More stories

  • in

    Modelling the impact of non-pharmaceutical interventions on the spread of COVID-19 in Saudi Arabia

    Here, we examine infection dynamics in the four regions of focus to learn more about how various control interventions performed in each region. Since the first documented cases emerged in these regions, the virus was able to spread freely across much of the first and second phases with a gradual increase in the control interventions. In the four regions of Makkah, Madinah, Eastern, and Riyadh, cases peaked on 12th May (6397 cases; 95% CI 5960–9697), 15th May (1967 cases; 95% CI 1625–2308), 23rd June (10367; 95% CI 8948–11785) and 11th June (11273 cases; 95% CI 11068–12491) respectively according to the fitted model shown in Fig. 2. As the epidemic progressed, more measures were adopted to contain the disease, and the disease’s infectiousness sharply decreased after the third period. There are a few factors responsible for the sudden declining trend: first our model is dependent on official data on cases that have been documented, and these data will only ever reflect a portion of the overall number of cases. Second, different regions developed different testing strategies, and some locations altered their approach to testing during the course of the time period that was investigated. It is possible that the beginning of the Hajj term (period 4) was a contributing factor in the decrease in the number of documented cases. Additionally, previous to this time period, the government indicated that it would be increasing the size of its local testing in order to detect new cases. It is possible that the efficacy of interventions would be reduced if increases are found to be occurring during the falling phase of an epidemic. This may result in measures being kept in place for a longer period of time than they would have been had more accurate data been provided.Figure 2With the use of the Delay Rejection Adaptive Metropolis method, the relevant parameters were estimated for each of the four areas of interest by fitting the data from 13th March until 25th September.Full size imageWe estimate the effective reproduction number (R_t) as an indicator of SARS-CoV-2 transmission before and after the interventions. Figure 3 depicts the dramatic shift in the rate of SARS-CoV-2 transmission as a result of decreased social contact and other control measures. At the beginning of the pandemic, (R_t) for SARS-CoV-2 in Saudi regions was between 4 and 6 as illustrated in Tables 6 and 7. In other words, on average each case spread to between four and six others. Considering that each new generation of SARS-CoV-2 cases occurs every five days, it is evident that this pandemic was rapidly expanding out of control. Moreover, we assumed that the transmission rate and the documented infection rate did not change during the first two periods since interventions were carried out gradually until a complete lockdown took place. As more measures were introduced, the spread of the disease began to decrease. Therefore, our data were based on the weekly reported number of documented SARS-CoV-2 cases broken down by region. As a result, it became clear that the reliability of the (R_t) value was relatively high for transmission.Figure 3Distribution of Rt estimates derived from 10000 MCMC samples for Makkah, Madinah, Eastern, and Riyadh, respectively. The black dot in the centre of each violin plot denotes the median, the thick bar in the plot denotes the interquartile range, and the thin bar in the plot denotes the lowest and maximum values. The mean and the credible interval for 95%, which is shown in parentheses, are labelled below or above, respectively.Full size imageThe effects of the events and interventions on the dynamics of SARS-CoV-2 in the regions of interest are considered. First, if the controls remained in phase four in Makkah, our model projects that the total number of documented cases would increase to 81047 (95% CI 79421–82672). In Al-Madinah, the cumulative number of documented cases would have increased to 22997 (95% CI 19578–26415). The number of cumulative documented cases may have reached 80520 (95% CI 78335–82704) if controls stayed steady in the Eastern region at the level they were at in phase four. If the pattern shown during the fourth period is taken into account, we estimate that there would have been 67150 (95% CI 63731–70568) documented infections in the Riyadh region. Figure 4 illustrates these findings.Figure 4The relevant parameters were estimated for each of the four regions of interest by first fitting the data of each region, and then predicting using the parameters from period 4. This was done with each of the four regions of interest separately.Full size imageWe now explore the impact of controls remaining in place at the same level as that implemented in phase three. In that case, the number of documented cases in Makkah would have increased to 116641 (95% CI 105015–128266). Similarly, the total number of documented cases in Al-Madinah would have increased to 53877 (95% CI 50458-57295) if the outbreak had been allowed to continue at the same level. If the controls had remained unchanged from how they were in phase three in the Eastern region, the total number of documented cases would have been 310459 (95% CI 298362–334981). Finally, in Riyadh this would have resulted in 665241 documented cases (95% CI 651822 to 678659). Figure 5 highlights these findings.Figure 5For each of the four areas of interest, the relevant parameters were estimated by first fitting the data of each region and then predicting using the parameters from period 3. This was carried out for each of the four areas of interest independently.Full size imageWe now investigate the impact of second-period controls remaining in place. In that case, the number of documented cases would increase to 1236642 (95% 1218314–1251626), 442865 (95% CI 439446–456283), 454031 (95% CI 441846–466215), and 2322624 (95% CI 1919206-3026042) in the regions of Makkah, Madinah, Eastern, and Riyadh, respectively (see Fig. 6).Figure 6For each of the four regions of interest, the relevant variables were identified by first fitting the data from each area and then making predictions using the parameters from period 2. Each of the four regions of interest was done separately.Full size imageThe efficacy of NPIs is dependent on when they are adopted, with earlier adoption resulting in greater success in lowering transmission rates of infectious diseases. In the early stages of COVID-19, Saudi regions made the decision to gradually implement measures in order to understand the severity of the disease and reduce the economic and social costs of lockdowns, as well as the political costs. In Fig. 6, if the government were to rely on the interventions of the second phase, then the number of cases of infection would considerably rise owing to the ineffectiveness of the measures. In the third period as in Fig. 5, the government made it possible to relax some of the control measures, but it is ultimately up to each area to decide whether they will maintain the same level of control or whether they will increase or decrease it. In comparison to the control measures carried out during the third and fourth periods, this led to significantly improved outcomes. The reason that these time periods were chosen is that there was no stiffening of the NPI response in most Saudi regions during the first two periods and control interventions were improved later on.Significant undetected infections resulted in the fast spread of new coronaviruses (SARS-CoV-2) which is illustrated in Fig. 7. The proportion of undocumented infections, including asymptomatic cases and undocumented symptomatic individuals who did not seek medical treatment or be tested for mild symptoms, was greater than that of Wuhan at the onset of the pandemic26, which may be a result of the following factors: first, the medical configuration was not optimal and public awareness was limited during the onset of the pandemic while the undocumented rate progressively increased; Second, contact tracing procedures employed in Saudi regions may have become overwhelmed if the number of early-stage cases in Saudi regions rises substantially. The discrepancy between the predicted proportions of asymptomatic (undocumented) cases may be attributable to the difficulty in the un-identifiability of parameters in epidemiological models. There were a substantial number of asymptomatic infected individuals with high infectivity in Saudi regions, where the epidemic situation escalated rapidly. Our research emphasises the frequency of asymptomatic SARS-CoV-2 cases and their role in transmission in order to increase people’s knowledge of asymptomatic cases and to serve as a guide for the prevention and control of SARS-CoV-2.Table 3 Estimated transmission rate in Saudi Regions.Full size tableTable 4 Estimated ascertainable infection rate.Full size tableIn this model, we fitted dynamic transmission rates because of varied preventable measures by the Saudi government at the level of the country or region. After a series of actions taken by