More stories

  • in

    Resource partitioning of phytoplankton metabolites that support bacterial heterotrophy

    1.
    Hansell DA. Recalcitrant dissolved organic carbon fractions. Ann Rev Mar Sci. 2013;5:421–45.
    PubMed  Article  PubMed Central  Google Scholar 
    2.
    Azam F. Microbial control of oceanic carbon flux: the plot thickens. Science. 1998;280:694–6.
    CAS  Article  Google Scholar 

    3.
    Simon M, Rosenstock B. Different coupling of dissolved amino acid, protein, and carbohydrate turnover to heterotrophic picoplankton production in the Southern Ocean in austral summer and fall. Limnol Oceanogr. 2007;52:85–95.
    CAS  Article  Google Scholar 

    4.
    Suttle CA, Chan AM, Fuhrman JA. Dissolved free amino acids in the Sargasso Sea: uptake and respiration rates, turnover times, and concentrations. Mar Ecol Prog Ser. 1991;70:189–99.
    CAS  Article  Google Scholar 

    5.
    Zubkov MV, Fuchs BM, Archer SD, Kiene RP, Amann R, Burkill PH. Rapid turnover of dissolved DMS and DMSP by defined bacterioplankton communities in the stratified euphotic zone of the North Sea. Deep Sea Res II Top Stud Oceanogr. 2002;49:3017–38.
    CAS  Article  Google Scholar 

    6.
    Hertkorn N, Benner R, Frommberger M, Schmitt-Kopplin P, Witt M, Kaiser K, et al. Characterization of a major refractory component of marine dissolved organic matter. Geochim Cosmochim Acta. 2006;70:2990–3010.
    CAS  Article  Google Scholar 

    7.
    Koch H, Duerwald A, Schweder T, Noriega-Ortega B, Vidal-Melgosa S, Hehemann J-H, et al. Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides. ISME J. 2019;13:92.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Ferguson RL, Sunda WG. Utilization of amino acids by planktonic marine bacteria: importance of clean technique and low substrate additions 1, 2. Limnol Oceanogr. 1984;29:258–74.
    CAS  Article  Google Scholar 

    9.
    Fuhrman JA, Ferguson RL. Nanomolar concentrations and rapid turnover of dissolved free amino acids in seawater: agreement between chemical and microbiological measurements. Mar Ecol Prog Ser. 1986;33:237–42.
    CAS  Article  Google Scholar 

    10.
    Hodson R, Azam F, Carlucci A, Fuhrman J, Karl D, Holm-Hansen O. Microbial uptake of dissolved organic matter in McMurdo Sound, Antarctica. Mar Biol. 1981;61:89–94.
    Article  Google Scholar 

    11.
    Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science. 2012;336:608–11.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Thornton DC. Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. Eur J Phycol. 2014;49:20–46.
    CAS  Article  Google Scholar 

    13.
    Fogg GE. The ecological significance of extracellular products of phytoplankton photosynthesis. Bot Mar. 1983;26:3–14.
    CAS  Article  Google Scholar 

    14.
    Mühlenbruch M, Grossart HP, Eigemann F, Voss M. Mini‐review: phytoplankton‐derived polysaccharides in the marine environment and their interactions with heterotrophic bacteria. Environ Microbiol. 2018;20:2671–85.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    15.
    Obernosterer I, Herndl GJ. Phytoplankton extracellular release and bacterial growth: dependence on the inorganic N:P ratio. Mar Ecol Progr Ser. 1995;116:247–57.
    Article  Google Scholar 

    16.
    Flynn KJ, Clark DR, Xue Y. Modeling the release of dissolved organic matter by phytoplankton 1. J Phycol. 2008;44:1171–87.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Seymour JR, Simó R, Ahmed T, Stocker R. Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science. 2010;329:342–5.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Strom S, Wolfe G, Slajer A, Lambert S, Clough J. Chemical defense in the microplankton II: Inhibition of protist feeding by β‐dimethylsulfoniopropionate (DMSP). Limnol Oceanogr. 2003;48:230–7.
    CAS  Article  Google Scholar 

    19.
    Wolfe GV, Steinke M, Kirst GO. Grazing-activated chemical defence in a unicellular marine alga. Nature. 1997;387:894.
    CAS  Article  Google Scholar 

    20.
    Bidle KD. The molecular ecophysiology of programmed cell death in marine phytoplankton. Ann Rev Mar Sci. 2015;7:341–75.
    PubMed  Article  PubMed Central  Google Scholar 

    21.
    Caron DA, Hutchins DA. The effects of changing climate on microzooplankton grazing and community structure: drivers, predictions and knowledge gaps. J Plank Res. 2013;35:235–52.
    Article  Google Scholar 

    22.
    Fuhrman JA. Marine viruses and their biogeochemical and ecological effects. Nature. 1999;399:541–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Buchan A, LeCleir GR, Gulvik CA, González JM. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol. 2014;12:686–98.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Sapp M, Schwaderer AS, Wiltshire KH, Hoppe H-G, Gerdts G, Wichels A. Species-specific bacterial communities in the phycosphere of microalgae? Micro Ecol. 2007;53:683–99.
    Article  Google Scholar 

    25.
    Amin SA, Parker MS, Armbrust EV. Interactions between diatoms and bacteria. Microbiol Mol Biol Rev. 2012;76:667–84.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Landa M, Burns AS, Roth SJ, Moran MA. Bacterial transcriptome remodeling during sequential co-culture with a marine dinoflagellate and diatom. ISME J. 2017;11:2677.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Newton RJ, Griffin LE, Bowles KM, Meile C, Gifford S, Givens CE, et al. Genome characteristics of a generalist marine bacterial lineage. ISME J. 2010;4:784.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Avcı B, Krüger K, Fuchs BM, Teeling H, Amann RI. Polysaccharide niche partitioning of distinct Polaribacter clades during North Sea spring algal blooms. ISME J. 2020;14:1369–83.

    29.
    Kirchman DL. The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiol Ecol. 2002;39:91–100.
    CAS  PubMed  PubMed Central  Google Scholar 

    30.
    Pedler BE, Aluwihare LI, Azam F. Single bacterial strain capable of significant contribution to carbon cycling in the surface ocean. Proc Nat Acad Sci. 2014;111:7202–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Tang K, Jiao N, Liu K, Zhang Y, Li S. Distribution and functions of TonB-dependent transporters in marine bacteria and environments: implications for dissolved organic matter utilization. PloS ONE. 2012;7:e41204.

    32.
    Nelson DM, Tréguer P, Brzezinski MA, Leynaert A, Quéguiner B. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob Biogeochem Cycles. 1995;9:359–72.
    CAS  Article  Google Scholar 

    33.
    Alavi M, Miller T, Erlandson K, Schneider R, Belas R. Bacterial community associated with Pfiesteria‐like dinoflagellate cultures. Environ Microbiol. 2001;3:380–96.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    34.
    Amin S, Hmelo L, Van Tol H, Durham B, Carlson L, Heal K, et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature. 2015;522:98.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Behringer G, Ochsenkühn MA, Fei C, Fanning J, Koester JA, Amin SA. Bacterial communities of diatoms display strong conservation across strains and time. Front Microbiol. 2018;9:659.
    PubMed  PubMed Central  Article  Google Scholar 

    36.
    Green DH, Llewellyn LE, Negri AP, Blackburn SI, Bolch CJ. Phylogenetic and functional diversity of the cultivable bacterial community associated with the paralytic shellfish poisoning dinoflagellate Gymnodinium catenatum. FEMS Microbiol Ecol. 2004;47:345–57.
    CAS  PubMed  Article  Google Scholar 

    37.
    Hold GL, Smith EA, Rappë MS, Maas EW, Moore ER, Stroempl C, et al. Characterisation of bacterial communities associated with toxic and non-toxic dinoflagellates: Alexandrium spp. and Scrippsiella trochoidea. FEMS Microbiol Ecol. 2001;37:161–73.
    CAS  Article  Google Scholar 

    38.
    Guillard R, Hargraves P. Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia. 1993;32:234–6.
    Article  Google Scholar 

    39.
    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    40.
    Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–101.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Widner B, Kido Soule MCK, Ferrer-González FX, Moran MA, Kujawinski EB. Superior and novel detection of small, polar metabolites in saline samples using pre-extraction benzoyl chloride derivatization and Ultra-High Performance Liquid Chromatography Tandem Mass Spectrometry (UHPLC MS/MS). chemRXiv. 2020. https://doi.org/10.26434/chemrxiv.12915488.v1.

    42.
    Oehlke J, Brudel M, Blasig IE. Benzoylation of sugars, polyols and amino acids in biological fluids for high-performance liquid chromatographic analysis. J Chromatogr B Biomed Sci Appl. 1994;655:105–11.
    CAS  Article  Google Scholar 

    43.
    Wong J-MT, Malec PA, Mabrouk OS, Ro J, Dus M, Kennedy RT. Benzoyl chloride derivatization with liquid chromatography–mass spectrometry for targeted metabolomics of neurochemicals in biological samples. J Chromatogr A. 2016;1446:78–90.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Kido Soule MC, Longnecker K, Johnson WM, Kujawinski EB. Environmental metabolomics: analytical strategies. Mar Chem. 2015;177:374–87.
    CAS  Article  Google Scholar 

    45.
    Pino LK, Searle BC, Bollinger JG, Nunn B, MacLean B, MacCoss MJ. The Skyline ecosystem: Informatics for quantitative mass spectrometry proteomics. Mass Spectrom Rev. 2017;39:229–44.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    46.
    Henderson CM, Shulman NJ, MacLean B, MacCoss MJ, Hoofnagle AN. Skyline performs as well as vendor software in the quantitative analysis of serum 25-hydroxy vitamin D and vitamin D binding globulin. Clin Chem. 2018;64:408–10.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Howard EC, Henriksen JR, Buchan A, Reisch CR, Bürgmann H, Welsh R, et al. Bacterial taxa that limit sulfur flux from the ocean. Science. 2006;314:649–52.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Todd JD, Curson AR, Sullivan MJ, Kirkwood M, Johnston AW. The Ruegeria pomeroyi acuI gene has a role in DMSP catabolism and resembles yhdH of E. coli and other bacteria in conferring resistance to acrylate. PloS ONE. 2012;7:e35947.

    49.
    Grondin JM, Tamura K, Déjean G, Abbott DW, Brumer H. Polysaccharide utilization loci: fueling microbial communities. J Bacteriol. 2017;199:e00860–16.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Boulanger A, Déjean G, Lautier M, Glories M, Zischek C, Arlat M, et al. Identification and regulation of the N-acetylglucosamine utilization pathway of the plant pathogenic bacterium Xanthomonas campestris pv. campestris. J Bacteriol. 2010;192:1487–97.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Eisenbeis S, Lohmiller S, Valdebenito M, Leicht S, Braun V. NagA-dependent uptake of N-acetyl-glucosamine and N-acetyl-chitin oligosaccharides across the outer membrane of Caulobacter crescentus. J Bacteriol. 2008;190:5230–8.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Brinkkötter A, Shakeri-Garakani A, Lengeler JW. Two class II D-tagatose-bisphosphate aldolases from enteric bacteria. Arch Microbiol. 2002;177:410–9.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    53.
    Leyn SA, Gao F, Yang C, Rodionov DA. N-Acetylgalactosamine utilization pathway and regulon in Proteobacteria, genomic reconstruction and experimental characterization in Shewanella. J Biol Chem. 2012;287:28047–56.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Rodionov DA, Yang C, Li X, Rodionova IA, Wang Y, Obraztsova AY, et al. Genomic encyclopedia of sugar utilization pathways in the Shewanella genus. BMC Genomics. 2010;11:494.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    55.
    Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2013;42:D490–5.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    56.
    Beattie A, Hirst E, Percival E. Studies on the metabolism of the Chrysophyceae. Comparative structural investigations on leucosin (chrysolaminarin) separated from diatoms and laminarin from the brown algae. Biochem J. 1961;79:531.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Størseth TR, Hansen K, Reitan KI, Skjermo J. Structural characterization of β-D-(1→ 3)-glucans from different growth phases of the marine diatoms Chaetoceros mülleri and Thalassiosira weissflogii. Carbohydr Res. 2005;340:1159–64.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    58.
    Becker S, Tebben J, Coffinet S, Wiltshire K, Iversen MH, Harder T, et al. Laminarin is a major molecule in the marine carbon cycle. Proc Nat Acad Sci. 2020;117:6599–607.

    59.
    Unfried F, Becker S, Robb CS, Hehemann J-H, Markert S, Heiden SE, et al. Adaptive mechanisms that provide competitive advantages to marine bacteroidetes during microalgal blooms. ISME J. 2018;12:2894.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Martens EC, Lowe EC, Chiang H, Pudlo NA, Wu M, McNulty NP, et al. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 2011;9:e1001221.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Gügi B, Le Costaouec T, Burel C, Lerouge P, Helbert W, Bardor M. Diatom-specific oligosaccharide and polysaccharide structures help to unravel biosynthetic capabilities in diatoms. Mar Drugs. 2015;13:5993–6018.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    62.
    Barbeyron T, Thomas F, Barbe V, Teeling H, Schenowitz C, Dossat C, et al. Habitat and taxon as driving forces of carbohydrate catabolism in marine heterotrophic bacteria: example of the model algae‐associated bacterium Zobellia galactanivorans DsijT. Environ Microbiol. 2016;18:4610–27.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    63.
    Kabisch A, Otto A, König S, Becher D, Albrecht D, Schüler M, et al. Functional characterization of polysaccharide utilization loci in the marine Bacteroidetes ‘Gramella forsetii’ KT0803. ISME J. 2014;8:1492.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    64.
    Mann AJ, Hahnke RL, Huang S, Werner J, Xing P, Barbeyron T, et al. The genome of the alga-associated marine flavobacterium Formosa agariphila KMM 3901T reveals a broad potential for degradation of algal polysaccharides. Appl Environ Microbiol. 2013;79:6813–22.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Datta MS, Sliwerska E, Gore J, Polz MF, Cordero OX. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat Commun. 2016;7:11965.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Goldford JE, Lu N, Bajić D, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, et al. Emergent simplicity in microbial community assembly. Science. 2018;361:469–74.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    67.
    Azam F, Fenchel T, Field J, Grey J, Meyer-Reil L, Thingstad F. The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser. 1983;10:257–63.
    Article  Google Scholar 

    68.
    Cole JJ, Findlay S, Pace ML. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar Ecol Progr Ser. 1988;43:1–10.
    Article  Google Scholar 

    69.
    Moran MA, Kujawinski EB, Stubbins A, Fatland R, Aluwihare LI, Buchan A, et al. Deciphering ocean carbon in a changing world. Proc Nat Acad Sci. 2016;113:3143–51.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Kujawinski EB. The impact of microbial metabolism on marine dissolved organic matter. Ann Rev Mar Sci. 2011;3:567–99.
    PubMed  Article  PubMed Central  Google Scholar 

    71.
    Larsbrink J, Zhu Y, Kharade SS, Kwiatkowski KJ, Eijsink VG, Koropatkin NM, et al. A polysaccharide utilization locus from Flavobacterium johnsoniae enables conversion of recalcitrant chitin. Biotechnol Biofuels. 2016;9:260.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    72.
    Mathieu S, Touvrey-Loiodice M, Poulet L, Drouillard S, Vincentelli R, Henrissat B, et al. Ancient acquisition of “alginate utilization loci” by human gut microbiota. Sci Rep. 2018;8:8075.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    73.
    Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, et al. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science. 2004;306:79–86.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    74.
    Azizan A, Ahamad Bustamam MS, Maulidiani M, Shaari K, Ismail IS, Nagao N, et al. Metabolite profiling of the microalgal diatom Chaetoceros calcitrans and correlation with antioxidant and nitric oxide inhibitory activities via 1H NMR-based metabolomics. Mar Drugs. 2018;16:154.
    PubMed Central  Article  CAS  Google Scholar 

    75.
    Hellebust JA. Excretion of some organic compounds by marine phytoplankton 1. Limnol Oceanogr. 1965;10:192–206.
    Article  Google Scholar 

    76.
    Boroujerdi AF, Lee PA, DiTullio GR, Janech MG, Vied SB, Bearden DW. Identification of isethionic acid and other small molecule metabolites of Fragilariopsis cylindrus with nuclear magnetic resonance. Anal Bioanal Chem. 2012;404:777–84.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    77.
    Iglesias MJ, Soengas R, Probert I, Guilloud E, Gourvil P, Mehiri M, et al. NMR characterization and evaluation of antibacterial and antiobiofilm activity of organic extracts from stationary phase batch cultures of five marine microalgae (Dunaliella sp., D. salina, Chaetoceros calcitrans, C. gracilis and Tisochrysis lutea). Phytochemistry. 2019;164:192–205.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    78.
    Jeong K-S, Jeong K-Y, Hong Y-S, Kim D-K, Oh H-J, Chang K-H. Application of nuclear magnetic resonance for analyzing metabolic characteristics of winter diatom blooms. J Plank Res. 2020;42:31–9.
    Article  Google Scholar 

    79.
    Scholz B, Liebezeit G. Compatible solutes in three marine intertidal microphytobenthic Wadden Sea diatoms exposed to different salinities. Eur J Phycol. 2012;47:393–407.
    CAS  Article  Google Scholar 

    80.
    Bell W, Mitchell R. Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol Bull. 1972;143:265–77.
    Article  Google Scholar 

    81.
    Miller TR, Hnilicka K, Dziedzic A, Desplats P, Belas R. Chemotaxis of Silicibacter sp. strain TM1040 toward dinoflagellate products. Appl Environ Microbiol. 2004;70:4692–701.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    82.
    Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, et al. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature. 2003;424:1042–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    83.
    Basan M, Hui S, Okano H, Zhang Z, Shen Y, Williamson JR, et al. Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature. 2015;528:99–104.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    84.
    Kinkel LL, Schlatter DC, Xiao K, Baines AD. Sympatric inhibition and niche differentiation suggest alternative coevolutionary trajectories among Streptomycetes. ISME J. 2014;8:249–56.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    85.
    Kirchman DL. Phytoplankton death in the sea. Nature. 1999;398:293–4.
    CAS  Article  Google Scholar 

    86.
    Durham BP, Dearth SP, Sharma S, Amin SA, Smith CB, Campagna SR, et al. Recognition cascade and metabolite transfer in a marine bacteria‐phytoplankton model system. Environ Microbiol. 2017;19:3500–13.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    87.
    Enke TN, Datta MS, Schwartzman J, Cermak N, Schmitz D, Barrere J, et al. Modular assembly of polysaccharide-degrading marine microbial communities. Curr Biol. 2019;29:1528–35.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    88.
    Ferraris RP, Diamond JM. Specific regulation of intestinal nutrient transporters by their dietary substrates. Ann Rev Physiol. 1989;51:125–41.
    CAS  Article  Google Scholar 

    89.
    McCarren J, Becker JW, Repeta DJ, Shi Y, Young CR, Malmstrom RR, et al. Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea. Proc Nat Acad Sci. 2010;107:16420–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    90.
    Poretsky RS, Sun S, Mou X, Moran MA. Transporter genes expressed by coastal bacterioplankton in response to dissolved organic carbon. Environ Microbiol. 2010;12:616–27.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    91.
    Salzberg SL. Next-generation genome annotation: we still struggle to get it right. Genome Biol. 2019;20:92.
    PubMed  PubMed Central  Article  Google Scholar 

    92.
    Freilich S, Zarecki R, Eilam O, Segal ES, Henry CS, Kupiec M, et al. Competitive and cooperative metabolic interactions in bacterial communities. Nat Commun. 2011;2:589.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    93.
    Fu H, Uchimiya M, Gore J, Moran MA. Ecological drivers of bacterial community assembly in synthetic phycospheres. Proc Nat Acad Sci. 2020;117:3656–62.

    94.
    Zelezniak A, Andrejev S, Ponomarova O, Mende DR, Bork P, Patil KR. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc Nat Acad Sci. 2015;112:6449–54.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    95.
    Benson A, Lee R. The sulphoglycolytic pathway in plants. Biochem J. 1972;128:29P.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    96.
    Busby WF. Sulfoporpanedial and cysteinolic acid in the diatom. Biochim Biophys Acta. 1966;121:160–1.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    97.
    Durham BP, Sharma S, Luo H, Smith CB, Amin SA, Bender SJ, et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc Nat Acad Sci. 2015;112:453–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    98.
    Landa M, Burns AS, Durham BP, Esson K, Nowinski B, Sharma S, et al. Sulfur metabolites that facilitate oceanic phytoplankton–bacteria carbon flux. ISME J. 2019;13:2536–50.

    99.
    Denger K, Lehmann S, Cook AM. Molecular genetics and biochemistry of N-acetyltaurine degradation by Cupriavidus necator H16. Microbiology. 2011;157:2983–91.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    100.
    Mayer J, Huhn T, Habeck M, Denger K, Hollemeyer K, Cook AM. 2, 3-Dihydroxypropane-1-sulfonate degraded by Cupriavidus pinatubonensis JMP134: purification of dihydroxypropanesulfonate 3-dehydrogenase. Microbiology. 2010;156:1556–64.
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Reptile species richness associated to ecological and historical variables in Iran

    1.
    Thuiller, W. et al. Predicting global change impacts on plant species’ distributions: future challenges. Perspect. Plant Ecol. Evol. Syst. 9, 137–152 (2008).
    Article  Google Scholar 
    2.
    Pellissier, L. et al. Quaternary coral reef refugia preserved fish diversity. Science 344, 1016–1019 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    3.
    Antonelli, A. et al. Geological and climatic influences on mountain biodiversity. Nat. Geosci. 11, 718–725 (2018).
    ADS  CAS  Article  Google Scholar 

    4.
    Kerr, J. T. & Packer, L. Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature 385, 252–254 (1997).
    ADS  CAS  Article  Google Scholar 

    5.
    McCain, C. M. Global analysis of reptile elevational diversity. Glob. Ecol. Biogeogr. 19, 541–553 (2010).
    Google Scholar 

    6.
    Hortal, J. et al. Species richness can decrease with altitude but not with habitat diversity. PNAS 110, E2149–E2150 (2013).
    CAS  PubMed  Article  Google Scholar 

    7.
    Noroozi, J. et al. Hotspots within a global biodiversity hotspot – areas of endemism are associated with high mountain ranges. Sci. Rep. 8, 10345 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    8.
    Jansson, R. Global patterns in endemism explained by past climatic change. Proc. R. Soc. B 270, 583–590 (2003).
    PubMed  Article  Google Scholar 

    9.
    Sandel, B. et al. The influence of late quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    10.
    Craw, D. et al. Rapid biological speciation driven by tectonic evolution in New Zealand. Nat. Geosci. 9, 140 (2016).
    ADS  CAS  Article  Google Scholar 

    11.
    Pellissier, L., Heine, C., Rosauer, D. F. & Albouy, C. Are global hotspots of endemic richness shaped by plate tectonics?. Biol. J. Linn. Soc. 123, 247–261 (2017).
    Article  Google Scholar 

    12.
    Graham, C. H., Smith, T. B. & Languy, M. Current and historical factors influencing patterns of species richness and turnover of birds in the Gulf of Guinea highlands. J. Biogeogr. 32, 1371–1384 (2005).
    Article  Google Scholar 

    13.
    Araújo, M. B. et al. Quaternary climate changes explain diversity among reptiles and amphibians. Ecography 31, 8–15 (2008).
    Article  Google Scholar 

    14.
    Uetz, P. Freed, P. & Hošek J. The Reptile Database. https://www.reptile-database.org (accessed Aug 6, 2019] (2019).

