1.
Jasechko, S. et al. Terrestrial water fluxes dominated by transpiration. Nature 496, 347–350 (2013).
ADS CAS PubMed Article Google Scholar
2.
Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951–954 (2010).
ADS CAS PubMed Article Google Scholar
3.
Kool, D. et al. A review of approaches for evapotranspiration partitioning. Agric. For. Meteorol. 184, 56–70 (2014).
ADS Article Google Scholar
4.
Fisher, J. B. et al. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res. 53, 2618–2626 (2017).
ADS Article Google Scholar
5.
Alkama, R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 351, 600–604 (2016).
ADS CAS PubMed Article Google Scholar
6.
Zeng, Z. et al. Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nat. Clim. Change 7, 432–436 (2017).
ADS Article Google Scholar
7.
Lian, X. et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nat. Clim. Change 8, 640–646 (2018).
ADS Article Google Scholar
8.
Niu, Z. et al. An increasing trend in the ratio of transpiration to total terrestrial evapotranspiration in China from 1982 to 2015 caused by greening and warming. Agric. For. Meteorol. 279, 107701 (2019).
ADS Article Google Scholar
9.
Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).
10.
Schlesinger, W. H. & Jasechko, S. Transpiration in the global water cycle. Agric. For. Meteorol. 189–190, 115–117 (2014).
ADS Article Google Scholar
11.
Good, S. P., Noone, D. & Bowen, G. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science 349, 175–177 (2015).
ADS CAS PubMed Article Google Scholar
12.
Martens, B. et al. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).
ADS Article Google Scholar
13.
Coenders-Gerrits, A. M. et al. Uncertainties in transpiration estimates. Nature 506, E1–2 (2014).
CAS PubMed Article Google Scholar
14.
Evaristo, J., Jasechko, S. & McDonnell, J. J. Global separation of plant transpiration from groundwater and streamflow. Nature 525, 91–94 (2015).
ADS CAS PubMed Article Google Scholar
15.
Ren, X., Lu, Q., He, H., Zhang, L. & Niu, Z. Estimation and analysis of the ratio of transpiration to evapotranspiration in forest ecosystems along the North-South Transect of East China. J. Geogr. Sci. 29, 1807–1822 (2019).
Article Google Scholar
16.
Wei, H. et al. Modeling evapotranspiration and its components in Qianyanzhou Plantation based on remote sensing data. J. Nat. Res. 27, 778–789 (2012).
Google Scholar
17.
Schlaepfer, D. R. et al. Terrestrial water fluxes dominated by transpiration: Comment. Ecosphere 5, 9 (2014).
Article Google Scholar
18.
Maxwell, R. M. & Condon, L. E. Connections between groundwater flow and transpiration partitioning. Science 353, 377–380 (2016).
ADS CAS PubMed Article Google Scholar
19.
Zhang, Y. et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep. 6, 19124 (2016).
ADS CAS PubMed PubMed Central Article Google Scholar
20.
Gu, C. et al. Partitioning evapotranspiration using an optimized satellite-based ET model across biomes. Agric. For. Meteorol. 259, 355–363 (2018).
ADS Article Google Scholar
21.
Wang-Erlandsson, L., van der Ent, R. J., Gordon, L. J. & Savenije, H. H. G. Contrasting roles of interception and transpiration in the hydrological cycle – Part 1: Temporal characteristics over land. Earth Syst. Dynam. 5, 441–469 (2014).
ADS Article Google Scholar
22.
Kuppel, S. et al. Model-data fusion across ecosystems: from multisite optimizations to global simulations. Geosci. Model Dev. 7, 2581–2597 (2014).
ADS Article Google Scholar
23.
García, M. et al. Actual evapotranspiration in drylands derived from in-situ and satellite data: Assessing biophysical constraints. Remote Sens. Environ. 131, 103–118 (2013).
ADS Article Google Scholar
24.
Zhu, G. F. et al. Simultaneously assimilating multivariate data sets into the two-source evapotranspiration model by Bayesian approach: application to spring maize in an arid region of northwestern China. Geosci. Model Dev. 7, 1467–1482 (2014).
ADS Article Google Scholar
25.
Zhang, K., Ma, J., Zhu, G., Ma, T., Han, T. & Feng, L. Parameter sensitivity analysis and optimization for a satellite-based evapotranspiration model across multiple sites using Moderate Resolution Imaging Spectroradiometer and flux data. J. Geophys. Res. Atmos. 122, 230–245 (2017).
