More stories

  • in

    Unravelling the gut bacteriome of Ips (Coleoptera: Curculionidae: Scolytinae): identifying core bacterial assemblage and their ecological relevance

    1.
    Anderegg, W. R., Kane, J. M. & Anderegg, L. D. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Chang. 3, 30–36 (2013).
    ADS  Article  Google Scholar 
    2.
    Huang, J. et al. Tree defence and bark beetles in a drying world: Carbon partitioning, functioning and modelling. New Phytol. 225, 26–36 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    3.
    Kautz, M., Meddens, A. J., Hall, R. J. & Arneth, A. Biotic disturbances in Northern Hemisphere forests—A synthesis of recent data, uncertainties and implications for forest monitoring and modelling. Glob. Ecol. Biogeogr. 26, 533–552 (2017).
    Article  Google Scholar 

    4.
    Netherer, S. et al. Do water-limiting conditions predispose N orway spruce to bark beetle attack?. New Phytol. 205, 1128–1141 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    5.
    Seybold, S. J., Huber, D. P., Lee, J. C., Graves, A. D. & Bohlmann, J. Pine monoterpenes and pine bark beetles: A marriage of convenience for defense and chemical communication. Phytochem. Rev. 5, 143–178 (2006).
    CAS  Article  Google Scholar 

    6.
    Raffa, K. F. & Smalley, E. B. Interaction of pre-attack and induced monoterpene concentrations in host conifer defense against bark beetle-fungal complexes. Oecologia 102, 285–295 (1995).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Reid, M. L. & Purcell, J. Condition-dependent tolerance of monoterpenes in an insect herbivore. Arthropod-Plant Interact. 5, 331–337 (2011).
    Article  Google Scholar 

    8.
    Erbilgin, N., Krokene, P., Christiansen, E., Zeneli, G. & Gershenzon, J. Exogenous application of methyl jasmonate elicits defenses in Norway spruce (Picea abies) and reduces host colonization by the bark beetle Ips typographus. Oecologia 148, 426–436 (2006).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Hayes, J. L. & Strom, B. L. 4-Allylanisole as an inhibitor of bark beetle (Coleoptera: Scolytidae) aggregation. J. Econ. Entomol. 87, 1586–1594 (1994).
    CAS  Article  Google Scholar 

    10.
    Franceschi, V. R., Krokene, P., Christiansen, E. & Krekling, T. Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytol. 167, 353–376 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Zhao, T., Borg-Karlson, A.-K., Erbilgin, N. & Krokene, P. Host resistance elicited by methyl jasmonate reduces emission of aggregation pheromones by the spruce bark beetle, Ips typographus. Oecologia 167, 691–699 (2011).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    12Schmidt, A. et al. In Chemical Ecology and Phytochemistry in Forest Ecosystems (ed Romeo, J. T.) 1–28 (Elsevier, Amsterdam, 2005).

    13.
    Keeling, C. I. & Bohlmann, J. Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol. 170, 657–675 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Despres, L., David, J.-P. & Gallet, C. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 22, 298–307 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    15.
    Raffa, K., Andersson, M. N. & Schlyter, F. In Advances in Insect Physiology, Vol. 50 (ed Blomquist Claus Tittiger, G.J.) 1–74 (Elsevier, Amsterdam, 2016).

    16.
    Adams, A. S. et al. Mountain pine beetles colonizing historical and naive host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism. Appl. Environ. Microbiol. 79, 3468–3475 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Six, D. L. Ecological and evolutionary determinants of bark beetle—fungus symbioses. Insects 3, 339–366 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Raffa, K. F. Terpenes tell different tales at different scales: Glimpses into the chemical ecology of conifer-bark beetle-microbial interactions. J. Chem. Ecol. 40, 1–20 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Douglas, A. E. Multiorganismal insects: Diversity and function of resident microorganisms. Annu. Rev. Entomol. 60, 17–34 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Douglas, A. E. The microbial dimension in insect nutritional ecology. Funct. Ecol. 23, 38–47 (2009).
    Article  Google Scholar 

    21.
    Ceja-Navarro, J. A. et al. Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee. Nat. Commun. 6, 7618 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Welte, C. U. et al. Plasmids from the gut microbiome of cabbage root fly larvae encode SaxA that catalyses the conversion of the plant toxin 2-phenylethyl isothiocyanate. Environ. Microbiol. 18, 1379–1390 (2016).
    CAS  PubMed  Article  Google Scholar 

    23.
    Hammer, T. J. & Bowers, M. D. Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia 179, 1–14 (2015).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Bakkali, F., Averbeck, S., Averbeck, D. & Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 46, 446–475 (2008).
    CAS  Article  Google Scholar 

    25.
    Mithöfer, A. & Boland, W. Plant defense against herbivores: Chemical aspects. Annu. Rev. Plant Biol. 63, 431–450 (2012).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    26.
    Douglas, A. Nutritional interactions in insect-microbial symbioses: Aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol. 43, 17–37 (1998).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Ayres, M. P., Wilkens, R. T., Ruel, J. J., Lombardero, M. J. & Vallery, E. Nitrogen budgets of phloem-feeding bark beetles with and without symbiotic fungi. Ecology 81, 2198–2210 (2000).
    Article  Google Scholar 

    28.
    Adams, A., Currie, C., Cardoza, Y., Klepzig, K. & Raffa, K. Effects of symbiotic bacteria and tree chemistry on the growth and reproduction of bark beetle fungal symbionts. Can. J. For. Res. 39, 1133–1147 (2009).
    CAS  Article  Google Scholar 

    29.
    Cardoza, Y. J., Moser, J. C., Klepzig, K. D. & Raffa, K. F. Multipartite symbioses among fungi, mites, nematodes, and the spruce beetle, Dendroctonus rufipennis. Environ. Entomol. 37, 956–963 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    30.
    Therrien, J. et al. Bacteria influence mountain pine beetle brood development through interactions with symbiotic and antagonistic fungi: Implications for climate-driven host range expansion. Oecologia 179, 467–485 (2015).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Morales-Jiménez, J., Zúñiga, G., Ramírez-Saad, H. C. & Hernández-Rodríguez, C. Gut-associated bacteria throughout the life cycle of the bark beetle Dendroctonus rhizophagus Thomas and Bright (Curculionidae: Scolytinae) and their cellulolytic activities. Microb. Ecol. 64, 268–278 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    32.
    Delalibera, I. Jr., Handelsman, J. & Raffa, K. F. Contrasts in cellulolytic activities of gut microorganisms between the wood borer, Saperda vestita (Coleoptera: Cerambycidae), and the bark beetles, Ips pini and Dendroctonus frontalis (Coleoptera: Curculionidae). Environ. Entomol. 34, 541–547 (2005).
    Article  Google Scholar 

    33.
    Hu, X., Yu, J., Wang, C. & Chen, H. Cellulolytic bacteria associated with the gut of Dendroctonus armandi larvae (Coleoptera: Curculionidae: Scolytinae). Forests 5, 455–465 (2014).
    Article  Google Scholar 

    34.
    Menéndez, E. et al. Pseudomonas coleopterorum sp. nov., a cellulase-producing bacterium isolated from the bark beetle Hylesinus fraxini. Int. J. Syst. Evol. Microbiol. 65, 2852–2858 (2015).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    35.
    Boone, C. K. et al. Bacteria associated with a tree-killing insect reduce concentrations of plant defense compounds. J. Chem. Ecol. 39, 1003–1006 (2013).
    CAS  PubMed  Article  Google Scholar 

    36.
    Xu, L. T., Lu, M. & Sun, J. H. Invasive bark beetle-associated microbes degrade a host defensive monoterpene. Insect Sci. 23, 183–190 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Berasategui, A. et al. Gut microbiota of the pine weevil degrades conifer diterpenes and increases insect fitness. Mol. Ecol. 26, 4099–4110 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Engl, T. & Kaltenpoth, M. Influence of microbial symbionts on insect pheromones. Nat. Prod. Rep. 35, 386–397 (2018).
    CAS  PubMed  Article  Google Scholar 

    39.
    Howe, M., Keefover-Ring, K. & Raffa, K. F. Pine engravers carry bacterial communities whose members reduce concentrations of host monoterpenes with variable degrees of redundancy, specificity, and capability. Environ. Entomol. 47, 638–645 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Xu, L., Lou, Q., Cheng, C., Lu, M. & Sun, J. Gut-associated bacteria of Dendroctonus valens and their involvement in verbenone production. Microb. Ecol. 70, 1012–1023 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    41.
    Skrodenytė-Arbačiauskienė, V., Radžiutė, S., Stunžėnas, V. & Būda, V. Erwiniatypographi sp. nov., isolated from bark beetle (Ips typographus) gut. Int. J. Syst. Evol. Microbiol. 62, 942–948 (2012).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    42.
    Smith, D. J., Park, J., Tiedje, J. M. & Mohn, W. W. A large gene cluster in Burkholderia xenovorans encoding abietane diterpenoid catabolism. J. Bacteriol. 189, 6195–6204 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Martin, V. J. & Mohn, W. W. Genetic investigation of the catabolic pathway for degradation of abietane diterpenoids by Pseudomonas abietaniphila BKME-9. J. Bacteriol. 182, 3784–3793 (2000).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Muratoğlu, H., Sezen, K. & Demirbağ, Z. Determination and pathogenicity of the bacterial flora associated with the spruce bark beetle, Ips typographus (L.) (Coleoptera: Curculionidae: Scolytinae). Turk. J. Biol. 35, 9–20 (2011).
    Google Scholar 

    45.
    Skrodenytė-Arbačiauskienė, V., Būda, V., Radžiutė, S. & Stunžėnas, V. Myrcene-resistant bacteria isolated from the gut of phytophagous insect Ips typographus. Ekologija 4, 1–6 (2006).
    Google Scholar 

    46.
    Sevim, A., Gökçe, C., Erbaş, Z. & Özkan, F. Bacteria from Ips sexdentatus (Coleoptera: Curculionidae) and their biocontrol potential. J. Basic Microbiol. 52, 695–704 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    47.
    Vasanthakumar, A. et al. Composition of the bacterial community in the gut of the pine engraver, Ips pini (Say) (Coloptera) colonizing red pine. Symbiosos 43, 97–104 (2007).
    Google Scholar 

    48.
    48Grégoire, J.-C. & Evans, H. In Bark and Wood Boring Insects in Living Trees in Europe, a Synthesis (eds Lieutier, F., Day, K.R., Battisti, A., Grégoire, J.-C., Evans, H.F.) 19–37 (Springer, Berlin, 2007).

    49.
    Kolk, A., Starzyk, J., Kinelski, S. & Dzwonkowski, R. Atlas of Forest Insect Pests. (MULTICO Publishing House Ltd., 1996).

    50.
    Davydenko, K., Vasaitis, R. & Menkis, A. Fungi associated with Ips acuminatus (Coleoptera: Curculionidae) in Ukraine with a special emphasis on pathogenicity of ophiostomatoid species. Eur. J. Entomol. 114, 77–85 (2017).
    Article  Google Scholar 

    51.
    Fettig, C. J. & Hilszczański, J. In Bark Beetles: Biology and Ecology of Native and Invasive Species (eds Vega, F.E, Hofstetter, R.W.) 555–584 (Springer, Berlin, 2015).

    52.
    Knížek, M., Liška, J. & Modlinger, R. Výskyt lesních škodlivých činitelů v roce 2015 a jejich očekávaný stav v roce 2016. Strnady, VÚLHM, Zpravodaj ochrany lesa (2016).

    53.
    Villari, C. et al. Nutritional and pathogenic fungi associated with the pine engraver beetle trigger comparable defenses in Scots pine. Tree Physiol. 32, 867–879 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    54.
    Wermelinger, B., Rigling, A., Schneider Mathis, D. & Dobbertin, M. Assessing the role of bark-and wood-boring insects in the decline of Scots pine (Pinus sylvestris) in the Swiss Rhone valley. Ecol. Entomol. 33, 239–249 (2008).
    Article  Google Scholar 

    55.
    Pineau, X., Bourguignon, M., Jactel, H., Lieutier, F. & Sallé, A. Pyrrhic victory for bark beetles: Successful standing tree colonization triggers strong intraspecific competition for offspring of Ips sexdentatus. For. Ecol. Manag. 399, 188–196 (2017).
    Article  Google Scholar 

    56.
    Engel, P. & Moran, N. A. The gut microbiota of insects–diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Hernández-García, J. A., Briones-Roblero, C. I., Rivera-Orduña, F. N. & Zúñiga, G. Revealing the gut bacteriome of Dendroctonus bark beetles (Curculionidae: Scolytinae): Diversity, core members and co-evolutionary patterns. Sci. Rep. 7, 1–12 (2017).
    Article  CAS  Google Scholar 

    58.
    Morrison, M. & Miron, J. Adhesion to cellulose by Ruminococcus albus: A combination of cellulosomes and Pil-proteins?. FEMS Microbiol. Lett. 185, 109–115 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Fabryová, A. et al. On the bright side of a forest pest-the metabolic potential of bark beetles’ bacterial associates. Sci. Total Environ. 619, 9–17 (2018).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    60.
    Briones-Roblero, C. I. et al. Structure and dynamics of the gut bacterial microbiota of the bark beetle, Dendroctonus rhizophagus (Curculionidae: Scolytinae) across their life stages. PLoS ONE 12, e0175470 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    61.
    Sudachkova, N., Milyutina, I., Romanova, L. & Semenova, G. The annual dynamics of reserve compounds and hydrolitic enzymes activity in the tissues of Pinus sylvestris L. and Larix sibirica Ledeb.: The metabolism of reserve compounds in the tissues of Siberian conifers. Eurasian J. For. Res. 7, 1–10 (2004).
    Google Scholar 

    62.
    Horne, I., Haritos, V. S. & Oakeshott, J. G. Comparative and functional genomics of lipases in holometabolous insects. Insect Biochem. Mol. Biol. 39, 547–567 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    63.
    Arrese, E. L. & Soulages, J. L. Insect fat body: Energy, metabolism, and regulation. Annu. Rev. Entomol. 55, 207–225 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    64.
    García-Fraile, P. Roles of bacteria in the bark beetle holobiont–how do they shape this forest pest?. Ann. Appl. Biol. 172, 111–125 (2018).
    Article  Google Scholar 

    65.
    Morales-Jiménez, J. et al. Nitrogen-fixing and uricolytic bacteria associated with the gut of Dendroctonus rhizophagus and Dendroctonus valens (Curculionidae: Scolytinae). Microb. Ecol. 66, 200–210 (2013).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    66.
    Morales-Jiménez, J., Zúñiga, G., Villa-Tanaca, L. & Hernández-Rodríguez, C. Bacterial community and nitrogen fixation in the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae). Microb. Ecol. 58, 879–891 (2009).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    67.
    Menna, P. M. & Hungria, M. Phylogeny of nodulation and nitrogen-fixation genes in Bradyrhizobium: Supporting evidence for the theory of monophyletic origin, and spread and maintenance by both horizontal and vertical transfer. Int. J. Syst. Evol. Microbiol. 61, 3052–3067 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    68.
    Chen, W.-M. et al. Legume symbiotic nitrogen fixation byβ-proteobacteria is widespread in nature. J. Bacteriol. 185, 7266–7272 (2003).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Gurevitch, J., Scheiner, S. M. & Fox, G. A. The Ecology of Plants (Sinauer Associates, Sunderland, 2002).
    Google Scholar 

