More stories

  • in

    Changes in the drought sensitivity of US maize yields

    1.
    Porter, J. R. et al. in Climate Change 2014: Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects 485–534 (IPCC, Cambridge University Press, 2015).
    2.
    Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).
    ADS  CAS  Article  Google Scholar 

    3.
    Parent, B. et al. Maize yields over Europe may increase in spite of climate change, with an appropriate use of the genetic variability of flowering time. Proc. Natl Acad. Sci. USA 115, 10642–10647 (2018).
    CAS  Article  Google Scholar 

    4.
    Müller, C., Bondeau, A., Popp, A., Waha, K. & Fader, M. Climate Change Impacts on Agricultural Yields (World Development Report, Background Note, 2010).

    5.
    Liu, Z. et al. Shifts in the extent and location of rice cropping areas match the climate change pattern in China during 1980–2010. Reg. Environ. Change 15, 919–929 (2015).
    Article  Google Scholar 

    6.
    Meng, Q. et al. The benefits of recent warming for maize production in high latitude China. Clim. Change 122, 341–349 (2014).

    7.
    Siebert, S. & Ewert, F. Spatio-temporal patterns of phenological development in Germany in relation to temperature and day length. Agric. For. Meteorol. 152, 44–57 (2012).
    ADS  Article  Google Scholar 

    8.
    Zhu, P. et al. The important but weakening maize yield benefit of grain filling prolongation in the US Midwest. Glob. Chang. Biol. 24, 4718–4730 (2018).
    ADS  Article  Google Scholar 

    9.
    Burke, M. & Emerick, K. Adaptation to climate change: evidence from US agriculture. Am. Econ. J. Econ. Policy 8, 106–140 (2016).

    10.
    Lobell, D. B. Climate change adaptation in crop production: beware of illusions. Glob. Food Sec. 3, 72–76 (2014).
    Article  Google Scholar 

    11.
    Carleton, T. A. & Hsiang, S. M. Social and economic impacts of climate. Science 353, aad9837 (2016).

    12.
    McFadden, J., Smith, D., Wechsler, S. & Wallander, S. Development, Adoption, and Management of Drought-Tolerant Corn in the United States (US Department of Agriculture, Economic Research Service, 2019).

    13.
    Gaffney, J. et al. Industry-scale evaluation of maize hybrids selected for increased yield in drought-stress conditions of the US Corn Belt. Crop Sci. 55, 1608–1618 (2015).
    Article  Google Scholar 

    14.
    Cooper, M., Gho, C., Leafgren, R., Tang, T. & Messina, C. Breeding drought-tolerant maize hybrids for the US corn-belt: discovery to product. J. Exp Bot. 65, 6191–6204 (2014).

    15.
    Goodwin, B. K. & Piggott, N. E. Has technology increased agricultural yield risk? Evidence from the crop insurance Biotech Endorsement. Am. J. Agric. Econ. https://doi.org/10.1002/ajae.12087 (2020).

    16.
    Lobell, D. B. et al. Greater sensitivity to drought accompanies maize yield increase in the US Midwest. Science 344, 516–519 (2014).
    ADS  CAS  Article  Google Scholar 

    17.
    Assefa, Y. et al. Analysis of long term study indicates both agronomic optimal plant density and increase maize yield per plant contributed to yield gain. Sci. Rep. 8, 1–11 (2018).
    ADS  Article  Google Scholar 

    18.
    Leakey, A. D. B. Rising atmospheric carbon dioxide concentration and the future of C4 crops for food and fuel. Proc. R. Soc. B Biol. Sci. 276, 2333–2343 (2009).
    CAS  Article  Google Scholar 

    19.
    Gray, S. B. et al. Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nat. Plants 2, 1–8 (2016).
    Article  Google Scholar 

    20.
    Jin, Z., Ainsworth, E. A., Leakey, A. D. B. & Lobell, D. B. Increasing drought and diminishing benefits of elevated carbon dioxide for soybean yields across the US Midwest. Glob. Chang. Biol. 24, e522–e533 (2018).

    21.
    Mills, G. et al. Tropospheric ozone assessment report: present-day tropospheric ozone distribution and trends relevant to vegetation. Elementa (Wash. DC) 6, 47 (2018).
    Google Scholar 

    22.
    Mills, G. et al. Ozone pollution will compromise efforts to increase global wheat production. Glob. Chang. Biol. 24, 3560–3574 (2018).

    23.
    McGrath, J. M. et al. An analysis of ozone damage to historical maize and soybean yields in the United States. Proc. Natl Acad. Sci. USA 112, 14390–14395 (2015).

    24.
    Quinton, J. N., Govers, G., Van Oost, K. & Bardgett, R. D. The impact of agricultural soil erosion on biogeochemical cycling. Nat. Geosci. 3, 311–314 (2010).
    ADS  CAS  Article  Google Scholar 

    25.
    Barreca, A., Clay, K., Deschenes, O., Greenstone, M. & Shapiro, J. S. Adapting to climate change: the remarkable decline in the US temperature–mortality relationship over the twentieth century. J. Polit. Econ. 124, 105–159 (2016).
    Article  Google Scholar 

    26.
    Roberts, M. J. & Schlenker, W. in The Economics of Climate Change: Adaptations Past and Present (ed. Steckel, R. H.) 225–251 (University of Chicago Press, 2011).

    27.
    Sakurai, G., Iizumi, T. & Yokozawa, M. Varying temporal and spatial effects of climate on maize and soybean affect yield prediction. Clim. Res 49, 143–154 (2011).
    Article  Google Scholar 

    28.
    Hawkins, E. et al. Increasing influence of heat stress on French maize yields from the 1960s to the 2030s. Glob. Chang. Biol 19, 937–947 (2013).
    ADS  Article  Google Scholar 

    29.
    Wang, E., Cresswell, H., Xu, J. & Jiang, Q. Capacity of soils to buffer impact of climate variability and value of seasonal forecasts. Agric. For. Meteorol. 149, 38–50 (2009).
    ADS  Article  Google Scholar 

    30.
    He, D. & Wang, E. On the relation between soil water holding capacity and dryland crop productivity. Geoderma 353, 11–24 (2019).
    ADS  Article  Google Scholar 

    31.
    Wong, M. T. F. & Asseng, S. Determining the causes of spatial and temporal variability of wheat yields at sub-field scale using a new method of upscaling a crop model. Plant Soil 283, 203–215 (2006).

    32.
    Gridded Soil Survey Geographic (gSSURGO) Database User Guide 85 (National Resource Conservation Service, 2014).

    33.
    Ficklin, D. L. & Novick, K. A. Historic and projected changes in vapor pressure deficit suggest a continental-scale drying of the United States atmosphere. J. Geophys. Res. 122, 2061–2079 (2017).
    Article  Google Scholar 

    34.
    Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).
    ADS  CAS  Article  Google Scholar 

    35.
    Butler, E. E., Mueller, N. D. & Huybers, P. Peculiarly pleasant weather for US maize. Proc. Natl Acad. Sci. USA 115, 11935–11940 (2018).
    CAS  Article  Google Scholar 

    36.
    Ortiz-Bobea, A., Wang, H., Carrillo, C. M. & Ault, T. R. Unpacking the climatic drivers of US agricultural yields. Environ. Res. Lett. 14, 064003 (2019).

    37.
    Lobell, D. B. & Asner, G. P. Climate and management contributions to recent trends in US agricultural yields. Science 299, 1032 (2003).
    CAS  Article  Google Scholar 

    38.
    Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Chang. 3, 497–501 (2013).
    ADS  Article  Google Scholar 

    39.
    Jin, Z. et al. The combined and separate impacts of climate extremes on the current and future US rainfed maize and soybean production under elevated CO2. Glob. Chang. Biol. 23, 2687–2704 (2017).

    40.
    Kucharik, C. J. A multidecadal trend of earlier corn planting in the central USA. Agron. J. 98, 1544–1550 (2006).
    Article  Google Scholar 

    41.
    Wade, T., Claassen, R. & Wallander, S. Conservation-Practice Adoption Rates Vary Widely by Crop and Region EIB-147, 40 (US Department of Agriculture, Economic Research Service, 2015).

    42.
    Jin, Z., Azzari, G. & Lobell, D. B. Improving the accuracy of satellite-based high-resolution yield estimation: a test of multiple scalable approaches. Agric. For. Meteorol. 247, 207–220 (2017).
    ADS  Article  Google Scholar 

    43.
    Lobell, D. B., Thau, D., Seifert, C., Engle, E. & Little, B. A scalable satellite-based crop yield mapper. Remote Sens. Environ. 164, 324–333 (2015).
    ADS  Article  Google Scholar 

    44.
    Urban, D. W., Roberts, M. J., Schlenker, W. & Lobell, D. B. The effects of extremely wet planting conditions on maize and soybean yields. Clim. Change 130, 1–14 (2015).
    Article  Google Scholar 

    45.
    Li, Y., Guan, K., Schnitkey, G. D., DeLucia, E. & Peng, B. Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States. Glob. Chang. Biol. 25, 2325–2337 (2019).

    46.
    Jin, Z. et al. Do maize models capture the impacts of heat and drought stresses on yield? Using algorithm ensembles to identify successful approaches. Glob. Chang. Biol. 22, 3112–3126 (2016).

    47.
    Woodard, J. D. & Verteramo-Chiu, L. J. Efficiency impacts of utilizing soil data in the pricing of the federal crop insurance program. Am. J. Agric. Econ. 99, 757–772 (2017).
    Article  Google Scholar 

    48.
    Wechsler, S. J., McFadden, J. R. & Smith, D. J. What do farmers’ weed control decisions imply about glyphosate resistance? Evidence from surveys of US corn fields. Pest Manag. Sci. 74, 1143–1154 (2018).
    CAS  Article  Google Scholar 

    49.
    DeLucia, E. H. et al. Are we approaching a water ceiling to maize yields in the United States? Ecosphere 10, e02773 (2019).

    50.
    Cooper, M., Gho, C., Leafgren, R., Tang, T. & Messina, C. Breeding drought-tolerant maize hybrids for the US corn-belt: discovery to product. J. Exp. Bot. 65, 6191–6194 (2014).
    CAS  Article  Google Scholar 

    51.
    Adoption of Genetically Engineered Crops in the US (US Department of Agriculture, 2019); https://www.ers.usda.gov/data-products/adoption-of-genetically-engineered-crops-in-the-us/.

    52.
    Klümper, W. & Qaim, M. A meta-analysis of the impacts of genetically modified crops. PLoS ONE 9, e111629 (2014).

    53.
    McFadden, J. R. Yield Maps, Soil Maps, and Technical Efficiency: Evidence from US Corn Fields (Agricultural and Applied Economics Association, 2017); https://doi.org/10.22004/ag.econ.258120

    54.
    Duvick, D. N. in Variability in Grain Yields: Implications for Agricultural Research and Policy in Developing Countries (eds J. R. Anderson and P. B. R. Hazel) 147–156 (Johns Hopkins University Press, 1989).

    55.
    Daly, C., Halbleib, M. & Smith, J. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol. 28, 2031–2064 (2008).
    Article  Google Scholar 

    56.
    Boryan, C., Yang, Z., Mueller, R. & Craig, M. Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer program. Geocarto Int. 26, 341–358 (2011).
    Article  Google Scholar 

    57.
    Wang, S., Di Tommaso, S., Deines, J. & Lobell, D. B. Mapping Twenty Years of Corn and Soybean Across the US Midwest Using the Landsat Archive. Sci. Data 7, 307 (2020).

    58.
    Johnson, D. M. An assessment of pre- and within-season remotely sensed variables for forecasting corn and soybean yields in the United States. Remote Sens. Environ. 141, 116–128 (2014).
    ADS  Article  Google Scholar 

    59.
    Dobrowski, S. Z. et al. The climate velocity of the contiguous United States during the 20th century. Glob. Chang. Biol. 19, 241–251 (2013).

    60.
    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).

    61.
    Abatzoglou, J. T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 33, 121–131 (2013). More

  • in

    Interannual variability in the lipid and fatty acid profiles of east Australia-migrating humpback whales (Megaptera novaeangliae) across a 10-year timeline

    1.
    Waugh, C. A., Nichols, P. D., Noad, M. C. & Bengtson Nash, S. M. Lipid and fatty acid profiles of migrating Southern Hemisphere humpback whales Megaptera novaeangliae. Mar. Ecol. Prog. Ser. 471, 271–281 (2012).
    ADS  CAS  Article  Google Scholar 
    2.
    Chittleborough, R. G. Dynamics of two populations of the humpback whale, Megaptera novaeangliae (Borowski). Mar. Freshw. Res. 16, 33–128 (1965).
    Article  Google Scholar 

    3.
    Kawamura, A. A Review of food of balaenopterid whales. Sci. Rep. Whales Res. Inst. 32, 155–197 (1980).
    Google Scholar 

    4.
    Danilewicz, D., Tavares, M., Moreno, I. B., Ott, P. H. & Trigo, C. C. Evidence of feeding by the humpback whale (Megaptera novaeangliae) in mid-latitude waters of the western South Atlantic. Mar. Biodivers. Rec. 2, 1–3 (2009).
    Article  Google Scholar 

    5.
    Pinto de sa Alves, L. C. et al. Record of feeding by humpback whales (Megaptera novaeangliae) in tropical waters off Brazil. Mar. Mammal Sci. 25, 416–419 (2009).
    Article  Google Scholar 

    6.
    Stamation, K. A., Croft, D. B., Shaughnessy, P. D. & Waples, K. A. Observations of humpback whales (Megaptera novaeangliae) feeding during their southward migration along the coast of Southeastern New South Wales, Australia: Identification of a possible supplemental feeding ground. Aquat. Mamm. 33, 165–174 (2007).
    Article  Google Scholar 

    7.
    Owen, K. et al. Potential energy gain by whales outside of the Antarctic: Prey preferences and consumption rates of migrating humpback whales (Megaptera novaeangliae). Polar Biol. 40, 277–289 (2017).
    Article  Google Scholar 

    8.
    Eisenmann, P. et al. Isotopic evidence of a wide spectrum of feeding strategies in southern hemisphere humpback whale baleen records. PLoS One 11, e0156698 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    9.
    Bengtson Nash, S. M. et al. Signals from the south; humpback whales carry messages of Antarctic sea-ice ecosystem variability. Glob. Chang. Biol. 24, 1500–1510 (2018).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    IWC. Report of the workshop on the comprehensive assessment of southern hemisphere humpback whales. J. Cetacean Res. Manag. (Spec Issue) 3, 1–50 (2011).
    Google Scholar 

    11.
    Owen, K. et al. Effect of prey type on the fine-scale feeding behaviour of migrating east Australian humpback whales. Mar. Ecol. Prog. Ser. 541, 231–244 (2015).
    ADS  Article  Google Scholar 

    12.
    Gales, N. et al. Satellite tracking of southbound East Australian humpback whales (Megaptera novaeangliae): Challenging the feast or famine model for migrating whales. J. Cetacean Res. Manag. 61 (2009).