    15.
    Rodriguez, M. A., Belmontes, J. A. & Hawkins, B. A. Energy, water and large-scale patterns of reptile and amphibian species richness in Europe. Acta Oecol. 28, 65–70 (2005).
    ADS  Article  Google Scholar 

    16.
    Guedes, T. B. et al. Patterns, biases and prospects in the distribution and diversity of Neotropical snakes. Glob. Ecol. Biogeogr. 27, 14–21 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    17.
    Pough, H. et al. Herpetology (Prentice Hall, Upper Saddle River, 2001).
    Google Scholar 

    18.
    Doan, T. M. A south-to-north biogeographic hypothesis for Andean speciation: evidence from the lizard genus Proctoporus (Reptilia, Gymnophthalmidae). J. Biogeogr. 30, 361–374 (2003).
    Article  Google Scholar 

    19.
    Agarwal, I., Bauer, A. M., Jackman, T. R. & Karanth, K. P. Insights into Himalayan biogeography from geckos: a molecular phylogeny of Cyrtodactylus (Squamata: Gekkonidae). Mol. Phylogenet. Evol. 80, 145–155 (2014).
    PubMed  Article  Google Scholar 

    20.
    Böhm, M. et al. The conservation status of the world’s reptiles. Biol. Conserv. 157, 372–385 (2013).
    Article  Google Scholar 

    21.
    IUCN. The IUCN Red List of Threatened Species. Version 2019.3. https://www.iucnredlist.org. (2019).

    22.
    Powney, G. D., Grenyer, R., Orme, C. D., Owens, I. P. & Meiri, S. Hot, dry and different: Australian lizard richness is unlike that of mammals, amphibians and birds. Glob. Ecol. Biogeogr. 19, 386–396 (2010).
    Article  Google Scholar 

    23.
    Qian, H. Environment–richness relationships for mammals, birds, reptiles, and amphibians at global and regional scales. Ecol. Res. 25, 629–637 (2010).
    Article  Google Scholar 

    24.
    Coops, N. C., Rickbeil, G. J. M., Bolton, D. K., Andrew, M. E. & Brouwers, N. C. (2018), Disentangling vegetation and climate as drivers of Australian vertebrate richness. Ecography 41, 1147–1160 (2018).
    Article  Google Scholar 

    25.
    Skeels, A., Esquerré, D. & Cardillo, M. Alternative pathways to diversity across ecologically distinct lizard radiations. Glob. Ecol. Biogeogr. 29, 454–469 (2020).
    Article  Google Scholar 

    26.
    Soares, C. & Brito, J. C. Environmental correlates for species richness among amphibians and reptiles in a climate transition area. Biodivers. Conserv. 16, 1087 (2007).
    Article  Google Scholar 

    27.
    Tallowin, O., Allison, A., Algar, A. C., Kraus, F. & Meiri, S. Papua New Guinea terrestrial-vertebrate richness: elevation matters most for all except reptiles. J. Biogeogr. 44, 1734–1744 (2017).
    Article  Google Scholar 

    28.
    Kissling, D. W., Blach-Overgaard, A., Zwaan, R. E. & Wagner, P. Historical colonization and dispersal limitation supplement climate and topography in shaping species richness of African lizards (Reptilia: Agaminae). Sci. Rep. 6, 34014 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Ficetola, G. F., Bonardi, A., Sindaco, R. & Padoa-Schioppa, E. Estimating patterns of reptile biodiversity in remote regions. J. Biogeogr. 40, 1202–1211 (2013).
    Article  Google Scholar 

    30.
    Hosseinzadeh, M., Aliabadian, M., Rastegar-Pouyani, E. & Rastegar-Pouyani, N. The roles of environmental factors on reptile richness in Iran. Amphib. Reptil. 35, 215–225 (2014).
    Article  Google Scholar 

    31.
    Ficetola, G. F., Falaschi, M., Bonardi, A., Padoa-Schioppa, E. & Sindaco, R. Biogeographical structure and endemism pattern in reptiles of the Western Palearctic. Prog. Phys. Geogr. 42, 220–236 (2018).
    Article  Google Scholar 

    32.
    Rastegar-Pouyani, E., Rastegar-Pouyani, N., Kazemi-Noureini, S., Joger, U. & Wink, M. Molecular phylogeny of the Eremias persica complex of the Iranian plateau (Reptilia: Lacertidae), based on mtDNA sequences. Zool. J. Linn. Soc. 158, 641–660 (2010).
    Article  Google Scholar 

    33.
    Rastegar-Pouyani, E., Kazemi-Noureini, S., Rastegar-Pouyani, N., Joger, U. & Wink, M. Molecular phylogeny and intraspecific differentiation of the Eremias velox complex of the Iranian Plateau and Central Asia (Sauria, Lacertidae). J. Zool. Syst. Evol. 50, 220–229 (2012).
    Article  Google Scholar 

    34.
    Ahmadzadeh, F. et al. Inferring the effects of past climate fluctuations on the distribution pattern of Iranolacerta (Reptilia, Lacertidae): Evidence from mitochondrial DNA and species distribution models. Zool. Anz. 252, 141–148 (2013).
    Article  Google Scholar 

    35.
    Ahmadzadeh, F., Carretero, M. A., Harris, D. J., Perera, A. & Böhme, W. A molecular phylogeny of the eastern group of ocellated lizard genus Timon (Sauria: Lacertidae) based on mitochondrial and nuclear DNA sequences. Amphib. Reptil. 33, 1–10 (2012).
    Article  Google Scholar 

    36.
    Macey, J. R. Testing hypotheses for vicariant separation in the agamid lizard Laudakia caucasia from mountain ranges of the Northern Iranian plateau. Mol. Phylogenet. Evol. 14, 479–483 (2000).
    CAS  PubMed  Article  Google Scholar 

    37.
    Rajabizadeh, M. et al. Alpine-Himalayan orogeny drove correlated morphological, molecular, and ecological diversification in the Persian dwarf snake (Squamata: Serpentes: Eirenis persicus). Zool. J. Linn. Soc. 176, 878–913 (2016).
    Article  Google Scholar 

    38.
    Anderson, S. C. The Lizards of Iran (Society for the Study of Amphibians and Reptiles, Oxford, 1999).
    Google Scholar 

    39.
    Eskandarzadeh, N. et al. Annotated checklist of the endemic Tetrapoda species of Iran. Zoosystema 40, 507–537 (2018).
    Article  Google Scholar 

    40.
    Saberi-Pirooz, R. et al. Dispersal beyond geographic barriers: a contribution to the phylogeny and demographic history of Pristurus rupestris Blanford, 1874 (Squamata: Sphaerodactylidae) from southern Iran. Zoology 134, 8–15 (2019).
    PubMed  Article  Google Scholar 

    41.
    Ahmadi, H. & Feiznia, S. Quaternary Formations (Aeoretical and Applied Principles in Natural Resources) (University of Tehran Press, Tehran, 2006).
    Google Scholar 

    42.
    Stümpel, N., Rajabizadeh, M., Avcı, A., Wüster, W. & Joger, U. Phylogeny and diversification of mountain vipers (Montivipera, Nilson etal. 2013) triggered by multiple Plio-Pleistocene refugia and high-mountain topography in the Near and Middle East. Mol. Phylogenet. Evol. 101, 336–351 (2016).
    PubMed  Article  Google Scholar 

    43.
    Yousefi, M. et al. Upward altitudinal shifts in habitat suitability of mountain vipers since the Last Glacial Maximum. PLoS ONE 10, e0138087 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    44.
    Rastegar-Pouyani, N., Rastegar-Pouyani, E. & Jawaheri, M. Field Guide to the Reptiles of Iran (Razi University Press, Kermanshah, 2007).
    Google Scholar 

    45.
    Kafash, A., Kaboli, M., Köhler, G., Yousefi, M. & Asadi, A. Ensemble distribution modeling of the Mesopotamian spiny-tailed lizard, Saara loricate (Blanford, 1874), in Iran: an insight into the impact of climate change. Turk. J. Zool. 40, 262–271 (2016).
    Article  Google Scholar 

    46.
    Faizi, H. et al. A new species of Eumeces Wiegmann 1834 (Sauria: Scincidae) from Iran. Zootaxa 4320, 289–304 (2017).
    Article  Google Scholar 

    47.
    Torki, F. Description of a new species of Lytorhynchus (Squamata: Colubridae) from Iran. Zool. Middle East. 63, 109–116 (2017).
    Article  Google Scholar 

    48.
    Fattahi, R. et al. Modelling the potential distribution of the Bridled Skink, Trachylepis vittata (Olivier, 1804), in the Middle East. Zool. Middle East 60, 208–216 (2014).
    Article  Google Scholar 

    49.
    Kafash, A. et al. Phrynocephalus scutellatus (Olivier, 1807) in Iranian Plateau: The degree of niche overlap depends on the phylogenetic distance. Zool. Middle East. 64, 47–54 (2018).
    Article  Google Scholar 

    50.
    Rodríguez, M. Á., Belmontes, J. A. & Hawkins, B. A. Energy, water and large-scale patterns of reptile and amphibian species richness in Europe. Acta Oecol. 28, 65–70 (2005).
    ADS  Article  Google Scholar 

    51.
    Angilletta, M. J., Niewiarowski, P. H. & Navas, C. A. The evolution of thermal physiology in ectotherms. J. Therm. Biol. 27, 249–268 (2002).
    Article  Google Scholar 

    52.
    Currie, D. J. Energy and large-scale patterns of animal and plant-species richness. Am Nat. 137, 27–49 (1991).
    Article  Google Scholar 

    53.
    Whittaker, R. J., Nogues-Bravo, D. & Araujo, M. B. Geographical gradients of species richness: a test of the water-energy conjecture of Hawkins et al. (2003) using European data for five taxa. Glob. Ecol. Biogeogr. 16, 76–89 (2007).
    Article  Google Scholar 

    54.
    Iverson, J. B. Species richness maps of the freshwater and terrestrial turtles of the world. Smithsonian Herpet. Inform. Serv. 88, 1–18 (1992).
    Google Scholar 

    55.
    Schall, J. J. & Pianka, E. R. Geographical trends in number of species. Science 201, 679–686 (1978).
    ADS  CAS  PubMed  Article  Google Scholar 

    56.
    Vidan, E. et al. The Eurasian hot nightlife: environmental forces associated with nocturnality in lizards. Glob. Ecol. Biogeogr. 26, 1316–1325 (2017).
    Article  Google Scholar 

    57.
    Hewitt, G. M. Genetic consequences of climatic oscillations in the Quaternary. Philos. Trans. R. Soc. Lond. B 359, 183–195 (2004).
    CAS  Article  Google Scholar 

    58.
    Rajabizadeh, M. et al. Geographic variation, distribution and habitat of Natrix tessellata in Iran. Mertensiella 18, 414–429 (2011).
    Google Scholar 

    59.
    Veith, M., Schmidtler, J. F., Kosuch, J., Baran, I. & Seitz, A. Palaeoclimatic changes explain Anatolian mountain frog evolution: a test for alternating vicariance and dispersal events. Mol. Ecol. 12, 185–199 (2003).
    CAS  PubMed  Article  Google Scholar 

    60.
    Farasat, H., Akmali, V. & Sharifi, M. Population Genetic Structure of the Endangered Kaiser’s Mountain Newt, Neurergus kaiseri (Amphibia: Salamandridae). PLoS ONE 11, e0149596 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    61.
    Perktaş, U., Barrowclough, G. F. & Groth, J. G. Phylogeography and species limits in the green woodpecker complex (Aves: Picidae): multiple Pleistocene refugia and range expansion across Europe and the Near East. Biol. J. Linn. Soc. 104, 710–723 (2011).
    Article  Google Scholar 

    62.
    Perktas, U. & Quintero, E. A wide geographical survey of mitochondrial DNA variation in the great spotted woodpecker complex, Dendrocopos major (Aves: Picidae). Biol. J. Linn. Soc. 108, 173–188 (2013).
    Article  Google Scholar 

    63.
    Haddadian-Shad, H., Darvish, J., Rastegar-Pouyani, E. & Mahmoudi, A. Subspecies differentiation of the house mouse Mus musculus Linnaeus, 1758 in the center and east of the Iranian plateau and Afghanistan. Mammalia 81, 1–22 (2016).
    Google Scholar 

    64.
    Dianat, M., Darvish, J., Cornette, R., Aliabadian, M. & Nicolas, V. Evolutionary history of the Persian Jird, Meriones persicus, based on genetics, species distribution modelling and morphometric data. J. Zool. Syst. Evol. 55, 29–45 (2016).
    Article  Google Scholar 

    65.
    Ashrafzadeha, M. R., Rezaei, H. R., Khalilipourc, O. & Kuszad, S. Genetic relationships of wild boars highlight the importance of Southern Iran in forming a comprehensive picture of the species’ phylogeography. Mamm. Biol. 92, 21–29 (2018).
    Article  Google Scholar 

    66.
    Wiens, J. J. & Graham, C. H. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).
    Article  Google Scholar 

    67.
    Wiens, J. J. & Donoghue, M. J. Historical biogeography, ecology, and species richness. Trends Ecol. Evol. 19, 639–644 (2004).
    PubMed  Article  Google Scholar 

    68.
    Ahmadzadeh, F. et al. The evolutionary history of two lizards (Squamata: Lacertidae) is linked to the geological development of Iran. Zool. Anz. 270, 49–56 (2017).
    Article  Google Scholar 

    69.
    Nilson, G., Rastegar-Pouyani, N., Rastegar-Pouyani, E. & Andrén, C. Lacertas of South and Central Zagros Mountains, Iran, with descriptions of two new taxa. Russ J. Herpetol. 10, 11–24 (2003).
    Google Scholar 

    70.
    Šmíd, J. & Frynta, D. Genetic variability of Mesalina watsonana (Reptilia: Lacertidae) on the Iranian plateau and its phylogenetic and biogeographic affinities as inferred from mtDNA sequences. Acta. Herpetol. 7, 139–153 (2012).
    Google Scholar 

    71.
    Yusefi, G. H., Faizolahi, K., Darvish, J., Safi, K. & Brito, J. C. The species diversity, distribution, and conservation status of the terrestrial mammals of Iran. J. Mammal. 100, 55–71 (2019).
    Article  Google Scholar 

    72.
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 

    73.
    Isaac, N. J. B., Redding, D. W., Meredith, H. M. & Safi, K. Phylogenetically-Informed Priorities for Amphibian Conservation. PLoS ONE 7, e43912 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Hagen, O. et al. Mountain building, climate cooling and the richness of cold-adapted plants in the Northern Hemisphere. J. Biogeogr. 46, 1792–1807 (2019).
    Article  Google Scholar 

    75.
    Noroozi, J., Moser, D. & Essl, F. Diversity, distribution, ecology and description rates of alpine endemic plant species from Iranian mountains. Alp. Bot. 126, 1–9 (2016).
    Article  Google Scholar 

    76.
    Noroozi, J., Akhani, H. & Breckle, S. W. Biodiversity and phytogeography of the alpine flora of Iran. Biodivers. Conserv. 17, 493–521 (2008).
    Article  Google Scholar 

    77.
    Ahmadzadeh, F. et al. Cryptic speciation patterns in Iranian rock lizards uncovered by Integrative Taxonomy. PLoS ONE 8, e80563 (2013).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    78.
    Darvishzadeh, A. Geology of Iran (Amirkabir Publication, Tehran, 2003).
    Google Scholar 

    79.
    Rögl, F. Mediterranean and Paratethys. Facts and hypotheses of an Oligocene to Miocene paleogeography (short overview). Geol. Carpath. 50, 339–349 (1999).
    Google Scholar 

    80.
    Okay, A. I., Zattin, M. & Cavazza, W. Apatite fission-track data for the Miocene Arabia-Eurasia collision. Geology 38, 35–38 (2010).
    ADS  Article  Google Scholar 

    81.
    Girdler, R. W. The evolution of the Gulf of Aden and Red Sea in space and time. Deep-Sea Res. 316, 747–762 (1984).
    ADS  Article  Google Scholar 

    82.
    Kehl, M. Quaternary climate change in Iran—the state of knowledge. Erdkunde 63, 1–17 (2009).
    Article  Google Scholar 

    83.
    Ehlers, J. & Gibbard, P. L. Quaternary Glaciations Extent and Chronology: Part I: Europe (Elsevier, Amsterdam, 2004).
    Google Scholar 

    84.
    Kaufman, D. S. et al. Holocene thermal maximum in the western Arctic (0–180 W). Quat. Sci. Rev. 23, 529–560 (2004).
    ADS  Article  Google Scholar 

    85.
    Nasrabadi, R., Rastegar-Pouyani, N., Rastegar-Pouyani, E. & Gharzi, A. A revised key to the lizards of Iran (Reptilia: Squamata: Lacertilia). Zootaxa 4227, 431–443 (2017).
    Article  Google Scholar 

    86.
    Hijmans, R.J., Guarino, L. & Mathur, P. “DIVA-GIS.” https://www.diva-gis.org/documentation (2012).

    87.
    Kafash, A., Ashrafi, S., Ohler, A. & Schmidt, B. R. Environmental predictors for the distribution of the Caspian Green Lizard, Lacerta strigata Eichwald, 1831 along elevational gradients of the Elburz Mountains in northern Iran. Turk. J. Zool. 43, 106–113 (2019).
    Article  Google Scholar 

    88.
    Descombes, P., Leprieur, F., Albouy, C., Heine, C. & Pellissier, L. Spatial imprints of plate tectonics on extant richness of terrestrial vertebrates. J. Biogeogr. 44, 1185–1197 (2017).
    Article  Google Scholar 

    89.
    Jarvis, A., Reuter, H. I., Nelson, A. & Guevara, E. Hole-Filled SRTM for the Globe Version 4. Available from the CGIAR-CSI SRTM 90m Database. https://srtm.csi.cgiar.org (2008).

    90.
    Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    91.
    Grünig, M., Beerli, N., Ballesteros-Mejia, L., Kitching, I. J. & Beck, J. How climatic variability is linked to the spatial distribution of range sizes: Seasonality versus climate change velocity in sphingid moths. J. Biogeogr. 44, 2441–2450 (2017).
    Article  Google Scholar 

    92.
    Soultan, A., Wikelski, M. & Safi, K. Classifying biogeographic realms of the endemic fauna in the Afro-Arabian region. Ecol Evol. 10, 8669–8680 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    93.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2016).
    Google Scholar 

    94.
    Hijmans, R.J. raster: Geographic Data Analysis and Modeling. R package version 3.3-7 (2020).

    95.
    van Etten, J. R package gdistance: Distances and routes on geographical grids. J. Stat. Softw. 76, 1–21 (2017).
    Google Scholar 

    96.
    Bengtsson, H. matrixStats: Functions That Apply to Rows and Columns of Matrices (and to Vectors). R package version 0.56.0. (2020).

    97.
    VanDerWal, J. et al. SDMTools: Species Distribution Modelling Tools: Tools for Processing Data Associated with Species Distribution Modelling Exercises. R package ver. 1.1‐221.1. (2019).

    98.
    Alavi, M. Tectonics of the Zagros orogenic belt of Iran: New data and interpretations. Tectonophysics 229, 211–238 (1994).
    ADS  Article  Google Scholar 

    99.
    Agard, P., Omrani, J., Jolivet, L. & Mouthereau, F. Convergence history across Zagros (Iran): constraints from collisional an earlier deformation. Int. J. Earth Sci. 94, 401–419 (2005).
    CAS  Article  Google Scholar 

    100.
    Monthereau, F. Timing of uplift in the Zagros belt/Iranian plateau and accommodation of late Cenozoic Arabia-Eurasia convergence. Geol. Mag. 148, 726–738 (2011).
    ADS  Article  Google Scholar 

    101.
    Rezaeian, M., Carter, A., Hovius, N. & Allen, M. B. Cenozoic exhumation history of the Alborz Mountains, Iran: new constraints from low-temperature chronometry. Tectonics 31, TC004 (2012).
    Article  Google Scholar 

    102.
    Madanipour, S., Ehlers, T. A., Yassaghi, A. & Enkelmann, E. Accelerated middle Miocene exhumation of the Talesh Mountains constrained by U-Th/He thermochronometry: evidence for the Arabia-Eurasia collision in the NW Iranian Plateau. Tectonics 36, 1538–1561 (2017).
    ADS  Article  Google Scholar 

    103.
    QGIS Development Team. QGIS Geographic Information System (version 3.4.1). Software (2018).

    104.
    Quinn, G. P. & Keough, M. J. Experimental Designs and Data Analysis for Biologists (Cambridge University Press, Cambridge, 2002).
    Google Scholar 

    105.
    Naimi, B. Uncertainty Analysis for Species Distribution Models. R package version 1.1-15 (2015).

    106.
    Fick, S. E. & Hijmans, R. J. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Article  Google Scholar 

    107.
    Broxton, P. D., Zeng, X., Scheftic, W. & Troch, P. A. A MODIS-based global 1-km maximum green vegetation fraction dataset. J. Appl. Meteorol. Clim. 53, 1996–2004 (2014).
    ADS  Article  Google Scholar 

    108.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Article  Google Scholar 

    109.
    Albouy, C. et al. The marine fish food web is globally connected. Nat. Ecol. Evol. 3, 1153–1161 (2019).
    PubMed  Article  Google Scholar 

    110.
    Olson, D. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).
    Article  Google Scholar 

    111.
    Di Cola, V. et al. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787 (2017).
    Article  Google Scholar  More

  • in

    Survive or swim: different relationships between migration potential and larval size in three sympatric Mediterranean octocorals

    1.
    Grinnell, I. Geography and evolution. Ecology 5, 225–229 (1924).
    Article  Google Scholar 
    2.
    Elton, C. Animal Ecology. 204 p. (Sidgewick & Jackson , 1927)

    3.
    Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Ann. Rev. Ecol. Evol. Syst. 40, 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159 (2009).
    Article  Google Scholar 

    4.
    Fordham, D. A. et al. How complex should models be? Comparing correlative and mechanistic range dynamics models. Glob. Change Biol. 24, 1357–1370 (2018).
    ADS  Article  Google Scholar 

    5.
    Pagel, J. & Schurr, F. M. Forecasting species ranges by statistical estimation of ecological niches and spatial population dynamics. Glob. Ecol. Biogeogr. 21, 293–304. https://doi.org/10.1111/j.1466-8238.2011.00663.x (2012).
    Article  Google Scholar 

    6.
    Hanski, I. Metapopulation dynamics: does it help to have more of the same?. TREE 4, 113–114 (1989).
    CAS  PubMed  Google Scholar 

    7.
    Leibold, M. A. et al. The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7(7), 601–613 (2004).
    Article  Google Scholar 

    8.
    Urban, M. C. et al. Improving the forecast of biodiversity under climate change. Science 353(6304), 8466 (2016).
    Article  CAS  Google Scholar 

    9.
    Thomson, F. J. et al. Chasing the unknown: predicting seed dispersal mechanisms from plant traits. J. Ecol. 98, 1310–1318 (2010).
    Article  Google Scholar 

    10.
    Scheltema, R. S. On dispersal and planktonic larvae of benthic invertebrates: an eclectic overview and summary of the problem. Bull. Mar. Sci. 39(2), 290–322 (1986).
    Google Scholar 

    11.
    Levinton, J.S. Marine biology: function, biodiversity, ecology. 420 p. (Oxford University Press, 1995)

    12.
    Szmant, A. M. Reproductive ecology of Caribbean reef corals. Coral Reefs 5, 43–53. https://doi.org/10.1007/BF00302170 (1986).
    ADS  Article  Google Scholar 

    13.
    Harrison, P. L., & Wallace, C. C. Reproduction, dispersal and recruitment of scleractinian corals in Coral reef ecosystems (ed Dubinsky, Z. . 133–207 (Elsevier, 1990)

    14.
    Chia, F. S., Buckland-Nicks, J. & Young, C. M. Locomotion of marine invertebrates larvae: a review. Can. J. Zool. 62, 1205–1222 (1984).
    Article  Google Scholar 

    15.
    Kinlan, B. P. & Gaines, S. D. Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84, 2007–2020 (2003).
    Article  Google Scholar 

    16.
    Botsford, L. W. et al. Connectivity, sustainanility, and yield: bridging the gap between conventional fisheries management and marine protected areas. Rev. Fish Biol. Fisheries 19, 69–95 (2009).
    Article  Google Scholar 

    17.
    Siegel, D. A., Kinlan, B. P., Gaylord, B. & Gaines, S. D. Lagrangian descriptions of marine larval dispersion. Mar. Ecol. Prog. Ser. 260, 83–96 (2003).
    ADS  Article  Google Scholar 

    18.
    Bohonak, A. J. Dispersal, gene flow, and population structure. Q. Rev. Biol. 74(1), 21–45 (1999).
    CAS  PubMed  Article  Google Scholar 

    19.
    Fitzpatrick, M. C. & Hargrove, W. W. The projection of species distribution models and the problem of non-analog climate. Biodiversity Conserv. 18, 2255–2261 (2009).
    Article  Google Scholar 

    20.
    Guizien, K., Brochier, T., Duchêne, J. C., Koh, B. S. & Marsaleix, P. Dispersal of Owenia fusiformis larvae by wind-driven currents: turbulence, swimming behaviour and mortality in a three-dimensional stochastic model. Mar. Ecol. Prog. Ser. 311, 47–66 (2006).
    ADS  Article  Google Scholar 

    21.
    Guizien, K., Belharet, M., Marsaleix, P. & Guarini, J. M. Using larval dispersal simulations for marine protected area design: application to the Gulf of Lions (NW Mediterranean). Limnol. Oceanogr. 57(4), 1099–1112. https://doi.org/10.4319/lo.2012.57.4.1099 (2012).
    ADS  Article  Google Scholar 

    22.
    Weinberg, S. & Weinberg, F. The life cycle of a gorgonian: Eunicella singularis (Esper, 1794). Bijdr Dierkd 48, 127–140 (1979).
    Article  Google Scholar 

    23.
    Weinberg, S. Revision of the common Octocorallia of the Mediterranean circalittoral I. Gorgonacea. Beaufortia 24, 63–104 (1976).
    Google Scholar 

    24.
    Gori, A. et al. Spatial distribution patterns of the gorgonians Eunicella singularis, Paramuricea clavata and Leptogorgia sarmentosa (Cape of Creus, Northwestern Mediterranean Sea). Mar. Biol. 158, 143–158 (2011).
    Article  Google Scholar 

    25.
    Theodor, J. Contribution à l’étude des gorgones (VII): écologie et comportement de la planula. Vie et Milieu 18(2A), 291–301 (1967).
    Google Scholar 

    26.
    Ribes, M., Coma, R., Rossi, S. & Michelli, M. The cycle of gonadal development of Eunicella singularis (Cnidaria: Octocorallia). Invertebr. Biol. 126, 307–317 (2007).
    Article  Google Scholar 

    27.
    Santangelo, G. & Abbiati, M. Red coral: conservation and management of an over-exploited Mediterranean species. Aquat. Conserv. Mar. Freshw. Ecosys. 259, 253–259 (2001).
    Article  Google Scholar 

    28.
    Costantini, F. et al. Deep-water Corallium rubrum (L., 1758) from the Mediterranean Sea: preliminary genetic characterisation. Mar. Ecol. 31, 261–269 (2010).
    ADS  Article  Google Scholar 

    29.
    Santangelo, G., Carletti, E., Maggi, E. & Bramanti, L. Reproduction and population sexual structure of the overexploited Mediterranean red coral Corallium rubrum. Mar. Ecol. Prog. Ser. 248, 99–108. https://doi.org/10.3354/meps248099 (2003).
    ADS  Article  Google Scholar 

    30.
    Lacaze-Duthiers, H. Histoire Naturelle du Corail, 371 p (J.B, Baillière et Fils, 1864).
    Google Scholar 

    31.
    Martinez-Quintana, A., Bramanti, L., Viladrich, N., Rossi, S. & Guizien, K. Quantification of Corallium rubrum larvae motility behavior: implications for population connectivity. Mar. Biol. 162, 309–318 (2015).
    Article  Google Scholar 

    32.
    Coma, R., Ribes, M., Zabala, M. & Gili, J. M. Growth in a modular colonial marine invertebrate. Estuar. Coast Shelf Sci. 47, 459–470 (1998).
    ADS  Article  Google Scholar 

    33.
    Coma, R., Ribes, M., Zabala, M. & Gili, J. M. Reproduction and cycle of gonadal development in the Mediterranean gorgonian Paramuricea clavata. Mar. Ecol. Prog. Ser. 117, 173–183 (1995).
    ADS  Article  Google Scholar 