ADS Article Google Scholar
26.
Reinds, G. J., van Oijen, M., Heuvelink, G. B. M. & Kros, H. Bayesian calibration of the VSD soil acidification model using European forest monitoring data. Geoderma 146, 475–488 (2008).
ADS CAS Article Google Scholar
27.
Zhu, G., Su, Y., Li, X., Zhang, K. & Li, C. Estimating actual evapotranspiration from an alpine grassland on Qinghai-Tibetan plateau using a two-source model and parameter uncertainty analysis by Bayesian approach. J. Hydrol. 476, 42–51 (2013).
ADS Article Google Scholar
28.
Liu, Y., Liu, R., Chen, J. M. Retrospective retrieval of long-term consistent global leaf area index (1981–2011) from combined AVHRR and MODIS data. Journal of Geophysical Research: Biogeosci. 117, G04003 (2012).
29.
Xiao, Z. et al. Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance. IEEE T. Geosci. Remote 52, 209–223 (2014).
ADS Article Google Scholar
30.
Xiao, Z., Liang, S., Wang, J., Xiang, Y., Zhao, X. & Song, J. Long-time-series global land surface satellite leaf area index product derived from MODIS and AVHRR surface reflectance. IEEE T. Geosci. Remote 54, 5301–5318 (2016).
ADS Article Google Scholar
31.
Wang, J., Wang, J., Ye, H., Liu, Y. & He, H. An interpolated temperature and precipitation dataset at 1-km grid resolution in China (2000–2012). China Scientific Data 2, 88–95 (2017).
ADS Google Scholar
32.
Gao, Y., He, H., Zhang, L., Lu, Q., Yu, G. & Zhang, Z. Spatio-temporal variation characteristics of surface net radiation in China over the past 50 years. Int. J Geogr. Inf. Sci. 15, 1–10 (2013). (in Chinese)
33.
Ren, X., He, H., Zhang, L. & Yu, G. Global radiation, photosynthetically active radiation, and the diffuse component dataset of China, 1981–2010. Earth Syst. Sci. Data 10, 1217–1226 (2018).
ADS Article Google Scholar
34.
Liu, J., Liu, M., Deng, X., Zhuang, D., Zhang, Z. & Luo, D. The land use and land cover change database and its relative studies in China. J. Geogr. Sci. 12, 275–282 (2002).
Article Google Scholar
35.
Ning, J. et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010-2015. J. Geogr. Sci. 28, 547–562 (2018).
Article Google Scholar
36.
Zhang, Y. Energy and water budget of a poplar plantation in suburban Beijing (Beijing Forestry University, 2010). (in Chinese)
37.
Cui, S. Study on the CO2flux of a larch plantation in NE China by the micrometeorological method (Northeast Forestry University, 2007). (in Chinese)
38.
Zhu, G. et al. Energy flux partitioning and evapotranspiration in a sub-alpine spruce forest ecosystem. Hydrol. Process. 28, 5093–5104 (2014).
Article Google Scholar
39.
Lin, E., Jiang, H. & Chen, Y. Water vapor flux variation and net radiation for a Phyllostachys violascens stand in Taihuyuan. Journal of Zhejiang A&F University 30, 313–318 (2013). (in Chinese)
Google Scholar
40.
Wang, Z. Energy balance and water vapor flux of snail control and schistosomiasis prevention forests ecosystem in Yangtze River beach land (Chinese Academy of Forestry, 2008). (in Chinese)
41.
Wang, W. et al. Characteristics of latent heat flux over Cunninghamia lanceolata plantations in Huitong county. Journal of Central South University of Forestry & Technology 31, 192–197 (2011). in Chinese.
ADS CAS Google Scholar
42.
Guo, L. The Variations of Water Use Efficiency and Evapotranspiration over a Plantation in the Southern Part of Hilly Areas of North-China (Chinese Academy of Forestry, 2010) (in Chinese)
43.
Li, Z., Zhang, Y., Wang, S., Yuan, G., Yang, Y. & Cao, M. Evapotranspiration of a tropical rain forest in Xishuangbanna, southwest China. Hydrol. Process. 24, 2405–2416 (2010).
Google Scholar
44.
Tan, Z., Zhang, Y., Schaefer, D., Yu, G., Liang, N. & Song, Q. An old-growth subtropical Asian evergreen forest as a large carbon sink. Atmos. Environ. 45, 1548–1554 (2011).
ADS CAS Article Google Scholar
45.
