Decrease in social cohesion in a colonial seabird under a perturbation regime
1.
Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1–23 (1973).
Article Google Scholar
2.
Dai, L., Korolev, K. S. & Gore, J. Relation between stability and resilience determines the performance of early warning signals under different environmental drivers. Proc. Natl. Acad. Sci. 112, 10056–10061 (2015).
ADS CAS PubMed Article PubMed Central Google Scholar
3.
Dakos, V., Carpenter, S. R., van Nes, E. H. & Scheffer, M. Resilience indicators: Prospects and limitations for early warnings of regime shifts. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130263–20130263 (2014).
Article Google Scholar
4.
Colchero, F. et al. The diversity of population responses to environmental change. Ecol. Lett. https://doi.org/10.1111/ele.13195 (2018).
Article PubMed PubMed Central Google Scholar
5.
Coulson, T. et al. Data from: Modeling adaptive and nonadaptive responses of populations to environmental change. Am. Nat. https://doi.org/10.5061/dryad.4c117 (2017).
Article PubMed PubMed Central Google Scholar
6.
Donohue, I. et al. Navigating the complexity of ecological stability. Ecol. Lett. 19, 1172–1185 (2016).
PubMed Article PubMed Central Google Scholar
7.
Fernández-Chacón, A. et al. When to stay, when to disperse and where to go: Survival and dispersal patterns in a spatially structured seabird population. Ecography 36, 1117–1126 (2013).
Article Google Scholar
8.
Sterk, M., van de Leemput, I. A. & Peeters, E. T. How to conceptualize and operationalize resilience in socio-ecological systems?. Curr. Opin. Environ. Sustain. 28, 108–113 (2017).
Article Google Scholar
9.
Brand, F. S. & Jax, K. Focusing the meaning(s) of resilience: Resilience as a descriptive concept and a boundary object. Ecol. Soc. 12, 23 (2007).
Article Google Scholar
10.
Barrett, L., Henzi, S. P. & Lusseau, D. Taking sociality seriously: The structure of multi-dimensional social networks as a source of information for individuals. Philos. Trans. R. Soc. B Biol. Sci. 367, 2108–2118 (2012).
Article Google Scholar
11.
Centola, D. How Behavior Spreads: The Science of Complex Contagions. (2018).
12.
Firth, J. A. Considering complexity: Animal social networks and behavioural contagions. Trends Ecol. Evol. 35, 100–104 (2020).
PubMed Article PubMed Central Google Scholar
13.
Kerth, G., Perony, N. & Schweitzer, F. Bats are able to maintain long-term social relationships despite the high fission–fusion dynamics of their groups. Proc. R. Soc. B Biol. Sci. 278, 2761–2767 (2011).
Article Google Scholar
14.
Rosenthal, S. B., Twomey, C. R., Hartnett, A. T., Wu, H. S. & Couzin, I. D. Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion. Proc. Natl. Acad. Sci. 112, 4690–4695 (2015).
ADS CAS PubMed Article PubMed Central Google Scholar
15.
Snijders, L., Blumstein, D. T., Stanley, C. R. & Franks, D. W. Animal social network theory can help wildlife conservation. Trends Ecol. Evol. 32, 567–577 (2017).
PubMed Article PubMed Central Google Scholar
16.
Webber, Q. M. R. & Vander Wal, E. An evolutionary framework outlining the integration of individual social and spatial ecology. J. Anim. Ecol. 87, 113–127 (2018).
PubMed Article PubMed Central Google Scholar
17.
Sueur, C. & Mery, F. Social Interaction in Animals: Linking Experimental Approach and Social Network Analysis (Frontiers Media SA, Lausanne, 2017).
Google Scholar
18.
LaBarge, L. R., Allan, A. T. L., Berman, C. M., Margulis, S. W. & Hill, R. A. Reactive and pre-emptive spatial cohesion in a social primate. Anim. Behav. 163, 115–126 (2020).
Article Google Scholar
19.
Firth, J. A. et al. Wild birds respond to flockmate loss by increasing their social network associations to others. Proc. R. Soc. B Biol. Sci. 284, 20170299 (2017).
Article Google Scholar
20.
Farine, D. R. Structural trade-offs can predict rewiring in shrinking social networks. J. Anim. Ecol. 1365–2656, 13140. https://doi.org/10.1111/1365-2656.13140 (2019).
Article Google Scholar
21.