    34.
    Linares, C. et al. Early life history of the Mediterranean gorgonian Paramuricea clavata: implications for population dynamics. Invertebr. Biol. 127(1), 1–11 (2008).
    Article  Google Scholar 

    35.
    Muscatine, L. Glycerol excretion by symbiotic algae from corals and Tridacna and tts control by the host. Science 156(3774), 516–519. https://doi.org/10.1126/science.156.3774.516 (1967).
    ADS  CAS  Article  PubMed  Google Scholar 

    36.
    Pennington, J. T. & Emlet, R. B. Ontogenic and diel vertical migration of a planktonic echinoid larva, Dendraste rexcentricus (Eschscholtz): occurrence, causes, and probable consequences. J. Exp. Mar. Biol. and Ecol. 104, 69–95 (1986).
    Article  Google Scholar 

    37.
    Vogel, S. Life in a moving fluid: the physical biology of flow. 488 p. (Princeton University Press, 1994)

    38.
    Ben-David-Zaslow, R. & Benayahu, Y. Competence and longevity in planulae of several species of soft corals. Mar. Ecol. Prog. Ser. 163, 235–243 (1998).
    ADS  Article  Google Scholar 

    39.
    Maldonado, M. The ecology of sponge larvae. Can. J. Zool. 84(2), 175–194 (2006).
    Article  Google Scholar 

    40.
    Nishikawa, A., Masaya, K. & Sakai, K. Larval settlement rates and gene flow of broadcast-spawning (Acropora Tenuis) and Planula-Brooding (Stylophora Pistillata) corals. Mar. Ecol. Prog. Ser. 256, 87–97. https://doi.org/10.3354/meps256087 (2003).
    ADS  CAS  Article  Google Scholar 

    41.
    Keough, M. J. & Chernoff, H. Dispersal and population variation in the bryozoan Bugula neritina. Ecology 68, 199–210 (1987).
    Article  Google Scholar 

    42.
    Mc Edward, L. R. Ecology of marine invertebrate larvae. 464 p. (CRC Press, 1995)

    43.
    Zelli, E. et al. Settlement dynamics and recruitment responses of Mediterranean gorgonians larvae to different crustose coralline algae species. J. Exp. Mar. Biol. Ecol. 1, 530–531. https://doi.org/10.1016/j.jembe.2020.151427 (2020).
    Article  Google Scholar 

    44.
    Knight-Jones, E. W. Gregariousness and some other aspects of the settling behaviour of Spirorbis. J. Mar. Biol. Assoc. UK 30, 201–222 (1951)

    45.
    Wilson, D. P. The settlement of Ophelia bicornis Savigny larvae. J. Mar. Biol. Assoc. UK 32, 209–233 (1953).
    Article  Google Scholar 

    46.
    Cowen, R. K., Lwiza, K. M. M., Sponaugle, S., Paris, C. B. & Olson, D. B. Connectivity of marine populations: open or closed?. Science 287, 857–859 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 

    47.
    Stearns, S. C. The Evolution of Life Histories. 249 p. (Oxford University Press 1992)

    48.
    Viladrich, N. et al. Variations of lipid and free fatty acid contents during spawning in two temperate octocorals with different reproductive strategies: surface versus internal brooder. Coral Reefs 35(3), 1033–1045. https://doi.org/10.1007/s00338-016-1440-1 (2016).
    ADS  Article  Google Scholar 

    49.
    Viladrich, N. et al. Variation of lipid and free fatty acid contents during larval release in two temperate octocorals according to their trophic strategy. Mar. Ecol. Prog. Ser. 573, 117–128. https://doi.org/10.3354/meps12141 (2017).
    ADS  CAS  Article  Google Scholar 

    50.
    Santangelo, G., Bramanti, L. & Iannelli, M. Population dynamics and conservation biology of the overexploited Mediterranean Red coral. J. Theor. Biol. 244, 416–423 (2007).
    PubMed  Article  Google Scholar 

    51.
    Gori, A., Linares, C., Rossi, S., Coma, R. & Gili, J. M. Spatial variability in reproductive cycles of the gorgonians Paramuricea clavata and Eunicella singularis in the western Mediterranean. Mar. Biol. 151, 1571–1584 (2007).
    Article  Google Scholar 

    52.
    Caldwell, R. L. & Edmonds, D. A. The effects of sediment properties ondeltaic processes and morphologies: a numerical modeling study. J. Geophys. Res. Earth Surf. 119, 961–982. https://doi.org/10.1002/2013JF002965 (2014).
    ADS  Article  Google Scholar 

    53.
    Richmond, R. H. Energetics, competency, and long-distance dispersal of planula larvae of the coral Pocillopora damicornis. Mar. Biol. 93(4), 527–533 (1987).
    Article  Google Scholar 

    54.
    Huhn, K., Paul, A. & Seyferth, M. Modeling sediment transport patterns during an upwelling event. J. Geophys. Res. 112(C10003), 1. https://doi.org/10.1029/2005JC003107 (2007).
    Article  Google Scholar 

    55.
    Bakun, A. & Agostini, V. N. Seasonal patterns of wind-induced upwelling/downwelling in the Mediterranean Sea. Sci. Mar. 65(3), 243–257 (2001).
    Article  Google Scholar 

    56.
    Mokhtar-Jamaï, K. et al. From global to local genetic structuring in the red gorgonian Paramuricea clavata: the interplay between oceanographic conditions and limited larval dispersal. Mol. Ecol. 20, 3291–3305 (2011).
    PubMed  Article  Google Scholar 

    57.
    Mokhtar-Jamaï, K. et al. Role of evolutionary and ecological factors in the reproductive success and the spatial genetic structure of the temperate gorgonian Paramuricea clavata. Ecol. Evol. 3(6), 1765–1779. https://doi.org/10.1002/ece3.588 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    58.
    Pilczynska, J., Cocito, S., Boavida, J., Serrão, E. & Queiroga, H. Genetic diversity and local connectivity in the Mediterranean red gorgonian coral after mass mortality events. PLoS ONE 11(3), e0150590. https://doi.org/10.1371/journal.pone.0150590 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    59.
    Padron, M., Costantini, F., Bramanti, L., Guizien, K. & Abbiati, M. Genetic connectivity fosters recovery of gorgonian populations impacted by climate change. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 779–787. https://doi.org/10.1002/aqc.2912 (2018).
    Article  Google Scholar 

    60.
    Ledoux, J.-B. et al. Genetic survey of shallow populations of the Mediterranean red coral [Corallium rubrum (Linnaeus,1758)]: new insights into evolutionary processes shaping nuclear diversity and implications for conservation. Mol. Ecol. 19, 675–690 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    61.
    Padron, M., Costantini, F., Baksay, S., Bramanti, L. & Guizien, K. Passive larval transport explains recent gene flow in a Mediterranean gorgonian. Coral Reefs 37, 495–506. https://doi.org/10.1007/s00338-018-1674-1 (2018).
    ADS  Article  Google Scholar 

    62.
    Selkoe, K. A. et al. A decade of seascape genetics: contributions tobasic and applied marine connectivity. Mar. Ecol. Prog. Ser. 554, 1–19 (2016).
    ADS  Article  Google Scholar 

    63.
    Isomura, N. & Nishihira, M. Size variation of planulae and its effect on the lifetime of planulae in three pocilloporid corals. Coral Reefs 20, 309–315 (2001).
    Article  Google Scholar 

    64.
    Hoegh-Guldberg, O. & Jones, R. J. Photoinhibition and photoprotection in symbiotic dinoflagellates from reef-building corals. Mar. Ecol. Prog. Ser. 183, 73–86 (1999).
    ADS  Article  Google Scholar 

    65.
    Rumrill, S. S. Natural mortality of marine invertebrate larvae. Ophelia 32, 163–198 (1990).
    Article  Google Scholar 

    66.
    Frost, B. W. Feeding processes at lower trophic levels in pelagic communities in The Biology of the Oceanic Pacific. 59–77 (Oregon State University Press 1974)

    67.
    Williamson, C. E. & Stoeckel, M. E. Estimating predation risk in zooplankton communities: the importance of vertical overlap. Hydrobiologia 198, 125–131 (1990).
    Article  Google Scholar 

    68.
    Almeda, R., van Someren Greve, H. & Kiørboe, T. Behavior is a major determinant of predation risk inzooplankton. Ecosphere 8(2), 1668. https://doi.org/10.1002/ecs2.1668 (2017).
    Article  Google Scholar 

    69.
    Moran, A. L. & Emlet, R. B. Offspring size and performance in variable environments: field studies on a marine snail. Ecology 82, 1597–1612 (2001).
    Article  Google Scholar  More

  • in

    A biphasic navigational strategy in loggerhead sea turtles

    1.
    Guilford, T. et al. Migratory navigation in birds: New opportunities in an era of fast-developing tracking technology. J. Exp. Biol. 214, 3705–3712 (2011).
    PubMed  Article  PubMed Central  Google Scholar 
    2.
    Lohmann, K. J., Luschi, P. & Hays, G. C. Goal navigation and island-finding in sea turtles. J. Exp. Mar. Biol. Ecol. 356, 83–95 (2008).
    Article  Google Scholar 

    3.
    Kishkinev, D. Sensory mechanisms of long-distance navigation in birds: a recent advance in the context of previous studies. J. Ornithol. 156, 145–161 (2015).
    Article  Google Scholar 

    4.
    Mouritsen, H. Long-distance navigation and magnetoreception in migratory animals. Nature 558, 50–59 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Luschi, P. et al. Testing the navigational abilities of ocean migrants: displacement experiments on green sea turtles (Chelonia mydas). Behav. Ecol. Sociobiol. 50, 528–534 (2001).
    Article  Google Scholar 

    6.
    Benhamou, S., Bonadonna, F. & Jouventin, P. Successful homing of magnet-carrying white-chinned petrels released in the open sea. Anim. Behav. 65, 729–734 (2003).
    Article  Google Scholar 

    7.
    Wikelski, M. et al. True navigation in migrating gulls requires intact olfactory nerves. Sci. Rep. 5, 17061 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Gagliardo, A. et al. Oceanic navigation in Cory’s shearwaters: evidence for a crucial role of olfactory cues for homing after displacement. J. Exp. Biol. 216, 2798–2805 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    9.
    Luschi, P. Long-distance animal migrations in the oceanic environment: Orientation and navigation correlates. ISRN Zool. ID 631839 23, https://doi.org/10.1155/2013/631839 (2013).

    10.
    Papi, F., Luschi, P., Crosio, E. & Hughes, G. R. Satellite tracking experiments on the navigational ability and migratory behaviour of the loggerhead turtle Caretta caretta. Mar. Biol. 129, 215–220 (1997).
    Article  Google Scholar 

    11.
    Luschi, P., Papi, F., Liew, H. C., Chan, E. H. & Bonadonna, F. Long-distance migration and homing after displacement in the green turtle (Chelonia mydas): A satellite tracking study. J. Comp. Physiol. 178A, 447–452 (1996).
    Google Scholar 

    12.
    Luschi, P. et al. Satellite tracking of migrating loggerhead sea turtles (Caretta caretta) displaced in the open sea. Mar. Biol. 143, 793–801 (2003).
    Article  Google Scholar 

    13.
    Avens, L., Braun-McNeil, J., Epperly, S. P. & Lohmann, K. J. Site fidelity and homing behavior in juvenile loggerhead sea turtles (Caretta caretta). Mar. Biol. 143, 211–220 (2003).
    Article  Google Scholar 

    14.
    Girard, C., Sudre, J., Benhamou, S., Roos, D. & Luschi, P. Homing in green turtles Chelonia mydas: Oceanic currents act as a constraint rather than as an information source. Mar. Ecol. Prog. Ser. 322, 281–289 (2006).
    ADS  Article  Google Scholar 

    15.
    Benhamou, S. et al. The role of geomagnetic cues in green turtle open sea navigation. PLoS ONE 6, e26672 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Shimada, T. et al. Sea turtles return home after intentional displacement from coastal foraging areas. Mar. Biol. 163, 8 (2016).
    Article  CAS  Google Scholar 

    17.
    Lohmann, K. J., Lohmann, C. M. F., Ehrhart, L. M., Bagley, D. A. & Swing, T. Geomagnetic map used in sea-turtle navigation. Nature 428, 909–910 (2004).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Bingman, V. P. & Cheng, K. Mechanisms of animal global navigation: Comparative perspectives and enduring challenges. Ethol. Ecol. Evol. 17, 295–318 (2006).
    Article  Google Scholar 

    19.
    Holland, R. A. True navigation in birds: from quantum physics to global migration. J. Zool. 293, 1–15 (2014).
    Article  Google Scholar 

    20.
    Hays, G. C. et al. Island-finding ability of marine turtles. Proc. R. Soc. Lond. B 270(Suppl. 1), 5–7 (2003).
    Google Scholar 

    21.
    Gaspar, P. et al. Marine animal behaviour: Neglecting ocean currents can lead us up the wrong track. Proc. R. Soc. Lond. B 273, 2697–2702 (2006).
    Google Scholar 

    22.
    Chapman, J. W. et al. Animal orientation strategies for movement in flows. Curr. Biol. 21, R861–R870 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Luschi, P. et al. Marine turtles use geomagnetic cues during open-sea homing. Curr. Biol. 17, 126–133 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Putman, N. F. & He, R. Tracking the long-distance dispersal of marine organisms: Sensitivity to ocean model resolution. J. R. Soc. Interface 10, 20120979 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    25.
    Narazaki, T., Sato, K., Abernathy, K. J., Marshall, G. J. & Miyazaki, N. Sea turtles compensate deflection of heading at the sea surface during directional travel. J. Exp. Biol. 212, 4019–4026 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Shiomi, K. et al. Data-processing artefacts in three-dimensional dive path reconstruction from geomagnetic and acceleration data. Aquat. Biol. 8, 299–304 (2010).
    Article  Google Scholar 

    27.
    Narazaki, T., Sato, K., Abernathy, K. J., Marshall, G. J. & Miyazaki, N. Loggerhead turtles (Caretta caretta) use vision to forage on gelatinous prey in mid-water. PLoS ONE 8(6), e66043 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Fukuoka, T., Narazaki, T., Kinoshita, C. & Sato, K. Diverse foraging habits of juvenile green turtles (Chelonia mydas) in a summer-restricted foraging habitat in the northwest Pacific Ocean. Mar. Biol. 166, 25 (2019).
    Article  Google Scholar 

    29.
    Luschi, P. & Casale, P. Movement patterns of marine turtles in the Mediterranean Sea: a review. Ital. J. Zool. 81, 478–495 (2014).
    Article  Google Scholar 

    30.
    Türkozan, O., Taskavak, E. & Ilgaz, C. A review of the biology of the loggerhead turtle, Caretta caretta, at five major nesting beaches on the south-western Mediterranean coast of Turkey. J. Herpetol. 13, 27–34 (2003).
    Google Scholar 

    31.
    Canbolat, A. F. A review of sea turtle nesting activity along the Mediterranean coast of Turkey. Biol. Conserv. 116, 81–91 (2004).
    Article  Google Scholar 

    32.
    Papi, F., Liew, H. C., Luschi, P. & Chan, E. H. Long-range migratory travel of a green turtle tracked by satellite: Evidence for navigational ability in the open sea. Mar. Biol. 122, 171–175 (1995).
    Article  Google Scholar 

    33.
    Dujon, A. M., Schofield, G., Lester, R. E., Esteban, N. & Hays, G. C. Fastloc-GPS reveals daytime departure and arrival during long-distance migration and the use of different resting strategies in sea turtles. Mar. Biol. 164, 187 (2017).
    Article  Google Scholar 

    34.
    Wallraff, H. G. Avian navigation: Pigeon homing as a paradigm (Springer, Berlin, 2005).
    Google Scholar 

    35.
    Giunchi, D., Pollonara, E. & Baldaccini, N. E. The influence of transport conditions on the initial orientation of sand martins (Riparia riparia). Ethol. Ecol. Evol. 15, 83–97 (2003).
    Article  Google Scholar 

    36.
    Parker, D. M. et al. Conservation considerations revealed by the movements of post-nesting green turtles from the Republic of the Marshall Islands. Micronesica 3, 1–9 (2015).
    CAS  Google Scholar 

    37.
    Hays, G. C., Cerritelli, G., Esteban, N., Rattray, A. & Luschi, P. Open ocean reorientation and challenges of island finding by sea turtles during long-distance migration. Curr. Biol. 30, 3236-3242.e3 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Hays, G. C. et al. Biphasal long-distance migration in green turtles. Anim. Behav. 64, 895–898 (2002).
    Article  Google Scholar 

    39.
    Broderick, A. C., Coyne, M., Fuller, W. J., Glen, F. & Godley, B. J. Fidelity and over-wintering of sea turtles. Proc. R. Soc. Lond. B 274, 1533–1538 (2007).
    Google Scholar 

    40.
    Hays, G. C. et al. Route optimisation and solving Zermelo’s navigation problem during long distance migration in cross flows. Ecol. Lett. 17, 137–143 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    41.
    Hays, G. C., Mortimer, J. A., Ierodiaconou, D. & Esteban, N. Use of long-distance migration patterns of an endangered species to inform conservation planning for the world’s largest marine protected area. Conserv. Biol. 6, 1636–1644 (2014).
    Article  Google Scholar 

    42.
    Mingozzi, T., Mencacci, R., Cerritelli, G., Giunchi, D. & Luschi, P. Living between widely separated areas: Long-term monitoring of Mediterranean loggerhead turtles sheds light on cryptic aspects of females spatial ecology. J. Exp. Mar. Biol. Ecol. 485, 8–17 (2016).
    Article  Google Scholar 

    43.
    Mettler, E., Clyde-Brockway, C., Honarvar, S. & Paladino, F. V. Migratory corridor linking Atlantic green turtle, Chelonia mydas, nesting site on Bioko Island, Equatorial Guinea to Ghanaian foraging grounds. PlosONE 14(6), e0213231 (2019).
    CAS  Article  Google Scholar 

    44.
    Endres, C. S. et al. Multi-modal homing in sea turtles: Modeling dual use of geomagnetic and chemical cues in island-finding. Front. Behav. Neurosci. 10, 19 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    45.
    Lohmann, K.J. & Lohmann, C.M.F. There and back again: natal homing by magnetic navigation in sea turtles and salmon. J. Exp. Biol. 222, jeb184077 (2019)

    46.
    Holland, R. A. et al. Testing the role of sensory systems in the migratory heading of a songbird. J. Exp. Biol. 212, 4065–4071 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Berthold, P. Spatiotemporal programmes and genetics of orientation. in Orientation in Birds (ed. Berthold, P.) 86–105 (Birkauser, Basel, 1991).

    48.
    Scott, R., Marsh, R. & Hays, G. C. Ontogeny of long distance migration. Ecology 95, 2840–2850 (2014).
    Article  Google Scholar 

    49.
    Cerritelli, G. et al. Assessing reliance on vector navigation in the long-distance oceanic migrations of green sea turtles. Behav. Ecol. 30, 68–79 (2019).
    Article  Google Scholar 

    50.
    Kaska, Y., Başkale, E., Katılmış, Y., Sözbilen, D. & Şirin, A. Monitoring and Conservation of Sea Turtles (Caretta caretta and Chelonia mydas) and soft-shelled Nile turtle (Trionyx triunguis) populations within the scope of Köyceðiz-Dalyan specially protected area- monitoring species and habitat project, 2018 (Turkish Ministry of Environment and Urbanization, Ankara, 2018).
    Google Scholar 

    51.
    Telonics 2017 Gen4 GPS Systems Manual, Document Number PB008383 Rev L Mesa, AZ.

    52.
    Luschi, P., Hays, G. C., Del Seppia, C., Marsh, R. & Papi, F. The navigational feats of green sea turtles migrating from Ascension Island investigated by satellite telemetry. Proc. R. Soc. Lond. B 265, 2279–2284 (1998).
    CAS  Article  Google Scholar 

    53.
    Benhamou, S. How to reliably estimate the tortuosity of an animal’s path: straightness, sinuosity, or fractal dimension?. J. Theor. Biol. 229, 209–220 (2004).
    MathSciNet  PubMed  MATH  Article  PubMed Central  Google Scholar 

    54.
    Savitzky, A. & Golay, M. J. E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964).
    ADS  CAS  Article  Google Scholar 

    55.
    Fisher, C.J. Using an accelerometer for inclination sensing. AN-1057, application note. Analog. Dev. 1–8 (2010)

    56.
    Batschelet, E. Circular Statistics in Biology (Academic Press, New York, 1981).
    Google Scholar  More

  • in

    Marine plankton show threshold extinction response to Neogene climate change

    1.
    Beaugrand, G., Edwards, M., Raybaud, V., Goberville, E. & Kirby, R. R. Future vulnerability of marine biodiversity compared with contemporary and past changes. Nat. Clim. Change 5, 695–701 (2015).
    ADS  Google Scholar 
    2.
    Barton, A. D., Irwin, A. J., Finkel, Z. V. & Stock, C. A. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. Proc. Natl. Acad. Sci. USA 113, 2964–2969 (2016).
    ADS  CAS  PubMed  Google Scholar 

    3.
    Thomas, M. K., Kremer, C. T., Klausmeier, C. A. & Litchman, E. A global pattern of thermal adaptation in marine phytoplankton. Science 338, 1085–1088 (2012).
    ADS  CAS  PubMed  Google Scholar 

    4.
    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Chang. 3, 919–925 (2013).
    ADS  Google Scholar 

    5.
    Jensen, L. Ø., Mousing, E. A. & Richardson, K. Using species distribution modelling to predict future distributions of phytoplankton: case study using species important for the biological pump. Mar. Ecol. 38, e12427 (2017).
    ADS  Google Scholar 

    6.
    Chivers, W. J., Walne, A. W. & Hays, G. C. Mismatch between marine plankton range movements and the velocity of climate change. Nat. Commun. 8, 1–8 (2017).
    Google Scholar 

    7.
    Lazarus, D., Barron, J., Renaudie, J., Diver, P. & Türke, A. Cenozoic planktonic marine diatom diversity and correlation to climate change. PLoS One 9, e84857 (2014).

    8.
    Herbert, T. D. et al. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 9, 843–847 (2016).
    ADS  CAS  Google Scholar 

    9.
    Renaudie, J. & Lazarus, D. B. On the accuracy of paleodiversity reconstructions: a case study in Antarctic Neogene radiolarians. Paleobiology 39, 491–509 (2013).
    Google Scholar 

    10.
    Caron, D. A. Ocean science: the rise of Rhizaria. Nature 532, 444–445 (2016).
    ADS  CAS  PubMed  Google Scholar 

    11.
    Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465–470 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    12.
    de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).
    PubMed  Google Scholar 

    13.
    Moreira, D. et al. Global eukaryote phylogeny: combined small- and large-subunit ribosomal DNA trees support monophyly of Rhizaria, Retaria and Excavata. Mol. Phylogenet. Evol. 44, 255–266 (2007).
    CAS  PubMed  Google Scholar 

    14.
    Biard, T. et al. In situ imaging reveals the biomass of giant protists in the global ocean. Nature 532, 504–507 (2016).
    ADS  CAS  PubMed  Google Scholar 

    15.
    Gutierrez-Rodriguez, A. et al. High contribution of Rhizaria (Radiolaria) to vertical export in the California Current Ecosystem revealed by DNA metabarcoding. ISME J. 13, 964–976 (2019).
    CAS  PubMed  Google Scholar 

    16.
    Lampitt, R. S., Salter, I. & Johns, D. Radiolaria: major exporters of organic carbon to the deep ocean. Glob. Biogeochem. Cycles 23, 1–9 (2009).
    Google Scholar 

    17.
    Llopis Monferrer, N. et al. Estimating biogenic silica production of rhizaria in the global ocean. Global Biogeochem. Cycles 34, 1–13 (2020).

    18.
    Lowery, C. M., Bown, P. R., Fraass, A. J. & Hull, P. M. Ecological response of plankton to environmental change: thresholds for extinction. Annu. Rev. Earth Planet. Sci. 48, 081619–052818 (2020).
    Google Scholar 

    19.
    Lazarus, D. WoRMS Polycystina: world list of Polycystina (Radiolaria) (version 2019-03-05). In Species 2000 & ITIS Catalogue of Life [2020-01-10] Beta (eds Roskov, Y. et al.) (accessed 18 October 2019). Digital resource at www.catalogueoflife.org/col (2019).

    20.
    Boltovskoy, D., Kling, S. A., Takahashi, K. & BjØrklund, K. World atlas of distribution of recent Polycystina (Radiolaria). Palaeontol. Electron. 13, 1–230 (2010).
    Google Scholar 

    21.
    Boltovskoy, D. & Correa, N. Planktonic equatorial diversity troughs: fact or artifact? Latitudinal diversity gradients in radiolaria. Ecology 98, 112–124 (2017).
    PubMed  Google Scholar 

    22.
    Lazarus, D. B. The deep-sea microfossil record of macroevolutionary change in plankton and its study. Geol. Soc. Spec. Publ. 358, 141–166 (2011).
    ADS  Google Scholar 

    23.
    Longhurst, A. Ecological Geography of the Sea. (Academic Press, San Diego, 1998).

    24.
    Suzuki, N. & Not, F. Biology and ecology of radiolaria. In Marine Protists: Diversity and Dynamics. (eds. Ohtsuka, S., Suzaki, T., Horiguchi, T., Suzuki, N. &Not, F.) 179–222 (Springer, Japan, 2015).

    25.
    Boltovskoy, D. Vertical distribution patterns of Radiolaria Polycystina (Protista) in the World Ocean: living ranges, isothermal submersion and settling shells. J. Plankton Res. 39, 330–349 (2017).
    Google Scholar 

    26.
    Casey, R. E., Spaw, J. M., & Kunze, F. R. Polycystine radiolarian distribution and enhancements related to oceanographic conditions in a hypothetical ocean. Am. Assoc. Pet. Geol. Bull. 66, 319–332 (1982).