Wilske, B. et al. Poplar plantation has the potential to alter the water balance in semiarid Inner Mongolia. J. Environ. Manage. 90, 2762–2770 (2009).
PubMed Article Google Scholar
46.
Han, S., Huang, L., Wang, Z., Wei, Y., Zhang, X. Ecosystem respiration and its controlling factors in the riparian wetland of Yangtze River. Acta ecologica sinica 29 (2009).
47.
Liu, S., Xu, Z., Zhu, Z., Jia, Z. & Zhu, M. Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China. J. Hydrol. 487, 24–38 (2013).
ADS Article Google Scholar
48.
Ouyang, Z., Mei, X., Li, Y. & Guo, J. Measurements of water dissipation and water use efficiency at the canopy level in a peach orchard. AgrI. Water Manage. 129, 80–86 (2013).
Article Google Scholar
49.
Zhang, Y., Shen, Y., Xu, X., Sun, H., Li, F. & Wang, Q. Characteristics of the water–energy–carbon fluxes of irrigated pear (Pyrus bretschneideri Rehd) orchards in the North China Plain. Agri. Water Manage. 128, 140–148 (2013).
Article Google Scholar
50.
Tan, Z. et al. Rubber plantations act as water pumps in tropical China. Geophys. Res. Lett. 38, L24406 (2011).
ADS Article Google Scholar
51.
Liu, R., Li, Y. & Wang, Q. Variations in water and CO2 fluxes over a saline desert in western China. Hydrol. Process. 26, 513–522 (2012).
ADS CAS Article Google Scholar
52.
Chen, S. et al. Energy balance and partition in Inner Mongolia steppe ecosystems with different land use types. Agr. Forest Meteorol. 149, 1800–1809 (2009).
ADS Article Google Scholar
53.
Liu, H. & Feng, J. Seasonal and interannual variations of evapotranspiration and energy exchange over different land surfaces in a semiarid area of China. J. Appl. Meteorol. Clim. 51, 1875–1888 (2012).
Article Google Scholar
54.
Shen, Y., Zhang, Y., Scanlon, B. R., Lei, H., Yang, D. & Yang, F. Energy/water budgets and productivity of the typical croplands irrigated with groundwater and surface water in the North China Plain. Agr. Forest Meteorol. 181, 133–142 (2013).
ADS Article Google Scholar
55.
Zhou, G., Wang, Y. Dynamics of carbon budgets in typical corn and rice ecosystems in Liaohe delta. In: Proceedings of Low Carbon Agriculture Symposium. 133–142 (2010). (in Chinese)
56.
Zhou, S. et al. Evapotranspiration of a drip-irrigated, film-mulched cotton field in northern Xinjiang, China. Hydrol. Process. 26, 1169–1178 (2012).
ADS Article Google Scholar
57.
Zheng, H. et al. Spatial variation in annual actual evapotranspiration of terrestrial ecosystems in China: Results from eddy covariance measurements. J. Geogr. Sci. 26, 1391–1411 (2016).
Article Google Scholar
58.
Gu, S. et al. Characterizing evapotranspiration over a meadow ecosystem on the Qinghai-Tibetan Plateau. J. Geophys. Res.: Atmos. 113, D08118 (2008).
ADS Google Scholar
59.
Li, J. et al. Characterizing the evapotranspiration of a degraded grassland in the Sanjiangyuan region of Qinghai province. Acta Prataculturae Sinica 21, 223–233 (2012). (in Chinese)
Google Scholar
60.
Yu, G., Wen, X., Sun, X., Tanner, B. D., Lee, X. & Chen, J. Overview of ChinaFLUX and evaluation of its eddy covariance measurement. Agr. Forest Meteorol. 137, 125–137 (2006).
ADS Article Google Scholar
61.
Ma, L., Lu, P., Zhao, P., Rao, X., Cai, X. & Zeng, X. Diurnal, daily, seasonal and annual patterns of sap-flux-scaled transpiration from an Acacia mangium plantation in South China. Ann. For. Sci. 65, 9 (2008).
Article Google Scholar
62.
Ouyang, S. et al. Stand Transpiration Estimates from Recalibrated Parameters for the Granier Equation in a Chinese Fir (Cunninghamia lanceolata) Plantation in Southern China. Forests 9, 162 (2018).
Article Google Scholar
63.
