More stories

  • in

    Successful post-glacial colonization of Europe by single lineage of freshwater amphipod from its Pannonian Plio-Pleistocene diversification hotspot

    1.
    Hewitt, G. M. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58, 247–276. https://doi.org/10.1006/bijl.1996.0035 (1996).
    Article  Google Scholar 
    2.
    Hewitt, G. M. Genetic consequences of climatic oscillations in the quaternary. Philos. Trans. R. Soc. B Biol. Sci. 359, 183–195. https://doi.org/10.1098/rstb.2003.1388 (2004).
    CAS  Article  Google Scholar 

    3.
    Patton, H. et al. Deglaciation of the Eurasian ice sheet complex. Quat. Sci. Rev. 169, 148–172. https://doi.org/10.1016/j.quascirev.2017.05.019 (2017).
    ADS  Article  Google Scholar 

    4.
    Hewitt, G. M. Postglacial re-colonisation of European biota. Biol. J. Linn. Soc. 68, 87–112 (1999).
    Article  Google Scholar 

    5.
    Sworobowicz, L. et al. Revisiting the phylogeography of Asellus aquaticus in Europe: insights into cryptic diversity and spatiotemporal diversification. Freshw. Biol. 60, 1824–1840. https://doi.org/10.1111/fwb.12613 (2015).
    Article  Google Scholar 

    6.
    Schmitt, T. & Varga, Z. Extra-Mediterranean refugia: the rule and not the exception?. Front. Zool. 9, 1–12. https://doi.org/10.1186/1742-9994-9-22 (2012).
    Article  Google Scholar 

    7.
    Verovnik, R., Sket, B. & Trontelj, P. The colonization of Europe by the freshwater crustacean Asellus aquaticus (Crustacea: Isopoda) proceeded from ancient refugia and was directed by habitat connectivity. Mol. Ecol. 14, 4355–4369. https://doi.org/10.1111/j.1365-294X.2005.02745.x (2005).
    CAS  Article  PubMed  Google Scholar 

    8.
    Sworobowicz, L., Mamos, T., Grabowski, M. & Wysocka, A. Lasting through the ice age: the role of the proglacial refugia in the maintenance of genetic diversity, population growth, and high dispersal rate in a widespread freshwater crustacean. Freshw. Biol. https://doi.org/10.1111/fwb.13487 (2020).
    Article  Google Scholar 

    9.
    Neumann, K. et al. Genetic spatial structure of European common hamsters (Cricetus cricetus)—a result of repeated range expansion and demographic bottlenecks. Mol. Ecol. 14, 1473–1483. https://doi.org/10.1111/j.1365-294X.2005.02519.x (2005).
    CAS  Article  PubMed  Google Scholar 

    10.
    Fussi, B., Lexer, C. & Heinze, B. Phylogeography of Populus alba (L.) and Populus tremula (L.) in Central Europe: secondary contact and hybridisation during recolonisation from disconnected refugia. Tree Genet. Genomes 6, 439–450. https://doi.org/10.1007/s11295-009-0262-5 (2010).
    Article  Google Scholar 

    11.
    Grabowski, M., Mamos, T., Bącela-Spychalska, K., Rewicz, T. & Wattier, R. A. Neogene paleogeography provides context for understanding the origin and spatial distribution of cryptic diversity in a widespread Balkan freshwater amphipod. PeerJ 5, e3016. https://doi.org/10.7717/peerj.3016 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    12.
    Hou, Z., Sket, B., Fiser, C. & Li, S. Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. Proc. Natl. Acad. Sci. 108, 14533–14538. https://doi.org/10.1073/pnas.1104636108 (2011).
    ADS  Article  PubMed  Google Scholar 

    13.
    Mamos, T., Wattier, R., Burzyński, A. & Grabowski, M. The legacy of a vanished sea: a high level of diversification within a European freshwater amphipod species complex driven by 15 My of Paratethys regression. Mol. Ecol. 25, 795–810. https://doi.org/10.1111/mec.13499 (2016).
    Article  PubMed  Google Scholar 

    14.
    Perea, S. et al. Phylogenetic relationships and biogeographical patterns in Circum-Mediterranean subfamily Leuciscinae (Teleostei, Cyprinidae) inferred from both mitochondrial and nuclear data. BMC Evol. Biol. 10, 1–27. https://doi.org/10.1186/1471-2148-10-265 (2010).
    CAS  Article  Google Scholar 

    15.
    Saito, T. et al. Phylogeography of freshwater planorbid snails reveals diversification patterns in Eurasian continental islands. BMC Evol. Biol. https://doi.org/10.1186/s12862-018-1273-3 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    16.
    Utevsky, S. & Trontelj, P. Phylogeography of the southern medicinal leech, Hirudo verbana: a response to Živić et al. (2015). Aquat. Ecol. 50, 97–100. https://doi.org/10.1007/s10452-015-9553-0 (2016).
    CAS  Article  Google Scholar 

    17.
    Grabowski, M., Jażdżewski, K. & Konopacka, A. Alien crustacea in polish waters—Amphipoda. Aquat. Invas. 2, 25–38. https://doi.org/10.3391/ai.2007.2.1.3 (2007).
    Article  Google Scholar 

    18.
    Kontula, T. & Väinölä, R. Postglacial colonization of Northern Europe by distinct phylogeographic lineages of the bullhead, Cottus gobio. Mol. Ecol. 10, 1983–2002. https://doi.org/10.1046/j.1365-294X.2001.01328.x (2001).
    CAS  Article  PubMed  Google Scholar 

    19.
    Mateus, C. S., Almeida, P. R., Mesquita, N., Quintella, B. R. & Alves, M. J. European lampreys: new insights on postglacial colonization, gene flow and speciation. PLoS ONE 11, 1–22. https://doi.org/10.1371/journal.pone.0148107 (2016).
    CAS  Article  Google Scholar 

    20.
    Jażdżewski, K. Range extensions of some gammaridean species in European inland waters caused by human activity. 10–16 (1980).

    21.
    Bij de Vaate, A., Jażdżewski, K., Ketelaars, H. A. M., Gollasch, S. & Van der Velde, G. Geographical patterns in range extension of Ponto-Caspian macroinvertebrate species in Europe. Can. J. Fish. Aquat. Sci. 59, 1159–1174. https://doi.org/10.1139/f02-098 (2002).
    Article  Google Scholar 

    22.
    Panov, V. E. et al. Assessing the risks of aquatic species invasions via European inland waterways: from concepts to environmental indicators. Integr. Environ. Assess. Manag. 5, 110–126. https://doi.org/10.1897/IEAM_2008-034.1 (2009).
    CAS  Article  PubMed  Google Scholar 

    23.
    Väinölä, R. et al. Global diversity of amphipods (Amphipoda; Crustacea) in freshwater. Hydrobiologia 595, 241–255. https://doi.org/10.1007/s10750-007-9020-6 (2008).
    Article  Google Scholar 

    24.
    Weiss, M. & Leese, F. Widely distributed and regionally isolated! Drivers of genetic structure in Gammarus fossarum in a human-impacted landscape. BMC Evol. Biol. 16, 153. https://doi.org/10.1186/s12862-016-0723-z (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    25.
    Weigand, A. M., Michler-Kozma, D., Kuemmerlen, M. & Jourdan, J. Substantial differences in genetic diversity and spatial structuring among (cryptic) amphipod species in a mountainous river basin. Freshw. Biol. 65, 1641–1656. https://doi.org/10.1111/fwb.13529 (2020).
    CAS  Article  Google Scholar 

    26.
    Rachalewski, M., Banha, F., Grabowski, M. & Anastácio, P. M. Ectozoochory as a possible vector enhancing the spread of an alien amphipod Crangonyx pseudogracilis. Hydrobiologia 717, 109–117. https://doi.org/10.1007/s10750-013-1577-7 (2013).
    Article  Google Scholar 

    27.
    Peck, S. B. Amphipod dispersal in the fur of aquatic mammals. Can. F. Nat. 89, 181–182 (1975).
    Google Scholar 

    28.
    Sainte-Marie, B. A review of the reproductive bionomics of aquatic gammaridean amphipods: variation of life history traits with latitude, depth, salinity and superfamily. Hydrobiologia 223, 189–227. https://doi.org/10.1007/BF00047641 (1991).
    Article  Google Scholar 

    29.
    Rewicz, T., Grabowski, M., MacNeil, C. & Bącela-Spychalska, K. The profile of a ‘perfect’ invader—the case of killer shrimp, Dikerogammarus villosus. Aquat. Invas. 9, 267–288. https://doi.org/10.3391/ai.2014.9.3.04 (2014).
    Article  Google Scholar 

    30.
    Vader, W. & Tandberg, A. H. S. Gammarid amphipods (Crustacea) in Norway, with a key to the species. Fauna Nor. 39, 12–25. https://doi.org/10.5324/fn.v39i0.2873 (2019).
    Article  Google Scholar 

    31.
    Macdonald, K. S., Yampolsky, L. & Duffy, J. E. Molecular and morphological evolution of the amphipod radiation of Lake Baikal. Mol. Phylogenet. Evol. 35, 323–343. https://doi.org/10.1016/j.ympev.2005.01.013 (2005).
    CAS  Article  PubMed  Google Scholar 

    32.
    Grabowski, M., Wysocka, A. & Mamos, T. Molecular species delimitation methods provide new insight into taxonomy of the endemic gammarid species flock from the ancient Lake Ohrid. Zool. J. Linn. Soc. 181, 272–285. https://doi.org/10.1093/zoolinnean/zlw025 (2017).
    Article  Google Scholar 

    33.
    Jabłońska, A., Wrzesińska, W., Zawal, A., Pešić, V. & Grabowski, M. Long-term within-basin isolation patterns, different conservation units, and interspecific mitochondrial DNA introgression in an amphipod endemic to the ancient Lake Skadar system, Balkan Peninsula. Freshw. Biol. 65, 209–225. https://doi.org/10.1111/fwb.13414 (2020).
    CAS  Article  Google Scholar 

    34.
    Copilaş-Ciocianu, D. & Petrusek, A. The southwestern Carpathians as an ancient centre of diversity of freshwater gammarid amphipods: insights from the Gammarus fossarum species complex. Mol. Ecol. 24, 3980–3992. https://doi.org/10.1111/mec.13286 (2015).
    Article  PubMed  Google Scholar 

    35.
    Copilaş-Ciocianu, D. & Petrusek, A. Phylogeography of a freshwater crustacean species complex reflects a long-gone archipelago. J. Biogeogr. 44, 421–432. https://doi.org/10.1111/jbi.12853 (2017).
    Article  Google Scholar 

    36.
    Leuven, R. S. E. W. et al. The river Rhine: a global highway for dispersal of aquatic invasive species. Biol. Invas. 11, 1989–2008. https://doi.org/10.1007/s10530-009-9491-7 (2009).
    Article  Google Scholar 

    37.
    Kelly, D. W., Muirhead, J. R., Heath, D. D. & Macisaac, H. J. Contrasting patterns in genetic diversity following multiple invasions of fresh and brackish waters. Mol. Ecol. 15, 3641–3653. https://doi.org/10.1111/j.1365-294X.2006.03012.x (2006).
    CAS  Article  PubMed  Google Scholar 

    38.
    Panov, V. & Berezina, N. Invasive aquatic species of Europe. Distribution, impacts and management. Invas. Aquat. Species Eur. Distrib. Impacts Manag. https://doi.org/10.1007/978-94-015-9956-6 (2002).
    Article  Google Scholar 

    39.
    Csabai, Z. et al. Mass appearance of the Ponto-Caspian invader Pontogammarus robustoides in the River Tisza catchment: bypass in the southern invasion corridor?. Knowl. Manag. Aquat. Ecosyst. https://doi.org/10.1051/kmae/2020003 (2020).
    Article  Google Scholar 

    40.
    Rewicz, T., Wattier, R., Grabowski, M., Rigaud, T. & Bącela-Spychalska, K. Out of the Black sea: phylogeography of the invasive killer shrimp Dikerogammarus villosus across Europe. PLoS ONE 10, 1–20. https://doi.org/10.1371/journal.pone.0118121 (2015).
    CAS  Article  Google Scholar 

    41.
    Rewicz, T. et al. The killer shrimp, Dikerogammarus villosus, invading European Alpine Lakes: a single main source but independent founder events with an overall loss of genetic diversity. Freshw. Biol. 62, 1036–1051. https://doi.org/10.1111/fwb.12923 (2017).
    CAS  Article  Google Scholar 

    42.
    Jażdżewska, A. M. et al. Cryptic diversity and mtDNA phylogeography of the invasive demon shrimp, Dikerogammarus haemobaphes (Eichwald, 1841), in Europe. NeoBiota 57, 53–86. https://doi.org/10.3897/neobiota.57.46699 (2020).
    Article  Google Scholar 

    43.
    Jażdżewski, K. & Roux, A. L. Biogéographie de Gammarus roeseli Gervais en Europe, en particulier répartition en France et en Pologne (1988).

    44.
    Piscart, C. & Bollache, L. Crustacés amphipodes de surface : gammares d’eau douce.. Association Française de Limnologie, Introduction pratique à la systématique des organismes des eaux continentales de France (2012).

    45.
    Paganelli, D., Gazzola, A., Marchini, A. & Sconfietti, R. The increasing distribution of Gammarus roeselii Gervais, 1835: first record of the non-indigenous freshwater amphipod in the sub-lacustrine Ticino River basin (Lombardy, Italy). Bioinvas. Rec. 4, 37–41. https://doi.org/10.3391/bir.2015.4.1.06 (2015).
    Article  Google Scholar 

    46.
    Karaman, G. S. & Pinkster, S. Freshwater gammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea-Amphipoda) Part II. Gammarus roeseli-group and related species. Bijdragen tot de dierkunde 57, 207–260. https://doi.org/10.1163/26660644-05702005 (1977).
    Article  Google Scholar 

    47.
    Moret, Y., Bollache, L., Wattier, R. & Rigaud, T. Is the host or the parasite the most locally adapted in an amphipod-acanthocephalan relationship? A case study in a biological invasion context. Int. J. Parasitol. 37, 637–644. https://doi.org/10.1016/j.ijpara.2006.12.006 (2007).
    Article  PubMed  Google Scholar 

    48.
    Copilaş-Ciocianu, D., Borza, P. & Petrusek, A. Extensive variation in the morphological anti-predator defense mechanism of Gammarus roeselii Gervais, 1835 (Crustacea:Amphipoda). Freshw. Sci. 39, 47–55. https://doi.org/10.1086/707259 (2020).
    Article  Google Scholar 

    49.
    Miller, B. J., von der Heyden, S. & Gibbons, M. J. Significant population genetic structuring of the holoplanktic scyphozoan Pelagia noctiluca in the Atlantic Ocean. Afr. J. Mar. Sci. 34, 425–430. https://doi.org/10.2989/1814232X.2012.726646 (2012).
    Article  Google Scholar 

    50.
    Brown, W. M., George, M. Jr. & Wilson, A. C. Rapid evolution of animal mitochondrial DNA. Genetics 76, 1967–1971. https://doi.org/10.1002/(sici)1097-4555(199706)28:6%3c433::aid-jrs125%3e3.3.co;2-5 (1979).
    CAS  Article  Google Scholar 

    51.
    Kázmér, M. Birth, life and death of the Pannonian Lake. Palaeogeogr. Palaeoclimatol. Palaeoecol. 79, 171–188. https://doi.org/10.1016/0031-0182(90)90111-J (1990).
    Article  Google Scholar 

    52.
    Hewitt, G. M. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 68, 87–112. https://doi.org/10.1006/bijl.1999.0332 (1999).
    Article  Google Scholar 

    53.
    Rudolph, K., Coleman, C. O., Mamos, T. & Grabowski, M. Description and post-glacial demography of Gammarus jazdzewskii sp. nov. (Crustacea: Amphipoda) from Central Europe. Syst. Biodivers. 16, 587–603. https://doi.org/10.1080/14772000.2018.1470118 (2018).
    Article  Google Scholar 

    54.
    Copilaş-Ciocianu, D., Fišer, C., Borza, P. & Petrusek, A. Is subterranean lifestyle reversible? Independent and recent large-scale dispersal into surface waters by two species of the groundwater amphipod genus Niphargus. Mol. Phylogenet. Evol. 119, 37–49. https://doi.org/10.1016/j.ympev.2017.10.023 (2018).
    Article  PubMed  Google Scholar 

    55.
    Antal, L. et al. Phylogenetic evidence for a new species of Barbus in the Danube River basin. Mol. Phylogenet. Evol. 96, 187–194. https://doi.org/10.1016/j.ympev.2015.11.023 (2016).
    CAS  Article  PubMed  Google Scholar 

    56.
    Walker, M. J. C. Climatic changes in Europe during the last glacial/interglacial transition. Quat. Int. 28, 63–76. https://doi.org/10.1016/1040-6182(95)00030-M (1995).
    Article  Google Scholar 

    57.
    Pawłowski, D. et al. The response of flood-plain ecosystems to the Late Glacial and Early Holocene hydrological changes: a case study from a small Central European river valley. CATENA 147, 411–428. https://doi.org/10.1016/j.catena.2016.07.034 (2016).
    CAS  Article  Google Scholar 

    58.
    Notebaert, B. & Verstraeten, G. Sensitivity of West and Central European river systems to environmental changes during the Holocene: a review. Earth Sci. Rev. 103, 163–182. https://doi.org/10.1016/j.earscirev.2010.09.009 (2010).
    ADS  Article  Google Scholar 

    59.
    Gibling, M. R. River systems and the anthropocene: a late pleistocene and holocene timeline for human influence. Quaternary 1, 21. https://doi.org/10.3390/quat1030021 (2018).
    Article  Google Scholar 

    60.
    Gherardi, F. Biological invaders in inland waters: profiles, distribution, and threats. https://doi.org/10.1007/978-1-4020-6029-8 (2007).