    27.
    Kling, S. A. Relation of radiolarian distributions to subsurface hydrography in the North Pacific. Deep Res. Oceanogr. Abstr. 23, 1043–1058 (1976).
    ADS  Google Scholar 

    28.
    Sanfilippo, A., Westberg-Smith, M. & Riedel, W. Cenozoic radiolaria. In Plankton Stratigraphy (eds. Bolli, H. M., Perch-Nielsen, K., & Saunders, J. B.) (Cambridge University Press, Cambridge, 1985).

    29.
    Liu, J. et al. Eastern equatorial Pacific cold tongue evolution since the late Miocene linked to extratropical climate. Sci. Adv. 5, eaau6060 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    30.
    Zhang, Y. G., Pagani, M. & Liu, Z. A 12-million-year temperature history of the tropical pacific ocean. Science 344, 84–87 (2014).
    ADS  CAS  PubMed  Google Scholar 

    31.
    Tian, J. et al. Paleoceanography of the east equatorial Pacific over the past 16 Myr and Pacific–Atlantic comparison: high resolution benthic foraminiferal δ18O and δ13C records at IODP Site U1337. Earth Planet. Sci. Lett. 499, 185–196 (2018).
    ADS  CAS  Google Scholar 

    32.
    Close, R. A., Evers, S. W., Alroy, J. & Butler, R. J. How should we estimate diversity in the fossil record? Testing richness estimators using sampling-standardised discovery curves. Methods Ecol. Evol. 9, 1386–1400 (2018).
    Google Scholar 

    33.
    Good, I. J. The population frequencies of species and the estimation of population parameters. Biometrika 40, 1–237 (1953).
    MathSciNet  MATH  Google Scholar 

    34.
    Chao, A. et al. Quantifying sample completeness and comparing diversities among assemblages. Ecol. Res. 35, 292–314 (2020).
    Google Scholar 

    35.
    Kamikuri, S. I., Motoyama, I., Nishi, H. & Iwai, M. Neogene radiolarian biostratigraphy and faunal evolution rates in the eastern equatorial pacific ODP sites 845 and 1241. Acta Palaeontol. Pol. 54, 713–742 (2009).
    Google Scholar 

    36.
    Sandoval, M. I., Boltovskoy, D., Baxter, A. T. & Baumgartner, P. O. Neogene paleoceanography of the eastern equatorial Pacific based on the radiolarian record of IODP drill sites off Costa Rica. Geochem. Geophys. Geosyst. 18, 1–26 (2017).
    Google Scholar 

    37.
    Renaudie, J., Lazarus, D. & Diver, P. NSB (Neptune Sandbox Berlin): an expanded and improved database of marine planktonic microfossil data and deep-sea stratigraphy. Palaeontol. Electron. 23, a11 (2020).
    Google Scholar 

    38.
    Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).
    Google Scholar 

    39.
    Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).
    PubMed  Google Scholar 

    40.
    Holland, S. M. Ecological disruption precedes mass extinction. Proc. Natl. Acad. Sci. USA 113, 8349–8351 (2016).
    ADS  CAS  PubMed  Google Scholar 

    41.
    Foote, M. Perspective: evolutionary patterns in the fossil record. Evolution 50, 1–11 (1996).
    PubMed  Google Scholar 

    42.
    Boltovskoy, D. The range-through method and first-last appearance data in paleontological surveys. J. Paleontol. 62, 157–159 (1988).
    Google Scholar 

    43.
    Wiebe, P. H. & Boyd, S. H. Limits of Nematoscelis megalops in the northwestern Atlantic in relation to Gulf Stream cold core rings. I, Horizontal and vertical distributions. J. Mar. Res. 36, 119–142 (1978).
    Google Scholar 

    44.
    Boltovskoy, D. & Correa, N. Biogeography of Radiolaria Polycystina (Protista) in the world ocean. Prog. Oceanogr. 149, 82–105 (2016).
    ADS  Google Scholar 

    45.
    Masson-Delmotte, V. et al. Summary for policymakers. In Global Warming of 1.5°C: An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change.  (eds. Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, & T. Waterfield) 1–32 (World Meteorological Organization, Geneva, 2018).

    46.
    Moore, K. J. et al. Sustained climate warming drives declining marine biological productivity. Science 359, 113–1143 (2018).
    Google Scholar 

    47.
    Hull, P. Life in the aftermath of mass extinctions. Curr. Biol. 25, R941–R952 (2015).
    CAS  PubMed  Google Scholar 

    48.
    Langer, M. R., Weinmann, A. E., Lötters, S., Bernhard, J. M. & Rödder, D. Climate-driven range extension of Amphistegina (Protista, Foraminiferida): models of current and predicted future ranges. PLoS One 8, e54443 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    49.
    Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: scaling from organisms to communities. Ann. Rev. Mar. Sci. 12, 153–179 (2020).
    PubMed  Google Scholar 

    50.
    Thierstein, H. R. Terminal Cretaceous plankton extinctions: a critical assessment. Spec. Pap. Geol. Soc. Am. 190, 385–399 (1982).
    Google Scholar 

    51.
    Lewandowska, A. M. et al. Scale dependence of temporal biodiversity change in modern and fossil marine plankton. Glob. Ecol. Biogeogr. 29, 1008–1019 (2020).
    Google Scholar 

    52.
    Broecker, W. S. & Peng, T. H. Tracers in the Sea (Eldigio Press, 1982).

    53.
    Brown, J. et al. Ocean Circulation (Pergamon Press, The Open University, 1989).

    54.
    Spencer-Cervato, C. The Cenozoic deep sea microfossil record: explorations of the DSDP/ODP sample set using the Neptune Database. Palaeontol. Electron. 2, 1–38 (1999).
    Google Scholar 

    55.
    Nigrini, C. & Caulet, J. Late Neogene radiolarian assemblages characteristic of Indo-Pacific areas of upwelling. Micropaleontology 38, 139–164 (1992).
    Google Scholar 

    56.
    McGowan, J. A. The nature of oceanic ecosystems. In The Biology of the Oceanic Pacific—Proceedings of the 33rd Annual Biology Colloquium (ed. Miller, C. B.) 9–28 (Oregon State University, 1974).

    57.
    Pierrot-Bults, A. C., Van Der Spoel, S., Zahuranec, B. J. & Johnson, R. K. Pelagic Biogeography (UNESCO, 1986).

    58.
    Hemleben, C., Spindler, M. & Anderson, O. R. Modern Planktonic Foraminifera (Springer Verlag, 1989).

    59.
    Kucera, M. Planktonic foraminifera as tracers of past oceanic environments. In Proxies in Late Cenozoic Paleoceanography (eds. Hillaire-Marcel, C. & de Vernal, A.) 213–262 (Elsevier, 2007).

    60.
    Morard, R. et al. PFR2: a curated database of planktonic foraminifera 18S ribosomal DNA as a resource for studies of plankton ecology, biogeography and evolution. Mol. Ecol. Resour. 15, 1472–1485 (2015).
    CAS  PubMed  Google Scholar 

    61.
    Ishitani, Y., Ujiié, Y. & Takishita, K. Uncovering sibling species in Radiolaria: evidence for ecological partitioning in a marine planktonic protist. Mol. Phylogenet. Evol. 78, 215–222 (2014).
    PubMed  Google Scholar 

    62.
    Ishitani, Y. & Takishita, K. Molecular evidence for wide vertical distribution of the marine planktonic protist Larcopyle buetschlii (Radiolaria) in a semi-enclosed marginal sea. J. Plankton Res. 37, 851–856 (2015).
    CAS  Google Scholar 

    63.
    Moore, T. C. Method of randomly distributing grains for microscopic examination. J. Sediment. Petrol. 43, 904–906 (1973).
    Google Scholar 

    64.
    Palike, H., et al. Expedition 320/321 scientists. Site U1337. Proc. Integr. Ocean Drill. Progr. 320/321, 1–146 (2010).

    65.
    Lazarus, D. B., Renaudie, J., Lenz, D., Diver, P. & Klump, J. Raritas: a program for counting high diversity categorical data with highly unequal abundances. PeerJ 6, e5453 (2018).

    66.
    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).
    Google Scholar 

    67.
    Kocsis, Á. T., Reddin, C. J., Alroy, J. & Kiessling, W. The R package divDyn for quantifying diversity dynamics using fossil sampling data. Methods Ecol. Evol. 10, 735–743 (2019).
    Google Scholar 

    68.
    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. Past: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
    Google Scholar 

    69.
    Magurran, A. E. Ecological Diversity and Its Measurement (Princeton University Press, 1988).

    70.
    Foote, M. Origination and extinction components of taxonomic diversity: general problems. Paleobiology 26, 74–102 (2000).
    Google Scholar 

    71.
    Warnock, R. C. M., Heath, T. A. & Stadler, T. Assessing the impact of incomplete species sampling on estimates of speciation and extinction rates. Paleobiology 46, 137–157 (2020).
    Google Scholar 

    72.
    Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–137 (R Found., Vienna, 2018).

    73.
    Wald, A. Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans. Am. Math. Soc. 54, 426–482 (1943).
    MathSciNet  MATH  Google Scholar  More

  • in

    Patterns of ties in problem-solving networks and their dynamic properties

    1.
    Braha, D. & Bar-Yam, Y. Topology of large-scale engineering problem-solving networks. Phys. Rev. E 69, 016113 (2004).
    ADS  Article  CAS  Google Scholar 
    2.
    Braha, D. & Bar-Yam, Y. The statistical mechanics of complex product development: Empirical and analytical results. Manag. Sci. 53, 1127–1145 (2007).
    MATH  Article  Google Scholar 

    3.
    Simon, H. The sciences of the Artificial 3rd edn. (MIT Press, Cambridge, 1996).
    Google Scholar 

    4.
    Braha, D. & Maimon, O. A Mathematical Theory of Design: Foundations. Algorithms and Applications (Kluwer Academic Publishers, Dordrecht, 1998).
    Google Scholar 

    5.
    Yassine, A. & Braha, D. Complex concurrent engineering and the design structure matrix method. Concurr. Eng. 11, 165–176 (2003).
    Article  Google Scholar 

    6.
    Lazer, D. & Friedman, A. The network structure of exploration and exploitation. Adm. Sci. Q. 52, 667–694 (2007).
    Article  Google Scholar 

    7.
    March, J. G. Exploration and exploitation in organizational learning. Organ Sci. 2, 71–87 (1991).
    ADS  Article  Google Scholar 

    8.
    Berger-Tal, O., Nathan, J., Meron, E. & Saltz, D. The exploration-exploitation dilemma: a multidisciplinary framework. PLoS ONE 9, 4 (2014).
    Article  CAS  Google Scholar 

    9.
    Schumpeter, J. A. The Theory of Economic Development (Harvard University Press, Cambridge, 1934).
    Google Scholar 

    10.
    Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT Press, Cambridge, 1998).
    Google Scholar 

    11.
    Azoulay-Schwartz, R., Kraus, S. & Wilkenfeld, J. Exploitation vs exploration: Choosing a supplier in an environment of incomplete information. Decis Support Syst. 38, 1–18 (2004).
    Article  Google Scholar 

    12.
    Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B. & Dolan, R. J. Cortical substrates for exploratory decisions in humans. Nature 441, 876–879 (2006).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Eliassen, S., Jorgensen, C., Mangel, M. & Giske, J. Exploration or exploitation: Life expectancy changes the value of learning in foraging strategies. Oikos 116, 513–523 (2007).
    Article  Google Scholar 

    14.
    Uotila, J., Maula, M., Keil, T. & Zahra, S. A. Exploration, exploitation, and financial performance: Analysis of S&P 500 corporations. Strat. Mgmt. J. 30, 221–231 (2009).
    Article  Google Scholar 

    15.
    Molina-Castillo, F. J., Jimenez-Jimenez, D. & Munuera-Aleman, J. L. Product competence exploitation and exploration strategies: The impact on new product performance through quality and innovativeness. Ind. Market Manag. 40, 1172–1182 (2011).
    Article  Google Scholar 

    16.
    Cohen, J. D., McClure, S. M. & Yu, A. J. Should I stay or should I go? How the human brain manages the trade-off between exploitation and exploration. Philos. Trans. R. Soc. B. 362, 933–942 (2007).
    Article  Google Scholar 

    17.
    Berger-Tal, O. & Avgar, T. The glass is half full: Overestimating the quality of a novel environment is advantageous. PLoS ONE 7, e34578 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Shore, J., Bernstein, E. & Lazer, D. Facts and figuring: An experimental investigation of network structure and performance in information and solution spaces. Organ. Sci. 26, 1432–1446 (2015).
    Article  Google Scholar 

    19.
    Subrahmanian, E. et al. Equations aren’t enough: Informal modeling in design. AI EDAM. 7, 257–274 (1993).
    Google Scholar 

    20.
    Axelrod, R. & Hamilton, W. D. The evolution of cooperation. Science 211, 1390–1396 (1981).
    ADS  MathSciNet  CAS  PubMed  MATH  Article  Google Scholar 

    21.
    Banerjee, J., Layek, R. K., Sasmal, S. K. & Ghosh, D. Delayed evolutionary model for public goods competition with policing in phenotypically variant bacterial biofilms. Europhys. Lett. 126, 18002 (2019).
    CAS  Article  Google Scholar 

    22.
    Szabó, G. & Fath, G. Evolutionary games on graphs. Phys. Rep. 446, 97–216 (2007).
    ADS  MathSciNet  Article  Google Scholar 

    23.
    Nag Chowdhury, S., Kundu, S., Duh, M., Perc, M. & Ghosh, D. Cooperation on interdependent networks by means of migration and stochastic imitation. Entropy. 22, 485 (2020).
    ADS  Article  Google Scholar 

    24.
    Axelrod, R. The complexity of cooperation: Agent-based models of competition and collaboration (Princeton University Press, Princeton, 1997).
    Google Scholar 

    25.
    Steward, D. V. The design structure system: A method for managing the design of complex systems. IEEE Trans. Eng. Manage. 3, 71–74 (1981).
    Article  Google Scholar 

    26.
    Eppinger, S. D., Whitney, D. E., Smith, R. P. & Gebala, D. A. A model-based method for organizing tasks in product development. Res. Eng. Design 6, 1–13 (1994).
    Article  Google Scholar 

    27.
    Browning, T. R. Applying the design structure matrix to system decomposition and integration problems: A review and new directions. IEEE Trans. Eng. Manag. 48, 292–306 (2001).
    Article  Google Scholar 

    28.
    Eppinger, S. D. & Browning, T. R. Design structure Matrix Methods and Applications (MIT press, Cambridge, 2012).
    Google Scholar 

    29.
    Yassine, A., Joglekar, N., Braha, D., Eppinger, S. & Whitney, D. Information hiding in product development: The design churn effect. Res. Eng. Design 14, 145–161 (2003).
    Article  Google Scholar 

    30.
    Braha, D. & Bar-Yam, Y. Information flow structure in large-scale product development organizational networks. J. Inf. Technol. 19, 244–253 (2004).
    Article  Google Scholar 

    31.
    Braha, D. The complexity of design networks: Structure and dynamics. In Experimental Design Research (eds Cash, P. et al.) 129–151 (Springer, Berlin, 2016).
    Google Scholar 

    32.
    Albert, R. & Barabási, A. L. Statistical mechanics of complex networks. Rev. Modern Phys. 74, 47–97 (2002).
    ADS  MathSciNet  MATH  Article  Google Scholar 

    33.
    Katz, N., Lazer, D., Arrow, H. & Contractor, N. The network perspective on teams. Small Group Res. 35, 307–332 (2004).
    Article  Google Scholar 

    34.
    Balkundi, P. & Harrison, D. A. Ties, leaders, and time in teams: Strong inference about the effects of network structure on team viability and performance. Acad. Manag. J. 49, 49–68 (2006).
    Article  Google Scholar 

    35.
    Leenders, R. T. A., Van Engelen, J. M. & Kratzer, J. Virtuality, communication, and new product team creativity: A social network perspective. J. Eng. Tech. Manag. 20, 69–92 (2003).
    Article  Google Scholar 

    36.
    Oh, H., Chung, M. H. & Labianca, G. Group social capital and group effectiveness: The role of informal socializing ties. Acad. Manag. J. 47, 860–875 (2004).
    Article  Google Scholar 

    37.
    Uzzi, B. & Spiro, J. Collaboration and creativity: The small world problem. Am. J. Sociol. 111, 447–504 (2005).
    Article  Google Scholar 

    38.
    Sparrowe, R. T., Liden, R. C., Wayne, S. J. & Kraimer, M. L. Social networks and the performance of individuals and groups. Acad. Manag. J. 44, 316–325 (2001).
    Google Scholar 

    39.
    Kearns, M., Suri, S. & Montfort, N. An experimental study of the coloring problem on human subject networks. Science 313, 824–827 (2006).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    McCubbins, M. D., Paturi, R. & Weller, N. Connected coordination network structure and group coordination. Am. Polit. Res. 37, 899–920 (2009).
    Article  Google Scholar 

    41.
    Enemark, D., McCubbins, M. D. & Weller, N. Knowledge and networks: An experimental test of how network knowledge affects coordination. Soc. Netw. 36, 122–133 (2014).
    Article  Google Scholar 

    42.
    Mason, W. A. & Watts, D. J. Collaborative learning in networks. Proc. Natl. Acad. Sci. USA 109, 764–769 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    43.
    Mason, W. A., Jones, A. & Goldstone, R. L. Propagation of innovations in networked groups. J. Exp. Psychol. Gen. 137, 422–433 (2008).
    PubMed  Article  Google Scholar 

    44.
    Levinthal, D. A. Adaptation on rugged landscapes. Manag. Sci. 43, 934–950 (1997).
    MATH  Article  Google Scholar 

    45.
    Rivkin, J. W. & Siggelkow, N. Balancing search and stability: Interdependencies among elements of organizational design. Manag. Sci. 49, 290–312 (2003).
    Article  Google Scholar 

    46.
    Milo, R. et al. Network motifs: Simple building blocks of complex networks. Science 298, 824–827 (2002).
    ADS  CAS  PubMed  Article  Google Scholar 

    47.
    Milo, R. et al. Superfamilies of evolved and designed networks. Science 303, 1538–1542 (2004).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Alon, U. An Introduction to Systems Biology: Design Principles of Biological Circuits (CRC Press, Boca Raton, 2019).
    Google Scholar 

    49.
    Prill, R. J., Iglesias, P. A. & Levchenko, A. Dynamic properties of network motifs contribute to biological network organization. PLoS Biol. 3, 11 (2005).
    Article  CAS  Google Scholar 

    50.
    Wasserman, S. & Faust, K. Social Network Analysis: Methods and applications (Cambridge University Press, Cambridge, 1994).
    Google Scholar 

    51.
    Stone, L., Simberloff, D. & Artzy-Randrup, Y. Network motifs and their origins. PloS Comput. Biol. 15, 2 (2019).
    Article  CAS  Google Scholar 

    52.
    Holland, P.W. & Leinhardt, S. The statistical analysis of local structure in social networks. National Bureau of Economic Research. No. w0044 (1974).

    53.
    Pimm, S. L. Food webs (Springer, Berlin, 1982).
    Google Scholar 

    54.
    Stone, L. & Roberts, A. Competitive exclusion, or species aggregation?—An aid in deciding. Oecologia 91, 419–424 (1992).
    ADS  PubMed  Article  Google Scholar 

    55.
    Connor, E. F. & Simberloff, D. The assembly of species communities: Chance or competition?. Ecology 60, 1132–1140 (1979).
    Article  Google Scholar 

    56.
    Saracco, F., Di Clemente, R., Gabrielli, A. & Squartini, T. Detecting early signs of the 2007–2008 crisis in the world trade. Sci Rep. 6, 1–11 (2016).
    Article  CAS  Google Scholar 

    57.
    Saracco, F., Di Clemente, R., Gabrielli, A. & Squartini, T. Randomizing bipartite networks: The case of the world trade web. Sci Rep. 5, 1–18 (2015).
    Article  CAS  Google Scholar 

    58.
    Sporns, O. & Kötter, R. Motifs in brain networks. PloS Biol. 2, 11 (2004).
    Article  CAS  Google Scholar 

    59.
    Alon, U. Network motifs: Theory and experimental approaches. Nat. Rev. Genet. 8, 450–461 (2007).
    CAS  PubMed  Article  Google Scholar 

    60.
    May, R. M. Stability and Complexity in Model Ecosystems (Princeton University Press, Princeton, 2019).
    Google Scholar 

    61.
    Gardner, M. R. & Ashby, W. R. Connectance of large dynamic (cybernetic) systems: Critical values for stability. Nature 228, 784–784 (1970).
    ADS  CAS  PubMed  Article  Google Scholar 

    62.
    Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N. & Barabási, A. L. Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002).
    ADS  CAS  PubMed  Article  Google Scholar 

    63.
    Bulloch, B. & Sullivan, J. Information—the key to the real estate development process. Cornell Real Estate Rev. 8, 78–87 (2010).
    Google Scholar 

    64.
    Scheurmann, E. & Atkinson, L. Strategy Development Process for Meat & Livestock Australia. In Design Structure Matrix Methods and Applications (eds Eppinger, S. D. & Browning, T. R.) 164–168 (MIT press, Cambridge, 2012).
    Google Scholar 

    65.
    Osborne, S.M. Product Development Cycle Time Characterization Through Modeling of Process Iteration. Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA. (1993).

    66.
    Scheurmann, E. & Samuel, D. Bioscience Facility at University of Melbourne. In Design Structure Matrix Methods and Applications (eds Eppinger, S. D. & Browning, T. R.) 155–159 (MIT press, Cambridge, 2012).
    Google Scholar 

    67.
    Yassine, A., Whitney, D. & Zambito, T. Assessment of rework probabilities for design structure matrix (DSM) simulation in product development management in 13thInternational Conference on Design Theory and Methodology (ASME, 2001).

    68.
    Tripathy, A. & Eppinger, S. Dover Motion Precision Systems Development Process. In Design structure matrix methods and applications (eds Eppinger, S. D. & Browning, T. R.) 192–195 (MIT press, Cambridge, 2012).
    Google Scholar 

    69.
    Tukey, J. W. Exploratory Data Analysis (Addison-Wesley, Boston, 1977).
    Google Scholar 

    70.
    Zar, J. H. Biostatistical Analysis (Prentice Hall, New Jersey, 2010).
    Google Scholar 

    71.
    Kleiner, B. & Graedel, T. E. Exploratory data analysis in the geophysical sciences. Rev. Geophys. 18, 699–717 (1980).
    ADS  Article  Google Scholar 

    72.
    Williamson, D. F., Parker, R. A. & Kendrick, J. S. The box plot: a simple visual method to interpret data. Ann. Intern. Med. 110, 916–921 (1989).
    CAS  PubMed  Article  Google Scholar 

    73.
    Ray, A., Rakshit, S., Basak, G. K., Dana, S. K. & Ghosh, D. Understanding the origin of extreme events in El Niño southern oscillation. Phys. Rev. E 101, 062210 (2020).
    ADS  MathSciNet  PubMed  Article  Google Scholar 

    74.
    Törnqvist, L., Vartia, P. & Vartia, Y. O. How should relative changes be measured?. Am. Stat. 39, 43–46 (1985).
    Google Scholar 

    75.
    Braha, D. & Bar-Yam, Y. From centrality to temporary fame: Dynamic centrality in complex networks. Complexity. 12, 59–63 (2006).
    Article  Google Scholar 

    76.
    Braha, D. & Bar-Yam, Y. Time-dependent complex networks: Dynamic centrality, dynamic motifs, and cycles of social interactions. In Adaptive Networks (eds Gross, T. & Hiroki, S.) 39–50 (Springer, Berlin, 2009).
    Google Scholar 

    77.
    Bassok, M. & Novick, L. R. Problem Solving. In The Oxford Handbook of Thinking and Reasoning (eds Holyoak, K. J. & Morrison, R. G.) 413–429 (Oxford University Press, Oxford, 2012).
    Google Scholar 

    78.
    Nelson, R. R. & Winter, S. G. An Evolutionary Theory of Economic Change (Harvard University Press, Cambridge, 1982).
    Google Scholar 

    79.
    Becker, M. C. Organizational routines: A review of the literature. Ind. Corpor. Change. 13, 643–678 (2004).
    Article  Google Scholar 

    80.
    Pentland, B. T., Hærem, T. & Hillison, D. The (n)ever-changing world: Stability and change in organizational routines. Organ. Sci. 22, 1369–1383 (2011).
    Article  Google Scholar 

    81.
    Feldman, M. S. & Pentland, B. T. Reconceptualizing organizational routines as a source of flexibility and change. Adm. Sci. Q. 48, 94–118 (2003).
    Article  Google Scholar  More

  • in

    The fingerprints of climate warming on cereal crops phenology and adaptation options

    1.
    Sarwar, M. H., Sarwar, M. F., Sarwar, M., Qadri, N. A. & Moghal, S. The importance of cereals (Poaceae: Gramineae) nutrition in human health: a review. J. Cereals Oilseeds 4, 32–35 (2013).
    Article  Google Scholar 
    2.
    Ranjan, R. & Yadav, R. Targeting nitrogen use efficiency for sustained production of cereal crops. J. Plant Nutr. 42, 1086–1113. https://doi.org/10.1080/01904167.2019.1589497 (2019).
    CAS  Article  Google Scholar 

    3.
    Sofi, F. et al. Health and nutrition studies related to cereal biodiversity: a participatory multi-actor literature review approach. Nutrients 10, 1207 (2018).
    Article  Google Scholar 

    4.
    Stewart, B. A. & Lal, R. In Advances in Agronomy Vol. 151 (ed Donald L. Sparks) 1–44 (Academic Press, 2018).

    5.
    Sadras, V. et al. In Advances in Agronomy Vol. 163 (ed Donald L. Sparks) 153–177 (Academic Press, 2020).

    6.
    Yu, S. & Tian, L. Breeding major cereal grains through the lens of nutrition sensitivity. Mol. Plant 11, 23–30. https://doi.org/10.1016/j.molp.2017.08.006 (2018).
    CAS  Article  PubMed  Google Scholar 

    7.
    Wang, J., Vanga, S., Saxena, R., Orsat, V. & Raghavan, V. Effect of climate change on the yield of cereal crops: a review. Climate 6, 41 (2018).
    Article  Google Scholar 

    8.
    Chmielewski, F.-M., Müller, A. & Bruns, E. Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000. Agric. For. Meteorol. 121, 69–78. https://doi.org/10.1016/S0168-1923(03)00161-8 (2004).
    ADS  Article  Google Scholar 

    9.
    Price, R. K. & Welch, R. W. In Encyclopedia of Human Nutrition (3rd Edn) (ed Benjamin Caballero) 307–316 (Academic Press, 2013).