Song, L., Zhu, J., Li, M., Zhang, J., Zheng, X. & Wang, K. Canopy transpiration of Pinus sylvestris var. mongolica in a sparse wood grassland in the semiarid sandy region of Northeast China. Agr. Forest Meteorol. 250, 192–201 (2018).
ADS Article Google Scholar
64.
Zhang, H., Wei, W., Chen, L. & Yang, L. Evaluating canopy transpiration and water use of two typical planted tree species in the dryland Loess Plateau of China. Ecohydrology 10, 10 (2017).
Google Scholar
65.
Zhang, H., Wei, W., Chen, L. & Wang, L. Effects of terracing on soil water and canopy transpiration of Pinus tabulaeformis in the Loess Plateau of China. Ecol. Eng. 102, 557–564 (2017).
Article Google Scholar
66.
Chang, X., Zhao, W., Liu, H., Wei, X., Liu, B. & He, Z. Qinghai spruce (Picea crassifolia) forest transpiration and canopy conductance in the upper Heihe River Basin of arid northwestern China. Agr. Forest Meteorol. 198–199, 209–220 (2014).
ADS Article Google Scholar
67.
Fang, S., Zhao, C. & Jian, S. Canopy transpiration of Pinus tabulaeformis plantation forest in the Loess Plateau region of China. Environ. Earth Sci. 75, 9 (2016).
Article CAS Google Scholar
68.
Liu, Q., Zeng, H. & Ma, Z. Carbon sequestration of Pinus elliottii plantation in relation with water consumption in subtropical China. Acta Ecologica Sinica 28, 5322–5330 (2008). (in Chinese)
CAS Google Scholar
69.
Fu, S., Sun, L. & Luo, Y. Canopy conductance and stand transpiration of Populus simonii Carr in response to soil and atmospheric water deficits in farmland shelterbelt, Northwest China. Agrofor. Syst. 91, 1165–1180 (2017).
Article Google Scholar
70.
Jiao, L., Lu, N., Sun, G., Ward, E. & Fu, B. Biophysical controls on canopy transpiration in a black locust (Robinia pseudoacacia) plantation on the semi-arid Loess Plateau, China. Ecohydrology 9, 1068–1081 (2016).
Article Google Scholar
71.
Zhang, J., Guan, J., Shi, W., Yamanaka, N. & Du, S. Interannual variation in stand transpiration estimated by sap flow measurement in a semi-arid black locust plantation, Loess Plateau, China. Ecohydrology 8, 137–147 (2015).
Article Google Scholar
72.
Yan, M. et al. Sapflow-Based Stand Transpiration in a Semiarid Natural Oak Forest on China’s Loess Plateau. Forests 7, 13 (2016).
Article Google Scholar
73.
Mo, K., Chen, L., Zhou, J., Fang, X., Kang, M. & Zhang, Z. Transpiration responses of a poplar plantation to the environmental conditions on a floodplain in Northern China. Acta Ecologica Sinica 34, 5812–5822 (2014). (in Chinese)
Google Scholar
74.
Zhao, W., Chang, X. & Zhang, Z. Transpiration of a Linze jujube orchard in an arid region of China. Hydrol. Process. 23, 1461–1470 (2009).
ADS Article Google Scholar
75.
Gao, J., Meng, P., Zhang, J., Jia, C. & Ren, Y. Analysis on Transpiration and Difference between Evapotranspiration and Precipitation of Apricot Trees in the Rocky Mountain Area of Northern China. J. Agrometeorol. 30, 538–542 (2009).
Google Scholar
76.
Ren, Q., Meng, P., Zhang, J., Gao, J. & Li, C. Transpiration Variation of the Poplar Shelterbelts and Its Relation to the Meteorological Factors in the Cropland of North China Plain. Forest Research 21, 797–802 (2008).
Google Scholar
77.
Wang, D., Wang, G. & Anagnostou, E. Evaluation of canopy interception schemes in band surface models. J. Hydrol. 347, 308–318 (2007).
ADS Article Google Scholar
78.
Liu, X., Zhang, J., Xie, D., Zhuang, J., Shao, Y. & Zhang, S. Temporal variation for canopy transpiration and its cooling properties in a Quercus acutissima forest of suburban Nanjing. Journal of Zhejiang A&F University 32, 529–536 (2015).
Google Scholar
79.
Chen, L. et al. Response of transpiration to rain pulses for two tree species in a semiarid plantation. Int. J. Biometeorol. 58, 1569–1581 (2014).
ADS PubMed Article Google Scholar
80.
