 2 Mar 2018.

    71.
    Dobrowski, S. Z. et al. Climatic Water Balance and Velocity of Climate Change Data for the Contiguous US During the 20th Century. (2013). https://adaptwest.databasin.org/pages/adaptwest-waterbalance. Accessed 2 Mar 2018.

    72.
    Hengl, T. et al. SoilGrids1km-global soil information based on automated mapping. PLoS ONE 9, e105992 (2014).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    73.
    Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science (80-. ). 339, 940–943 (2013).

    74.
    Esri. ArcGIS Desktop. (2020). https://www.esri.com/en-us/arcgis/products/arcgis-desktop/overview. Accessed 8 Jan 2017. More

  • in

    Dietary diversity and evolution of the earliest flying vertebrates revealed by dental microwear texture analysis

    1.
    Witton, M. P. Pterosaurs: Natural History, Evolution, Anatomy (Princeton Univ. Press, 2013).
    2.
    Barrett, P. M., Butler, R. J., Edwards, N. P. & Milner, A. R. Pterosaur distribution in time and space: an atlas. Zitteliana 28, 61–107 (2008).
    Google Scholar 

    3.
    Dean, C. D., Mannion, P. D. & Butler, R. J. Preservational bias controls the fossil record of pterosaurs. Palaeontology 59, 225–247 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Bestwick, J., Unwin, D. M., Butler, R. J., Henderson, D. M. & Purnell, M. A. Pterosaur dietary hypotheses: a review of ideas and approaches. Biol. Rev. 93, 2021–2048 (2018).
    PubMed  Article  Google Scholar 

    5.
    Wang, X. & Zhou, Z. Pterosaur assemblages of the Jehol Biota and their implication for the Early Cretaceous pterosaur radiation. Geol. J. 41, 405–418 (2006).
    Article  Google Scholar 

    6.
    Bennett, S. C. A statistical study of Rhamphorhynchus from the Solnhofen limestone of Germany: year-classes of a single large species. J. Paleontol. 69, 569–580 (1995).
    Article  Google Scholar 

    7.
    Prondvai, E., Stein, K., Ősi, A. & Sander, M. P. Life history of Rhamphorhynchus inferred from bone histology and the diversity of pterosaurian growth strategies. PLoS ONE 7, e31392 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Bennett, S. C. New smallest specimen of the pterosaur Pteranodon and ontogenetic niches in pterosaurs. J. Vert. Paleontol. 92, 254–271 (2017).
    Article  Google Scholar 

    9.
    Benson, R. B., Frigot, R. A., Goswami, A., Andres, B. & Butler, R. J. Competition and constraint drove Cope’s rule in the evolution of giant flying reptiles. Nat. Comm. 5, 3567 (2014).
    ADS  Article  CAS  Google Scholar 

    10.
    Nesbitt, S. J. The early evolution of archosaurs: relationships and the origin of major clades. Bull. Am. Mus. Nat. Hist. 352, 1–292 (2011).
    Article  Google Scholar 

    11.
    Witton, M. P. in New Perspectives on Pterosaur Palaeobiology (eds. Hone, D. W. E., Witton, M. P. & Martill, D. M.) Vol. 455, 7–23 (Geol. Soc. Lond. Spec. Pub., 2018).

    12.
    Ősi, A. Feeding-related characters in basal pterosaurs: implications for jaw mechanism, dental function and diet. Lethaia 44, 136–152 (2011).
    Article  Google Scholar 

    13.
    Zhou, C.-F., Gao, K.-Q., Yi, H., Xue, J., Li, Q. & Fox, R. C. Earliest filter-feeding pterosaur from the Jurassic of China and ecological evolution of Pterodactyloidea. R. Soc. Open Sci. 4, 160672 (2017).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Ungar, P. S., Brown, C. A., Bergstrom, T. S. & Walker, A. Quantification of dental microwear by tandem scanning confocal microscopy and scale-sensitive fractal analysis. Scanning 25, 185–193 (2003).
    PubMed  Article  PubMed Central  Google Scholar 

    15.
    Daegling, D. J. et al. Viewpoints: feeding mechanics, diet and dietary adaptations in early hominins. Am. J. Phys. Anthropol. 151, 356–371 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    16.
    Purnell, M., Seehausen, O. & Galis, F. Quantitative three-dimensional microtextural analyses of tooth wear as a tool for dietary discrimination in fishes. J. R. Soc. Interface 9, 2225–2233 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    17.
    Purnell, M. A. & Darras, L. P. G. 3D tooth microwear texture analysis in fishes as a test of dietary hypotheses of durophagy. Surf. Topogr. Metrol. Prop. 4, 014006 (2016).
    ADS  Article  Google Scholar 

    18.
    Bestwick, J., Unwin, D. M. & Purnell, M. A. Dietary differences in archosaur and lepidosaur reptiles revealed by dental microwear textural analysis. Sci. Rep. 9, 11691 (2019).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    19.
    ISO 25178-2. Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 2: Terms, Definitions and Surface Texture Parameters (International Organisation for Standardisation) 1–42 (2012).