    70.
    Gibson, C. M. & Hunter, M. S. Extraordinarily widespread and fantastically complex: Comparative biology of endosymbiotic bacterial and fungal mutualists of insects. Ecol. Lett. 13, 223–234 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    71.
    Six, D. L. & Bentz, B. J. Fungi associated with the North American spruce beetle, Dendroctonus rufipennis. Can. J. For. Res. 33, 1815–1820 (2003).
    Article  Google Scholar 

    72.
    Naik, P. R. & Sakthivel, N. Functional characterization of a novel hydrocarbonoclastic Pseudomonas sp. strain PUP6 with plant-growth-promoting traits and antifungal potential. Res. Microbiol. 157, 538–546 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    73.
    Park, G.-K., Lim, J.-H., Kim, S.-D. & Shim, S.-H. Elucidation of antifungal metabolites produced by Pseudomonas aurantiaca IB5-10 with broad-spectrum antifungal activity. J. Microbiol. Biotechnol. 22, 326–330 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    74.
    Elsden, S. R., Hilton, M. G. & Waller, J. M. The end products of the metabolism of aromatic amino acids by Clostridia. Arch. Microbiol. 107, 283–288 (1976).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    75.
    Byers, J. & Birgersson, G. Pheromone production in a bark beetle independent of myrcene precursor in host pine species. Naturwissenschaften 77, 385–387 (1990).
    ADS  CAS  Article  Google Scholar 

    76.
    Blomquist, G. J. et al. Pheromone production in bark beetles. Insect Biochem. Mol. Biol. 40, 699–712 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    77.
    Cao, Q. et al. Effect of oxygen on verbenone conversion from cis-verbenol by gut facultative anaerobes of Dendroctonus valens. Front. Microbiol. 9, 464 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    78.
    Wang, Y. & Zhang, Y. Investigation of gut-associated bacteria in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae using culture-dependent and DGGE methods. Ann. Entomol. Soc. Am. 108, 941–949 (2015).
    CAS  Article  Google Scholar 

    79.
    Durand, A.-A. et al. Surveying the endomicrobiome and ectomicrobiome of bark beetles: The case of Dendroctonus simplex. Sci. Rep. 5, 17190 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    80.
    Scott, J. J. et al. Bacterial protection of beetle-fungus mutualism. Science 322, 63–63 (2008).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    81.
    Dale, C. & Maudlin, I. Sodalis gen. nov. and Sodalis glossinidius sp. nov., a microaerophilic secondary endosymbiont of the tsetse fly Glossina morsitans morsitans. Int. J. Syst. Evol. Microbiol. 49, 267–275 (1999).
    CAS  Article  Google Scholar 

    82.
    Santos-Garcia, D., Silva, F. J., Morin, S., Dettner, K. & Kuechler, S. M. The all-rounder Sodalis: A new bacteriome-associated endosymbiont of the lygaeoid bug Henestaris halophilus (Heteroptera: Henestarinae) and a critical examination of its evolution. Genome Biol. Evol. 9, 2893–2910 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    83.
    Lawson, E. T., Mousseau, T. A., Klaper, R., Hunter, M. D. & Werren, J. H. Rickettsia associated with male-killing in a buprestid beetle. Heredity 86, 497–505 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    84.
    Hurst, G. & Jiggins, F. M. Male-killing bacteria in insects: Mechanisms, incidence, and implications. Emerg. Infect. Dis. 6, 329 (2000).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    85.
    Stackebrandt, E. & Schumann, P. In The Prokaryotes: Actinobacteria (eds Rosenberg, E. et al.) 163–184 (Springer, Berlin, 2014).

    86.
    Pfeffer, A. Fauna ČSR. Svazek 6: Kůrovci-Scolytoidea. Řád: Brouci-Coleoptera. (Nakladatelství Československé akadmie věd, 1955).

    87.
    Pfeffer, A. Zentral-und westpaläarktische Borken-und Kernkäfer:(Coloptera: Scolytidae, Platypodidae). (Pro Entomologia, 1995).

    88.
    Nunberg, M. Klucze do rozpoznawania owadów Polski [Keys for the identification of Polish Insects]. Część XIX. Chrząszcze–Coleoptera, Korniki–Scolytidae, Wyrynniki–Platypodidae, PWN, Warszawa-Wroclaw. Zeszyt, 99–100 (1981).

    89.
    Chakraborty, A. et al. Core mycobiome and their ecological relevance in the gut of five ips bark beetles (Coleoptera: Curculionidae: Scolytinae). Front. Microbiol. 11, 2134 (2020).
    Google Scholar 

    90.
    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1–e1 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    91.
    Magoč, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    92.
    Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    93.
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    94.
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    95.
    Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    96.
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    97.
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    98.
    Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    99.
    Chao, A., Lee, S.-M. & Chen, T.-C. A generalized Good’s nonparametric coverage estimator. Chin. J. Math. 16, 189–199 (1988).
    MathSciNet  MATH  Google Scholar 

    100.
    Magurran, A. E. Ecological Diversity and its Measurement (Princeton University Press, Princeton, 1988).
    Google Scholar 

    101.
    Team, R. C. R: A Language and Environment for Statistical Computing (Version 2.15. 3) [Computer software] (R Foundation for Statistical Computing, Vienna, 2013).

    102.
    Oksanen, J. et al. Vegan: community ecology package. R package version 1.17–4. https://CRAN.R-project.org/package=vegan (2010).

    103.
    Lozupone, C. A., Hamady, M., Kelley, S. T. & Knight, R. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl. Environ. Microbiol. 73, 1576–1585 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    104.
    Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).
    Article  Google Scholar 

    105.
    Cai, L. Multi-response permutation procedure as an alternative to the analysis of variance: An SPSS implementation. Behav. Res. Methods 38, 51–59 (2006).
    PubMed  Article  Google Scholar 

    106.
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).
    Google Scholar 

    107.
    Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).
    CAS  PubMed  PubMed Central  Google Scholar 

    108.
    D’Argenio, V., Casaburi, G., Precone, V. & Salvatore, F. Comparative metagenomic analysis of human gut microbiome composition using two different bioinformatic pipelines. Biomed. Res. Int. 325340, 1–10 (2014).
    Article  CAS  Google Scholar 

    109.
    Paulson, J. N., Pop, M. & Bravo, H. C. Metastats: An improved statistical method for analysis of metagenomic data. Genome Biol. 12, P17 (2011).
    PubMed Central  Article  PubMed  Google Scholar 

    110.
    Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    111.
    Douglas, G. M., Beiko, R. G. & Langille, M. G. In Microbiome Analysis: Methods and Protocols. (eds Beiko, R. G., Hsiao, W. & Parkinson, J.) 169–177 (Springer, Berlin, 2018).

    112.
    Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–D114 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Population genetics of the brooding coral Seriatopora hystrix reveals patterns of strong genetic differentiation in the Western Indian Ocean

    Adjeroud M, Guerecheau A, Vidal-Dupiol J, Flot JF, Arnaud-Haond S, Bonhomme F (2014) Genetic diversity, clonality and connectivity in the scleractinian coral Pocillopora damicornis: a multi-scale analysis in an insular, fragmented reef system. Mar Biol 161(3):531–541
    Google Scholar 

    Arrigoni R, Berumen ML, Mariappan KG, Beck PSA, Hulver AM, Montano S et al. (2020) Towards a rigorous species delimitation framework for scleractinian corals based on RAD sequencing: the case study of Leptastrea from the Indo-Pacific. Coral Reefs 39:1001–1025

    Baird AH (2001) The ecology of coral larvae: settlement patterns, habitat selection and the length of the larval phase. Doctoral dissertation, James Cook University, Townsville
    Google Scholar 

    Collins C, Hermes JC, Reason CJC (2014) Mesoscale activity in the Comoros Basin from satellite altimetry and a high-resolution ocean circulation model. J Geophys Res Oceans 119:4745–4760
    Google Scholar 

    Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144(4):2001–2014
    CAS  Google Scholar 

    Costanza R, de Groot R, Sutton P, van der Ploeg S, Anderson SJ, Kubiszewski I et al. (2014) Changes in the global value of ecosystem services. Glob Environ Chang 26:152–158
    Google Scholar 

    Cowen R, Sponaugle S (2009) Larval dispersal and marine population connectivity. Ann Rev Mar Sci 1:443–466
    Google Scholar 

    Crochelet E, Roberts J, Lagabrielle E, Obura DO, Petit M, Chabanet P (2016) A model-based assessment of reef larvae dispersal in the Western Indian Ocean reveals regional connectivity patterns—potential implications for conservation policies. Reg Stud Mar Sci 7:159–167
    Google Scholar 

    Dana JD (1846) United States Exploring Expedition. Vol. VII. Zoophytes. C. Sherman, Philadelphia

    Dellicour S, Flot JF (2015) Delimiting species-poor data sets using single molecular markers: a study of barcode gaps, haplowebs and GMYC. Syst Biol 64(6):900–908
    CAS  Google Scholar 

    Dellicour S, Flot JF (2018) The hitchhiker’s guide to single‐locus species delimitation. Mol Ecol Resour 18(6):1234–1246
    Google Scholar 

    DiBattista JD, Berumen ML, Gaither MR, Rocha LA, Eble JA, Choat JH et al. (2013) After continents divide: comparative phylogeography of reef fishes from the Red Sea and Indian Ocean. J Biogeogr 40(6):1170–1181
    Google Scholar 

    DiBattista JD, Roberts MB, Bouwmeester J, Bowen BW, Coker DJ, Lozano-Cortes DF et al. (2016) A review of contemporary patterns of endemism for shallow water reef fauna in the Red Sea. J Biogeogr 43(3):423–439
    Google Scholar 

    Doyle JJ (1995) The irrelevance of allele tree topologies for species delimitation, and a non-topological alternative. Syst Bot 20(4):574

    Earl D, Vonholdt B (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361
    Google Scholar 

    Erickson KL, Pentico A, Quattrini AMMc, Fadden CS (2020) New approaches to species delimitation and population structure of anthozoans: two case studies of octocorals using ultraconserved elements and exons Mol Ecol Resour https://doi.org/10.1111/1755-0998.13241

    Eriksson H, Wickel J, Jamon A (2012) Coral bleaching and associated mortality in Mayotte, Western Indian Ocean. West Indian Ocean J Mar Sci 11:113–118
    Google Scholar 

    Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620
    CAS  Google Scholar 

    Fisher R, O’Leary RA, Low-Choy S, Mengersen K, Knowlton N, Brainard RE et al. (2015) Species richness on coral reefs and the pursuit of convergent global estimates. Curr Biol 25(4):500–505
    CAS  Google Scholar 

    Flot JF (2007) CHAMPURU 1.0: a computer software for unraveling mixtures of two DNA sequences of unequal lengths. Mol Ecol Notes 7(6):974–977
    CAS  Google Scholar 

    Flot JF (2010) SeqPHASE: a web tool for interconverting phase input/output files and fasta sequence alignments. Mol Ecol Resour 10(1):162–166

    Flot JF (2015) Species delimitation’s coming of age. Syst Biol 64(6):897–899
    Google Scholar 

    Flot JF, Couloux A, Tillier S (2010) Haplowebs as a graphical tool for delimiting species: a revival of Doyle’s “field for recombination” approach and its application to the coral genus Pocillopora in Clipperton. BMC Evol Biol 10:372
    Google Scholar 

    Flot JF, Licuanan WY, Nakano Y, Payri C, Cruaud C, Tillier S (2008) Mitochondrial sequences of Seriatopora corals show little agreement with morphology and reveal the duplication of a tRNA gene near the control region. Coral Reefs 27:789–794
    Google Scholar 

    Flot JF, Tillier A, Samadi S, Tillier S (2006) Phase determination from direct sequencing of length-variable DNA regions. Mol Ecol Notes 6(3):627–630
    CAS  Google Scholar 

    Flot JF, Tillier S (2007) The mitochondrial genome of Pocillopora (Cnidaria: Scleractinia) contains two variable regions: the putative D-loop and a novel ORF of unknown function. Gene 401(1–2):80–87
    CAS  Google Scholar 

    Fontaneto D, Flot JF, Tang CQ (2015) Guidelines for DNA taxonomy, with a focus on the meiofauna. Mar Biodivers 45(3):433–451
    Google Scholar 

    Froukh T, Kochzius M (2008) Species boundaries and evolutionary lineages in the blue green damselfishes Chromis viridis and Chromis atripectoralis (Pomacentridae). J Fish Biol 72(2):451–457
    Google Scholar 

    Gamoyo M, Obura DO, Reason CJC (2019) Estimating connectivity through larval dispersal in the Western Indian Ocean. J Geophys Res. 124(8):2446–2459

    Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86(6):485–486
    Google Scholar 

    Hancke L, Roberts MJ, Ternon JF (2014) Surface drifter trajectories highlight flow pathways in the Mozambique Channel. Deep Sea Res II Top Stud Oceanogr 100:27–37
    Google Scholar 

    Hardy OJ, Charbonnel N, Freville H, Heuertz M (2003) Microsatellite allele sizes: a simple test to assess their significance on genetic differentiation. Genetics 163(4):1467–1482
    CAS  Google Scholar 

    Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2(4):618–620
    Google Scholar 

    Harrison PL (2011) Sexual reproduction of scleractinian corals. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Dordrecht. pp 59–85

    Hoegh-Guldberg O, Poloczanska ES, Skirving W, Dove S (2017) Coral reef ecosystems under climate change and ocean acidification. Front Mar Sci 4:158
    Google Scholar 

    Hui M, Kraemer WE, Seidel C, Nuryanto A, Joshi A, Kochzius M (2016) Comparative genetic population structure of three endangered giant clams (Cardiidae: Tridacna species) throughout the Indo-West Pacific: implications for divergence, connectivity and conservation. J Molluscan Stud 82:403–414
    Google Scholar 

    Huyghe F, Kochzius M (2018) Sea surface currents and geographic isolation shape the genetic population structure of a coral reef fish in the Indian Ocean. PLoS ONE 13(3):e0193825
    Google Scholar 

    Iacchei M, Gaither MR, Bowen BW, Toonen RJ (2016) Testing dispersal limits in the sea: range-wide phylogeography of the pronghorn spiny lobster Panulirus penicillatus. J Biogeogr 43(5):1032–1044
    Google Scholar 

    Isomura N, Nishihira M (2001) Size variation of planulae and its effect on the lifetime of planulae in three pocilloporid corals. Coral Reefs 20:309–315
    Google Scholar 

    Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. J Bioinform 24(11):1403–1405

    Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17(18):4015–4026

    Kochzius M, Blohm D (2005) Genetic population structure of the lionfish Pterois miles (Scorpaenidae, Pteroinae) in the Gulf of Aqaba and northern Red Sea. Gene 347(2):295–301