the government, regions and cities went into lockdown, resulting in a decrease in the transmission rate as in Table 3. Before the interventions were introduced, in the first two periods of our study, we assumed the transmission rate did not change since individual and community responses had not effectively taken place. After severe interventions were implemented, the transmission rates were allowed to vary in later periods and reduced gradually due to the control measures that reduced the spread of disease27. Estimates of documented infection rates are presented in Table 4. Our model estimates show the documented infection rate has continued to decrease in the last two periods. Thus, the parameters we fit across periods are a measure of how effective the lockdown was in bringing down the documented infection rate28.Risk of resurgenceThe risk of resurgence in Saudi Arabia’s four regions has been examined in this section after the relaxation of intervention measures. There will be a rise in disease activity if control measures are relaxed without taking into account increases in the number of cases being detected, isolated, and/or traced. We predict the first week of no new cases of infection and the week when all current infections in Saudi Arabia will be eradicated.In the Makkah region, had the trend continued into the fourth period, the number of documented infections would have dropped to zero on average by the 6th September (23rd August to 27th September), and all infections would have been eradicated by the 26th of October (7th October to 14th November). On the 28th June, the number of weekly active infections (including presymptomatic, symptomatic, and asymptomatic cases) reached its highest point of 230,230 (95% CI 226811–234364), and on 8th September, that number dropped to 44023 (95% CI 40604–47441).Therefore, the number of documented infections would have reached zero in Al-Madinah region on average on 6th November (23rd October to 22nd November), and all infections would have been eliminated by 1st December (27th November to 14th December). On 23rd June, weekly active infections (including presymptomatic, symptomatic, and asymptomatic cases) peaked at 130,134 (95% CI 126715–133552) and then declined to 60023 (95% CI 58604–63441) on 25th September.If the trend had continued as it did in the fourth period in the Eastern region, the average number of documented infections would have reached zero on 2nd November (from 23rd October to 18th November), and the total eradication of infections would have happened on 1st December (26th November to 22nd December). The number of weekly active infections (including presymptomatic, symptomatic, and asymptomatic cases) peaked at 65000 (95% CI 61581–68418) during the week of July 23rd and subsequently decreased to 800 (95% CI 765–834) on 8th of September.Lastly, the model predicted that the number of weekly active infections in the Riyadh region (including presymptomatic, symptomatic, and asymptomatic infections) peaked on 28th June at 562332 (95% CI 513379–619542) and then decreased to 188215 (95% CI 174796–191633) on 18th September. On average, we expected that the number of documented infections would have decreased to zero on 18th October (7th October to 14th November) and that the total number of infections would have been eliminated on 1st December if the trend continued as it did in the fourth period (20th November to 23rd December). Figure 7 illustrates these findings. We found that if control measures were lifted 30 days following the first day of zero documented cases.Figure 7The estimated number of infected cases that were active (presymptomatic, symptomatic, and asymptomatic) during the research period in the areas of Makkah, Madinah, Eastern, and Riyadh respectively.Full size imageThe probability of resurgence, which we define as the number of active documented cases greater than 100 could be as high as 0.96 in Eastern, 0.95 in Madinah, 0.97 in Makkah, and 0.96 in Riyadh. If we adopt more stringent conditions of lifting controls after observing no confirmed cases for a continuous period of 30 days, the probability of resurgence decreases to 0.31, 0.28, 0.30, and 0.30, with probable resurgence occurring on 13th February, 7th February, 2nd January, and 8th January for Eastern, Makkah, Madinah and Riyadh, respectively (Fig. 8). Despite the use of a simplified model, these results emphasize the hazards of ignoring undetermined occurrences when modifying intervention techniques.Figure 8Figure demonstrating the effect of relaxing all control measures in all four regions 30 days following the first day without confirmed cases.Full size imageSensitivity analysisFor the purpose of testing the robustness of our research results, we conducted a series of sensitivity analyses by varying the durations of the latent and infectious periods, the ratio of transmissibility in asymptomatic (undocumented) cases to symptomatic (documented) cases, and the initial documented infection rate. We conduct eight sensitivity analyses (S1 to S8) within each model for each region of Saudi Arabia to assess the robustness of our model results. For instance, the sensitivity analysis performed for S1 was based on the changes of the latent period and pre-symptomatic infectious period, respectively, and other parameters remain the same. These modifications were carried out with the help of reference15,29, and the same approaches were used for the other parts of the sensitivity analysis, which is summarised in Table 5.Table 5 Description of essential model parameters that were not fitted in the MCMC, where (D_e) refers to the latent period, (D_p) refers to the pre-symptomatic infectious period, (D_i) refers to the symptomatic infectious period, (gamma _0) refers to the initial ascertain rate and (alpha) refers to the ratio of the transmission rate for P and A to I.Full size tableIn particular, for (S1), we raised the incubation period to 7 days (upper 95% CI based on ref15) and the pre-symptomatic infectious period to 3 days (upper 95% CI based on ref29). Therefore we set (D_e = 4) and (D_p=3), and modified (E_0) and (P_0) as needed. The transmissibility of the undocumented cases was assumed to be 0.46 (lower 95 % CI according to ref.31) of the infection cases for (S2); for (S3), the transmissibility of the asymptomatic (undocumented) cases was assumed to be 0.62 (upper 95 % CI according to ref31). We assumed that in (S4), the initial documented infection rate was (gamma _0) = 0.14 (lower 95 % CI according to ref13) and adjusted (A_0), (P_0) and E(0) accordingly. Similarly for (S5) we assumed the initial documented infection rate was (gamma _0) = 0.42 (upper 95 % CI according to ref13) and adjusted (P_0), (A_0), and (E_0) accordingly. In (S6) we set the variables (D_ e=3) and (D_p=1.1), and altered the values of (P_0) and (E_ 0) as necessary in accordance with13. In (S7) we assumed that the transmission rate of asymptomatic (undocumented) cases was half that of documented cases by setting 0.5. Finally, in (S8) we assumed that the infectious period ((D_i)) was double that of symptomatic cases by setting 6 days. Both (S7) and (S8) were based on30. The results of our sensitivity analysis are summarised in Tables 6 and 7. We note that the variation in the model predictions of (R_t) varies from setting to setting. However, these variations appear to be fairly small, proposing the robustness of the results to the specification of associated values in fairly realistic ranges13,13. Our sensitivity analysis provides information about the importance of each parameter to the model representing the transmission of SARS-CoV-2. An increase (or decrease) in parameter values, while other parameters’ values remain the same, contributes to an increase (or decrease) in effective reproduction numbers. For example, an increase in infectious period would result in a higher effective reproduction number at the beginning of the epidemic and a longer time required to clear all infections in Saudi regions32. Our sensitivity analysis indicates that almost all model parameters may have an important role in spreading this virus among susceptible people. In particular, the contact rate from person-to-person and the transition rate of asymptomatic (undetected) individuals play a significant role in disease spread. Our important findings, of a significant decrease in (R_t) after interventions and the existence of a substantial number of presymptomatic and asymptomatic cases, were found to be robust. This highlights that Saudi authorities should pay attention to intervention strategies in the event of a resurgence of cases and quarantining those who were in contact with active cases can effectively reduce the disease33. In Tables 6 and 7 we show the estimated effective reproduction number (R_t) associated with 95% CIs obtained from those eight sensitivity analyses for all four regions and all five time periods.Table 6 Sensitivity analysis of the effective reproduction number (R_t) for Eastern and Madinah.Full size tableTable 7 Sensitivity analysis of estimated effective reproduction number (R_t) for Makkah and Riyadh.Full size table More