    10.
    McKevith, B. Nutritional aspects of cereals. Nutr. Bull. 29, 111–142. https://doi.org/10.1111/j.1467-3010.2004.00418.x (2004).
    Article  Google Scholar 

    11.
    Wang, H. L. et al. Phenological trends in winter wheat and spring cotton in response to climate changes in northwest China. Agric. For. Meteorol. 148, 1242–1251. https://doi.org/10.1016/j.agrformet.2008.03.003 (2008).
    ADS  Article  Google Scholar 

    12.
    Chen, X. et al. Does any phenological event defined by remote sensing deserve particular attention? An examination of spring phenology of winter wheat in Northern China. Ecol. Ind. 116, 106456. https://doi.org/10.1016/j.ecolind.2020.106456 (2020).
    Article  Google Scholar 

    13.
    Li, Y., Hou, R. & Tao, F. Interactive effects of different warming levels and tillage managements on winter wheat growth, physiological processes, grain yield and quality in the North China Plain. Agr. Ecosyst. Environ. 295, 106923. https://doi.org/10.1016/j.agee.2020.106923 (2020).
    CAS  Article  Google Scholar 

    14.
    Li, Z. et al. Response of maize phenology to climate warming in Northeast China between 1990 and 2012. Reg. Environ. Change 14, 39–48. https://doi.org/10.1007/s10113-013-0503-x (2014).
    CAS  Article  Google Scholar 

    15.
    Rojas-Downing, M. M., Nejadhashemi, A. P., Harrigan, T. & Woznicki, S. A. Climate change and livestock: impacts, adaptation, and mitigation. Clim. Risk Manag. 16, 145–163. https://doi.org/10.1016/j.crm.2017.02.001 (2017).
    Article  Google Scholar 

    16.
    Akram, R. et al. In Advances in Rice Research for Abiotic Stress Tolerance (eds Hasanuzzaman, M. et al.) 69–85 (Woodhead Publishing, 2019).

    17.
    Farooq, M., Hussain, M., Wakeel, A. & Siddique, K. H. M. Salt stress in maize: effects, resistance mechanisms, and management. A review. Agron. Sustain. Dev. 35, 461–481. https://doi.org/10.1007/s13593-015-0287-0 (2015).
    CAS  Article  Google Scholar 

    18.
    Farooq, M., Hussain, M. & Siddique, K. H. M. Drought stress in wheat during flowering and grain-filling periods. Crit. Rev. Plant Sci. 33, 331–349. https://doi.org/10.1080/07352689.2014.875291 (2014).
    CAS  Article  Google Scholar 

    19.
    Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. & Basra, S. M. A. Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 29, 185–212. https://doi.org/10.1051/agro:2008021 (2009).
    Article  Google Scholar 

    20.
    Hussain, J., Khaliq, T., Ahmad, A., Akhter, J. & Asseng, S. Wheat responses to climate change and its adaptations: a focus on arid and semi-arid environment. Int. J. Environ. Res. https://doi.org/10.1007/s41742-018-0074-2 (2018).
    Article  Google Scholar 

    21.
    Hussain, M. et al. In Advances in Agronomy Vol. 148 (ed Donald L. Sparks) 231–287 (Academic Press, 2018).

    22.
    Dyer, G. A., López-Feldman, A., Yúnez-Naude, A. & Taylor, J. E. Genetic erosion in maize’s center of origin. Proc. Natl. Acad. Sci. 111, 14094–14099. https://doi.org/10.1073/pnas.1407033111 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    23.
    Nicholson, S. E., Funk, C. & Fink, A. H. Rainfall over the African continent from the 19th through the 21st century. Global Planet. Change 165, 114–127. https://doi.org/10.1016/j.gloplacha.2017.12.014 (2018).
    ADS  Article  Google Scholar 

    24.
    Pour, S. H., Wahab, A. K. A. & Shahid, S. Spatiotemporal changes in aridity and the shift of drylands in Iran. Atmos. Res. 233, 104704. https://doi.org/10.1016/j.atmosres.2019.104704 (2020).
    Article  Google Scholar 

    25.
    Sadras, V. O. & Monzon, J. P. Modelled wheat phenology captures rising temperature trends: shortened time to flowering and maturity in Australia and Argentina. Field Crops Res. 99, 136–146. https://doi.org/10.1016/j.fcr.2006.04.003 (2006).
    Article  Google Scholar 

    26.
    Menzel, A. et al. European phenological response to climate change matches the warming pattern. Glob. Change Biol. 12, 1969–1976. https://doi.org/10.1111/j.1365-2486.2006.01193.x (2006).
    ADS  Article  Google Scholar 

    27.
    Liu, Y., Qin, Y., Ge, Q., Dai, J. & Chen, Q. Reponses and sensitivities of maize phenology to climate change from 1981 to 2009 in Henan Province, China. J. Geogr. Sci. 27, 1072–1084. https://doi.org/10.1007/s11442-017-1422-4 (2017).
    Article  Google Scholar 

    28.
    Liu, L. et al. Uncertainty in wheat phenology simulation induced by cultivar parameterization under climate warming. Eur. J. Agron. 94, 46–53. https://doi.org/10.1016/j.eja.2017.12.001 (2018).
    Article  Google Scholar 

    29.
    Ye, Z. et al. Impacts of 1.5°C and 2.0°C global warming above pre-industrial on potential winter wheat production of China. Eur. J. Agron. 120, 126149. https://doi.org/10.1016/j.eja.2020.126149 (2020).
    Article  Google Scholar 

    30.
    Kawakita, S., Takahashi, H. & Moriya, K. Prediction and parameter uncertainty for winter wheat phenology models depend on model and parameterization method differences. Agric. For. Meteorol. 290, 107998. https://doi.org/10.1016/j.agrformet.2020.107998 (2020).
    ADS  Article  Google Scholar 

    31.
    Ahmed, K., Shabbir, G., Ahmed, M. & Shah, K. N. Phenotyping for drought resistance in bread wheat using physiological and biochemical traits. Sci. Total Environ. 729, 139082. https://doi.org/10.1016/j.scitotenv.2020.139082 (2020).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    32.
    Ahmed, M., Aslam, M. A., Fayyaz-Ul, H., Hayat, R. & Ahmad, S. Biochemical, physiological and agronomic response of wheat to changing climate of rainfed Pakistan. Pak. J. Bot 51, 535–551. https://doi.org/10.30848/PJB2019-2(10) (2019).
    CAS  Article  Google Scholar 

    33.
    Tamburino, L., Bravo, G., Clough, Y. & Nicholas, K. A. From population to production: 50 years of scientific literature on how to feed the world. Global Food Secur. 24, 100346. https://doi.org/10.1016/j.gfs.2019.100346 (2020).
    Article  Google Scholar 

    34.
    Gomez-Zavaglia, A., Mejuto, J. C. & Simal-Gandara, J. Mitigation of emerging implications of climate change on food production systems. Food Res. Int. 134, 109256. https://doi.org/10.1016/j.foodres.2020.109256 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    35.
    Wreford, A. & Topp, C. F. E. Impacts of climate change on livestock and possible adaptations: a case study of the United Kingdom. Agric. Syst. 178, 102737. https://doi.org/10.1016/j.agsy.2019.102737 (2020).
    Article  Google Scholar 

    36.
    Hu, Q., Weiss, A., Feng, S. & Baenziger, P. S. Earlier winter wheat heading dates and warmer spring in the U.S. Great Plains. Agric. For. Meteorol. 135, 284–290. https://doi.org/10.1016/j.agrformet.2006.01.001 (2005).
    ADS  Article  Google Scholar 

    37.
    He, L., Jin, N. & Yu, Q. Impacts of climate change and crop management practices on soybean phenology changes in China. Sci. Total Environ. 707, 135638. https://doi.org/10.1016/j.scitotenv.2019.135638 (2020).
    ADS  CAS  Article  PubMed  Google Scholar 

    38.
    Tao, F., Yokozawa, M., Liu, J. & Zhang, Z. Climate-crop yield relationships at provincial scales in China and the impacts of recent climate trends. Climate Res. 38, 83–94 (2008).
    ADS  Article  Google Scholar 

    39.
    Estrella, N., Sparks, T. H. & Menzel, A. Effects of temperature, phase type and timing, location, and human density on plant phenological responses in Europe. Climate Res. 39, 235–248 (2009).
    ADS  Article  Google Scholar 

    40.
    Ahmed, M., Fayyaz-ul-Hassan & Ahmad, S. In Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability (eds Ahmed, M. & Claudio O. Stockle) 91–111 (Springer International Publishing, 2017).

    41.
    García-Mozo, H., Mestre, A. & Galán, C. Phenological trends in southern Spain: a response to climate change. Agric. For. Meteorol. 150, 575–580. https://doi.org/10.1016/j.agrformet.2010.01.023 (2010).
    ADS  Article  Google Scholar 

    42.
    Wu, D. et al. Measured phenology response of unchanged crop varieties to long-term historical climate change. Int. J. Plant Prod. 13, 47–58. https://doi.org/10.1007/s42106-018-0033-z (2019).
    Article  Google Scholar 

    43.
    Sujetovienė, G. et al. Climate-change-related long-term historical and projected changes to spring barley phenological development in Lithuania. J. Agric. Sci. 156, 1061–1069. https://doi.org/10.1017/S0021859618000904 (2019).
    Article  Google Scholar 

    44.
    Ahmad, A. et al. In Handbook of Climate Change and Agroecosystems Vol. 3 (eds Rosenzweig, C. & Hillel, D.) 219–258 (World Scientific 2015).

    45.
    Tsimba, R., Edmeades, G. O., Millner, J. P. & Kemp, P. D. The effect of planting date on maize: phenology, thermal time durations and growth rates in a cool temperate climate. Field Crops Res. 150, 145–155. https://doi.org/10.1016/j.fcr.2013.05.021 (2013).
    Article  Google Scholar 

    46.
    Bai, H., Tao, F., Xiao, D., Liu, F. & Zhang, H. Attribution of yield change for rice-wheat rotation system in China to climate change, cultivars and agronomic management in the past three decades. Clim. Change 135, 539–553. https://doi.org/10.1007/s10584-015-1579-8 (2016).
    ADS  Article  Google Scholar 

    47.
    Shim, D., Lee, K.-J. & Lee, B.-W. Response of phenology- and yield-related traits of maize to elevated temperature in a temperate region. Crop J. 5, 305–316. https://doi.org/10.1016/j.cj.2017.01.004 (2017).
    Article  Google Scholar 

    48.
    Yang, J. et al. Yield-maturity relationships of summer maize from 2003 to 2017 in the Huanghuaihai plain of China. Sci. Rep. 9, 11417. https://doi.org/10.1038/s41598-019-47561-2 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    49.
    Teller, A. S. Moving the conversation on climate change and inequality to the local: socio-ecological vulnerability in agricultural Tanzania. Soc. Dev. 2, 25–50. https://doi.org/10.1525/sod.2016.2.1.25 (2016).
    Article  Google Scholar 

    50.
    Tao, F., Zhang, S. & Zhang, Z. Spatiotemporal changes of wheat phenology in China under the effects of temperature, day length and cultivar thermal characteristics. Eur. J. Agron. 43, 201–212. https://doi.org/10.1016/j.eja.2012.07.005 (2012).
    Article  Google Scholar 

    51.
    Shi, W., Wang, M. & Liu, Y. Crop yield and production responses to climate disasters in China. Sci. Total Environ. 750, 141147. https://doi.org/10.1016/j.scitotenv.2020.141147 (2021).
    ADS  CAS  Article  Google Scholar 

    52.
    Siebert, S. & Ewert, F. Spatio-temporal patterns of phenological development in Germany in relation to temperature and day length. Agric. For. Meteorol. 152, 44–57. https://doi.org/10.1016/j.agrformet.2011.08.007 (2012).
    ADS  Article  Google Scholar 

    53.
    Porter, J. R. & Gawith, M. Temperatures and the growth and development of wheat: a review. Eur. J. Agron. 10, 23–36. https://doi.org/10.1016/S1161-0301(98)00047-1 (1999).
    Article  Google Scholar 

    54.
    McMaster, G. S. & Wilhelm, W. W. Growing degree-days: one equation, two interpretations. Agric. For. Meteorol. 87, 291–300. https://doi.org/10.1016/S0168-1923(97)00027-0 (1997).
    ADS  Article  Google Scholar 

    55.
    Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A. & Schwartz, M. D. Shifting plant phenology in response to global change. Trends Ecol. Evol. 22, 357–365. https://doi.org/10.1016/j.tree.2007.04.003 (2007).
    Article  PubMed  Google Scholar 

    56.
    Xiao, D. et al. Impact of warming climate and cultivar change on maize phenology in the last three decades in North China Plain. Theor. Appl. Climatol. 124, 653–661. https://doi.org/10.1007/s00704-015-1450-x (2016).
    ADS  Article  Google Scholar 

    57.
    Craufurd, P. Q. & Wheeler, T. R. Climate change and the flowering time of annual crops. J. Exp. Bot. 60, 2529–2539. https://doi.org/10.1093/jxb/erp196 (2009).
    CAS  Article  PubMed  Google Scholar 

    58.
    van Bussel, L. G. J., Ewert, F. & Leffelaar, P. A. Effects of data aggregation on simulations of crop phenology. Agric. Ecosyst. Environ. 142, 75–84. https://doi.org/10.1016/j.agee.2010.03.019 (2011).
    Article  Google Scholar 

    59.
    van Oort, P. A. J., Zhang, T., de Vries, M. E., Heinemann, A. B. & Meinke, H. Correlation between temperature and phenology prediction error in rice (Oryza sativa L.). Agric. For. Meteorol. 151, 1545–1555. https://doi.org/10.1016/j.agrformet.2011.06.012 (2011).
    ADS  Article  Google Scholar 

    60.
    Rezaei, E. E., Siebert, S., Hüging, H. & Ewert, F. Climate change effect on wheat phenology depends on cultivar change. Sci. Rep. 8, 4891. https://doi.org/10.1038/s41598-018-23101-2 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    61.
    Croitoru, A.-E., Holobaca, I.-H., Lazar, C., Moldovan, F. & Imbroane, A. Air temperature trend and the impact on winter wheat phenology in Romania. Clim. Change 111, 393–410. https://doi.org/10.1007/s10584-011-0133-6 (2012).
    ADS  Article  Google Scholar 

    62.
    Hussain, M., Shabir, G., Farooq, M., Jabran, K. & Farooq, S. Developmental and phenological responses of wheat to sowing dates. Pak. J. Agri. Sci 49, 459–468 (2012).
    Google Scholar 

    63.
    Zhang, S. & Tao, F. Modeling the response of rice phenology to climate change and variability in different climatic zones: comparisons of five models. Eur. J. Agron. 45, 165–176. https://doi.org/10.1016/j.eja.2012.10.005 (2013).
    Article  Google Scholar 

    64.
    Yue, Y. et al. Prediction of maize growth stages based on deep learning. Comput. Electron. Agric. 172, 105351. https://doi.org/10.1016/j.compag.2020.105351 (2020).
    Article  Google Scholar 

    65.
    Luo, Q. Temperature thresholds and crop production: a review. Clim. Change 109, 583–598. https://doi.org/10.1007/s10584-011-0028-6 (2011).
    ADS  Article  Google Scholar 

    66.
    Ramirez-Villegas, J., Challinor, A. J., Thornton, P. K. & Jarvis, A. Implications of regional improvement in global climate models for agricultural impact research. Environ. Res. Lett. 8, 024018. https://doi.org/10.1088/1748-9326/8/2/024018 (2013).
    ADS  Article  Google Scholar 

    67.
    Luo, Q., Bange, M. & Clancy, L. Cotton crop phenology in a new temperature regime. Ecol. Model. 285, 22–29. https://doi.org/10.1016/j.ecolmodel.2014.04.018 (2014).
    Article  Google Scholar 

    68.
    Pulatov, B., Linderson, M.-L., Hall, K. & Jönsson, A. M. Modeling climate change impact on potato crop phenology, and risk of frost damage and heat stress in northern Europe. Agric. For. Meteorol. 214–215, 281–292. https://doi.org/10.1016/j.agrformet.2015.08.266 (2015).
    ADS  Article  Google Scholar 

    69.
    Hatfield, J. L. & Dold, C. Climate change impacts on corn phenology and productivity. Corn: Production and Human Health in Changing Climate, 95 (2018).

    70.
    Zhang, T., Huang, Y. & Yang, X. Climate warming over the past three decades has shortened rice growth duration in China and cultivar shifts have further accelerated the process for late rice. Glob. Change Biol. 19, 563–570. https://doi.org/10.1111/gcb.12057 (2013).
    ADS  Article  Google Scholar 

    71.
    Lin, Y. et al. Potential impacts of climate change and adaptation on maize in northeast China. Agron. J. 109, 1476–1490 (2017).
    Article  Google Scholar 

    72.
    Wang, N. et al. Modelling maize phenology, biomass growth and yield under contrasting temperature conditions. Agric. For. Meteorol. 250–251, 319–329. https://doi.org/10.1016/j.agrformet.2018.01.005 (2018).
    ADS  Article  Google Scholar 

    73.
    Ge, Q., Wang, H., Rutishauser, T. & Dai, J. Phenological response to climate change in China: a meta-analysis. Glob. Change Biol. 21, 265–274 (2015).
    ADS  Article  Google Scholar 

    74.
    Srivastava, R. K., Panda, R. K. & Chakraborty, A. Assessment of climate change impact on maize yield and yield attributes under different climate change scenarios in eastern India. Ecol. Ind. 120, 106881. https://doi.org/10.1016/j.ecolind.2020.106881 (2021).
    Article  Google Scholar 

    75.
    Gordo, O. & Sanz, J. J. Phenology and climate change: a long-term study in a Mediterranean locality. Oecologia 146, 484–495. https://doi.org/10.1007/s00442-005-0240-z (2005).
    ADS  Article  PubMed  Google Scholar 

    76.
    Brown, M. E., de Beurs, K. M. & Marshall, M. Global phenological response to climate change in crop areas using satellite remote sensing of vegetation, humidity and temperature over 26years. Remote Sens. Environ. 126, 174–183. https://doi.org/10.1016/j.rse.2012.08.009 (2012).
    ADS  Article  Google Scholar 

    77.
    Kim, Y.-U. & Lee, B.-W. Earlier planting offsets the adverse effect of global warming on spring potato in South Korea. Sci. Total Environ. 742, 140667. https://doi.org/10.1016/j.scitotenv.2020.140667 (2020).
    ADS  CAS  Article  PubMed  Google Scholar 

    78.
    Baum, M. E., Licht, M. A., Huber, I. & Archontoulis, S. V. Impacts of climate change on the optimum planting date of different maize cultivars in the central US Corn Belt. Eur. J. Agron. 119, 126101. https://doi.org/10.1016/j.eja.2020.126101 (2020).
    Article  Google Scholar 

    79.
    Menzel, A. et al. Climate change fingerprints in recent European plant phenology. Glob. Change Biol. 26, 2599–2612. https://doi.org/10.1111/gcb.15000 (2020).
    ADS  Article  Google Scholar 

    80.
    Menzel, A. Trends in phenological phases in Europe between 1951 and 1996. Int. J. Biometeorol. 44, 76–81. https://doi.org/10.1007/s004840000054 (2000).
    ADS  CAS  Article  PubMed  Google Scholar 

    81.
    Oteros, J., García-Mozo, H., Botey, R., Mestre, A. & Galán, C. Variations in cereal crop phenology in Spain over the last twenty-six years (1986–2012). Clim. Change 130, 545–558. https://doi.org/10.1007/s10584-015-1363-9 (2015).
    ADS  CAS  Article  Google Scholar 

    82.
    Wang, Y., Luo, Y. & Shafeeque, M. Interpretation of vegetation phenology changes using daytime and night-time temperatures across the Yellow River Basin, China. Sci. Total Environ. 693, 133553. https://doi.org/10.1016/j.scitotenv.2019.07.359 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 

    83.
    Moriondo, M. & Bindi, M. Impact of climate change on the phenology of typical Mediterranean crops. Italian J. Agrometeorol. 3, 5–12 (2007).
    Google Scholar 

    84.
    Anwar, M. R. et al. Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia. Agric. Syst. 132, 133–144. https://doi.org/10.1016/j.agsy.2014.09.010 (2015).
    ADS  Article  Google Scholar 

    85.
    Jackson, R. B. et al. Global energy growth is outpacing decarbonization. Environ. Res. Lett. 13, 120401. https://doi.org/10.1088/1748-9326/aaf303 (2018).
    ADS  CAS  Article  Google Scholar 

    86.
    Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194. https://doi.org/10.5194/essd-10-2141-2018 (2018).
    ADS  Article  Google Scholar 

    87.
    Balch, J. K. et al. Global combustion: the connection between fossil fuel and biomass burning emissions (1997–2010). Philos. Trans. R. Soc. B Biol. Sci. 371, 20150177. https://doi.org/10.1098/rstb.2015.0177 (2016).
    Article  Google Scholar 

    88.
    Ahmad, S. et al. Climate warming and management impact on the change of phenology of the rice-wheat cropping system in Punjab, Pakistan. Field Crops Res. 230, 46–61. https://doi.org/10.1016/j.fcr.2018.10.008 (2019).
    Article  Google Scholar 

    89.
    Ahmad, S. et al. Application of DSSAT Model for sowing date management of C 4 summer cereals for fodder and grain crops under irrigated arid environment. Pakistan J. Life Soc. Sci. 14 (2016).

    90.
    Hatfield, J. L. & Prueger, J. H. Temperature extremes: effect on plant growth and development. Weather Clim. Extremes 10, 4–10. https://doi.org/10.1016/j.wace.2015.08.001 (2015).
    Article  Google Scholar 

    91.
    Aslam, M. A. et al. Can growing degree days and photoperiod predict spring wheat phenology?. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2017.00057 (2017).
    Article  Google Scholar 

    92.
    Zhang, L., Zhang, Z., Luo, Y., Cao, J. & Li, Z. Optimizing genotype-environment-management interactions for maize farmers to adapt to climate change in different agro-ecological zones across China. Sci. Total Environ. 728, 138614. https://doi.org/10.1016/j.scitotenv.2020.138614 (2020).
    ADS  CAS  Article  PubMed  Google Scholar 

    93.
    Tryjanowski, P. et al. Changing phenology of potato and of the treatment for its major pest (colorado potato beetle)—a long-term analysis. Am. J. Potato Res. https://doi.org/10.1007/s12230-017-9611-3 (2017).
    Article  Google Scholar 

    94.
    Ahmad, S. et al. Quantification of climate warming and crop management impacts on cotton phenology. Plants (Basel) 6, 7. https://doi.org/10.3390/plants6010007 (2017).
    Article  Google Scholar 

    95.
    Huang, J. & Ji, F. Effects of climate change on phenological trends and seed cotton yields in oasis of arid regions. Int. J. Biometeorol. 59, 877–888. https://doi.org/10.1007/s00484-014-0904-7 (2015).
    ADS  Article  PubMed  Google Scholar 

    96.
    Wang, Z. et al. Response of cotton phenology to climate change on the North China Plain from 1981 to 2012. Sci. Rep. 7, 6628. https://doi.org/10.1038/s41598-017-07056-4 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    97.
    Srivastava, A., NareshKumar, S. & Aggarwal, P. K. Assessment on vulnerability of sorghum to climate change in India. Agric. Ecosyst. Environ. 138, 160–169. https://doi.org/10.1016/j.agee.2010.04.012 (2010).
    Article  Google Scholar 

    98.
    Sultan, B. et al. Robust features of future climate change impacts on sorghum yields in West Africa. Environ. Res. Lett. 9, 104006. https://doi.org/10.1088/1748-9326/9/10/104006 (2014).
    ADS  CAS  Article  Google Scholar 

    99.
    Shew, A. M., Tack, J. B., Nalley, L. L. & Chaminuka, P. Yield reduction under climate warming varies among wheat cultivars in South Africa. Nat. Commun. 11, 4408. https://doi.org/10.1038/s41467-020-18317-8 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    100.
    Sonkar, G. et al. Vulnerability of Indian wheat against rising temperature and aerosols. Environ. Pollut. 254, 112946. https://doi.org/10.1016/j.envpol.2019.07.114 (2019).
    CAS  Article  PubMed  Google Scholar 

    101.
    Fatima, Z. et al. Quantification of climate warming and crop management impacts on phenology of pulses-based cropping systems. Int. J. Plant Prod. https://doi.org/10.1007/s42106-020-00112-6 (2020).
    Article  Google Scholar 

    102.
    Liu, Y., Qin, Y., Wang, H., Lv, S. & Ge, Q. Trends in maize (Zea mays L.) phenology and sensitivity to climate factors in China from 1981 to 2010. Int J Biometeorol 64, 461–470. https://doi.org/10.1007/s00484-019-01832-9 (2020).
    Article  PubMed  Google Scholar 

    103.
    Zhou, X. et al. Legacy effect of spring phenology on vegetation growth in temperate China. Agric. For. Meteorol. 281, 107845. https://doi.org/10.1016/j.agrformet.2019.107845 (2020).
    ADS  Article  Google Scholar 

    104.
    Das, S., Kumar, A., Barman, M., Pal, S. & Bandopadhyay, P. In Agronomic Crops: Volume 3: Stress Responses and Tolerance (ed. Hasanuzzaman, M.) 13–28 (Springer Singapore, 2020).