    Lutjeharms J, Bornman T (2010) The importance of the greater Agulhas Current is increasingly being recognised. S Afr J Sci 106(3/4):1–4
    Google Scholar 

    Maier E, Tollrian R, Rinkevich B, Nurnberger B (2005) Isolation by distance in the scleractinian coral Seriatopora hystrix from the Red Sea. Mar Biol 147(5):1109–1120
    Google Scholar 

    Marshall P, Baird AH (2000) Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. Coral Reefs 19(2):155–163
    Google Scholar 

    McClanahan TR, Ateweberhan M, Graham N, Wilson S, Sebastian C, Guillaume M et al. (2007a) Western Indian Ocean coral communities: bleaching responses and susceptibility to extinction. Mar Ecol Prog Ser 337:1–13

    McClanahan TR, Ateweberhan M, Darling ES, Graham NAJ, Muthiga NA (2014) Biogeography and change among regional coral communities across the Western Indian Ocean. PLoS ONE 9(4):e93385
    Google Scholar 

    McClanahan TR, Ateweberhan M, Muhando CA, Maina J, Mohammed SM (2007b) Effects of climate and seawater temperature variation on coral bleaching and mortality. Ecol Monogr 77(4):503–525
    Google Scholar 

    McClanahan TR, Maina JM, Muthiga NA (2011) Associations between climate stress and coral reef diversity in the western Indian Ocean. Glob Change Biol 17(6):2023–2032
    Google Scholar 

    McClanahan TR, Muthiga NA, Mangi S (2001) Coral and algal changes after the 1998 coral bleaching: interaction with reef management and herbivores on Kenyan reefs. Coral Reefs 19(4):380–391
    Google Scholar 

    McLeod E, Anthony KRN, Mumby PJ, Maynard J, Beeden R, Graham NAJ et al. (2019) The future of resilience-based management in coral reef ecosystems. J Environ Manag 233:291–301
    Google Scholar 

    Motta H, Pereira MAM, Gonçalves M, Ridgway T, Schleyer MH (2002) Mozambique coral reef management programme. MICOA/CORDIO/ORI/WWF, Maputo, p 31

    Nakajima Y, Nishikawa A, Iguchi A, Nagata T, Uyeno D, Sakai K et al. (2017) Elucidating the multiple genetic lineages and population genetic structure of the brooding coral Seriatopora (Scleractinia: Pocilloporidae) in the Ryukyu Archipelago. Coral Reefs 36(2):415–426
    Google Scholar 

    Nakajima Y, Nishikawa A, Iguchi A, Sakai K (2010) Gene flow and genetic diversity of a broadcast-spawning coral in northern peripheral populations. PLoS ONE 5:e11149
    Google Scholar 

    Nehemia A, Ngendu Y, Kochzius M (2019) Genetic population structure of the mangrove snails Littoraria subvittata and L. pallescens in the Western Indian Ocean. J Exp Mar Biol Ecol 514-515:27–33
    Google Scholar 

    Obura DO (2012) The diversity and biogeography of Western Indian Ocean reef-building corals. PLoS ONE 7(9):e45013
    CAS  Google Scholar 

    Obura DO, Bandeira SO, Bodin N, Burgener V, Braulik G, Chassot E, et al. (2019) The Northern Mozambique Channel. In: Sheppard W (ed.) World seas: an environmental evaluation. Academic Press, Cambridge. pp 75–99

    Obura DO, Bigot L, Benzoni F (2018) Coral responses to a repeat bleaching event in Mayotte in 2010. PeerJ 6:e5305
    Google Scholar 

    Obura DO, Gudka M, Rabi FA, Gian SB, Bijoux J, Freed S et al. (2017) Coral reef status report for the Western Indian Ocean. Global Coral Reef Monitoring Network (GCRMN)/International Coral Reef Initiative (ICRI). pp 1–144

    Palumbi S (2003) Population genetics, demographic connectivity, and the design of marine reserves. Ecol Appl 13:146–158
    Google Scholar 

    Peakall R, Smouse P (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28(19):2537–2539
    CAS  Google Scholar 

    Peery MZ, Kirby R, Reid BN, Stoelting R, Doucet-Bëer E, Robinson S, Vásquez-Carillo C, Pauli JN, Palsbøll PJ (2012) Reliability of genetic bottleneck tests for detecting recent population declines. Mol Ecol 21:3403–3418
    Google Scholar 

    Pinzón JH, Sampayo E, Cox E, Chauka LJ, Chen CA, Voolstra CR et al. (2013) Blind to morphology: genetics identifies several widespread ecologically common species and few endemics among Indo-Pacific cauliflower corals (Pocillopora, Scleractinia). J Biogeogr 40(8):1595–1608
    Google Scholar 

    Prasetia R, Sinniger F, Hashizume K, Harii S (2017) Reproductive biology of the deep brooding coral Seriatopora hystrix: implications for shallow reef recovery. PLoS ONE 12(5):e0177034
    Google Scholar 

    Pritchard J, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959
    CAS  Google Scholar 

    Ramanantsoa JD, Penven P, Krug M, Gula J, Rouault M (2018) Uncovering a new current: The Southwest Madagascar Coastal Current. Geophys Res Lett 45(4):1930–1938
    Google Scholar 

    Ratsimbazafy HA, Kochzius M (2018) Restricted gene flow among Western Indian Ocean populations of the mangrove whelk Terebralia palustris (Linnaeus, 1767) (Caenogastropoda: Potamididae). J Molluscan Stud 84:163–169
    Google Scholar 

    Richards ZT, Berry O, van Oppen MJH (2016) Cryptic genetic divergence within threatened species of Acropora coral from the Indian and Pacific Oceans. Conserv Genet 17:577–591
    Google Scholar 

    Ridgway T, Riginos C, Davis J, Hoegh-Guldberg O (2008) Genetic connectivity patterns of Pocillopora verrucosa in southern African Marine Protected Areas. Mar Ecol Prog Ser 354:161–168
    Google Scholar 

    Roberts CM, Shepherd ARD, Ormond RFG (1992) Large-scale variation in assemblage structure of Red-Sea butterflyfishes and angelfishes. J Biogeogr 19(3):239–250
    Google Scholar 

    Rumisha C, Huyghe F, Rapanoel D, Mascaux N, Kochzius M (2017) Genetic diversity and connectivity in the East African giant mud crab Scylla serrata: Implications for fisheries management. PLoS ONE 12(10):e0186817
    Google Scholar 

    Schleyer MH, Celliers L (2000) A survey of the coral reefs at Ilha Caldeira in the Segundas Archipelago, Mozambique, and an assessment of the marine environment impacts of a proposed heavy minerals mine. South African Association for Marine Biological Research, vol 190, Durban, 1–18

    Schleyer MH, Celliers L (2005) The coral reefs of Bazaruto Island, Mozambique, with recommendations for their management. West Indian Ocean J Mar Sci 4:227–236
    Google Scholar 

    Schmidt-Roach S, Miller KJ, Lundgren P, Andreakis N (2014) With eyes wide open: a revision of species within and closely related to the Pocillopora damicornis species complex (Scleractinia; Pocilloporidae) using morphology and genetics. Zool J Linn Soc 170(1):1–33
    Google Scholar 

    Schott F, McCreary J (2001) The monsoon circulation of the Indian Ocean. Prog Oceanogr 51(1):1–123
    Google Scholar 

    Shearer TL, Coffroth MA (2008) Barcoding corals: limited by interspecific divergence, not intraspecific variation. Mol Ecol Resour 8(2):247–255
    CAS  Google Scholar 

    Sheets EA, Warner PA, Palumbi SR (2018) Accurate population genetic measurements require cryptic species identification in corals. Coral Reefs 37(2):549–563
    Google Scholar 

    Siddall M, Rohling EJ, Almogi-Labin A, Hemleben C, Meischner D, Schmelzer I et al. (2003) Sea-level fluctuations during the last glacial cycle. Nature 423(6942):853–858
    CAS  Google Scholar 

    Sofianos SS, Johns WE (2003) An Oceanic General Circulation Model (OGCM) investigation of the Red Sea circulation: 2. Three-dimensional circulation in the Red Sea. J Geophys Res Oceans 108(C3):15
    Google Scholar 

    Souter P, Grahn M (2008) Spatial genetic patterns in lagoonal, reef-slope and island populations of the coral Platygyra daedalea in Kenya and Tanzania. Coral Reefs 27(2):433–439
    Google Scholar 

    Souter P, Henriksson O, Olsson N, Grahn M (2009) Patterns of genetic structuring in the coral Pocillopora damicornis on reefs in East Africa. BMC Ecol 9(19):13
    Google Scholar 

    Spalding MD, Fox HE, Halpern BS, McManus MA, Molnar J, Allen GR et al. (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57(7):573–583
    Google Scholar 

    Spöri Y, Flot JF (2020) HaplowebMaker and CoMa: two web tools to delimit species using haplowebs and conspecificity matrices. Methods Ecol Evol. https://doi.org/10.1111/2041-210X.13454

    Stephens M, Scheet P (2005) Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet 76(3):449–462
    CAS  Google Scholar 

    Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68(4):978–989
    CAS  Google Scholar 

    Underwood JN, Smith LD, van Oppen MJH, Gilmour JP (2007) Multiple scales of genetic connectivity in a brooding coral on isolated reefs following catastrophic bleaching. Mol Ecol 16(4):771–784
    CAS  Google Scholar 

    Underwood JN, Smith LD, van Oppen MJH, Gilmour JP (2009) Ecologically relevant dispersal of corals on isolated reefs: implications for managing resilience. Ecol Appl 19(1):18–29
    Google Scholar 

    van der Ven RM, Triest L, De Ryck DJR, Mwaura JM, Mohammed MS, Kochzius M (2016) Population genetic structure of the stony coral Acropora tenuis shows high but variable connectivity in East Africa. J Biogeogr 43(3):510–519
    Google Scholar 

    van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4(3):535–538
    Google Scholar 

    van Oppen MJH, Bongaerts P, Underwood JN, Peplow LM, Cooper TF (2011) The role of deep reefs in shallow reef recovery: an assessment of vertical connectivity in a brooding coral from west and east Australia. Mol Ecol 20(8):1647–1660
    Google Scholar 

    van Oppen MJH, Gates RD (2006) Conservation genetics and the resilience of reef-building corals. Mol Ecol 15:3863–3883
    Google Scholar 

    van Oppen MJH, Lutz A, De’ath G, Peplow L, Kininmonth S (2008) Genetic traces of recent long-distance dispersal in a predominantly self-recruiting coral. PLoS ONE 3(10):e3401
    Google Scholar 

    Veron JEN (2000) Corals of the world. Australian Institute of Marine science, Townsville

    Vogler C, Benzie J, Lessios H, Barber PH, Wörheide G (2008) A threat to coral reefs multiplied? Four species of crown-of-thorns starfish. Biol Lett 4(6):696–699
    Google Scholar 

    Vollmer SV, Palumbi SR (2002) Hybridization and the evolution of reef coral diversity. Science 296:2023–2025
    CAS  Google Scholar 

    Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10(1):249–256
    CAS  Google Scholar 

    Warner PA, van Oppen MJH, Willis BL (2015) Unexpected cryptic species diversity in the widespread coral Seriatopora hystrix masks spatial-genetic patterns of connectivity. Mol Ecol 24(12):2993–3008
    Google Scholar 

    Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population-structure. Evolution 38(6):1358–1370

    Wilkinson C (2002) Status of coral reefs of the world. Coral Reef Monitoring Network, Townsville
    Google Scholar 

    Wörheide G, Epp LS, Macis L (2008) Deep genetic divergences among Indo-Pacific populations of the coral reef sponge Leucetta chagosensis (Leucettidae): founder effects, vicariance, or both? BMC Evol Biol 8:24 More

  • in

    Long-term survey of sea turtles (Caretta caretta) reveals correlations between parasite infection, feeding ecology, reproductive success and population dynamics

    1.
    Brooks, D. R. & Hoberg, E. P. How will global climate change affect parasite-host assemblages?. Trends Parasitol. 23, 571–574 (2007).
    PubMed  Article  PubMed Central  Google Scholar 
    2.
    Brunner, F. S. & Eizaguirre, C. Can environmental change affect host/parasite-mediated speciation?. Zoology 119, 384–394 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    3.
    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    4.
    Lachish, S., Knowles, S. C. L., Alves, R., Wood, M. J. & Sheldon, B. C. Infection dynamics of endemic malaria in a wild bird population: parasite species-dependent drivers of spatial and temporal variation in transmission rates. J. Anim. Ecol. 80, 1207–1216 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    5.
    Lachish, S., Knowles, S. C. L., Alves, R., Wood, M. J. & Sheldon, B. C. Fitness effects of endemic malaria infections in a wild bird population: the importance of ecological structure. J. Anim. Ecol. 80, 1196–1206 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    6.
    Coltman, D. W., Pilkington, J. G., Smith, J. A. & Pemberton, J. M. Parasite-mediated selection against inbred Soay sheep in a free-living, island population. Evolution 53, 1259–1267 (1999).
    Google Scholar 

    7.
    Harvell, C. D. et al. Climate warming and disease risks for terrestrial and marine biota. Science 296, 2158–2162 (2002).
    ADS  CAS  Article  Google Scholar 

    8.
    Goedknegt, M. A., Welsh, J. E., Drent, J. & Thieltges, D. W. Climate change and parasite transmission: how temperature affects parasite infectivity via predation on infective stages. Ecosphere 6, 1–9 (2015).
    Article  Google Scholar 

    9.
    Watson, M. J. What drives population-level effects of parasites? Meta-analysis meets life-history. Int. J. Parasitol. Parasites Wildl. 2, 190–196 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    10.
    De Castro, F. & Bolker, B. Mechanisms of disease-induced extinction. Ecol. Lett. 8, 117–126 (2005).
    Article  Google Scholar 

    11.
    Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459–1463 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    McCallum, H. & Dobson, A. Detecting disease and parasite threats to endangered species and ecosystems. Trends Ecol. Evol. 10, 190–194 (1995).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Godwin, S. C., Dill, L. M., Reynolds, J. D. & Krkošek, M. Sea lice, sockeye salmon, and foraging competition: Lousy fish are lousy competitors. Can. J. Fish. Aquat. Sci. 72, 1113–1120 (2015).
    Article  Google Scholar 

    14.
    Werner, E. E. & Anholt, B. R. Ecological consequences of the trade-off between growth and mortality rates mediated by foraging activity. Am. Nat. 142, 242–272 (1993).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Simpson, S. J., Sibly, K. P. L., Behmer, S. T. & Raubenheimer, D. Optimal foraging when regulating intake of multiple nutrients. Anim. Behav. 68, 1299–1311 (2004).
    Article  Google Scholar 

    16.
    Povey, S., Cotter, S. C., Simpson, S. J., Lee, K. P. & Wilson, K. Can the protein costs of bacterial resistance be offset by altered feeding behaviour?. J. Anim. Ecol. 78, 437–446 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    17.
    Brunner, F. S., Anaya-Rojas, J. M., Matthews, B. & Eizaguirre, C. Experimental evidence that parasites drive eco-evolutionary feedbacks. Proc. Natl. Acad. Sci. 114, 3678–3683 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Milinski, M. Parasites determine a predator’s optimal feeding strategy. Behav. Ecol. Sociobiol. 15, 35–37 (1984).
    Article  Google Scholar 