    13.
    Falk-Petersen, S., Hagen, W., Kattner, G., Clarke, A. & Sargent, J. Lipids, trophic relationships, and biodiversity in Arctic and Antarctic krill. Can. J. Fish. Aquat. Sci. 57, 178–191 (2000).
    CAS  Article  Google Scholar 

    14.
    Clarke, A. Lipid Content and Composition of Antarctic Krill, Euphausia Superba Dana. J. Crustac. Biol. 4, 285–294 (1984).
    CAS  Article  Google Scholar 

    15.
    Budge, S. M., Iverson, S. J. & Koopman, H. N. Studying trophic ecology in marine ecosystems using fatty acids: A primer on analysis and interpretation. Mar. Mammal Sci. 22, 759–801 (2006).
    Article  Google Scholar 

    16.
    Cook, H. W. Fatty acid desaturation and chain elongation in eucaryotes. In Biochemistry of Lipids, Lipoproteins and Membranes (eds Vance, D. E. & Vance, J.) 141–169 (Elsevier, New York, 1991).
    Google Scholar 

    17.
    Guang, Y., Li, C. & Yanqing, W. Fatty acid composition of Euphausia superba, Thysanoessa macrura and Euphausia crystallorophias collected from Prydz Bay, Antarctica. J. Ocean Univ. China 15, 297–302 (2016).
    Article  CAS  Google Scholar 

    18.
    Hagen, W. & Kattner, G. Lipid metabolism of the Antarctic euphausiid Thysanoessa macrura and its ecological implications. Limnol. Oceanogr. 43, 1894–1901 (1998).
    ADS  CAS  Article  Google Scholar 

    19.
    Mayzaud, P., Boutoute, M. & Alonzo, F. Lipid composition of the euphausiids Euphausia vallentini and Thysanoessa macrura during summer in the Southern Indian Ocean. Antarct. Sci. 15, 463–475 (2003).
    ADS  Article  Google Scholar 

    20.
    O’Brien, C., Virtue, P., Kawaguchi, S. & Nichols, P. D. Aspects of krill growth and condition during late winter-early spring off East Antarctica (110–130°E). Deep. Res. Part II 58, 1211–1221 (2011).
    Article  CAS  Google Scholar 

    21.
    Phleger, C. F., Nichols, P. D. & Virtue, P. Lipids and trophodynamics of Antarctic zooplankton. Comp. Biochem. Physiol. Part B 120, 311–323 (1998).
    Article  Google Scholar 

    22.
    Stübing, D. & Hagen, W. Fatty acid biomarker ratios-suitable trophic indicators in Antarctic euphausiids?. Polar Biol. 26, 774–782 (2003).
    Article  Google Scholar 

    23.
    Phleger, C. F., Nelson, M. M., Mooney, B. D. & Nichols, P. D. Interannual and between species comparison of the lipids, fatty acids and sterols of Antarctic krill from the US AMLR Elephant Island survey area. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 131, 733–747 (2002).
    PubMed  Article  Google Scholar 

    24.
    Varisco, M., Crovetto, C., Colombo, J., Vinuesa, J. & Risso, S. Proximate composition and nutritional quality of the meat of the squat lobster Munida gregaria (Fabricius 1973). J. Aquat. Food Prod. Technol. 29, 229–237 (2020).
    CAS  Article  Google Scholar 

    25.
    Phillips, K. L., Nichols, P. D. & Jackson, G. D. Size-related dietary changes observed in the squid Moroteuthis ingens at the Falkland Islands: Stomach contents and fatty-acid analyses. Polar Biol. 26, 474–485 (2003).
    Article  Google Scholar 

    26.
    Virtue, P. Lipids in Euphausia superba. PhD thesis. (University of Tasmania, 1995).

    27.
    Baylis, A. M. M., Hamer, D. J. & Nichols, P. D. Assessing the use of milk fatty acids to infer the diet of the Australian sea lion (Neophoca cinerea). Wildl. Res. 36, 169–176 (2009).
    CAS  Article  Google Scholar 

    28.
    Nichols, P. D., Virtue, P., Mooney, B. D., Elliott, N. G. & Yearsley, G. K. Seafood the good food: The oil (fat) content and composition of Australian commercial fishes, shellfishes and crustaceans (CSIRO Div. of Marine Research//Fisheries Research & Development Corporation, 1998).

    29.
    Borobia, M., Gearing, P. J., Simard, Y., Gearing, J. N. & Béland, P. Blubber fatty acids of finback and humpback whales from the Gulf of St. Lawrence. Mar. Biol. 122, 341–353 (1995).
    CAS  Article  Google Scholar 

    30.
    Bengtson Nash, S. M., Waugh, C. A. & Schlabach, M. Metabolic concentration of lipid soluble organochlorine burdens in the blubber of southern hemisphere humpback whales through migration and fasting. Environ. Sci. Technol. 47, 9404–9413 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Lockyer, C. Body weights of some species of large whales. ICES J. Mar. Sci. 36, 259–273 (1976).
    Article  Google Scholar 

    32.
    Castrillon, J. & Bengtson Nash, S. Evaluating cetacean body condition: A review of traditional approaches and new developments. Ecol. Evol. 1–19 (2020).

    33.
    Kershaw, J. L., Hall, A. J., Brownlow, A., Ramp, C. A. & Miller, P. J. O. Assessing cetacean body condition: Is total lipid content in blubber biopsies a useful monitoring tool?. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 271–282 (2019).
    Article  Google Scholar 

    34.
    Christiansen, F. et al. Variation in outer blubber lipid concentrations does not reflect morphological body condition in humpback whales. J. Exp. Biol. 223, jeb213769 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    35.
    Christiansen, F. et al. Response to: Lipid content of whale blubber cannot be measured using biopsies. J. Exp. Biol. 223, 1–2 (2020).
    Google Scholar 

    36.
    Arts, M. T., Brett, M. T. & Kainz, M. J. Lipids in Aquatic Ecosystems (Springer, New York, 2009). https://doi.org/10.1007/978-0-387-89366-2.
    Google Scholar 

    37.
    Ackman, R. G., Hingley, J. H., Eaton, C. A., Sipos, J. C. & Mitchell, E. D. Blubber fat deposition in mysticeti whales. Can. J. Zool. 53, 1332–1339 (1975).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Olsen, E. & Grahl-Nielsen, O. Blubber fatty acids of minke whales: Stratification, population identification and relation to diet. Mar. Biol. 142, 13–24 (2003).
    CAS  Article  Google Scholar 

    39.
    Iverson, S. J. Blubber. In Encyclopedia of Marine Mammals 115–120 (Elsevier Ltd, 2009). https://doi.org/10.1016/B978-0-12-373553-9.00032-8.

    40.
    Noren, D. P. & Mangel, M. Energy reserve allocation in fasting Northern Elephant Seal Pups: Inter-relationships between body condition and fasting duration. Funct. Ecol. 18, 233–242 (2004).
    Article  Google Scholar 

    41.
    Grahl-Nielsen, O., Krakstad, J. O., Nøttestad, L. & Axelsen, B. E. Dusky dolphins Lagenorhynchus obscurus and Cape fur seals Arctocephalus pusillus pusillus: Fatty acid composition of their blubber and prey species. Afr. J. Mar. Sci. https://doi.org/10.2989/1814232x.2010.501556 (2010).
    Article  Google Scholar 

    42.
    Guerrero, A. I. et al. Vertical fatty acid composition in the blubber of leopard seals and the implications for dietary analysis. J. Exp. Mar. Bio. Ecol. 478, 54–61 (2016).
    CAS  Article  Google Scholar 

    43.
    Ruchonnet, D., Boutoute, M., Guinet, C. & Mayzaud, P. Fatty acid composition of Mediterranean fin whale Balaenoptera physalus blubber with respect to body heterogeneity and trophic interaction. Mar. Ecol. Prog. Ser. 311, 165–174 (2006).
    ADS  CAS  Article  Google Scholar 

    44.
    Strandberg, U. et al. Stratification, composition, and function of marine mammal blubber: The ecology of fatty acids in marine mammals. Physiol. Biochem. Zool. 81, 473–485 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Koopman, H. N., Iverson, S. J. & Read, A. J. High concentrations of isovaleric acid in the fats of odontocetes: Variation and patterns of accumulation in blubber vs. stability in the melon. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 173, 247–261 (2003).
    CAS  Article  Google Scholar 

    46.
    Herman, D. P. et al. Feeding ecology of eastern North Pacific killer whales Orcinus orca from fatty acid, stable isotope, and organochlorind analyses of blubber biopsies. Mar. Ecol. Prog. Ser. 302, 275–291 (2005).
    ADS  Article  Google Scholar 

    47.
    Virtue, P., Nichols, P. D., Nicol, S., McMinn, A. & Sikes, E. L. The lipid composition of Euphausia superba Dana in relation to the nutritional value of Phaeocystis pouchetii (Hariot) Lagerheim. Antarct. Sci. 5, 169–177 (1993).
    ADS  Article  Google Scholar 

    48.
    Stübing, D., Hagen, W. & Schmidt, K. On the use of lipid biomarkers in marine food web analyses: An experimental case study on the Antarctic krill. Euphausia superba. Limnol. Oceanogr. 48, 1685–1700 (2003).
    ADS  Article  Google Scholar 

    49.
    Falk-Petersen, S., Hopkins, C. E. & Sargent, J. R. Trophic relationships in the pelagic, Arctic food web. in Trophic relationships in marine environments (eds Barnes, M. & Gibson, R. N.) 315-333 (Aberdeen University Press, 1990).

    50.
    Auel, H., Harjes, M., da Rocha, R., Stübing, D. & Hagen, W. Lipid biomarkers indicate different ecological niches and trophic relationships of the Arctic hyperiid amphipods Themisto abyssorum and T. libellula. Polar Biol. 25, 374–383 (2002).
    Article  Google Scholar 

    51.
    Scott, C., Kwasniewski, S., Falk-Petersen, S. & Sargent, J. Species differences, origins and functions of fatty alcohols and fatty acids in the wax esters and phospholipids of Calanus hyperboreus, C. glacialis and C. finmarchicus from Arctic waters. Mar. Ecol. Prog. Ser. 235, 127–134 (2002).
    ADS  CAS  Article  Google Scholar 

    52.
    Dalsgaard, J., John, M. S., Kattner, G., Müller-Navarra, D. & Hagen, W. Fatty acid trophic markers in the pelagic marine environment. Adv. Mar. Biol. 46, 225–340 (2003).
    PubMed  Article  Google Scholar 

    53.
    Graeve, M., Kattner, G. & Hagen, W. Diet-induced changes in the fatty acid composition of Arctic herbivorous copepods: Experimental evidence of trophic markers. J. Exp. Mar. Biol. Ecol. 182, 97–110 (1994).
    CAS  Article  Google Scholar 

    54.
    Iverson, S. J., Field, C., Don Bowen, W. & Blanchard, W. Quantitative fatty acid signature analysis: A new method of estimating predator diets. Ecol. Monogr. 74, 211–235 (2004).
    Article  Google Scholar 

    55.
    Fleming, A. H., Clark, C. T., Calambokidis, J. & Barlow, J. Humpback whale diets respond to variance in ocean climate and ecosystem conditions in the California Current. Glob. Chang. Biol. 22, 1214–1224 (2016).
    ADS  PubMed  Article  Google Scholar 

    56.
    Ericson, J. A. et al. Seasonal and interannual variations in the fatty acid composition of adult Euphausia superba Dana, 1850 (Euphausiacea) samples derived from the Scotia Sea krill fishery. J. Crustac. Biol. 38, 673–681 (2018).
    Google Scholar 

    57.
    Reiss, C. S., Walsh, J. & Goebel, M. E. Winter preconditioning determines feeding ecology of Euphausia superba in the Antarctic Peninsula. Mar. Ecol. Prog. Ser. 519, 89–101 (2015).
    ADS  CAS  Article  Google Scholar 

    58.
    Cleary, A., Durbin, E. & Casas, M. Feeding by Antarctic krill Euphausia superba in the West Antarctic Peninsula: Differences between fjords and open waters. Mar. Ecol. Prog. Ser. 595, 39–54 (2018).
    ADS  CAS  Article  Google Scholar 

    59.
    Schmidt, K. & Atkinson, A. Feeding and food processing in Antarctic krill (Euphausia superba Dana). In Biology and Ecology of Antarctic Krill 175–224 (Springer, 2016).

    60.
    Hagen, W., Kattner, G., Terbrüggen, A. & Van Vleet, E. S. Lipid metabolism of the antarctic krill Euphausia superba and its ecological implications. Mar. Biol. 139, 95–104 (2001).
    CAS  Article  Google Scholar 

    61.
    Cripps, G. C., Watkins, J. L., Hill, H. J. & Atkinson, A. Fatty acid content of Antarctic krill Euphausia superba at South Georgia related to regional populations and variations in diet. Mar. Ecol. Prog. Ser. 181, 177–188 (1999).
    ADS  CAS  Article  Google Scholar 

    62.
    Lambertsen, R., Baker, C., Weinrich, M. & Modi, W. An improved whale biopsy system designed for multidisciplinary research. In Nondestructive biomarkers in vertebrates 219–244 (Lewis Publishers, 1994).

    63.
    Waugh, C. A., Nichols, P. D., Schlabach, M., Noad, M. & Bengtson Nash, S. M. Vertical distribution of lipids, fatty acids and organochlorine contaminants in the blubber of southern hemisphere humpback whales (Megaptera novaeangliae). Mar. Environ. Res. 94, 24–31 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Druskat, A., Ghosh, R., Castrillon, J. & Bengtson Nash, S. M. Sex ratios of migrating southern hemisphere humpback whales: A new sentinel parameter of ecosystem health. Mar. Environ. Res. 151, 1–7 (2019).
    Article  CAS  Google Scholar 

    65.
    Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).
    CAS  PubMed  Article  Google Scholar 

    66.
    Couturier, L. I. E. et al. State of art and best practices for fatty acid analysis in aquatic sciences. ICES J. Mar. Sci. fsaa121, 1–21 (2020).
    Google Scholar 

    67.
    Volkman, J. K. & Nichols, P. D. Applications of thin-layer chromatography-flame ionization detection to the analysis for lipids and pollutants in marine and environmental samples. J. Planar Chromatogr. Mod. TLC 4, 19–26 (1991).
    CAS  Google Scholar 

    68.
    Alhazzaa, R., Bridle, A. R., Nichols, P. D. & Carter, C. G. Up-regulated desaturase and elongase gene expression promoted accumulation of polyunsaturated fatty acid (PUFA) but not long-chain PUFA in Lates calcarifer, a tropical euryhaline fish, fed a stearidonic acid- and γ-linoleic acid-enriched diet. J. Agric. Food Chem. 59, 8423–8434 (2011).
    CAS  PubMed  Article  Google Scholar 

    69.
    Bode, M. et al. Feeding strategies of tropical and subtropical calanoid copepods throughout the eastern Atlantic Ocean – Latitudinal and bathymetric aspects. Prog. Oceanogr. 138, 268–282 (2015).
    ADS  Article  Google Scholar 

    70.
    Nicol, S. Krill, currents, and sea ice: Euphausia superba and its changing environment. Bioscience 56, 111 (2006).
    Article  Google Scholar 

    71.
    Flores, H. et al. Impact of climate change on Antarctic krill. Mar. Ecol. Prog. Ser. 458, 1–19 (2012).
    ADS  Article  Google Scholar 

    72.
    Turner, J., Hosking, J. S., Bracegirdle, T. J., Marshall, G. J. & Phillips, T. Recent changes in Antarctic Sea Ice. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 73 (2015).

