Changes in the drought sensitivity of US maize yields
1.
Porter, J. R. et al. in Climate Change 2014: Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects 485–534 (IPCC, Cambridge University Press, 2015).
2.
Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).
ADS CAS Article Google Scholar
3.
Parent, B. et al. Maize yields over Europe may increase in spite of climate change, with an appropriate use of the genetic variability of flowering time. Proc. Natl Acad. Sci. USA 115, 10642–10647 (2018).
CAS Article Google Scholar
4.
Müller, C., Bondeau, A., Popp, A., Waha, K. & Fader, M. Climate Change Impacts on Agricultural Yields (World Development Report, Background Note, 2010).
5.
Liu, Z. et al. Shifts in the extent and location of rice cropping areas match the climate change pattern in China during 1980–2010. Reg. Environ. Change 15, 919–929 (2015).
Article Google Scholar
6.
Meng, Q. et al. The benefits of recent warming for maize production in high latitude China. Clim. Change 122, 341–349 (2014).
7.
Siebert, S. & Ewert, F. Spatio-temporal patterns of phenological development in Germany in relation to temperature and day length. Agric. For. Meteorol. 152, 44–57 (2012).
ADS Article Google Scholar
8.
Zhu, P. et al. The important but weakening maize yield benefit of grain filling prolongation in the US Midwest. Glob. Chang. Biol. 24, 4718–4730 (2018).
ADS Article Google Scholar
9.
Burke, M. & Emerick, K. Adaptation to climate change: evidence from US agriculture. Am. Econ. J. Econ. Policy 8, 106–140 (2016).
10.
Lobell, D. B. Climate change adaptation in crop production: beware of illusions. Glob. Food Sec. 3, 72–76 (2014).
Article Google Scholar
11.
Carleton, T. A. & Hsiang, S. M. Social and economic impacts of climate. Science 353, aad9837 (2016).
12.
McFadden, J., Smith, D., Wechsler, S. & Wallander, S. Development, Adoption, and Management of Drought-Tolerant Corn in the United States (US Department of Agriculture, Economic Research Service, 2019).
13.
Gaffney, J. et al. Industry-scale evaluation of maize hybrids selected for increased yield in drought-stress conditions of the US Corn Belt. Crop Sci. 55, 1608–1618 (2015).
Article Google Scholar
14.
Cooper, M., Gho, C., Leafgren, R., Tang, T. & Messina, C. Breeding drought-tolerant maize hybrids for the US corn-belt: discovery to product. J. Exp Bot. 65, 6191–6204 (2014).
15.
Goodwin, B. K. & Piggott, N. E. Has technology increased agricultural yield risk? Evidence from the crop insurance Biotech Endorsement. Am. J. Agric. Econ. https://doi.org/10.1002/ajae.12087 (2020).
16.
Lobell, D. B. et al. Greater sensitivity to drought accompanies maize yield increase in the US Midwest. Science 344, 516–519 (2014).
ADS CAS Article Google Scholar
17.
Assefa, Y. et al. Analysis of long term study indicates both agronomic optimal plant density and increase maize yield per plant contributed to yield gain. Sci. Rep. 8, 1–11 (2018).
ADS Article Google Scholar
18.
Leakey, A. D. B. Rising atmospheric carbon dioxide concentration and the future of C4 crops for food and fuel. Proc. R. Soc. B Biol. Sci. 276, 2333–2343 (2009).
CAS Article Google Scholar
19.
Gray, S. B. et al. Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nat. Plants 2, 1–8 (2016).
Article Google Scholar
20.
Jin, Z., Ainsworth, E. A., Leakey, A. D. B. & Lobell, D. B. Increasing drought and diminishing benefits of elevated carbon dioxide for soybean yields across the US Midwest. Glob. Chang. Biol. 24, e522–e533 (2018).
21.