    20.
    Winkler, D. E., Schulz-Kornas, E., Kaiser, T. M. & Tütken, T. Dental microwear texture reflects dietary tendencies in extant Lepidosauria despite their limited use of oral food processing. Proc. R. Soc. B. 286, 20190544 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    21.
    Frey, E. & Tischlinger, H. The Late Jurassic pterosaur Rhamphorhynchus, a frequent victim of the ganoid fish Aspidorhynchus? PLoS ONE 7, e31945 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Wellnhofer, P. Die Rhamphorhynchoidea (Pterosauria) der Oberjura-Plattenkalke Süddeutschlands, Teil III: Palökologie und Stammesgeschichte. Palaeontogr. Abt. A 1–3, 1–30 (1975).

    23.
    Hone, D., Henderson, D. M., Therrien, F. & Habib, M. B. A specimen of Rhamphorhynchus with soft tissue preservation, stomach contents and a putative coprolite. PeerJ 3, e1191 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    24.
    Wellnhofer, P. The Illustrated Encyclopaedia of Pterosaurs (Salamander Books, 1991).

    25.
    Witton, M. P. New insights into the skull of Istiodactylus latidens (Ornithocheiroidea, Pterodactyloidea). PLoS ONE 7, e33170 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Dalla Vecchia, F. M. in Anatomy, Phylogeny and Palaeobiology of Early Archosaurs and their Kin (eds. Nesbitt, S.J., Desojo, J.B. & Irmis, R.B.) 379, 119–155 (Geol. Soc. Lond. Spec. Pub., 2013).

    27.
    Veldmeijer, A. J., Signore, M. & Bucci, E. in Predation in Organisms—A Distinct Phenomenon (ed. Elewa, A.M.T.) 295–308 (Springer, 2007).

    28.
    Unwin, D. M. & Martill, D. M. in The Crato Fossil Beds of Brazil: Window into an Ancient World (eds. Martill, D. M., Bechly, G. & Loveridge, B.) 475–524. (Cambridge Univ. Press, 2007).

    29.
    Henderson, D. M. in New Perspectives on Pterosaur Palaeobiology (eds. Hone, D. W. E., Witton, M. P. & Martill, D. M.) 455, 25–44 (Geol. Soc. Lond. Spec. Pub., 2018).

    30.
    Unwin, D. M. The Pterosaurs from Deep Time (Pi Press, 2006).

    31.
    Hoffmann, R., Bestwick, J., Berndt, G., Fuchs, D. & Klug, C. Pterosaurs ate soft-bodies cephalopods (Coleoidea). Sci. Rep. 10, 1230 (2020).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Platt, S. G., Thorbjarnarson, J. B., Rainwater, T. R. & Martin, D. R. Diet of the American Crocodile (Crocodylus acutus) in marine environments of Coastal Belize. J. Herpet 47, 1–10 (2013).
    Article  Google Scholar 

    33.
    Lü, J., Kundrát, M. & Shen, C. New material of the pterosaur Gladocephaloideus Lü et al., 2012 from the Early Cretaceous of Liaoning Province, China, with comments on its systematic position. PLoS ONE 11, e0154888 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    34.
    Andres, B. & Myers, T. S. Lone star pterosaurs. Earth Env. Sci. Trans. R. Soc. Edinburgh. 103, 383–398 (2013).
    Article  Google Scholar 

    35.
    Wang, X. et al. New evidence from China for the nature of the pterosaur evolutionary transition. Sci. Rep. 7, 42763 (2017).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Andres, B. Death and taxa: the shape of pterosaur evolution. In The 5th International Symposium on Pterosaurs (Univ. Portsmouth, UK, 2015).

    37.
    Wang, M., Wang, X., Wang, Y. & Zhou, Z. A new basal bird from China with implications for morphological diversity in early birds. Sci. Rep. 6, 19700 (2016).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    38.
    Losos, J. B. & Greene, H. W. Ecological and evolutionary implications of diet in monitor lizards. Biol. J. Linn. Soc. 35, 379–409 (1988).
    Article  Google Scholar 

    39.
    Nifong, J. C. et al. Animal-borne imaging reveals novel insights into the foraging behaviors and diel activity of a large-bodied apex predator, the American alligator (Alligator mississippiensis). PLoS ONE 9, e83953 (2014).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    40.
    Chatterjee, S. & Templin, R. J. Posture, Locomotion, and Paleoecology of Pterosaurs. Vol. 376, 1–64 (Geol. Soc. Am. Spec. Pub, 2004)..