    19.
    Herbst, L. H. Fibropapillomatosis of marine turtles. Annu. Rev. Fish Dis. 4, 389–425 (1994).
    Article  Google Scholar 

    20.
    Aguirre, A. & Lutz, P. L. Marine turtles as sentinels of ecosystem health: is fibropapillomatosis an indicator?. EcoHealth 1, 275–283 (2004).
    Google Scholar 

    21.
    Médoc, V., Piscart, C., Maazouzi, C., Simon, L. & Beisel, J. N. Parasite-induced changes in the diet of a freshwater amphipod: field and laboratory evidence. Parasitology 138, 537–546 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    22.
    Britton, J. R. & Andreou, D. Parasitism as a driver of trophic niche specialisation. Trends Parasitol. 32, 437–445 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    23.
    Rabinovich, J. E. et al. Ecological patterns of blood-feeding by kissing-bugs (Hemiptera: Reduviidae: Triatominae). Mem. Inst. Oswaldo Cruz 106, 479–494 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    24.
    Post, D. M. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703–718 (2002).
    Article  Google Scholar 

    25.
    Lochmiller, R. L. & Deerenberg, C. Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos 18, 87–98 (2000).
    Article  Google Scholar 

    26.
    Durso, A. M. & French, S. S. Stable isotope tracers reveal a trade-off between reproduction and immunity in a reptile with competing needs. Funct. Ecol. 32, 648–656 (2018).
    Article  Google Scholar 

    27.
    Richner, H., Oppliger, A. & Christe, P. Effect of an ectoparasite on reproduction in great tits. J. Anim. Ecol. 62, 703–710 (1993).
    Article  Google Scholar 

    28.
    Eizaguirre, C., Yeates, S. E., Lenz, T. L., Kalbe, M. & Milinski, M. MHC-based mate choice combines good genes and maintenance of MHC polymorphism. Mol. Ecol. 18, 3316–3329 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Schwanz, L. E. Persistent effects of maternal parasitic infection on offspring fitness: implications for adaptive reproductive strategies when parasitized. Funct. Ecol. 22, 691–698 (2008).
    Article  Google Scholar 

    30.
    Kalbe, M. et al. Lifetime reproductive success is maximized with optimal major histocompatibility complex diversity. Proc. R. Soc. B Biol. Sci. 276, 925–934 (2009).
    Article  Google Scholar 

    31.
    Duffield, K. R., Bowers, E. K., Sakaluk, S. K. & Sadd, B. M. A dynamic threshold model for terminal investment. Behav. Ecol. Sociobiol. 71, 185 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    32.
    Hurd, H. Host fecundity reduction: a strategy for damage limitation?. Trends Parasitol. 17, 363–368 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Uller, T., Isaksson, C. & Olsson, M. Immune challenge reduces reproductive output and growth in a lizard. Funct. Ecol. 20, 873–879 (2006).
    Article  Google Scholar 

    34.
    Velando, A., Drummond, H. & Torres, R. Senescent birds redouble reproductive effort when ill: confirmation of the terminal investment hypothesis. Proc. R. Soc. B Biol. Sci. 273, 1443–1448 (2006).
    Article  Google Scholar 

    35.
    Kaufmann, J., Lenz, T. L., Milinski, M. & Eizaguirre, C. Experimental parasite infection reveals costs and benefits of paternal effects. Ecol. Lett. 17, 1409–1417 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    36.
    Pigeault, R., Garnier, R., Rivero, A. & Gandon, S. Evolution of transgenerational immunity in invertebrates. Proc. R. Soc. B Biol. Sci. 283, 20161136 (2016).
    Article  CAS  Google Scholar 

    37.
    Roth, O., Beemelmanns, A., Barribeau, S. M. & Sadd, B. M. Recent advances in vertebrate and invertebrate transgenerational immunity in the light of ecology and evolution. Heredity (Edinb). 121, 225–238 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    38.
    Mcgowin, A. E. et al. Genetic barcoding of marine leeches (Ozobranchus spp.) from Florida sea turtles and their divergence in host specificity. Mol. Ecol. Resour. 11, 271–278 (2011).
    CAS  PubMed  Article  Google Scholar 

    39.
    Davies, R. W. & Chapman, C. G. First record from North America of the Piscicolid Leech, Ozobranchus margoi, a parasite of Marine Turtles. J. Fish. Res. Board Canada 31, 104–106 (1974).
    Article  Google Scholar 

    40.
    Bunkley-Williams, L. et al. New leeches and diseases for the hawksbill sea turtle and the West Indies. Comp. Parasitol. 75, 263–270 (2008).
    Article  Google Scholar 

    41.
    Greenblatt, R. J. et al. Genomic variation of the fibropapilloma-associated marine turtle herpesvirus across seven geographic areas and three host species. J. Virol. 79, 1125–1132 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Jones, K., Ariel, E., Burgess, G. & Read, M. A review of fibropapillomatosis in green turtles (Chelonia mydas). Vet. J. 212, 48–57 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Marco, A., Abella, E., Martins, S., López, O. & Medina, M. Abundance and exploitation of loggerhead turtles nesting in Boa Vista island, Cape Verde: the only substantial rookery in the eastern Atlantic. Anim. Conserv. 15, 351–360 (2012).
    Article  Google Scholar 

    44.
    Stiebens, V. A. et al. Living on the edge: how philopatry maintains adaptive potential. Proc. R. Soc. 280, 1–9 (2013).
    Google Scholar 

    45.
    Baltazar-Soares, M. et al. Distribution of genetic diversity reveals colonization and philopatry of the loggerhead sea turtles across geographic scales. Sci. Rep. https://doi.org/10.1038/s41598-020-74141-6 (2020).
    Article  Google Scholar 

    46.
    Light, J. E. & Siddall, M. E. Phylogeny of the Leech family glossiphoniidae based on mitochondrial gene sequences and morphological data. J. Parasitol. 85, 815–823 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499 (1988).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Cameron, S. J. K. et al. Diversity of feeding strategies in loggerhead sea turtles from the Cape Verde archipelago. Mar. Biol. 166, 130 (2019).
    Article  Google Scholar 

    49.
    Scott, R., Biastoch, A., Roder, C., Stiebens, V. A. & Eizaguirre, C. Nano-tags for neonates and ocean-mediated swimming behaviours linked to rapid dispersal of hatchling sea turtles. Proc. R. Soc. 281, 20141209 (2014).
    Google Scholar 

    50.
    Maulany, R. I., Booth, D. T. & Baxter, G. S. The effect of incubation temperature on hatchling quality in the olive ridley turtle, Lepidochelys olivacea, from Alas Purwo National Park, East Java, Indonesia: Implications for hatchery management. Mar. Biol. 159, 2651–2661 (2012).
    Article  Google Scholar 

    51.
    Hays, G. C. & Speakman, J. R. Clutch size for Mediterranean loggerhead turtles (Caretta caretta). J. Zool. 226, 321–327 (1992).
    Article  Google Scholar 

    52.
    Rodenbusch, C. R., Marks, F. S., Canal, C. W. & Reck, J. Marine leech Ozobranchus margoi parasitizing loggerhead turtle (Caretta caretta) in Rio Grande do Sul Brazil. Rev. Bras. Parasitol. Vet. 21, 301–303 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    53.
    Eder, E. et al. Foraging dichotomy in loggerhead sea turtles Caretta caretta off northwestern Africa. Mar. Ecol. Prog. Ser. 470, 113–122 (2012).
    ADS  Article  Google Scholar 

    54.
    Decaestecker, E. et al. Host-parasite ‘Red Queen’ dynamics archived in pond sediment. Nature 450, 870–873 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Van Velan, L. A new evolutionary law. Evol. Theory 1, 1–30 (1973).
    Google Scholar 

    56.
    Altizer, S. et al. Seasonality and the dynamics of infectious diseases. Ecol. Lett. 9, 467–484 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    57.
    Greenblatt, R. J. et al. The Ozobranchus leech is a candidate mechanical vector for the fibropapilloma-associated turtle herpesvirus found latently infecting skin tumors on Hawaiian green turtles (Chelonia mydas). Virology 321, 101–110 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Bertrand, M., Marcogliese, D. J. & Magnan, P. Trophic polymorphism in brook charr revealed by diet, parasites and morphometrics. J. Fish Biol. 72, 555–572 (2008).
    Article  Google Scholar 

    59.
    Venesky, M. D., Parris, M. J. & Storfer, A. Impacts of Batrachochytrium dendrobatidis infection on tadpole foraging performance. EcoHealth 6, 565–575 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    60.
    Naug, D. Infected honeybee foragers incur a higher loss in efficiency than in the rate of energetic gain. Biol. Lett. 10, 1–4 (2014).
    Article  Google Scholar 

    61.
    Frick, M. G., Williams, K. L., Bolten, A. B., Bjorndal, K. A. & Martins, H. R. Foraging ecology of oceanic-stage loggerhead turtles Caretta caretta. Endanger. Species Res. 9, 91–97 (2009).
    Article  Google Scholar 

    62.
    Hawkes, L. A. et al. Phenotypically linked dichotomy in sea turtle foraging requires multiple conservation approaches. Curr. Biol. 16, 990–995 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    63.
    Zuk, M. & Stoehr, A. M. Immune defense and host life history. Am. Nat. 160, S9–S22 (2002).
    PubMed  Article  PubMed Central  Google Scholar 

    64.
    Bonneaud, C. et al. Assessing the cost of mounting an immune response. Am. Nat. 161, 367–379 (2003).
    PubMed  Article  PubMed Central  Google Scholar 

    65.
    Omeyer, L. C. M., Godley, B. J. & Broderick, A. C. Growth rates of adult sea turtles. Endanger. Species Res. 34, 357–371 (2017).
    Article  Google Scholar 

    66.
    Agnew, P., Koella, J. C. & Michalakis, Y. Host life history responses to parasitism. Microbes Infect. 2, 891–896 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    Sorci, G., Massot, M. & Clobert, J. Maternal parasite load increases sprint speed and philopatry in female offspring of the common lizard. Am. Nat. 144, 153–164 (1994).
    Article  Google Scholar 

    68.
    Booth, D. T., Feeney, R. & Shibata, Y. Nest and maternal origin can influence morphology and locomotor performance of hatchling green turtles (Chelonia mydas) incubated in field nests. Mar. Biol. 160, 127–137 (2013).
    Article  Google Scholar  More

  • in

    Seascape connectivity of European anchovy in the Central Mediterranean Sea revealed by weighted Lagrangian backtracking and bio-energetic modelling

    Ichthyoplanktonic dataset
    Spatial distribution of anchovy early-life stage was estimated from ichthyoplanktonic surveys in the GSA 16 from 2009 to 2012. During each survey, the same systematic sampling was carried out following a regular grid of stations (1/10° × 1/10° on the continental shelf and 1/5° × 1/5° further offshore). Mesozooplanktonic samples were collected in the study area using a bongo net (40-cm opening) towed obliquely from the surface to a 100-m depth, equipped with a 200-µm mesh size net. In each tow, the volume of filtered water was estimated using mechanical flowmeters (General Oceanics Inc., FL, USA). Over the period included in the analyses for anchovy eggs data, the average number of sampling stations was 154.
    Samples were immediately fixed after collection and preserved in a 70% alcohol solution for further analysis in laboratory by stereomicroscopy. Anchovy larvae were identified in a land-based laboratory and otoliths were extracted for the age determination. Both sagittae were extracted using insect pins and fixed on a slide using a mounting medium for microscopy. Daily rings were counted at 1000× magnification (oil immersion) starting from the spawning mark31; each otolith was read blind (i.e., with no size or collection location information available) by a single reader43. When all otoliths were completed, the process was repeated. If the difference in age between the 2 readings was {rho }_{min}^{Chl}), where ({rho }_{min}^{Chl}=frac{1}{2}K) and (K) = 0.09 mg m−3, i.e., half of the saturation value for anchovy larvae feeding50.
    This idea is justified by the relationship between the pelagic growth rate and the Chlorophyll concentration: only those individuals that travel within Chlorophyll-rich marine waters have a significant survival probability. In this way, we have a criterion to rule out all the final positions of the simulated backward trajectories, which have poor or null Chlorophyll content.
    Bioenergetic modeling
    DEB represents a reliable and powerful tool to mechanistically describe the whole life cycle of an organism individual performance and to make predictions of life-history traits27, 40,50,51,52. In particular, DEB is a complex mechanistic model that relies on several differential equations that are solved to obtain the final amount of energy allocated to vital functions, such as metabolic maintenance and to growth and reproduction53. Here we adapted this model to the European anchovy and we adopted the standard version of the DEB model, which considers one reserve, one structure compartment and isomorphic growth54.
    The energy gathered through feeding processes is stored in a reserve pool, from which it is allocated according to the κ-rule: part of the energy (κ) sustains the somatic tissues and the growth of structures, while the rest (1 − κ) maintains the maturity level and maturation or gamete production in adults. Temperature controls the rates of all energetic flows and it follows the Arrhenius rules within the thermal-tolerance range26,54,55. The Type II functional response56 instead models the relationship between food density and ingestion rate54. DEB theory therefore allows, through the explicit modeling of energy and mass fluxes through organisms, to derivate individual performance in terms of the most important life-history traits of a species such as, for instance, the total reproductive output (TRO) and maximum length.
    In the present study, we followed a well-tested spatially explicit contextualized approach already successfully adopted in several companion studies27,40,57. This approach consists in running DEB models in each spatial pixel of the study area using organismal body temperature (which is assumed to be similar to the Sea Surface Temperature, as extracted through satellite imagery for every single pixel) and environmental food availability. Food availability was expressed as density (wet mass mg m−3), which for anchovy primarily comprise zooplankton, and obtained as a spatially continuous dataset on the distribution of food throughout the study area40. Nevertheless, to run DEB model in each pixel with local temperature and food density is a long computational process. Thus, due to the large number of pixels of the study area, we moved the standard DEB model from the original Kooijman’s Matlab code (https://www.bio.vu.nl/thb/)—once adapted it using anchovy DEB parameters40—to an R code. In doing so, we were able to automatize and speed up the process since R coding improve the computational effort and allows running DEB models at larger spatial and temporal scales27,40,58. The coding re-arrangement was performed by the Ecology Lab of the University of Palermo, which is one among the DEB node of the DEB world net (https://www.debtheory.org/wiki/index.php?title=DEBnet).
    Our simulations were restricted to the continental shelf, based on depth (from 0 to 200 m below sea level). A vector polygon grid feature class of 346 square cells (having a size of 0.11° × 0.11° [~ 150 km2]) covering the study area was used. Food availability is an important forcing of the model and, for anchovy, primarily comprises zooplankton52. Since locally collected data for zooplankton were spatially and temporally fragmented due to sampling effort, we followed the recent approach proposed by Strömberg et al.59 and applied by Mangano et al.28,40 to obtain a continuous (space and time wise) dataset on the distribution of food throughout the study area and across time (i.e. weekly Net Primary Productivity was transformed into wet mass of zooplankton). Due to the short life span of the anchovy (~ 4 years), we extracted daily sea surface temperatures (SST; 1 km resolution) from JPL MUR SST data (2010) (https://podaac.jpl.nasa.gov/Multi-scale_Ultra-high_Resolution_MUR-SST) over a time range of 4 years (2009–2012) for each cell (see the recent proof of concept by Mangano et al.40 for a detailed presentation of the model and its validation).
    TRO values are validated by using in situ data, collected during ad-hoc oceanographic surveys40. This approach assumes stationarity in biological parameters (i.e. DEB parameter values estimated for populations in one location/time are valid for populations elsewhere). We adopted the DEB parameters designed for the Mediterranean anchovy by Pethybridge et al.50, the degree of uncertainty of our simulations was low (see Fig. 2 in Mangano et al.40) and sufficiently robust to allow reliable predictions of anchovy life-history traits. We are aware that phenotypic plasticity and/or local adaptation have the potential to increase the degree of uncertainty of modeling outcomes and we suggest the use of DEB parameters values that, to the extent possible, realistically match those of local populations rather than global (species specific) parameters. More