Mills, G. et al. Tropospheric ozone assessment report: present-day tropospheric ozone distribution and trends relevant to vegetation. Elementa (Wash. DC) 6, 47 (2018).
Google Scholar
22.
Mills, G. et al. Ozone pollution will compromise efforts to increase global wheat production. Glob. Chang. Biol. 24, 3560–3574 (2018).
23.
McGrath, J. M. et al. An analysis of ozone damage to historical maize and soybean yields in the United States. Proc. Natl Acad. Sci. USA 112, 14390–14395 (2015).
24.
Quinton, J. N., Govers, G., Van Oost, K. & Bardgett, R. D. The impact of agricultural soil erosion on biogeochemical cycling. Nat. Geosci. 3, 311–314 (2010).
ADS CAS Article Google Scholar
25.
Barreca, A., Clay, K., Deschenes, O., Greenstone, M. & Shapiro, J. S. Adapting to climate change: the remarkable decline in the US temperature–mortality relationship over the twentieth century. J. Polit. Econ. 124, 105–159 (2016).
Article Google Scholar
26.
Roberts, M. J. & Schlenker, W. in The Economics of Climate Change: Adaptations Past and Present (ed. Steckel, R. H.) 225–251 (University of Chicago Press, 2011).
27.
Sakurai, G., Iizumi, T. & Yokozawa, M. Varying temporal and spatial effects of climate on maize and soybean affect yield prediction. Clim. Res 49, 143–154 (2011).
Article Google Scholar
28.
Hawkins, E. et al. Increasing influence of heat stress on French maize yields from the 1960s to the 2030s. Glob. Chang. Biol 19, 937–947 (2013).
ADS Article Google Scholar
29.
Wang, E., Cresswell, H., Xu, J. & Jiang, Q. Capacity of soils to buffer impact of climate variability and value of seasonal forecasts. Agric. For. Meteorol. 149, 38–50 (2009).
ADS Article Google Scholar
30.
He, D. & Wang, E. On the relation between soil water holding capacity and dryland crop productivity. Geoderma 353, 11–24 (2019).
ADS Article Google Scholar
31.
Wong, M. T. F. & Asseng, S. Determining the causes of spatial and temporal variability of wheat yields at sub-field scale using a new method of upscaling a crop model. Plant Soil 283, 203–215 (2006).
32.
Gridded Soil Survey Geographic (gSSURGO) Database User Guide 85 (National Resource Conservation Service, 2014).
33.
Ficklin, D. L. & Novick, K. A. Historic and projected changes in vapor pressure deficit suggest a continental-scale drying of the United States atmosphere. J. Geophys. Res. 122, 2061–2079 (2017).
Article Google Scholar
34.
Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).
ADS CAS Article Google Scholar
35.
Butler, E. E., Mueller, N. D. & Huybers, P. Peculiarly pleasant weather for US maize. Proc. Natl Acad. Sci. USA 115, 11935–11940 (2018).
CAS Article Google Scholar
36.
Ortiz-Bobea, A., Wang, H., Carrillo, C. M. & Ault, T. R. Unpacking the climatic drivers of US agricultural yields. Environ. Res. Lett. 14, 064003 (2019).
37.
Lobell, D. B. & Asner, G. P. Climate and management contributions to recent trends in US agricultural yields. Science 299, 1032 (2003).
CAS Article Google Scholar
38.
Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Chang. 3, 497–501 (2013).
ADS Article Google Scholar
39.
Jin, Z. et al. The combined and separate impacts of climate extremes on the current and future US rainfed maize and soybean production under elevated CO2. Glob. Chang. Biol. 23, 2687–2704 (2017).
40.
Kucharik, C. J. A multidecadal trend of earlier corn planting in the central USA. Agron. J. 98, 1544–1550 (2006).
Article Google Scholar
41.
Wade, T., Claassen, R. & Wallander, S. Conservation-Practice Adoption Rates Vary Widely by Crop and Region EIB-147, 40 (US Department of Agriculture, Economic Research Service, 2015).