    105.
    Xiao, D., Liu, D. L., Wang, B., Feng, P. & Waters, C. Designing high-yielding maize ideotypes to adapt changing climate in the North China Plain. Agric. Syst. 181, 102805. https://doi.org/10.1016/j.agsy.2020.102805 (2020).
    Article  Google Scholar 

    106.
    Liu, Y. et al. Impacts of 1.5 and 2.0°C global warming on rice production across China. Agric. For. Meteorol. 284, 107900. https://doi.org/10.1016/j.agrformet.2020.107900 (2020).
    ADS  Article  Google Scholar 

    107.
    Rani, B. A. & Maragatham, N. Effect of elevated temperature on rice phenology and yield. Indian J. Sci. Technol. 6, 5095–5097 (2013).
    Google Scholar 

    108.
    Shrestha, S. et al. Phenological responses of upland rice grown along an altitudinal gradient. Environ. Exp. Bot. 89, 1–10. https://doi.org/10.1016/j.envexpbot.2012.12.007 (2013).
    Article  Google Scholar 

    109.
    Abbas, G. et al. Quantification the impacts of climate change and crop management on phenology of maize-based cropping system in Punjab, Pakistan. Agric. For. Meteorol. 247, 42–55. https://doi.org/10.1016/j.agrformet.2017.07.012 (2017).
    ADS  Article  Google Scholar 

    110.
    Estrella, N., Sparks, T. H. & Menzel, A. Trends and temperature response in the phenology of crops in Germany. Glob. Change Biol. 13, 1737–1747. https://doi.org/10.1111/j.1365-2486.2007.01374.x (2007).
    ADS  Article  Google Scholar 

    111.
    Li, K. et al. Effects of changing climate and cultivar on the phenology and yield of winter wheat in the North China Plain. Int. J. Biometeorol. 60, 21–32. https://doi.org/10.1007/s00484-015-1002-1 (2016).
    ADS  Article  PubMed  Google Scholar 

    112.
    He, D. et al. Uncertainty in canola phenology modelling induced by cultivar parameterization and its impact on simulated yield. Agric. For. Meteorol. 232, 163–175. https://doi.org/10.1016/j.agrformet.2016.08.013 (2017).
    ADS  Article  Google Scholar 

    113.
    Wei, W., Wu, W., Li, Z., Yang, P. & Zhou, Q. Selecting the optimal ndvi time-series reconstruction technique for crop phenology detection. Intell. Autom. Soft Comput. 22, 237–247. https://doi.org/10.1080/10798587.2015.1095482 (2016).
    Article  Google Scholar 

    114.
    Chakraborty, A., Das, P. K., Sai, M. V. R. S. & Behera, G. Spatial pattern of temporal trend of crop phenology matrices over india using timeseries gimms NDVI data (19826ndash;2006). ISPRS Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 3820, 113–118 (2012).
    Article  Google Scholar 

    115.
    Komal, C., Shi, W., Boori, M. S. & Corgne, S. Agriculture phenology monitoring using NDVI time series based on remote sensing satellites: a case study of Guangdong, China. Opt. Mem. Neural Netw. 28, 204–214. https://doi.org/10.3103/S1060992X19030093 (2019).
    Article  Google Scholar 

    116.
    Liu, Y., Chen, Q., Ge, Q. & Dai, J. Spatiotemporal differentiation of changes in wheat phenology in China under climate change from 1981 to 2010. Sci. China Earth Sci. 61, 1088–1097. https://doi.org/10.1007/s11430-017-9149-0 (2018).
    ADS  Article  Google Scholar 

    117.
    Xiao, D. et al. Observed changes in winter wheat phenology in the North China Plain for 1981–2009. Int. J. Biometeorol. 57, 275–285. https://doi.org/10.1007/s00484-012-0552-8 (2013).
    ADS  Article  PubMed  Google Scholar 

    118.
    Hossain, A., da Silva Teixeira, J. A., Lozovskaya, M. V. & Zvolinsky, V. P. High temperature combined with drought affect rainfed spring wheat and barley in South-Eastern Russia: I. Phenology and growth. Saudi J. Biol. Sci. 19, 473–487. https://doi.org/10.1016/j.sjbs.2012.07.005 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    119.
    Martínez-Núñez, M. et al. The phenological growth stages of different amaranth species grown in restricted spaces based in BBCH code. South African J. Bot. 124, 436–443. https://doi.org/10.1016/j.sajb.2019.05.035 (2019).
    Article  Google Scholar 

    120.
    Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. 114, 9326–9331. https://doi.org/10.1073/pnas.1701762114 (2017).
    CAS  Article  PubMed  Google Scholar 

    121.
    Li, T. et al. Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Glob. Change Biol. 21, 1328–1341. https://doi.org/10.1111/gcb.12758 (2015).
    ADS  CAS  Article  Google Scholar 

    122.
    Subash, N. & Ram Mohan, H. S. Evaluation of the impact of climatic trends and variability in rice–wheat system productivity using Cropping System Model DSSAT over the Indo-Gangetic Plains of India. Agric. For. Meteorol. 164, 71–81. https://doi.org/10.1016/j.agrformet.2012.05.008 (2012).
    ADS  Article  Google Scholar 

    123.
    Tian, D. et al. Does decadal climate variation influence wheat and maize production in the southeast USA?. Agric. For. Meteorol. 204, 1–9. https://doi.org/10.1016/j.agrformet.2015.01.013 (2015).
    ADS  Article  Google Scholar 

    124.
    Quiring, S. M. & Legates, D. R. Application of CERES-Maize for within-season prediction of rainfed corn yields in Delaware, USA. Agric. For. Meteorol. 148, 964–975. https://doi.org/10.1016/j.agrformet.2008.01.009 (2008).
    ADS  Article  Google Scholar 

    125.
    Blecharczyk, A., Sawinska, Z., Małecka, I., Sparks, T. H. & Tryjanowski, P. The phenology of winter rye in Poland: an analysis of long-term experimental data. Int. J. Biometeorol. 60, 1341–1346. https://doi.org/10.1007/s00484-015-1127-2 (2016).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    126.
    Luo, Q., O’Leary, G., Cleverly, J. & Eamus, D. Effectiveness of time of sowing and cultivar choice for managing climate change: wheat crop phenology and water use efficiency. Int. J. Biometeorol. 62, 1049–1061. https://doi.org/10.1007/s00484-018-1508-4 (2018).
    ADS  Article  PubMed  Google Scholar 

    127.
    He, L. et al. Impacts of recent climate warming, cultivar changes, and crop management on winter wheat phenology across the Loess Plateau of China. Agric. For. Meteorol. 200, 135–143. https://doi.org/10.1016/j.agrformet.2014.09.011 (2015).
    ADS  Article  Google Scholar 

    128.
    Wang, J., Wang, E., Feng, L., Yin, H. & Yu, W. Phenological trends of winter wheat in response to varietal and temperature changes in the North China Plain. Field Crops Res. 144, 135–144. https://doi.org/10.1016/j.fcr.2012.12.020 (2013).
    CAS  Article  Google Scholar 

    129.
    Zheng, Z., Cai, H., Wang, Z. & Wang, X. Simulation of climate change impacts on phenology and production of winter wheat in Northwestern China using CERES-wheat model. Atmosphere 11, 681 (2020).
    ADS  Article  Google Scholar 

    130.
    Hyles, J., Bloomfield, M. T., Hunt, J. R., Trethowan, R. M. & Trevaskis, B. Phenology and related traits for wheat adaptation. Heredity https://doi.org/10.1038/s41437-020-0320-1 (2020).
    Article  PubMed  Google Scholar 

    131.
    Li, Q.-Y. et al. Determination of optimum growing degree-days (GDD) range before winter for wheat cultivars with different growth characteristics in North China Plain. J. Integr. Agric. 11, 405–415. https://doi.org/10.1016/S2095-3119(12)60025-2 (2012).
    Article  Google Scholar 

    132.
    Herndl, M., Shan, C.-G., Wang, P., Graeff, S. & Claupein, W. A model based ideotyping approach for wheat under different environmental conditions in North China Plain. Agric. Sci. China 6, 1426–1436. https://doi.org/10.1016/S1671-2927(08)60004-8 (2007).
    Article  Google Scholar 

    133.
    Asseng, S., Turner, N. C., Ray, J. D. & Keating, B. A. A simulation analysis that predicts the influence of physiological traits on the potential yield of wheat. Eur. J. Agron. 17, 123–141. https://doi.org/10.1016/S1161-0301(01)00149-6 (2002).
    Article  Google Scholar 

    134.
    Rezaei, E. E., Siebert, S. & Ewert, F. Intensity of heat stress in winter wheat—phenology compensates for the adverse effect of global warming. Environ. Res. Lett. 10, 024012 (2015).
    ADS  Article  Google Scholar 

    135.
    Eyshi Rezaei, E., Siebert, S. & Ewert, F. Climate and management interaction cause diverse crop phenology trends. Agric. For. Meteorol. 233, 55–70. https://doi.org/10.1016/j.agrformet.2016.11.003 (2017).
    ADS  Article  Google Scholar 

    136.
    Wang, Y., Zhang, J., Song, G., Long, Z. & Chen, C. Impacts of recent temperatures rise on double-rice phenology across Southern China. Int. J. Plant Prod. 13, 1–10. https://doi.org/10.1007/s42106-018-0029-8 (2019).
    Article  Google Scholar 

    137.
    Hu, X., Huang, Y., Sun, W. & Yu, L. Shifts in cultivar and planting date have regulated rice growth duration under climate warming in China since the early 1980s. Agric. For. Meteorol. 247, 34–41. https://doi.org/10.1016/j.agrformet.2017.07.014 (2017).
    ADS  Article  Google Scholar 

    138.
    Zhang, S., Tao, F. & Zhang, Z. Rice reproductive growth duration increased despite of negative impacts of climate warming across China during 1981–2009. Eur. J. Agron. 54, 70–83. https://doi.org/10.1016/j.eja.2013.12.001 (2014).
    CAS  Article  Google Scholar 

    139.
    Bai, H. & Xiao, D. Spatiotemporal changes of rice phenology in China during 1981–2010. Theor Appl Climatol 140, 1483–1494. https://doi.org/10.1007/s00704-020-03182-8 (2020).
    ADS  Article  Google Scholar 

    140.
    Abbas, G. et al. Sowing date and hybrid choice matters production of maize-maize system. Int. J. Plant Prod. https://doi.org/10.1007/s42106-020-00104-6 (2020).
    Article  Google Scholar 

    141.
    Abbas, G. et al. Nitrogen rate and hybrid selection matters productivity of maize-maize cropping system under irrigated arid environment of Southern Punjab, Pakistan. Int. J. Plant Prod. 14, 309–320. https://doi.org/10.1007/s42106-020-00086-5 (2020).
    Article  Google Scholar 

    142.
    Xiao, D., Zhao, Y., Bai, H., Hu, Y. & Cao, J. Impacts of climate warming and crop management on maize phenology in northern China. J. Arid Land 11, 892–903. https://doi.org/10.1007/s40333-019-0028-3 (2019).
    Article  Google Scholar 

    143.
    Wang, Z. et al. Effects of climate change and cultivar on summer maize phenology. International Journal of Plant Production 10, 509–525 (2016).
    Google Scholar 

    144.
    Sacks, W. J. & Kucharik, C. J. Crop management and phenology trends in the U.S. Corn Belt: Impacts on yields, evapotranspiration and energy balance. Agricultural and Forest Meteorology 151, 882–894. https://doi.org/10.1016/j.agrformet.2011.02.010 (2011).

    145.
    Mo, F. et al. Phenological responses of spring wheat and maize to changes in crop management and rising temperatures from 1992 to 2013 across the Loess Plateau. Field Crops Research 196, 337–347. https://doi.org/10.1016/j.fcr.2016.06.024 (2016).
    Article  Google Scholar 

    146.
    Wang, P. et al. Summer maize growth under different precipitation years in the Huang-Huai-Hai Plain of China. Agric. For. Meteorol. 285–286, 107927. https://doi.org/10.1016/j.agrformet.2020.107927 (2020).
    ADS  Article  Google Scholar 

    147.
    Liu, Y., Qin, Y. & Ge, Q. Spatiotemporal differentiation of changes in maize phenology in China from 1981 to 2010. J. Geog. Sci. 29, 351–362. https://doi.org/10.1007/s11442-019-1602-5 (2019).
    Article  Google Scholar 

    148.
    Chen, C. et al. Global warming and shifts in cropping systems together reduce China’s rice production. Global Food Security 24, 100359. https://doi.org/10.1016/j.gfs.2020.100359 (2020).
    Article  Google Scholar 

    149.
    Lv, Z., Li, F. & Lu, G. Adjusting sowing date and cultivar shift improve maize adaption to climate change in China. Mitig Adapt Strat Glob Change 25, 87–106. https://doi.org/10.1007/s11027-019-09861-w (2020).
    Article  Google Scholar 

    150.
    Nahar, K., Ahamed, K. U. & Fujita, M. Phenological variation and its relation with yield in several wheat (Triticum aestivum L.) cultivars under normal and late sowing mediated heat stress condition. Notulae Scientia Biologicae 2, 51–56 (2010).

    151.
    Raoufi, R. S. & Soufizadeh, S. Simulation of the impacts of climate change on phenology, growth, and yield of various rice genotypes in humid sub-tropical environments using AquaCrop-Rice. Int J Biometeorol https://doi.org/10.1007/s00484-020-01946-5 (2020).
    Article  PubMed  Google Scholar 

    152.
    Karapinar, B. & Özertan, G. Yield implications of date and cultivar adaptation to wheat phenological shifts: a survey of farmers in Turkey. Climatic Change 158, 453–472. https://doi.org/10.1007/s10584-019-02532-4 (2020).
    ADS  CAS  Article  Google Scholar 

    153.
    Ahmad, M. J., Iqbal, M. A. & Choi, K. S. Climate-driven constraints in sustaining future wheat yield and water productivity. Agric. Water Manag. 231, 105991. https://doi.org/10.1016/j.agwat.2019.105991 (2020).
    Article  Google Scholar 

    154.
    Zacharias, M., Singh, S., Naresh Kumar, S., Harit, R. & Aggarwal, P. Impact of elevated temperature at different phenological stages on the growth and yield of wheat and rice. Ind J Plant Physiol. 15, 350 (2010).
    Google Scholar 

    155.
    Sadok, W. & Jagadish, S. V. K. The Hidden Costs of Nighttime Warming on Yields. Trends Plant Sci. 25, 644–651. https://doi.org/10.1016/j.tplants.2020.02.003 (2020).
    CAS  Article  PubMed  Google Scholar 

    156.
    Kahiluoto, H. et al. Decline in climate resilience of European wheat. Proc. Natl. Acad. Sci. 116, 123–128. https://doi.org/10.1073/pnas.1804387115 (2019).
    CAS  Article  PubMed  Google Scholar 

    157.
    Lavee, H., Imeson, A. C. & Sarah, P. The impact of climate change on geomorphology and desertification along a mediterranean-arid transect. Land Degrad. Dev. 9, 407–422. https://doi.org/10.1002/(sici)1099-145x(199809/10)9:5%3c407::aid-ldr302%3e3.0.co;2-6 (1998).
    Article  Google Scholar 

    158.
    Traill, L. W. et al. Managing for change: wetland transitions under sea-level rise and outcomes for threatened species. Divers. Distrib. 17, 1225–1233. https://doi.org/10.1111/j.1472-4642.2011.00807.x (2011).
    Article  Google Scholar 

    159.
    Bellard, C., Leclerc, C. & Courchamp, F. Impact of sea level rise on the 10 insular biodiversity hotspots. Glob. Ecol. Biogeogr. 23, 203–212. https://doi.org/10.1111/geb.12093 (2014).
    Article  Google Scholar 

    160.
    Feng, Q., Ma, H., Jiang, X., Wang, X. & Cao, S. What Has Caused Desertification in China?. Scientific Reports 5, 15998. https://doi.org/10.1038/srep15998 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    161.
    Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nature Climate Change 6, 166–171. https://doi.org/10.1038/nclimate2837 (2016).
    ADS  Article  Google Scholar 

    162.
    Liu, B. et al. Global wheat production with 1.5 and 2.0°C above pre-industrial warming. Global Change Biology 25, 1428–1444. https://doi.org/10.1111/gcb.14542 (2019).

    163.
    Asseng, S. et al. Climate change impact and adaptation for wheat protein. Glob. Change Biol. 25, 155–173. https://doi.org/10.1111/gcb.14481 (2019).
    ADS  Article  Google Scholar 

    164.
    Nayak, D. et al. Management opportunities to mitigate greenhouse gas emissions from Chinese agriculture. Agr. Ecosyst. Environ. 209, 108–124. https://doi.org/10.1016/j.agee.2015.04.035 (2015).
    CAS  Article  Google Scholar 

    165.
    Kang, Y., Khan, S. & Ma, X. Climate change impacts on crop yield, crop water productivity and food security – A review. Prog. Nat. Sci. 19, 1665–1674. https://doi.org/10.1016/j.pnsc.2009.08.001 (2009).
    Article  Google Scholar 

    166.
    Korres, N. E. et al. Cultivars to face climate change effects on crops and weeds: a review. Agron. Sustain. Dev. 36, 12. https://doi.org/10.1007/s13593-016-0350-5 (2016).
    Article  Google Scholar 

    167.
    167Ortiz., R. in Food Security and Climate Change145–158 (2018).

    168.
    Kumar, S. & Sidana, B. K. Farmers’ perceptions and adaptation strategies to climate change in Punjab agriculture. Indian J. Agric. Sci 88, 1573–1581 (2018).
    Google Scholar 

    169.
    Burke, M. & Emerick, K. Adaptation to climate change: Evidence from US agriculture. American Economic Journal: Economic Policy 8, 106–140 (2016).
    Google Scholar 

    170.
    Pradhan, A., Chan, C., Roul, P. K., Halbrendt, J. & Sipes, B. Potential of conservation agriculture (CA) for climate change adaptation and food security under rainfed uplands of India: A transdisciplinary approach. Agric. Syst. 163, 27–35. https://doi.org/10.1016/j.agsy.2017.01.002 (2018).
    Article  Google Scholar 

    171.
    Bahri, H., Annabi, M., Cheikh M’Hamed, H. & Frija, A. Assessing the long-term impact of conservation agriculture on wheat-based systems in Tunisia using APSIM simulations under a climate change context. Science of The Total Environment 692, 1223–1233. https://doi.org/10.1016/j.scitotenv.2019.07.307 (2019).

    172.
    Zampieri, M. et al. Estimating resilience of crop production systems: From theory to practice. Sci. Total Environ. 735, 139378. https://doi.org/10.1016/j.scitotenv.2020.139378 (2020).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    173.
    Wiebe, K., Robinson, S. & Cattaneo, A. in Sustainable Food and Agriculture (eds Clayton Campanhola & Shivaji Pandey) 55–74 (Academic Press, 2019).

    174.
    Abebe, T., Guenzi, A. C., Martin, B. & Cushman, J. C. Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol. 131, 1748–1755 (2003).
    CAS  Article  Google Scholar 

    175.
    Lee, S.-H. et al. Identification and functional characterization of Siberian wild rye (Elymus sibiricus L.) small heat shock protein 16.9 gene (EsHsp16.9) conferring diverse stress tolerance in prokaryotic cells. Biotechnology Letters 37, 881–890. https://doi.org/10.1007/s10529-014-1749-1 (2015).

    176.
    Yamakawa, H., Hirose, T., Kuroda, M. & Yamaguchi, T. Comprehensive Expression Profiling of Rice Grain Filling-Related Genes under High Temperature Using DNA Microarray. Plant Physiol. 144, 258–277. https://doi.org/10.1104/pp.107.098665 (2007).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    177.
    Lehmann, N., Finger, R., Klein, T., Calanca, P. & Walter, A. Adapting crop management practices to climate change: Modeling optimal solutions at the field scale. Agric. Syst. 117, 55–65. https://doi.org/10.1016/j.agsy.2012.12.011 (2013).
    Article  Google Scholar 

    178.
    Pimentel, A. J. B. et al. Characterization of heat tolerance in wheat cultivars and effects on production components. Revista Ceres 62, 191–198 (2015).
    Article  Google Scholar 

    179.
    Lin, B. B. Resilience in Agriculture through Crop Diversification: Adaptive Management for Environmental Change. Bioscience 61, 183–193. https://doi.org/10.1525/bio.2011.61.3.4 (2011).
    Article  Google Scholar 

    180.
    Deryng, D., Sacks, W. J., Barford, C. C. & Ramankutty, N. Simulating the effects of climate and agricultural management practices on global crop yield. Global Biogeochemical Cycles 25, n/a-n/a. https://doi.org/10.1029/2009GB003765 (2011).

    181.
    Mase, A. S., Gramig, B. M. & Prokopy, L. S. Climate change beliefs, risk perceptions, and adaptation behavior among Midwestern U.S. crop farmers. Climate Risk Management 15, 8–17. https://doi.org/10.1016/j.crm.2016.11.004 (2017).

    182.
    Hernandez-Ochoa, I. M. et al. Adapting irrigated and rainfed wheat to climate change in semi-arid environments: Management, breeding options and land use change. Eur. J. Agron. 109, 125915. https://doi.org/10.1016/j.eja.2019.125915 (2019).
    Article  Google Scholar 

    183.
    Meza, F. J. & Silva, D. Dynamic adaptation of maize and wheat production to climate change. Climatic Change 94, 143–156. https://doi.org/10.1007/s10584-009-9544-z (2009).
    ADS  Article  Google Scholar 

    184.
    Luo, Q., Bellotti, W., Williams, M. & Wang, E. Adaptation to climate change of wheat growing in South Australia: Analysis of management and breeding strategies. Agr. Ecosyst. Environ. 129, 261–267. https://doi.org/10.1016/j.agee.2008.09.010 (2009).
    Article  Google Scholar 

    185.
    Wang, B. et al. Designing wheat ideotypes to cope with future changing climate in South-Eastern Australia. Agric. Syst. 170, 9–18. https://doi.org/10.1016/j.agsy.2018.12.005 (2019).
    Article  Google Scholar 

    186.
    Li, Y. et al. Quantifying irrigation cooling benefits to maize yield in the US Midwest. Glob. Change Biol. 26, 3065–3078. https://doi.org/10.1111/gcb.15002 (2020).
    ADS  Article  Google Scholar 

    187.
    Hampton, K. N. Persistent and pervasive community: New communication technologies and the future of community. Am. Behav. Sci. 60, 101–124 (2016).
    Article  Google Scholar 

    188.
    Asseng, S., Zhu, Y., Wang, E. & Zhang, W. in Crop Physiology (Second Edition) (ed Victor O. SadrasDaniel F. Calderini) 505–546 (Academic Press, 2015).

    189.
    Sadras, V. O., Vadez, V., Purushothaman, R., Lake, L. & Marrou, H. Unscrambling confounded effects of sowing date trials to screen for crop adaptation to high temperature. Field Crops Research 177, 1–8. https://doi.org/10.1016/j.fcr.2015.02.024 (2015).
    Article  Google Scholar 

    190.
    Rodriguez, D. & Sadras, V. Opportunities from integrative approaches in farming systems design. Field Crops Research 124, 131–141 (2011).
    Google Scholar 

    191.
    Cabezas, J. M. et al. Identifying adaptation strategies to climate change for Mediterranean olive orchards using impact response surfaces. Agric. Syst. 185, 102937. https://doi.org/10.1016/j.agsy.2020.102937 (2020).
    Article  Google Scholar 

    192.
    Ahmad, I., Ahmad, B., Boote, K. & Hoogenboom, G. Adaptation strategies for maize production under climate change for semi-arid environments. Eur. J. Agron. 115, 126040. https://doi.org/10.1016/j.eja.2020.126040 (2020).
    CAS  Article  Google Scholar 

    193.
    Abbas, G. et al. in Cotton Production and Uses: Agronomy, Crop Protection, and Postharvest Technologies (eds Shakeel Ahmad & Mirza Hasanuzzaman) 429–445 (Springer Singapore, 2020).

    194.
    Ahmed, M. et al. Novel multimodel ensemble approach to evaluate the sole effect of elevated CO2 on winter wheat productivity. Scientific Reports 9, 7813. https://doi.org/10.1038/s41598-019-44251-x (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    195.
    Ahmed, M. & Ahmad, S. in Agronomic Crops: Volume 2: Management Practices (ed Mirza Hasanuzzaman) 31–46 (Springer Singapore, 2019).

    196.
    van Ogtrop, F., Ahmad, M. & Moeller, C. Principal components of sea surface temperatures as predictors of seasonal rainfall in rainfed wheat growing areas of Pakistan. Meteorological Applications 21, 431–443. https://doi.org/10.1002/met.1429 (2014).

    197.
    Abedinpour, M. et al. Performance evaluation of AquaCrop model for maize crop in a semi-arid environment. Agric. Water Manag. 110, 55–66. https://doi.org/10.1016/j.agwat.2012.04.001 (2012).
    Article  Google Scholar 

    198.
    Sareen, S. et al. Molecular genetic diversity analysis for heat tolerance of indigenous and exotic wheat genotypes. J. Plant Biochem. Biotechnol. 29, 15–23. https://doi.org/10.1007/s13562-019-00501-7 (2020).
    CAS  Article  Google Scholar 

    199.
    Rezaei, E. E. et al. Quantifying the response of wheat yields to heat stress: The role of the experimental setup. Field Crops Research 217, 93–103. https://doi.org/10.1016/j.fcr.2017.12.015 (2018).
    Article  Google Scholar 

    200.
    Mechanisms and modelling. Eyshi Rezaei, E., Webber, H., Gaiser, T., Naab, J. & Ewert, F. Heat stress in cereals. Eur. J. Agron. 64, 98–113. https://doi.org/10.1016/j.eja.2014.10.003 (2015).
    Article  Google Scholar 

    201.
    Abbas, G. et al. Nitrogen rate and hybrid selection matters productivity of maize-maize cropping system under irrigated arid environment of Southern Punjab, Pakistan. Int. J. Plant Prod. https://doi.org/10.1007/s42106-020-00086-5 (2020).
    Article  Google Scholar 

    202.
    Jahan, M. A. H. S. et al. Optimizing sowing window for wheat cultivation in Bangladesh using CERES-wheat crop simulation model. Agr. Ecosyst. Environ. 258, 23–29. https://doi.org/10.1016/j.agee.2018.02.008 (2018).
    Article  Google Scholar 

    203.
    Ahmed, S., Humphreys, E. & Chauhan, B. S. Optimum sowing date and cultivar duration of dry-seeded boro on the High Ganges River Floodplain of Bangladesh. Field Crops Research 190, 91–102. https://doi.org/10.1016/j.fcr.2015.12.004 (2016).
    Article  Google Scholar 

    204.
    Basso, B., Liu, L. & Ritchie, J. T. in Advances in Agronomy Vol. 136 (ed Donald L. Sparks) 27–132 (Academic Press, 2016).