Chen, L., Zhang, Z., Li, Z., Tang, J., Caldwell, P. & Zhang, W. Biophysical control of whole tree transpiration under an urban environment in Northern China. J. Hydrol. 402, 388–400 (2011).
ADS Article Google Scholar
81.
Ji, X., Zhao, W., Kang, E., Jin, B. & Xu, S. Transpiration from three dominant shrub species in a desert-oasis ecotone of arid regions of Northwestern China. Hydrol. Process. 30, 4841–4854 (2016).
ADS Article Google Scholar
82.
Zhao, P., Kang, S., Li, S., Ding, R., Tong, L. & Du, T. Seasonal variations in vineyard ET partitioning and dual crop coefficients correlate with canopy development and surface soil moisture. Agr. Water Manage. 197, 19–33 (2018).
Article Google Scholar
83.
Chen, Y., Lee, G., Lee, P. & Oikawa, T. Model analysis of grazing effect on above-ground biomass and above-ground net primary production of a Mongolian grassland ecosystem. J. Hydrol. 333, 155–164 (2007).
ADS Article Google Scholar
84.
Jiang, X., Kang, S., Li, F., Du, T., Tong, L. & Comas, L. Evapotranspiration partitioning and variation of sap flow in female and male parents of maize for hybrid seed production in arid region. Agr. Water Manage. 176, 132–141 (2016).
Article Google Scholar
85.
Gao, X., Mei, X., Gu, F., Hao, W., Gong, D. & Li, H. Evapotranspiration partitioning and energy budget in a rainfed spring maize field on the Loess Plateau, China. CATENA 166, 249–259 (2018).
Article Google Scholar
86.
Hou, L., Wenninger, J., Shen, J., Zhou, Y., Bao, H. & Liu, H. Assessing crop coefficients for Zea mays in the semi-arid Hailiutu River catchment, northwest China. Agr. water manage. 140, 37–47 (2014).
Article Google Scholar
87.
Zhou, G. et al. Measured sap flow and estimated evapotranspiration of tropical Eucalyptus urophylla plantations in south China. Acta Botanica Sinica 46, 202–210 (2004).
Google Scholar
88.
Liu, X. et al. Partitioning evapotranspiration in an intact forested watershed in southern China. Ecohydrology 8, 1037–1047 (2015).
Article Google Scholar
89.
Tian, F., Zhao, C. & Feng, Z. Simulating evapotranspiration of Qinghai spruce (Picea crassifolia) forest in the Qilian Mountains, northwestern China. J. Arid Environ. 75, 648–655 (2011).
ADS Article Google Scholar
90.
Zhao, W. et al. Evapotranspiration partitioning, stomatal conductance, and components of the water balance: A special case of a desert ecosystem in China. J. Hydrol. 538, 374–386 (2016).
ADS Article Google Scholar
91.
Qiu, G., Li, C. & Yan, C. Characteristics of soil evaporation, plant transpiration and water budget of Nitraria dune in the arid Northwest China. Agr. Forest Meteorol. 203, 107–117 (2015).
ADS Article Google Scholar
92.
Zhang, Y., Kang, S., Ward, E. J., Ding, R., Zhang, X. & Zheng, R. Evapotranspiration components determined by sap flow and microlysimetry techniques of a vineyard in northwest China: Dynamics and influential factors. Agr. Water Manage. 98, 1207–1214 (2011).
Article Google Scholar
93.
Zhou, S., Liu, W. & Lin, W. The ratio of transpiration to evapotranspiration in a rainfed maize field on the Loess Plateau of China. Water Sci. Tech.: W. Sup. 17, 221–228 (2017).
Google Scholar
94.
Huang, X., Hao, Y., Wang, Y., Cui, X., Mo, X. & Zhou, X. Partitioning of evapotranspiration and its relation to carbon dioxide fluxes in Inner Mongolia steppe. J. arid environ. 74, 1616–1623 (2010).
ADS Article Google Scholar
95.
Priestley, C. & Taylor, R. On the assessment of surface heat flux and evaporation using large-scale parameters. Month. Weather Rev. 100, 81–92 (1972).
ADS Article Google Scholar
96.
Talsma, C. J. et al. Partitioning of evapotranspiration in remote sensing-based models. Agr. Forest Meteorol. 260, 131–143 (2018).
ADS Article Google Scholar
97.
Fisher, J. B., Tu, K. P. & Baldocchi, D. D. Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ. 112, 901–919 (2008).
ADS Article Google Scholar
98.