    61.
    Jazdzewski, K., Konopacka, A. & Grabowski, M. Recent drastic changes in the gammarid fauna (Crustacea, Amphipoda) of the Vistula River deltaic system in Poland caused by alien invaders. Divers. Distrib. 10, 81–87. https://doi.org/10.1111/j.1366-9516.2004.00062.x (2004).
    Article  Google Scholar 

    62.
    Jourdan, J., Piro, K., Weigand, A. & Plath, M. Small-scale phenotypic differentiation along complex stream gradients in a non-native amphipod. Front. Zool. 16, 29. https://doi.org/10.1186/s12983-019-0327-8 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    63.
    Mauchart, P., Bereczki, C., Ortmann-Ajkai, A., Csabai, Z. & Szivák, I. Niche segregation between two closely related Gammarids (Crustacea, Amphipoda)—native vs. naturalised non-native species. Crustaceana 87, 1296–1314. https://doi.org/10.1163/15685403-00003355 (2014).
    Article  Google Scholar 

    64.
    Lagrue, C. et al. Interspecific differences in drift behaviour between the native Gammarus pulex and the exotic Gammarus roeseli and possible implications for the invader’s success. Biol. Invas. 13, 1409–1421. https://doi.org/10.1007/s10530-010-9899-0 (2011).
    Article  Google Scholar 

    65.
    Pöckl, M. & Humpesch, U. H. Intra- and inter-specific variations in egg survival and brood development time for Austrian populations of Gammarus fossarum and G. roeseli (Crustacea: Amphipoda). Freshw. Biol. 23, 441–455. https://doi.org/10.1111/j.1365-2427.1990.tb00286.x (1990).
    Article  Google Scholar 

    66.
    Pöckl, M. Effects of temperature, age and body size on moulting and growth in the freshwater amphipods Gammarus fossarum and G. roeseli. https://doi.org/10.1111/j.1365-2427.1992.tb00534.x (1992).

    67.
    Pöckl, M. Reproductive potential and lifetime potential fecundity of the freshwater amphipods Gammarus fossarum and G. roeseli in Austrian streams and rivers. Freshw. Biol. 30, 73–91. https://doi.org/10.1111/j.1365-2427.1993.tb00790.x (1993).
    Article  Google Scholar 

    68.
    Pöckl, M., Webb, B. W. & Sutcliffe, D. W. Life history and reproductive capacity of Gammarus fossarum and G. roeseli (Crustacea: Amphipoda) under naturally fluctuating water temperatures: a simulation study. Freshw. Biol. 48, 53–66. https://doi.org/10.1046/j.1365-2427.2003.00967.x (2003).
    Article  Google Scholar 

    69.
    Aguilera-Muñoz, F., Lafarga-Cruz, F. & Gallardo-Escárate, C. Molecular analysis in Chilean commercial gastropods based on 16S rRNA, COI and ITS1-5.8S rDNA-ITS2 sequences. Gayana (Concepción) 73, 17–27. https://doi.org/10.4067/s0717-65382009000100003 (2009).
    Article  Google Scholar 

    70.
    Alvarez, J. M. & Hoy, M. A. Evaluation of the ribosomal ITS2 DNA sequences in separating closely related populations of the Parasitoid Ageniaspis (Hymenoptera: Encyrtidae) article. Ann. Entomol. Soc. Am. https://doi.org/10.1603/0013-8746(2002)095 (2002).
    Article  Google Scholar 

    71.
    Wesson, D. M., McLain, D. K., Oliver, J. H., Piesman, J. & Collins, F. H. Investigation of the validity of species status of Ixodes dammini (Acari: Ixodidae) using rDNA. Proc. Natl. Acad. Sci. U. S. A. 90, 10221–10225. https://doi.org/10.1073/pnas.90.21.10221 (1993).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    72.
    Tang, J., Toè, L., Back, C. & Unnasch, T. R. Intra-specific heterogeneity of the rDNA internal transcribed spacer in the Simulium damnosum (Diptera: Simuliidae) complex. Mol. Biol. Evol. 13, 244–252. https://doi.org/10.1093/oxfordjournals.molbev.a025561 (1996).
    CAS  Article  PubMed  Google Scholar 

    73.
    Palandačić, A., Bravničar, J., Zupančić, P., Šanda, R. & Snoj, A. Molecular data suggest a multispecies complex of Phoxinus (Cyprinidae) in the Western Balkan Peninsula. Mol. Phylogenet. Evol. https://doi.org/10.1016/j.ympev.2015.05.024 (2015).
    Article  PubMed  Google Scholar 

    74.
    Vucić, M., Jelić, D., Žutinić, P., Grandjean, F. & Jelić, M. Distribution of Eurasian minnows (Phoxinus : Cypriniformes) in the Western Balkans. Knowl. Manag. Aquat. Ecosyst. 419, 11. https://doi.org/10.1051/kmae/2017051 (2018).
    Article  Google Scholar 

    75.
    Buj, I. et al. Peculiar occurrence of Cobitis bilineata Canestrini, 1865 and Sabanejewia larvata (De Filippi, 1859) (Cobitidae, Actinopteri) in the Danube River basin in Croatia. Fundam. Appl. Limnol. https://doi.org/10.1127/fal/2020/1272 (2020).
    Article  Google Scholar 

    76.
    Manning, J. T. Male discrimination and investment in Asellus aquaticus (L.) and A. meridianus Racovitsza (Crustacea: Isopoda). Behaviour 55(1–2), 1–14 (1975).
    CAS  Article  Google Scholar 

    77.
    Bollache, L. & Cézilly, F. Sexual selection on male body size and assortative pairing in Gammarus pulex (Crustacea: Amphipoda): field surveys and laboratory experiments. J. Zool. 264, 135–141. https://doi.org/10.1017/S0952836904005643 (2004).
    Article  Google Scholar 

    78.
    Cornet, S., Luquet, G. & Bollache, L. Influence of female moulting status on pairing decisions and size-assortative mating in amphipods. J. Zool. 286, 312–319. https://doi.org/10.1111/j.1469-7998.2011.00882.x (2012).
    Article  Google Scholar 

    79.
    Grabner, D. S. et al. Invaders, natives and their enemies: distribution patterns of amphipods and their microsporidian parasites in the Ruhr Metropolis, Germany. Parasites Vectors https://doi.org/10.1186/s13071-015-1036-6 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    80.
    Karaman, G. S. & Pinkster, S. Freshwater gammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea-Amphipoda) Part I. Gammarus pulex—group and related species (1977).

    81.
    Karaman, G. S. & Pinkster, S. Freshwater gammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea-Amphipoda). Part III. Gammarus balcanicus—group and related species (1987).

    82.
    Hillis, D. M. & Moritz, C. Molecular Systematics (Sinauer Associates Inc., Sunderland, 1996).
    Google Scholar 

    83.
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 (1990).
    CAS  Article  PubMed  Google Scholar 

    84.
    Kearse, M. et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649. https://doi.org/10.1093/bioinformatics/bts199 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    85.
    Sequencher version 5.4.6 DNA sequence analysis software, Gene Codes Corporation, Ann Arbor, MI USA https://www.genecodes.com.

    86.
    Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302. https://doi.org/10.1093/molbev/msx248 (2017).
    CAS  Article  PubMed  Google Scholar 

    87.
    Ratnasingham, S. & Hebert, P. D. N. The barcode of life data system. Mol. Ecol. Notes 7, 355–364. https://doi.org/10.1111/j.1471-8286.2006.01678.x (2007).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    88.
    Bouckaert, R. et al. BEAST 2: a software platform for bayesian evolutionary analysis. PLoS Comput. Biol. 10, 1–6. https://doi.org/10.1371/journal.pcbi.1003537 (2014).
    CAS  Article  Google Scholar 

    89.
    Bouckaert, R. R. & Drummond, A. J. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 17, 1–11. https://doi.org/10.1186/s12862-017-0890-6 (2017).
    Article  Google Scholar 

    90.
    Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. Tracer v1.6. Available at https://beast.bio.ed.ac.uk/Tracer (2014).

    91.
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874. https://doi.org/10.1093/molbev/msw054 (2016).
    CAS  Article  PubMed  Google Scholar 

    92.
    Leigh, J. W. & Bryant, D. POPART: full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116. https://doi.org/10.1111/2041-210X.12410 (2015).
    Article  Google Scholar 

    93.
    Tajima, F. Statistical Method for Testing the Neutral Mutation Hypothesis by DNA Polymorphism. (1989).

    94.
    Fu, Y. X. New statistical tests of neutrality for DNA samples from a population. Genetics 143, 557–570 (1996).
    CAS  PubMed  PubMed Central  Google Scholar 

    95.
    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).
    Article  PubMed  Google Scholar 

    96.
    Copilaş-Ciocianu, D., Grabowski, M., Parvulescu, L. & Petrusek, A. Zoogeography of epigean freshwater Amphipoda (Crustacea) in Romania: fragmented distributions and wide altitudinal variability. Zootaxa 3893, 243. https://doi.org/10.11646/zootaxa.3893.2.5 (2014).
    Article  PubMed  Google Scholar  More

  • in

    Male Antarctic fur seals: neglected food competitors of bioindicator species in the context of an increasing Antarctic krill fishery

    1.
    Zhou, S. et al. Ecosystem-based fisheries management requires a change to the selective fishing philosophy. Proc. Natl. Acad. Sci. U.S.A. 107, 9485–9489 (2010).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Fulton, E. A., Smith, A. D. M., Smith, D. C. & Johnson, P. An integrated approach is needed for ecosystem based fisheries management: insights from ecosystem-level management strategy evaluation. PLoS ONE 9, e84242 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    3.
    Murphy, E. J. et al. Understanding the structure and functioning of polar pelagic ecosystems to predict the impacts of change. Proc. R. Soc. B Biol. Sci. 283, 20161646 (2016).
    Article  Google Scholar 

    4.
    Schofield, O. et al. Changes in the upper ocean mixed layer and phytoplankton productivity along the West Antarctic Peninsula. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376, 20170173 (2018).
    ADS  Article  CAS  Google Scholar 

    5.
    Nicol, S., Foster, J. & Kawaguchi, S. The fishery for Antarctic krill-recent developments. Fish Fish. 13, 30–40 (2012).
    Article  Google Scholar 

    6.
    Trathan, P. N. et al. Managing fishery development in sensitive ecosystems: identifying penguin habitat use to direct management in Antarctica. Ecosphere 9, e02392 (2018).
    Article  Google Scholar 

    7.
    Warwick-Evans, V. et al. Using habitat models for chinstrap penguins Pygoscelis antarctica to advise krill fisheries management during the penguin breeding season. Divers. Distrib. 24, 1756–1771 (2018).
    Article  Google Scholar 

    8.
    Santa Cruz, F., Ernst, B., Arata, J. A. & Parada, C. Spatial and temporal dynamics of the Antarctic krill fishery in fishing hotspots in the Bransfield Strait and South Shetland Islands. Fish. Res. 208, 157–166 (2018).
    Article  Google Scholar 

    9.
    Sylvester, Z. T. & Brooks, C. M. Protecting Antarctica through Co-production of actionable science: lessons from the CCAMLR marine protected area process. Mar. Policy 111, 103720 (2020).
    Article  Google Scholar 

    10.
    Agnew, D. J. Review: the CCAMLR ecosystem monitoring programme. Antarct. Sci. 9, 235–242 (1997).
    ADS  Article  Google Scholar 

    11.
    Boyd, I. L., McCafferty, D. J., Reid, K., Taylor, R. & Walker, T. R. Dispersal of male and female antarctic fur seals (Arctocephalus gazella). Can. J. Fish. Aquat. Sci. 55, 845–852 (1998).
    Article  Google Scholar 

    12.
    Vergani, D. F. & Coria, N. R. Increase in numbers of male fur seals Arctocephalus gazella during the summer autumn period at Mossman Peninsula (Laurie Island). Polar Biol. 9, 487–488 (1989).
    Article  Google Scholar 

    13.
    Plagányi, É. E. & Butterworth, D. S. The Scotia Sea krill fishery and its possible impacts on dependent predators: modeling localized depletion of prey. Ecol. Appl. 22, 748–761 (2012).
    PubMed  Article  Google Scholar 

    14.
    Watters, G. M., Hill, S. L., Hinke, J. T., Matthews, J. & Reid, K. Decision-making for ecosystem-based management: evaluating options for a krill fishery with an ecosystem dynamics model. Ecol. Appl. 23, 710–725 (2013).
    CAS  PubMed  Article  Google Scholar 

    15.
    Trivelpiece, W. Z. et al. Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. Proc. Natl. Acad. Sci. U.S.A. 108, 7625–7628 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Watters, G. M., Hinke, J. T. & Reiss, C. S. Long-term observations from Antarctica demonstrate that mismatched scales of fisheries management and predator–prey interaction lead to erroneous conclusions about precaution. Sci. Rep. 10, 1–9 (2020).
    Article  CAS  Google Scholar 

    17.
    Hill, S. L., Reid, K., Thorpe, S. E., Hinke, J. & Watters, G. M. A compilation of parameters for ecosystem dynamics models of the Scotia Sea—Antarctic Peninsula region. CCAMLR Sci. 14, 1–25 (2007).
    Google Scholar 

    18.
    Lowther, A. D., Trathan, P., Tarroux, A., Lydersen, C. & Kovacs, K. M. The relationship between coastal weather and foraging behaviour of chinstrap penguins Pygoscelis antarctica. ICES J. Mar. Sci. 75, 1940–1948 (2018).
    Article  Google Scholar 

    19.
    Boehme, L. et al. Technical note: animal-borne CTD-satellite relay data loggers for real-time oceanographic data collection. Ocean Sci. 5, 685–695 (2009).
    ADS  Article  Google Scholar 

    20.
    Lowther, A. D., Lydersen, C., Fedak, M. A., Lovell, P. & Kovacs, K. M. The Argos-CLS Kalman filter: error structures and state-space modelling relative to Fastloc GPS data. PLoS ONE 10, e0124754 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    21.
    Johnson, D. S., London, J. M., Lea, M. A. & Durban, J. W. Continuous-time correlated random walk model for animal telemetry data. Ecology 89, 1208–1215 (2008).
    PubMed  Article  Google Scholar 

    22.
    Benhamou, S. Dynamic approach to space and habitat use based on biased random bridges. PLoS ONE 6, e14592 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Schlitzer, R. Ocean Data View. https://odv.awi.de (2018).

    24.
    Hill, S. L., Trathan, P. N. & Agnew, D. J. The risk to fishery performance associated with spatially resolved management of Antarctic krill (Euphausia superba) harvesting. ICES J. Mar. Sci. 66, 2148–2154 (2009).
    Article  Google Scholar 

    25.
    Trivelpiece, W. Z., Trivelpiece, S. G. & Volkman, N. J. Ecological segregation of Adelie, gentoo, and chinstrap penguins at King George Island Antarctica. Ecology 68, 351–361 (1987).
    Article  Google Scholar 

    26.
    Black, C. E. A comprehensive review of the phenology of Pygoscelis penguins. Polar Biol. 39, 405–432 (2016).
    Article  Google Scholar 

    27.
    Payne, M. R. Growth in the Antarctic fur seal Arctocephalus gazella. J. Zool. 187, 1–20 (1979).
    Article  Google Scholar 

    28.
    Reiss, C. S. et al. Overwinter habitat selection by Antarctic krill under varying sea-ice conditions: implications for top predators and fishery management. Mar. Ecol. Prog. Ser. 568, 1–16 (2017).
    ADS  CAS  Article  Google Scholar 

    29.
    Carlini, A. R., Daneri, G. A., Casaux, R. & Márquez, M. E. I. Haul-out pattern of itinerant male Antarctic fur seals (Arctocephalus gazella) at Laurie Island South Orkney Islands. Polar Res. 25, 139–144 (2006).
    Article  Google Scholar 

    30.
    Waluda, C. M., Gregory, S. & Dunn, M. J. Long-term variability in the abundance of Antarctic fur seals Arctocephalus gazella at Signy Island South Orkneys. Polar Biol. 33, 305–312 (2010).
    Article  Google Scholar 

    31.
    Casaux, R., Juares, M., Carlini, A. & Corbalán, A. The diet of the Antarctic fur seal Arctocephalus gazella at the South Orkney Islands in ten consecutive years. Polar Biol. 39, 1197–1206 (2016).
    Article  Google Scholar 

    32.
    Reid, K. & Arnould, J. P. Y. Y. The diet of Antarctic fur seals Arctocephalus gazella during the breeding season at South Georgia. Polar Biol. 16, 105–114 (1996).
    Article  Google Scholar 

    33.
    Boyd, I. L. Estimating food consumption of marine predators: Antarctic fur seals and macaroni penguins. J. Appl. Ecol. 39, 103–119 (2002).
    Article  Google Scholar 

    34.
    CCAMLR. Krill Fishery Report. Commission for the Conservation of Antarctic Marine Living Resources. https://www.ccamlr.org/en/system/files/00%20KRI48%202016%20v1_1.pdf (2016).