  • in

    Treeline ecotones shape the distribution of avian species richness and functional diversity in south temperate mountains

    1.
    Pearse, W. D. et al. Building up biogeography: pattern to process. J. Biogeogr. 45, 1223–1230 (2018).
    Article  Google Scholar 
    2.
    Wiens, J. J. The niche, biogeography and species interactions. Philos. Trans. R. Soc. 366, 2336–2350 (2011).
    Article  Google Scholar 

    3.
    Blyth, S., Groombridge, B., Lysenko, I., Miles, L. & Newton, A. Mountain watch: environmental change and sustainable developmental in mountains. UNEP World Conserv. Monit. Centre https://doi.org/10.5962/bhl.title.44936 (2002).
    Article  Google Scholar 

    4.
    Nagy, L. & Grabherr, G. The Biology of Alpine Habitats (Oxford University Press, Oxford, 2009).
    Google Scholar 

    5.
    Boyle, W. A., Sandercock, B. K. & Martin, K. Patterns and drivers of intraspecific variation in avian life history along elevational gradients: a meta-analysis. Biol. Rev. 91, 469–482 (2016).
    Article  Google Scholar 

    6.
    Martin, K. et al. Effects of severe weather on reproduction for sympatric songbirds in an alpine environment: interactions of climate extremes influence nesting success. Auk 134, 696–709 (2017).
    Article  Google Scholar 

    7.
    Freeman, B. G., Lee-Yaw, J. A., Sunday, J. M. & Hargreaves, A. L. Expanding, shifting and shrinking: the impact of global warming on species’ elevational distributions. Glob. Ecol. Biogeogr. https://doi.org/10.1111/geb.12774 (2018).
    Article  Google Scholar 

    8.
    Scridel, D. et al. A review and meta-analysis of the effects of climate change on Holarctic mountain and upland bird populations. Ibis (Lond. 1859) 160, 489–515 (2018).
    Article  Google Scholar 

    9.
    Rabosky, D. L. & Hurlbert, A. H. Species richness at continental scales is dominated by ecological limits. Am. Nat. 185, 572–583 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    10.
    Ibarra, J. T. & Martin, K. Biotic homogenization: loss of avian functional richness and habitat specialists in disturbed Andean temperate forests. Biol. Conserv. 192, 418–427 (2015).
    Article  Google Scholar 

    11.
    MacArthur, R. H. & MacArthur, J. W. On bird species diversity. Ecology 42, 594–598 (1961).
    Article  Google Scholar 

    12.
    Terborgh, J. Distribution on environmental gradients: theory and a preliminary interpretation of distributional patterns in the avifauna of the cordillera vilcabamba, Peru. Ecology 52, 23–40 (1971).
    Article  Google Scholar 

    13.
    Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J. & Wang, G. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr. Comp. Biol. 46, 5–17 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    14.
    Jankowski, J. E., Ciecka, A. L., Meyer, N. Y. & Rabenold, K. N. Beta diversity along environmental gradients: Implications of habitat specialization in tropical montane landscapes. J. Anim. Ecol. 78, 315–327 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    15.
    Jankowski, J. E. et al. The relationship of tropical bird communities to tree species composition and vegetation structure along an Andean elevational gradient. J. Biogeogr. 40, 950–962 (2013).
    Article  Google Scholar 

    16.
    Janzen, D. H. Why mountain passes are higher in the tropics?. Am. Nat. 101, 233–249 (1967).
    Article  Google Scholar 

    17.
    Freeman, B. G. Lower elevation animal species do not tend to be better competitors than their higher elevation relatives. Glob. Ecol. Biogeogr. https://doi.org/10.1111/geb.13014 (2019).
    Article  Google Scholar 

    18.
    He, X., Luo, K., Brown, C. & Lin, L. A taxonomic, functional, and phylogenetic perspective on the community assembly of passerine birds along an elevational gradient in southwest China. Ecol. Evol. 8, 2712–2720 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Terborgh, J. & Weske, J. S. The role of competition in the distribution of Andean birds. Ecology 56, 562–576 (1975).
    Article  Google Scholar 

    20.
    Vuilleumier, F. Forest birds of patagonia: ecological geography, speciation, endemism, and faunal history. Ornithol. Monogr. https://doi.org/10.2307/40168287 (1985).
    Article  Google Scholar 

    21.
    Estades, C. F., Condor, T. & Aug, N. Bird-habitat relationships in a vegetational gradient in the andes of central Chile. Condor 99, 719–727 (1997).
    Article  Google Scholar 

    22.
    Meynard, C. N. & Quinn, J. F. Bird metacommunities in temperate South American forest: vegetation structure, area, and climate effects. Ecology 89, 981–990 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    23.
    Devictor, V. et al. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecol. Lett. 13, 1030–1040 (2010).
    PubMed  PubMed Central  Google Scholar 

    24.
    Díaz, S. & Cabido, M. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).
    Article  Google Scholar 

    25.
    Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).
    Article  Google Scholar 

    26.
    Flynn, D. F. B. et al. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 12, 22–33 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    27.
    Mayfield, M. M. et al. What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Glob. Ecol. Biogeogr. 19, 423–431 (2010).
    Google Scholar 

    28.
    Boersma, K. S. et al. Linking multidimensional functional diversity to quantitative methods: a graphical hypothesis-evaluation framework. Ecology 97, 583–593 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    29.
    Borges, S. H. et al. Dissecting bird diversity in the Pantepui area of endemism, northern South America. J. Ornithol. 159, 1073–1086 (2018).
    Article  Google Scholar 

    30.
    Herzog, S. K., Kessler, M. & Bach, K. The elevational gradient in Andean bird species richness at the local scale: a foothill peak and a high-elevation plateau. Ecography (Cop.) 28, 209–222 (2005).
    Article  Google Scholar 

    31.
    Araneda, P., Sielfeld, W., Bonacic, C. & Ibarra, J. T. Bird diversity along elevational gradients in the Dry Tropical Andes of northern Chile: the potential role of Aymara indigenous traditional agriculture. PLoS ONE 13, e0207544 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    32.
    Caviedes, J. & Ibarra, J. T. Influence of anthropogenic disturbances on stand structural complexity in Andean temperate forests: implications for managing key habitat for biodiversity. PLoS ONE 12, e0169450 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    33.
    Altamirano, T. A., Ibarra, J. T., Martin, K. & Bonacic, C. The conservation value of tree decay processes as a key driver structuring tree cavity nest webs in South American temperate rainforests. Biodivers. Conserv. 26, 2453–2472 (2017).
    Article  Google Scholar 

    34.
    Blake, J. G. & Loiselle, B. A. Diversity of birds along an elevational gradient in the Cordillera Central, Costa Rica. Auk 117, 663–686 (2000).
    Article  Google Scholar 

    35.
    Ibarra, J. T., Martin, M., Cockle, K. L. & Martin, K. Maintaining ecosystem resilience: Functional responses of tree cavity nesters to logging in temperate forests of the Americas. Sci. Rep. 7, 1–9 (2017).
    CAS  Article  Google Scholar 

    36.
    Ibarra, J. T. et al. Seasonal dynamics of avian guilds inside and outside core protected areas in an Andean Biosphere Reserve of southern Chile. Bird Study 64, 410 (2017).
    Article  Google Scholar 

    37.
    Lindenmayer, D. B. Conserving large old trees as small natural features. Biol. Conserv. 211, 51–59 (2017).
    Article  Google Scholar 

    38.
    Salguero-Gómez, R., Violle, C., Gimenez, O. & Childs, D. Delivering the promises of trait-based approaches to the needs of demographic approaches, and vice versa. Funct. Ecol. 32, 1424–1435. https://doi.org/10.1111/1365-2435.13148 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    39.
    Stork, N. E. et al. Consistency of effects of tropical-forest disturbance on species composition and richness relative to use of indicator taxa. Conserv. Biol. 31, 924–933 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Ibarra, J. T. & Martin, K. Beyond species richness: an empirical test of top predators as surrogates for functional diversity and endemism. Ecosphere 6, 1–15 (2015).
    Article  Google Scholar 

    41.
    Jankowski, J. E., Robinson, S. K. & Levey, D. J. Squeezed at the top: interspecific aggression may constrain elevational ranges in tropical birds. Ecology 91, 1877–1884 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    42.
    Mouchet, M. A., Villéger, S., Mason, N. W. H. & Mouillot, D. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct. Ecol. 24, 867–876 (2010).
    Article  Google Scholar 

    43.
    Huey, R. B., Hertz, P. E. & Sinervo, B. Behavioral drive versus behavioral inertia in evolution: a null model approach. Am. Nat. 161, 357–366 (2003).
    PubMed  Article  PubMed Central  Google Scholar 

    44.
    Martin, T. E. Evolutionary determinants of clutch size in cavity-nesting birds: nest predation or limited breeding opportunities?. Am. Nat. 142, 937–946 (1993).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Jackson, M. M., Gergel, S. E. & Martin, K. Effects of climate change on habitat availability and configuration for an endemic coastal alpine bird. PLoS ONE 10(11), e0142110. https://doi.org/10.1371/journal.pone.0146838 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    46.
    Martin, K. The ecological values of mountain environments and wildlife. In The Impacts of Skiing and Related Winter Recreational Activities on Mountain Environments (eds Rixen, C. & Rolando, A.) 3–29 (Bentham Science Publishers, Sharjah, 2013). https://doi.org/10.2174/9781608054886113010004.
    Google Scholar 

    47.
    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science (80-.) 333, 1024–1026 (2011).
    ADS  CAS  Article  Google Scholar 

    48.
    Harsch, M. A., Hulme, P. E., McGlone, M. S. & Duncan, R. P. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol. Lett. 12, 1040–1049 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    49.
    Braunisch, V. et al. Temperate mountain forest biodiversity under climate change: Compensating negative effects by increasing structural complexity. PLoS ONE 9, e97718 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    50.
    Boyle, W. A. & Martin, K. The conservation value of high elevation habitats to North American migrant birds. Biol. Conserv. 192, 461–476 (2015).
    Article  Google Scholar 

    51.
    Buckland, S. T. et al. Introduction to Distance Sampling: Estimating Abundance of Biological Populations (Oxford University Press, Oxford, 2001).
    Google Scholar 

    52.
    Bibby, C. J., Burgess, N. D., Hill, D. A. & Mustoe, S. Bird Census Techniques (Academic Press, Cambridge, 2000).
    Google Scholar 

    53.
    Petchey, O. L. & Gaston, K. J. Functional diversity: back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    54.
    Laiolo, P., Pato, J. & Obeso, J. R. Ecological and evolutionary drivers of the elevational gradient of diversity. Ecol. Lett. 21, 1022–1032 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    55.
    Ikin, K. et al. Avian functional responses to landscape recovery. Proc. R. Soc. B Biol. Sci. 286, 20190114 (2019).
    Article  Google Scholar 

    56.
    Barbe, L., Morel, R., Rantier, Y., Lebas, J. F. & Butet, A. Bird communities of a temperate forest: spatio-temporal partitioning between resident and migratory species. J. Ornithol. 159, 457–469 (2018).
    Article  Google Scholar 

    57.
    Luck, G. W., Carter, A. & Smallbone, L. Changes in bird functional diversity across multiple land uses: interpretations of functional redundancy depend on functional group identity. PLoS ONE 8, e63671 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
    Article  Google Scholar 

    59.
    Woodward, G. et al. Body size in ecological networks. Trends Ecol. Evol. 20, 402–409 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    60.
    Royle, J. A., Dawson, D. K. & Bates, S. Modelling abundance effects in distance sampling. Ecology 85, 1591–1597 (2004).
    Article  Google Scholar 

    61.
    Marques, T. A., Thomas, L., Fancy, S. G. & Buckland, S. T. Improving estimates of bird density using multiple-covariate distance sampling. Auk 124, 1229–1243 (2007).
    Article  Google Scholar 

    62.
    Chandler, R. Distance Sampling Analysis in Unmarked (ISGS Patuxent Wildlife Research Center, Laurel, 2014).
    Google Scholar 

    63.
    Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, 1–32. https://doi.org/10.7717/peerj.4794 (2018).
    Article  Google Scholar 

    64.
    Drever, M. C. & Martin, K. Response of woodpeckers to changes in forest health and harvest: Implications for conservation of avian biodiversity. For. Ecol. Manage. 259, 958–966 (2010).
    Article  Google Scholar 

    65.
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Ecological Modelling Vol. 172 (Springer-Verlag, Berlin, 2002).
    Google Scholar 

    66.
    Mason, N. W. H., Mouillot, D., Lee, W. G. & Wilson, J. B. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111, 112–118 (2005).
    Article  Google Scholar 

    67.
    De Cáceres, M., Legendre, P. & He, F. Dissimilarity measurements and the size structure of ecological communities. Methods Ecol. Evol. 4, 1167–1177 (2013).
    Article  Google Scholar 

    68.
    Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).
    MathSciNet  PubMed  MATH  Article  PubMed Central  Google Scholar 

    69.
    Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    70.
    R Core Team. R: a language and environment for statistical computing (2018).