    205.
    Xiong, W. et al. A calibration procedure to improve global rice yield simulations with EPIC. Ecol. Model. 273, 128–139. https://doi.org/10.1016/j.ecolmodel.2013.10.026 (2014).
    Article  Google Scholar 

    206.
    Jalota, S. K., Vashisht, B. B., Kaur, H., Kaur, S. & Kaur, P. Location specific climate change scenario and its impact on rice and wheat in Central Indian Punjab. Agric. Syst. 131, 77–86. https://doi.org/10.1016/j.agsy.2014.07.009 (2014).
    Article  Google Scholar 

    207.
    Peng, S. et al. Rice yields decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. U.S.A. 101, 9971–9975. https://doi.org/10.1073/pnas.0403720101 (2004).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    208.
    Ritchie, J. T., Singh, U., Godwin, D. C. & Bowen, W. T. in Understanding Options for Agricultural Production Vol. 7 Systems Approaches for Sustainable Agricultural Development (eds GordonY Tsuji, Gerrit Hoogenboom, & PhilipK Thornton) Ch. 5, 79–98 (Springer Netherlands, 1998).

    209.
    Nissanka, S. P. et al. Calibration of the phenology sub-model of APSIM-Oryza: Going beyond goodness of fit. Environmental Modelling & Software 70, 128–137. https://doi.org/10.1016/j.envsoft.2015.04.007 (2015).
    Article  Google Scholar 

    210.
    Weerakoon, W. M. W. et al. Direct-seeded rice culture in Sri Lanka: Lessons from farmers. Field Crops Research 121, 53–63. https://doi.org/10.1016/j.fcr.2010.11.009 (2011).
    Article  Google Scholar 

    211.
    Iftekharuddaula, K. M. et al. Development of early maturing submergence-tolerant rice varieties for Bangladesh. Field Crops Research 190, 44–53. https://doi.org/10.1016/j.fcr.2015.12.001 (2016).
    Article  Google Scholar 

    212.
    Haefele, S. M., Kato, Y. & Singh, S. Climate ready rice: Augmenting drought tolerance with best management practices. Field Crops Research 190, 60–69. https://doi.org/10.1016/j.fcr.2016.02.001 (2016).
    Article  Google Scholar 

    213.
    Latif, M. A., Islam, M. R., Ali, M. Y. & Saleque, M. A. Validation of the system of rice intensification (SRI) in Bangladesh. Field Crops Research 93, 281–292. https://doi.org/10.1016/j.fcr.2004.10.005 (2005).
    Article  Google Scholar 

    214.
    Sarangi, S. K. et al. Using improved variety and management enhances rice productivity in stagnant flood -affected tropical coastal zones. Field Crops Research 190, 70–81. https://doi.org/10.1016/j.fcr.2015.10.024 (2016).
    Article  Google Scholar 

    215.
    Raza, M. A. et al. Effect of planting patterns on yield, nutrient accumulation and distribution in maize and soybean under relay intercropping systems. Scientific Reports 9, 4947. https://doi.org/10.1038/s41598-019-41364-1 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    216.
    Paudel, B., Khanal, R. C., KC, A., Bhatta, K. & Chaudhary, P. Climate-smart agriculture in Nepal. Research program on Climate Change, Agriculture and food security (2017).

    217.
    Chauhan, B. S., Mahajan, G., Sardana, V., Timsina, J. & Jat, M. L. in Advances in Agronomy Vol. Volume 117 (ed L. Sparks Donald) 315–369 (Academic Press, 2012).

    218.
    Yadvinder, S., Kukal, S. S., Jat, M. L. & Sidhu, H. S. in Advances in Agronomy Vol. 127 (ed Donald Sparks) 157–258 (Academic Press, 2014).

    219.
    Jat, M. L. et al. in Advances in Agronomy Vol. 137 (ed Donald L. Sparks) 127–235 (Academic Press, 2016).

    220.
    Kukal, S. S., Yadvinder, S., Jat, M. L. & Sidhu, H. S. in Advances in Agronomy Vol. Volume 127 (ed Sparks Donald) 157–258 (Academic Press, 2014).

    221.
    Witt, C., Pasuquin, J. & Dobermann, A. Towards a site-specific nutrient management approach for maize in Asia. Better Crops 90, 28–31 (2006).
    Google Scholar 

    222.
    Ullah, A., Ahmad, A., Khaliq, T. & Akhtar, J. Recognizing production options for pearl millet in Pakistan under changing climate scenarios. Journal of Integrative Agriculture 16, 762–773. https://doi.org/10.1016/S2095-3119(16)61450-8 (2017).
    Article  Google Scholar 

    223.
    Ullah, A., Salehnia, N., Kolsoumi, S., Ahmad, A. & Khaliq, T. Prediction of effective climate change indicators using statistical downscaling approach and impact assessment on pearl millet (Pennisetum glaucum L.) yield through Genetic Algorithm in Punjab, Pakistan. Ecological Indicators 90, 569–576. https://doi.org/10.1016/j.ecolind.2018.03.053 (2018).

    224.
    Ausiku, A. P., Annandale, J. G., Steyn, J. M. & Sanewe, A. J. Improving Pearl Millet (Pennisetum glaucum) Productivity through Adaptive Management of Water and Nitrogen. Water 12, 422 (2020).
    CAS  Article  Google Scholar 

    225.
    Alauddin, M., Rashid Sarker, M. A., Islam, Z. & Tisdell, C. Adoption of alternate wetting and drying (AWD) irrigation as a water-saving technology in Bangladesh: Economic and environmental considerations. Land Use Policy 91, 104430. https://doi.org/10.1016/j.landusepol.2019.104430 (2020).
    Article  Google Scholar 

    226.
    Rahman, M. H. u. et al. in Cotton Production and Uses: Agronomy, Crop Protection, and Postharvest Technologies (eds Shakeel Ahmad & Mirza Hasanuzzaman) 447–484 (Springer Singapore, 2020).

    227.
    Ishfaq, M. et al. Alternate wetting and drying: A water-saving and ecofriendly rice production system. Agric. Water Manag. 241, 106363. https://doi.org/10.1016/j.agwat.2020.106363 (2020).
    Article  Google Scholar 

    228.
    Rejesus, R. M., Palis, F. G., Rodriguez, D. G. P., Lampayan, R. M. & Bouman, B. A. M. Impact of the alternate wetting and drying (AWD) water-saving irrigation technique: Evidence from rice producers in the Philippines. Food Policy 36, 280–288. https://doi.org/10.1016/j.foodpol.2010.11.026 (2011).
    Article  Google Scholar 

    229.
    Carrijo, D. R., Lundy, M. E. & Linquist, B. A. Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis. Field Crops Research 203, 173–180. https://doi.org/10.1016/j.fcr.2016.12.002 (2017).
    Article  Google Scholar 

    230.
    Stuart, D., Schewe, R. L. & McDermott, M. Reducing nitrogen fertilizer application as a climate change mitigation strategy: Understanding farmer decision-making and potential barriers to change in the US. Land Use Policy 36, 210–218. https://doi.org/10.1016/j.landusepol.2013.08.011 (2014).
    Article  Google Scholar 

    231.
    Zheng, W., Luo, B. & Hu, X. The determinants of farmers’ fertilizers and pesticides use behavior in China: An explanation based on label effect. Journal of Cleaner Production 272, 123054. https://doi.org/10.1016/j.jclepro.2020.123054 (2020).
    Article  Google Scholar 

    232.
    Jiang, G. et al. Soil organic carbon sequestration in upland soils of northern China under variable fertilizer management and climate change scenarios. Global Biogeochem. Cycles 28, 319–333. https://doi.org/10.1002/2013gb004746 (2014).
    ADS  CAS  Article  Google Scholar 

    233.
    Omotesho, A., Fakayode, S. & Tariya, Y. Curtailing fertilizer scarcity and climate change; an appraisal of factors affecting organic materials use option in Nigeria’s agriculture. Ethiopian Journal of Environmental Studies and Management 5, 281–290 (2012).
    Article  Google Scholar 

    234.
    Raza, A. et al. Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants 8, 34 (2019).
    CAS  Article  Google Scholar 

    235.
    Sloan, K. et al. in The Climate-Smart Agriculture Papers: Investigating the Business of a Productive, Resilient and Low Emission Future (eds Todd S. Rosenstock, Andreea Nowak, & Evan Girvetz) 227–233 (Springer International Publishing, 2019).

    236.
    Keith, W. et al. Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios. Environ. Res. Lett. 10, 085010 (2015).
    Article  Google Scholar 

    237.
    Zhang, Z., Yu, K., Siddique, K. H. M. & Nan, Z. Phenology and sowing time affect water use in four warm-season annual grasses under a semi-arid environment. Agric. For. Meteorol. 269–270, 257–269. https://doi.org/10.1016/j.agrformet.2019.02.027 (2019).
    ADS  Article  Google Scholar 

    238.
    Dreccer, M. F., Fainges, J., Whish, J., Ogbonnaya, F. C. & Sadras, V. O. Comparison of sensitive stages of wheat, barley, canola, chickpea and field pea to temperature and water stress across Australia. Agric. For. Meteorol. 248, 275–294. https://doi.org/10.1016/j.agrformet.2017.10.006 (2018).
    ADS  Article  Google Scholar 

    239.
    Abid, M. et al. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Scientific Reports 8, 4615. https://doi.org/10.1038/s41598-018-21441-7 (2018).

    240.
    Macabuhay, A. A. Physiological and biochemical responses of wheat to combined heat stress and elevated CO2 during grain-filling  (2016).

    241.
    Stratonovitch, P. & Semenov, M. A. Heat tolerance around flowering in wheat identified as a key trait for increased yield potential in Europe under climate change. J. Exp. Bot. https://doi.org/10.1093/jxb/erv070 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    242.
    Hernández, F., Poverene, M., Mercer, K. L. & Presotto, A. Genetic variation for tolerance to extreme temperatures in wild and cultivated sunflower (Helianthus annuus) during early vegetative phases. Crop and Pasture Science 71, 578–591. https://doi.org/10.1071/CP20005 (2020).
    CAS  Article  Google Scholar 

    243.
    Acharjee, T. K., van Halsema, G., Ludwig, F., Hellegers, P. & Supit, I. Shifting planting date of Boro rice as a climate change adaptation strategy to reduce water use. Agric. Syst. 168, 131–143. https://doi.org/10.1016/j.agsy.2018.11.006 (2019).
    Article  Google Scholar 

    244.
    Chibarabada, T. P., Modi, A. T. & Mabhaudhi, T. Options for improving water productivity: a case study of bambara groundnut and groundnut. Phys. Chem. Earth Parts A/B/C 115, 102806. https://doi.org/10.1016/j.pce.2019.10.003 (2020).
    Article  Google Scholar 

    245.
    Islam, A. R. M. T., Shen, S., Yang, S., Hu, Z. & Atiqur Rahman, M. Spatiotemporal rice yield variations and potential agro-adaptation strategies in Bangladesh: A biophysical modeling approach. Sustain. Prod. Consum. 24, 121–138. https://doi.org/10.1016/j.spc.2020.07.005 (2020).
    Article  Google Scholar 

    246.
    Tsegay, A. et al. Sowing and irrigation strategies for improving rainfed tef (Eragrostis tef (Zucc.) Trotter) production in the water scarce Tigray region, Ethiopia. Agric. Water Manag. 150, 81–91. https://doi.org/10.1016/j.agwat.2014.11.014 (2015).
    Article  Google Scholar 

    247.
    van Oort, P. A. J., Timmermans, B. G. H. & van Swaaij, A. C. P. M. Why farmers’ sowing dates hardly change when temperature rises. Eur. J. Agron. 40, 102–111. https://doi.org/10.1016/j.eja.2012.02.005 (2012).
    Article  Google Scholar 

    248.
    Bassu, S., Asseng, S., Motzo, R. & Giunta, F. Optimising sowing date of durum wheat in a variable Mediterranean environment. Field Crops Res. 111, 109–118. https://doi.org/10.1016/j.fcr.2008.11.002 (2009).
    Article  Google Scholar 

    249.
    Aasen, H., Kirchgessner, N., Walter, A. & Liebisch, F. PhenoCams for field phenotyping: using very high temporal resolution digital repeated photography to investigate interactions of growth, phenology, and harvest traits. Front. Plant Sci. https://doi.org/10.3389/fpls.2020.00593 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    250.
    Singh, S., Sandhu, S., Dhaliwal, L. & Singh, I. Effect of planting geometry on microclimate, growth and yield of mung-bean (Vigna radiata L.). J. Agric. Phys. 12, 70–73 (2012).
    Google Scholar 

    251.
    van Etten, J. et al. Crop variety management for climate adaptation supported by citizen science. Proc. Natl. Acad. Sci. 116, 4194–4199. https://doi.org/10.1073/pnas.1813720116 (2019).
    CAS  Article  PubMed  Google Scholar 

    252.
    Mahato, M. & Adhikari, B. B. Effect of planting geometry on growth of rice varieties. Int. J. Appl. Sci. Biotechnol. 5, 423–429 (2017).
    CAS  Article  Google Scholar 

    253.
    Raza, M. A. et al. Optimum strip width increases dry matter, nutrient accumulation, and seed yield of intercrops under the relay intercropping system. Food Energy Secur. 9, e199. https://doi.org/10.1002/fes3.199 (2020).
    Article  Google Scholar 

    254.
    Raza, M. A., van der Werf, W., Ahmed, M. & Yang, W. Removing top leaves increases yield and nutrient uptake in maize plants. Nutr. Cycl. Agroecosyst. 118, 57–73. https://doi.org/10.1007/s10705-020-10082-w (2020).
    CAS  Article  Google Scholar 

    255.
    Raza, M. A. et al. Effects of contrasting shade treatments on the carbon production and antioxidant activities of soybean plants. Funct. Plant Biol. FPB 47, 342–354. https://doi.org/10.1071/fp19213 (2020).
    CAS  Article  PubMed  Google Scholar 

    256.
    Raza, M. A. et al. Optimum leaf defoliation: a new agronomic approach for increasing nutrient uptake and land equivalent ratio of maize soybean relay intercropping system. Field Crops Res. 244, 107647. https://doi.org/10.1016/j.fcr.2019.107647 (2019).
    Article  Google Scholar 

    257.
    Raza, M. A. et al. Growth and development of soybean under changing light environments in relay intercropping system. PeerJ 7, e7262. https://doi.org/10.7717/peerj.7262 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    258.
    Raza, M. A. et al. Narrow-wide-row planting pattern increases the radiation use efficiency and seed yield of intercrop species in relay-intercropping system. Food Energy Secur. 8, e170. https://doi.org/10.1002/fes3.170 (2019).
    Article  Google Scholar 

    259.
    Huang, F., Liu, Z., Zhang, P. & Jia, Z. Hydrothermal effects on maize productivity with different planting patterns in a rainfed farmland area. Soil Tillage Res. 205, 104794. https://doi.org/10.1016/j.still.2020.104794 (2021).
    Article  Google Scholar 

    260.
    Rio, M., Rey, D., Prudhomme, C. & Holman, I. P. Evaluation of changing surface water abstraction reliability for supplemental irrigation under climate change. Agric. Water Manag. 206, 200–208. https://doi.org/10.1016/j.agwat.2018.05.005 (2018).
    Article  Google Scholar 

    261.
    Muluneh, A., Stroosnijder, L., Keesstra, S. & Biazin, B. Adapting to climate change for food security in the Rift Valley dry lands of Ethiopia: supplemental irrigation, plant density and sowing date. J. Agric. Sci. 155, 703–724. https://doi.org/10.1017/S0021859616000897 (2016).
    CAS  Article  Google Scholar 

    262.
    Ndhleve, S., Nakin, M. & Longo-Mbenza, B. Impacts of supplemental irrigation as a climate change adaptation strategy for maize production: a case of the Eastern Cape Province of South Africa. Water SA 43, 222–228 (2017).
    Article  Google Scholar 

    263.
    Bigelow, D. P. & Zhang, H. Supplemental irrigation water rights and climate change adaptation. Ecol. Econ. 154, 156–167. https://doi.org/10.1016/j.ecolecon.2018.07.015 (2018).
    Article  Google Scholar 

    264.
    Trevaskis, B. Wheat gene for all seasons. Proc. Natl. Acad. Sci. 112, 11991–11992. https://doi.org/10.1073/pnas.1516398112 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    265.
    Matthew, G., Pierre, M. & Ariel, O.-B. Negative impacts of climate change on cereal yields: statistical evidence from France. Environ. Res. Lett. 12, 054007 (2017).
    ADS  Article  Google Scholar 

    266.
    Ortiz, R. et al. Climate change: can wheat beat the heat?. Agric. Ecosyst. Environ. 126, 46–58. https://doi.org/10.1016/j.agee.2008.01.019 (2008).
    Article  Google Scholar 

    267.
    Lobell, D. B. et al. Analysis of wheat yield and climatic trends in Mexico. Field Crops Res. 94, 250–256. https://doi.org/10.1016/j.fcr.2005.01.007 (2005).
    Article  Google Scholar 

    268.
    Nazim Ud Dowla, M. A. N., Edwards, I., O’Hara, G., Islam, S. & Ma, W. Developing wheat for improved yield and adaptation under a changing climate: optimization of a few key genes. Engineering 4, 514–522. https://doi.org/10.1016/j.eng.2018.06.005 (2018).
    CAS  Article  Google Scholar 

    269.
    Mohammadi, R. The use of a combination scoring index to improve durum productivity under drought stress. Exp. Agric. 56, 161–170. https://doi.org/10.1017/S0014479719000231 (2019).
    Article  Google Scholar 

    270.
    Cui, L. et al. Development of perennial wheat through hybridization between wheat and wheatgrasses: a review. Engineering 4, 507–513. https://doi.org/10.1016/j.eng.2018.07.003 (2018).
    CAS  Article  Google Scholar 

    271.
    Zachariah, M., Mondal, A., Das, M., AchutaRao, K. M. & Ghosh, S. On the role of rainfall deficits and cropping choices in loss of agricultural yield in Marathwada, India. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ab93fc (2020).
    Article  Google Scholar 

    272.
    Gahlaut, V., Samtani, H. & Khurana, P. Genome-wide identification and expression profiling of cytosine-5 DNA methyltransferases during drought and heat stress in wheat (Triticum aestivum). Genomics 112, 4796–4807. https://doi.org/10.1016/j.ygeno.2020.08.031 (2020).
    CAS  Article  Google Scholar 

    273.
    Boote, K. J., Prasad, V., Allen, L. H., Singh, P. & Jones, J. W. Modeling sensitivity of grain yield to elevated temperature in the DSSAT crop models for peanut, soybean, dry bean, chickpea, sorghum, and millet. Eur. J. Agron. 100, 99–109. https://doi.org/10.1016/j.eja.2017.09.002 (2018).
    Article  Google Scholar 

    274.
    Elbashir, A. A. E. et al. Genetic variation in heat tolerance-related traits in a population of wheat multiple synthetic derivatives. Breed Sci. 67, 483–492. https://doi.org/10.1270/jsbbs.17048 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    275.
    Reynolds, M. P. et al. An integrated approach to maintaining cereal productivity under climate change. Global Food Secur. 8, 9–18. https://doi.org/10.1016/j.gfs.2016.02.002 (2016).
    Article  Google Scholar 

    276.
    Asseng, S. et al. Model-driven multidisciplinary global research to meet future needs: the case for “improving radiation use efficiency to increase yield”. Crop Sci. https://doi.org/10.2135/cropsci2018.09.0562 (2019).
    Article  Google Scholar 

    277.
    Smit, B. & Skinner, M. W. Adaptation options in agriculture to climate change: a typology. Mitig. Adapt. Strat. Glob. Change 7, 85–114. https://doi.org/10.1023/A:1015862228270 (2002).
    Article  Google Scholar 

    278.
    Liu, Y., Chen, Q., Ge, Q., Dai, J. & Dou, Y. Effects of climate change and agronomic practice on changes in wheat phenology. Clim. Change 150, 273–287. https://doi.org/10.1007/s10584-018-2264-5 (2018).
    ADS  CAS  Article  Google Scholar 

    279.
    Loboguerrero, A. M. et al. Food and earth systems: priorities for climate change adaptation and mitigation for agriculture and food systems. Sustainability 11, 1372 (2019).
    Article  Google Scholar 

    280.
    Howden, S. M. et al. Adapting agriculture to climate change. Proc. Natl. Acad. Sci. 104, 19691–19696. https://doi.org/10.1073/pnas.0701890104 (2007).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    281.
    Bryan, E., Deressa, T. T., Gbetibouo, G. A. & Ringler, C. Adaptation to climate change in Ethiopia and South Africa: options and constraints. Environ. Sci. Policy 12, 413–426. https://doi.org/10.1016/j.envsci.2008.11.002 (2009).
    Article  Google Scholar 

    282.
    Wongnaa, C. A. & Babu, S. Building resilience to shocks of climate change in Ghana’s cocoa production and its effect on productivity and incomes. Technol. Soc. 62, 101288. https://doi.org/10.1016/j.techsoc.2020.101288 (2020).
    Article  Google Scholar 

    283.
    Kumar, S., Mishra, A. K., Pramanik, S., Mamidanna, S. & Whitbread, A. Climate risk, vulnerability and resilience: supporting livelihood of smallholders in semiarid India. Land Use Policy 97, 104729. https://doi.org/10.1016/j.landusepol.2020.104729 (2020).
    Article  Google Scholar 

    284.
    Morales-Castilla, I. et al. Diversity buffers winegrowing regions from climate change losses. Proc. Natl. Acad. Sci. 117, 2864–2869. https://doi.org/10.1073/pnas.1906731117 (2020).
    CAS  Article  PubMed  Google Scholar 

    285.
    Nelson, G. C. et al. Climate change: Impact on agriculture and costs of adaptation. Vol. 21 (Intl Food Policy Res Inst, 2009).

    286.
    Olesen, J. E. et al. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 34, 96–112. https://doi.org/10.1016/j.eja.2010.11.003 (2011).
    Article  Google Scholar 

    287.
    Sloat, L. L. et al. Climate adaptation by crop migration. Nat. Commun. 11, 200. https://doi.org/10.1038/s41467-020-15076-4 (2020).
    ADS  CAS  Article  Google Scholar 

    288.
    Mertz, O., Mbow, C., Reenberg, A. & Diouf, A. Farmers’ perceptions of climate change and agricultural adaptation strategies in Rural Sahel. Environ. Manag. 43, 804–816. https://doi.org/10.1007/s00267-008-9197-0 (2009).
    ADS  Article  Google Scholar 

    289.
    Smit, B., Burton, I., Klein, R. J. T. & Wandel, J. An anatomy of adaptation to climate change and variability. Clim. Change 45, 223–251. https://doi.org/10.1023/A:1005661622966 (2000).
    Article  Google Scholar 

    290.
    Thamo, T. et al. Climate change impacts and farm-level adaptation: economic analysis of a mixed cropping–livestock system. Agric. Syst. 150, 99–108. https://doi.org/10.1016/j.agsy.2016.10.013 (2017).
    Article  Google Scholar 

    291.
    Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291. https://doi.org/10.1038/nclimate2153 (2014).
    ADS  Article  Google Scholar 

    292.
    Reidsma, P., Janssen, S., Jansen, J. & van Ittersum, M. K. On the development and use of farm models for policy impact assessment in the European Union—a review. Agric. Syst. 159, 111–125. https://doi.org/10.1016/j.agsy.2017.10.012 (2018).
    Article  Google Scholar 

    293.
    Reidsma, P. et al. Climate change impact and adaptation research requires integrated assessment and farming systems analysis: a case study in the Netherlands. Environ. Res. Lett. 10, 045004 (2015).
    ADS  Article  Google Scholar 

    294.
    Reidsma, P., Ewert, F., Lansink, A. O. & Leemans, R. Adaptation to climate change and climate variability in European agriculture: the importance of farm level responses. Eur. J. Agron. 32, 91–102. https://doi.org/10.1016/j.eja.2009.06.003 (2010).
    Article  Google Scholar 

    295.
    Shahzad, A. N. & Ahmad, S. In Agronomic Crops: Volume 2: Management Practices (ed Hasanuzzaman, M.) 111–126 (Springer Singapore, 2019).

    296.
    Ahmed, M. Introduction to Modern Climate Change. Andrew E. Dessler: Cambridge University Press, 2011, 252 pp, ISBN-10: 0521173159. Science of The Total Environment734, 139397, 10.1016/j.scitotenv.2020.139397 (2020).

    297.
    Singh, S. Farmers’ perception of climate change and adaptation decisions: a micro-level evidence from Bundelkhand Region, India. Ecol. Ind. 116, 106475. https://doi.org/10.1016/j.ecolind.2020.106475 (2020).
    Article  Google Scholar 

    298.
    Wallach, D. et al. Multimodel ensembles improve predictions of crop–environment–management interactions. Glob. Change Biol. 24, 5072–5083. https://doi.org/10.1111/gcb.14411 (2018).
    ADS  Article  Google Scholar 

    299.
    Aslam, M. U. et al. In Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability (eds Ahmed, M. & Stockle, C.O.) 113–136 (Springer International Publishing, 2017).

    300.
    Ijaz, W., Ahmed, M., Fayyaz-ul-Hassan, Asim, M. & Aslam, M. in Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability (eds Ahmed, M. & Stockle, C.O.) 371–386 (Springer International Publishing, 2017).

    301.
    Jabeen, M., Gabriel, H. F., Ahmed, M., Mahboob, M. A. & Iqbal, J. In Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability (eds Ahmed, M. & Stockle, C.O.) 387–411 (Springer International Publishing, 2017).