    35.
    Dias, M. P. et al. Identification of marine important bird and biodiversity areas for penguins around the South Shetland Islands and South Orkney Islands. Ecol. Evol. 8, 10520–10529 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    36.
    Lynch, H. J., Naveen, R. & Casanovas, P. Antarctic site inventory breeding bird survey data, 1994–2013. Ecology 94, 2653–2653 (2013).
    Article  Google Scholar 

    37.
    Humphries, G. R. W. et al. Mapping application for penguin populations and projected dynamics (MAPPPD): data and tools for dynamic management and decision support. Polar Rec. (Gr. Brit) 53, 160–166 (2017).
    Article  Google Scholar 

    38.
    Lea, M. A. et al. Colony-based foraging segregation by Antarctic fur seals at the Kerguelen Archipelago. Mar. Ecol. Prog. Ser. 358, 273–287 (2008).
    ADS  Article  Google Scholar 

    39.
    Staniland, I. J., Reid, K. & Boyd, I. L. Comparing individual and spatial influences on foraging behaviour in Antarctic fur seals Arctocephalus gazella. Mar. Ecol. Prog. Ser. 275, 263–274 (2004).
    ADS  Article  Google Scholar 

    40.
    Bonadonna, F., Lea, M. A. & Guinet, C. Foraging routes of Antarctic fur seals (Arctocephalus gazella) investigated by the concurrent use of satellite tracking and time-depth recorders. Polar Biol. 23, 149–159 (2000).
    Article  Google Scholar 

    41.
    Richerson, K., Santora, J. A. & Mangel, M. Climate variability and multi-scale assessment of the krill preyscape near the north Antarctic Peninsula. Polar Biol. 40, 697–711 (2017).
    Article  Google Scholar 

    42.
    Cleary, A. C., Durbin, E. G., Casas, M. C. & Zhou, M. Winter distribution and size structure of Antarctic krill Euphausia superba populations in-shore along the West Antarctic Peninsula. Mar. Ecol. Prog. Ser. 552, 115–129 (2016).
    ADS  Article  Google Scholar 

    43.
    Lynch, H. J., Naveen, R., Trathan, P. N. & Fagan, W. F. Spatially integrated assessment reveals widespread changes in penguin populations on the Antarctic Peninsula. Ecology 93, 1367–1377 (2012).
    PubMed  Article  Google Scholar 

    44.
    Kokubun, N., Takahashi, A., Mori, Y., Watanabe, S. & Shin, H. C. Comparison of diving behavior and foraging habitat use between chinstrap and gentoo penguins breeding in the South Shetland Islands Antarctica. Mar. Biol. 157, 811–825 (2010).
    Article  Google Scholar 

    45.
    Miller, A. K. & Trivelpiece, W. Z. Chinstrap penguins alter foraging and diving behavior in response to the size of their principle prey Antarctic krill. Mar. Biol. 154, 201–208 (2008).
    Article  Google Scholar 

    46.
    Hinke, J. T., Santos, M. M., Korczak-Abshire, M., Milinevsky, G. & Watters, G. M. Individual variation in migratory movements of chinstrap penguins leads to widespread occupancy of ice-free winter habitats over the continental shelf and deep ocean basins of the Southern Ocean. PLoS ONE 14, e0226207 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Orgeret, F., Weimerskirch, H. & Bost, C. A. Early diving behaviour in juvenile penguins: improvement or selection processes. Biol. Lett. 12, 20160490 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    48.
    Marchetti, K. & Price, T. Differences in the foraging of juvenile and adult birds: the importance of developmental constraints. Biol. Rev. Camb. Philos. Soc. 64, 51–70 (1989).
    Article  Google Scholar 

    49.
    Boyd, I. L. Pup production and distribution of breeding antarctic fur seals (Arctocephalus gazella) at South Georgia. Antarct. Sci. 5, 17–24 (1993).
    ADS  Article  Google Scholar 

    50.
    Casaux, R. et al. Geographical variation in the diet of the Antarctic fur seal Arctocephalus gazella. Polar Biol. 26, 753–758 (2003).
    Article  Google Scholar 

    51.
    CCAMLR. Statistical Bulletin. Vol. 31. www.ccamlr.org (2019).

    52.
    Kawaguchi, S. & Nicol, S. Krill fishery. Fish. Aquac. 9, 137 (2020).
    Google Scholar 

    53.
    Vaughan, D. Fishing effort displacement and the consequences of implementing marine protected area management: an English perspective. Mar. Policy 84, 228–234 (2017).
    Article  Google Scholar 

    54.
    Suuronen, P., Jounela, P. & Tschernij, V. Fishermen responses on marine protected areas in the Baltic cod fishery. Mar. Policy 34, 237–243 (2010).
    Article  Google Scholar 

    55.
    Godø, O. R., Reiss, C., Siegel, V. & Watkins, J. L. Commercial fishing vessel as research vessels in the Antarctic: requirements and solutions exemplified with a new vessel. CCAMLR Sci. 21, 11–18 (2014).
    Google Scholar 

    56.
    Niklitschek, E. J. & Skaret, G. Distribution, density and relative abundance of Antarctic krill estimated by maximum likelihood geostatistics on acoustic data collected during commercial fishing operations. Fish. Res. 178, 114–121 (2016).
    Article  Google Scholar 

    57.
    Watkins, J. L. et al. The use of fishing vessels to provide acoustic data on the distribution and abundance of Antarctic krill and other pelagic species. Fish. Res. 178, 93–100 (2016).
    Article  Google Scholar 

    58.
    Melbourne-Thomas, J., Constable, A., Wotherspoon, S. & Raymond, B. Testing paradigms of ecosystem change under climate warming in Antarctica. PLoS ONE 8, e55093 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Matsuoka, K., Skoglund, A. & Roth, G. Quantarctica [Data set]. Norwegian Polar Institute. https://doi.org/10.21334/npolar.2018.8516e961 (2018). More

  • in

    Increasing temperatures accentuate negative fitness consequences of a marine parasite

    1.
    Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife: threats to biodiversity and human health. Science 287, 443–449 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Fey, S. B. et al. Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events. Proc. Natl. Acad. Sci. 112, 1083–1088 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    3.
    Fry, W. E. Principles of Plant Disease Management (Academic Press, Cambridge, 2012).
    Google Scholar 

    4.
    Tomley, F. M. & Shirley, M. W. Livestock infectious diseases and zoonoses. Philos. Trans. R. Soc. Lond. B Biol. Sci. (2009).

    5.
    Frick, W. F. et al. An emerging disease causes regional population collapse of a common North American bat species. Science 329, 679–682 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    6.
    Singh, B., Dhand, N. K. & Gill, J. Economic losses occurring due to brucellosis in Indian livestock populations. Prev. Vet. Med. 119, 211–215 (2015).
    CAS  PubMed  Article  Google Scholar 

    7.
    Lafferty, K. D. The ecology of climate change and infectious diseases. Ecology 90, 888–900 (2009).
    PubMed  Article  Google Scholar 

    8.
    Bett, B. et al. Effects of climate change on the occurrence and distribution of livestock diseases. Prev. Vet. Med. 137, 119–129 (2017).
    CAS  PubMed  Article  Google Scholar 

    9.
    Rohr, J. R. et al. Frontiers in climate change-disease research. Trends Ecol. Evol. 26, 270–277 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    10.
    Harvell, C. D. et al. Climate warming and disease risks for terrestrial and marine biota. Science 296, 2158–2162 (2002).
    ADS  CAS  PubMed  Article  Google Scholar 

    11.
    Boyett, H. V., Bourne, D. G. & Willis, B. L. Elevated temperature and light enhance progression and spread of black band disease on staghorn corals of the Great Barrier Reef. Mar. Biol. 151, 1711–1720 (2007).
    Article  Google Scholar 

    12.
    Paillard, C., Allam, B. & Oubella, R. Effect of temperature on defense parameters in Manila clam Ruditapes philippinarum challenged with Vibrio tapetis. Dis. Aquat. Org. 59, 249–262 (2004).
    Article  Google Scholar 

    13.
    Dalton, S. J., Godwin, S., Smith, S. & Pereg, L. Australian subtropical white syndrome: a transmissible, temperature-dependent coral disease. Mar. Freshwat. Res. 61, 342–350 (2010).
    CAS  Article  Google Scholar 

    14.
    Korkut, G. G., Noonin, C. & Söderhäll, K. The effect of temperature on white spot disease progression in a crustacean Pacifastacus leniusculus. Dev. Comp. Immunol. 89, 7–13 (2018).
    PubMed  Article  Google Scholar 

    15.
    Verant, M. L., Boyles, J. G., Waldrep, W. Jr., Wibbelt, G. & Blehert, D. S. Temperature-dependent growth of Geomyces destructans, the fungus that causes bat white-nose syndrome. PLoS ONE 7, e46280 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Ward, J. R., Kim, K. & Harvell, C. D. Temperature affects coral disease resistance and pathogen growth. Mar. Ecol. Prog. Ser. 329, 115–121 (2007).
    ADS  Article  Google Scholar 

    17.
    Albert, V. & Ransangan, J. Effect of water temperature on susceptibility of culture marine fish species to vibriosis. Int. J. Res. Pure Appl. Microbiol. 3, 48–52 (2013).
    Google Scholar 

    18.
    Case, R. J. et al. Temperature induced bacterial virulence and bleaching disease in a chemically defended marine macroalga. Environ. Microbiol. 13, 529–537 (2011).
    CAS  PubMed  Article  Google Scholar 

    19.
    Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722 (2015).
    PubMed  Article  CAS  Google Scholar 

    20.
    Laffoley, D. D. A. & Baxter, J. Explaining Ocean Warming: Causes, Scale, Effects and Consequences (IUCN Gland, Switzerland, 2016).
    Google Scholar 

    21.
    Burge, C. A. et al. Climate change influences on marine infectious diseases: implications for management and society. Annu. Rev. Mar. Sci. 6, 249–277 (2014).
    ADS  Article  Google Scholar 

    22.
    Miller, J. et al. Coral disease following massive bleaching in 2005 causes 60% decline in coral cover on reefs in the US Virgin Islands. Coral Reefs 28, 925 (2009).
    ADS  Article  Google Scholar 

    23.
    Eisenlord, M. E. et al. Ochre star mortality during the 2014 wasting disease epizootic: role of population size structure and temperature. Philos. Trans. R. Soc. Lond. B Biol. Sci 371, 20150212 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    24.
    Moore, J. D., Robbins, T. T. & Friedman, C. S. Withering syndrome in farmed red abalone Haliotis rufescens: thermal induction and association with a gastrointestinal rickettsiales-like prokaryote. J. Aquat. Anim. Health 12, 26–34 (2000).
    PubMed  Article  Google Scholar 

    25.
    Harvell, D., Altizer, S., Cattadori, I. M., Harrington, L. & Weil, E. Climate change and wildlife diseases: when does the host matter the most?. Ecology 90, 912–920 (2009).
    PubMed  Article  Google Scholar 

    26.
    Malek, J. C. & Byers, J. E. Responses of an oyster host (Crassostrea virginica) and its protozoan parasite (Perkinsus marinus) to increasing air temperature. PeerJ 6, e5046 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    27.
    Staehli, A., Schaerer, R., Hoelzle, K. & Ribi, G. Temperature induced disease in the starfish Astropecten jonstoni. Mar. Biodiv. Rec. 2, e78 (2009).
    Article  Google Scholar 

    28.
    Gehman, A.-L.M., Hall, R. J. & Byers, J. E. Host and parasite thermal ecology jointly determine the effect of climate warming on epidemic dynamics. Proc. Natl. Acad. Sci. 115, 744–749 (2018).
    CAS  PubMed  Article  Google Scholar 

    29.
    Studer, A., Thieltges, D. & Poulin, R. Parasites and global warming: net effects of temperature on an intertidal host–parasite system. Mar. Ecol. Prog. Ser. 415, 11–22 (2010).
    ADS  Article  Google Scholar 

    30.
    McCallum, H., Harvell, D. & Dobson, A. Rates of spread of marine pathogens. Ecol. Lett. 6, 1062–1067 (2003).
    Article  Google Scholar 

    31.
    Harvell, C. et al. Emerging marine diseases-climate links and anthropogenic factors. Science 285, 1505–1510 (1999).
    CAS  PubMed  Article  Google Scholar 

    32.
    Morton, J. P., Silliman, B. R. & Lafferty, K. D. In Marine Disease Ecology (eds D.C. Behringer, B.R. Silliman, & K.D. Lafferty) (Oxford University Press, Oxford, 2020).

    33.
    Lafferty, K. D. et al. Infectious diseases affect marine fisheries and aquaculture economics. Annu. Rev. Mar. Sci. 7, 471–496 (2015).
    ADS  Article  Google Scholar 

    34.
    Food and Agriculture Organization of the United Nations. The state of world fisheries and aquaculture. https://www.fao.org/3/i9540en/i9540en.pdf (2018).

    35.
    Food and Agriculture Organization of the United Nations. Global aquaculture production statistics, 1950–2017-Fisheries and Aquaculture Information and Statistics Branch. https://www.fao.org/fishery/statistics/global-aquaculture-production/query/en (2017).

    36.
    Abolofia, J., Asche, F. & Wilen, J. E. The cost of lice: quantifying the impacts of parasitic sea lice on farmed salmon. Mar. Resour. Econ. 32, 329–349 (2017).
    Article  Google Scholar 

    37.
    Jakob, E., Sweeten, T., Bennett, W. & Jones, S. Development of the salmon louse Lepeophtheirus salmonis and its effects on juvenile sockeye salmon Oncorhynchus nerka. Dis. Aquat. Org. 106, 217–227 (2013).
    CAS  Article  Google Scholar 

    38.
    Jones, S. R., Kim, E. & Bennett, W. Early development of resistance to the salmon louse, Lepeophtheirus salmonis (Krøyer), in juvenile pink salmon, Oncorhynchus gorbuscha (Walbaum). J. Fish Dis. 31, 591–600 (2008).
    CAS  PubMed  Article  Google Scholar 

    39.
    Costello, M. J. The global economic cost of sea lice to the salmonid farming industry. J. Fish Dis. 32, 115–118 (2009).
    PubMed  Article  Google Scholar 

    40.
    Skilbrei, O. T. & Wennevik, V. Survival and growth of sea-ranched Atlantic salmon, Salmo salar L., treated against sea lice before release. ICES J. Mar. Sci. 63, 1317–1325 (2006).
    Article  Google Scholar 

    41.
    Grimnes, A. & Jakobsen, P. The physiological effects of salmon lice infection on post-smolt of Atlantic salmon. J. Fish Biol. 48, 1179–1194 (1996).
    Article  Google Scholar 

    42.
    Krkosek, M. et al. Effects of parasites from salmon farms on productivity of wild salmon. Proc. Natl. Acad. Sci. 108, 14700–14704 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    43.
    Krkosek, M. et al. Impact of parasites on salmon recruitment in the Northeast Atlantic Ocean. Proc. Biol. Sci. 280, 20122359 (2013).
    PubMed  PubMed Central  Google Scholar 

    44.
    Vollset, K. W. et al. Impacts of parasites on marine survival of Atlantic salmon: a meta-analysis. Fish Fish. 17, 714–730 (2016).
    Article  Google Scholar 

    45.
    Bricknell, I. R., Dalesman, S. J., O’Shea, B., Pert, C. C. & Luntz, A. J. M. Effect of environmental salinity on sea lice Lepeophtheirus salmonis settlement success. Dis. Aquat. Org. 71, 201–212 (2006).
    Article  Google Scholar 

    46.
    Brooks, K. M. The effects of water temperature, salinity, and currents on the survival and distribution of the infective copepodid stage of sea lice (Lepeophtheirus salmonis) originating on Atlantic salmon farms in the Broughton Archipelago of British Columbia Canada. Rev. Fish. Sci. 13, 177–204 (2005).
    ADS  Article  Google Scholar 

    47.
    Hamre, L. A., Bui, S., Oppedal, F., Skern-Mauritzen, R. & Dalvin, S. Development of the salmon louse Lepeophtheirus salmonis parasitic stages in temperatures ranging from 3 to 24 C. Aquacult. Environ. Interact. 11, 429–443 (2019).
    Article  Google Scholar 

    48.
    Johnson, S. & Albright, L. Development, growth, and survival of Lepeophtheirus salmonis (Copepoda: Caligidae) under laboratory conditions. J. Mar. Biol. Assoc. U.K. 71, 425–436 (1991).
    Article  Google Scholar 

    49.
    Bateman, A. W. et al. Recent failure to control sea louse outbreaks on salmon in the Broughton Archipelago, British Columbia. Can. J. Fish. Aquat. Sci. 73, 1164–1172 (2016).
    Article  Google Scholar 

    50.
    Godwin, S. C., Krkosek, M., Reynolds, J. D. & Bateman, A. W. Sea-louse abundance on salmon farms in relation to parasite-control policy and climate change. ICES J. Mar. Sci. (In press).