Maldonado-Chaparro, A. A., Alarcón-Nieto, G., Klarevas-Irby, J. A. & Farine, D. R. Experimental disturbances reveal group-level costs of social instability. Proc. R. Soc. B Biol. Sci. 285, 20181577 (2018).
Article Google Scholar
22.
Puga-Gonzalez, I., Sosa, S. & Sueur, C. Social style and resilience of macaques’ networks, a theoretical investigation. Primates 60, 233–246 (2019).
PubMed Article PubMed Central Google Scholar
23.
Williams, R. & Lusseau, D. A killer whale social network is vulnerable to targeted removals. Biol. Lett. 2, 497–500 (2006).
PubMed PubMed Central Article Google Scholar
24.
Oro, D. Perturbation, Social Feedbacks, and Population Dynamics in Social Animals (Oxford Univerity Press, Oxford, 2020).
Google Scholar
25.
Firth, J. A. & Sheldon, B. C. Experimental manipulation of avian social structure reveals segregation is carried over across contexts. Proc. R. Soc. B Biol. Sci. 282, 20142350–20142350 (2015).
Article Google Scholar
26.
Genton, C. et al. How Ebola impacts social dynamics in gorillas: A multistate modelling approach. J. Anim. Ecol. 84, 166–176 (2015).
PubMed Article PubMed Central Google Scholar
27.
Leu, S. T., Farine, D. R., Wey, T. W., Sih, A. & Bull, C. M. Environment modulates population social structure: Experimental evidence from replicated social networks of wild lizards. Anim. Behav. 111, 23–31 (2016).
Article Google Scholar
28.
Silk, J., Cheney, D. & Seyfarth, R. A practical guide to the study of social relationships: A practical guide to the study of social relationships. Evol. Anthropol. Issues News Rev. 22, 213–225 (2013).
Article Google Scholar
29.
Brown, C. R. The ecology and evolution of colony-size variation. Behav. Ecol. Sociobiol. 70, 1613–1632 (2016).
Article Google Scholar
30.
Rolland, C., Danchin, E. & de Fraipont, M. The evolution of coloniality in birds in relation to food, habitat, predation, and life-history traits: A comparative analysis. Am. Nat. 151, 514–529 (1998).
CAS PubMed Article Google Scholar
31.
Shizuka, D. et al. Across-year social stability shapes network structure in wintering migrant sparrows. Ecol. Lett. 17, 998–1007 (2014).
PubMed Article PubMed Central Google Scholar
32.
Brandl, H. B., Griffith, S. C., Farine, D. R. & Schuett, W. Wild zebra finches that nest synchronously have long-term stable social ties. J. Anim. Ecol. 1365–2656, 13082. https://doi.org/10.1111/1365-2656.13082 (2019).
Article Google Scholar
33.
Moreno, J. L. Who Shall Survive?: A New Approach to the Problem of Human Interrelations (Nervous and Mental Disease Publishing Co, New York, 1934). .
34.
Scott, J. Social network analysis. Sociology 22, 109–127 (1988).
Article Google Scholar
35.
Croft, D. P., James, R. & Krause, J. Exploring Animal Social Networks (Princeton University Press, Princeton, 2008).
Google Scholar
36.
Farine, D. R. & Whitehead, H. Constructing, conducting and interpreting animal social network analysis. J. Anim. Ecol. 84, 1144–1163 (2015).
PubMed PubMed Central Article Google Scholar
37.
Ward, A. & Webster, M. Sociality: The Behaviour of Group-Living Animals (Springer, New York, 2016).
Google Scholar
38.
Whitehead, H. Analyzing Animal Societies Quantitative Methods for Vertebrate Social Analysis. (2014).
39.
James, R., Croft, D. P. & Krause, J. Potential banana skins in animal social network analysis. Behav. Ecol. Sociobiol. 63, 989–997 (2009).
Article Google Scholar
40.
Hasenjager, M. J. & Dugatkin, L. A. Chapter three—social network analysis in behavioral ecology. In Advances in the Study of Behavior (ed. Naguib, M.) 47, 39–114 (Academic Press, New York, 2015).
Google Scholar
41.
Payo-Payo, A. et al. Predator arrival elicits differential dispersal, change in age structure and reproductive performance in a prey population. Sci. Rep. 8, 1971 (2018).
ADS CAS PubMed PubMed Central Article Google Scholar
42.
Martínez-Abraín, A., Oro, D., Forero, M. G. & Conesa, D. Modeling temporal and spatial colony-site dynamics in a long-lived seabird. Popul. Ecol. 45, 133–139 (2003).
