Unravelling the gut bacteriome of Ips (Coleoptera: Curculionidae: Scolytinae): identifying core bacterial assemblage and their ecological relevance
1.
Anderegg, W. R., Kane, J. M. & Anderegg, L. D. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Chang. 3, 30–36 (2013).
ADS Article Google Scholar
2.
Huang, J. et al. Tree defence and bark beetles in a drying world: Carbon partitioning, functioning and modelling. New Phytol. 225, 26–36 (2020).
PubMed Article PubMed Central Google Scholar
3.
Kautz, M., Meddens, A. J., Hall, R. J. & Arneth, A. Biotic disturbances in Northern Hemisphere forests—A synthesis of recent data, uncertainties and implications for forest monitoring and modelling. Glob. Ecol. Biogeogr. 26, 533–552 (2017).
Article Google Scholar
4.
Netherer, S. et al. Do water-limiting conditions predispose N orway spruce to bark beetle attack?. New Phytol. 205, 1128–1141 (2015).
PubMed Article PubMed Central Google Scholar
5.
Seybold, S. J., Huber, D. P., Lee, J. C., Graves, A. D. & Bohlmann, J. Pine monoterpenes and pine bark beetles: A marriage of convenience for defense and chemical communication. Phytochem. Rev. 5, 143–178 (2006).
CAS Article Google Scholar
6.
Raffa, K. F. & Smalley, E. B. Interaction of pre-attack and induced monoterpene concentrations in host conifer defense against bark beetle-fungal complexes. Oecologia 102, 285–295 (1995).
ADS PubMed Article PubMed Central Google Scholar
7.
Reid, M. L. & Purcell, J. Condition-dependent tolerance of monoterpenes in an insect herbivore. Arthropod-Plant Interact. 5, 331–337 (2011).
Article Google Scholar
8.
Erbilgin, N., Krokene, P., Christiansen, E., Zeneli, G. & Gershenzon, J. Exogenous application of methyl jasmonate elicits defenses in Norway spruce (Picea abies) and reduces host colonization by the bark beetle Ips typographus. Oecologia 148, 426–436 (2006).
ADS PubMed Article PubMed Central Google Scholar
9.
Hayes, J. L. & Strom, B. L. 4-Allylanisole as an inhibitor of bark beetle (Coleoptera: Scolytidae) aggregation. J. Econ. Entomol. 87, 1586–1594 (1994).
CAS Article Google Scholar
10.
Franceschi, V. R., Krokene, P., Christiansen, E. & Krekling, T. Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytol. 167, 353–376 (2005).
CAS PubMed Article PubMed Central Google Scholar
11.
Zhao, T., Borg-Karlson, A.-K., Erbilgin, N. & Krokene, P. Host resistance elicited by methyl jasmonate reduces emission of aggregation pheromones by the spruce bark beetle, Ips typographus. Oecologia 167, 691–699 (2011).
ADS PubMed Article PubMed Central Google Scholar
12.
12Schmidt, A. et al. In Chemical Ecology and Phytochemistry in Forest Ecosystems (ed Romeo, J. T.) 1–28 (Elsevier, Amsterdam, 2005).
13.
Keeling, C. I. & Bohlmann, J. Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol. 170, 657–675 (2006).
CAS PubMed Article PubMed Central Google Scholar
14.
Despres, L., David, J.-P. & Gallet, C. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 22, 298–307 (2007).
PubMed Article PubMed Central Google Scholar
15.
Raffa, K., Andersson, M. N. & Schlyter, F. In Advances in Insect Physiology, Vol. 50 (ed Blomquist Claus Tittiger, G.J.) 1–74 (Elsevier, Amsterdam, 2016).
16.
Adams, A. S. et al. Mountain pine beetles colonizing historical and naive host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism. Appl. Environ. Microbiol. 79, 3468–3475 (2013).
CAS PubMed PubMed Central Article Google Scholar
17.
Six, D. L. Ecological and evolutionary determinants of bark beetle—fungus symbioses. Insects 3, 339–366 (2012).
PubMed PubMed Central Article Google Scholar
18.
Raffa, K. F. Terpenes tell different tales at different scales: Glimpses into the chemical ecology of conifer-bark beetle-microbial interactions. J. Chem. Ecol. 40, 1–20 (2014).
CAS PubMed Article PubMed Central Google Scholar
19.