    41.
    Delany, M. F., Linda, S. B. & Moore, C. T. Diet and condition of American alligators in 4 Florida lakes. Proc. Annual Conference on Southeastern Association of Fish and Wildlife Agencies (eds Eversole, R. G., Wong, K. C., Chamberlain, M. & Rohwer, F.) Vol. 53, 375–389 (1999).

    42.
    Laverty, T. M. & Dobson, A. P. Dietary overlap between black caimans and spectacled caimans in the Peruvian Amazon. Herpetologica 69, 91–101 (2013).
    Article  Google Scholar 

    43.
    Thorbjarnarson, J. B. The status and ecology of the American crocodile in Haiti. Bull. Fla. Mus. Biol. Sci. 33, 1–86 (1988).
    Google Scholar 

    44.
    Wallace, K. M. & Leslie, A. J. Diet of the Nile Crocodile (Crocodylus niloticus) in the Okavango Delta. Botsw. J. Herpet. 42, 361–368 (2008).
    Article  Google Scholar 

    45.
    Sah, S. A. M. & Stuebing, R. B. Diet, growth and movements of juvenile crocodiles Crocodylus porsus Schneider in the Klias river, Sabah, Malaysia. J. Trop. Ecol. 12, 651–662 (1996).
    Article  Google Scholar 

    46.
    Taylor, J. A. The foods and feeding habits of subadult Crocodylus porosus Schneider in Northern Australia. Aust. Wildl. Res. 6, 347–359 (1979).
    ADS  Article  Google Scholar 

    47.
    Hussain, S. A. Ecology of Gharial (Gavialis gangeticus) in National Chambal Sanctuary, India. MPhil thesis, Aligarh Muslim University (1991).

    48.
    Auffenberg, W. The Behavioral Ecology of the Komodo Monitor (Univ. Press, Florida, 1981).
    Google Scholar 

    49.
    Dalhuijsen, K., Branch, W. R. & Alexander, G. J. A comparative analysis of the diets of Varanus albigularis and Varanus niloticus in South Africa. Afr. Zool. 49, 83–93 (2014).
    Article  Google Scholar 

    50.
    Auffenberg, W. Gray’s Monitor Lizard (Univ. Press, Florida, 1988).
    Google Scholar 

    51.
    Greene, H. W. Diet and arboreality in the emerald monitor, Varanus prasinus, with comments on the study of adaptation. Fieldiana Zool. 31, 1–12 (1986).
    Google Scholar 

    52.
    Rahman, K. M. M., Rakhimov, I. I. & Khan, M. M. H. Activity budgets and dietary investigations of Varanus salvator (Reptilia: Varanidae) in Karamjal ecotourism spot of Bangladesh Sundarbans mangrove forest. Basic Appl. Herpet 31, 45–56 (2017).
    Google Scholar 

    53.
    Almenar, D., Aihartza, J., Goiti, U., Salsamendi, E. & Garin, I. Diet and prey selection in the trawling long-fingered bat. J. Zool. 274, 340–348 (2008).
    Article  Google Scholar 

    54.
    Berge, L. Resource Partitioning between the Cryptic Species Brandt’s bat (Myotis brandtii) and the Whiskered Bat (M. mystacinus) in the UK. PhD thesis, Univ. Bristol (2007).

    55.
    Brooke, A. P. Diet of the fishing bat, Noctilio leporinus (Chiroptera: Noctilionidae). J. Mammal. 75, 212–218 (1994).
    Article  Google Scholar 

    56.
    Jones, G. Flight peformance, echolocation and foraging behaviour in noctule bats Nyctalus noctula. J. Zool. Soc. Lond. 237, 303–312 (1995).
    Article  Google Scholar 

    57.
    Rydell, J. Food habits of northern (Eptesicus nilssoni) and brown long-eared (Plecotus auritus) bats in Sweden. Holarct. Ecol. 12, 16–20 (1989).
    Google Scholar 

    58.
    Flanders, F. & Jones, G. Roost use, ranging behavior, and diet of greater horseshoe bats (Rhinolophus ferrumequinum) using a transitional roost. J. Mammal. 90, 888–896 (2009).
    Article  Google Scholar 

    59.
    Humphrey, S. R., Bonaccorso, F. J. & Zinn, T. J. Guild structure of surface-gleaning bats in Panamá. Ecology 64, 284–294 (1983).
    Article  Google Scholar 