    73.
    Holland, M. M., Landrum, L., Kostov, Y. & Marshall, J. Sensitivity of Antarctic sea ice to the Southern Annular Mode in coupled climate models. Clim. Dyn. 49, 1813–1831 (2017).
    Article  Google Scholar 

    74.
    Bellenger, H., Guilyardi, E., Leloup, J., Lengaigne, M. & Vialard, J. ENSO representation in climate models: From CMIP3 to CMIP5. Clim. Dyn. 42, 1999–2018 (2014).
    Article  Google Scholar 

    75.
    O’Carroll, A. G. et al. Observational needs of sea surface temperature. Front. Mar. Sci. 6 (2019).

    76.
    Atkinson, A. et al. Oceanic circumpolar habitats of Antarctic krill. Mar. Ecol. Prog. Ser. 362, 1–23 (2008).
    ADS  CAS  Article  Google Scholar 

    77.
    Kattner, G., Hagen, W., Falk-Petersen, S., Sargent, J. R. & Henderson, R. J. Antarctic krill Thysanoessa macrura fills a major gap in marine lipogenic pathways. Mar. Ecol. Prog. Ser. 134, 295–298 (1996).
    ADS  Article  Google Scholar  More

  • in

    Differential immune gene expression associated with contemporary range expansion in two invasive rodents in Senegal

    1.
    Kamenova, S. et al. in Networks of Invasion: A Synthesis of Concepts Vol. 56 Adv. Ecol. Res. (eds Bohan, D. A., Dumbrell, A. J., & Massol, F.) 85–182 (2017).
    2.
    Kumschick, S. et al. Ecological impacts of alien species: quantification, scope, caveats, and recommendations. Bioscience 65, 55–63. https://doi.org/10.1093/biosci/biu193 (2014).
    Article  Google Scholar 

    3.
    Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife—threats to biodiversity and human health. Science 287, 443–449. https://doi.org/10.1126/science.287.5452.443 (2000).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    4.
    Bradshaw, C. J. A. et al. Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. https://doi.org/10.1038/ncomms12986 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    5.
    Martin, L. B., Coon, C. A. C., Liebl, A. L. & Schrey, A. W. Surveillance for microbes and range expansion in house sparrows. Proc. R. Soc. Lond. B 281, 20132690. https://doi.org/10.1098/rspb.2013.2690 (2013).
    CAS  Article  Google Scholar 

    6.
    Lindstrom, T., Brown, G. P., Sisson, S. A., Phillips, B. L. & Shine, R. Rapid shifts in dispersal behavior on an expanding range edge. Proc. Natl. Acad. Sci. USA 110, 13452–13456. https://doi.org/10.1073/pnas.1303157110 (2013).
    ADS  Article  PubMed  Google Scholar 

    7.
    Facon, B. et al. A general eco-evolutionary framework for understanding bioinvasions. Trends Ecol. Evol. 21, 130–135. https://doi.org/10.1016/j.tree.2005.10.012 (2006).
    Article  PubMed  Google Scholar 

    8.
    Hufbauer, R. A. et al. Anthropogenically induced adaptation to invade (AIAI): contemporary adaptation to human-altered habitats within the native range can promote invasions. Evol. Appl. 5, 89–101. https://doi.org/10.1111/j.1752-4571.2011.00211.x (2012).
    Article  PubMed  Google Scholar 

    9.
    Colautti, R. I. & Lau, J. A. Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation. Mol. Ecol. 24, 1999–2017. https://doi.org/10.1111/mec.13162 (2015).
    Article  PubMed  Google Scholar 

    10.
    Chuang, A. & Peterson, C. R. Expanding population edges: theories, traits, and trade-offs. Glob. Change Biol. 22, 494–512. https://doi.org/10.1111/gcb.13107 (2016).
    ADS  Article  Google Scholar 

    11.
    Selechnik, D., Rollins, L. A., Brown, G. P., Kelehear, C. & Shine, R. The things they carried: the pathogenic effects of old and new parasites following the intercontinental invasion of the Australian cane toad (Rhinella marina). Int. J. Parasitol. 6, 375–385. https://doi.org/10.1016/j.ijppaw.2016.12.001 (2017).
    CAS  Article  Google Scholar 

    12.
    Torchin, M. E., Lafferty, K. D., Dobson, A. P., McKenzie, V. J. & Kuris, A. M. Introduced species and their missing parasites. Nature 421, 628–630. https://doi.org/10.1038/nature01346 (2003).
    ADS  CAS  Article  PubMed  Google Scholar 

    13.
    Torchin, M. E. & Mitchell, C. E. Parasites, pathogens, and invasions by plants and animals. Front. Ecol. Environ. 2, 183–190. https://doi.org/10.2307/3868313 (2004).
    Article  Google Scholar 

    14.
    Dunn, A. M. in Advances in Parasitology, Vol 68: Natural History of Host-Parasite Interactions Vol. 68 (ed Webster, J. P.) 161–184 (2009).

    15.
    O’Brien, V. A. et al. An enzootic vector-borne virus is amplified at epizootic levels by an invasive avian host. Proc. R. Soc. Lond. B 278, 239–246 (2011).
    Google Scholar 

    16.
    Perkins, S. E., White, T. A., Pascoe, E. L. & Gillingham, E. L. Parasite community dynamics in an invasive vole—from focal introduction to wave front. Int. J. Parasitol. 6, 412–419. https://doi.org/10.1016/j.ijppaw.2017.07.005 (2017).
    Article  Google Scholar 

    17.
    Yang, C. C. et al. Loss of microbial (pathogen) infections associated with recent invasions of the red imported fire ant Solenopsis invicta. Biol. Invasions 12, 3307–3318. https://doi.org/10.1007/s10530-010-9724-9 (2010).
    Article  Google Scholar 

    18.
    Blossey, B. & Notzold, R. Evolution of increased competitive ability in invasive nonindigenous plants—a hypothesis. J. Ecol. 83, 887–889. https://doi.org/10.2307/2261425 (1995).
    Article  Google Scholar 

    19.
    Lee, K. A. & Klasing, K. C. A role for immunology in invasion biology. Trends Ecol. Evol. 19, 523–529. https://doi.org/10.1016/j.tree.2004.07.012 (2004).
    Article  PubMed  Google Scholar 

    20.
    Lee, K. A. Linking immune defenses and life history at the levels of the individual and the species. Integr. Comp. Biol. 46, 1000–1015. https://doi.org/10.1093/icb/icl049 (2006).
    CAS  Article  PubMed  Google Scholar 

    21.
    Cornet, S., Brouat, C., Diagne, C. A. & Charbonnel, N. EcoImmunology and bioinvasion: revisiting the EICA hypotheses. Evol. Appl. 9, 952–962. https://doi.org/10.1111/eva.12406 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    22.
    Martin, L. B., Alam, J. L., Imboma, T. & Liebl, A. L. Variation in inflammation as a correlate of range expansion in Kenyan house sparrows. Oecologia 164, 339–347. https://doi.org/10.1007/s00442-010-1654-9 (2010).
    ADS  Article  PubMed  Google Scholar 

    23.
    Bernardi, G., Azzurro, E., Golani, D. & Miller, M. R. Genomic signatures of rapid adaptive evolution in the bluespotted cornetfish, a Mediterranean Lessepsian invader. Mol. Ecol. 25, 3384–3396. https://doi.org/10.1111/mec.13682 (2016).
    CAS  Article  PubMed  Google Scholar 

    24.
    Vera, M., Diez-del-Molino, D. & Garcia-Marin, J. L. Genomic survey provides insights into the evolutionary changes that occurred during European expansion of the invasive mosquitofish (Gambusia holbrooki). Mol. Ecol. 25, 1089–1105. https://doi.org/10.1111/mec.13545 (2016).
    CAS  Article  PubMed  Google Scholar 

    25.
    Hodgins, K. A., Lai, Z., Nurkowski, K., Huang, J. & Rieseberg, L. H. The molecular basis of invasiveness: differences in gene expression of native and introduced common ragweed (Ambrosia artemisiifolia) in stressful and benign environments. Mol. Ecol. 22, 2496–2510. https://doi.org/10.1111/mec.12179 (2013).
    CAS  Article  PubMed  Google Scholar 

    26.
    White, T. A., Perkins, S. E., Heckel, G. & Searle, J. B. Adaptive evolution during an ongoing range expansion: the invasive bank vole (Myodes glareolus) in Ireland. Mol. Ecol. 22, 2971–2985. https://doi.org/10.1111/mec.12343 (2013).
    CAS  Article  PubMed  Google Scholar 

    27.
    Todd, E. V., Black, M. A. & Gemmell, N. J. The power and promise of RNA-seq in ecology and evolution. Mol. Ecol. 25, 1224–1241. https://doi.org/10.1111/mec.13526 (2016).
    CAS  Article  PubMed  Google Scholar 

    28.
    Alvarez, M., Schrey, A. W. & Richards, C. L. Ten years of transcriptomics in wild populations: what have we learned about their ecology and evolution?. Mol. Ecol. 24, 710–725. https://doi.org/10.1111/mec.13055 (2015).
    CAS  Article  PubMed  Google Scholar 

    29.
    Rius, M. & Darling, J. A. How important is intraspecific genetic admixture to the success of colonising populations?. Trends Ecol. Evol. 29, 233–242. https://doi.org/10.1016/j.tree.2014.02.003 (2014).
    Article  PubMed  Google Scholar 

    30.
    Fraser, B. A., Ramnarine, I. W. & Neff, B. D. Temporal variation at the Mhc class IIB in wild populations of the guppy (Poecilia reticulata). Evolution 64, 2086–2096. https://doi.org/10.1111/j.1558-5646.2010.00965.x (2010).
    Article  PubMed  Google Scholar 

    31.
    Oleksiak, M. F., Churchill, G. A. & Crawford, D. L. Variation in gene expression within and among natural populations. Nat. Genet. 32, 261–266. https://doi.org/10.1038/ng983 (2002).
    CAS  Article  PubMed  Google Scholar 

    32.
    Whitehead, A. & Crawford, D. L. Variation within and among species in gene expression: raw material for evolution. Mol. Ecol. 15, 1197–1211. https://doi.org/10.1111/j.1365-294X.2006.02868.x (2006).
    CAS  Article  PubMed  Google Scholar 

    33.
    Whitehead, A. & Crawford, D. L. Neutral and adaptive variation in gene expression. Proc. Natl. Acad. Sci. USA 103, 5425–5430. https://doi.org/10.1073/pnas.0507648103 (2006).
    ADS  CAS  Article  PubMed  Google Scholar 

    34.
    Rollins, L. A., Richardson, M. F. & Shine, R. A genetic perspective on rapid evolution in cane toads (Rhinella marina). Mol. Ecol. 24, 2264–2276. https://doi.org/10.1111/mec.13184 (2015).
    Article  PubMed  Google Scholar 

    35.
    Vogel, H. J., Schmidtberg, H. & Vilcinskas, A. Comparative transcriptomics in three ladybird species supports a role for immunity in invasion biology. Dev. Comp. Immunol. 67, 452–456. https://doi.org/10.1016/j.dci.2016.09.015 (2017).
    CAS  Article  PubMed  Google Scholar 

    36.
    Selechnik, D., Richardson, M. F., Shine, R., Brown, G. P. & Rollins, L. A. Immune and environment-driven gene expression during invasion: an eco-immunological application of RNA-Seq. Ecol. Evol. 9, 6708–6721. https://doi.org/10.1002/ece3.5249 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    37.
    Aplin, K. P. et al. Multiple geographic origins of commensalism and complex dispersal history of black rats. PLoS ONE 6, e26357. https://doi.org/10.1371/journal.pone.0026357 (2011).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    38.
    Bonhomme, F. et al. Genetic differentiation of the house mouse around the Mediterranean basin: matrilineal footprints of early and late colonization. Proc. R. Soc. Lond. B 278, 1034–1043. https://doi.org/10.1098/rspb.2010.1228 (2011).
    Article  Google Scholar 

    39.
    Dalecky, A. et al. Range expansion of the invasive house mouse Mus musculus domesticus in Senegal, Western Africa: a three decades synthesis of trapping data, 1983–2014. Mammal Rev. 45, 176–190. https://doi.org/10.1111/mam.12043 (2015).
    Article  Google Scholar 

    40.
    Konecny, A. et al. Invasion genetics of the introduced black rat (Rattus rattus) in Senegal, West Africa. Mol. Ecol. 22, 286–300. https://doi.org/10.1111/mec.12112 (2013).
    Article  PubMed  Google Scholar 

    41.
    Lippens, C. et al. Genetic structure and invasion history of the house mouse (Mus musculus domesticus) in Senegal, West Africa: a legacy of colonial and contemporary times. Heredity 119, 64–75. https://doi.org/10.1038/hdy.2017.18 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    42.
    Diagne, C. A. et al. Contemporary variations of immune responsiveness during range expansion of two invasive rodents in Senegal. Oikos 126, 435–446. https://doi.org/10.1111/oik.03470 (2017).
    CAS  Article  Google Scholar 

    43.
    Diagne, C. A. et al. Ecological and sanitary impacts of bacterial communities associated to biological invasions in African commensal rodent communities. Nat. Sci. Rep. 7, 14995. https://doi.org/10.1038/s41598-017-14880-1 (2017).
    ADS  CAS  Article  Google Scholar 

    44.
    Diagne, C. A. et al. Parasites and invasions: changes in gastrointestinal helminth assemblages in invasive and native rodents in Senegal. Int. J. Parasitol. 46, 857–869. https://doi.org/10.1016/j.ijpara.2016.07.007 (2016).
    Article  PubMed  Google Scholar 

    45.
    Frank, S. A. Immune response to parasitic attack: evolution of a pulsed character. J. Theor. Biol. 219, 281–290. https://doi.org/10.1006/jtbi.2002.3122 (2002).
    MathSciNet  CAS  Article  PubMed  Google Scholar 

    46.
    Brown, G. P., Shilton, C., Phillips, B. L. & Shine, R. Invasion, stress, and spinal arthritis in cane toads. Proc. Natl. Acad. Sci. USA 104, 17698–17700. https://doi.org/10.1073/pnas.0705057104 (2007).
    ADS  Article  PubMed  Google Scholar 

    47.
    Sikes, R. S. & Gannon, W. L. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J. Mammal. 92, 235–253. https://doi.org/10.1644/10-MAMM-F-355.1 (2011).
    Article  Google Scholar 

    48.
    Granjon, L. & Duplantier, J. M. Les rongeurs de l’Afrique sahélo-soudanienne (Publications scientifiques du Muséum, 2009).