42.
Jin, Z., Azzari, G. & Lobell, D. B. Improving the accuracy of satellite-based high-resolution yield estimation: a test of multiple scalable approaches. Agric. For. Meteorol. 247, 207–220 (2017).
ADS Article Google Scholar
43.
Lobell, D. B., Thau, D., Seifert, C., Engle, E. & Little, B. A scalable satellite-based crop yield mapper. Remote Sens. Environ. 164, 324–333 (2015).
ADS Article Google Scholar
44.
Urban, D. W., Roberts, M. J., Schlenker, W. & Lobell, D. B. The effects of extremely wet planting conditions on maize and soybean yields. Clim. Change 130, 1–14 (2015).
Article Google Scholar
45.
Li, Y., Guan, K., Schnitkey, G. D., DeLucia, E. & Peng, B. Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States. Glob. Chang. Biol. 25, 2325–2337 (2019).
46.
Jin, Z. et al. Do maize models capture the impacts of heat and drought stresses on yield? Using algorithm ensembles to identify successful approaches. Glob. Chang. Biol. 22, 3112–3126 (2016).
47.
Woodard, J. D. & Verteramo-Chiu, L. J. Efficiency impacts of utilizing soil data in the pricing of the federal crop insurance program. Am. J. Agric. Econ. 99, 757–772 (2017).
Article Google Scholar
48.
Wechsler, S. J., McFadden, J. R. & Smith, D. J. What do farmers’ weed control decisions imply about glyphosate resistance? Evidence from surveys of US corn fields. Pest Manag. Sci. 74, 1143–1154 (2018).
CAS Article Google Scholar
49.
DeLucia, E. H. et al. Are we approaching a water ceiling to maize yields in the United States? Ecosphere 10, e02773 (2019).
50.
Cooper, M., Gho, C., Leafgren, R., Tang, T. & Messina, C. Breeding drought-tolerant maize hybrids for the US corn-belt: discovery to product. J. Exp. Bot. 65, 6191–6194 (2014).
CAS Article Google Scholar
51.
Adoption of Genetically Engineered Crops in the US (US Department of Agriculture, 2019); https://www.ers.usda.gov/data-products/adoption-of-genetically-engineered-crops-in-the-us/.
52.
Klümper, W. & Qaim, M. A meta-analysis of the impacts of genetically modified crops. PLoS ONE 9, e111629 (2014).
53.
McFadden, J. R. Yield Maps, Soil Maps, and Technical Efficiency: Evidence from US Corn Fields (Agricultural and Applied Economics Association, 2017); https://doi.org/10.22004/ag.econ.258120
54.
Duvick, D. N. in Variability in Grain Yields: Implications for Agricultural Research and Policy in Developing Countries (eds J. R. Anderson and P. B. R. Hazel) 147–156 (Johns Hopkins University Press, 1989).
55.
Daly, C., Halbleib, M. & Smith, J. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol. 28, 2031–2064 (2008).
Article Google Scholar
56.
Boryan, C., Yang, Z., Mueller, R. & Craig, M. Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer program. Geocarto Int. 26, 341–358 (2011).
Article Google Scholar
57.
Wang, S., Di Tommaso, S., Deines, J. & Lobell, D. B. Mapping Twenty Years of Corn and Soybean Across the US Midwest Using the Landsat Archive. Sci. Data 7, 307 (2020).
58.
Johnson, D. M. An assessment of pre- and within-season remotely sensed variables for forecasting corn and soybean yields in the United States. Remote Sens. Environ. 141, 116–128 (2014).
ADS Article Google Scholar
59.
Dobrowski, S. Z. et al. The climate velocity of the contiguous United States during the 20th century. Glob. Chang. Biol. 19, 241–251 (2013).
60.
Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).
61.
Abatzoglou, J. T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 33, 121–131 (2013). More