Douglas, A. E. Multiorganismal insects: Diversity and function of resident microorganisms. Annu. Rev. Entomol. 60, 17–34 (2015).
CAS PubMed Article PubMed Central Google Scholar
20.
Douglas, A. E. The microbial dimension in insect nutritional ecology. Funct. Ecol. 23, 38–47 (2009).
Article Google Scholar
21.
Ceja-Navarro, J. A. et al. Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee. Nat. Commun. 6, 7618 (2015).
ADS CAS PubMed PubMed Central Article Google Scholar
22.
Welte, C. U. et al. Plasmids from the gut microbiome of cabbage root fly larvae encode SaxA that catalyses the conversion of the plant toxin 2-phenylethyl isothiocyanate. Environ. Microbiol. 18, 1379–1390 (2016).
CAS PubMed Article Google Scholar
23.
Hammer, T. J. & Bowers, M. D. Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia 179, 1–14 (2015).
ADS PubMed Article PubMed Central Google Scholar
24.
Bakkali, F., Averbeck, S., Averbeck, D. & Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 46, 446–475 (2008).
CAS Article Google Scholar
25.
Mithöfer, A. & Boland, W. Plant defense against herbivores: Chemical aspects. Annu. Rev. Plant Biol. 63, 431–450 (2012).
PubMed Article CAS PubMed Central Google Scholar
26.
Douglas, A. Nutritional interactions in insect-microbial symbioses: Aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol. 43, 17–37 (1998).
CAS PubMed Article PubMed Central Google Scholar
27.
Ayres, M. P., Wilkens, R. T., Ruel, J. J., Lombardero, M. J. & Vallery, E. Nitrogen budgets of phloem-feeding bark beetles with and without symbiotic fungi. Ecology 81, 2198–2210 (2000).
Article Google Scholar
28.
Adams, A., Currie, C., Cardoza, Y., Klepzig, K. & Raffa, K. Effects of symbiotic bacteria and tree chemistry on the growth and reproduction of bark beetle fungal symbionts. Can. J. For. Res. 39, 1133–1147 (2009).
CAS Article Google Scholar
29.
Cardoza, Y. J., Moser, J. C., Klepzig, K. D. & Raffa, K. F. Multipartite symbioses among fungi, mites, nematodes, and the spruce beetle, Dendroctonus rufipennis. Environ. Entomol. 37, 956–963 (2008).
PubMed Article PubMed Central Google Scholar
30.
Therrien, J. et al. Bacteria influence mountain pine beetle brood development through interactions with symbiotic and antagonistic fungi: Implications for climate-driven host range expansion. Oecologia 179, 467–485 (2015).
ADS PubMed Article PubMed Central Google Scholar
31.
Morales-Jiménez, J., Zúñiga, G., Ramírez-Saad, H. C. & Hernández-Rodríguez, C. Gut-associated bacteria throughout the life cycle of the bark beetle Dendroctonus rhizophagus Thomas and Bright (Curculionidae: Scolytinae) and their cellulolytic activities. Microb. Ecol. 64, 268–278 (2012).
PubMed Article PubMed Central Google Scholar
32.
Delalibera, I. Jr., Handelsman, J. & Raffa, K. F. Contrasts in cellulolytic activities of gut microorganisms between the wood borer, Saperda vestita (Coleoptera: Cerambycidae), and the bark beetles, Ips pini and Dendroctonus frontalis (Coleoptera: Curculionidae). Environ. Entomol. 34, 541–547 (2005).
Article Google Scholar
33.
Hu, X., Yu, J., Wang, C. & Chen, H. Cellulolytic bacteria associated with the gut of Dendroctonus armandi larvae (Coleoptera: Curculionidae: Scolytinae). Forests 5, 455–465 (2014).
Article Google Scholar
34.
Menéndez, E. et al. Pseudomonas coleopterorum sp. nov., a cellulase-producing bacterium isolated from the bark beetle Hylesinus fraxini. Int. J. Syst. Evol. Microbiol. 65, 2852–2858 (2015).
PubMed Article CAS PubMed Central Google Scholar
35.
Boone, C. K. et al. Bacteria associated with a tree-killing insect reduce concentrations of plant defense compounds. J. Chem. Ecol. 39, 1003–1006 (2013).
CAS PubMed Article Google Scholar
36.