Article Google Scholar
43.
Genovart, M., Oro, D. & Tenan, S. Immature survival, fertility, and density dependence drive global population dynamics in a long-lived species. Ecology 99, 2823–2832 (2018).
CAS PubMed Article PubMed Central Google Scholar
44.
Almaraz, P. & Oro, D. Size-mediated non-trophic interactions and stochastic predation drive assembly and dynamics in a seabird community. Ecology 92, 1948–1958 (2011).
PubMed Article PubMed Central Google Scholar
45.
Shizuka, D. & Johnson, A. E. How demographic processes shape animal social networks. Behav. Ecol. https://doi.org/10.1093/beheco/arz083 (2019).
Article Google Scholar
46.
Francesiaz, C. et al. Familiarity drives social philopatry in an obligate colonial breeder with weak interannual breeding-site fidelity. Anim. Behav. 124, 125–133 (2017).
Article Google Scholar
47.
Cantor, M. & Farine, D. R. Simple foraging rules in competitive environments can generate socially structured populations. Ecol. Evol. 8, 4978–4991 (2018).
PubMed PubMed Central Article Google Scholar
48.
Cantor, M. et al. Animal social networks: Revealing the causes and implications of social structure in ecology and evolution. https://osf.io/m62gb (2019). https://doi.org/10.32942/osf.io/m62gb.
49.
Anderson, D. J. & Hodum, P. J. Predator behavior favors clumped nesting in an oceanic seabird. Ecology 74, 2462–2464 (1993).
Article Google Scholar
50.
Oro, D. Colonial seabird nesting in dense and small sub-colonies: An advantage against aerial predation. Condor 98, 848–850 (1996).
Article Google Scholar
51.
Gil, M. A., Hein, A. M., Spiegel, O., Baskett, M. L. & Sih, A. Social information links individual behavior to population and community dynamics. Trends Ecol. Evol. 33, 535–548 (2018).
PubMed Article PubMed Central Google Scholar
52.
Lewanzik, D., Sundaramurthy, A. K. & Goerlitz, H. R. Insectivorous bats integrate social information about species identity, conspecific activity and prey abundance to estimate cost–benefit ratio of interactions. J. Anim. Ecol. 88, 1462–1473 (2019).
PubMed PubMed Central Article Google Scholar
53.
Doligez, B. Public information and breeding habitat selection in a wild bird population. Science 297, 1168–1170 (2002).
ADS CAS PubMed Article PubMed Central Google Scholar
54.
Payo-Payo, A. et al. Colonisation in social species: The importance of breeding experience for dispersal in overcoming information barriers. Sci. Rep. 7, 20 (2017).
ADS Article CAS Google Scholar
55.
Arganda, S., Pérez-Escudero, A. & de Polavieja, G. G. A common rule for decision making in animal collectives across species. Proc. Natl. Acad. Sci. 109, 20508–20513 (2012).
ADS CAS PubMed Article PubMed Central Google Scholar
56.
Pérez-Escudero, A. & de Polavieja, G. G. Adversity magnifies the importance of social information in decision-making. J. R. Soc. Interface 14, 20170748 (2017).
PubMed PubMed Central Article Google Scholar
57.
Maldonado-Chaparro, A. A., Blumstein, D. T., Armitage, K. B. & Childs, D. Z. Transient LTRE analysis reveals the demographic and trait-mediated processes that buffer population growth. Ecol. Lett. 21, 1693–1703 (2018).
PubMed PubMed Central Article Google Scholar
58.
Pruitt, J. N. et al. Social tipping points in animal societies. Proc. R. Soc. B 285, 20181282 (2018).
PubMed Article PubMed Central Google Scholar
59.
Dall, S. R. X., Houston, A. I. & McNamara, J. M. The behavioural ecology of personality: Consistent individual differences from an adaptive perspective. Ecol. Lett. 7, 734–739 (2004).
Article Google Scholar
60.
Doering, G. N., Scharf, I., Moeller, H. V. & Pruitt, J. N. Social tipping points in animal societies in response to heat stress. Nat. Ecol. Evol. 2, 1298–1305 (2018).
PubMed Article PubMed Central Google Scholar
61.
Wolf, M., van Doorn, G. S., Leimar, O. & Weissing, F. J. Life-history trade-offs favour the evolution of animal personalities. Nature 447, 581–584 (2007).
ADS CAS PubMed Article PubMed Central Google Scholar
62.