    51.
    Jansen, P. A. et al. Sea lice as a density-dependent constraint to salmonid farming. Proc. Biol. Sci. 279, 2330–2338 (2012).
    PubMed  PubMed Central  Google Scholar 

    52.
    Vollset, K. W. Parasite induced mortality is context dependent in Atlantic salmon: insights from an individual-based model. Sci. Rep. 9, 1–15 (2019).
    CAS  Article  Google Scholar 

    53.
    Brewer-Dalton, K., Page, F. H., Chandler, P. & Ratsimandresy, A. Oceanographic conditions of salmon farming areas with attention to those factors that may influence the biology and ecology of sea lice, Lepeophtherius salmonis and Caligus spp., and their control. https://publications.gc.ca/collections/collection_2015/mpo-dfo/Fs70-5-2014-048-eng.pdf (2014).

    54.
    Greenan, B. J. W. et al. In Canada’s changing climate report (eds E. Bush & D.S. Lemmen) 343–423 (Government of Canada, 2018).

    55.
    Atlantic Canada Fish Farmers Association. 2017 New Brunswick annual sea lice management report. (2018).

    56.
    Atlantic Canada Fish Farmers Association. 2018 New Brunswick annual sea lice management report. (2019).

    57.
    Karlsen, Ø. et al. En vurdering av lakselusinfestasjonen i produksjonsområdene i 2018 og 2019. Report from Marine Research, (2020).

    58.
    Costello, M. J. Ecology of sea lice parasitic on farmed and wild fish. Trends Parasitol. 22, 475–483 (2006).
    PubMed  Article  Google Scholar 

    59.
    Best, A., White, A. & Boots, M. Maintenance of host variation in tolerance to pathogens and parasites. Proc. Natl. Acad. Sci. 105, 20786–20791 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    60.
    Handeland, S. O., Imsland, A. K. & Stefansson, S. O. The effect of temperature and fish size on growth, feed intake, food conversion efficiency and stomach evacuation rate of Atlantic salmon post-smolts. Aquaculture 283, 36–42 (2008).
    Article  Google Scholar 

    61.
    Alzahrani, S. M. & Ebert, P. R. Stress pre-conditioning with temperature, UV and gamma radiation induces tolerance against phosphine toxicity. PLoS ONE 13, e0195349 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    62.
    Beitinger, T. L. & Bennett, W. A. Quantification of the role of acclimation temperature in temperature tolerance of fishes. Environ. Biol. Fishes 58, 277–288 (2000).
    Article  Google Scholar 

    63.
    Fischer, K. et al. Environmental effects on temperature stress resistance in the tropical butterfly Bicyclus anynana. PLoS ONE 5, e15284 (2010).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    64.
    Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367, 1665–1679 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    65.
    Raffel, T. R., Halstead, N. T., McMahon, T. A., Davis, A. K. & Rohr, J. R. Temperature variability and moisture synergistically interact to exacerbate an epizootic disease. Proc. Biol. Sci. 282, 20142039 (2015).
    PubMed  PubMed Central  Google Scholar 

    66.
    Studer, A. & Poulin, R. Differential effects of temperature variability on the transmission of a marine parasite. Mar. Biol. 160, 2763–2773 (2013).
    Article  Google Scholar 

    67.
    Aaen, S. M., Helgesen, K. O., Bakke, M. J., Kaur, K. & Horsberg, T. E. Drug resistance in sea lice: a threat to salmonid aquaculture. Trends Parasitol. 31, 72–81 (2015).
    CAS  PubMed  Article  Google Scholar 

    68.
    Gargan, P. et al. Evidence for sea lice-induced marine mortality of Atlantic salmon (Salmo salar) in western Ireland from experimental releases of ranched smolts treated with emamectin benzoate. Can. J. Fish. Aquat. Sci. 69, 343–353 (2012).
    CAS  Article  Google Scholar 

    69.
    Beamish, R., Mahnken, C. & Neville, C. Evidence that reduced early marine growth is associated with lower marine survival of coho salmon. Trans. Am. Fish. Soc. 133, 26–33 (2004).
    Article  Google Scholar 

    70.
    Peyronnet, A., Friedland, K., Maoileidigh, N., Manning, M. & Poole, W. Links between patterns of marine growth and survival of Atlantic salmon Salmo salar L. J. Fish Biol. 71, 684–700 (2007).
    Article  Google Scholar 

    71.
    Battin, J. et al. Projected impacts of climate change on salmon habitat restoration. Proc. Natl. Acad. Sci. 104, 6720–6725 (2007).
    ADS  CAS  PubMed  Article  Google Scholar 

    72.
    Otero, J. et al. Basin-scale phenology and effects of climate variability on global timing of initial seaward migration of Atlantic salmon (Salmo salar). Global Change Biol. 20, 61–75 (2014).
    ADS  Article  Google Scholar 

    73.
    Lande, R. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Nat. 142, 911–927 (1993).
    PubMed  Article  Google Scholar 

    74.
    Allendorf, F. W. et al. Prioritizing Pacific salmon stocks for conservation. Conserv. Biol. 11, 140–152 (1997).
    Article  Google Scholar 

    75.
    Chaput, G. Overview of the status of Atlantic salmon (Salmo salar) in the North Atlantic and trends in marine mortality. ICES J. Mar. Sci. 69, 1538–1548 (2012).
    Article  Google Scholar 

    76.
    Nehlsen, W., Williams, J. E. & Lichatowich, J. A. Pacific salmon at the crossroads: stocks at risk from California, Oregon, Idaho, and Washington. Fisheries 16, 4–21 (1991).
    Article  Google Scholar 

    77.
    Parrish, D. L., Behnke, R. J., Gephard, S. R., McCormick, S. D. & Reeves, G. H. Why aren’t there more Atlantic salmon (Salmo salar)?. Can. J. Fish. Aquat. Sci. 55, 281–287 (1998).
    Article  Google Scholar 

    78.
    Groner, M. L. et al. Managing marine disease emergencies in an era of rapid change. Philos. Trans. R. Soc. Lond. B Biol. 371, 20150364 (2016).
    Article  CAS  Google Scholar 

    79.
    Altizer, S., Ostfeld, R. S., Johnson, P. T., Kutz, S. & Harvell, C. D. Climate change and infectious diseases: from evidence to a predictive framework. Science 341, 514–519 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    80.
    Columbia Basin Fish and Wildlife Authority PIT Tag Steering Committee. PIT tag marking procedures manual. Columbia Basin Fish and Wildlife Authority, Portland, Oregon, (1999).

    81.
    Poley, J. D. et al. High level efficacy of lufenuron against sea lice (Lepeophtheirus salmonis) linked to rapid impact on moulting processes. Int. J. Parasitol. Drugs Drug Res. 8, 174–188 (2018).
    Article  Google Scholar 

    82.
    Whyte, S. et al. iAvermectin treatment for Lepeophtheirus salmonis: impacts on host (Salmo salar) and parasite immunophysiology. Aquaculture 501, 488–501 (2019).
    CAS  Article  Google Scholar 

    83.
    Groner, M. L., Gettinby, G., Stormoen, M., Revie, C. W. & Cox, R. Modelling the impact of temperature-induced life history plasticity and mate limitation on the epidemic potential of a marine ectoparasite. PLoS ONE 9, e88465 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    84.
    Chezik, K. A., Lester, N. P. & Venturelli, P. A. Fish growth and degree-days I: selecting a base temperature for a within-population study. Can. J. Fish. Aquat. Sci. 71, 47–55 (2013).
    Article  Google Scholar 

    85.
    Neuheimer, A. B. & Grønkjær, P. Climate effects on size-at-age: growth in warming waters compensates for earlier maturity in an exploited marine fish. Global Change Biol. 18, 1812–1822 (2012).
    ADS  Article  Google Scholar 

    86.
    Jonsson, N., Jonsson, B. & Hansen, L. P. Does climate during embryonic development influence parr growth and age of seaward migration in Atlantic salmon (Salmo salar)?. Can. J. Fish. Aquat. Sci. 62, 2502–2508 (2005).
    Article  Google Scholar 

    87.
    Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).
    ADS  MathSciNet  MATH  Article  Google Scholar 

    88.
    Le Cren, E. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). J. Anim. Ecol. 201–219, (1951).

    89.
    Hurvich, C. M. & Tsai, C.-L. Regression and time series model selection in small samples. Biometrika 76, 297–307 (1989).
    MathSciNet  MATH  Article  Google Scholar 

    90.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria (2019).

    91.
    Pinheiro J, Bates D, DebRoy S, Sarkar D & R Core Team. nlme: linear and nonlinear mixed effects models. R package version 3.1-139 (2019).

    92.
    Therneau, T. M. coxme: mixed effects Cox models. R package 2.2-14 (2019). More

  • in

    Veteran trees are a source of natural enemies

    1.
    IPBES. Intergovernmental science-policy platform on biodiversity and ecosystem services. ttps://ipbes.net (2018).
    2.
    Kadykalo, A. N. et al. Disentangling ‘ecosystem services’ and ‘nature’s contributions to people’. Ecosyst. People 15(1), 269–287 (2019).
    Article  Google Scholar 

    3.
    Díaz, S. et al. Assessing nature’s contributions to people. Science 359(6373), 270–272 (2018).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6(1), 8568 (2015).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    5.
    Wilson, C. & Tisdell, C. Why farmers continue to use pesticides despite environmental, health and sustainability costs. Ecol. Econ. 39(3), 449–462 (2001).
    Article  Google Scholar 

    6.
    Pimentel, D. et al. Environmental and economic costs of pesticide use. Bioscience 42(10), 750–760 (1992).
    Article  Google Scholar 

    7.
    Horrigan, L., Lawrence, R. & Walker, P. How sustainable agriculture can address the environmental and human health harms of industrial agriculture. Environ Health Perspect 110(5), 445–456 (2002).
    PubMed  PubMed Central  Article  Google Scholar 

    8.
    Popp, J., Pető, K. & Nagy, J. Pesticide productivity and food security. A review. Agron. Sustain. Dev. 33(1), 243–255 (2013).
    Article  Google Scholar 

    9.
    Barbosa, P. Conservation Biological Control (Academic Press, Cambridge, 1998).
    Google Scholar 

    10.
    Greenop, A., Woodcock, B., Wilby, A., Cook, S. & Pywell, R. Functional diversity positively affects prey suppression by invertebrate predators: A meta-analysis. Ecology 99(8), 1771–1782 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    11.
    Snyder, W. E. Give predators a complement: Conserving natural enemy biodiversity to improve biocontrol. Biol. Control 135, 73–82 (2019).
    Article  Google Scholar 

    12.
    Perez-Alvarez, R., Nault, B. A. & Poveda, K. Effectiveness of augmentative biological control depends on landscape context. Sci. Rep. 9(1), 8664 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    13.
    Hageneder, F. The Heritage of Trees: History, Culture and Symbolism (Floris Books, 2001).

    14.
    Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures. J. Biogeogr. 31, 79–92 (2004).
    Article  Google Scholar 

    15.
    Müller, J., Jarzabek-Müller, A., Bussler, H. & Gossner, M. M. Hollow beech trees identified as keystone structures for saproxylic beetles by analyses of functional and phylogenetic diversity. Anim. Conserv. 17(2), 154–162 (2013).
    Article  Google Scholar 

    16.
    Jim, C. Urban heritage trees: Natural-cultural significance informing management and conservation. In Greening Cities Advances in 21st Century Human Settlements (eds. Tan, P. & Jim, C.) (Springer, Berlin, 2017).

    17.
    Hu, L., Li, Z., Liao, W. & Fan, Q. Values of village fengshui forest patches in biodiversity conservation in the Pearl River Delta, China. Biol. Conserv. 144(5), 1553–1559 (2011).
    Article  Google Scholar 

    18.
    Skarpaas, O., Blumentrath, S., Evju, M. & Sverdrup-Thygeson, A. Prediction of biodiversity hotspots in the Anthropocene: The case of veteran oaks. Ecol. Evol. 7(19), 7987–7997 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Siitonen, J., Ranius, T. The Importance of Veteran Trees for Saproxylic Insects. In Europe’s Changing Woods and Forests: From Wildwood to Managed Landscapes (eds. Kirby, K. & Watkins, C.) 140–53 (CAB International, Wallingford, 2015).

    20.
    Lindenmayer, D. B. et al. New policies for old trees: Averting a global crisis in a keystone ecological structure. Conserv. Lett. 7(1), 61–69 (2014).
    Article  Google Scholar 

    21.
    Tscharntke, T. et al. Multifunctional shade-tree management in tropical agroforestry landscapes—A review. J. Appl. Ecol. 48(3), 619–629 (2011).
    Article  Google Scholar 

    22.
    Wetherbee, R., Birkemoe, T., Skarpaas, O. & Sverdrup-Thygeson, A. Hollow oaks and beetle functional diversity: Significance of surroundings extends beyond taxonomy. Ecol. Evol. 10(2), 819–831 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Pilskog, H., Birkemoe, T., Framstad, E. & Sverdrup-Thygeson, A. Effect of habitat size, quality, and isolation on functional groups of beetles in hollow oaks. Insect Sci. 16, 1–8 (2016).
    Article  CAS  Google Scholar 

    24.
    Lefcheck, J. & Duffy, J. E. Multitrophic functional diversity predicts ecosystem functioning in experimental assemblages of estuarine consumers. Ecology 96(11), 2973–2983 (2015).
    PubMed  Article  Google Scholar 

    25.
    Heemsbergen, D. A. et al. Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science 306(5698), 1019–1020 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    26.
    Ferrante, M., Lo Cacciato, A. & Lovei, G. L. Quantifying predation pressure along an urbanisation gradient in Denmark using artificial caterpillars. Eur. J. Entomol. 111(5), 649–654 (2014).
    Article  Google Scholar 

    27.
    Lovei, G. L. & Ferrante, M. A. Review of the sentinel prey method as a way of quantifying invertebrate predation under field conditions. Insect Sci. 24(4), 528–542 (2017).
    PubMed  Article  Google Scholar 

    28.
    Kidd, N. A., Jervis, M. A. Population dynamics in Insects as Natural Enemies (ed. Jervis, M. A.) 435–523 (Springer, 2005).