Xu, L. T., Lu, M. & Sun, J. H. Invasive bark beetle-associated microbes degrade a host defensive monoterpene. Insect Sci. 23, 183–190 (2016).
CAS PubMed Article PubMed Central Google Scholar
37.
Berasategui, A. et al. Gut microbiota of the pine weevil degrades conifer diterpenes and increases insect fitness. Mol. Ecol. 26, 4099–4110 (2017).
CAS PubMed Article PubMed Central Google Scholar
38.
Engl, T. & Kaltenpoth, M. Influence of microbial symbionts on insect pheromones. Nat. Prod. Rep. 35, 386–397 (2018).
CAS PubMed Article Google Scholar
39.
Howe, M., Keefover-Ring, K. & Raffa, K. F. Pine engravers carry bacterial communities whose members reduce concentrations of host monoterpenes with variable degrees of redundancy, specificity, and capability. Environ. Entomol. 47, 638–645 (2018).
CAS PubMed Article PubMed Central Google Scholar
40.
Xu, L., Lou, Q., Cheng, C., Lu, M. & Sun, J. Gut-associated bacteria of Dendroctonus valens and their involvement in verbenone production. Microb. Ecol. 70, 1012–1023 (2015).
CAS PubMed Article PubMed Central Google Scholar
41.
Skrodenytė-Arbačiauskienė, V., Radžiutė, S., Stunžėnas, V. & Būda, V. Erwiniatypographi sp. nov., isolated from bark beetle (Ips typographus) gut. Int. J. Syst. Evol. Microbiol. 62, 942–948 (2012).
PubMed Article CAS PubMed Central Google Scholar
42.
Smith, D. J., Park, J., Tiedje, J. M. & Mohn, W. W. A large gene cluster in Burkholderia xenovorans encoding abietane diterpenoid catabolism. J. Bacteriol. 189, 6195–6204 (2007).
CAS PubMed PubMed Central Article Google Scholar
43.
Martin, V. J. & Mohn, W. W. Genetic investigation of the catabolic pathway for degradation of abietane diterpenoids by Pseudomonas abietaniphila BKME-9. J. Bacteriol. 182, 3784–3793 (2000).
CAS PubMed PubMed Central Article Google Scholar
44.
Muratoğlu, H., Sezen, K. & Demirbağ, Z. Determination and pathogenicity of the bacterial flora associated with the spruce bark beetle, Ips typographus (L.) (Coleoptera: Curculionidae: Scolytinae). Turk. J. Biol. 35, 9–20 (2011).
Google Scholar
45.
Skrodenytė-Arbačiauskienė, V., Būda, V., Radžiutė, S. & Stunžėnas, V. Myrcene-resistant bacteria isolated from the gut of phytophagous insect Ips typographus. Ekologija 4, 1–6 (2006).
Google Scholar
46.
Sevim, A., Gökçe, C., Erbaş, Z. & Özkan, F. Bacteria from Ips sexdentatus (Coleoptera: Curculionidae) and their biocontrol potential. J. Basic Microbiol. 52, 695–704 (2012).
PubMed Article PubMed Central Google Scholar
47.
Vasanthakumar, A. et al. Composition of the bacterial community in the gut of the pine engraver, Ips pini (Say) (Coloptera) colonizing red pine. Symbiosos 43, 97–104 (2007).
Google Scholar
48.
48Grégoire, J.-C. & Evans, H. In Bark and Wood Boring Insects in Living Trees in Europe, a Synthesis (eds Lieutier, F., Day, K.R., Battisti, A., Grégoire, J.-C., Evans, H.F.) 19–37 (Springer, Berlin, 2007).
49.
Kolk, A., Starzyk, J., Kinelski, S. & Dzwonkowski, R. Atlas of Forest Insect Pests. (MULTICO Publishing House Ltd., 1996).
50.
Davydenko, K., Vasaitis, R. & Menkis, A. Fungi associated with Ips acuminatus (Coleoptera: Curculionidae) in Ukraine with a special emphasis on pathogenicity of ophiostomatoid species. Eur. J. Entomol. 114, 77–85 (2017).
Article Google Scholar
51.
Fettig, C. J. & Hilszczański, J. In Bark Beetles: Biology and Ecology of Native and Invasive Species (eds Vega, F.E, Hofstetter, R.W.) 555–584 (Springer, Berlin, 2015).