    71.
    Jaksic, F. M. & Feinsinger, P. Bird assemblages in temperate forests of North and South America: a comparison of diversity, dynamics, guild structure, and resource use. Rev. Chil. Hist. Nat. 64, 491–510 (1991).
    Google Scholar 

    72.
    Martínez, D. & González, G. Aves de Chile. Guías de campo y breve historia natural (Ediciones del Naturalista, Madrid, 2017).
    Google Scholar 

    73.
    Altamirano, T. A. et al. Hábitos de nidificación de las aves del bosque templado andino de Chile (2012).

    74.
    Jaramillo, A., Burke, P. & Beadle, D. Birds of Chile (Christopher Helm, London, 2003).
    Google Scholar 

    75.
    Altamirano, T. A., Ibarra, J. T., de la Maza, M., Navarrete, S. A. & Bonacic, C. Reproductive life-history variation in a secondary cavity-nester across an elevational gradient in Andean temperate ecosystems. Auk 132, 826–835 (2015).
    Article  Google Scholar 

    76.
    Medrano, F., Barros, R., Norambuena, H. V., Matus, R. & Schmitt, F. Atlas de las aves nidificantes de Chile (Red de Observadores de Aves y Vida Silvestre de Chile, Chile, 2018).
    Google Scholar 

    77.
    del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. & Kirwan, G. Handbook of the birds of the World Alive (Lynx Editions, Barcelona, 2019).
    Google Scholar 

    78.
    Dunning, J. B. CRC Handbook of Avian Body Masses (CRC Press, London, 2007).
    Google Scholar  More

  • in

    Drivers of tropical soil invertebrate community composition and richness across tropical secondary forests using DNA metasystematics

    1.
    Trumbore, S., Brando, P. & Hartmann, H. Forest health and global change. Science 349, 814–818 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Gibbs, H. K. et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl. Acad. Sci. 107, 16732–16737 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    3.
    Laurance, W. F. Have we overstated the tropical biodiversity crisis?. Trends Ecol. Evol. 22, 65–70 (2007).
    PubMed  Article  Google Scholar 

    4.
    Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    5.
    Nottingham, A. T. et al. Climate warming and soil carbon in tropical forests: insights from an elevation gradient in the Peruvian Andes. Bioscience 65, 906–921 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    6.
    Seymour, F. & Busch, J. Why Forests? Why Now? The Science, Economics and Politics of Tropical Forests and Climate Change 1–450 (Center for Global Development, Washington, 2016).
    Google Scholar 

    7.
    de Quadros, P. D. et al. Coal mining practices reduce the microbial biomass, richness and diversity of soil. Appl. Soil Ecol. 98, 195–203 (2016).
    Article  Google Scholar 

    8.
    Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–426 (2000).
    Article  Google Scholar 

    10.
    Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639–e1501639 (2016).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    11.
    Chazdon, R. L. Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320, 1458–1460 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Chazdon, R. L. Tropical forest recovery: legacies of human impact and natural disturbances. Perspect. Plant Ecol. 6, 51–71 (2003).
    Article  Google Scholar 

    13.
    Arroyo-Rodríguez, V. et al. Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biol. Rev. 92, 326–340 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    14.
    Vashum, K. T., Kasomwoshi, T. & Jayakumar, S. Soil organic carbon sequestration potential of primary and secondary forests in Northeast India. Proc. Int. Acad. Ecol. Environ. Sci. 6, 67 (2016).
    CAS  Google Scholar 

    15.
    Uriarte, M. et al. Natural disturbance and human land use as determinants of tropical forest dynamics: results from a forest simulator. New Phytol. 79, 423–443 (2009).
    Google Scholar 

    16.
    Calderón, K. et al. Effectiveness of ecological rescue for altered soil microbial communities and functions. ISME J. 11, 272–283 (2017).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    17.
    Rodrigues, J. L. M. et al. Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proc. Natl. Acad. Sci. USA 110, 988–993 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Coyle, D. R. et al. Soil fauna responses to natural disturbances, invasive species, and global climate change: current state of the science and a call to action. Soil Biol. Biochem. 110, 116–133 (2017).
    CAS  Article  Google Scholar 

    19.
    Brussaard, L. Biodiversity and ecosystem functioning in soil. Ambio 26, 563–570 (1997).
    Google Scholar 

    20.
    Brussaard, L., de Ruiter, P. C. & Brown, G. G. Soil biodiversity for agricultural sustainability. Agric. Ecosyst. Environ. 121, 233–244 (2007).
    Article  Google Scholar 

    21.
    Lavelle, P. et al. Soil invertebrates and ecosystem services. Eur. J. Soil Biol. 42, S3–S15 (2006).
    Article  Google Scholar 

    22.
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).
    Article  Google Scholar 

    23.
    Eisenhauer, N., Sabais, A. C. W. & Scheu, S. Collembola species composition and diversity effects on ecosystem functioning vary with plant functional group identity. Soil Biol. Biochem. 43, 1697–1704 (2011).
    CAS  Article  Google Scholar 

    24.
    Griffiths, B. S., de Groot, G. A., Laros, I., Stone, D. & Geisen, S. The need for standardisation: exemplified by a description of the diversity, community structure and ecological indices of soil nematodes. Ecol. Indic. 87, 43–46 (2018).
    Article  Google Scholar 

    25.
    Mulder, C. Driving forces from soil invertebrates to ecosystem functioning: the allometric perspective. Naturwissenschaften 93, 467–479 (2006).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Menta, C. Soil fauna diversity. In Biodiversity Conservation and Utilization in a Diverse World (ed. Lameed, G. A.) (InTech, London, 2012). https://doi.org/10.5772/51091.
    Google Scholar 

    27.
    Errington, I. et al. The influence of vegetation and soil properties on springtail communities in a diesel-contaminated soil. Sci. Total Environ. 619–620, 1098–1104 (2018).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    28.
    Korboulewsky, N., Perez, G. & Chauvat, M. How tree diversity affects soil fauna diversity: a review. Soil Biol. Biochem. 94, 94–106 (2016).
    CAS  Article  Google Scholar 

    29.
    Beng, K. C. et al. The utility of DNA metabarcoding for studying the response of arthropod diversity and composition to land-use change in the tropics. Sci. Rep. 6, 1–13 (2016).
    Article  CAS  Google Scholar 

    30.
    McGee, K. M., Robinson, C. V. & Hajibabaei, M. Gaps in DNA-based biomonitoring across the globe. Front. Ecol. Evolut. 7, 337 (2019).
    Article  Google Scholar 

    31.
    Ji, Y. et al. Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecol. Lett. 16, 1245–1257 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    32.
    Liu, S. et al. SOAP Barcode: revealing arthropod biodiversity through assembly of Illumina shotgun sequences of PCR amplicons. Methods Ecol. Evol. 4, 1142–1150 (2013).
    Article  Google Scholar 

    33.
    Bienert, F. et al. Tracking earthworm communities from soil DNA: tracking earthworm communities from soil DNA. Mol. Ecol. 21, 2017–2030 (2012).
    CAS  PubMed  Article  Google Scholar 

    34.
    Dell’Anno, A., Carugati, L., Corinaldesi, C., Riccioni, G. & Danovaro, R. Unveiling the biodiversity of deep-sea nematodes through metabarcoding: are we ready to bypass the classical taxonomy?. PLoS ONE 10, e0144928 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    35.
    Fonseca, V. G. et al. Metagenetic analysis of patterns of distribution and diversity of marine meiobenthic eukaryotes: macroecology of microscopic marine eukaryotes. Glob. Ecol. Biogeogr. 23, 1293–1302 (2014).
    Article  Google Scholar 

    36.
    Pansu, J. et al. Landscape-scale distribution patterns of earthworms inferred from soil DNA. Soil Biol. Biochem. 83, 100–105 (2015).
    CAS  Article  Google Scholar 

    37.
    Saitoh, S. et al. A quantitative protocol for DNA metabarcoding of springtails (Collembola). Genome 59, 705–723 (2016).
    CAS  PubMed  Article  Google Scholar 

    38.
    Baird, D. J. & Hajibabaei, M. Biomonitoring 2.0: a new paradigm in ecosystem assessment made possible by next-generation DNA sequencing: news and views: opinion. Mol. Ecol. 21, 2039–2044 (2012).
    PubMed  Article  Google Scholar 

    39.
    Edge, T. A. et al. The ecobiomics project: advancing metagenomics assessment of soil health and freshwater quality in Canada. Sci. Total Environ. 710, 135906 (2020).
    ADS  CAS  PubMed  Article  Google Scholar 

    40.
    Porter, T. M. & Hajibabaei, M. Scaling up: a guide to high-throughput genomic approaches for biodiversity analysis. Mol. Ecol. 27, 313–338 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    41.
    Porter, T. M. & Hajibabaei, M. Automated high throughput animal CO1 metabarcode classification. Sci. Rep. 8, 1–10 (2018).
    Article  CAS  Google Scholar 

    42.
    Porter, T. M. & Hajibabaei, M. Over 2.5 million COI sequences in GenBank and growing. PLoS ONE 13, e0200177 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    43.
    Fernandes, K. et al. DNA metabarcoding-a new approach to fauna monitoring in mine site restoration. Restor. Ecol. 26, 1098–1107 (2018).
    Article  Google Scholar 

    44.
    Gibson, J. F. et al. Large-scale biomonitoring of remote and threatened ecosystems via high-throughput sequencing. PLoS ONE 10, e0138432-e138515 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    45.
    Martin, G. K., Adamowicz, S. J. & Cottenie, K. Taxonomic resolution based on DNA barcoding affects environmental signal in metacommunity structure. Freshw. Sci. 35, 701–711 (2016).
    Article  Google Scholar 

    46.
    Banerjee, S. et al. Determinants of bacterial communities in Canadian agroforestry systems. Environ. Microbiol. 18, 1805–1816 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    47.
    Chikoski, J. M., Ferguson, S. H. & Meyer, L. Effects of water addition on soil arthropods and soil characteristics in a precipitation-limited environment. Acta Oecologica 30, 203–211 (2006).
    ADS  Article  Google Scholar 

    48.
    Wall, D. H. et al. Soil Ecology and Ecosystem Services (Oxford University Press, Oxford, 2012).
    Google Scholar 

    49.
    Yu, Y. et al. Shifts in microbial community function and structure along the successional gradient of coastal wetlands in Yellow River Estuary. Eur. J. Soil Biol. 49, 12–21 (2012).
    Article  Google Scholar 

    50.
    Convey, P., Block, W. & Peat, H. J. Soil arthropods as indicators of water stress in Antarctic terrestrial habitats?. Glob. Change Biol. 9, 1718–1730 (2003).
    ADS  Article  Google Scholar 

    51.
    Marra, J. L. & Edmonds, R. L. Soil arthropod responses to different patch types in a mixed-conifer forest of the Sierra Nevada. For. Sci. 51, 255–265 (1998).
    Google Scholar 

    52.
    McCluney, K. E. & Sabo, J. L. Sensitivity and tolerance of riparian arthropod communities to altered water resources along a drying river. PLoS ONE 9, e109276 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    53.
    Villani, M. G. & Wright, R. J. Environmental influences on soil macroarthropod behavior in agricultural systems 35, 249–269 (1990).
    Google Scholar 

    54.
    Zahran, H. H., Moharram, A. M. & Mohammad, H. A. Some ecological and physiological studies on bacteria isolated from salt-affected soils of Egypt. J. Basic Microbiol. 32, 405–413 (1992).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    McGee, K. M., Eaton, W. D., Shokralla, S. & Hajibabaei, M. Determinants of soil bacterial and fungal community composition toward carbon-use efficiency across primary and secondary forests in a costa rican conservation area. Microb. Ecol. 10, 423 (2018).
    Google Scholar 

    56.
    Oba, Y., Ôhira, H., Murase, Y., Moriyama, A. & Kumazawa, Y. DNA barcoding of Japanese click beetles (Coleoptera, Elateridae). PLoS ONE 10, e0116612 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    57.
    Ensafi, P. et al. Soil type mediates the effectiveness of biological control against Limonius californicus (Coleoptera: Elateridae). J. Econ. Entomol. 111, 2053–2058 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    58.
    Poggi, S. et al. Relative influence of climate and agroenvironmental factors on wireworm damage risk in maize crops. J. Pest. Sci. 91, 585–599 (2018).
    Article  Google Scholar 

    59.
    Di, S., Huang, L., Diao, J. & Zhou, Z. Selective bioaccumulation and elimination of hexachlorocyclohexane isomers in Tubifex tubifex (Oligochaeta, Tubificidae). Environ. Sci. Pollut. Res. 23, 6990–6998 (2016).
    CAS  Article  Google Scholar 

    60.
    Pelegrí, S. & Blackburn, T. H. Effects of Tubifex tubifex (Oligochaeta:Tubificidae) on N-mineralization in freshwater sediments, measured with 15-N isotopes. Aquat. Microb. Ecol. 9, 289–294 (1995).
    Article  Google Scholar 

    61.
    Saaltink, R. M. Respiration and aeration by bioturbating Tubificidae alter biogeochemical processes in aquatic sediment. Aquat. Sci. 81, 1–13 (2019).
    Article  CAS  Google Scholar 

    62.
    Booth, M. S., Stark, J. M. & Rastetter, E. Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. New Phytol. 75, 139–157 (2005).
    Google Scholar 

    63.
    Feldpausch, T. R., Rondon, M. A., Fernandes, E. C. M., Riha, S. J. & Wandelli, E. Carbon and nutrient accumulation in secondary forests regenerating on pastures in central Amazonia. Ecol. Appl. 14, 164–176 (2004).
    Article  Google Scholar 

    64.
    Gehring, C., Vlek, P. L. G., de Souza, L. A. G. & Denich, M. Biological nitrogen fixation in secondary regrowth and mature rainforest of central Amazonia. Agric. Ecosyst. Environ. 111, 237–252 (2005).
    CAS  Article  Google Scholar 

    65.
    Guariguata, M. R. & Ostertag, R. Neotropical secondary forest succession: changes in structural and functional characteristics. For. Ecol. Manag. 148, 185–206 (2001).
    Article  Google Scholar 

    66.
    Chassot, O. & Monge, G. Connectivity conservation of the great green macaw’s landscape in costa rica and nicaragua (1994–2012). Parks 18, 1–10 (2012).
    Google Scholar 

    67.
    Hartshorn, G. S. et al. Vegetation Types and Floristic Patterns. La Selva: Ecology and Natural History of a Neotropical Rain Forest (The University of Chicago Press, Chicago, 1994).
    Google Scholar 

    68.
    van der Gast, C. J., Gosling, P., Tiwari, B. & Bending, G. D. Spatial scaling of arbuscular mycorrhizal fungal diversity is affected by farming practice: spatial scaling of arbuscular mycorrhizal fungi. Environ. Microbiol. 13, 241–249 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    69.
    McGee, K. M., Eaton, W. D., Porter, T. M., Shokralla, S. & Hajibabaei, M. Soil microbiomes associated with two dominant Costa Rican tree species, and implications for remediation. A case study from a Costa Rican conservation area. Appl. Soil Ecol. 137, 139–153 (2019).
    Article  Google Scholar 

    70.
    Eaton, W. D. et al. Differences in the soil microbial community and carbon-use efficiency following development of Vochysia guatemalensis tree plantations in unproductive pastures in Costa Rica. Restor. Ecol. https://doi.org/10.1111/rec.12978 (2019).
    Article  Google Scholar 

    71.
    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biochem. 3, 294–299 (1994).
    CAS  Google Scholar 

    72.
    Hajibabaei, M., Spall, J. L., Shokralla, S. & van Konynenburg, S. Assessing biodiversity of a freshwater benthic macroinvertebrate community through non-destructive environmental barcoding of DNA from preservative ethanol. BMC Ecol. 12, 28 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    73.
    Gibson, J. et al. Simultaneous assessment of the macrobiome and microbiome in a bulk sample of tropical arthropods through DNA metasystematics. Proc. Nat. Acad. Sci. 111, 8007–8012 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    74.
    St. John, J. SeqPrep. Retrieved https://github.com/jstjohn/SeqPrep (2016).