    29.
    Low, P. A., Sam, K., McArthur, C., Posa, M. R. C. & Hochuli, D. F. Determining predator identity from attack marks left in model caterpillars: Guidelines for best practice. Entomol. Exp. Appl. 152(2), 120–126 (2014).
    Article  Google Scholar 

    30.
    Howe, A., Lovei, G. & Nachman, G. Dummy caterpillars as a simple method to assess predation rates on invertebrates in a tropical agroecosystem. Entomol. Exp. Appl. 131, 325–329 (2009).
    Article  Google Scholar 

    31.
    Sam, K., Remmel, T. & Molleman, F. Material affects attack rates on dummy caterpillars in tropical forest where arthropod predators dominate: An experiment using clay and dough dummies with green colourants on various plant species. Entomol. Exp. Appl. 157(3), 317–324 (2015).
    Article  Google Scholar 

    32.
    Moretti, M. et al. Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Funct. Ecol. 31(3), 558–567 (2017).
    Article  Google Scholar 

    33.
    Mico, E. et al. Contrasting functional structure of saproxylic beetle assemblages associated to different microhabitats. Sci. Rep. 10(1), 1520 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Ranius, T. & Jansson, N. The influence of forest regrowth, original canopy cover and tree size on saproxylic beetles associated with old oaks. Biol. Conserv. 95(1), 85–94 (2000).
    Article  Google Scholar 

    35.
    Parmain, G. & Bouget, C. Large solitary oaks as keystone structures for saproxylic beetles in European agricultural landscapes. Insect Conservation and Diversity 11, 100–115 (2018).
    Article  Google Scholar 

    36.
    Ferrante, M., Barone, G., Kiss, M., Bozóné-Borbáth, E. & Lövei, G. L. Ground-level predation on artificial caterpillars indicates no enemy-free time for lepidopteran larvae. Community Ecol. 18(3), 280–286 (2017).
    Article  Google Scholar 

    37.
    Lövei, G. L. & Sunderland, K. D. Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annu. Rev. Entomol. 41(1), 231–256 (1996).
    PubMed  Article  PubMed Central  Google Scholar 

    38.
    Sverdrup-Thygeson, A., Skarpaas, O. & Ødegaard, F. Hollow oaks and beetle conservation: The significance of the surroundings. Biodivers. Conserv. 19(3), 837–852 (2010).
    Article  Google Scholar 

    39.
    Sverdrup-Thygeson, A., Skarpaas, O., Blumentrath, S., Birkemoe, T. & Evju, M. Habitat connectivity affects specialist species richness more than generalists in veteran trees. For. Ecol. Manag. 403, 96–102 (2017).
    Article  Google Scholar 

    40.
    Gough, L. A., Birkemoe, T. & Sverdrup-Thygeson, A. Reactive forest management can also be proactive for wood-living beetles in hollow oak trees. Biol. Conserv. 180, 75–83 (2014).
    Article  Google Scholar 

    41.
    Hagge, J. et al. Congruent patterns of functional diversity in saproxylic beetles and fungi across European beech forests. J. Biogeogr. 46(5), 1054–1065 (2019).
    Article  Google Scholar 

    42.
    Tschumi, M., Albrecht, M., Entling, M. H. & Jacot, K. High effectiveness of tailored flower strips in reducing pests and crop plant damage. Proc. R. Soc. B. 282(1814), 20151369 (2015).
    Article  Google Scholar 

    43.
    Bowdish, T. I. & Bultman, T. L. Visual cues used by mantids in learning aversion to aposematically colored prey. Am. Midl. Nat. 129(2), 215–222 (1993).
    Article  Google Scholar 

    44.
    Kauppinen, J. & Mappes, J. Why are wasps so intimidating: Field experiments on hunting dragonflies (Odonata: Aeshna grandis). Anim. Behav. 66(3), 505–511 (2003).
    Article  Google Scholar 

    45.
    Prudic, K. L., Stoehr, A. M., Wasik, B. R. & Monteiro, A. Eyespots deflect predator attack increasing fitness and promoting the evolution of phenotypic plasticity. Proc. R. Soc. B. 282(1798), 20141531 (2015).
    PubMed  Article  Google Scholar 

    46.
    Micó, E. Saproxylic insects in tree hollows. In Saproxylic Insects: Diversity, Ecology and Conservation (ed. Ulyshen, M. D.) 693–727 (Springer, Berlin, 2018).

    47.
    Harmon, J. P., Losey, J. E. & Ives, A. R. The role of vision and color in the close proximity foraging behavior of four coccinellid species. Oecologia 115(1), 287–292 (1998).
    ADS  PubMed  Article  Google Scholar 

    48.
    Hartel, T., Réti, K. O. & Craioveanu, C. Valuing scattered trees from wood-pastures by farmers in a traditional rural region of Eastern Europe. Agric. Ecosyst. Environ. 236, 304–311 (2017).
    Article  Google Scholar 

    49.
    Hougner, C., Colding, J. & Söderqvist, T. Economic valuation of a seed dispersal service in the Stockholm National Urban Park, Sweden. Ecol. Econ. 59(3), 364–374 (2006).
    Article  Google Scholar 

    50.
    Lindenmayer, D. B. & Laurance, W. F. The ecology, distribution, conservation and management of large old trees. Biol. Rev. 92(3), 1434–1458 (2017).
    PubMed  Article  Google Scholar 

    51.
    ARKO. Hule eiker—et hotspot-habitat Sluttrapport under ARKO-prosjektets periode II. https://www.miljodirektoratet.no/globalassets/publikasjoner/dirnat2/attachment/2557/nina-rapport-710_hotspot-hule-eiker_sverdrup-thygeson_2011.pdf. The Norwegian Institute for Nature Research (2011).

    52.
    NBIC. Norwegian Biodiversity Information Centre. https://www.biodiversity.no (2018).

    53.
    Majekova, M. et al. Evaluating functional diversity: Missing trait data and the importance of species abundance structure and data transformation. PLoS ONE 11(2), 1–17 (2016).
    Article  CAS  Google Scholar 

    54.
    Laliberte, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91(1), 299–305 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    55.
    Zuur, A., Ieno, E., Walker, N., Saveliev, A. & Smith, G. Mixed Effect Models and Extensions in Ecology with R (Springer, New York, 2009).
    Google Scholar 

    56.
    R Development Core Team. R: A language and environment for statistical computing. 3.4.0 ed. (R Foundation for Statistical Computing, Vienna, 2017).

    57.
    Cailliez, F. The analytical solution of the additive constant problem. Psychometrika 48(2), 305–308 (1983).
    MathSciNet  MATH  Article  Google Scholar 

    58.
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9(2), 378–400 (2017).
    Article  Google Scholar 

    59.
    Bolker, B. M. Tools for General Maximum Likelihood Estimation. CRAN.R. R package version 1.0.20 (2017).

    60.
    Barton, K. MuMIn: Multi-Model Inference. R package version 1421. https://CRAN.R-project.org/package=MuMIn (2018).

    61.
    Hardin, J. W. & Hilbe, J. M. Generalized Linear Models and Extensions (Stata Press, College Station, 2007).
    Google Scholar 

    62.
    Bolker BM. Linear and generalized linear mixed models. In Ecological Statistics: Contemporary Theory and Application (eds. Fox, G. A., Negrete-Yankelevich, S., Sosa, V. J.) (Oxford University Press, Oxford, 2015).

    63.
    Sarkar, D. Lattice:Multivariate Data Visualization with R (Springer, New York, 2008).
    Google Scholar 

    64.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2016).
    Google Scholar 

    65.
    Wickham H. François R. Henry L. Müller K. dplyr: A Grammar of Data Manipulation. R package version 078. https://CRAN.R-project.org/package=dplyr (2018). More

  • in

    Conservation of vegetable genetic diversity in Transylvania-Romania

    1.
    Negri, V., Maxted, N., & Veteläinen, M. European landrace conservation: an introduction. European landraces: on farm conservation, management and use. European Cooperative Programme for Plant Genetic Resources. Rome, Italy. Biodivers. Tech. Bull. 15, 1–22 (2009).
    2.
    Polegri, L., Negri, V. Molecular markers for promoting agro-biodiversity conservation: a case study from Italy. How cowpea landraces were saved from extinction. Genet. Resour. Crop Evol. 57, 867–880 (2010).

    3.
    Maxim, A. Conservation of genetic diversity in culture plants. ProEnvironment 5, 50–54 (2010).
    Google Scholar 

    4.
    Nyadanu, D., Aboagye, L. M., Akromah, R. & Dansi, A. Agro-biodiversity and challenges of on-farm conservation: the case of plant genetic resources of neglected and underutilized crop species in Ghana. Genet. Resour. Crop Evol. 63, 1397–1409 (2016).
    Article  Google Scholar 

    5.
    Sanchez, E., Sifres, A., Casanas, F., and Nuez, F. The endangered future of organoleptically prestigious European landraces: Ganxet bean (Phaseolus vulgaris L.) as an example of a crop originating in the Americas. Genet. Resour. Crop Evol. 55, 45–52 (2008).

    6.
    Bertoldo, J. G., Coimbra, J. L. M., Guidolin, A. F., Braatz de Andrade, L. R. & Nodari, R. O. Agronomic potential of genebank landrace elite accessions for common bean genetic breeding. Sci. Agric. 71(2), 120–125 (2014).
    Article  Google Scholar 

    7.
    Derpsch, R., Roth, C.H., Sidiras, N., Köpke, U. Controle de erosão no Paraná, Brasil: Sistema de cobertura do solo, plantio direto e preparo conservacionista do solo. Sonderpublikation der GTZ, No. 245. Rossdorf, Germany, TZ-Verlagsgesellschaft GmbH., 272 (1991).

    8.
    Maxted, N., Dulloo, M.E., Ford-Lloyd, B.V. Enhancing crop genepool use: capturing wild relative and landrace diversity for crop improvement. CAB eBooks (2016).

    9.
    Negri, V. Landraces in central Italy: Where and why they are conserved and perspectives for their on farm conservation. Genet. Resour. Crop Evol. 50, 871–885 (2003).
    Article  Google Scholar 

    10.
    German, L., Ramisch, J.J., Verma, R. Beyond the biophysical: knowledge, culture, and power in agriculture and natural resource management. Springer (2010).

    11.
    Negri, V. Agro-biodiversity conservation in Europe: ethical issues. J. Agric. Environ. Ethics. 18, 3 (2005).
    Article  Google Scholar 

    12.
    Sthapit, B., Lamers, H., Rao, R., & Bailey, A. Tropical fruit tree diversity: good practices for in situ and on-farm conservation. Routledge (2016).

    13.
    Veteläinen, M., Negri, V., Maxted, N. A European strategic approach to conserving crop landraces. European cooperative programme for plant genetic resources, Rome, Italy. Biodivers. Tech. Bull. 15 (2009).

    14.
    Spataro, G. & Negri, V. The European seed legislation on conservation varieties: focus, implementation, present and future impact on landrace on farm conservation. Genet. Resour. Crop Evol. 60, 2421–2430 (2013).
    Article  Google Scholar 

    15.
    Lorenzetti, F., Lorenzetti, S., & Negri, V. The Italian Laws on Conservation Varieties and the National Implementation of Commision Directive 2008/62/EC. European landraces: on farm conservation, management and use. European Cooperative Programme for Plant Genetic Resources. Rome, Italy. Biodivers. Tech. Bull. 15, 300–304 (2009).

    16.
    Thuiller, T., Lavorel, S., Araújo, M. B., Sykes, M. T. & Prentice, I. C. Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. 102(23), 8245–8250 (2005).
    ADS  CAS  Article  Google Scholar 

    17.
    Hammer, K., and Diederichsen, A. Evolution, status and perspectives for landraces in Europe: European cooperative programme for plant genetic resources. Rome, Italy. Biodivers. Tech. Bull. 15, 23–44 (2009).

    18.
    Maxim, A. et al. Preliminary results concerning the preservation of genetical diversity of different vegetable varieties at USAMV Cluj-Napoca. Bull. UASMV Cluj-Napoca, Agric. 63, 291–296 (2007).
    Google Scholar 

    19.
    Renna, M., Serio, F., Signore, A., Santamaria, P. The yellow–purple Polignano carrot (Daucus carota L.): a multicoloured landrace from the Puglia region (Southern Italy) at risk of genetic erosion. Genet. Resour. Crop Evol. 61, 1611–1619 (2014).

    20.
    Scholten, M., Maxted, N., Ford-Lloyd, B. V. & Green, N. Hebridean and Shetland oat (Avena strigosa Schreb) and Shetland cabbage (Brassica oleracea L.) landraces: occurrence and conservation issues. Plant Genet. Resour. Newsl. 154, 1–5 (2008).
    Google Scholar 

    21.
    Maxted, N., Ford-Lloyd, B.V., & Hawkes, J.G., Plant genetic conservation: the in situ approach. Chapman and Hall, London (1997).

    22.
    Malik, S.K., Singh, P.B., Singh, A., Verma, A., Ameta, N., & Bisht, I.S. Community seed banks: Operation and scientific management. New Delhi, India: National Bureau of Plant Genetic Resources, https://www.rainfedindia.org/issues/images/csb.pdf (2013).

    23.
    Străjeru, S., Ibanescu, M., Constantinovici, D. Landrace Inventories: Nees and Methodologies. European Cooperative Programme for Plant Genetic Resources. Rome, Italy. Biodivers. Tech. Bull. 15, 137–142 (2009).

    24.
    Maxim, A., Bontea, D., Odagiu, A., Mihalescu, L., & Roman, V. The In Situ and Ex Situ Conservation of Pepper Landraces (Capsicum annuum L.). ProEnvironment 8, 564–570 (2015).

    25.
    Bailey, K. Methods of social research (2nd edition) (The Free Press, New York, 1982).
    Google Scholar 

    26.
    Lázaro, A., Villar, B., Aceituno-Mata, L., Tardio, J. & De la Rosa, L. The Sierra Norte of Madrid: an agrobiodiversity refuge for common bean landraces. Genet. Resour. Crop Evol. 60, 1641–1654 (2013).
    Article  Google Scholar 

    27.
    Lebot, V., Tuia, V., Ivancic, A., Jackson, G.V.H., Saborio, F., Reyes, G., Rodriguez, S., Robin, G., Traoré, R. Aboagye, L., Onyeka, J., van Rensburg, W., Andrianavalona, V., Mukherjee, A., Prana, M.S., Ferraren, D., Komolong, B., Lawac, F., Winter, S., Pinheiro de Carvalho, M.A.A., & Iosefa, T. Adapting clonally propagated crops to climatic changes: a global approach for taro (Colocasia esculenta (L.) Schott) Genet. Resour. Crop Evol. 1–16 (2017).

    28.
    Montesano, V., Negro, D., Sarli, G., Logozzo, G. & Zeuli, P. S. Landraces in Inland areas of the Basilicata region, Italy: monitoring and perspectives for on farm conservation. Genet. Resour. Crop Evol. 59, 701–716 (2012).
    Article  Google Scholar 

    29.
    Catalogul oficial al soiurilor de plante din România. Institutul de Stat pentru Testarea și Înregistrarea Soiurilor. Ministerul Agriculturii și Dezvoltării Rurale din România, București, p. 49. Aviable from: https://istis.ro/image/data/download/catalog-oficial/CATALOG%202017.pdf (2017).

    30.
    Paavilainen, K. National Policies and Support Systems for Landrace Cultivation in Finland. European landraces: on farm conservation, management and use. European Cooperative Programme for Plant Genetic Resources. Rome, Italy. Biodivers. Tech. Bull. 15, 296–299 (2009).

    31.
    Joshi, B. K., Gauchan, D. Germplasm rescue. Why and how? Proceedings of Sharingshop, 18 Dec 2017, Kathmandu; NAGRC, BI and Crop Trust Nepal. 41–50 (2017).

    32.
    Joshi, B. K. et al. (eds) Good Practices for Agrobiodiversity Management (NAGRC, LI-BIRD and Alliance of Bioversity International and CIAT, Kathmandu, Nepal, 2020).
    Google Scholar 

    33.
    Kell, S.P., Maxted, N., Allender, C., Astley, D., Ford‐Lloyd, B.V., contributors. Vegetable Landrace Inventory of England and Wales. The University of Birmingham, UK. 117 pp. Available from: https://www.grfa.org.uk/media_files/publications_plant/veg_lr_inventory_england_and_wales.pdf (2009).

    34.
    Krasteva, L., Stoilova, T., Varbanova, K., & Neykov, S. Bulgarian landrace inventory: significance and use.” In Veteläinen M, Negri V and Maxted N (Eds) European landraces: on-farm conservation, management and use. Bioversity International, Rome. Biodivers. Tech. Bull. 15, 53–68 (2009).

    35.
    Maxted, N., Veteläinen, M., & Negri, V. Landrace inventories: needs and methodologies. European landraces: on farm conservation, management and use. Biodivers. Tech. Bull. 15, 45–52 (2009).

    36.
    Mendes Moreira, P.M.R., & Veloso, M.M. Landrace inventory for Portugal. In Veteläinen M., Negri V., and Maxted N., (Eds), European Landraces: On-farm conservation, Management and Use. Bioversity International, Rome. Biovers. Tech. Bull. 15, 124–136 (2009).

    37.
    Negri, V., Maxted, N., Torricelli, R., Heinonen, M., Veteläinen, M., & Dias, S. Draft descriptors for web-enabled national in situ landrace inventories. PGR Secure. Available from: https://www.pgrsecure.bham.ac.uk/sites/default/files/documents/helpdesk/LR_DESCRIPTORS_PGR_Secure_draft.pdf (2011).

    38.
    Paprštein, F. & Kloutvor, J. Inventory of fruit landraces. Vědecké práce ovocnářské. 17, 159–162 (2001).
    Google Scholar 

    39.
    Scholten, M., Maxted, N. & Ford-Lloyd, B. V. UK National Inventory of plant genetic resources for food and agriculture (Unpublished Report, Defra, London, 2004).
    Google Scholar 

    40.
    Balyejusa Kizito, E., Chiwona-Karltun, L., Egwang, T., Fregene, M. & Westerbergh, A. Genetic diversity and variety composition of cassava on small scale farms in Uganda: an interdisciplinary study using genetic markers and farmer interviews. Genetica 130, 301–318 (2007).
    Article  Google Scholar 

    41.
    Pistrick, K., Avramiuc, M., Cherecheș, V. & Friesen, N. Collecting plant genetic resources in Romania (Eastern Carpathians, Maramureș, Munții Apuseni). Plant Genet. Resour. Newsl. 1995(104), 10–15 (1994).
    Google Scholar 

    42.
    Maxim, A., Şandor, M., Sima, R., Mihalescu, L., Hapca, A., Papp, R., Opincariu, A., Şandor, V., & Matiş, N. Research concerning biochemical composition and storage capacity of different local varieties of carrot (Daucus carota L.). Bull. UASMV Cluj-Napoca Agric. 66(2), 138–143 (2009).