52.
Knížek, M., Liška, J. & Modlinger, R. Výskyt lesních škodlivých činitelů v roce 2015 a jejich očekávaný stav v roce 2016. Strnady, VÚLHM, Zpravodaj ochrany lesa (2016).
53.
Villari, C. et al. Nutritional and pathogenic fungi associated with the pine engraver beetle trigger comparable defenses in Scots pine. Tree Physiol. 32, 867–879 (2012).
PubMed Article PubMed Central Google Scholar
54.
Wermelinger, B., Rigling, A., Schneider Mathis, D. & Dobbertin, M. Assessing the role of bark-and wood-boring insects in the decline of Scots pine (Pinus sylvestris) in the Swiss Rhone valley. Ecol. Entomol. 33, 239–249 (2008).
Article Google Scholar
55.
Pineau, X., Bourguignon, M., Jactel, H., Lieutier, F. & Sallé, A. Pyrrhic victory for bark beetles: Successful standing tree colonization triggers strong intraspecific competition for offspring of Ips sexdentatus. For. Ecol. Manag. 399, 188–196 (2017).
Article Google Scholar
56.
Engel, P. & Moran, N. A. The gut microbiota of insects–diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735 (2013).
CAS PubMed Article PubMed Central Google Scholar
57.
Hernández-García, J. A., Briones-Roblero, C. I., Rivera-Orduña, F. N. & Zúñiga, G. Revealing the gut bacteriome of Dendroctonus bark beetles (Curculionidae: Scolytinae): Diversity, core members and co-evolutionary patterns. Sci. Rep. 7, 1–12 (2017).
Article CAS Google Scholar
58.
Morrison, M. & Miron, J. Adhesion to cellulose by Ruminococcus albus: A combination of cellulosomes and Pil-proteins?. FEMS Microbiol. Lett. 185, 109–115 (2000).
CAS PubMed Article PubMed Central Google Scholar
59.
Fabryová, A. et al. On the bright side of a forest pest-the metabolic potential of bark beetles’ bacterial associates. Sci. Total Environ. 619, 9–17 (2018).
ADS PubMed Article CAS PubMed Central Google Scholar
60.
Briones-Roblero, C. I. et al. Structure and dynamics of the gut bacterial microbiota of the bark beetle, Dendroctonus rhizophagus (Curculionidae: Scolytinae) across their life stages. PLoS ONE 12, e0175470 (2017).
PubMed PubMed Central Article CAS Google Scholar
61.
Sudachkova, N., Milyutina, I., Romanova, L. & Semenova, G. The annual dynamics of reserve compounds and hydrolitic enzymes activity in the tissues of Pinus sylvestris L. and Larix sibirica Ledeb.: The metabolism of reserve compounds in the tissues of Siberian conifers. Eurasian J. For. Res. 7, 1–10 (2004).
Google Scholar
62.
Horne, I., Haritos, V. S. & Oakeshott, J. G. Comparative and functional genomics of lipases in holometabolous insects. Insect Biochem. Mol. Biol. 39, 547–567 (2009).
CAS PubMed Article PubMed Central Google Scholar
63.
Arrese, E. L. & Soulages, J. L. Insect fat body: Energy, metabolism, and regulation. Annu. Rev. Entomol. 55, 207–225 (2010).
CAS PubMed PubMed Central Article Google Scholar
64.
García-Fraile, P. Roles of bacteria in the bark beetle holobiont–how do they shape this forest pest?. Ann. Appl. Biol. 172, 111–125 (2018).
Article Google Scholar
65.
Morales-Jiménez, J. et al. Nitrogen-fixing and uricolytic bacteria associated with the gut of Dendroctonus rhizophagus and Dendroctonus valens (Curculionidae: Scolytinae). Microb. Ecol. 66, 200–210 (2013).
PubMed Article CAS PubMed Central Google Scholar
66.
Morales-Jiménez, J., Zúñiga, G., Villa-Tanaca, L. & Hernández-Rodríguez, C. Bacterial community and nitrogen fixation in the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae). Microb. Ecol. 58, 879–891 (2009).
PubMed Article CAS PubMed Central Google Scholar
67.