    49.
    Nussey, D. H., Watt, K., Pilkington, J. G., Zamoyska, R. & McNeilly, T. N. Age-related variation in immunity in a wild mammal population. Aging Cell 11, 178–180. https://doi.org/10.1111/j.1474-9726.2011.00771.x (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    50.
    Schurch, N. J. et al. How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use?. RNA 22, 839–851. https://doi.org/10.1261/rna.053959.115 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    51.
    Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36. https://doi.org/10.1186/gb-2013-14-4-r36 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    52.
    Langmead, B. & Salzberg, S. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359. https://doi.org/10.1038/nmeth.1923 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    53.
    Robins, J. H. et al. Dating of divergences within the Rattus genus phylogeny using whole mitochondrial genomes. Mol. Phylogenet. Evol. 49, 460–466. https://doi.org/10.1016/j.ympev.2008.08.001 (2008).
    CAS  Article  PubMed  Google Scholar 

    54.
    Anders, S., Pyl, T. P. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169. https://doi.org/10.1101/002824 (2015).
    CAS  Article  Google Scholar 

    55.
    Gentleman, R. C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80. https://doi.org/10.1186/gb-2004-5-10-r80 (2004).
    Article  PubMed  PubMed Central  Google Scholar 

    56.
    Robinson, M. D., McCarthy, D. J. & Smyth, G. K. A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140. https://doi.org/10.1093/bioinformatics/btp616 (2010).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    57.
    Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucl. Acids Res. 43, e47. https://doi.org/10.1093/nar/gkv007 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    58.
    Simon, A. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106. https://doi.org/10.1186/gb-2010-11-10-r106 (2010).
    CAS  Article  Google Scholar 

    59.
    Szklarczyk, D. et al. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucl. Acids Res. 45, D362–D368. https://doi.org/10.1093/nar/gkw937 (2017).
    CAS  Article  PubMed  Google Scholar 

    60.
    Szklarczyk, D. et al. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucl. Acids Res. 43, D447-452. https://doi.org/10.1093/nar/gku1003 (2015).
    CAS  Article  PubMed  Google Scholar 

    61.
    Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6, e21800. https://doi.org/10.1371/journal.pone.0021800 (2011).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    62.
    Merrick, M. J. & Koprowski, J. L. Altered natal dispersal at the range periphery: the role of behavior, resources, and maternal condition. Ecol. Evol. 7, 58–72. https://doi.org/10.1002/ece3.2612 (2017).
    Article  PubMed  Google Scholar 

    63.
    DeBiasse, M. B. & Kelly, M. W. Plastic and evolved responses to global change: what can we learn from comparative transcriptomics?. J. Heredity 107, 71–81. https://doi.org/10.1093/jhered/esv073 (2016).
    Article  Google Scholar 

    64.
    Whitehead, A., Triant, D. A., Champlin, D. & Nacci, D. Comparative transcriptomics implicates mechanisms of evolved pollution tolerance in a killifish population. Mol. Ecol. 19, 5186–5203. https://doi.org/10.1111/j.1365-294X.2010.04829.x (2010).
    CAS  Article  PubMed  Google Scholar 

    65.
    Barrett, S. C. H. Foundations of invasion genetics: the Baker and Stebbins legacy. Mol. Ecol. 24, 1927–1941. https://doi.org/10.1111/mec.13014 (2015).
    Article  PubMed  Google Scholar 

    66.
    Dlugosch, K. M., Anderson, S. R., Braasch, J., Cang, F. A. & Gillette, H. D. The devil is in the details: genetic variation in introduced populations and its contributions to invasion. Mol. Ecol. 24, 2095–2111. https://doi.org/10.1111/mec.13183 (2015).
    Article  PubMed  Google Scholar 

    67.
    Llewellyn, D., Thompson, M. B., Brown, G. P., Phillips, B. L. & Shine, R. Reduced investment in immune function in invasion-front populations of the cane toad (Rhinella marina) in Australia. Biol. Invasions 14, 999–1008. https://doi.org/10.1007/s10530-011-0135-3 (2012).
    Article  Google Scholar 

    68.
    Brown, G. P., Phillips, B. L., Dubey, S. & Shine, R. Invader immunology: invasion history alters immune system function in cane toads (Rhinella marina) in tropical Australia. Ecol. Lett. 18, 57–65. https://doi.org/10.1111/ele.12390 (2015).
    Article  PubMed  Google Scholar 

    69.
    Dlugosch, K. M. & Parker, I. M. Invading populations of an ornamental shrub show rapid life history evolution despite genetic bottlenecks. Ecol. Lett. 11, 701–709. https://doi.org/10.1111/j.1461-0248.2008.01181.x (2008).
    Article  PubMed  Google Scholar 

    70.
    Chevin, L. M. & Lande, R. Adaptation to marginal habitats by evolution of increased phenotypic plasticity. J. Evol. Biol. 24, 1462–1476. https://doi.org/10.1111/j.1420-9101.2011.02279.x (2011).
    Article  PubMed  Google Scholar 

    71.
    Ninot, O. Vie de relations, organisation de l’espace et développement en Afrique de l’Ouest : la région de Tambacounda au Sénégal. Ph.D. thesis, Rouen University (2003).

    72.
    Merle, N. S., Noe, R., Halbwachs-Mecarelli, L., Fremeaux-Bacchi, V. & Roumenina, L. T. Complement system part II: role in immunity. Front. Immunol. 6, 257. https://doi.org/10.3389/fimmu.2015.00257 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    73.
    Bao, J. et al. Serpin functions in host-pathogen interactions. PeerJ 6, e4557. https://doi.org/10.7717/peerj.4557 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    74.
    Mangan, M. S. J., Kaiserman, D. & Bird, P. I. The role of serpins in vertebrate immunity. Tissue Antigens 72, 1–10. https://doi.org/10.1111/j.1399-0039.2008.01059.x (2008).
    CAS  Article  PubMed  Google Scholar 

    75.
    Wang, W., Qu, Q. & Chen, J. Identification, expression analysis, and antibacterial activity of Apolipoprotein A-I from amphioxus (Branchiostoma belcheri). Comp. Biochem. Physiol. 238, 110329. https://doi.org/10.1016/j.cbpb.2019.110329 (2019).
    CAS  Article  Google Scholar 

    76.
    Huntoon, K. M. et al. The acute phase protein haptoglobin regulates host immunity. J. Leukoc. Biol. 84, 170–181. https://doi.org/10.1189/jlb.0208100 (2008).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    77.
    Burger, D. & Dayer, J. M. High-density lipoprotein-associated apolipoprotein AI: the missing link between infection and chronic inflammation?. Autoimmun. Rev. 1, 111–117. https://doi.org/10.1016/S1568-9972(01)00018-0 (2002).
    CAS  Article  PubMed  Google Scholar 

    78.
    Sorci, G. & Faivre, B. Inflammation and oxidative stress in vertebrate host-parasite systems. Philos. Trans. R. Soc. B 364, 71–83. https://doi.org/10.1098/rstb.2008.0151 (2009).
    Article  Google Scholar 

    79.
    McKay, D. M. The beneficial helminth parasite?. Parasitology 132, 1–12. https://doi.org/10.1017/S003118200500884X (2006).
    CAS  Article  PubMed  Google Scholar 

    80.
    Robertson, S., Bradley, J. E. & MacColl, A. D. Measuring the immune system of the three-spined stickleback—investigating natural variation by quantifying immune expression in the laboratory and the wild. Mol. Ecol. Res. 16, 701–713. https://doi.org/10.1111/1755-0998.12497 (2016).
    CAS  Article  Google Scholar 

    81.
    Tengholm, A. & Gylfe, E. cAMP signalling in insulin and glucagon secretion. Diabetes Obes. Metabol. 19, 42–53. https://doi.org/10.1111/dom.12993 (2017).
    CAS  Article  Google Scholar 

    82.
    Jones, B. J., Tan, T. & Bloom, S. R. Minireview: glucagon in stress and energy homeostasis. Endocrinology 153, 1049–1054. https://doi.org/10.1210/en.2011-1979 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    83.
    Sih, A., Cote, J., Evans, M. R., Fogarty, S. & Pruitt, J. Ecological implications of behavioural syndromes. Ecol. Lett. 15, 278–289. https://doi.org/10.1111/j.1461-0248.2011.01731.x (2012).
    Article  PubMed  Google Scholar 

    84.
    Bengston, S. E. et al. Genomic tools for behavioural ecologists to understand repeatable individual differences in behaviour. Nat. Ecol. Evol. 2, 944–955. https://doi.org/10.1038/s41559-017-0411-4 (2018).
    Article  PubMed  Google Scholar 

    85.
    Martin, L. B. et al. Costs of immunity and their role in the range expansion of the house sparrow in Kenya. J. Exp. Biol. 220, 2228–2235. https://doi.org/10.1242/jeb.154716 (2017).
    Article  PubMed  Google Scholar 

    86.
    Schoener, T. W. The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331, 426–429. https://doi.org/10.1126/science.1193954 (2011).
    ADS  CAS  Article  PubMed  Google Scholar  More

  • in

    Nutritional niches reveal fundamental domestication trade-offs in fungus-farming ants

    1.
    Piperno, D. & Pearsall, D. M. The Origins of Agriculture in the Lowland Neotropics (Academic Press, 1998).
    2.
    Newell-McGloughlin, M. Nutritionally improved agricultural crops. Plant Physiol. 147, 939–953 (2008).
    CAS  PubMed  PubMed Central  Google Scholar 

    3.
    Green, R. E., Cornell, S. J., Scharlemann, J. P. W. & Balmford, A. Farming and the fate of wild nature. Science 307, 550–555 (2005).
    CAS  PubMed  Google Scholar 

    4.
    Meyer, R. S., DuVal, A. E. & Jensen, H. R. Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol. 196, 29–48 (2012).
    PubMed  Google Scholar 

    5.
    Purugganan, M. D. & Fuller, D. Q. The nature of selection during plant domestication. Nature 457, 843–848 (2009).
    CAS  PubMed  Google Scholar 

    6.
    Milla, R., Osborne, C. P., Turcotte, M. M. & Violle, C. Plant domestication through an ecological lens. Trends Ecol. Evol. 30, 463–469 (2015).
    PubMed  Google Scholar 

    7.
    Evans L. T. Crop Evolution, Adaptation and Yield (Cambridge Univ. Press, 1993)

    8.
    Turcotte, M. M., Turley, N. E. & Johnson, M. T. J. The impact of domestication on resistance to two generalist herbivores across 29 independent domestication events. New Phytol. 204, 671–681 (2014).
    PubMed  Google Scholar 

    9.
    Chomicki, G. & Renner, S. S. Farming by ants remodels nutrient uptake in epiphytes. New Phytol. 223, 2011–2023 (2019).
    PubMed  Google Scholar 

    10.
    Mueller, U. G., Gerardo, N. M., Aanen, D. K., Six, D. L. & Schultz, T. R. The evolution of agriculture in insects. Annu. Rev. Ecol. Evol. Systemat. 36, 563–595 (2005).
    Google Scholar 

    11.
    Aanen, D. K. et al. The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proc. Natl Acad. Sci. USA 99, 14887–14892 (2002).
    CAS  PubMed  Google Scholar 

    12.
    Mehdiabadi, N. J. & Schultz, T. R. Natural history and phylogeny of the fungus-farming ants (Hymenoptera: Formicidae: Myrmicinae: Attini). Myrmecol. News 13, 37–55 (2009).
    Google Scholar 

    13.
    Mueller, U. G., Scott, J. J., Ishak, H. D., Cooper, M. & Rodrigues, A. Monoculture of leafcutter ant gardens. PLoS ONE 9, e12668 (2010).
    Google Scholar 

    14.
    Schultz, T. R. & Brady, S. G. Major evolutionary transitions in ant agriculture. Proc. Natl Acad. Sci. USA 105, 5435–5440 (2008).
    CAS  PubMed  Google Scholar 

    15.
    Kooij, P. W., Aanen, D. K., Schiøtt, M. & Boomsma, J. J. Evolutionary advanced ant farmers rear polyploid fungal crops. J. Evol. Biol. 28, 1911–1924 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    16.
    Shik, J. Z. et al. Metabolism and the rise of fungus cultivation by ants. Am. Nat. 184, 364–373 (2014).
    PubMed  Google Scholar 

    17.
    De Fine Licht, H. H. et al. Laccase detoxification mediates the nutritional alliance between leaf-cutting ants and fungus-garden symbionts. Proc. Natl Acad. Sci. USA 110, 583–587 (2012).
    PubMed  Google Scholar 

    18.
    Fernández-Marín, H. et al. Functional role of phenylacetic acid from metapleural gland secretions in controlling fungal pathogens in evolutionarily derived leaf-cutting ants. Proc. R. Soc. B 282, 20150212 (2015).
    PubMed  Google Scholar 

    19.
    Fernández-Marín, H. et al. Dynamic disease management in Trachymyrmex fungus-growing ants (Attini: Formicidae). Am. Nat. 181, 571–582 (2013).
    PubMed  Google Scholar 

    20.
    Currie, C. R., Mueller, U. G. & Malloch, D. The agricultural pathology of ant fungus gardens. Proc. Natl Acad. Sci. USA 96, 7998–8002 (1999).
    CAS  PubMed  Google Scholar 

    21.
    Nygaard, S. et al. Reciprocal genomic evolution in the ant–fungus agricultural symbiosis. Nat. Commun. 7, 12233 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    22.
    Branstetter, M. G. et al. Dry habitats were crucibles of domestication in the evolution of agriculture in ants. Proc. R. Soc. B 284, 20170095 (2017).
    PubMed  Google Scholar 

    23.
    Li, H. et al. Convergent evolution of complex structures for ant–bacterial defensive symbiosis in fungus-farming ants. Proc. Natl Acad. Sci. USA 115, 10720–10725 (2018).
    CAS  PubMed  Google Scholar 

    24.
    Hölldobler, B. & Wilson, E. O. The Leafcutter Ants: Civilization by Instinct (W. W. Norton & Company, 2010).

    25.
    Mueller, U. G. et al. Evolution of cold-tolerant fungal symbionts permits winter fungiculture by leafcutter ants at the northern frontier of a tropical ant–fungus symbiosis. Proc. Natl Acad. Sci. USA 108, 4053–4056 (2011).
    CAS  PubMed  Google Scholar 

    26.
    Simpson, S. J. & Raubenheimer, D. The Nature of Nutrition: A Unifying Framework from Animal Adaptation to Human Obesity (Princeton Univ. Press, 2012).