  • in

    The impact of the striped field mouse’s range expansion on communities of native small mammals

    Wilkinson, D. M. Dispersal biogeography. Encyclopedia of Life Science. (Nature Publishing Group, 2001).Jan, P.L. et al. Range expansion is associated with increased survival and fecundity in a long-lived bat species. Proc. R. Soc. B. 286, 1–9. https://doi.org/10.1098/rspb.2019.0384 (2019).Article 

    Google Scholar 
    IUCN. IUCN Guidelines for the Prevention of Biodiversity Loss Caused by Alien Invasive Species. https://portals.iucn.org/library/node/12413(2000).McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biological Conservation 127, 247–260. https://doi.org/10.1016/j.biocon.2005.09.005 (2006).
    Google Scholar 
    Galko, J. et al. Invázne a nepôvodné druhy v lesoch Slovenska: hmyz—huby—rastliny. (Národné lesnícke centrum, 2018).Lockwood, J. L., Hoopes, M. F. & Marchetti, M. P. Invasion ecology_draft_2ed. (John Wiley & Sons, 2013).Colautti, R. I. & MacIsaac, H. J. A neutral terminology to define ‘invasive’ species: Defining invasive species. Divers. Distrib. 10, 135–141. https://doi.org/10.1111/j.1366-9516.2004.00061.x (2004).Article 

    Google Scholar 
    Ambros, M., Dudich, A., MIKLÓS, P., Stollmann, A. & Žiak, D. Ryšavka tmavopása (Apodemus agrarius)–novỳ druh cicavca Podunajskej roviny (Rodentia: Muridae). Lynx, series nova 41, (2010).Bradley, B. A. et al. Disentangling the abundance—impact relationship for invasive species. Proc. Natl. Acad. Sci. 116, 9919–9924. https://doi.org/10.5281/zenodo.2605254 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Nackley, L. L., West, A. G., Skowno, A. L. & Bond, W. J. The nebulous ecology of native invasions. Trends Ecol. Evol. 32, 814–824. https://doi.org/10.1016/j.tree.2017.08.003 (2017).Article 

    Google Scholar 
    Archer, S. Tree-grass dynamics in a Prosopis-thornscrub savanna parkland: reconstructing the past and predicting the future. Ecoscience 2, 83–99. https://doi.org/10.1080/11956860.1995.11682272 (1995).Article 

    Google Scholar 
    Wigley, B. J., Bond, W. J. & Hoffman, M. T. Thicket expansion in a South African savanna under divergent land use: local vs. global drivers? Global Change Biol. 16, 964–976. https://doi.org/10.1111/j.1365-2486.2009.02030.x (2010).Spiegel, C. S., Hart, P. J., Woodworth, B. L., Tweed, E. J. & LeBrun, J. J. Distribution and abundance of forest birds in low-altitude habitat on Hawai’i Island: Evidence for range expansion of native species. Bird Conserv. Int. 16, 175–185. https://doi.org/10.1017/S0959270906000244 (2006).Article 

    Google Scholar 
    Livezey, K. B. Range expansion of Barred Owls, part II: facilitating ecological changes. Am. Midland Nat. 323–349 (2009).Veech, J. A., Small, M. F. & Baccus, J. T. The effect of habitat on the range expansion of a native and an introduced bird species. J. Biogeogr. 38, 69–77. https://doi.org/10.1111/j.1365-2699.2010.02397.x (2011).Article 

    Google Scholar 
    Krupa, J. J. & Haskins, K. E. Invasion of the meadow vole (Microtus pennsylvanicus) in southeastern Kentucky and its possible impact on the southern bog lemming (Synaptomys cooperi). American Midland Naturalist 14–22 (1996).Jareño, D. et al. Factors associated with the colonization of agricultural areas by common voles Microtus arvalis in NW Spain. Biol. Invasions 17, 2315–2327. https://doi.org/10.1007/s10530-015-08774 (2015).Article 