Sobol’, I. M. On sensitivity estimation for nonlinear mathematical models. Matematicheskoe modelirovanie 2, 112–118 (1990).
MathSciNet MATH Google Scholar
99.
Sobol’, I. M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55, 271–280 (2001).
MathSciNet MATH Article Google Scholar
100.
Braswell, B. H., Sacks, W. J., Linder, E. & Schimel, D. S. Estimating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange observations. Glob. Change Biol. 11, 335–355 (2005).
ADS Article Google Scholar
101.
Niu, Z. et al. A spatial-temporal continuous dataset of the transpiration to evapotranspiration ratio in China from 1981–2015. Open Science Framework https://doi.org/10.17605/OSF.IO/MERZN (2020).
102.
Hu, Z. M. et al. Partitioning of evapotranspiration and its controls in four grassland ecosystems: Application of a two-source model. Agric. For. Meteorol. 149, 1410–1420 (2009).
ADS Article Google Scholar
103.
Zhu, X. J. et al. Spatiotemporal variations of T /ET (the ratio of transpiration to evapotranspiration) in three forests of Eastern China. Ecolog. Indic. 52, 411–421 (2015).
Article Google Scholar
104.
Miralles, D. G. et al. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Sys. Sc. 15, 453–469 (2011).
ADS Article Google Scholar
105.
McNally, A. et al. A land data assimilation system for sub-Saharan Africa food and water security applications. Sci. Data 4, 1–19 (2017).
Article Google Scholar
106.
Rodel, lM. et al. The global land data assimilation system. B. Am. Meteorol. Soc. 85, 381–394 (2004).
ADS Article Google Scholar
107.
Wei, Y. et al. NACP MsTMIP: Global and North American Driver Data for Multi-Model Intercomparison. ORNL DAAC, Oak Ridge, Tennessee, USA https://doi.org/10.3334/ORNLDAAC/1220 (2014).
108.
Burkey, J. Mann-Kendall Tau-b with Sen’s Method (enhanced). MATLAB Central File Exchange https://www.mathworks.com/matlabcentral/fileexchange/11190-mann-kendall-tau-b-with-sen-s-method-enhanced (2020).
109.
Zeng, Z., Peng, L. & Piao, S. Response of terrestrial evapotranspiration to Earth’s greening. Curr. Opin. Env. Sust. 33, 9–25 (2018).
Article Google Scholar
110.
Wang, W., Cui, W., Wang, X. J. & Chen, X. Evaluation of GLDAS-1 and GLDAS-2 Forcing Data and Noah Model Simulations over China at the Monthly Scale. J. Hydrometeorol. 17, 2815–2833 (2016).
ADS Article Google Scholar
111.
Keenan, T. F., Carbone, M. S., Reichstein, M. & Richardson, A. D. The model-data fusion pitfall: assuming certainty in an uncertain world. Oecologia 167, 587–597 (2011).
ADS PubMed Article Google Scholar
112.
Talsma, C. J. et al. Sensitivity of evapotranspiration components in remote sensing-based models. Remote Sens. 10, 1601 (2018).
ADS Article Google Scholar
113.
Mu, Q., Zhao, M. & Running, S. W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote. Sens. Environ. 115, 1781–1800 (2011).
ADS Article Google Scholar
114.
Ter Braak, C. J. A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces. Sta. Comput. 16, 239–249 (2006).
MathSciNet Article Google Scholar
115.
Wang, L., Good, S. P. & Caylor, K. K. Global synthesis of vegetation control on evapotranspiration partitioning. Geophys. Res. Lett. 41, 6753–6757 (2014).
ADS Article Google Scholar
116.
Wei, Z. et al. Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophys. Res. Lett. 44, 2792–2801 (2017).
ADS Article Google Scholar
117.
Miralles, D. G. et al. The WACMOS-ET project – Part 2: Evaluation of global terrestrial evaporation data sets. Hysrol. Earth Syst. Sc. 20, 823–842 (2016).
ADS Article Google Scholar
118.
Lawrence, D. M., et al. Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model. J. Adv. Model. Earth Sy. 3, M03001 (2011).
119.
Lawrence, D. M., Thornton, P. E., Oleson, K. W. & Bonan, G. B. The Partitioning of Evapotranspiration into Transpiration, Soil Evaporation, and Canopy Evaporation in a GCM: Impacts on Land–Atmosphere Interaction. J. Hydrometeorol. 8, 862–880 (2007).
ADS Article Google Scholar More