    27.
    Raubenheimer, D. Toward a quantitative nutritional ecology: the right‐angled mixture triangle. Ecol. Monogr. 81, 407–427 (2011).
    Google Scholar 

    28.
    Sperfeld, E. et al. Bridging ecological stoichiometry and nutritional geometry with homeostasis concepts and integrative models of organism nutrition. Funct. Ecol. 31, 286–296 (2017).
    Google Scholar 

    29.
    Shik, J. Z. & Dussutour, A. Nutritional dimensions of invasive success. Trends Ecol. Evol. 35, 691–703 (2020).
    PubMed  Google Scholar 

    30.
    Shik, J. Z. et al. Nutrition mediates the expression of cultivar–farmer conflict in a fungus-growing ant. Proc. Natl Acad. Sci. USA 113, 10121–10126 (2016).
    CAS  PubMed  Google Scholar 

    31.
    Machovsky-Capuska, G. E., Senior, A. M., Simpson, S. J. & Raubenheimer, D. The multidimensional nutritional niche. Trends Ecol. Evol. 31, 355–365 (2016).
    PubMed  Google Scholar 

    32.
    Masiulionis, V. E. et al. A Brazilian population of the asexual fungus-growing ant Mycocepurus smithii (Formicidae, Myrmicinae, Attini) cultivates fungal symbionts with gongylidia-like structures. PLoS ONE 9, e103800 (2014).
    PubMed  PubMed Central  Google Scholar 

    33.
    Vo, T. L., Mikheyev, A. S. & Mueller, U. G. Free-living fungal symbionts (Lepiotaceae) of fungus-growing ants (Attini: Formicidae). Mycologia 101, 206–210 (2009).
    CAS  PubMed  Google Scholar 

    34.
    Schultz, T. R. et al. The most relictual fungus-farming ant species cultivates the most recently evolved and highly domesticated fungal symbiont species. Am. Nat. 185, 693–703 (2015).
    PubMed  Google Scholar 

    35.
    Solomon, S. E. et al. The molecular phylogenetics of Trachymyrmex Forel ants and their fungal cultivars provide insights into the origin and coevolutionary history of ‘higher-attine’ ant agriculture. Syst. Entomol. 44, 939–956 (2019).
    Google Scholar 

    36.
    Quinlan, R. J. & Cherrett, J. M. The role of fungus in the diet of the leaf-cutting ant Atta cephalotes (L.). Ecol. Entomol. 4, 151–160 (1979).
    Google Scholar 

    37.
    Schiøtt, M., de Fin Licht, H. H., Lange, L. & Boomsma, J. J. Towards a molecular understanding of symbiont function: identification of a fungal gene for the degradation of xylan in the fungus gardens of leaf cutting ants. BMC Biol. 8, 40 (2008).
    Google Scholar 

    38.
    De Fine Licht, H. H., Boomsma, J. J. & Tunlid, A. Symbiotic adaptations in the fungal cultivar of leaf-cutting ants. Nat. Commun. 5, 5675 (2014).
    CAS  PubMed  Google Scholar 

    39.
    De Fine Licht, H. H. & Boomsma, J. J. Forage collection, substrate preparation, and diet composition in fungus-growing ants. Ecol. Ent. 35, 259–269 (2010).
    Google Scholar 

    40.
    Sapountzis, P., Zhukova, M., Shik, J. Z., Schiøtt, M. & Boomsma, J. J. Reconstructing the symbiotic functions of intestinal Mollicutes in fungus-growing ants. eLife 7, e39209 (2018).
    PubMed  PubMed Central  Google Scholar 

    41.
    Seal, J. N. & Tschinkel, W. R. Colony productivity of the fungus-gardening ant Trachymyrmex septentrionalis (Hymenoptera: Formicidae) in a Florida pine forest. Ann. Ent. Soc. Am. 99, 673–682 (2006).
    Google Scholar 

    42.
    Wirth, R., Beyschlag, W., Ryel, R. J. & Hölldobler, B. Annual foraging of the leaf-cutting ant Atta colombica in a semideciduous rain forest in Panama. J. Trop. Ecol. 13, 741–757 (1997).
    Google Scholar 

    43.
    Cazin, J. Jr., Wiemer, D. F. & Howard, J. J. Isolation, growth characteristics, and long-term storage of fungi cultivated by attine ants. Appl. Environ. Microbiol. 55, 1346–1350 (1989).
    CAS  PubMed  PubMed Central  Google Scholar 

    44.
    Mueller, U. G., Schultz, T. R., Currie, C. R., Adams, R. M. M. & Malloch, D. The origin of the attine ant–fungus mutualism. Quart. Rev. Biol. 76, 169–197 (2001).
    CAS  PubMed  Google Scholar 

    45.
    De Fine Licht, H. H., Schiøtt, M., Mueller, U. G. & Boomsma, J. J. Evolutionary transitions in enzyme activity of ant fungus gardens. Evolution 64, 2055–2069 (2010).
    CAS  PubMed  Google Scholar 

    46.
    Chapela, I. H., Rehner, S. A., Schultz, T. R. & Mueller, U. G. Evolutionary history of the symbiosis between fungus-growing ants and their fungi. Science 266, 1691–1694 (1994).
    CAS  PubMed  Google Scholar 

    47.
    Mikheyev, A. S., Mueller, U. G. & Boomsma, J. J. Population genetic signatures of diffuse co-evolution between leaf-cutting ants and their cultivar fungi. Mol. Ecol. 16, 209–216 (2007).
    CAS  PubMed  Google Scholar 

    48.
    De Fine Licht, H. H. & Boomsma, J. J. Variable interaction specificity and symbiont performance in Panamanian Trachymyrmex and Sericomyrmex fungus-growing ants. BMC Evol. Biol. 14, 244 (2014).
    PubMed  PubMed Central  Google Scholar 

    49.
    Howe, J., Schiøtt, M. & Boomsma, J. J. Horizontal partner exchange does not preclude stable mutualism in fungus-growing ants. Behav. Ecol. 30, 372–382 (2018).
    Google Scholar 

    50.
    Cornejo, F. H., Varela, A. & Wright, S. J. Tropical forest litter decomposition under seasonal drought: nutrient release, fungi and bacteria. Oikos 70, 183–190 (1994).
    Google Scholar 

    51.
    Wilson, E. O. Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta). II. The ergonomic optimization of leaf cutting. Behav. Ecol. Sociobiol. 7, 157–165 (1980).
    Google Scholar 

    52.
    Roces, F. & Hölldobler, B. Use of stridulation in foraging leaf-cutting ants: mechanical support during cutting or short-range recruitment signal? Behav. Ecol. Sociobiol. 39, 293–299 (1996).
    Google Scholar 

    53.
    Kleineidam, C., Romani, R., Tautz, J. & Isidoro, N. Ultrastructure and physiology of the CO2 sensitive sensillum ampullaceum in the leaf-cutting ant Atta sexdens. Arthropod Struct. Dev. 29, 43–55 (2000).
    CAS  PubMed  Google Scholar 

    54.
    Sapountzis, P., Nash, D. R., Schiøtt, M. & Boomsma, J. J. The evolution of abdominal microbiomes in fungus-growing ants. Mol. Ecol. 28, 879–899 (2019).
    PubMed  Google Scholar 

    55.
    Pinto-Tomás, A. A. et al. Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. Science 326, 1120–1123 (2009).
    PubMed  Google Scholar 

    56.
    Mummert, A. E., Esche, E., Robinson, J. & Armelagos, G. J. Stature and robusticity during the agricultural transition: evidence from the bioarchaeological record. Econ. Hum. Biol. 9, 284–301 (2011).
    PubMed  Google Scholar 

    57.
    Fuller, D. Q. et al. The domestication process and domestication rate in rice: spikelet bases from the Lower Yangtze. Science 323, 1607–1610 (2009).
    CAS  PubMed  Google Scholar 

    58.
    Sauer, C. O. Agricultural Origins and Dispersals (American Geographical Society, 1952).

    59.
    Nuotclà, J. A., Biedermann, P. H. W. & Taborsky, M. Pathogen defence is a potential driver of social evolution in ambrosia beetles. Proc. R. Soc. B 286, 20192332 (2019).
    PubMed  Google Scholar 

    60.
    Nychka, D., Furrer, R. & Sain, S. Fields: Tools for spatial data. R package version 8.2-1 https://cran.r-project.org/web/packages/fields/index.html (2015).

    61.
    R Core Development Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

    62.
    Kay, A. D., Shik, J. Z., Van Alst, A., Miller, K. A. & Kaspari, M. Diet composition does not affect ant colony tempo. Funct. Ecol. 26, 317–323 (2011).
    Google Scholar 

    63.
    Felton, A. M. et al. Nutritional ecology of Ateles chamek in lowland Bolivia: how macronutrient balancing influences food choices. Int. J. Primatol. 30, 675–696 (2009).
    Google Scholar 

    64.
    Kellner, K., Fernández-Marín, H., Ishak, H. D., Linksvayer, T. A. & Mueller, U. G. Co-evolutionary patterns and diversification of ant–fungus associations in the asexual fungus-farming ant Mycocepurus smithii in Panama. J. Evol. Biol. 26, 1353–1362 (2013).
    CAS  PubMed  Google Scholar 

    65.
    Butler, I. A., Siletti, K., Oxley, P. R. & Kronauer, D. J. C. Conserved microsatellites in ants enable population genetic and colony pedigree studies across a wide range of species. PLoS ONE 9, e107334 (2014).
    PubMed  PubMed Central  Google Scholar 

    66.
    Ratnasingham, S. & Hebert, P. D. N. BOLD: the Barcode of Life Data System (www.barcodinglife.org). Mol. Ecol. Notes 7, 355–364 (2007).
    CAS  PubMed  PubMed Central  Google Scholar 

    67.
    Dussutour, A., Latty, T., Beekman, M. & Simpson, S. J. Amoeboid organism solves complex nutritional challenges. Proc. Natl Acad. Sci. USA 107, 4607–4611 (2010).
    CAS  PubMed  Google Scholar 

    68.
    Dussutour, A. & Simpson, S. J. Description of a simple synthetic diet for studying nutritional responses in ants. Insect. Soc. 55, 329–333 (2008).
    Google Scholar 

    69.
    Dussutour, A. & Simpson, S. J. Communal nutrition in ants. Curr. Biol. 19, 740–744 (2009).
    CAS  PubMed  Google Scholar 

    70.
    Warbrick-Smith, J., Raubenheimer, D., Simpson, S. J. & Behmer, S. T. Three hundred and fifty generations of extreme food specialisation: testing predictions of nutritional ecology. Entomol. Exp. Appl. 132, 65–75 (2009).
    Google Scholar  More

  • in

    Presence of low virulence chytrid fungi could protect European amphibians from more deadly strains

    Impact of Bd endemism in amphibian communities in Flanders
    In a first study, Bd prevalence was determined across our study area (Flanders, Belgium). We sampled 1483 amphibians belonging to 62 populations in 2015–2016 (Supplementary Fig. 1). To detect the presence of Bd, we collected swabs from the superficial skin surface of metamorphosed animals or the mouthparts of larval anurans. To study potential co-existence of Bd in the study region with small populations of a susceptible species (where negative effects are expected to be most obvious), in a second study, we sampled five breeding sites of midwife toads in Flanders for 4 consecutive years (Supplementary Table 2). In these breeding sites, larvae were counted once a year and their mouthparts were sampled for the presence of Bd. In a third field study, we selected 26 ponds across our study area containing at least a population of alpine newt (Ichthyosaura alpestris), being the European urodele most likely infected by Bd. Ponds were sampled with funnel traps three or four times (depending on the presence of water) with a 1-month interval (March–June 2019). An envisaged 30 newts per sampling per pond were swabbed for the presence of Bd (Supplementary Table 3), weighed to the nearest 0.1 g and the snout-vent length measured to the nearest mm. As an estimate of body condition, we used the scaled mass index (SMI)45, which adjusts the mass of all individuals to that which they would have obtained if they had the same body size. SMI was calculated using the equation of the linear regression of log‐body mass on log‐snout-vent length estimated by type 2 (standardized major axis; SMA) regression45. Eleven outliers were present (i.e. |standardized residual| >3). These observations were not used for deriving SMI relationships (as per Peig and Green45). The regression slope was 2.87, and average snout-vent length was 42.7 mm. We thus calculated the SMI as (body mass × (42.7/snout-vent length)2.87). The average number of individuals caught per fyke per pond was used as proxy for newt density. To test whether trends in newt density (i.e. average number of newts per fyke) differed between Bd positive and Bd negative ponds, a generalized linear mixed model (GLMM) was used specifying newt density as the dependent variable and the interaction between time (month) and Bd status (positive versus negative) as independent variables. Trends in newt density were better approximated by a quadratic relationship compared to a linear trend (delta AIC = 5.73). To test whether trends in SMI differed between Bd positive versus Bd negative newts, a GLMM was implemented using SMI as the dependent variable and time (month), Bd status (positive versus negative), newt sex (male versus female) and newt density (see above) as independent variables. The initial model contained all two-way interactions between the independent variables. For both GLMMs, pond was implemented as a random factor, and a Gaussian error structure was specified (model residuals were normally distributed, Shapiro–Wilk W  > 0.90). A frequentist approach was adopted whereby initial models were reduced in a stepwise manner, by excluding the variable with the highest P value until only P 90% purity). All conditions were analysed with Bd spores originating from BdJEL423, BdBE1-BdBE10 and they were tested in fourfold (biological replicates n = 4). Total RNA (1 μg) was reverse transcribed to cDNA with the iScript cDNA synthesis kit (Bio-Rad). The housekeeping genes α-centractin, APRT, TUB and Ctsyn1 were included as reference genes59. The list of genes and sequences of the primers used for quantitative PCR analysis can be found in Supplementary Table 10. Real-time quantitative PCR reactions were run in triplicate (technical replicates n = 3) and the reactions were performed in 10 μl volumes using the iQ SYBR Green Supermix (Bio-Rad). The experimental protocol for PCR (40 cycles) was performed on a CFX384 RT-PCR cycler (Bio-Rad) and data were analysed using the Bio-Rad CFX manager 3.1. The results are shown as fold changes of mRNA expression relative to the mRNA expression levels in fresh spores. Fold changes were calculated using the cycle threshold (ΔΔCT) method, and they were analysed in SPSS version 25 (SPSS Inc., Chicago, IL, USA). Multiple comparisons were assessed by a Kruskal–Wallis analysis, followed by pairwise Mann–Whitney U-tests adjusted for multiple testing with a Benjamini–Hochberg correction60, setting an adjusted P value of 0.05 as significant. Correlation between the relative expression of each isolate to BdJEL423 for CRN-like genes of fresh spores exposed to midwife toad skin and colonisation capacity from the individuals from the multi-isolate A. obstetricans infection trial was assessed by Spearman’s rank correlation in R54.
    In vitro infection of A6 cells
    Here, we compared the invasive capacity between hypervirulent and low-virulence local BdGPL isolates using a cell culture model. The Xenopus laevis kidney epithelial cell line A6 (ATCC-CCL 102) was grown in 75 cm2 cell culture flasks and maintained in complete growth medium (74% NCTC 109 medium, 15% distilled water, 10% fetal bovine serum (FBS) and 1% of a 10,000 U ml−1 penicillin-streptomycin solution (P/S)) and the cells were incubated at 26 °C and 5% CO2 until they reached confluence. Using trypsin, the cells were detached, washed with 70% Hanks’ Balanced Salt Solution without Ca2+, Mg2+ (HBSS−) by centrifugation for 5 min at 1500 rpm and resuspended in the appropriate cell culture medium for invasion assays, which were performed as described in Verbrugghe et al.61. To assess the germ tube formation, A6 cells were stained with 3 µM CellTrackerTM Green CMFDA, seeded (105 cells per well) in 24-well tissue culture plates containing collagen-coated glass coverslips and they were allowed to attach for 2 h at 20 °C and 5% CO2. After washing three times with 70% HBSS+, they were inoculated with Bd zoospores in invasion medium, at a MOI of 1:10. Two hours p.i., the cells were washed three times with 70% HBSS+ and the invasion medium was replaced by staining medium. Four hours p.i., the infected cells were washed three times with HBSS+ and they were incubated with Calcofluor White stain (1 µg ml−1 in 70% HBSS+) for 10 min. After washing three times with 70% HBSS+, the cells were fixed, mounted and analysed using fluorescence microscopy. To assess the invasive growth, A6 cells were seeded and inoculated with Bd zoospores as described above. Two days p.i., the infected cells were stained with 3 µM CellTrackerTM Green CMFDA, washed three times with 70% HBSS+ and they were incubated with Calcofluor White stain (10 µg ml−1 in 70% HBSS+) for 10 min. After washing three times with HBSS+, the infected cells were fixed, permeabilized for 2 min with 0.1% triton and incubated for 60 min with a polyclonal antibody against Bd (1/1000), which was obtained by immunizing rabbits with Bd-antigen62. After washing three times with 70% HBSS+, the samples were incubated with a goat anti-rabbit Alexa Fluor 568 (1/500). After an incubation of 1 h, the samples were washed three times with 70% HBSS+, mounted and analysed using fluorescence microscopy and Leica Application Suite (LAS) software X. The Alexa Fluor 568 targeting Bd and Calcofluor White stainings are used in concert to assess the ability of Bd to penetrate the host cell. Calcofluor White is not internalized by A6 cells, whereas the Alexa Fluor 568 targeting Bd staining was applied after permeabilisation of the host cells. As such, intracellular Bd will only be targeted by the Alexa Fluor 568 and extracellular Bd bodies will be bound with both the Alexa Fluor 568 and Calcofluor White stain. Overlay pictures were made with ImageJ 1.52d software. To assess the in vitro infection dynamics of different BdGPL isolates, three independent in vitro experiments were conducted with every condition being tested in triplicate, with similar results.
    Whole-genome sequence analysis
    WGS read data were downloaded from NCBI Bioproject PRJNA413876 (SRA sample accession numbers: BdBE1; SRA: SRS2757215, BdBE3; SRA: SRS2757203, BdBE4; SRA: SRS2757202, BdBE5; SRA: SRS2757217, BdJEL423; SRA: SRS2757141). Reads were aligned to the reference BdJEL423 assembly (BioProject PRJNA13653) using BWA mem version 0.7.1763 and the aligned bam files were processed using Picard tools version 2.21.1 (http://picard.sourceforge.net/) AddOrReplace, MarkDuplicates, SortSam, CreateSequenceDictionary and ReorderSam. Variants were called using GATK v4.1.4.064 HaplotypeCaller, the output GVCFs were combined using CombineGVCFs, genotyped using GenotypeGVCFs, separated into SNP and Indel variants for filtering using SelectVariants and filtered using VariantFiltration with filters QD  60.0 || MQ  More