    Google Scholar 
    Malygin, V. M., Baskevich, M. I. & Khlyap, L. A. Invasions of the common vole sibling species. Russ. J. Biol. Invas. 11, 47–65 (2020).Article 

    Google Scholar 
    Tong, X., Wang, R. & Chen, X.-Y. Expansion or invasion? A Response to Nackley et al. Trends Ecol. Evol. 33, 234–235. https://doi.org/10.1016/j.tree.2018.01.008 (2018).Thompson, K. & Davis, M. A. Why research on traits of invasive plants tell us very little. Trends Ecol. Evol. 24,115–116. https://doi.org/10.1016/j.tree.2011.01.007 (2011).Davis, M. A. & Thompson, K. Eight ways to be a colonizer; two ways to be an invader: A proposed nomenclature scheme for invasion ecology. Bull. Ecol. Soc. Am. 81, 226–230 (2000).
    Google Scholar 
    Davis, M. A., Thompson, K., Grime, J. P. & Charles, S. Elton and the dissociation of invasion ecology from the rest of ecology. Diversity and Distribution 7, 97–102. https://doi.org/10.1046/j.1472-4642.2001.00099.x (2001).Article 

    Google Scholar 
    Davis, M. A. Invasion biology. (Oxford University Press on Demand, 2009).Davis, M. A. et al. Don’t judge species on their origins. Nature 474, 153–154 (2011).Article 
    CAS 

    Google Scholar 
    Klempa, B. et al. Complex evolution and epidemiology of Dobrava-Belgrade hantavirus: Definition of genotypes and their characteristics. Adv. Virol. 158, 521–529. https://doi.org/10.1007/s00705-012-1514-5 (2013).CAS 

    Google Scholar 
    Kraljik, J. et al. Genetic diversity of Bartonella genotypes found in the striped field mouse (Apodemus agrarius) in Central Europe. Parasitology 143, 1437–1442. https://doi.org/10.1017/S0031182016000962 (2016).Article 

    Google Scholar 
    Latinne, A. et al. Phylogeography of the striped field mouse, Apodemus agrarius (Rodentia: Muridae), throughout its distribution range in the Palaearctic region. Mamm. Biol. 100, 19–31. https://doi.org/10.1007/s42991-019-00001-0 (2020).Article 

    Google Scholar 
    Dudich, A. & Szabó, I. Über die Verbreitung der Hystrichopsylla Taschenberg, 1880 (Siphonaptera) in Ungarn. Folia Entomol. Hung 45, 27–32 (1984).
    Google Scholar 
    Dudich, A. Dynamika areálu ryšavky tmavopásej (Apodemus agrarius Pall.)–expanzia či invázia. Pp.: 53–62. Invázie a invázne organizmy. SEKOS pre SNK SCOPE, Nitra (1997).Karaseva, E. V., Tikhonova, G. N. & Bogomolov, P. L. Distribution of the Striped field mouse (Apodemus agrarius) and peculiarities of its ecology in different parts of its range. Zoologičeskij žurnal 71, 106–115 (1992).
    Google Scholar 
    Polechová, J. & Graciasová, R. Návrat myšice temnopásé, Apodemus agrarius (Rodentia: Muridae) na jižní Moravu. Lynx (Praha), ns 31, 153–155 (2000).Bryja, J. & Řehák, Z. Další doklady současné expanze areálu myšice temnopásé (Apodemus agrarius) na Moravě. Lynx (Praha), ns (2002).Herzig-Straschil, B., Bihari, Z. & Spitzenberger, F. Recent changes in the distribution of the field mouse (Apodemus agrarius) in the western part of the Carpathian basin. Annalen des Naturhistorischen Museums in Wien. Serie B für Botanik und Zoologie 421–428 (2003).Dudich, A., Ambros, M., Stollmann, A., Uhrin, M. & Urban, P. Ryšavka tmavopása Apodemus agrarius (Pallas) v Novohrade. Príroda okresu Veľký Krtíš – 15 rokov od celoslovenského tábora ochrancov prírody 110–115 (2003).Horáček, I. & Ložek, V. Biostratigraphic investigation in the Hámorská cave (Slovak karst). Pp.: 49–60. Krasové sedimenty. Fosilní záznam klimatickỳch oscilací a změn prostředí. Knihovna České speleologické společnosti, Svazek 21, (1993).Pazonyi, P. & Kordos, L. Late Eemian (Late Pleistocene) vertebrate fauna from the Horváti-lik (Uppony, NE Hungary). Fragmenta Palaeontologica Hungarica 22, 107–117 (2004).
    Google Scholar 
    Obuch, J., Danko, S. & Noga, M. Recent and subrecent diet of the barn owl (Tyto alba) in Slovakia. Slovak Raptor J. 10, 1–50 . https://doi.org/10.1515/srj-2016-0003 (2016).Article 