    302.
    Aslam, M. A., Ahmed, M., Fayyaz-ul-Hassan & Hayat, R. In Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability (eds Ahmed, M. & Stockle, C.O.) 71–90 (Springer International Publishing, 2017).

    303.
    Ahmed, M. et al. Calibration and validation of APSIM-Wheat and CERES-Wheat for spring wheat under rainfed conditions: models evaluation and application. Comput. Electron. Agric. 123, 384–401. https://doi.org/10.1016/j.compag.2016.03.015 (2016).
    Article  Google Scholar 

    304.
    Ahmed, M. & Stockle, C. O. Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability (Springer, Berlin, 2016).
    Google Scholar 

    305.
    Ahmed, M., Fayyaz Ul, H. & Van Ogtrop, F. F. Can models help to forecast rainwater dynamics for rainfed ecosystem?. Weather Clim. Extremes 5–6, 48–55. https://doi.org/10.1016/j.wace.2014.07.001 (2014).
    Article  Google Scholar 

    306.
    Ahmed, M., Hassan, F., Aslam, M. A., Akram, M. N. & Akmal, M. Regression model for the study of sole and cumulative effect of temperature and solar radiation on wheat yield. Afr. J. Biotech. 10, 9114–9121 (2011).
    Article  Google Scholar 

    307.
    Ahmed, M. & Ahmad, S. In Systems Modeling (ed Ahmed, M.) 1–44 (Springer Singapore, 2020).

    308.
    Tariq, M., Ahmed, M., Iqbal, P., Fatima, Z. & Ahmad, S. In Systems Modeling (ed Ahmed, M.) 45–60 (Springer Singapore, 2020).

    309.
    Ahmed, M., Raza, M. A. & Hussain, T. In Systems Modeling (ed Ahmed, M.) 111–150 (Springer Singapore, 2020).

    310.
    Ahmed, M. et al. In Systems Modeling (ed Ahmed, M.) 151–178 (Springer Singapore, 2020).

    311.
    Kheir, A. M. S. et al. In Systems Modeling (ed Ahmed, M.) 179–202 (Springer Singapore, 2020).

    312.
    Ahmad, S., & Hasanuzzaman, M. Cotton Production and Uses. Springer Nature Singapore Pte Ltd. (https://link.springer.com/book/10.1007/978-981-15-1472-2); doi: 10.1007/978-981-15-1472-2 (2020) 

    313.
    Khan, A., Ahmad, M., Shah, M. K. N. & Ahmed, M. Performance of wheat genotypes for Morpho-Physiological traits using multivariate analysis under terminal heat stress. Pak. J. Bot. 52(6), 1981–1988. https://doi.org/10.30848/PJB2020-6(30)(2020).

    314.
    Khan, A., Ahmad, M., Shah, M. K. N., & Ahmed, M. Genetic manifestation of physio-morphic and yield related traits conferring thermotolerance in wheat. Pak. J. Bot. 52(5), 1545–1552. https://doi.org/10.30848/PJB2020-5(27) (2020). More

  • in

    Plastic, nutrition and pollution; relationships between ingested plastic and metal concentrations in the livers of two Pachyptila seabirds

    1.
    Law, K. L. et al. Distribution of surface plastic debris in the eastern pacific ocean from an 11-year data set. Environ. Sci. Technol. 48, 4732–4738. https://doi.org/10.1021/es4053076 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 
    2.
    Naser, H. A. Assessment and management of heavy metal pollution in the marine environment of the Arabian Gulf: a review. Mar. Pollut. Bull. 72, 6–13. https://doi.org/10.1016/j.marpolbul.2013.04.030 (2013).
    ADS  CAS  Article  PubMed  Google Scholar 

    3.
    Meng, W., Qin, Y., Zheng, B. & Zhang, L. Heavy metal pollution in Tianjin Bohai Bay, China. J. Environ. Sci. 20, 814–819. https://doi.org/10.1016/S1001-0742(08)62131-2 (2008).
    CAS  Article  Google Scholar 

    4.
    Rainbow, P. S. Bioaccumulation of trace metals: biological significance. Oceanis 25, 547–561 (1999).
    CAS  Google Scholar 

    5.
    Reeder, R. J., Schoonen, M. A. & Lanzirotti, A. Metal speciation and its role in bioaccessibility and bioavailability. Rev. Mineral. Geochem. 64, 59–113 (2006).
    CAS  Article  Google Scholar 

    6.
    Kastury, F., Karna, R. R., Scheckel, K. G. & Juhasz, A. L. Correlation between lead speciation and inhalation bioaccessibility using two different simulated lung fluids. Environ. Pollut., 114609 (2020).

    7.
    Kastury, F. et al. Relationship between Pb relative bioavailability and bioaccessibility in phosphate amended soil: Uncertainty associated with predicting Pb immobilization efficacy using in vitro assays. Environ. Int. 131, 104967 (2019).
    CAS  Article  Google Scholar 

    8.
    Ryan, P. G. Handbook of Environmental Chemistry 78, 235–266 (2019).
    ADS  Google Scholar 

    9.
    Holmes, L. A., Turner, A. & Thompson, R. C. Adsorption of trace metals to plastic resin pellets in the marine environment. Environ. Pollut. 160, 42–48. https://doi.org/10.1016/j.envpol.2011.08.052 (2012).
    CAS  Article  PubMed  Google Scholar 

    10.
    Holmes, L. A., Turner, A. & Thompson, R. C. Interactions between trace metals and plastic production pellets under estuarine conditions. Mar. Chem. 167, 25–32. https://doi.org/10.1016/j.marchem.2014.06.001 (2014).
    CAS  Article  Google Scholar 

    11.
    Brennecke, D., Duarte, B., Paiva, F., Caçador, I. & Canning-Clode, J. Microplastics as vector for heavy metal contamination from the marine environment. Estuar. Coast. Shelf Sci. 178, 189–195. https://doi.org/10.1016/j.ecss.2015.12.003 (2016).
    ADS  CAS  Article  Google Scholar 

    12.
    Vedolin, M. C., Teophilo, C. Y. S., Turra, A. & Figueira, R. C. L. Spatial variability in the concentrations of metals in beached microplastics. Mar. Pollut. Bull. 129, 487–493. https://doi.org/10.1016/j.marpolbul.2017.10.019 (2018).
    CAS  Article  PubMed  Google Scholar 

    13.
    Shen, K. K., Kochesfahani, S. & Jouffret, F. Zinc borates as multifunctional polymer additives. Polym. Adv. Technol. 19, 469–474. https://doi.org/10.1002/pat.1119 (2008).
    CAS  Article  Google Scholar 

    14.
    Lu, K., Qiao, R., An, H. & Zhang, Y. Influence of microplastics on the accumulation and chronic toxic effects of cadmium in zebrafish (Danio rerio). Chemosphere 202, 514–520. https://doi.org/10.1016/j.chemosphere.2018.03.145 (2018).
    ADS  CAS  Article  PubMed  Google Scholar 

    15.
    Mallory, M. L., Robinson, S. A., Hebert, C. E. & Forbes, M. R. Seabirds as indicators of aquatic ecosystem conditions: a case for gathering multiple proxies of seabird health. Mar. Pollut. Bull. 60, 7–12. https://doi.org/10.1016/j.marpolbul.2009.08.024 (2010).
    CAS  Article  PubMed  Google Scholar 

    16.
    Furness, R. W. & Camphuysen, K. Seabirds as monitors of the marine environment. ICES J. Mar. Sci. 54, 726–737. https://doi.org/10.1006/jmsc.1997.0243 (1997).
    Article  Google Scholar 

    17.
    Elliott, J. E. Trace metals, stable isotope ratios, and trophic relations in seabirds from the North Pacific Ocean. Environ. Toxicol. Chem. 24, 3099–3105. https://doi.org/10.1897/04-474R.1 (2005).
    CAS  Article  PubMed  Google Scholar 

    18.
    Kim, E. Y., Goto, R., Tanabe, S., Tanaka, H. & Tatsukawa, R. Distribution of 14 elements in tissues and organs of oceanic seabirds. Arch. Environ. Contam. Toxicol. 35, 638–645. https://doi.org/10.1007/s002449900426 (1998).
    CAS  Article  PubMed  Google Scholar 

    19.
    Murphy, M. E. in Avian energetics and nutritional ecology 31–60 (Springer, 1996).

    20.
    McCue, M. D. Starvation physiology: Reviewing the different strategies animals use to survive a common challenge. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 156, 1–18. https://doi.org/10.1016/j.cbpa.2010.01.002 (2010).
    CAS  Article  Google Scholar 

    21.
    Cherel, Y., Robin, J.-P. & Maho, Y. L. Physiology and biochemistry of long-term fasting in birds. Can. J. Zool. 66, 159–166 (1988).
    CAS  Article  Google Scholar 

    22.
    Richards, M. P., Rosebrough, R. W. & Steele, N. C. Effects of starvation and refeeding on tissue zinc, copper and iron in turkey poults. J. Nutr. 117, 481–489. https://doi.org/10.1093/jn/117.3.481 (1987).
    CAS  Article  PubMed  Google Scholar 

    23.
    Debacker, V., Rutten, A., Jauniaux, T., Daemers, C. & Bouquegneau, J. M. Combined effects of experimental heavy-metal contamination (Cu, Zn, and CH3Hg) and starvation on quail’s body condition: parallelism with a wild common guillemot (Uria aalge) population found stranded at the Belgian coast. Biol. Trace Elem. Res. 82, 87–107. https://doi.org/10.1385/bter:82:1-3:087 (2001).
    CAS  Article  PubMed  Google Scholar 

    24.
    Wenzel, C. & Adelung, D. The suitability of oiled guillemots (Uria aalge) as monitoring organisms for geographical comparisons of trace element contaminants. Arch. Environ. Contam. Toxicol. 31, 368–377. https://doi.org/10.1007/BF00212675 (1996).
    CAS  Article  PubMed  Google Scholar 

    25.
    Brady, L. J., Romsos, D. R., Brady, P. S., Bergen, W. G. & Leveille, G. A. The effects of fasting on body composition, glucose turnover, enzymes and metabolites in the chicken. J. Nutr. 108, 648–657 (1978).
    CAS  Article  Google Scholar 

    26.
    McCauley, S. J. & Bjorndal, K. A. Conservation implications of dietary dilution from debris ingestion: sublethal effects in post-hatchling loggerhead sea turtles. Conserv. Biol. 13, 925–929. https://doi.org/10.1046/j.1523-1739.1999.98264.x (1999).
    Article  Google Scholar 

    27.
    Raubenheimer, D. & Simpson, S. J. in Encyclopedia of Animal Behavior (Second Edition) (ed Jae Chun Choe) 127–138 (Academic Press, London, 2019).

    28.
    Santos, R. G. et al. Exploring plastic-induced satiety in foraging green turtles. Environ. Pollut., 114918 (2020).

    29.
    Lavers, J. L., Bond, A. L. & Hutton, I. Plastic ingestion by flesh-footed shearwaters (Puffinus carneipes): implications for fledgling body condition and the accumulation of plastic-derived chemicals. Environ. Pollut. 187, 124–129. https://doi.org/10.1016/j.envpol.2013.12.020 (2014).
    CAS  Article  PubMed  Google Scholar 

    30.
    Puskic, P. S., Lavers, J. L., Adams, L. R. & Bond, A. L. Ingested plastic and trace element concentrations in short-tailed shearwaters (Ardenna tenuirostris). Mar. Pollut. Bull. https://doi.org/10.1016/j.marpolbul.2020.111143 (2020).
    Article  PubMed  Google Scholar 

    31.
    Lavers, J. L. & Bond, A. L. Ingested plastic as a route for trace metals in Laysan Albatross (Phoebastria immutabilis) and Bonin Petrel (Pterodroma hypoleuca) from Midway Atoll. Mar. Pollut. Bull. 110, 493–500. https://doi.org/10.1016/j.marpolbul.2016.06.001 (2016).
    CAS  Article  PubMed  Google Scholar 

    32.
    Ishii, C. et al. Contamination status and accumulation characteristics of heavy metals and arsenic in five seabird species from the central Bering Sea. J. Vet. Med. Sci. 79, 807–814. https://doi.org/10.1292/jvms.16-0441 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    33.
    Ishii, C. et al. Heavy metal pollution in Japanese seabirds. Jpn. J. Vet. Res. 61, S75–S76 (2013).
    PubMed  Google Scholar 

    34.
    Burger, J. & Gochfeld, M. Metal levels in feathers of 12 species of seabirds from Midway Atoll in the northern Pacific Ocean. Sci. Total Environ. 257, 37–52. https://doi.org/10.1016/S0048-9697(00)00496-4 (2000).
    ADS  CAS  Article  PubMed  Google Scholar 

    35.
    Ashton, K., Holmes, L. & Turner, A. Association of metals with plastic production pellets in the marine environment. Mar. Pollut. Bull. 60, 2050–2055. https://doi.org/10.1016/j.marpolbul.2010.07.014 (2010).
    CAS  Article  PubMed  Google Scholar 

    36.
    Honda, K., Marcovecchio, J. E., Kan, S., Tatsukawa, R. & Ogi, H. Metal concentrations in pelagic seabirds from the North Pacific Ocean. Arch. Environ. Contam. Toxicol. 19, 704–711. https://doi.org/10.1007/BF01183988 (1990).
    CAS  Article  PubMed  Google Scholar 

    37.
    Muirhead, S. J. & Furness, R. W. Heavy metal concentrations in the tissues of seabirds from Gough Island, South Atlantic Ocean. Mar. Pollut. Bull. 19, 278–283. https://doi.org/10.1016/0025-326X(88)90599-1 (1988).
    CAS  Article  Google Scholar 

    38.
    Lock, J. W., Thompson, D. R., Furness, R. W. & Bartle, J. A. Metal concentrations in seabirds of the New Zealand region. Environ. Pollut. 75, 289–300. https://doi.org/10.1016/0269-7491(92)90129-X (1992).
    CAS  Article  PubMed  Google Scholar 

    39.
    Turner, A. Heavy metals, metalloids and other hazardous elements in marine plastic litter. Mar. Pollut. Bull. 111, 136–142. https://doi.org/10.1016/j.marpolbul.2016.07.020 (2016).
    CAS  Article  PubMed  Google Scholar 

    40.
    Davranche, M. et al. Are nanoplastics able to bind significant amount of metals? The lead example. Environ. Pollut. 249, 940–948. https://doi.org/10.1016/j.envpol.2019.03.087 (2019).
    CAS  Article  PubMed  Google Scholar 

    41.
    Turner, A. Mobilisation kinetics of hazardous elements in marine plastics subject to an avian physiologically-based extraction test. Environ. Pollut. 236, 1020–1026. https://doi.org/10.1016/j.envpol.2018.01.023 (2018).
    CAS  Article  PubMed  Google Scholar 

    42.
    Burger, J. & Gochfeld, M. Mercury and other metals in feathers of common eider (Somateria mollissima) and tufted puffin (Fratercula cirrhata) from the Aleutian chain of Alaska. Arch. Environ. Contam. Toxicol. 56, 596–606. https://doi.org/10.1007/s00244-008-9207-5 (2009).
    CAS  Article  PubMed  Google Scholar 

    43.
    Roman, L., Hardesty, B. D., Hindell, M. A. & Wilcox, C. A quantitative analysis linking seabird mortality and marine debris ingestion. Sci. Rep. https://doi.org/10.1038/s41598-018-36585-9 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    44.
    Pierce, K. E., Harris, R. J., Larned, L. S. & Pokras, M. A. Obstruction and starvation associated with plastic ingestion in a Northern Gannet Morus bassanus and a greater shearwater Puffinus gravis. Mar. Ornithol. 32, 187–189 (2004).
    Google Scholar 

    45.
    Rochman, C. M. et al. The ecological impacts of marine debris: Unraveling the demonstrated evidence from what is perceived. Ecology 97, 302–312. https://doi.org/10.1890/14-2070.1 (2016).
    Article  PubMed  Google Scholar 

    46.
    Tanaka, K. et al. (2013) Accumulation of plastic-derived chemicals in tissues of seabirds ingesting marine plastics. Mar. Pollut. Bull. http://doi.org/https://doi.org/10.1016/j.marpolbul.2012.12.010 (2013).

    47.
    Marchant, S. & Higgins, P. J. Handbook of Australian, New Zealand and Antarctic Birds 1 Part A ( Oxford University Press, Ratites to Ducks, 1990).
    Google Scholar 

    48.
    Roman, L., Bell, E., Wilcox, C., Hardesty, B. D. & Hindell, M. Ecological drivers of marine debris ingestion in Procellariiforme seabirds Sci. Rep. (2019).

    49.
    Powlesland, R. G. Seabirds found dead on New Zealand beaches in 1986 and a review of Pachyptila species recoveries since 1960. Notornis 36 (1989).

    50.
    Veitch, C. Seabirds found dead in New Zealand in 1979. Notornis 28, 41–47 (1981).
    Google Scholar 

    51.
    Post, P. W. Observations of prion (Pachyptila) wrecks on the west coast of South America. Notornis 54, 220–225 (2007).
    Google Scholar 

    52.
    Martuscelli, P. & Olmos, F. A large prion Pachyptila wreck in south-east Brazil. Cotinga 8, 55–57 (1997).
    Google Scholar 

    53.
    Davidson, N. & Evans, P. Mortality of Redshanks and Oystercatchers from starvation during severe weather. Bird Study 29, 183–188 (1982).
    Article  Google Scholar 

    54.
    van Franeker, J. Save the North Sea Fulmar-Litter-EcoQO Manual Part 1: Collection and dissection procedures. Vol. 672 (2004).

    55.
    Kastury, F. et al. In vitro, in vivo, and spectroscopic assessment of lead exposure reduction via ingestion and inhalation pathways using phosphate and iron amendments. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.9b02448 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    56.
    Environmental Protection Agency, U. S. A. Method 6020A Inductively coupled plasma – mass spectrometry. (1998).

    57.
    R Core Team. R: A Language and Environment for Statistical Computing, https://www.R-project.org (2018).

    58.
    Naimi, B. Package ‘usdm’, R package version 1.1–18. (2017).

    59.
    Barton, K. Package ‘MuMIn’. R package version 1.43.17. (2019).

    60.
    Anderson, D. & Burnham, K. Model Selection and Multi-Model Inference 2nd edn, 63 (Springer, New York, 2004).
    Google Scholar 

    61.
    Burnham, K. & Anderson, D. A practical information-theoretic approach, in Model Selection and mUltimodel Inference, 2nd ed. (Springer, New York, 2002).

    62.
    Totzke, U. et al. The influence of fasting on blood and plasma composition of herring gulls (Larus argentatus). Physiol. Biochem. Zool. Ecol. Evol. Approac. 72, 426–437. https://doi.org/10.1086/316675 (1999).
    CAS  Article  Google Scholar 

    63.
    McKnight, G. S., Lee, D. C., Hemmaplardh, D., Finch, C. A. & Palmiter, R. D. Transferrin gene expression. effects of nutritional iron deficiency. J. Biol. Chem. 255, 144–147 (1980).
    CAS  PubMed  Google Scholar 

    64.
    Urien, N. et al. Subcellular partitioning of metals and metalloids (As, Cd, Cu, Se and Zn) in liver and gonads of wild white suckers (Catostomus commersonii) collected downstream from a mining operation. Aquat. Toxicol. 202, 105–116. https://doi.org/10.1016/j.aquatox.2018.07.001 (2018).
    CAS  Article  PubMed  Google Scholar 

    65.
    Krężel, A. & Maret, W. The functions of metamorphic metallothioneins in zinc and copper metabolism. Int. J. Mol. Sci. 18, 1237. https://doi.org/10.3390/ijms18061237 (2017).
    CAS  Article  PubMed Central  Google Scholar 

    66.
    Rainbow, P. S. Copper, cadmium and zinc concentrations in oceanic amphipod and euphausiid crustaceans, as a source of heavy metals to pelagic seabirds. Mar. Biol. 103, 513–518. https://doi.org/10.1007/BF00399583 (1989).
    CAS  Article  Google Scholar 

    67.
    Cherel, Y., Robin, J.-P., Heitz, A., Calgari, C. & Le Maho, Y. Relationships between lipid availability and protein utilization during prolonged fasting. J. Comput. Physiol. B. 162, 305–313 (1992).
    CAS  Article  Google Scholar 

    68.
    Kojadinovic, J., Corre, M. L., Cosson, R. P. & Bustamante, P. Trace elements in three marine birds breeding on Reunion Island (Western Indian Ocean): part 1 – factors influencing their bioaccumulation. Arch. Environ. Contam. Toxicol. 52, 418–430. https://doi.org/10.1007/s00244-005-0225-2 (2007).
    CAS  Article  PubMed  Google Scholar 

    69.
    Stewart, F. M., Phillips, R. A., Bartle, J. A., Craig, J. & Shooter, D. Influence of phylogeny, diet, moult schedule and sex on heavy metal concentrations in New Zealand Procellariiformes. Mar. Ecol. Prog. Ser. 178, 295–305. https://doi.org/10.3354/meps178295 (1999).
    ADS  CAS  Article  Google Scholar 

    70.
    Fromant, A. et al. Wide range of metallic and organic contaminants in various tissues of the Antarctic prion, a planktonophagous seabird from the Southern Ocean. Sci. Total Environ. 544, 754–764. https://doi.org/10.1016/j.scitotenv.2015.11.114 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    71.
    Van Franeker, J. A. & Law, K. L. Seabirds, gyres and global trends in plastic pollution. Environ. Pollut. 203, 89–96. https://doi.org/10.1016/j.envpol.2015.02.034 (2015).
    CAS  Article  PubMed  Google Scholar 

    72.
    Ryan, P. G. How quickly do albatrosses and petrels digest plastic particles?. Environ. Pollut. 207, 438–440. https://doi.org/10.1016/j.envpol.2015.08.005 (2015).
    CAS  Article  PubMed  Google Scholar 

    73.
    Thouzeau, C., Robin, J.-P., Le Maho, Y. & Handrich, Y. Body reserve dynamics and energetics of barn owls during fasting in the cold. J. Comput. Physiol. B. 169, 612–620 (1999).
    Article  Google Scholar 

    74.
    Parker, H. & Holm, H. Patterns of nutrient and energy expenditure in female common eiders nesting in the high arctic. Auk 107, 660–668 (1990).
    Article  Google Scholar 

    75.
    Esselink, H. et al. Biomonitoring heavy metals using the barn owl (Tyto alba guttata): sources of variation especially relating to body condition. Arch. Environ. Contam. Toxicol. 28, 471–486 (1995).
    CAS  Article  Google Scholar 

    76.
    Raiswell, R., Benning, L. G., Tranter, M. & Tulaczyk, S. Bioavailable iron in the Southern Ocean: the significance of the iceberg conveyor belt. Geochem. Trans. 9, 7 (2008).
    Article  Google Scholar 

    77.
    Boyd, P. W. et al. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407, 695–702 (2000).
    ADS  CAS  Article  Google Scholar 

    78.
    De Baar, H. J. et al. Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean. Nature 373, 412–415 (1995).
    ADS  Article  Google Scholar 

    79.
    Scharek, R., Van Leeuwe, M. A. & De Baar, H. J. W. Responses of Southern Ocean phytoplankton to the addition of trace metals. Deep Sea Res. II 44, 209–227. https://doi.org/10.1016/S0967-0645(96)00074-4 (1997).
    ADS  CAS  Article  Google Scholar 

    80.
    Bannon, D. I., Abounader, R., Lees, P. S. J. & Bressler, J. P. Effect of DMT1 knockdown on iron, cadmium, and lead uptake in Caco-2 cells. Am. J. Physiol. Cell Physiol. 284, C44–C50 (2003).
    CAS  Article  Google Scholar 

    81.
    Bressler, J. P., Olivi, L., Cheong, J. H., Kim, Y. & Bannona, D. Divalent metal transporter 1 in lead and cadmium transport. Ann. N. Y. Acad. Sci. 1012, 142–152. https://doi.org/10.1196/annals.1306.011 (2004).
    ADS  CAS  Article  PubMed  Google Scholar 

    82.
    Roman, L., Bell, E., Wilcox, C., Hardesty, B. D. & Hindell, M. Ecological drivers of marine debris ingestion in Procellariiform Seabirds. Sci. Rep. http://doi.org/https://doi.org/10.1038/s41598-018-37324-w (2019).

    83.
    Ryan, P. G. The incidence and characteristics of plastic particles ingested by seabirds. Mar. Environ. Res. 23, 175–206. https://doi.org/10.1016/0141-1136(87)90028-6 (1987).
    Article  Google Scholar 

    84.
    Ainley, D. G., Fraser, W. R. & Spear, L. B. The incidence of plastic in the diets of Antarctic seabirds. Second International Conference on Marine Debris, 2–7 April 1989 (1990).

    85.
    Avery-Gomm, S. et al. Northern fulmars as biological monitors of trends of plastic pollution in the eastern North Pacific. Mar. Pollut. Bull. 64, 1776–1781. https://doi.org/10.1016/j.marpolbul.2012.04.017 (2012).
    CAS  Article  PubMed  Google Scholar 

    86.
    Terepocki, A. K., Brush, A. T., Kleine, L. U., Shugart, G. W. & Hodum, P. Size and dynamics of microplastic in gastrointestinal tracts of Northern Fulmars (Fulmarus glacialis) and Sooty Shearwaters (Ardenna grisea). Mar. Pollut. Bull. 116, 143–150. https://doi.org/10.1016/j.marpolbul.2016.12.064 (2017).
    CAS  Article  PubMed  Google Scholar 

    87.
    Youngren, S. M., Rapp, D. C. & Hyrenbach, K. D. Plastic ingestion by Tristram’s Storm-petrel (Oceanodroma tristrami) chicks from French frigate shoals, Northwestern Hawaiian Islands. Mar. Pollut. Bull. 128, 369–378. https://doi.org/10.1016/j.marpolbul.2018.01.053 (2018).
    CAS  Article  PubMed  Google Scholar 

    88.
    GIMP Development Team. GIMP 2.10.10, https://www.gimp.org/ (2019). More