  • in

    Spatio-temporal distribution and acoustic characterization of haddock (Melanogrammus aeglefinus, Gadidae) calls in the Arctic fjord Kongsfjorden (Svalbard Islands)

    1.
    Olsen, E. et al. Cod, haddock, saithe, herring, and capelin in the Barents Sea and adjacent waters: A review of the biological value of the area. J. Mar. Sci. 67, 87–101 (2010).
    MathSciNet  Google Scholar 
    2.
    Hislop, J. A comparison of the reproductive tacticsand strategies of cod, haddock, whiting and Norwaypout in the North Sea. In Fish Reproduction: Strategies and Tactics 311–329 (Academic Press, New York, 1984).
    Google Scholar 

    3.
    Bergstad, O., Jorgensen, T. & Dragesund, O. Life history and ecology of the Gadoid resources of the Barents Sea. Fish. Res. 5, 119–161 (1987).
    Article  Google Scholar 

    4.
    Boudreau, P. R. Acoustic observations of patterns of aggregation in haddock (Melanogrammus aeglefinus) and their significance to production and catch. Can. J. Fish. Aquat. Sci. 49, 23–31 (1992).
    Article  Google Scholar 

    5.
    Solemdal, P., Knutsen, T., Bjørke, H., Fossum, P. & Mukhina, N. Maturation, spawning and egg drift of Arcto-Norwegian haddock (Melanogrammus aeglefinus). in Ichthyoplankton Ecology (1997).

    6.
    Casaretto, L., Picciulin, M., Olsen, K. & Hawkins, A. D. Locating spawning haddock (Melanogrammus aeglefinus, Linnaeus, 1758) at sea by means of sound. Fish. Res. 154, 127–134 (2014).
    Article  Google Scholar 

    7.
    Hawkins, A. D. & Picciulin, M. The importance of underwater sounds to gadoid fishes. J. Acoust. Soc. Am. 145, 3536–3551 (2019).
    ADS  Article  Google Scholar 

    8.
    Hawkins, A. D. & Amorim, M. C. P. Spawning sounds of the male haddock, Melanogrammus aeglefinus. Environ. Biol. Fishes 59, 29–41 (2000).
    Article  Google Scholar 

    9.
    Casaretto, L., Picciulin, M. & Hawkins, A. D. Seasonal patterns and individual differences in the calls of male haddock Melanogrammus aeglefinus: melanogrammus aeglefinus sounds. J. Fish Biol. 87, 579–603 (2015).
    CAS  PubMed  Article  Google Scholar 

    10.
    Bremner, A. A., Trippel, E. A. & Terhune, J. M. Sound production by adult haddock, Melanogrammus aeglefinus, in isolation, Pairs and Trios. Environ. Biol. Fishes 65, 359–362 (2002).
    Article  Google Scholar 

    11.
    Casaretto, L., Picciulin, M. & Hawkins, A. D. Mating behaviour by the haddock (Melanogrammus aeglefinus). Environ. Biol. Fishes 98, 913–923 (2015).
    Article  Google Scholar 

    12.
    Casaretto, L., Picciulin, M. & Hawkins, A. D. Differences between male, female and juvenile haddock (Melanogrammus aeglefinus L.) sounds. Bioacoustics 25, 111–125 (2016).
    Article  Google Scholar 

    13.
    Templeman, W. & Hodder, V. M. Variation with fish length, sex, stage of sexual maturity and season, in the appearance and volume of the drumming muscles of the swimbladder in the haddock, Melanogrammus aeglefinus L. J. Fish Res. Board Can. 2, 355–390 (1958).
    Article  Google Scholar 

    14.
    Buscaino, G. et al. Temporal patterns in the soundscape of the shallow waters of a Mediterranean marine protected area. Sci. Rep. 6, 34230 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Ceraulo, M. et al. Acoustic comparison of a patchy Mediterranean shallow water seascape: Posidonia oceanica meadow and sandy bottom habitats. Ecol. Indic. 85, 1030–1043 (2018).
    Article  Google Scholar 

    16.
    Rice, A. N., Morano, J. L., Hodge, K. B. & Muirhead, C. A. Spatial and temporal patterns of toadfish and black drum chorusing activity in the South Atlantic Bight. Environ. Biol. Fishes 99, 705–716 (2016).
    Article  Google Scholar 

    17.
    Connaughton, M. A. & Taylor, M. H. Seasonal and daily cycles in sound production associated with spawning in the weakfish, Cynoscion regalis. Environ. Biol. Fishes 42, 233–240 (1995).
    Article  Google Scholar 

    18.
    Locascio, J. V. & Mann, D. A. Diel and seasonal timing of sound production by black drum (Pogonias cromis). Fish. Bull. 109, 327–338 (2011).
    Google Scholar 

    19.
    McCauley, R. Fish choruses from the Kimberley, seasonal and lunar links as determined by long term sea noise monitoring. Proc. Acoust. Soc. Aust. (2012).

    20.
    Ceraulo, M. et al. Spatial and temporal variability of the soundscape in a Southwestern Atlantic coastal lagoon. Hydrobiologia 847, 2255–2277 (2020).
    Article  Google Scholar 

    21.
    Tellechea, J. S., Bouvier, D. & Norbis, W. Spawining sound in whitemouth croaker (Scienidae): Seasonal and daily cycles. Bioacoustics 20, 159–168 (2011).
    Article  Google Scholar 

    22.
    Stelzer, R. J. & Chittka, L. Research article Bumblebee foraging rhythms under the midnight sun measured with radiofrequency identification. (2010).

    23.
    Steiger, S. S. et al. When the sun never sets: Diverse activity rhythms under continuous daylight in free-living arctic-breeding birds. Proc. R. Soc. B Biol. Sci. 280, 20131016 (2013).
    Article  Google Scholar 

    24.
    Benoit, D., Simard, Y., Gagné, J., Geoffroy, M. & Fortier, L. From polar night to midnight sun: Photoperiod, seal predation, and the diel vertical migrations of polar cod (Boreogadus saida) under landfast ice in the Arctic Ocean. Polar Biol. 33, 1505–1520 (2010).
    Article  Google Scholar 

    25.
    Bruce Martin, S. & Cott, P. A. The under-ice soundscape in Great Slave Lake near the city of Yellowknife, Northwest Territories, Canada. J. Gt. Lakes Res. 42, 248–255 (2016).
    Article  Google Scholar 

    26.
    Müller, S. Seasonal phase shift and the duration of activity time in the Burbot, Lota lota (L.) (Pisces, Gadidae). J. Comparat. Physiol. 84, 357–359 (1973).
    Article  Google Scholar 

    27.
    Berge, J. et al. First records of atlantic mackerel (Scomber scombrus) from the Svalbard Archipelago, Norway, with possible explanations for the extension of its distribution. Arctic 68, 54 (2015).
    Article  Google Scholar 

    28.
    Renaud, P. E. et al. Is the poleward expansion by Atlantic cod and haddock threatening native polar cod, Boreogadus saida?. Polar Biol. 35, 401–412 (2012).
    Article  Google Scholar 

    29.
    Misund, O. A. et al. Norwegian fisheries in the Svalbard zone since 1980. Regulations, profitability and warming waters affect landings. Polar Sci. 10, 312–322 (2016).
    ADS  Article  Google Scholar 

    30.
    Vihtakari, M. et al. Black-legged kittiwakes as messengers of Atlantification in the Arctic. Sci. Rep. 8, 2 (2018).
    Article  CAS  Google Scholar 

    31.
    Brand, M. & Fischer, P. Species composition and abundance of the shallow water fish community of Kongsfjorden, Svalbard. Polar Biol. 39, 2155–2167 (2016).
    Article  Google Scholar 

    32.
    Connaughton, M. A. & Taylor, M. H. Effects of photoperiod and temperature on sexual recrudescence in the male weakfish, Cynoscion regalis. Environ. Biol. Fishes 45, 273–281 (1996).
    Article  Google Scholar 

    33.
    Ladich, F. Acoustic communication in fishes: Temperature plays a role. Fish Fish. 19, 598–612 (2018).
    Article  Google Scholar 

    34.
    Papes, S. & Ladich, F. Effects of temperature on sound production and auditory abilities in the striped raphael Catfish Platydoras armatulus (Family Doradidae). PLoS ONE 6, e26479 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Stanley, J. A., Van Parijs, S. M. & Hatch, L. T. Underwater sound from vessel traffic reduces the effective communication range in Atlantic cod and haddock. Sci. Rep. 7, 2 (2017).
    Article  CAS  Google Scholar 

    36.
    Last, K. S., Hobbs, L., Berge, J., Brierley, A. S. & Cottier, F. Moonlight drives ocean-scale mass vertical migration of Zooplankton during the arctic winter. Curr. Biol. 26, 244–251 (2016).
    CAS  PubMed  Article  Google Scholar 

    37.
    de Vincenzi, G. et al. Influence of environmental parameters on the use and spatiotemporal distribution of the vocalizations of bearded seals (Erignathus barbatus) in Kongsfjorden, Spitsbergen. Polar Biol. 42, 1241–1254 (2019).
    Article  Google Scholar 

    38.
    Svendenson, et al. kongsfiorden gradient arctic atlantic.pdf. Polar Res. 21, 133–166 (2002).
    Google Scholar 

    39.
    Hop, H. et al. The marine ecosystem of Kongsfjorden, Svalbard. Polar Res. 21, 167–208 (2002).
    Article  Google Scholar 

    40.
    Dalpadado, P., Bogstad, B., Eriksen, E. & Rey, L. Distribution and diet of 0-group cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) in the Barents Sea in relation to food availability and temperature. Polar Biol. 32, 1583–1596 (2009).
    Article  Google Scholar 

    41.
    Akamatsu, T., Okumura, T., Novarini, N. & Yan, H. Y. Empirical refinements applicable to the recording of fish sounds in small tanks. J. Acoust. Soc. Am. 112, 3073–3082 (2002).
    ADS  PubMed  Article  Google Scholar 

    42.
    Cottier, F. et al. Water mass modification in an Arctic fjord through cross-shelf exchange: The seasonal hydrography of Kongsfjorden, Svalbard. J. Geophys. Res. 110, 2 (2005).
    Google Scholar 

    43.
    Lydersen, C. et al. The importance of tidewater glaciers for marine mammals and seabirds in Svalbard, Norway. J. Mar. Syst. 129, 452–471 (2014).
    Article  Google Scholar 

    44.
    Nuth, C., Schuler, T. V., Kohler, J., Altena, B. & Hagen, J. O. Estimating the long-term calving flux of Kronebreen, Svalbard, from geodetic elevation changes and mass-balance modeling. J. Glaciol. 58, 119–133 (2012).
    ADS  Article  Google Scholar 

    45.
    Pethon, P. & Nyström, B. O. Aschehougs store fiskebok Norges fisker i farger. (Aschehoug, 2005).

    46.
    Kaiser, J. F. On a simple algorithm to calculate the energy of a signal. Proc. IEEE Int. Conf. Acoust. 2, 381–384 (1990).
    Google Scholar 

    47.
    Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall/CRC, Boca Raton, 2017).
    Google Scholar 