    Google Scholar 
    Obuch, J. Temporal changes in proportions of small mammals in the diet of the mammalian and avian predators in Slovakia. Lynx, n. s 55, 86–106. https://doi.org/10.37520/lynx.2021.007 (2022).Niethammer, J. Die Verbreitung der Brandmaus (Apodemus agrarius) in der Bundesrepublik Deutschland. Acta Sc. Nat. Brno 10, 43–55 (1976).
    Google Scholar 
    von Lehmann, E. Die Brandmaus in Hessen als Beispiel für die Problematik der Verbreitungsgrenzen vieler Säugetierarten. Natur und Museum 106, 112–117.Farský, O. Úlovky myšice temnopásé, Apodemus agrarius (Pallas), na Moravě a ve Slezsku v letech 1920 až 1940 [Caughts of the striped field mouse, Apodemus agrarius (Pallas), in Moravia and Silesia in the years 1920–1940]. Lynx, n. s 5, 11–18 (1965).Heroldová, M., Homolka, M. & Zejda, J. Některé nepublikované nálezy Apodemus agrarius v Čechách a na Moravě v návaznosti na současnỳ stav znalostí o jejím rozšíření (Rodentia: Muridae). Lynx, series nova 44, (2013).Ambros, M., Dudich, A. & Stollmann, A. Fauna drobných hmyzožravcov a hlodavcov (Insectivora, Rodentia) vybraných mokraďných biotopov južného Slovenska. Rosalia (Nitra) 14, 195–202 (1999).
    Google Scholar 
    Balát, F. Potrava sovy pálené na jižní Moravě a na jižním Slovensku [Food of Barn owl on the south Moravia and south Slovakia]. Zoologické listy 5, 237–256 (1956).
    Google Scholar 
    Baláž, I., Stollmann, A., Ambros, M. & Dudich, A. Drobné cicavce rezervácie Lohótsky močiar. Chránené územia Slovenska 58, 27–29 (2003).
    Google Scholar 
    Bridišová, Z., Baláž, I. & Ambros, M. Drobné cicavce prírodnej rezervácie Alúvium Žitavy [Small mammals of Alúvium Žitavy natural reservation]. Chránené územia Slovenska 69, 7–9 (2006).
    Google Scholar 
    Dudich, A., Lysỳ, J. & Štollmann, A. Súčasné poznatky o rozšírení drobnỳch zemnỳch cicavcov (Insectivora, Rodentia) južnej časti Podunajskej nížiny. Spravodaj Oblastného múzea v Komárne, Prírodné vedy 5, 157–186 (1985).
    Google Scholar 
    Kristofik, J. Small mammals in floodplain forests. Folia Zoologica (Czech Republic) (1999).Méhely, L. Két új poczokfaj a magyar faunában. Állattani közlemények 7, 3–14 (1908).
    Google Scholar 
    Noga, M. The wintering and food ecology of Long-eared Owl in South-Western part of Slovakia (Comenius University in Bratislava, 2007).
    Google Scholar 
    Pachinger, K., Novackỳ, M., Facuna, V. & Ambruš, B. Dynamika a zloženie synúzií mikromammálií na izolovanỳch ostrovoch vnútozemskej delty Dunaja v oblasti vodného diela Gabčíkovo. Acta Environ. Universitatis Comenianae 9, 71–77 (1997).
    Google Scholar 
    Poláčiková, Z. Small terrestrial mammals’ (Eulipotyphla, Rodentia) synusia of selected localities in western Slovakia. Ekológia (Bratislava) 29, 131–139. https://doi.org/10.4149/ekol_2010_02_131 (2010).
    Google Scholar 
    Reiterová, K. et al. Úloha drobnỳch cicavcov–dôležitỳch rezervoárov v cirkulácii larválnej toxoplazmózy. Slovenskỳ Veterinárny Časopis 4, 217–222 (2010).
    Google Scholar 
    Stanko, M., Mošanský, L. & Fričová, J. Small mammal communities (Eulipotyphla, Rodentia) of the middle part of alluvium Ipeľ river (Lučenská and Ipeľská basins). Ochrana prírody 26, 43–52 (2010).
    Google Scholar 
    Spitzenberger, F. & Engelberg, S. A new look at the dynamic western distribution border of Apodemus agrarius in Central Europe (Rodentia: Muridae). Lynx, series nova 45, (2014).Sládkovičová, V. H., Žiak, D. & Miklós, P. Synúzie drobných zemných cicavccov mokradných biotopov Podunajskej roviny. Folia faunistica Slovaca 18, 13–19 (2013).
    Google Scholar 
    Tulis, F. et al. Expansion of the Striped field mouse (Apodemus agrarius) in the south-western Slovakia during 2010–2015. Folia Oecologica 43, 64–73 (2016).
    Google Scholar 
    Ambros, M. et al. Zmeny v rozšírení ryšavky tmavopásej (Apodemus agrarius) na Slovensku. in Zborník príspevkov z vedeckého kongresu ‘Zoológia 2022’ 10 (2022).Dudich, A. Ektoparazitofauna cicavcov a vtákov južnej časti Podunajskej nížiny so zreteľom na Žitný ostrov. 1. Siphonaptera. Žitnoostrovské múzeum Dunajská Streda—Spravodaj múzea 9, 61–96 (1986).Dudich, A. Príspevok k poznaniu drobných zemných cicavcov (Insectivora, Rodentia) a ich ektoparazitov (Acarina, Anoplura, Siphonaptera) okolia ŠPR Čenkovská lesostep (Podunajská nížina). Iuxta Danubium (Komárno) 10, 186–191 (1993).
    Google Scholar 
    Cyprich, D., Krumpál, M. & Dúha, J. Blchy (Siphonaptera) cicavcov (Mammalia) Štátnej prírodnej rezervácii Šúr. Ochrana prírody 8, 241–289 (1987).
    Google Scholar 
    Lapin, M., Faško, P., Melo, M., Štastný, P. & Tomlain, J. Climate zones. in Landscape Atlas of the Slovak Republic (Harmanec: VKÚ, 2002).Faško, P. & Štastný, P. Average annual precipitation. in Landscape Atlas of the Slovak Republic (2002).Russell, J. C., Stjernman, M., Lindström, Å. & Smith, H. G. Community occupancy before-after-control-impact (CO-BACI) analysis of Hurricane Gudrun on Swedish forest birds. Ecol. Appl. 25, 685–694.  https://doi.org/10.1890/14-0645.1 (2015).Article 

    Google Scholar 
    Desrosiers, M., Planas, D. & Mucci, A. Short-term responses to watershed logging on biomass mercury and methylmercury accumulation by periphyton in boreal lakes. Can. J. Fish. Aquat. Sci. 63, 1734–1745. https://doi.org/10.1139/f06-077 (2006).Article 
    CAS 

    Google Scholar 
    Hanisch, J. R., Tonn, W. M., Paszkoswki, C. A. & Scrimgeour, G. J. Stocked trout have minimal effects on littoral invertebrate assemblages of productive fish-bearing lakes: A whole-lake BACI study: Stocked trout have minimal effects on littoral invertebrates. Freshw. Biol. 58, 895–907. https://doi.org/10.1111/fwb.12095 (2013).Article 

    Google Scholar 
    Louhi, P., Mäki-Petäys, A., Erkinaro, J., Paasivaara, A. & Muotka, T. Impacts of forest drainage improvement on stream biota: A multisite BACI-experiment. For. Ecol. Manage. 260, 1315–1323. https://doi.org/10.1016/j.foreco.2010.07.024 (2010).Article 