    75.
    Edgar, R. C. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv. https://doi.org/10.1101/081257 (2016).
    Article  Google Scholar 

    76.
    Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    77.
    Reeder, J. & Knight, R. The ‘rare biosphere’: a reality check. Nat. Methods 6, 636–637 (2009).
    CAS  PubMed  Article  Google Scholar 

    78.
    Tedersoo, L. et al. 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytol. 188, 291–301 (2010).
    CAS  PubMed  Article  Google Scholar 

    79.
    Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 27 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    80.
    Anderson, M. J., Gorley, R. N. & Clarke, R. K. PERMANOVA+ for Primer: guide to Software and Statistical Methods (PRIMER-E Ltd., Plymouth, UK, 2008).
    Google Scholar 

    81.
    Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).
    Article  Google Scholar 

    82.
    Anderson, M. J. & Willis, T. J. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84, 511–525 (2003).
    Article  Google Scholar 

    83.
    DiStefano, J., Fidler, F. & Cumming, G. Effect size estimates and confidence intervals: An alternative focus for the presentation and interpretation of ecological data. In New Trends in Ecology Research. 1st edn. (ed. Burk, A.). (Nova Science Publishers Inc., New York, 2005).
    Google Scholar 

    84.
    Clarke, K. R., & Gorley, R. N. PRIMER v6: user manual/tutorial (Plymouth routines in multivariate ecological research) (PRIMER-E Ltd., Plymouth, UK, 2006).
    Google Scholar 

    85.
    Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a practical information-theoretic approach. In Model Selection and Multimodel Inference (eds Burnham, K. P. & Anderson, D. R.) 1–515 (Springer, Berlin, 2003).
    Google Scholar 

    86.
    Legendre, P. & Anderson, M. J. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. New Phytol. 69, 1–24 (1999).
    Google Scholar  More

  • in

    Changes in coupled carbon‒nitrogen dynamics in a tundra ecosystem predate post-1950 regional warming

    1.
    Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014).
    Article  Google Scholar 
    2.
    Olefeldt, D. et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7, https://doi.org/10.1038/ncomms13043 (2016).

    3.
    McGuire, A. D. et al. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol. Monogr. 79, 523–555 (2009).
    Article  Google Scholar 

    4.
    Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).
    CAS  Article  Google Scholar 

    5.
    Chapin, D. M. & Bledsoe, C. S. Nitrogen fixation in Arctic plant communitiesin (eds. Chapin, F. S., Jefferies, R. L., Reynolds, J. F., Shaver, G. R. & Svoboda, J.) Arctic Ecossytems in a changing cliamte: an ecophysiological perspective 1992.

    6.
    Chapin, F. S. III. et al. The changing global carbon cycle: linking plant-soil carbon dynamics to global consequences. J. Ecol. 97, 840–850 (2009).
    CAS  Article  Google Scholar 

    7.
    Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142 (2007).
    Article  Google Scholar 

    8.
    Wookey, P. A. et al. Ecosystem feedbacks and cascade processes: understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Glob. Change Biol. 15, 1153–1172 (2009).
    Article  Google Scholar 

    9.
    Marin-Spiotta, E. et al. Paradigm shifts in soil organic matter research affect interpretations of aquatic carbon cycling: transcending disciplinary and ecosystem boundaries. Biogeochemistry 117, 279–297 (2014).
    CAS  Article  Google Scholar 

    10.
    Tape, K. D., Hallinger, M., Welker, J. M. & Ruess, R. W. Landscape heterogeneity of shrub expansion in arctic Alaska. Ecosystems 15, 711–724 (2012).
    CAS  Article  Google Scholar 

    11.
    Myrstener, M. et al. Persistent nitrogen limitation of stream biofilm communities along climate gradients in the Arctic. Glob Change Biol. 24, 3680–3691 (2018).
    Article  Google Scholar 

    12.
    Salmon, V. G. et al. Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw. Glob. Change Biol. 22, 1927–1941 (2016).
    Article  Google Scholar 

    13.
    Kling, G. W., Kipphut, G. W. & Miller, M. C. Arctic lakes and streams as gas conduits to the atmosphere-implications for tundra carbon budgets. Science 251, 298–301 (1991).
    CAS  Article  Google Scholar 

    14.
    Kling, G. W., Kipphut, G. W., Miller, M. M. & O’Brien, W. J. Integration of lakes and streams in a landscape perspective: the importance of material processing on spatial patterns and temporal coherence. Freshwater Biol. 43, 477–497 (2000).
    Article  Google Scholar 

    15.
    DelSontro, T., Beaulieu, J. J. & Downing, J. A. Greenhouse gas emissions from lakes and impoundments: upscaling in the face of global change. Limnol. Oceanogr. Lett. 3, 64–75 (2018).
    CAS  Article  Google Scholar 

    16.
    Bring, A. et al. Arctic terrestrial hydrology: A synthesis of processes, regional effects, and research challenges. J. Geophys. Res. Biogeosci. 121, 621–649 (2016).
    Article  Google Scholar 

    17.
    Tank, S. E. et al. Landscape-level controls on dissolved carbon flux from diverse catchments of the circumboreal. Global Biogeochem. Cycles 26, https://doi.org/10.1029/2012gb004299 (2012).

    18.
    Kling, G. W., Kipphut, G. W. & Miller, M. C. The flux of CO2 and CH4 from lakes and rivers in arctic Alaska. Hydrobiologia 240, 23–36 (1992).
    CAS  Article  Google Scholar 

    19.
    Cory, R. M., Ward, C. P., Crump, B. C. & Kling, G. W. Sunlight controls water column processing of carbon in arctic fresh waters. Science 345, 925–928 (2014).
    CAS  Article  Google Scholar 

    20.
    Kortelainen, P. et al. Carbon evasion/accumulation ratio in boreal lakes is linked to nitrogen. Global Biogeochem. Cycles 27, 363–374 (2013).
    CAS  Article  Google Scholar 

    21.
    Schuur, E. A. G. et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459, 556–559 (2009).
    CAS  Article  Google Scholar 

    22.
    Bowden, W. B. et al. Sediment and nutrient delivery from thermokarst features in the foothills of the North Slope, Alaska: Potential impacts on headwater stream ecosystems. J. Geophys. Res. Biogeosci. 113, https://doi.org/10.1029/2007jg000470 (2008).

    23.
    Curtis, J., Wendler, G., Stone, R. & Dutton, E. Precipitation decrease in the western arctic, with special emphasis on Barrow and Barter Island, Alaska. Int. J. Climatol. 18, 1687–1707 (1998).
    Article  Google Scholar 

    24.
    Yano, Y., Shaver, G. R., Giblin, A. E., Rastetter, E. B. & Nadelhoffer, K. J. Nitrogen dynamics in a small arctic watershed: retention and downhill movement of N-15. Ecol. Monogr. 80, 331–351 (2010).
    Article  Google Scholar 

    25.
    Tape, K., Sturm, M. & Racine, C. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob. Change Biol. 12, 686–702 (2006).
    Article  Google Scholar 

    26.
    Stackpoole, S. M. et al. Inland waters and their role in the carbon cycle of Alaska. Ecol. Appl. 27, 1403–1420 (2017).
    Article  Google Scholar 

    27.
    Tank, S. E. et al. Landscape matters: Predicting the biogeochemical effects of permafrost thaw on aquatic networks with a state factor approach. Permafr. Periglac. Process. 31, 358–370 (2020).
    Article  Google Scholar 

    28.
    Hobbie, J. E. & Kling, G. W. Alaska’s Changing Arctic: Ecological Consequences for Tundra, Streams, and Lakes. (Oxford University Press, 2014).

    29.
    Kaufman, D. S. et al. Recent warming reverses long-term Arctic cooling. Science 325, 1236–1239 (2009).
    CAS  Article  Google Scholar 

    30.
    Meyers, P. A. & Ishiwatari, R. Lacustrine organic geochemistry-an overview of indicators of organic matter sources and diagenesis in lake sediments. Organ. Geochem. 20, 867–900 (1993).
    CAS  Article  Google Scholar 

    31.
    Vadeboncoeur, Y. et al. From Greenland to green lakes: cultural eutrophication and the loss of benthic pathways in lakes. Limnol. Oceanogr. 48, 1408–1418 (2003).
    Article  Google Scholar 

    32.
    Gettel, G. M., Giblin, A. E. & Howarth, R. W. Controls of benthic nitrogen fixation and primary production from nutrient enrichment of oligotrophic, Arctic lakes. Ecosystems 16, 1550–1564 (2013).
    CAS  Article  Google Scholar 

    33.
    Cornwell, J. C. & Banahan, S. A silicon budget for an alaskan arctic lake. Hydrobiologia 240, 37–44 (1992).
    CAS  Article  Google Scholar 

    34.
    France, R. L. C-13 enrichment in benthic compared to planktonic algae-foodweb implications. Mar. Ecol. Prog. Ser. 124, 307–312 (1995).
    Article  Google Scholar 

    35.
    Levine, M. A. & Whalen, S. C. Nutrient limitation of phytoplankton production in Alaskan Arctic foothill lakes. Hydrobiologia 455, 189–201 (2001).
    Article  Google Scholar 

    36.
    Hobbie, S. E., Schimel, J. P., Trumbore, S. E. & Randerson, J. R. Controls over carbon storage and turnover in high-latitude soils. Glob. Change Biol. 6, 196–210 (2000).
    Article  Google Scholar 

    37.
    Galman, V., Rydberg, J., de-Luna, S. S., Bindler, R. & Renberg, I. Carbon and nitrogen loss rates during aging of lake sediment: changes over 27 years studied in varved lake sediment. Limnol. Oceanogr. 53, 1076–1082 (2008).
    Article  Google Scholar 

    38.
    Fitzgerald, W. F. et al. Modern and historic atmospheric mercury fluxes in northern Alaska: Global sources and Arctic depletion. Environ. Sci. Technol. 39, 557–568 (2005).
    CAS  Article  Google Scholar 

    39.
    Holtgrieve, G. W. et al. A coherent signature of anthropogenic nitrogen deposition to remote watersheds of the northern hemisphere. Science 334, 1545–1548 (2011).
    CAS  Article  Google Scholar 

    40.
    Hobbs, W. O. et al. Nitrogen deposition to lakes in national parks of the western Great Lakes region: Isotopic signatures, watershed retention, and algal shifts. Global Biogeochem. Cycles 30, 514–533 (2016).
    CAS  Article  Google Scholar 

    41.
    Anderson, N. J. et al. Regional variability in the atmospheric nitrogen deposition signal and its transfer to the sediment record in Greenland lakes. Limnol. Oceanogr. 63, 2250–2265 (2018).
    CAS  Article  Google Scholar 

    42.
    Brock, C. S., Leavitt, P. R., Schindler, D. E., Johnson, S. P. & Moore, J. W. Spatial variability of stable isotopes and fossil pigments in surface sediments of Alaskan coastal lakes: Constraints on quantitative estimates of past salmon abundance. Limnol. Oceanogr. 51, 1637–1647 (2006).
    CAS  Article  Google Scholar 

    43.
    Curtis, C. J. et al. Spatial variations in snowpack chemistry, isotopic composition of NO3- and nitrogen deposition from the ice sheet margin to the coast of western Greenland. Biogeosciences 15, 529–550 (2018).
    CAS  Article  Google Scholar 

    44.
    Post, E. et al. Ecological dynamics across the Arctic associated with recent climate change. Science 325, 1355–1358 (2009).
    CAS  Article  Google Scholar 

    45.
    Jones, V. J. et al. The influence of Holocene tree-line advance and retreat on an arctic lake ecosystem: a multi-proxy study from Kharinei Lake, North Eastern European Russia. J. Paleolimnol. 46, 123–137 (2011).
    Article  Google Scholar 

    46.
    Kittel, T. G. F., Baker, B. B., Higgins, J. V. & Haney, J. C. Climate vulnerability of ecosystems and landscapes on Alaska’s North Slope. Reg. Environ. Change 11, S249–S264 (2011).
    Article  Google Scholar 

    47.
    McKane, R. B. et al. Reconstruction and analysis of historical changes in carbon storage in arctic tundra. Ecology 78, 1188–1198 (1997).
    Article  Google Scholar 

    48.
    Leavitt, P. R. et al. Paleolimnological evidence of the effects on lakes of energy and mass transfer from climate and humans. Limnol. Oceanogr. 54, 2330–2348 (2009).
    CAS  Article  Google Scholar 

    49.
    Tye, A. M. & Heaton, T. H. E. Chemical and isotopic characteristics of weathering and nitrogen release in non-glacial drainage waters on Arctic tundra. Geochim. Cosmochim. Acta 71, 4188–4205 (2007).
    CAS  Article  Google Scholar 

    50.
    Hobbie, J. E. et al. Impact of global change on biogeochemistry and ecosystems of an arctic freshwater system. Polar Res. 18, 207–214 (1999).
    Article  Google Scholar 

    51.
    Whalen, S. C. & Cornwell, J. C. Nitrogen, phosphorus, and organic-carbon cycling in an Arctic lake. Can. J. Fish. Aquat. Sci. 42, 797–808 (1985).
    CAS  Article  Google Scholar 

    52.
    Mantua, N. J., Hare, S. R., Zhang, Y. & Wallace, J. M. Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 78, 1069–1079 (1997).
    Article  Google Scholar 

    53.
    Galloway, J. N. et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 320, 889–892 (2008).
    CAS  Article  Google Scholar 

    54.
    Dean, W. E. Determination of carbonate and organic-matter in calcareous sediments and sedimentary-rocks by loss on ignition-comparison with other methods. J. Sediment. Petrol. 44, 242–248 (1974).
    CAS  Google Scholar 

    55.
    Appleby, P. G. In Tracking Environmental Change Using Lake Sediments Volume 1: Basin Analysis, Coring, and Chronological Techniques (eds. Last, W. M. & Smol, J. P.) 171–203 (Kluwer, 2001).

    56.
    Engstrom, D. R. & Rose, N. L. A whole-basin, mass-balance approach to paleolimnology. J. Paleolimnol. 49, 333–347 (2013).
    Article  Google Scholar 

    57.
    Dietz, R. D., Engstrom, D. R. & Anderson, N. J. Patterns and drivers of change in organic carbon burial across a diverse landscape: insights from 116 Minnesota lakes. Global Biogeochem. Cycles 29, 708–727 (2015).
    CAS  Article  Google Scholar 

    58.
    DeMaster, D. J. The supply and accumulation of silica in the marine environment. Geochim. Cosmochim. Acta 45, 1715–1732 (1981).
    CAS  Article  Google Scholar 

    59.
    Conley, D. J. & Schelske, C. L. In Tracking Environmental Change Using lake Sediments: Biological Methods and Indicators (eds. Smol, J. P., Birks, H. J. B. & Last, W. M.) 281–293 (Kluwer, 2001).