    48.
    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2017). More

  • in

    Earliest fossils of giant-sized bony-toothed birds (Aves: Pelagornithidae) from the Eocene of Seymour Island, Antarctica

    1.
    Harrison, C. J. O. A bony-toothed bird (Odontopterygiformes) from the Palaeocene of England. Tert. Res. 7, 23–25 (1985).
    ADS  Google Scholar 
    2.
    Averianov, A. O., Panteleyev, O. R., Potapova, O. R. & Nessov, L. A. Bony-toothed birds (Aves: Pelecaniformes: Odontopterygia) of the late Paleocene and Eocene of the western margin of ancient Asia. Tr. Zool. Inst. 239, 3–12 (1991).
    Google Scholar 

    3.
    Boessenecker, R. W. & Smith, N. A. Latest Pacific Basin record of a bony-toothed bird (Aves, Pelagornithidae) from the Pliocene Purisima Formation of California, U.S.A.. J. Vertebr. Paleontol. 31, 652–657 (2011).
    Article  Google Scholar 

    4.
    Fitzgerald, E. M. G., Park, T. & Worthy, T. H. First giant bony-toothed bird (Pelagornithidae) from Australia. J. Vertebr. Paleontol. 32, 971–974 (2012).
    Article  Google Scholar 

    5.
    Louchart, A. et al. Structure and growth pattern of pseudoteeth in Pelagornis mauretanicus (Aves, Odontopterygiformes, Pelagornithidae). PLoS ONE https://doi.org/10.1371/journal.pone.0080372 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    6.
    Louchart, A. et al. Bony pseudoteeth of extinct pelagic birds (Aves, Odontopterygiformes) formed through a response of bone cells to tooth-specific epithelial signals under unique conditions. Sci. Rep. 8, 1–9 (2018).
    CAS  Article  Google Scholar 

    7.
    Olson, S. L. The fossil record of birds. In Avian Biology vol. Vlll (eds Famer, D. S. & King, J. R.) 79–252 (Academic Press, Cambridge, 1985).
    Google Scholar 

    8.
    Zusi, R. L. & Warheit, K. I. On the evolution of intraramal mandibular joints in pseudodontorns (Aves: Odontopterygia). In Papers in Avian Paleontology Honoring Pierce Brodkorb (ed. Campbell, K. E.) 351–360 (Natural History Museum of Los Angeles County, Los Angeles, 1992).
    Google Scholar 

    9.
    Cenizo, M., Hospitaleche, C. A. & Reguero, M. Diversity of pseudo-toothed birds (Pelagornithidae) from the Eocene of Antarctica. J. Paleontol. 89, 870–881 (2015).
    Article  Google Scholar 

    10.
    Rubilar-Rogers, D., Yury-Yáñez, R., Mayr, G., Gutstein, C. & Otero, R. A humerus of a giant late Eocene pseudo-toothed bird from Antarctica. J. Vertebr. Paleontol. 2, 182A (2011).
    Google Scholar 

    11.
    Dingle, R. V. & Lavelle, M. Late Cretaceous–Cenozoic climatic variations of the northern Antarctic Peninsula: new geochemical evidence and review. Palaeogeogr. Palaeoclimatol. Palaeoecol. 141, 215–232 (1998).
    Article  Google Scholar 

    12.
    Ivany, L. C. et al. Eocene climate record of a high southern latitude continental shelf: Seymour Island, Antarctica. Bull. Geol. Soc. Am. 120, 659–678 (2008).
    CAS  Article  Google Scholar 

    13.
    Montes, M., Nozal, F., Santillana, S., Marenssi, S. & Olivero, E. Mapa geológico de Isla Marambio (Seymour) Antártida; escala 1:20,000. Serie Cartográfica Geocientífica Antártica Geológico y Minero de Espana (Instituto Antártico Argentino, Villa Lynch, 2013).
    Google Scholar 

    14.
    Elliot, D. H. & Trautman, T. A. Lower Tertiary strata on Seymour Island, Antarctic Peninsula. In Antarctic Geoscience (ed. Craddock, C.) 287–297 (University of Winsconsin Press, Madison, 1982).
    Google Scholar 

    15.
    Marenssi, S. A., Net, L. I. & Santillana, S. N. Provenance, environmental and paleogeographic controls on sandstone composition in an incised-valley system: the Eocene La Meseta Formation, Seymour Island, Antarctica. Sediment. Geol. 150, 301–321 (2002).
    ADS  CAS  Article  Google Scholar 

    16.
    Sadler, P. M. Geometry and stratification of uppermost Cretaceous and Paleogene units on Seymour Island, northern Antarctic Peninsula. Geol. Soc. Am. Mem. 169, 303–320 (1988).
    Google Scholar 

    17.
    Marenssi, S. A., Santillana, S. N. & Rinaldi, C. A. Stratigraphy of the La Meseta Formation (Eocene), Marambio (Seymour) Island, Antarctica. Asoc. Paleontol. Argent. Publ. Espec. 5, 137–146 (1998).
    Google Scholar 

    18.
    Beamud, E., Montes, M. J., Santillana, S., Nozal, F. & Marenssi, S. A. Magnetostratigraphic dating of Paleogene sediments in the Seymour Island (Antarctic Peninsula): a preliminary chronostratigraphy. In AGU Fall Meeting Abstracts (2015).

    19.
    Montes, M. et al. Geología y geomorfología de la isla Marambio (Seymour). Serie Cartográfica Geocientífica Antártica; 1:20.000 (Instituto Geologico y Minero de España Instituto Antártico Argentino, Villa Lynch, 2019).
    Google Scholar 

    20.
    Douglas, P. M. J. et al. Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures. Proc. Natl. Acad. Sci. U.S.A. 111, 6582–6587 (2014).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Amenábar, C. R., Montes, M., Nozal, F. & Santillana, S. Dinoflagellate cysts of the La Meseta Formation (middle to late Eocene), Antarctic Peninsula: implications for biostratigraphy, palaeoceanography and palaeoenvironment. Geol. Mag. 157, 351–366 (2020).
    ADS  Article  CAS  Google Scholar 

    22.
    Acosta Hospitaleche, C., Jadwiszczak, P., Clarke, J. A. & Cenizo, M. The fossil record of birds from the James Ross Basin, West Antarctica. Adv. Polar Sci. 30, 251–273 (2019).
    Google Scholar 

    23.
    Tambussi, C. P. & Degrange, F. J. South American and Antarctic continental Cenozoic Birds: Paleobiogeographic Affinities and Disparities (Springer, Berlin, 2013).
    Google Scholar 

    24.
    Acosta Hospitaleche, C. & Jadwiszczak, P. Enigmatic morphological disparity in tarsometatarsi of giant penguins from the Eocene of Antarctica. Pol. Polar Res. 32, 175–180 (2011).
    Article  Google Scholar 

    25.
    Acosta Hospitaleche, C. New crania from Seymour Island (Antarctica) shed light on anatomy of Eocene penguins. Pol. Polar Res. 34, 397–412 (2013).
    Article  Google Scholar 

    26.
    Acosta Hospitaleche, C., Hagström, J., Reguero, M. & Mörs, T. Historical perspective of Otto Nordenskjöld’s Antarctic penguin fossil collection and Carl Wiman’s contribution. Polar Rec. (Gr. Brit) 53, 364–375 (2017).
    Article  Google Scholar 

    27.
    Tonni, E. P. & Cione, A. L. Una nueva colección de vertebrados del Terciaria inferior de la Isla Vicecomodoro Marambio (Seymour Island) Antártida. Obra Centen. del Mus. La Plata 5, 73–79 (1978).
    Google Scholar 

    28.
    Tonni, E. P. Un pseudodontornítido (Pelecaniformes, Odontopterygia) de gran tamaño, del Terciario temprano de Antártida. Ameghiniana 17, 273–276 (1980).
    Google Scholar 

    29.
    Bargo, M. S. & Reguero, M. A. Annotated catalogue of the fossil vertebrates from Antarctica housed in the Museo de La Plata, Argentina. I. Birds and land mammals from La Meseta Formation (Eocene-?Early Oligocene). Assoc. Paleontol. Argent. Publ. Espec. 5, 211–221 (1998).
    Google Scholar 

    30.
    Vizcaino, S. F., Reguero, M. A., Marenssi, S. A. & Santillana, S. N. New land mammal-bearing localities from the Eocene La Meseta Formation, Seymour Island, Antarctica. In The Antarctic Region: Geological Evolution and Processes (ed. Ricci, C. A.) 997–1000 (Terra Antarctica Publication, Siena, 1997).
    Google Scholar 

    31.
    Marenssi, S. A., Reguero, M. A., Santillana, S. N. & Vizcaino, S. F. Eocene land mammals from Seymour Island, Antarctica: palaeobiogeographical implications. Antarct. Sci. 6, 3–15 (1994).
    ADS  Article  Google Scholar 

    32.
    de la Fuente, M. S., Santillana, S. N. & Marenssi, S. A. An Eocene leatherback turtle (Cryptodira: Dermochelyidae) from Seymour Island, Antarctica. Stud. Geol. Salmant. 31, 21–34 (1995).
    Google Scholar 

    33.
    Cione, A. L., Reguero, M. A. & Acosta Hospitaleche, C. Did the continent and sea have different temperatures in the northern Antarctic Peninsula during the middle Eocene?. Rev. la Asoc. Geol. Argent. 62, 586–596 (2007).
    Google Scholar 

    34.
    Acosta Hospitaleche, C. & Reguero, M. Additional Pelagornithidae remains from Seymour Island, Antarctica. J. South Am. Earth Sci. 99, 102504 (2020).
    Article  Google Scholar 

    35.
    Chávez Hoffmeister, M. & Oyanadel Urbina, P. Reply to C. Acosta Hospitaleche and M. Reguero (2020) additional Pelagornithidae remains from Seymour Island, Antarctica. J. South Am. Earth Sci. https://doi.org/10.1016/j.jsames.2020.102643 (2020).
    Article  Google Scholar 

    36.
    Stilwell, J. D., Jones, C. M., Levy, R. H. & Harwood, D. M. First fossil bird from East Antarctica. Antarct. J. U.S. 33, 12–16 (1998).
    Google Scholar 

    37.
    Jones, C. M. The first record of a fossil bird from East Antarctica. Am. Geophys. Union Antarct. Res. Ser. 76, 359–364 (2000).
    Article  Google Scholar 

    38.
    Stilwell, J. D. Eocene mollusca (Bivalvia, Gastropoda and Scaphopoda) from McMurdo sound: systematics and paleoecologic significance. Am. Geophys. Union Antarct. Res. Ser. 76, 261–320 (2000).
    Article  Google Scholar 

    39.
    Askin, R. A. Spores and pollen from the McMurdo sound erratics, Antarctica. Am. Geophys. Union Antarct. Res. Ser. 76, 161–181 (2000).
    Article  Google Scholar 

    40.
    Levy, R. H. & Harwood, D. M. Tertiary marine palynomorphs from the McMurdo sound, East Antarctica. Am. Geophys. Union Antarct. Res. Ser. 76, 183–242 (2000).
    Article  Google Scholar 

    41.
    Harwood, D. M. & Bohaty, S. M. Marine diatom assemblages from Eocene and younger erratics, McMurdo sound, Antarctica. Am. Geophys. Union Antarct. Res. Ser. 76, 73–98 (2000).
    Article  Google Scholar 

    42.
    Bohaty, S. M. & Harwood, D. M. Ebridian and silicoflagellate biostratigraphy from Eocene McMurdo erratics and the southern ocean. Am. Geophys. Union Antarct. Res. Ser. 76, 99–159 (2000).
    Article  Google Scholar 

    43.
    Case, J., Reguero, M., Martin, J. & Cordes-Person, A. A cursorial bird from the Maastrictian of Antarctica. J. Vertebr. Paleontol. 3(Supplem), 48A-48A (2006).
    Google Scholar 

    44.
    Tambussi, C. & Acosta Hospitaleche, C. Antarctic birds (Neornithes) during the Cretaceous-Eocene times. Rev. Asoc. Geol. Argent. 62, 604–617 (2007).
    Google Scholar 

    45.
    Cenizo, M. M. Review of the putative Phorusrhacidae from the Cretaceous and Paleogene of Antarctica: new records of ratites and pelagornithid birds. Pol. Polar Res. 33, 239–258 (2012).
    Article  Google Scholar 

    46.
    Cione, A. L., de van Mercedes Azpelicueta, M. & Bellwood, D. R. An oplegnathid fish from the Eocene of Antarctica. Palaeontology 37, 931–940 (1994).
    Google Scholar 

    47.
    Reguero, M. A. & Gasparini, Z. Late Cretaceous–Early Tertiary marine and terrestrial vertebrates from James Ross Basin, Antarctic Peninsula: a review. In Antarct. Penins. Tierra del Fuego Proceedings of the “Otto Nordensjold’s Antarctic Expedition of 1901–1903 and Swedish Scientists in Patagonia: A Symposium”. 55–76 (2006).

    48.
    Bourdon, E., Amaghzaz, M. & Bouya, B. Pseudotoothed birds (Aves, Odontopterygiformes) from the Early Tertiary of Morocco. Am. Museum Novit. 3704, 1–71 (2010).
    Article  Google Scholar 

    49.
    Mayr, G., Goedert, J. L. & McLeod, S. A. Partial skeleton of a bony-toothed bird from the late Oligocene/early Miocene of Oregon (USA) and the systematics of Neogene Pelagornithidae. J. Paleontol. 87, 922–929 (2013).
    Article  Google Scholar 

    50.
    Harrison, C. J. O. & Walker, C. A. A review of the bony-toothed birds (Odontopterygiformes): with descriptions of some new species. Tert. Res. Spec. Pap. 2, 1–72 (1976).
    Google Scholar 

    51.
    Stidham, T. A. New skull material of Osteodontornis orri (Aves: Pelagornithidae) from the Miocene of California. PaleoBios 24, 7–12 (2004).
    Google Scholar 

    52.
    Mayr, G. & Rubilar-Rogers, D. Osteology of a new giant bony-toothed bird from the Miocene of Chile, with a revision of the taxonomy of Neogene Pelagornithidae. J. Vertebr. Paleontol. 30, 1313–1330 (2010).
    Article  Google Scholar 

    53.
    Mayr, G., De Pietri, V. L., Love, L., Mannering, A. & Scofield, R. P. Oldest, smallest and phylogenetically most basal pelagornithid, from the early Paleocene of New Zealand, sheds light on the evolutionary history of the largest flying birds. Pap. Palaeontol. 1–17 (2019). https://doi.org/10.1002/spp2.1284.