    Google Scholar 
    Conner, M. M., Saunders, W. C., Bouwes, N. & Jordan, C. Evaluating impacts using a BACI design, ratios, and a Bayesian approach with a focus on restoration. Environ Monit Assess 188, 555. https://doi.org/10.1007/s10661-016-5526-6
    (2016).Article 

    Google Scholar 
    Popescu, V. D., de Valpine, P., Tempel, D. & Peery, M. Z. Estimating population impacts via dynamic occupancy analysis of Before-After Control–Impact studies. Ecol. Appl. 22, 1389–1404. https://doi.org/10.1890/11-1669.1 (2012).Article 

    Google Scholar 
    Horváth, G. F. & Herczeg, R. Site occupancy response to natural and anthropogenic disturbances of root vole: Conservation problem of a vulnerable relict subspecies. J. Nat. Conserv. 21, 350–358. https://doi.org/10.1016/j.jnc.2013.03.004 (2013).Article 

    Google Scholar 
    Pounder, K. C. et al. Novel Hantavirus in Wildlife, United Kingdom. Emerg. Infect. Dis. 19, 673–675. https://doi.org/10.3201/eid1904.121057 (2013).Article 

    Google Scholar 
    Kreisinger, J., Bastien, G., Hauffe, H. C., Marchesi, J. & Perkins, S. E. Interactions between multiple helminths and the gut microbiota in wild rodents. Phil. Trans. R. Soc. B 370, 20140295. https://doi.org/10.1098/rstb.2014.0295 (2015).Article 

    Google Scholar 
    Kim, H.-C. et al. Hantavirus surveillance and genetic diversity targeting small mammals at Camp Humphreys, a US military installation and new expansion site Republic of Korea. PLoS ONE 12, e0176514. https://doi.org/10.1371/journal.pone.0176514 (2017).Article 

    Google Scholar 
    Burnham, K. P., Anderson, D. R. & Burnham, K. P. Model selection and multimodel inference: a practical information-theoretic approach. (Springer, 2002).Sugiura, N. Further analysis of the data by Akaike’s information criterion and the finite corrections: Further analysis of the data by akaike’ s. Commun. Stat. Theory Methods 7, 13–26 (1978).Article 
    MATH 

    Google Scholar 
    Hurvich, C. M. & Tsai, C.-L. Regression and time series model selection in small samples. Biometrika 76, 297–307 (1989).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Morris, E. K. et al. Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories. Ecol. Evol. 4, 3514–3524. https://doi.org/10.1002/ece3.1155 (2014).Article 

    Google Scholar 
    Ingram, J. C. Berger–Parker Index. in Encyclopedia of Ecology 332–334 (Elsevier, 2008). https://doi.org/10.1016/B978-008045405-4.00091-4.Bürkner, P.-C. brms : An R package for bayesian multilevel models using Stan. J. Stat. Soft. 80, (2017).Wang, Y., Naumann, U., Eddelbuettel, D., Wilshire, J. & Warton, D. mvabund: Statistical Methods for Analysing Multivariate Abundance Data. (2022).Warton, D. I., Thibaut, L. & Wang, Y. A. The PIT-trap—A “model-free” bootstrap procedure for inference about regression models with discrete, multivariate responses. PLoS ONE 12, e0181790. https://doi.org/10.1371/journal.pone.0181790 (2017).Article 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. (2022).R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2022).Percie du Sert, N. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18, e3000411. https://doi.org/10.1371/journal.pbio.3000411 (2020).Szacki, J. & Liro, A. Movements of small mammals in the heterogeneous landscape. Landsc. Ecol. 5, 219–224 (1991).Article 

    Google Scholar 
    Szacki, J., Babinska-Werka, J. & Liro, A. The influence of landscape spatial structure on small mammal movements. Acta Theriol. 2, (1993).Pimentel, D., Pimentel, M. & Wilson, A. Plant, animal, and microbe invasive species in the United States and World. Biol. Invasions 193 (2007).Valéry, L., Hervé, F., Lefeuvre, J. C. & Simberloff, D. Invasive species can also be native. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2009.07.003 (2009).Article 

    Google Scholar 
    Deinet, S. et al. Wildlife comeback in Europe: The recovery of selected mammal and bird species. (2013).Gompper, M. Top Carnivores in the Suburbs? Ecological and Conservation Issues Raised by Colonization of North-eastern North America by Coyotes: The expansion of the coyote’s geographical range may broadly influence community structure, and rising coyote densities in the suburbs may alter how the general public views wildlife. BioScience 52, 185–190. https://doi.org/10.1641/0006-3568 (2002).Dalecky, A. et al. Range expansion of the invasive house mouse Mus musculus domesticus in Senegal, West Africa: A synthesis of trapping data over three decades, 1983–2014. Mammal. Rev. 45, 176–190. https://doi.org/10.1111/mam.12043 (2015).Article 

    Google Scholar 
    Konečnỳ, A. et al. Invasion genetics of the introduced black rat (Rattus rattus) in Senegal West Africa. Mol. Ecol. 22, 286–300. https://doi.org/10.1111/mec.12112 (2013).Article 

    Google Scholar 
    Bramley, G. N. Home ranges and interactions of kiore (Rattus exulans) and Norway rats (R. norvegicus) on Kapiti Island, New Zealand. New Zeal. J. Ecol. 328–334 (2014).O’Rourke, R. L., Anson, J. R., Saul, A. M. & Banks, P. B. Limits to alien black rats (Rattus rattus) acting as equivalent pollinators to extinct native small mammals: The influence of stem width on mammal activity at native Banksia ericifolia inflorescences. Biol. Invasions 22, 329–338. https://doi.org/10.1007/s10530-019-02090-x (2020).Article 

    Google Scholar 
    White, T. A. et al. Range expansion in an invasive small mammal: influence of life-history and habitat quality. Biol. Invasions 14, 2203–2215. https://doi.org/10.1007/s10530-012-0225-x (2012).Article 

    Google Scholar 
    McDevitt, A. D. et al. Invading and expanding: Range dynamics and ecological consequences of the greater white-toothed shrew (Crocidura russula) invasion in Ireland. PLoS ONE 9, e100403. https://doi.org/10.1371/journal.pone.0100403 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Aguilar, J.-P., Pélissié, T., Sigé, B. & Michaux, J. Occurrence of the stripe field mouse lineage (Apodemus agrarius Pallas 1771; Rodentia; Mammalia) in the Late Pleistocene of southwestern France. C.R. Palevol 7, 217–225 (2008).Article 