    43.
    Maxim, A., Şandor, M., Jidavu, M., Sima, R., Lucian, C., Opincariu, A., Maxim, O., & Bolboacă, V. Research concerning the conservation of genetic diversity of parsley (Petroselinum crispum MILL.). Bull. UASMV Cluj-Napoca Agric. 66(2), 144–149 (2009).

    44.
    Maxim, A. et al. Romanian landraces of tomates. Bull. UASMV Cluj-Napoca Agric. 69(2), 83–91 (2012).
    Google Scholar 

    45.
    Sudré, C.P., Gonçalves, L.S.A., Rodrigues, R., do Amaral Júnior, A.T., Riva-Souza, E.M., & S. Bento, C. Genetic variability in domesticated Capsicum spp. as assessed by morphological and agronomic data in mixed statistical analysis. Genet. Mol. Res. 9(1), 283–294 (2010).

    46.
    Boros, L., Wawer, A. & Borucka, K. Morphological, phenological and agronomical characterization of variability among common bean (Phaseolus vulgaris L.): local populations from the national Centre for plant genetic resources: Polish gene bank. J. Hortic. Res. 22(2), 123–130 (2014).
    CAS  Article  Google Scholar 

    47.
    Sabatino, L., Iapichino, G., Vetrano, F., & D’Anna, F. Morphological and agronomical characterisation of Sicilian bottle gourd Lagenaria siceraria (Mol.) Standley. J. Food Agric. Environ. 12(Issue 2), 587–590 (2014).

    48.
    D’Anna, F. & Sabatino, L. Morphological and agronomical characterization of eggplant genetic resources from the Sicily area. J. Food Agric. Environ. 4–11(1), 401–404 (2013).
    Google Scholar 

    49.
    Dersouni, C. & Chougui, S. Characterisation of two varieties of tomato (Lycopersicon esculentum) with saline resistant. Int. J. Biosci. 12(4), 43–54 (2018).
    CAS  Article  Google Scholar 

    50.
    Casals, J. et al. The risks of succes quality vegetable markets: possible genetic erosion in Marmande tomatoes (Solanum lycopersicum L.) and consumer dissatisfaction. Sci. Hortic. 130, 78–84 (2011).
    Article  Google Scholar 

    51.
    Gibson, R. W., Aritua, V., Byamukama, E., Mpembe, I. & Kayongo, J. Control strategies for sweet potato virus disease in Africa. Virus Res. 100(1), 115–122 (2004).
    CAS  Article  Google Scholar 

    52.
    Onyeka, T. J., Dixon, A. G. O. & Ekpo, E. J. A. Identification of levels of resistance to cassava root rot disease (Botryodiplodia theobromae) in African landraces and improved germplasm using in vitro inoculation method. Euphytica 145, 283–290 (2005).
    Article  Google Scholar 

    53.
    Sarker, A. & Erskine, W. Recent progress in the ancientlentil. J. Agric. Sci. 144, 19–29 (2006).
    Article  Google Scholar 

    54.
    El Tahir, I. M. & Taha, Y. M. Indigenous melons (Cucumis melo L.) in Sudan: a review of their genetic resources and prospects for use as sources of disease and insect resistance. Plant Genet. Res. Newsl. 138, 36–42 (2004).
    Google Scholar 

    55.
    Esquinas-Alcázar, J. Protecting crop genetic diversity for food security: political, ethical and technical challenges. Nature 6, 946–953 (2010).
    Google Scholar 

    56.
    Newton, A.C., Akar, T., Baresel, J.P., Bebeli, P.J., Bettencourt, E., Bladenopoulos, K.V., Czembor, J.H., & Vaz Patto, M.C. Cereal landraces for sustainable agriculture. A review. Agron. Sust. Dev. 30, 237–269 (2010).

    57.
    Ceccarelli, S. “Landraces: importance and use in breeding and environmentally friendly agronomic systems,” in Agrobiodiversity Conservation Securing the Diversity of Crop Wild Relatives and Landraces, ed. N. Maxted (Wallingford: CAB Interenational), 103 (2011).

    58.
    Ceccarelli, S. Landraces: importance and use in breeding and environmentally friendly agronomic systems. In Agrobiodiversity Conservation: Securing the Diversity of Crop Wild Relatives and Landraces (Maxted N. et al, eds), CAB International, 103–117 (2012).

    59.
    QGIS https://qgis.org/en/site/ (2019). More

  • in

    Topographic, soil, and climate drivers of drought sensitivity in forests and shrublands of the Pacific Northwest, USA

    1.
    Clark, J. S. et al. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Glob. Chang. Biol. 22, 2329–2352 (2016).
    ADS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Ahmadalipour, A., Moradkhani, H. & Svoboda, M. Centennial drought outlook over the CONUS using NASA-NEX downscaled climate ensemble. Int. J. Climatol. 37, 2477–2491 (2017).
    Article  Google Scholar 

    3.
    Yu, M., Li, Q., Hayes, M. J., Svoboda, M. D. & Heim, R. R. Are droughts becoming more frequent or severe in China based on the standardized precipitation evapotranspiration index: 1951–2010?. Int. J. Climatol. 34, 545–558 (2014).
    CAS  Article  Google Scholar 

    4.
    Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 1–55 (2015).
    Article  Google Scholar 

    5.
    Huang, C. Y. & Anderegg, W. R. L. Large drought-induced aboveground live biomass losses in southern Rocky Mountain aspen forests. Glob. Chang. Biol. 18, 1016–1027 (2012).
    ADS  Article  Google Scholar 

    6.
    Simeone, C. et al. Coupled ecohydrology and plant hydraulics modeling predicts ponderosa pine seedling mortality and lower treeline in the US Northern Rocky Mountains. New Phytol. 221, 1814–1830 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    7.
    Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science (80-. ). 349, 528–532 (2015).

    8.
    Yu, Z. et al. Global gross primary productivity and water use efficiency changes under drought stress. Environ. Res. Lett. 12 (2017).

    9.
    Smettem, K. R. J., Waring, R. H., Callow, J. N., Wilson, M. & Mu, Q. Satellite-derived estimates of forest leaf area index in southwest Western Australia are not tightly coupled to interannual variations in rainfall: Implications for groundwater decline in a drying climate. Glob. Chang. Biol. 19, 2401–2412 (2013).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Kath, J. et al. Groundwater salinization intensifies drought impacts in forests and reduces refuge capacity. J. Appl. Ecol. 52, 1116–1125 (2015).
    CAS  Article  Google Scholar 

    11.
    Hoylman, Z. H. et al. The topographic signature of ecosystem climate sensitivity in the western United States. Geophys. Res. Lett. 46, 14508–14520 (2019).
    ADS  Article  Google Scholar 

    12.
    Hahm, W. J. et al. Low subsurface water storage capacity relative to annual rainfall decouples Mediterranean plant productivity and water use from rainfall variability. Geophys. Res. Lett. 46, 6544–6553 (2019).
    ADS  Article  Google Scholar 

    13.
    Chaves, M. M., Maroco, J. P. & Pereira, J. S. Understanding plant responses to drought: From genes to the whole plant. Funct. Plant Biol. 30, 239–264 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Maherali, H., Pockman, W. & Jackson, R. Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology 85, 2184–2199 (2004).
    Article  Google Scholar 

    15.
    McDowell, N. et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?. New Phytol. 178, 719–739 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    16.
    Yang, Y. et al. Contrasting responses of water use efficiency to drought across global terrestrial ecosystems. Sci. Rep. 6, 1–8 (2016).
    Article  CAS  Google Scholar 

    17.
    Malone, S. L. et al. Drought resistance across California ecosystems: Evaluating changes in carbon dynamics using satellite imagery. Ecosphere 7, 1–19 (2016).
    ADS  Article  Google Scholar 

    18.
    Ponce Campos, G. E. et al. Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature 494, 349–352 (2013).

    19.
    Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. 110, 52–57 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Ahmadi, B., Ahmadalipour, A., Tootle, G. & Moradkhani, H. Remote sensing of water use efficiency and terrestrial drought recovery across the Contiguous United States. Remote Sens. 11 (2019).

    22.
    Barnes, M. L. et al. Vegetation productivity responds to sub-annual climate conditions across semiarid biomes. Ecosphere 7, e01339 (2016).
    Article  Google Scholar 

    23.
    Susan Moran, M. et al. Functional response of U.S. grasslands to the early 21st-century drought. Ecology 95, 2121–2133 (2014).

    24.
    Zhang, Y., Voigt, M. & Liu, H. Contrasting responses of terrestrial ecosystem production to hot temperature extreme regimes between grassland and forest. Biogeosciences 12, 549–556 (2015).
    ADS  CAS  Article  Google Scholar 

    25.
    Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).
    ADS  Article  Google Scholar 

    26.
    Zhang, Y. et al. Extreme precipitation patterns and reductions of terrestrial ecosystem production across biomes. J. Geophys. Res. Biogeosci. 118, 148–157 (2013).
    ADS  Article  Google Scholar 

    27.
    Norman, S., Koch, F. & Hargrove, W. Detecting and monitoring large-scale drought effects on forests: Toward an integrated approach. in Effects of Drought on Forests and Rangelands in the United States: A Comprehensive Science Synthesis. General Technical Report WO-93b (eds. Vose, J., Clark, J., Luce, C. & Patel-Weynand, T.) 195–230 (U.S. Forest Service, 2015).

    28.
    Sims, D. A., Brzostek, E. R. & Rahman, A. F. An improved approach for remotely sensing water stress impacts on forest C uptake. Glob. Chang. Biol. 1–11, https://doi.org/10.1111/gcb.12537 (2014).

    29.
    Brodrick, P. G., Anderegg, L. D. L. & Asner, G. P. Forest drought resistance at large geographic scales. Geophys. Res. Lett. 46, 2752–2760 (2019).
    ADS  Article  Google Scholar 

    30.
    Ma, X., Huete, A., Moran, S., Ponce-Campos, G. & Eamus, D. Abrupt shifts in phenology and vegetation productivity under climate extremes. J. Geophys. Res. Biogeosci. 120, 2036–2052 (2015).
    Article  Google Scholar 

    31.
    McLaughlin, B. et al. Hydrologic refugia, plants and climate change. Glob. Chang. Biol. 23, 1–21 (2017).
    Article  Google Scholar 

    32.
    Tague, C. L. & Moritz, M. A. Plant accessible water storage capacity and tree-scale root interactions determine how forest density reductions alter forest water use and productivity. Front. For. Glob. Chang. 2, 1–18 (2019).
    Article  Google Scholar 

    33.
    Peterman, W., Waring, R., Seager, T. & Pollock, W. Soil properties affect pinyon pine–juniper response to drought. Ecohydrology 6, 455–463 (2013).
    Article  Google Scholar 

    34.
    Law, B. E. & Waring, R. H. Carbon implications of current and future effects of drought, fire and management on Pacific Northwest forests. For. Ecol. Manag. 355, 4–14 (2015).
    Article  Google Scholar 

    35.
    Marlier, M. E. et al. The 2015 drought in Washington State: A harbinger of things to come? Environ. Res. Lett. 12 (2017).

    36.
    Buttrick, S. et al. Conserving Nature’s Stage: Identifying Resilient Terrestrial Landscapes in the Pacific Northwest. (The Nature Conservancy, 2015).

    37.
    Potithep, S., Nasahara, N. K., Muraoka, H., Nagai, S. & Suzuki, R. What is the actual relationship between LAI and VI in a deciduous broadleaf forest? Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 38, 609–614 (2010).

    38.
    Bigler, C., Gavin, D. G., Gunning, C. & Veblen, T. T. Drought induces lagged tree mortality in a subalpine forest in the Rocky Mountains. Oikos 116, 1983–1994 (2007).
    Article  Google Scholar 

    39.
    Berdanier, A. & Clark, J. Multiyear drought-induced morbidity preceding tree death in southeastern U.S. forests. Ecol. Appl. 26, 17–23 (2016).

    40.
    Ficklin, D. L. & Novick, K. A. Historic and projected changes in vapor pressure deficit suggest a continental-scale drying of the United States atmosphere. J. Geophys. Res. 122, 2061–2079 (2017).
    Article  Google Scholar 

    41.
    Assal, T. J., Anderson, P. J. & Sibold, J. Spatial and temporal trends of drought effects in a heterogeneous semi-arid forest ecosystem. For. Ecol. Manag. 365, 137–151 (2016).
    Article  Google Scholar 

    42.
    Guarín, A. & Taylor, A. H. Drought triggered tree mortality in mixed conifer forests in Yosemite National Park, California, USA. For. Ecol. Manag. 218, 229–244 (2005).
    Article  Google Scholar 

    43.
    Crausbay, S. D. et al. Defining ecological drought for the twenty-first century. Bull. Am. Meteorol. Soc. 98, 2543–2550 (2017).
    ADS  Article  Google Scholar 

    44.
    Van Loon, A. F. Hydrological drought explained. WIREs. Water 2, 359–392 (2015).
    ADS  Google Scholar 

    45.
    Peterman, W., Waring, R. H., Seager, T. & Pollock, W. L. Soil properties affect pinyon pine-juniper response to drought. Ecohydrology 6, 455–463 (2013).
    Article  Google Scholar 

    46.
    Mildrexler, D., Yang, Z., Cohen, W. B. & Bell, D. M. A forest vulnerability index based on drought and high temperatures. Remote Sens. Environ. 173, 314–325 (2016).
    ADS  Article  Google Scholar 

    47.
    Berner, L. T. & Law, B. E. Water limitations on forest carbon cycling and conifer traits along a steep climatic gradient in the Cascade Mountains, Oregon. Biogeosci. Discuss. 12, 14507–14553 (2015).
    ADS  Article  Google Scholar 

    48.
    Kerns, B. K., Powell, D. C., Mellmann-Brown, S., Carnwath, G. & Kim, J. B. Effects of projected climate change on vegetation in the Blue Mountains ecoregion, USA. Clim. Serv. 10, 33–43 (2018).
    Article  Google Scholar 

    49.
    Michalak, J. L., Withey, J. C., Lawler, J. J. & Case, M. J. Future climate vulnerability—Evaluating multiple lines of evidence. Front. Ecol. Environ. 15, 367–376 (2017).
    Article  Google Scholar 

    50.
    Young, D. J. N. et al. Long-term climate and competition explain forest mortality patterns under extreme drought. Ecol. Lett. 20, 78–86 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    51.
    Clifford, M. J., Cobb, N. S. & Buenemann, M. Long-term tree cover dynamics in a pinyon-juniper woodland: climate-change-type drought resets successional clock. Ecosystems 14, 949–962 (2011).
    Article  Google Scholar 

    52.
    Baker, W. L. Transitioning western U.S. dry forests to limited committed warming with bet-hedging and natural disturbances. Ecosphere 9 (2018).

    53.
    Walck, J. L., Hidayati, S. N., Dixon, K. W., Thompson, K. & Poschlod, P. Climate change and plant regeneration from seed. Glob. Chang. Biol. 17, 2145–2161 (2011).
    ADS  Article  Google Scholar 

    54.
    Krawchuk, M. A. et al. Disturbance refugia within mosaics of forest fire, drought, and insect outbreaks. Front. Ecol. Environ. 18, 235–244 (2020).
    Article  Google Scholar 

    55.
    Cartwright, J. Landscape topoedaphic features create refugia from drought and insect disturbance in a lodgepole and whitebark pine forest. Forests 9, 715 (2018).
    Article  Google Scholar 

    56.
    Millar, C. I. et al. Do low-elevation ravines provide climate refugia for subalpine limber pine (Pinus flexilis) in the Great Basin, USA?. Can. J. For. Res. 48, 663–671 (2018).
    Article  Google Scholar 

    57.
    Jaeger, K. L. et al. Probability of streamflow permanence model (PROSPER): A spatially continuous model of annual streamflow permanence throughout the Pacific Northwest. J. Hydrol. X 2, 100005 (2019).
    Article  Google Scholar 

    58.
    AdaptWest Project. Gridded current and future climate data for North America at 1 km resolution. (2015). https://adaptwest.databasin.org/pages/adaptwest-climatena. Accessed 5 Oct 2018.

    59.
    National Aeronautics and Space Administration (NASA). EarthData Search. (2020). https://search.earthdata.nasa.gov/search. Accessed 8 Jan 2017.

    60.
    Franklin, S. et al. Building the United States national vegetation classification. Ann. Bot. 2, 1–9 (2012).
    Google Scholar 

    61.
    Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).
    ADS  Article  Google Scholar 

    62.
    Vogelmann, J. E., Tolk, B. & Zhu, Z. Monitoring forest changes in the southwestern United States using multitemporal Landsat data. Remote Sens. Environ. 113, 1739–1748 (2009).
    ADS  Article  Google Scholar 

    63.
    De’ath, G. & Fabricius, K. E. Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology 81, 3178–3192 (2000).

    64.
    Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Hijmans, R., Phillips, S., Leathwick, J. & Elith, J. dismo: Species Distribution Modeling, R package version 1.1–4. (2016). https://cran.r-project.org/web/packages/dismo/dismo.pdf. Accessed: 1 May 2017.