    54.
    Ksepka, D. T. Flight performance of the largest volant bird. Proc. Natl. Acad. Sci. U.S.A. 111, 10624–10629 (2014).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Acosta Hospitaleche, C., Márquez, G., Pérez, L. M., Rosato, V. & Cione, A. L. Lichen bioerosion on fossil vertebrates from the Cenozoic of Patagonia and Antarctica. Ichnos 18, 1–8 (2011).
    Article  Google Scholar 

    56.
    Mikuláš, R. Modern and fossil traces in terrestrial lithic substrates. Ichnos 8, 177–184 (2001).
    Article  Google Scholar 

    57.
    Mourer-Chauviré, C. & Geraads, D. The Struthionidae and Pelagornithidae (Aves: Struthioniformes, Odontopterygiformes) from the late Pliocene of Ahl Al Oughlam, Morocco. Oryctos 7, 169–194 (2008).
    Google Scholar 

    58.
    Owen, R. Description of the skull of a dentigerous bird (Odontopteryx toliapicus) from the London Clay of Sheppey. Q. J. Geol. Soc. 29, 511–521 (1873).
    Article  Google Scholar 

    59.
    Howard, H. A gigantic ‘toothed’ marine bird from the Miocene of California. Sta. Barbar. Museum Nat. Hist. Dep. Geol. Bull. 1, 1–23 (1957).
    Google Scholar 

    60.
    Mayr, G. & Zvonok, E. Middle Eocene Pelagornithidae and Gaviiformes (Aves) from the Ukrainian Paratethys. Palaeontology 54, 1347–1359 (2011).
    Article  Google Scholar 

    61.
    Hara, U., Mörs, T., Hagström, J. & Reguero, M. A. Eocene bryozoan assemblages from the La Meseta Formation of Seymour Island, Antarctica. Geol. Q. 62, 705–728 (2018).
    Google Scholar 

    62.
    Gelfo, J. N., Goin, F. J., Bauza, N. & Reguero, M. A. The fossil record of Antarctic land mammals : commented review and hypotheses for future research. Adv. Polar Sci. 30, 274–292 (2019).
    Google Scholar 

    63.
    Acosta Hospitaleche, C. & Gelfo, J. N. Procellariiform remains and a new species from the latest Eocene of Antarctica. Hist. Biol. 29, 755–769 (2017).
    Article  Google Scholar 

    64.
    Baumel, J. J. & Witmer, L. M. Osteologia. In Handbook of Avian Anatomy (eds Baumel, J. J. et al.) (Publications of the Nuttall Ornithological Club, Cambridge, 1993).
    Google Scholar  More

  • in

    Computing the adaptive cycle

    Our method is based on the assumption that the information structure of a system captures every effective interaction among its agents and thereby reflects the condition of the system. The abstract nature of information theory allows us to analyse systems independently of their specific instantiation. We only rely on the availability of longitudinal data reflecting the strength of the system’s individual components in a very broad sense. Hence, in general, our method can be applied to any complex system. The only condition is that for a given period of time and for every component of the system, a time series of quantitative data reflecting the outcome of interactions exists. Such time series could exemplarily be biomass of a plant species, number of individuals of an animal species, or sales of a company. The data type can differ among the components of the system, i.e. be heterogeneous.
    In a first step, networks of information transfer are inferred via pairwise estimation of transfer entropy9 among all agents. Considering these networks and, in particular, their development over time, offers insights into functional interactions.
    In the second step, potential, connectedness and resilience are computed solely using the networks of information transfer (see Supplementary A for a review of the adaptive cycle and its defining variables). Here, we utilize capacity and ascendency as being defined by Ulanowicz in the context of ascendency theory11. Note that Ulanowicz also used information theory to define capacity as an entropy of flows and ascendency as mutual information between inflow and outflow. While the first one is a measure of the average indeterminacy in the fluxes of the network, the latter quantifies the efficiency the system has in making use of its capacity12. However, being rooted in systems ecology, Ulanowicz always considered flows of physical quantities, such as energy or resource fluxes. In contrast, we will derive the quantities from networks of information transfer, abstracting from the physical representation of the interaction. Thus, potential is the capacity of the network of information transfer, and connectedness the corresponding ascendency.
    The challenging part of our approach is to find an appropriate measure of resilience. There exist various conceptions and following definitions of resilience13. For our purposes, Holling’s definition of resilience fits best, namely to define resilience as ”the magnitude of disturbance that can be absorbed before the system changes the variables and processes that control behavior” (Ref.1, p. 28). There have been various approaches to make this notion measurable, however, all of them either depending on the specific system under observation14,15,16,17 or requiring deep knowledge of the system dynamics18. Resilience has also been studied from a network perspective (see e.g.19,20). Since we are modeling complex systems as networks of information transfer, our definition is inspired by a common concept in spectral graph theory. We use the so-called graph Laplace operator, which captures vulnerability of a network with respect to perturbations of its topological structure.
    Taken together, the development of these three variables displays the system’s course through the adaptive cycle, helping to better understand system maturation and to evaluate its current condition. We will now provide a detailed description of our method, its implementation, and its application in the three case studies presented in this paper.
    Step 1: estimation of networks of information transfer
    Let (mathscr {V}) be a collection of variables, quantifying the state of agents defining a system. Let (I = (i_1, dots , i_N)) and (J = (j_1, dots , j_N)) be two sets of samples of states for the components I and J, say. For example, I and J can be identified with abundances of two interacting species at time points (1, dots , N). We consider the time series I and J as realisations of two approximately stationary discrete Markov processes. This allows us to compute Schreiber’s transfer entropy9, serving as a measure of their effective interaction. Transfer entropy from J to I is defined as

    $$begin{aligned} T_{J rightarrow I} = sum _{n = 1}^{N-1} p left( i_{n+1},i_{n}, j_{n} right) cdot log left( frac{p left( i_{n+1}|i_{n}, j_{n} right) }{p left( i_{n+1} | i_{n} right) } right) . end{aligned}$$

    (T_{J rightarrow I}) quantifies the average reduction in uncertainty about the future of I given the past of J. In other words, how much additional information do we gain about the next state of I, knowing not only the past of I itself, but the past of J as well. In the literature, a multitude of studies on the interpretation of transfer entropy in general and in specific contexts can be found21,22,23.
    As the probabilities occurring in the definition of transfer entropy are in general not known, we have to estimate transfer entropy on the basis of given realizations of the random variables, i.e. the data given as samples of the time series. Typically, we do not use all available samples to estimate transfer entropy at time t but samples falling within a certain window of time preceding time t. The size (w_t) of this windows can either be fixed, or depend on the time t, e.g. (w_t = t). In the first case, the window is “shifted” going along with t to guarantee transfer entropy always being estimated on the same number of samples. In the second case, the window starts at the beginning of the time series and is extended with increasing t. In this case, the full history of the time series is considered for estimating transfer entropy. The choice of the window size depends on the system under consideration. In any case, it should be at least as large as the assumed order of the underlying Markov process. We then compute the information transfer from J to I at time t estimating transfer entropy over the period (t-w_t+1,dots ,t). To be precise,

    $$begin{aligned} T_{J rightarrow I}^t = sum _{n = t-w_t+1}^{t} p left( i_{n+1},i_{n}, j_{n} right) cdot log left( frac{p left( i_{n+1}|i_{n}, j_{n} right) }{p left( i_{n+1} | i_{n} right) } right) . end{aligned}$$

    Depending on the size of (w_t) and the data being available, it can be useful to increase the number of data points falling within every window by interpolation. For our calculations, we used the Matlab function pchip. Interpolation stabilizes the estimation in case of small window sizes. At the same time, interpolating too many points reduces stochasticity in the time series due to the deterministic component being introduced by the interpolation model. Thus, there is a trade-off between stochasticity and stability which has to be taken into account.
    We estimated (T_{J rightarrow I}^t) using the Kraskov-Stögbauer-Grassberger (KSG) estimator TransferEntropyCalculatorKraskov as being provided with the JIDT toolkit24. For all our calculations, the function has been called using the data ((j_{t-w_t+1},dots ,j_t)) and ((i_{t-w_t+1},dots ,i_t)) in the mode computeAverageLocalOfObservations. For all other parameters of the estimation procedure, we used the default values (k=k_{tau}=l=l_{tau}=delay=1). Other choices of these parameters can be reasonable depending on the specific system to be analysed. To distinguish actual interactions from random noise, we tested all estimates via hundred-fold bootstrapping using the function computeSignificance(100) incorporated in the toolkit. Tests passing below a given significance level have been accepted and thus lead to an edge between the corresponding components with the estimated transfer entropy defining the corresponding weight. Estimating and testing for all pairs of components at fixed time t, we finally obtained a weighted, directed graph

    $$begin{aligned} G^t = left( mathscr {V},{T_{J rightarrow I}^t|(J,I) in mathscr {V} times mathscr {V} } right) end{aligned}$$

    as being our inferred model of interaction at time t. Given time series of abundances of length N for each component, this results in a sequence of interaction networks for time points (w_1,dots ,N).
    Summarizing, the first step infers models of interaction among the given variables in form of a series of networks capturing the interaction patterns and their strengths. These network models can then be used in the second step to actually determine the position of the system within the adaptive cycle.
    Step 2: determining potential, connectedness, and resilience
    As mentioned before, our definitions of potential and connectedness are based on Ulanowicz’s notions of capacity and ascendency11. Ulanowicz provides further information on the theoretical background of these measures. Let

    $$begin{aligned} T^t = sum _{(J,I) in mathscr {V} times mathscr {V}} T_{J rightarrow I}^t end{aligned}$$

    be the total transfer of the system at time t. We further introduce the following shorthand notation

    $$begin{aligned} T_{J}^{text {out},t} = sum _{I in mathscr {V}} T_{J rightarrow I}^t qquad text{ and } qquad T_{I}^{text {in},t} = sum _{J in mathscr {V}} T_{J rightarrow I}^t. end{aligned}$$

    Define

    $$begin{aligned} P^t = – sum _{(J,I) in mathscr {V} times mathscr {V}} T_{J rightarrow I}^t cdot log left( frac{T_{J rightarrow I}^t}{T^t} right) qquad hbox {as the system’s} ,potential ,hbox {at time} ,t end{aligned}$$

    and

    $$begin{aligned} C^t = sum _{(J,I) in mathscr {V} times mathscr {V}} T_{J rightarrow I}^t cdot log left( frac{T_{J rightarrow I}^tT^t}{T_{J}^{text {out,t}}T_{I}^{text {in,t}}} right) qquad ,hbox {as its} ,connectedness ,hbox {at time}, t. end{aligned}$$

    Being essentially a sum over the indeterminacy in each transfer within the system, potential can be interpreted as a measure of the system’s power for evolution and its ability to develop. Recall that development of the system as a whole necessarily relies on communication, i.e., transfer of information among its components. In contrast, connectedness measures the degree of internal coherence of the system by contrasting information leaving one component with information arriving at another component.
    In order to define resilience, we need to capture vulnerability of the system with respect to unforeseen perturbation. In terms of graph theory, this can be achieved by studying the eigenvalues of a certain matrix, being associated with the graph. Indeed, the smallest non-trivial eigenvalue of the so-called graph Laplacian of an undirected graph quantifies the vulnerability of the graph with respect to disturbance of the topology of the graph25,26. In our case, we need to transfer this idea to the case of the directed graphs (G^t).
    Thus, given (G^t=left( mathscr {V},T^t_{J rightarrow I}|(J,I) in mathscr {V} times mathscr {V}right)) be a non-empty, weighted, directed graph with vertex set (mathscr {V}). Let further (c > 0) be a constant. Let (D_{out}) and (D_{in}) be the diagonal matrix of out-degrees and in-degrees, respectively, and A the weighted adjacency matrix. We then define the following Laplace type operators of (G^t):

    $$begin{aligned} L_{out} = c cdot D^{-frac{1}{2}}_{out} left( D_{out}- A right) D^{-frac{1}{2}}_{out}, quad hbox { and }quad L_{in} = c cdot D^{-frac{1}{2}}_{in} left( D_{in} – A right) D^{-frac{1}{2}}_{in}, end{aligned}$$

    following the convention that (D^{-frac{1}{2}}_*(u,u) = 0) for (D_*(u,u) = 0). Note that, for the sake of readability, we omitted the superscript t in these definitions. For all case studies presented in this paper, we used

    $$begin{aligned} c = frac{1}{max { T^t_{J rightarrow I}|(J,I) in mathscr {V} times mathscr {V} }} end{aligned}$$

    as standardization constant.
    Since A is no longer symmetric, the spectrum of (L_{out}) and (L_{in}) is complex in general. Nevertheless, the distance of the spectrum to the imaginary axis in the complex plane still determines the stability of the graph. Therefore, we define resilience of the graph G as the smallest, non-trivial absolute value of the real parts of all eigenvalues of its two Laplacian matrices, i.e.

    $$begin{aligned} R^t = min left{ |mathfrak {R}sigma | :sigma in {{,mathrm{Spec},}}(L_{out}) cup {{,mathrm{Spec},}}(L_{in}), sigma ne 0right} . end{aligned}$$

    See Supplementary E for a more detailed explanation motivating this definition as well as for an alternative definition of the involved Laplacian matrices.
    Our definitions of the three systemic variables are summarized in Table 1. In addition, Table 2 displays basic information concerning the data sets and parameters of our case studies. Note that, for visualization purposes, Figs. 3, 4, and 5 show a smoothed version of the estimated variables as being obtained by applying the R functions smooth.spline and splinefun.
    Table 1 Summary of the definitions of the three systemic variables.
    Full size table

    Table 2 Data and parameters of the presented case studies.
    Full size table

    Figure 2

    Schematic representation of our quantification method. In the first step, time series of abundance data (a) are transferred into networks of information transfer (b). In the second step, the three systemic variables (c) are computed on basis of the networks. The figure depicts the window shifting method.

    Full size image

    We created the R package QtAC in order to enable a straightforward application of our method27. The package comprises all functions required to compute a system’s course through the adaptive cycle and to visualize the results.
    Figure 2 illustrates the key idea of our approach. Figure 2a shows randomly generated abundances of five components (A,B,C,D,E). To estimate the position of this small system within the adaptive cycle at time t and (t+1), we estimate transfer entropy for all pairs of components based on the samples within the window ((t-w+1, dots , t)) and ((t-w+2, dots , t+1)), respectively, and test for significance. This results in two inferred interaction networks shown in Fig. 2b. Using these networks, we can compute potential, connectedness and resilience at these two points in time. Figure 2c depicts the shift the system has made in the coordinate system spanned by the three characteristic variables.
    The decrease in resilience from t to (t+1) mainly follows from loosing the edge (Drightarrow C) at (t+1). With component D being connected with the rest of the system by one edge, only, the system becomes more vulnerable, since perturbation of the edge (Drightarrow E) would fully decouple D from the rest of the system. Similarly, the loss of this edge also leads to a decrease of potential. Heuristically, the more edges a system has, the more potential there is to change from one state to another. Note that the even distribution of weights also added to the system’s potential, as for example edges (Arightarrow E) and (Arightarrow C) both loose weight. The moderate decline of connectedness follows from the loss of the edge (Drightarrow C) as well as from the smaller capacity of the edges (Arightarrow C) and (Arightarrow E), decreasing the overall total edge weight. More