    Google Scholar 
    Kordos, L. Historico-zoogeographical and ecological investigation of the subfossil vertebrate fauna of the Aggtelek Karst. Vert. Hung. 18, 85–100 (1978).
    Google Scholar 
    Hairston, N. G., Smith, F. E. & Slobodkin, L. B. Community structure, population control, and competition. Am. Nat. 94, 421–425 (1960).Article 

    Google Scholar 
    Agnew, P., Hide, M., Sidobre, C. & Michalakis, Y. A minimalist approach to the effects of density-dependent competition on insect life-history traits. Ecol. Entomol. 27, 396–402 (2002).Article 

    Google Scholar 
    Krebs, C. J. Beyond population regulation and limitation. Wildl. Res. 29, 1–10 (2002).Article 

    Google Scholar 
    Huitu, O., Norrdahl, K. & Korpimäki, E. Competition, predation and interspecific synchrony in cyclic small mammal communities. Ecography 27, 197–206.  https://doi.org/10.1111/j.0906-7590.2003.03684.x (2004).Article 

    Google Scholar 
    Lofgren, O. Niche expansion and increased maturation rate of Clethrionomys glareolus in the absence of competitors. J. Mammal. 76, 1100–1112 (1995).Article 

    Google Scholar 
    Hansson, L. Competition between Rodents in Successional Stages of Taiga Forests: Microtus agrestis vs. Clethrionomys glareolus. Oikos 40, 258 (1983).Article 

    Google Scholar 
    Eccard, J. A. & Ylönen, H. Direct interference or indirect exploitation? An experimental study of fitness costs of interspecific competition in voles. Oikos 99, 580–590. https://doi.org/10.1034/j.1600-0706.2002.11833.x (2002).Article 

    Google Scholar 
    Gliwicz, J. Competition among forest rodents: Effects of Apodemus flavicollis and Clethrionomys glareolus on A. agrarius. Acta Zool. Fennica 1984. (1984).Neet, C. R. & Hausser, J. Habitat selection in zones of parapatric contact between the common shrew Sorex araneus and Millet’s shrew S. coronatus. J. Anim. Ecol. 235–250 (1990).Zub, K., Jędrzejewska, B., Jędrzejewski, W. & Bartoń, K. A. Cyclic voles and shrews and non-cyclic mice in a marginal grassland within European temperate forest. Acta Theriol. 57, 205–216 (2012).Article 
    CAS 

    Google Scholar 
    Henttonen, H. et al. Long-term population dynamics of the common shrew Sorex araneus in Finland. in Annales Zoologici Fennici 349–355 (JSTOR, 1989).Gębczyńska, Z., Gębczyński, M., Morzuch, K. & Zielińska, D. M. Food eaten by four species of rodents in polluted forests. Acta Theriol. 34, 465–477 (1989).Article 

    Google Scholar 
    Babinska-Werka, J. Response of rodents to an increased and quantitatively diverse food base. Acta theriologica 35, (1990).Margaletic, J., Glavaš, M. & Bäumler, W. The development of mice and voles in an oak forest with a surplus of acorns. J. Pest Sci. 75, 95–98 (2002).Holisova, V. The food of Apodemus agrarius (Pall.). Zoologické listy 16, 1–14 (1967).Obrtel, R. & Hološová, V. The trophic niche of Apodemus agrarius in northern Moravia. Folia Zool. 30, 125–138 (1981).
    Google Scholar 
    Grant, P. R. Interspecific competition among rodents. Annu. Rev. Ecol. Syst. 3, 79–106 (1972).Article 

    Google Scholar 
    Redfield, J. A., Krebs, C. J. & Taitt, M. J. Competition between Peromyscus maniculatus and Microtus townsendii in grasslands of coastal British Columbia. J. Anim. Ecol. 607–616 (1977).Kincaid, W. B. & Cameron, G. N. Effects of species removal on resource utilization in a Texas rodent community. J. Mammal. 63, 229–235 (1982).Article 

    Google Scholar 
    Yurkonis, K. A., Meiners, S. J. & Wachholder, B. E. Invasion impacts diversity through altered community dynamics. J. Ecol. 93, 1053–1061 (2005).Article 

    Google Scholar 
    Powell, K. I., Chase, J. M. & Knight, T. M. A synthesis of plant invasion effects on biodiversity across spatial scales. Am. J. Bot. 98, 539–548. https://doi.org/10.3732/ajb.1000402 (2011).Article 

    Google Scholar 
    Jaksic, F. M. Vertebrate invaders and their ecological impacts in Chile. Biodivers. Conserv. 7, 1427–1445 (1998).Article 

    Google Scholar 
    Richter-Boix, A. et al. Effects of the non-native amphibian species Discoglossus pictus on the recipient amphibian community: Niche overlap, competition and community organization. Biol. Invasions 15, 799–815. https://doi.org/10.1007/s10530-012-0328-4 (2013).Article 

    Google Scholar 
    Kumschick, S., Bacher, S. & Blackburn, T. M. What determines the impact of alien birds and mammals in Europe? Biol. Invasions 15, 785–797. https://doi.org/10.1007/s10530-012-0326-6 (2013).Article 

    Google Scholar 
    Tedeschi, L., Biancolini, D., Capinha, C., Rondinini, C. & Essl, F. Introduction, spread, and impacts of invasive alien mammal species in Europe. Mam. Rev. Mam. 12277. https://doi.org/10.1111/mam.12277 (2021).Harris, D. B. Review of negative effects of introduced rodents on small mammals on islands. Biol. Invasions 11, 1611–1630. https://doi.org/10.1007/s10530-008-9393-0 (2009).Article 

    Google Scholar 
    Traveset, A. et al. A review on the effects of alien rodents in the Balearic (Western Mediterranean Sea) and Canary Islands (Eastern Atlantic Ocean). Biol. Invasions 11, 1653–1670. https://doi.org/10.1007/s10530-008-9395-y (2009).Article 