    66.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2017). https://www.r-project.org. Accessed 1 Feb 2017.

    67.
    Cartwright, J. Analysis of Drought Sensitivity in the Pacific Northwest (Washington, Oregon, and Idaho) from 2000 Through 2016: U.S. Geological Survey Data Release. (2019). https://doi.org/10.5066/P9UNYG2R. Accessed 6 Nov 2019.

    68.
    Omernik, J. & Griffith, G. Ecoregions of the conterminous United States: Evolution of a hierarchical spatial framework. Environ. Manag. 54, 1249–1266 (2014).
    ADS  Article  Google Scholar 

    69.
    U.S. Geological Survey. GAP/LANDFIRE National Terrestrial Ecosystems Dataset (2010). https://gapanalysis.usgs.gov/gaplandcover/featured-post-1/. Accessed 16 Mar 2017.

    70.
    U.S. Geological Survey. Global 30 arc-second elevation (GTOPO30). U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center (2015). https://lta.cr.usgs.gov/GTOPO30. Accessed 2 Mar 2018.

    71.
    Dobrowski, S. Z. et al. Climatic Water Balance and Velocity of Climate Change Data for the Contiguous US During the 20th Century. (2013). https://adaptwest.databasin.org/pages/adaptwest-waterbalance. Accessed 2 Mar 2018.

    72.
    Hengl, T. et al. SoilGrids1km-global soil information based on automated mapping. PLoS ONE 9, e105992 (2014).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    73.
    Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science (80-. ). 339, 940–943 (2013).

    74.
    Esri. ArcGIS Desktop. (2020). https://www.esri.com/en-us/arcgis/products/arcgis-desktop/overview. Accessed 8 Jan 2017. More

  • in

    Dietary diversity and evolution of the earliest flying vertebrates revealed by dental microwear texture analysis

    1.
    Witton, M. P. Pterosaurs: Natural History, Evolution, Anatomy (Princeton Univ. Press, 2013).
    2.
    Barrett, P. M., Butler, R. J., Edwards, N. P. & Milner, A. R. Pterosaur distribution in time and space: an atlas. Zitteliana 28, 61–107 (2008).
    Google Scholar 

    3.
    Dean, C. D., Mannion, P. D. & Butler, R. J. Preservational bias controls the fossil record of pterosaurs. Palaeontology 59, 225–247 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Bestwick, J., Unwin, D. M., Butler, R. J., Henderson, D. M. & Purnell, M. A. Pterosaur dietary hypotheses: a review of ideas and approaches. Biol. Rev. 93, 2021–2048 (2018).
    PubMed  Article  Google Scholar 

    5.
    Wang, X. & Zhou, Z. Pterosaur assemblages of the Jehol Biota and their implication for the Early Cretaceous pterosaur radiation. Geol. J. 41, 405–418 (2006).
    Article  Google Scholar 

    6.
    Bennett, S. C. A statistical study of Rhamphorhynchus from the Solnhofen limestone of Germany: year-classes of a single large species. J. Paleontol. 69, 569–580 (1995).
    Article  Google Scholar 

    7.
    Prondvai, E., Stein, K., Ősi, A. & Sander, M. P. Life history of Rhamphorhynchus inferred from bone histology and the diversity of pterosaurian growth strategies. PLoS ONE 7, e31392 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Bennett, S. C. New smallest specimen of the pterosaur Pteranodon and ontogenetic niches in pterosaurs. J. Vert. Paleontol. 92, 254–271 (2017).
    Article  Google Scholar 

    9.
    Benson, R. B., Frigot, R. A., Goswami, A., Andres, B. & Butler, R. J. Competition and constraint drove Cope’s rule in the evolution of giant flying reptiles. Nat. Comm. 5, 3567 (2014).
    ADS  Article  CAS  Google Scholar 

    10.
    Nesbitt, S. J. The early evolution of archosaurs: relationships and the origin of major clades. Bull. Am. Mus. Nat. Hist. 352, 1–292 (2011).
    Article  Google Scholar 

    11.
    Witton, M. P. in New Perspectives on Pterosaur Palaeobiology (eds. Hone, D. W. E., Witton, M. P. & Martill, D. M.) Vol. 455, 7–23 (Geol. Soc. Lond. Spec. Pub., 2018).

    12.
    Ősi, A. Feeding-related characters in basal pterosaurs: implications for jaw mechanism, dental function and diet. Lethaia 44, 136–152 (2011).
    Article  Google Scholar 

    13.
    Zhou, C.-F., Gao, K.-Q., Yi, H., Xue, J., Li, Q. & Fox, R. C. Earliest filter-feeding pterosaur from the Jurassic of China and ecological evolution of Pterodactyloidea. R. Soc. Open Sci. 4, 160672 (2017).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Ungar, P. S., Brown, C. A., Bergstrom, T. S. & Walker, A. Quantification of dental microwear by tandem scanning confocal microscopy and scale-sensitive fractal analysis. Scanning 25, 185–193 (2003).
    PubMed  Article  PubMed Central  Google Scholar 

    15.
    Daegling, D. J. et al. Viewpoints: feeding mechanics, diet and dietary adaptations in early hominins. Am. J. Phys. Anthropol. 151, 356–371 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    16.
    Purnell, M., Seehausen, O. & Galis, F. Quantitative three-dimensional microtextural analyses of tooth wear as a tool for dietary discrimination in fishes. J. R. Soc. Interface 9, 2225–2233 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    17.
    Purnell, M. A. & Darras, L. P. G. 3D tooth microwear texture analysis in fishes as a test of dietary hypotheses of durophagy. Surf. Topogr. Metrol. Prop. 4, 014006 (2016).
    ADS  Article  Google Scholar 

    18.
    Bestwick, J., Unwin, D. M. & Purnell, M. A. Dietary differences in archosaur and lepidosaur reptiles revealed by dental microwear textural analysis. Sci. Rep. 9, 11691 (2019).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    19.
    ISO 25178-2. Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 2: Terms, Definitions and Surface Texture Parameters (International Organisation for Standardisation) 1–42 (2012).

    20.
    Winkler, D. E., Schulz-Kornas, E., Kaiser, T. M. & Tütken, T. Dental microwear texture reflects dietary tendencies in extant Lepidosauria despite their limited use of oral food processing. Proc. R. Soc. B. 286, 20190544 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    21.
    Frey, E. & Tischlinger, H. The Late Jurassic pterosaur Rhamphorhynchus, a frequent victim of the ganoid fish Aspidorhynchus? PLoS ONE 7, e31945 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Wellnhofer, P. Die Rhamphorhynchoidea (Pterosauria) der Oberjura-Plattenkalke Süddeutschlands, Teil III: Palökologie und Stammesgeschichte. Palaeontogr. Abt. A 1–3, 1–30 (1975).

    23.
    Hone, D., Henderson, D. M., Therrien, F. & Habib, M. B. A specimen of Rhamphorhynchus with soft tissue preservation, stomach contents and a putative coprolite. PeerJ 3, e1191 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    24.
    Wellnhofer, P. The Illustrated Encyclopaedia of Pterosaurs (Salamander Books, 1991).

    25.
    Witton, M. P. New insights into the skull of Istiodactylus latidens (Ornithocheiroidea, Pterodactyloidea). PLoS ONE 7, e33170 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Dalla Vecchia, F. M. in Anatomy, Phylogeny and Palaeobiology of Early Archosaurs and their Kin (eds. Nesbitt, S.J., Desojo, J.B. & Irmis, R.B.) 379, 119–155 (Geol. Soc. Lond. Spec. Pub., 2013).

    27.
    Veldmeijer, A. J., Signore, M. & Bucci, E. in Predation in Organisms—A Distinct Phenomenon (ed. Elewa, A.M.T.) 295–308 (Springer, 2007).

    28.
    Unwin, D. M. & Martill, D. M. in The Crato Fossil Beds of Brazil: Window into an Ancient World (eds. Martill, D. M., Bechly, G. & Loveridge, B.) 475–524. (Cambridge Univ. Press, 2007).

    29.
    Henderson, D. M. in New Perspectives on Pterosaur Palaeobiology (eds. Hone, D. W. E., Witton, M. P. & Martill, D. M.) 455, 25–44 (Geol. Soc. Lond. Spec. Pub., 2018).

    30.
    Unwin, D. M. The Pterosaurs from Deep Time (Pi Press, 2006).

    31.
    Hoffmann, R., Bestwick, J., Berndt, G., Fuchs, D. & Klug, C. Pterosaurs ate soft-bodies cephalopods (Coleoidea). Sci. Rep. 10, 1230 (2020).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Platt, S. G., Thorbjarnarson, J. B., Rainwater, T. R. & Martin, D. R. Diet of the American Crocodile (Crocodylus acutus) in marine environments of Coastal Belize. J. Herpet 47, 1–10 (2013).
    Article  Google Scholar 

    33.
    Lü, J., Kundrát, M. & Shen, C. New material of the pterosaur Gladocephaloideus Lü et al., 2012 from the Early Cretaceous of Liaoning Province, China, with comments on its systematic position. PLoS ONE 11, e0154888 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    34.
    Andres, B. & Myers, T. S. Lone star pterosaurs. Earth Env. Sci. Trans. R. Soc. Edinburgh. 103, 383–398 (2013).
    Article  Google Scholar 

    35.
    Wang, X. et al. New evidence from China for the nature of the pterosaur evolutionary transition. Sci. Rep. 7, 42763 (2017).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Andres, B. Death and taxa: the shape of pterosaur evolution. In The 5th International Symposium on Pterosaurs (Univ. Portsmouth, UK, 2015).

    37.
    Wang, M., Wang, X., Wang, Y. & Zhou, Z. A new basal bird from China with implications for morphological diversity in early birds. Sci. Rep. 6, 19700 (2016).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    38.
    Losos, J. B. & Greene, H. W. Ecological and evolutionary implications of diet in monitor lizards. Biol. J. Linn. Soc. 35, 379–409 (1988).
    Article  Google Scholar 

    39.
    Nifong, J. C. et al. Animal-borne imaging reveals novel insights into the foraging behaviors and diel activity of a large-bodied apex predator, the American alligator (Alligator mississippiensis). PLoS ONE 9, e83953 (2014).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    40.
    Chatterjee, S. & Templin, R. J. Posture, Locomotion, and Paleoecology of Pterosaurs. Vol. 376, 1–64 (Geol. Soc. Am. Spec. Pub, 2004)..

    41.
    Delany, M. F., Linda, S. B. & Moore, C. T. Diet and condition of American alligators in 4 Florida lakes. Proc. Annual Conference on Southeastern Association of Fish and Wildlife Agencies (eds Eversole, R. G., Wong, K. C., Chamberlain, M. & Rohwer, F.) Vol. 53, 375–389 (1999).

    42.
    Laverty, T. M. & Dobson, A. P. Dietary overlap between black caimans and spectacled caimans in the Peruvian Amazon. Herpetologica 69, 91–101 (2013).
    Article  Google Scholar 

    43.
    Thorbjarnarson, J. B. The status and ecology of the American crocodile in Haiti. Bull. Fla. Mus. Biol. Sci. 33, 1–86 (1988).
    Google Scholar 

    44.
    Wallace, K. M. & Leslie, A. J. Diet of the Nile Crocodile (Crocodylus niloticus) in the Okavango Delta. Botsw. J. Herpet. 42, 361–368 (2008).
    Article  Google Scholar 

    45.
    Sah, S. A. M. & Stuebing, R. B. Diet, growth and movements of juvenile crocodiles Crocodylus porsus Schneider in the Klias river, Sabah, Malaysia. J. Trop. Ecol. 12, 651–662 (1996).
    Article  Google Scholar 

    46.
    Taylor, J. A. The foods and feeding habits of subadult Crocodylus porosus Schneider in Northern Australia. Aust. Wildl. Res. 6, 347–359 (1979).
    ADS  Article  Google Scholar 

    47.
    Hussain, S. A. Ecology of Gharial (Gavialis gangeticus) in National Chambal Sanctuary, India. MPhil thesis, Aligarh Muslim University (1991).

    48.
    Auffenberg, W. The Behavioral Ecology of the Komodo Monitor (Univ. Press, Florida, 1981).
    Google Scholar 

    49.
    Dalhuijsen, K., Branch, W. R. & Alexander, G. J. A comparative analysis of the diets of Varanus albigularis and Varanus niloticus in South Africa. Afr. Zool. 49, 83–93 (2014).
    Article  Google Scholar 

    50.
    Auffenberg, W. Gray’s Monitor Lizard (Univ. Press, Florida, 1988).
    Google Scholar 

    51.
    Greene, H. W. Diet and arboreality in the emerald monitor, Varanus prasinus, with comments on the study of adaptation. Fieldiana Zool. 31, 1–12 (1986).
    Google Scholar 

    52.
    Rahman, K. M. M., Rakhimov, I. I. & Khan, M. M. H. Activity budgets and dietary investigations of Varanus salvator (Reptilia: Varanidae) in Karamjal ecotourism spot of Bangladesh Sundarbans mangrove forest. Basic Appl. Herpet 31, 45–56 (2017).
    Google Scholar 

    53.
    Almenar, D., Aihartza, J., Goiti, U., Salsamendi, E. & Garin, I. Diet and prey selection in the trawling long-fingered bat. J. Zool. 274, 340–348 (2008).
    Article  Google Scholar 

    54.
    Berge, L. Resource Partitioning between the Cryptic Species Brandt’s bat (Myotis brandtii) and the Whiskered Bat (M. mystacinus) in the UK. PhD thesis, Univ. Bristol (2007).

    55.
    Brooke, A. P. Diet of the fishing bat, Noctilio leporinus (Chiroptera: Noctilionidae). J. Mammal. 75, 212–218 (1994).
    Article  Google Scholar 

    56.
    Jones, G. Flight peformance, echolocation and foraging behaviour in noctule bats Nyctalus noctula. J. Zool. Soc. Lond. 237, 303–312 (1995).
    Article  Google Scholar 

    57.
    Rydell, J. Food habits of northern (Eptesicus nilssoni) and brown long-eared (Plecotus auritus) bats in Sweden. Holarct. Ecol. 12, 16–20 (1989).
    Google Scholar 

    58.
    Flanders, F. & Jones, G. Roost use, ranging behavior, and diet of greater horseshoe bats (Rhinolophus ferrumequinum) using a transitional roost. J. Mammal. 90, 888–896 (2009).
    Article  Google Scholar 

    59.
    Humphrey, S. R., Bonaccorso, F. J. & Zinn, T. J. Guild structure of surface-gleaning bats in Panamá. Ecology 64, 284–294 (1983).
    Article  Google Scholar 

    60.
    Bonato, V., Facure, K. G. & Uidea, W. Food habits of bats of subfamily Vampyrinae in Brazil. J. Mammal. 85, 708–713 (2004).
    Article  Google Scholar 

    61.
    Fukuda, Y., Saafeld, K., Lindner, G. & Nichols, T. Estimation of total length from head length of saltwater crocodiles (Crocodylus porosus) in the Northern Territory, Australia. J. Herpetol. 47, 34–40 (2013).
    Article  Google Scholar 

    62.
    Santana, S. E., Dumont, E. R. & Davis, J. L. Mechanics of bite force production and its relationship to diet in bats. Funct. Ecol. 24, 776–784 (2010).
    Article  Google Scholar 

    63.
    Williams, V. S. & Doyle, A. M. Cleaning fossil tooth surfaces for microwear analysis: use of solvent gels to remove resistant consolidant. Palaeontol. Electron. 13, 2T (2010).
    Google Scholar 

    64.
    Schubert, B. W. & Ungar, P. S. Wear facets and enamel spalling in tyrannosaurid dinosaurs. Acta Palaeontol. Pol. 50, 93–99 (2005).
    Google Scholar 

    65.
    Goodall, R. H., Darras, L. P. & Purnell, M. A. Accuracy and precision of silicon based impression media for quantitative areal texture analysis. Sci. Rep. 5, 10800 (2015).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    66.
    Purnell, M. A., Crumpton, N., Gill, P. G., Jones, G. & Rayfield, E. J. Within-guild dietary discrimination from 3-D textural analysis of tooth microwear in insectivorous mammals. J. Zool. 291, 249–257 (2013).
    CAS  Article  Google Scholar 

    67.
    Schulz, E., Calandra, I. & Kaiser, T. M. Feeding ecology and chewing mechanics in hoofed mammals: 3D tribology of enamel wear. Wear 300, 169–179 (2013).
    CAS  Article  Google Scholar 

    68.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B. 57, 289–300 (1995).
    MathSciNet  MATH  Google Scholar 

    69.
    Purnell, M. A., Goodall, R. H., Thomson, S. & Matthews, C. J. D. Tooth microwear texture in odontocete whales: variation with tooth characteristics and implications for dietary analysis. Biosurf. Biotribol. 3, 184–195 (2017).
    Article  Google Scholar 

    70.
    McDonald, J. H. Handbook of Biological Sciences 3rd edn. (Sparky House Publishing, 2014).

    71.
    Bell, M. A. & Lloyd, G. T. strap: an R package for plotting phylogenies against stratigraphy and assessing their stratigraphic congruence. Palaeontology 58, 379–389 (2014).
    Article  Google Scholar 

    72.
    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2010).