Clobert, J., Le Galliard, J.-F., Cote, J., Meylan, S. & Massot, M. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197–209 (2009).
PubMed Article PubMed Central Google Scholar
63.
Cote, J., Clobert, J., Brodin, T., Fogarty, S. & Sih, A. Personality-dependent dispersal: Characterization, ontogeny and consequences for spatially structured populations. Philos. Trans. R. Soc. B Biol. Sci. 365, 4065–4076 (2010).
CAS Article Google Scholar
64.
Fogarty, S., Cote, J. & Sih, A. Social personality polymorphism and the spread of invasive species: A model. Am. Nat. 177, 273–287 (2011).
PubMed Article PubMed Central Google Scholar
65.
O’Shea-Wheller, T. A., Masuda, N., Sendova-Franks, A. B. & Franks, N. R. Variability in individual assessment behaviour and its implications for collective decision-making. Proc. R. Soc. B Biol. Sci. 284, 20162237 (2017).
Article Google Scholar
66.
Nimmo, D. G., Mac Nally, R., Cunningham, S. C., Haslem, A. & Bennett, A. F. Vive la résistance: Reviving resistance for 21st century conservation. Trends Ecol. Evol. 30, 516–523 (2015).
CAS PubMed Article PubMed Central Google Scholar
67.
IUCN. Larus audouinii: BirdLife International: The IUCN Red List of Threatened Species 2018: e.T22694313A132541241. (2018). https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T22694313A132541241.en.
68.
Martínez-Abraín, A., Jiménez, J. & Oro, D. Pax Romana: ‘refuge abandonment’ and spread of fearless behavior in a reconciling world. Anim. Conserv. 22, 3–13 (2019).
Article Google Scholar
69.
Genovart, M., Jover, L., Ruiz, X. & Oro, D. Offspring sex ratios in subcolonies of Audouin’s gull, Larus audouinii, with differential breeding performance. Can. J. Zool. 81, 905–910 (2003).
Article Google Scholar
70.
Oro, D. Audouin’s gull account. In The Birds of Western Palearctic (ed. Ogilvie, M. A.) 47–61 (Oxford University Press, Oxford, 1998).
Google Scholar
71.
Genovart, M., Pradel, R. & Oro, D. Exploiting uncertain ecological fieldwork data with multi-event capture-recapture modelling: An example with bird sex assignment. J. Anim. Ecol. 81, 970–977 (2012).
PubMed Article Google Scholar
72.
Oro, D., Tavecchia, G. & Genovart, M. Comparing demographic parameters for philopatric and immigrant individuals in a long-lived bird adapted to unstable habitats. Oecologia 165, 935–945 (2010).
ADS PubMed Article Google Scholar
73.
Hoff, P. D. Additive and multiplicative effects network models. arXiv:180708038 Stat (2018).
74.
Minhas, S., Hoff, P. D. & Ward, M. D. Inferential approaches for network analyses: AMEN for latent factor models. arXiv:161100460 Stat (2016).
75.
Warner, R. M., Kenny, D. A. & Stoto, M. A new round robin analysis of variance for social interaction data. J. Pers. Soc. Psychol. 37, 1742–1757 (1979).
Article Google Scholar
76.
Gimenez, O. et al. Inferring animal social networks with imperfect detection. Ecol. Model. 401, 69–74 (2019).
Article Google Scholar
77.
Hoppitt, W. J. E. & Farine, D. R. Association indices for quantifying social relationships: How to deal with missing observations of individuals or groups. Anim. Behav. 136, 227–238 (2018).
Article Google Scholar
78.
Farine, D. R. Animal social network inference and permutations for ecologists in R using asnipe. Methods Ecol. Evol. 4, 1187–1194 (2013).
Article Google Scholar
79.
Warnes,GR, Bolker, G, Gorjanc, G & Grothendieck, G. gdata: Various R programming tools for data manipulation. R package version (2014).
80.
Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal 20, 20 (2006).
Google Scholar
81.
Farine, D. R. A guide to null models for animal social network analysis. Methods Ecol. Evol. 8, 1309–1320 (2017).
PubMed PubMed Central Article Google Scholar
82.
Ginsberg, J. R. & Young, T. P. Measuring association between individuals or groups in behavioural studies. Anim. Behav. 44, 377–379 (1992).
Article Google Scholar
83.
Cairns, S. J. & Schwager, S. J. A comparison of association indices. Anim. Behav. 35, 1454–1469 (1987).
Article Google Scholar More