Menna, P. M. & Hungria, M. Phylogeny of nodulation and nitrogen-fixation genes in Bradyrhizobium: Supporting evidence for the theory of monophyletic origin, and spread and maintenance by both horizontal and vertical transfer. Int. J. Syst. Evol. Microbiol. 61, 3052–3067 (2011).
CAS PubMed Article PubMed Central Google Scholar
68.
Chen, W.-M. et al. Legume symbiotic nitrogen fixation byβ-proteobacteria is widespread in nature. J. Bacteriol. 185, 7266–7272 (2003).
CAS PubMed PubMed Central Article Google Scholar
69.
Gurevitch, J., Scheiner, S. M. & Fox, G. A. The Ecology of Plants (Sinauer Associates, Sunderland, 2002).
Google Scholar
70.
Gibson, C. M. & Hunter, M. S. Extraordinarily widespread and fantastically complex: Comparative biology of endosymbiotic bacterial and fungal mutualists of insects. Ecol. Lett. 13, 223–234 (2010).
PubMed Article PubMed Central Google Scholar
71.
Six, D. L. & Bentz, B. J. Fungi associated with the North American spruce beetle, Dendroctonus rufipennis. Can. J. For. Res. 33, 1815–1820 (2003).
Article Google Scholar
72.
Naik, P. R. & Sakthivel, N. Functional characterization of a novel hydrocarbonoclastic Pseudomonas sp. strain PUP6 with plant-growth-promoting traits and antifungal potential. Res. Microbiol. 157, 538–546 (2006).
CAS PubMed Article PubMed Central Google Scholar
73.
Park, G.-K., Lim, J.-H., Kim, S.-D. & Shim, S.-H. Elucidation of antifungal metabolites produced by Pseudomonas aurantiaca IB5-10 with broad-spectrum antifungal activity. J. Microbiol. Biotechnol. 22, 326–330 (2012).
CAS PubMed Article PubMed Central Google Scholar
74.
Elsden, S. R., Hilton, M. G. & Waller, J. M. The end products of the metabolism of aromatic amino acids by Clostridia. Arch. Microbiol. 107, 283–288 (1976).
CAS PubMed Article PubMed Central Google Scholar
75.
Byers, J. & Birgersson, G. Pheromone production in a bark beetle independent of myrcene precursor in host pine species. Naturwissenschaften 77, 385–387 (1990).
ADS CAS Article Google Scholar
76.
Blomquist, G. J. et al. Pheromone production in bark beetles. Insect Biochem. Mol. Biol. 40, 699–712 (2010).
CAS PubMed Article PubMed Central Google Scholar
77.
Cao, Q. et al. Effect of oxygen on verbenone conversion from cis-verbenol by gut facultative anaerobes of Dendroctonus valens. Front. Microbiol. 9, 464 (2018).
PubMed PubMed Central Article Google Scholar
78.
Wang, Y. & Zhang, Y. Investigation of gut-associated bacteria in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae using culture-dependent and DGGE methods. Ann. Entomol. Soc. Am. 108, 941–949 (2015).
CAS Article Google Scholar
79.
Durand, A.-A. et al. Surveying the endomicrobiome and ectomicrobiome of bark beetles: The case of Dendroctonus simplex. Sci. Rep. 5, 17190 (2015).
ADS CAS PubMed PubMed Central Article Google Scholar
80.
Scott, J. J. et al. Bacterial protection of beetle-fungus mutualism. Science 322, 63–63 (2008).
ADS CAS PubMed PubMed Central Article Google Scholar
81.
Dale, C. & Maudlin, I. Sodalis gen. nov. and Sodalis glossinidius sp. nov., a microaerophilic secondary endosymbiont of the tsetse fly Glossina morsitans morsitans. Int. J. Syst. Evol. Microbiol. 49, 267–275 (1999).
CAS Article Google Scholar
82.
Santos-Garcia, D., Silva, F. J., Morin, S., Dettner, K. & Kuechler, S. M. The all-rounder Sodalis: A new bacteriome-associated endosymbiont of the lygaeoid bug Henestaris halophilus (Heteroptera: Henestarinae) and a critical examination of its evolution. Genome Biol. Evol. 9, 2893–2910 (2017).
CAS PubMed PubMed Central Article Google Scholar
83.
Lawson, E. T., Mousseau, T. A., Klaper, R., Hunter, M. D. & Werren, J. H. Rickettsia associated with male-killing in a buprestid beetle. Heredity 86, 497–505 (2001).