    60.
    Bonato, V., Facure, K. G. & Uidea, W. Food habits of bats of subfamily Vampyrinae in Brazil. J. Mammal. 85, 708–713 (2004).
    Article  Google Scholar 

    61.
    Fukuda, Y., Saafeld, K., Lindner, G. & Nichols, T. Estimation of total length from head length of saltwater crocodiles (Crocodylus porosus) in the Northern Territory, Australia. J. Herpetol. 47, 34–40 (2013).
    Article  Google Scholar 

    62.
    Santana, S. E., Dumont, E. R. & Davis, J. L. Mechanics of bite force production and its relationship to diet in bats. Funct. Ecol. 24, 776–784 (2010).
    Article  Google Scholar 

    63.
    Williams, V. S. & Doyle, A. M. Cleaning fossil tooth surfaces for microwear analysis: use of solvent gels to remove resistant consolidant. Palaeontol. Electron. 13, 2T (2010).
    Google Scholar 

    64.
    Schubert, B. W. & Ungar, P. S. Wear facets and enamel spalling in tyrannosaurid dinosaurs. Acta Palaeontol. Pol. 50, 93–99 (2005).
    Google Scholar 

    65.
    Goodall, R. H., Darras, L. P. & Purnell, M. A. Accuracy and precision of silicon based impression media for quantitative areal texture analysis. Sci. Rep. 5, 10800 (2015).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    66.
    Purnell, M. A., Crumpton, N., Gill, P. G., Jones, G. & Rayfield, E. J. Within-guild dietary discrimination from 3-D textural analysis of tooth microwear in insectivorous mammals. J. Zool. 291, 249–257 (2013).
    CAS  Article  Google Scholar 

    67.
    Schulz, E., Calandra, I. & Kaiser, T. M. Feeding ecology and chewing mechanics in hoofed mammals: 3D tribology of enamel wear. Wear 300, 169–179 (2013).
    CAS  Article  Google Scholar 

    68.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B. 57, 289–300 (1995).
    MathSciNet  MATH  Google Scholar 

    69.
    Purnell, M. A., Goodall, R. H., Thomson, S. & Matthews, C. J. D. Tooth microwear texture in odontocete whales: variation with tooth characteristics and implications for dietary analysis. Biosurf. Biotribol. 3, 184–195 (2017).
    Article  Google Scholar 

    70.
    McDonald, J. H. Handbook of Biological Sciences 3rd edn. (Sparky House Publishing, 2014).

    71.
    Bell, M. A. & Lloyd, G. T. strap: an R package for plotting phylogenies against stratigraphy and assessing their stratigraphic congruence. Palaeontology 58, 379–389 (2014).
    Article  Google Scholar 

    72.
    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2010).

    73.
    Revell, L. J. Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    Article  Google Scholar 

    74.
    Bantim, R. A. M., Saraiva, A. A. F. & Sayão, J. M. Skull variation and the shape of the sagittal premaxillary crest in anhanguerid pterosaurs (Pterosauria, Pterodactyloidea) from the Araripe Basin, Northeast Brazil. Hist. Biol. 27, 656–664 (2014).
    Article  Google Scholar 

    75.
    Dalla Vecchia, F. M. The first Italian specimen of Austriadactylus cristatus (Diapsida, Pterosauria) from the Norian (Upper Triassic) of the carnic Prealps. Riv. Ital. Paleontol. S. 115, 291–304 (2009).
    Google Scholar 

    76.
    Jiang, S.-X., Wang, X.-L., Meng, X. & Cheng, X. A new boreopterid pterosaur from the Lower Cretaceous of western Liaoning, China, with a reassessment of the phylogenetic relationships of the Boreopteridae. J. Paleontol. 88, 823–828 (2014).
    Article  Google Scholar 

    77.
    Martill, D. M. First occurrence of the pterosaur Coloborhynchus (Pterosauria, Ornithocheiridae) from the Wessex Formation (Lower Cretaceous) of the Isle of Wight, England. Proc. Geol. Assoc. 126, 377–380 (2015).
    Article  Google Scholar 

    78.
    Cheng, X., Wang, X., Jiang, S. & Kellner, A. W. A. A new scaphognathid pterosaur from western Liaoning. China Hist. Biol. 24, 101–111 (2012).
    Article  Google Scholar 

    79.
    Bestwick, J., Unwin, D. M., Butler, R. J. & Purnell, M. A. Dietary diversity and evolution of the earliest flying vertebrates revealed by dental microwear texture analysis. Data Sets. Zenodo https://doi.org/10.5281/zenodo.4018876 (2020).
    Article  Google Scholar  More