    73.
    Revell, L. J. Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    Article  Google Scholar 

    74.
    Bantim, R. A. M., Saraiva, A. A. F. & Sayão, J. M. Skull variation and the shape of the sagittal premaxillary crest in anhanguerid pterosaurs (Pterosauria, Pterodactyloidea) from the Araripe Basin, Northeast Brazil. Hist. Biol. 27, 656–664 (2014).
    Article  Google Scholar 

    75.
    Dalla Vecchia, F. M. The first Italian specimen of Austriadactylus cristatus (Diapsida, Pterosauria) from the Norian (Upper Triassic) of the carnic Prealps. Riv. Ital. Paleontol. S. 115, 291–304 (2009).
    Google Scholar 

    76.
    Jiang, S.-X., Wang, X.-L., Meng, X. & Cheng, X. A new boreopterid pterosaur from the Lower Cretaceous of western Liaoning, China, with a reassessment of the phylogenetic relationships of the Boreopteridae. J. Paleontol. 88, 823–828 (2014).
    Article  Google Scholar 

    77.
    Martill, D. M. First occurrence of the pterosaur Coloborhynchus (Pterosauria, Ornithocheiridae) from the Wessex Formation (Lower Cretaceous) of the Isle of Wight, England. Proc. Geol. Assoc. 126, 377–380 (2015).
    Article  Google Scholar 

    78.
    Cheng, X., Wang, X., Jiang, S. & Kellner, A. W. A. A new scaphognathid pterosaur from western Liaoning. China Hist. Biol. 24, 101–111 (2012).
    Article  Google Scholar 

    79.
    Bestwick, J., Unwin, D. M., Butler, R. J. & Purnell, M. A. Dietary diversity and evolution of the earliest flying vertebrates revealed by dental microwear texture analysis. Data Sets. Zenodo https://doi.org/10.5281/zenodo.4018876 (2020).
    Article  Google Scholar  More

  • in

    These bizarre ancient species are rewriting animal evolution

    The revolutionary animal lived and died in the muck. In its final hours, it inched across the sea floor, leaving a track like a tyre print, and finally went still. Then geology set to work. Over the next half a billion years, sediment turned to stone, preserving the deathbed scene. The fossilized creature looks like a piece of frayed rope measuring just a few centimetres wide. But it was a trailblazer among living things.
    This was the earliest-known animal to show unequivocal evidence of two momentous innovations packaged together: the ability to roam the ocean floor, and a body built from segments. It was also among the oldest known to have clear front and back ends, and a left side that mirrored its right. Those same features are found today in animals from flies to flying foxes, from lobsters to lions.
    Palaeontologist Shuhai Xiao marvels at the tracks left by this creature, Yilingia spiciformis, and how they captured evidence of its movement. In his cluttered office at Virginia Tech in Blacksburg, he shows off a slab of beige resin — a reproduction of the fossil, which was found in China’s Yangtze Gorges region and is now kept in a Chinese research institute. The replica captures a snapshot of a moment from 550 million years ago. Xiao, whose team formally described Yilingia last year1, traces the bumpy tracks it made immediately before its death. “It was just moving around, and it died suddenly,” he says.

    A fossil from South China shows the worm-like creature Yilingia spiciformis (right) at the end of a track that it made in the sea floor.Credit: Zhe Chen/Nanjing Institute of Geology and Palaeontology, and Shuhai Xiao/Virginia Tech

    But that’s not the end of this creature’s story. Although nobody knows which category of life it belonged to — the group that includes earthworms is one possibility — Yilingia is helping to fill in key details about the evolution of animals. Most importantly, Yilingia shows that some quintessential animal traits had appeared half a billion years ago, earlier than previous definitive evidence, Xiao says.
    Yilingia is not the only creature from that region to provide some of the earliest fossil evidence for an important animal feature. In 2018, Xiao and his team reported2 on tracks found in the Yangtze Gorges consisting of two parallel rows of dimples. The researchers propose that the trails were made by an animal from 550 million years ago that might have been able to burrow and had multiple pairs of appendages — which would make it one of the earliest-known animals with legs.
    These Chinese fossils hail from a time right before the Cambrian explosion, the evolutionary transformation when most of the animal groups that populate the planet today first made their appearance in the fossil record. Scientists long regarded the boundary between the Cambrian period and the Precambrian as a dividing point in evolution — a transition from a world in which simple, strange organisms flourished, to a time when the seas teemed with complex creatures that are the forebears of nearly everything that followed.

    The worm-like animal Yilingia spiciformis crawls across the sea floor in this artist’s reconstruction that also shows a fossil of the creature (left).Credit: Zhe Chen/Nanjing Institute of Geology and Palaeontology, and Shuhai Xiao/Virginia Tech

    But a growing number of findings reveal that the time slice just before the Cambrian, known as the Ediacaran (635 million to 541 million years ago), was a pivot point of animal evolution — a period that includes the earliest fossil records of anatomical innovations, such as guts and legs, and the first appearance of complex behaviours such as burrowing. The insights into the Ediacarans’ powers lend support to a provocative idea: that the Cambrian explosion, that iconic evolutionary burst, was actually less revolutionary than many had thought.
    The Cambrian explosion “is just another phase of evolution”, says palaeobiologist Rachel Wood at the University of Edinburgh, UK. “It’s not a single flash event. It could not have happened without previous waves of innovation.”
    Tumultuous times
    The Ediacarans’ innovations came against a backdrop of planetary cataclysms. During this time, Earth was still recovering from a long, shivery chapter when ice covered much of the seas. A gigantic meteor slammed into what is now Australia and probably kicked up enough dust to trigger catastrophic changes around the globe. The planet’s very surface was splitting: during the Ediacaran, one supercontinent broke apart and another took shape as land masses smashed together. On the continents, no plants grew. In the ocean, oxygen levels swung wildly.
    Scientists once thought that complex life did not start until after all this tumult. In Charles Darwin’s day, no fossils had been found below the rock layers documenting the Cambrian explosion. That blank rock record troubled Darwin, who reasoned that if his theory of evolution were correct, there must have been life before the Cambrian’s riches. “The case at present must remain inexplicable,” he wrote in On the Origin of Species in 1859.

    ‘Darwin’s dilemma’ would remain unsolved for a century. In the 1930s and 1940s, researchers found intriguing imprints in rocks in Australia and elsewhere, but those rocks were not definitively Precambrian. Then, several English schoolchildren finally gave the Ediacarans their big break in 1957. Scrambling through a local quarry, the students noticed a leaf-shaped imprint in the ancient stone. Geologist Trevor Ford at the University of Leicester, UK, went to see it — and recognized that it had been made by a living thing. Ford’s paper3 about the imprint provided definitive evidence that large, complex species lived in the Precambrian. He ventured that the type of organism was probably “an algal frond”.
    It almost certainly wasn’t. Ford’s proposal was among the first in a long list of mistaken ideas about the identity of Ediacaran organisms. As more were discovered, scientists tried valiantly to place them on the tree of life. Some of the fossils were towering structures that stood one metre tall; others resembled deflated air mattresses. They have been called lichens and algae, fungi and bacterial colonies. “Basically any interpretation you can name has been suggested,” says geobiologist Lidya Tarhan at Yale University in New Haven, Connecticut.
    Finally, an audacious theory broke through the welter of competing claims. In the 1980s and 1990s, palaeontologist Adolf Seilacher at the University of Tübingen in Germany proposed4,5 that many Ediacaran life forms were not animals, but instead belonged to a single, bizarre group that he called the Vendobionta. These organisms were “an evolutionary experiment that failed” when formidable predators arrived on the scene, Seilacher wrote. His ideas have fallen out of favour, but they challenged researchers to question their assumptions. “At the time it was brilliant thinking,” says geobiologist Simon Darroch at Vanderbilt University in Nashville, Tennessee. “Before that, everyone assumed they were all jellyfish, which was even more wrong.”

    Now, most scientists are reaching agreement that the Ediacarans were a grab bag of disparate life forms, rather than the self-contained group proposed by Seilacher. “It’s inappropriate to consider them a failed experiment,” says palaeontologist Frances Dunn at the University of Oxford, UK. “They represent the ancestors, probably, of lots of different things.” Many scientists — although not all — are also signing up to the idea that some fraction of the Ediacaran organisms were probably animals, including some that don’t look like any animal alive today.
    That idea dovetails with genetic evidence that animals, or metazoans, first appeared more than 600 million years ago, well before the Ediacaran. There are no definitive fossils to illustrate the dawn of the animals, but the early metazoans were probably small, soft, simple things, including ancestors of modern creatures such as sponges and corals. Eventually, animals developed left–right symmetry, which is packaged with a gut, mouth and anus.
    But it’s not easy to define which fossils are animals and which are not. “Would we know the first metazoan if we tripped over it?” Wood wonders. “Is our search image correct?” Those questions still dog scientists.
    Insight from imprints
    Although the Ediacaran fossils have bedevilled researchers for decades, new techniques are coaxing fresh insights out of previously intractable imprints. Take the baffling organisms in the genus Dickinsonia. Rounded and flat, they resembled segmented bath mats only a few millimetres thick, although they could reach nearly 1.5 metres in length. Their strange construction spawned theories that they were protists — a diverse group of mostly single-celled organisms that includes protozoa and some algae — or lichens, although many researchers suspected that they were animals.
    To try to settle the long-standing dispute, geobiologist Ilya Bobrovskiy, now at the California Institute of Technology in Pasadena, and his colleagues took a biochemical approach. Bobrovskiy used tweezers to harvest thin films of organic matter — the remnants of Dickinsonia specimens that lived more than 550 million years ago. Analysis of the fat molecules in these biofilms showed that they were breakdown products of cholesterol, which is found in animals’ cell membranes6. “Dickinsonia was indeed an animal,” Bobrovskiy says.

    Evidence indicates that Dickinsonia, an iconic organism of the Ediacaran period, was an animal.Credit: Zeytun Travel Images/Alamy

    Dickinsonia was a rather simple animal: it showed no evidence of a mouth or a gut. But earlier this year, scientists detailed what might be the oldest-known animal that had both. Called Ikaria wariootia, it lived at roughly the same time as the Dickinsonia specimens that Bobrovskiy’s team studied, or perhaps earlier7.
    This discovery resolves a long-standing Ediacaran whodunnit: what made the narrow, twisting burrows that cut through Ediacaran sediments? They are among the most common Ediacaran calling cards, but are so small — only 1.5–2 millimetres wide — that they must have been created by an elusively tiny organism. “We never thought we’d see it,” says palaeontologist Mary Droser at the University of California, Riverside. Then she got her hands on a 3D laser scanner.
    Droser and her colleagues used the scanner to image hundreds of tiny blobs found near the twisting burrows. The team’s high-resolution 3D reconstructions show that the blobs were, in fact, organisms7. They were smaller than grains of rice, but they had left–right symmetry and both a front and back end, and features of the burrows suggest that the creatures could control where they moved. Previous analysis showed that some burrows wend into and out of the buried bodies of larger organisms, implying that Ikaria was a scavenger — the earliest known. Droser’s team suggests that, to support Ikaria’s burrowing and scavenging habits, the tiny animal probably had a mouth, anus and gut.

    Ikaria wariootia was smaller than a grain of rice, but its trails suggest that the burrowing creature was capable of relatively sophisticated behaviours, such as feasting on other organisms.Credit: Sohail Wasif/UCR

    More evidence that Ediacarans had guts comes from tubular organisms called cloudinids that arose around 550 million years ago. Using high-resolution X-ray imaging to peer inside cloudinids’ outer tubes, researchers saw a long, cylindrical feature, which the authors say is the oldest gut in the fossil record8. The team found this feature in a cloudinid that most probably belonged to the genus Saarina, and it bolsters the case that some cloudinids were animals with left–right symmetry8, says palaeobiologist and study co-author Jim Schiffbauer at the University of Missouri, Columbia. The gut’s shape and other clues hint that Saarina could be an early annelid, an animal grouping that includes modern earthworms.
    Alien animals
    New approaches are producing evidence that even the most alien-looking Ediacarans might have been animals. Take the ‘frondose’ Ediacarans, which were built from collections of miniature branches reminiscent of a fern’s lacy foliage. Some frondose organisms resembled heads of lettuce, whereas the organism Charnia masoni looked like a palm branch stuck into the sea floor. Charnia and its close relatives had a ‘pseudo-fractal’ organization like that of no living creature: the fronds were made up of branches, which were made up of sub-branches, which were made up of still-smaller branches.

    Dunn and her colleagues borrowed tools from developmental biology to understand these oddities. The researchers noted that Charnia’s fronds invariably have the same outline: widest at the bottom, smallest at the tip, with no short branches in the middle. This uniformity, a product of how the organism grows, is not seen in plants or algae9. Despite the other-worldly appearance of Charnia and its kin, “they’re more closely related to animals than they are to anything else”, Dunn says.
    Researchers studying the Ediacaran have revealed other frondose quirks by turning to the tools of modern ecology. One such technique is spatial analysis, which involves ultra-precise mapping of a large set of organisms that are preserved precisely where they lived — information that is rarely available in palaeontology. But scientists have exactly such an array at their disposal in Newfoundland, Canada, which has thousands of frondose imprints. Among them are examples that date back 571 million years, making them the oldest-known organisms that are big enough to be seen without magnification.
    Some of Newfoundland’s most abundant residents from around this time belong to the genus Fractofusus, whose members looked like mounds of fronds in the shape of an overturned saucer. Like its cousin Charnia, Fractofusus might have been an animal with no modern analogue. Spatial analysis showed that many large Fractofusus specimens are surrounded by clusters of small ones10. “Children,” says palaeobiologist Charlotte Kenchington at the University of Cambridge, UK, who was a member of the team that published the findings10 in 2015. This pattern suggests that Fractofusus multiplied in part by shooting out long runners on which its young developed.

    Rocks in Newfoundland, Canada, preserve some of the oldest Ediacaran species, including ones that resembled the fronds of a fern.Credit: Alicejmichel (CC BY-SA 4.0)

    In a paper11 published earlier this year, scientists describe long, thin, fossilized threads, some stretching 4 metres, between frondose organisms in Newfoundland. These threads might have been reproductive runners, and could also have been used for nutrient transport or communication. Perhaps these organisms were “acting in each other’s best interests rather than just for themselves”, says palaeobiologist Alex Liu at the University of Cambridge, who co-wrote the paper11.
    Before the Big Bang
    As evidence mounts for Ediacaran innovation, a group of researchers is using these finds to question an icon of evolutionary history: the Cambrian explosion. In the past, researchers often spoke of this event as the Big Bang of evolution — a single, supreme episode that had no prelude and suddenly changed everything. But some researchers take the view that Ediacaran organisms were the founders of this revolution. The burst of new species in the Cambrian “didn’t just come out of thin air”, says Wood. “It must have been derived from something in the Ediacaran.”
    A common view holds that many Ediacaran organisms vanished at the Ediacaran–Cambrian boundary some 540 million years ago. But while excavating in a remote spot in Siberia, Wood and her team found Cambrian-type fossils, such as animals that lived in mineral-laden, tube-shaped shells, in Ediacaran-age rock12.

    Wood and her co-authors cited these fossils in a provocative 2019 paper13, which also noted that Ediacaran animals capable of burrowing into sediments survived into the Cambrian period. The ability to burrow is a hallmark of that time, when animals dug so enthusiastically that they tore up the sea floor, creating new ecological niches. But the Ediacarans took the first step, the authors say. The vaunted Cambrian explosion, “was simply one phase” in the rise of animal diversity, they contend.
    All of these findings tell a new story of animal evolution — but it is not yet clear whether the revision will stick. Some palaeontologists say that Wood’s argument, in trying to give the Ediacaran its due, gives short shrift to the Cambrian explosion — which marked the appearance of a vast number of creatures that fit clearly into modern animal groups. Xiao agrees that some Ediacaran animals survived into the Cambrian, but he argues that the big picture shows a mass die-off at the boundary between the two periods. And invertebrate palaeontologist Jean-Bernard Caron at the Royal Ontario Museum in Toronto, Canada, questions Wood’s tally of Ediacaran species that survived into the Cambrian. “We don’t really have the fossil record to support that,” he says. Wood responds that although the critique is fair, it’s clear that multiple Cambrian-style creatures first appeared in the Ediacaran.
    For all the contention, however, some researchers think that answers are just around the corner. Continued work on biomarkers could pin down whether various Ediacaran organisms were, in fact, animals. And palaeontologists are excavating new Ediacaran finds in places such as Iran and Russia, Darroch says. The latest approaches, such as spatial analysis, hold promise too, says Xiao. These could flesh out — at long last — what was going on in the oceans during the pivotal Ediacaran period.
    “I would just love to be swimming over these communities and see, finally, how are they really growing? What on Earth are they?” Wood says. “So much would become obvious.” More