    60.
    Renberg, I. A procedure for preparing large sets of diatom slides from sediment cores. J. Paleolimnol. 4, 87–90 (1990).
    Article  Google Scholar 

    61.
    Savage, C., Leavitt, P. R. & Elmgren, R. Distribution and retention of effluent nitrogen in surface sediments of a coastal bay. Limnol. Oceanogr. 49, 1503–1511 (2004).
    CAS  Article  Google Scholar 

    62.
    Wood, S. N. Generalized Additive Models: An Introduction with R, 2nd edn. (Chapman and Hall/CRC, 2017).

    63.
    Wood, S. N. Thin-plate regression splines. J. R. Stat. Soc. (B) 65, 95–114 (2003).
    Article  Google Scholar 

    64.
    Simpson, G. L. Modelling palaeoecological time series using generalized additive models. Front. Ecol. Evol. 6, 149 (2018).
    Article  Google Scholar 

    65.
    Bai, J. & Perron, P. Computation and analysis of multiple structural change models. J Appl. Econ. 181, 1–22 (2003).
    Article  Google Scholar 

    66.
    R Core Team. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, http://www.R-project.org/ (2013).

    67.
    Zeileis, A., Leisch, F., Hornik, K. & Kleiber, C. strucchange: An R package for testing for structural change in linear regression models. J. Stat. Softw. 7, 1–38 (2002).
    Article  Google Scholar 

    68.
    Anderson, N. J., Engstrom, D. R., Leavitt, P. R., Flood, S. M. & Heathcote, A. J. Mendeley, https://doi.org/10.17632/xfmpvjmrby.1 (2020).

    69.
    The Alaska Climate Research Center. Climatological Data-Alaska’s Arctic, http://oldclimate.gi.alaska.edu/Climate/Location/TimeSeries/Data/brwT (2010).

    70.
    Hastings, M. G., Steig, E. J. & Sigman, D. M. Seasonal variations in N and O isotopes of nitrate in snow at Summit, Greenland: Implications for the study of nitrate in snow and ice cores. J. Geophys. Res. Atmos. 109, https://doi.org/10.1029/2004jd004991 (2004).

    71.
    Tseng, C.-M., Lamborg, C. H., Fitzgerald, W. F. & Engstrom, D. R. Cycling of dissolved elemental mercury in Arctic Alaskan lakes. Geochim. Cosmochim. Acta 68, 1173–1184 (2004).
    CAS  Article  Google Scholar  More

  • in

    Analysis of molecular diversity within single cyanobacterial colonies from environmental samples

    Genotypic heterogeneity in single Rivularia-like colonies
    Rivularia-like colonies have a global distribution, occurring in marine or freshwater habitats, where they are usually attached to a rocky substrate; however, many studies have reported that Rivularia spp. are associated with unpolluted environments14. In addition, the relationships between some morphological or physiological features and the environment make these species excellent environmental indicators of changes in running water quality, mainly related to eutrophication processes14,30. Therefore, they have been included in biomonitoring programs21,31,32. On the other hand, because Rivularia colonies sometimes persist for very long periods, avoiding grazing, the toxicity of these colonies is being investigated33. It is undoubted that in all of these approaches, where genera and species must be strictly identified from environmental samples, accurate cyanobacterial characterization is essential.
    Traditional identification of cyanobacteria involves assigning a colony to a morphospecies, and conventionally, a bacterial colony is defined as a visible mass of clonal microorganisms, all of which originated from a single cell. However, the results from the present study show that the majority of the analyzed colonies consist of different clones growing together. Among the 28 Rivularia-like colonies, the phylotype corresponding to Rivularia sp. was present in 19 colonies, with abundances ranging from 59.4 to 99.8% depending on the studied colony. Nevertheless, it should also be noted that in most of the colonies, this phylotype dominated, whereby in 14 colonies, it presented an abundance of ≥ 90% (and within 7 of these colonies, the abundance was close to 99%). However, in three colonies, the abundance ranged from 72 to 85%, and in two of them, the abundance decreased to approximately 60%. The other highly abundant phylotypes found in these colonies, which reached abundances up to approximately 21%, corresponded to Calothrix sp. and Oculatella sp., the latter a genus morphologically similar to Leptolyngbya but separated from it because of genetic differences34. These results indicated great variability in the abundance of the phylotype corresponding to Rivularia depending on the analyzed colony, as well as variation in the other phylotypes and their abundances found in these colonies.
    One of the surprising findings was that among the twenty-eight analyzed Rivularia-like colonies, seven corresponded to the new, recently described genus Cyanomargarita, which as the authors described, is virtually indistinguishable from Rivularia in field samples15. In these colonies, genotypic heterogeneity was also found, in which the abundance of the phylotype corresponding to Cyanomargarita varied from 57,28% in a colony with clear lamination resembling R. haematites (see Fig. 3b) to 99.2% in a soft colony resembling R. biasolettiana. Interestingly, in these colonies, Phormidium sp. was the dominant nonheterocystous cyanobacterium instead of Oculatella from Rivularia colonies, but the phylotype corresponding to Calothrix was also found.
    Furthermore, phylotypes corresponding to Cyanomargarita and Rivularia were never found together in the same colony, although both types of colonies coexisted in the same rivers (e.g., Gordale Beck and Endrinales). Allelopathic effects could explain these results, as previously suggested for other cyanobacteria35. In fact, García-Espín et al.33 showed that extracts obtained from Rivularia colonies affected the photosynthetic activity of several diatoms and a red alga. Further experiments with extracts from both colonies would confirm this possible effect.
    Another very surprising finding was that two Rivularia-like colonies did not present any phylotypes corresponding to Rivularia or Cyanomargarita (or contained them at an abundance ≤ 0.7%). In one of these colonies (colony BAT4), five different phylotypes were found at similar abundances (approximately 15–20%), of which three corresponded to different Calothix spp. and the others corresponded to other Nostocaceae and Leptolyngbyaceae. In the other colony (BAT13), the dominant phylotype corresponded to the new genus Macrochaete16. This genus has been described only from cultures, so to the best of our knowledge, this is the first report in which a natural population is morphologically and genetically characterized. Nevertheless, it is noteworthy that the morphological characteristics of filaments and trichomes in this environmental sample were different from those reported in the description of this new genus, in which the phenotypic features resembled those of Calothrix. However, these features corresponded only to isolated strains, which are known to exhibit morphological variability and differences from natural populations7,12,13.
    R. biasolettiana vs R. haematites
    However, what was very interesting and deserves to be highlighted is that when we tried to differentiate the two typical Rivularia colonies found in calcareous streams, R. biasolettiana and R. haematites, we did not find genetic differences, at least at the studied level, the 16S rRNA gene.
    16S rRNA is the most widely used marker gene36,37, which fits the criteria of ubiquity, regions of strong conservation, and regions of hypervariability38,39. This gene is supported by reference databases containing over a million full-length 16S rRNA sequences, therefore spanning a broad phylogenetic spectrum40. The 16S rRNA gene has served as the general framework and as the benchmark for the taxonomy of prokaryotes41. Advances in high-throughput sequencing technologies have enabled almost comprehensive descriptions of bacterial diversity through 16S rRNA gene amplicons, which have been used in surveys of microbial communities to characterize the composition of microorganisms present in environments worldwide42,43,44,45. Although some issues have been raised, such as identification of metabolic or other functional capabilities of microorganisms when studies focus only on this gene, recent studies have shown that the phylogenetic information contained in 16S marker gene sequences is sufficiently well correlated with genomic content to yield accurate predictions when related reference genomes are available46,47,48,49. Therefore, the 16S rRNA gene continues to be the mainstay of sequence-based bacterial analysis, vastly expanding our understanding of the microbial world50.
    In particular, in cyanobacteria, as in other prokaryotes, the 16S rDNA gene is currently the most commonly used marker for molecular and phylogenetic studies51,52. The information obtained from 16S rDNA gene phylogenetic reconstructions, together with morphological, ultrastructural, and ecological data, led Komárek et al.53 to propose the current accepted classification of cyanobacteria. There have also been specific studies by this group concerning the problems associated with single-gene phylogenies, in which robust phylogenomic trees of cyanobacteria derived from multiple conserved proteins have also shown congruence between the multilocus and 16S rRNA gene phylogenies, which once again demonstrates the considerable strength of the 16S rRNA gene for phylogenetic inference and evaluation of prokaryote diversity54,55,56,57.
    In this study, in contrast to the genetic identity found in R. biasolettiana and R. haematites colonies, showing a dominance of OTU1, the remainder of the studied representatives of Rivulariaceae showed a wide range of variation in the 16S rDNA sequences and with OTU1. Sequence identity between OTU1 and the remaining OTUs belonging to this family was as low as approximately 90%, ranging from 90.73 to 93.41%, and when it was compared with other Rivulariaceae from the databases, in the different clusters of the phylogenetic tree, this value ranged from 87.12 to 93.90%. A large difference between the sequences of this gene was also found in other studies on Rivulariaceae15,16,17,29,58. In fact, several new genera are emerging on the basis of these differences15,16,17. Comparisons of phylogenies using other markers, such as the phycocyanin operon and the intervening intergenic spacer (cpcBA-IGS) with the 16S rRNA gene in previous studies in Rivulariaceae, have shown largely consistent results, with a high level of divergence between the components of this family11.
    In addition, the results of the present study showed correlations between morphological characteristics and the analyzed genes in all the cyanobacterial colonies/tufts, except for those of R. biasolettiana and R. haematites. In these two cyanobacteria, only distinct macroscopic phenotypic features were observed due to zonation and different degrees of calcification since no significant differences were found in the size measurements or other microscopic characteristics.
    Therefore, although the remainder of the genome has not been studied in these populations, the genetic identity of the studied marker, phenotypic features, together with environmental preferences point out that R. biasolettiana and R. haematites are ecotypes of the same species, as previously suggested59.
    R. biasolettiana and R. haematites have very similar morphotypes, and traditional taxonomical classification and studies have distinguished them primarily by their degrees of calcification. R. biasolettiana-type colonies are described as more gelatinous and less calcified, and the crystals are disseminated; however, R. haematites colonies are very hard and exhibit extensive calcification in concentric zones, which leads to clear lamination24,25,60,61. Because of its heavy mineralization, R. haematites is a model for stromatolite-binding organisms25,26.
    Microscopic observations from this study showed that some colonies presented typical R. haematites morphology with concentric bands of intense calcification (see Fig. 2a,b), and others were soft and less calcified, such as R. biasolettiana, although all of them presented the same dominant phylotype. Many others with this dominant phylotype have also shown ambiguous morphology with no clear lamination, although some dark/light zones could be observed (see, e.g., Fig. 4b,d, f). Even in Cyanomargarita colonies, whose genotype was clearly separated from that of Rivularia, concentric zones and extensive calcification could be observed (see, e.g., Fig. 3b,d). These results suggested that these phenotypic features are not diagnostic characteristics for further identification.
    In a two-year study, Obenlüneschloss and Schneider61 found that not all analyzed R. haematites colonies showed distinct concentric calcification layers. In the stromatolites of both types of Rivularia, the same lamination was observed, and the differences in calcification appeared later60. Pentecost and Franke26 compared populations of R. biasolettiana and R. haematites and argued that although both could be distinguished by their form of calcification and their trichome diameter, some populations of R. biasolettiana were more intensely calcified than others, suggesting that a continuity of forms may exist, even within the same stream, and therefore, a continuum of colony forms probably occurs between these taxa.
    Differences in the calcification pattern have been attributed to seasonality and cyanobacterial activity, in particular to photosynthesis24,26,62. The calcification in R. haematites occurred in concentric bands, which varied in thickness and the density of crystals. Since characteristic zonation is formed by filaments of different successive generations, the thickness will vary depending on the growth rate, while crystal density will depend on the rate of calcification. Calcification is the result of photosynthesis (with a maximum of 14%) and evaporation during the warmer seasons, while it is entirely abiogenic during winter as a result of CO2 evasion63. Therefore, dense calcified bands similar to those formed in winter have been described that are caused by a reduction in trichome growth and EPS production, allowing the development of abiotic surface precipitate, and less calcified layers are formed during spring and summer, when calcification is associated with photosynthesis in zones of growth with cell division24,26. Thus, differences in climatic conditions and/or biological activity seem to lead to differences in the degrees of zonation and calcification.
    The growth of Rivularia colonies is seasonal and strongly correlated with water temperature24,26. The colony growth rates were 12–14 µm/day in summer and 2 µm/day in winter24. The occurrence of R. biasolettiana was more closely related to high temperatures than that of R. haematites21. Moreover, colonies of R. haematites were generally collected under temperatures below 15 °C in mountain running waters64, and R. haematites stromatolites have been described as preferentially developed in wet periods, particularly in autumn and winter60. Our own field observations during the sampling for this and previous studies were that the gelatinous and weakly calcified R. biasolettiana type was more abundant in warmer locations, and in contrast, R. haematites was dominant in cold locations (data not shown).
    One possible explanation for the results found in this study could be related to these differences in the degree of zonation and calcification in relation to climate, which could include microclimatic conditions. In warmer sites or climatic conditions, when growth is rapid, the number of filaments will increase, moving towards the surface in a weakly dense and unaligned arrangement, on which calcite crystals spread, providing a lighter and less calcified structure. Thus, increased growth of Rivularia colonies can lead to the R. biasolettiana type. Under colder conditions, such as in winter, or microclimatic conditions, when growth slows down for other reasons, such as low light, filaments become more densely packed, allowing the development of extensive precipitates and leading to a dark band. When these conditions change, e.g., in the spring and summer, increases in temperatures and/or light will result in increasing and faster growth, leading to a less calcified new layer, and successive seasonal and/or microenvironmental changes will result in the typical lamination of R. haematites. Therefore, warmer places with high temperatures and/or light will allow the occurrence of the R. biasolettiana type, while in colder sites and/or sites with alternating environmental conditions, the R. haematites type will develop. Shaded colonies and colonies that lie in the supratidal spraywater zone often contain small, irregular and more densely packed crystals61.
    Cyanobacteria are known to modify EPS production, pigments, and morphology under environmental stimuli6. The production of EPS also varies depending on the cyanobacteria, whereby Rivularia has shown a well-developed exopolymer layer65, which is of great importance for this epilithic cyanobacteria, as it acts as an adhesive that allows cells to stick to the stones in the running waters, and it holds the filaments together, minimizing cell damage during intermittent drying exposure to the air and evaporation in the warmer seasons66. The C/N ratio is an important parameter for the variation in EPS production since high amounts of fixed C compared to N levels drive EPS synthesis to store excess C67,68. Therefore, Rivularia colonies that are exposed, in spring and summer, to high light intensities and temperatures will increase their photosynthetic rates and therefore the amount of EPS, as shown by the R. biasolettiana morphotype. In addition, most of the analyzed populations were dark in color, probably in relation to the accumulation of the yellow–brown scytonemin pigment in the sheaths or EPS, as previously observed in shallow and clear oligotrophic ecosystems, where water clarity allows UV radiation to penetrate well, protecting the cells from the damaging effects of this radiation69,70.
    In conclusion, environmental factors can lead to differences in macroscopic phenotypic features, such as those found in the Rivularia colonies studied here. However, further sampling under different climatic conditions and/or microenvironmental conditions or of Rivularia cultures grown under distinct temperature and/or illumination conditions, as well as analysis of other genes, are needed to confirm this hypothesis. More