CAS PubMed Article PubMed Central Google Scholar
84.
Hurst, G. & Jiggins, F. M. Male-killing bacteria in insects: Mechanisms, incidence, and implications. Emerg. Infect. Dis. 6, 329 (2000).
CAS PubMed PubMed Central Article Google Scholar
85.
Stackebrandt, E. & Schumann, P. In The Prokaryotes: Actinobacteria (eds Rosenberg, E. et al.) 163–184 (Springer, Berlin, 2014).
86.
Pfeffer, A. Fauna ČSR. Svazek 6: Kůrovci-Scolytoidea. Řád: Brouci-Coleoptera. (Nakladatelství Československé akadmie věd, 1955).
87.
Pfeffer, A. Zentral-und westpaläarktische Borken-und Kernkäfer:(Coloptera: Scolytidae, Platypodidae). (Pro Entomologia, 1995).
88.
Nunberg, M. Klucze do rozpoznawania owadów Polski [Keys for the identification of Polish Insects]. Część XIX. Chrząszcze–Coleoptera, Korniki–Scolytidae, Wyrynniki–Platypodidae, PWN, Warszawa-Wroclaw. Zeszyt, 99–100 (1981).
89.
Chakraborty, A. et al. Core mycobiome and their ecological relevance in the gut of five ips bark beetles (Coleoptera: Curculionidae: Scolytinae). Front. Microbiol. 11, 2134 (2020).
Google Scholar
90.
Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1–e1 (2013).
CAS PubMed PubMed Central Article Google Scholar
91.
Magoč, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).
PubMed PubMed Central Article CAS Google Scholar
92.
Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013).
CAS PubMed PubMed Central Article Google Scholar
93.
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335 (2010).
CAS PubMed PubMed Central Article Google Scholar
94.
Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).
CAS PubMed PubMed Central Article Google Scholar
95.
Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996 (2013).
CAS PubMed Article PubMed Central Google Scholar
96.
Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
CAS PubMed PubMed Central Article Google Scholar
97.
Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).
PubMed PubMed Central Article CAS Google Scholar
98.
Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
CAS PubMed PubMed Central Article Google Scholar
99.
Chao, A., Lee, S.-M. & Chen, T.-C. A generalized Good’s nonparametric coverage estimator. Chin. J. Math. 16, 189–199 (1988).
MathSciNet MATH Google Scholar
100.
Magurran, A. E. Ecological Diversity and its Measurement (Princeton University Press, Princeton, 1988).
Google Scholar
101.
Team, R. C. R: A Language and Environment for Statistical Computing (Version 2.15. 3) [Computer software] (R Foundation for Statistical Computing, Vienna, 2013).
102.
Oksanen, J. et al. Vegan: community ecology package. R package version 1.17–4. https://CRAN.R-project.org/package=vegan (2010).
103.
Lozupone, C. A., Hamady, M., Kelley, S. T. & Knight, R. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl. Environ. Microbiol. 73, 1576–1585 (2007).
CAS PubMed PubMed Central Article Google Scholar
104.
Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).
Article Google Scholar
105.
Cai, L. Multi-response permutation procedure as an alternative to the analysis of variance: An SPSS implementation. Behav. Res. Methods 38, 51–59 (2006).
PubMed Article Google Scholar
106.
Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).
Google Scholar
107.
Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).
CAS PubMed PubMed Central Google Scholar
108.
D’Argenio, V., Casaburi, G., Precone, V. & Salvatore, F. Comparative metagenomic analysis of human gut microbiome composition using two different bioinformatic pipelines. Biomed. Res. Int. 325340, 1–10 (2014).
Article CAS Google Scholar
109.
Paulson, J. N., Pop, M. & Bravo, H. C. Metastats: An improved statistical method for analysis of metagenomic data. Genome Biol. 12, P17 (2011).
PubMed Central Article PubMed Google Scholar
110.
Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).
PubMed PubMed Central Article Google Scholar
111.
Douglas, G. M., Beiko, R. G. & Langille, M. G. In Microbiome Analysis: Methods and Protocols. (eds Beiko, R. G., Hsiao, W. & Parkinson, J.) 169–177 (Springer, Berlin, 2018).
112.
Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–D114 (2012).
CAS PubMed Article PubMed Central Google Scholar More