    Google Scholar 
    Jung, T. S., Nagorsen, D. W., Kukka, P. M. & Barker, O. E. Alien invaders: recent establishment of an urban population of house mice (Mus musculus) in the Yukon. Northwest. Nat. 93, 240–242 (2012).Article 

    Google Scholar 
    McKinney, M. L. & Lockwood, J. L. Biotic homogenization: A few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453. https://doi.org/10.1016/S0169-5347(99)01679-1 (1999).Article 
    CAS 

    Google Scholar 
    MacGregor-Fors, I., Morales-Pérez, L., Quesada, J. & Schondube, J. E. Relationship between the presence of House Sparrows (Passer domesticus) and Neotropical bird community structure and diversity. Biol. Invasions 12, 87–96. https://doi.org/10.1007/s10530-009-9432-5 (2010).Article 

    Google Scholar 
    Phillips, B. L. Behaviour on Invasion Fronts, and the Behaviour of Invasion Fronts. in Biological Invasions and Animal Behaviour (eds. Weis, J. S. & Sol, D.) 82–95 (Cambridge University Press, 2016). https://doi.org/10.1017/CBO9781139939492.007.Pietrek, A. G., Goheen, J. R., Riginos, C., Maiyo, N. J. & Palmer, T. M. Density dependence and the spread of invasive big-headed ants (Pheidole megacephala) in an East African savanna. Oecologia 195, 667–676. https://doi.org/10.1007/s00442-021-04859-1 (2021).Article 
    ADS 

    Google Scholar 
    Stanko, M. Ryšavka tmavopása (Apodemus agrarius, Rodentia) na Slovensku. (Parazitologický ústav SAV, 2014).Thompson, K., Hodgson, J. G. & Rich, T. C. Native and alien invasive plants: more of the same?. Ecography 18, 390–402 (1995).Article 

    Google Scholar  More

  • in

    Potential for mercury methylation by Asgard archaea in mangrove sediments

    Hsu-Kim H, Kucharzyk KH, Zhang T, Deshusses MA. Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: A critical review. Environ Sci Technol. 2013;47:2441–56.Article 
    CAS 

    Google Scholar 
    Podar M, Gilmour CC, Brandt CC, Soren A, Brown SD, Crable BR, et al. Global prevalence and distribution of genes and microorganisms involved in mercury methylation. Sci Adv. 2015;1:e1500675.Article 

    Google Scholar 
    Liu YR, Johs A, Bi L, Lu X, Hu HW, Sun D, et al. Unraveling microbial communities associated with methylmercury production in paddy soils. Environ Sci Technol. 2018;52:13110–8.Article 
    CAS 

    Google Scholar 
    Lee C-S, Fisher NS. Bioaccumulation of methylmercury in a marine copepod. Environ Toxicol Chem. 2017;36:1287–93.Article 
    CAS 

    Google Scholar 
    Parks JM, Johs A, Podar M, Bridou R, Hurt RAJ, Smith SD, et al. The genetic basis for bacterial mercury methylation. Science 2013;339:1332–5.Article 
    CAS 

    Google Scholar 
    McDaniel EA, Peterson BD, Stevens SLR, Tran PQ, Anantharaman K, McMahon KD. Expanded phylogenetic diversity and metabolic flexibility of mercury-methylating microorganisms. mSystems 2020;5:e00299–20.Article 
    CAS 

    Google Scholar 
    Cooper CJ, Zheng K, Rush KW, Johs A, Sanders BC, Pavlopoulos GA, et al. Structure determination of the HgcAB complex using metagenome sequence data: Insights into microbial mercury methylation. Commun Biol. 2020;3:320.Article 
    CAS 

    Google Scholar 
    Kerin EJ, Gilmour CC, Roden E, Suzuki MT, Coates JD, Mason RP. Mercury methylation by dissimilatory iron-reducing bacteria. Appl Environ Microbiol. 2006;72:7919–21.Article 
    CAS 

    Google Scholar 
    Gilmour CC, Podar M, Bullock AL, Graham AM, Brown SD, Somenahally AC, et al. Mercury methylation by novel microorganisms from new environments. Environ Sci Technol. 2013;47:11810–20.Article 
    CAS 

    Google Scholar 
    Capo E, Bravo AG, Soerensen AL, Bertilsson S, Pinhassi J, Feng C, et al. Deltaproteobacteria and Spirochaetes-like bacteria are abundant putative mercury methylators in oxygen-deficient water and marine particles in the Baltic Sea. Front Microbiol. 2020;11:574080.Article 

    Google Scholar 
    Gionfriddo CM, Tate MT, Wick RR, Schultz MB, Zemla A, Thelen MP, et al. Microbial mercury methylation in Antarctic sea ice. Nat Microbiol. 2016;1:16127.Article 
    CAS 

    Google Scholar 
    Jones DS, Walker GM, Johnson NW, Mitchell CPJ, Coleman Wasik JK, Bailey JV. Molecular evidence for novel mercury methylating microorganisms in sulfate-impacted lakes. ISME J. 2019;13:1659–75.Article 
    CAS 

    Google Scholar 
    Christensen GA, Gionfriddo CM, King AJ, Moberly JG, Miller CL, Somenahally AC, et al. Determining the reliability of measuring mercury cycling gene abundance with correlations with mercury and methylmercury concentrations. Environ Sci Technol. 2019;53:8649–63.Article 
    CAS 

    Google Scholar 
    Villar E, Cabrol L, Heimburger-Boavida LE. Widespread microbial mercury methylation genes in the global ocean. Environ Microbiol Rep. 2020;12:277–87.Article 
    CAS 

    Google Scholar 
    Lin H, Ascher DB, Myung Y, Lamborg CH, Hallam SJ, Gionfriddo CM, et al. Mercury methylation by metabolically versatile and cosmopolitan marine bacteria. ISME J. 2021;15:1810–25.Article 
    CAS 

    Google Scholar 
    King JK, Kostka JE, Frischer ME, Saunders FM, Jahnke RA. A quantitative relationship that demonstrates mercury methylation rates in marine sediments are based on the community composition and activity of sulfate-reducing bacteria. Environ Sci Technol. 2001;35:2491–6.Article 
    CAS 

    Google Scholar 
    Regnell O, Watras CJ. Microbial mercury methylation in aquatic environments: A critical review of published field and laboratory studies. Environ Sci Technol. 2019;53:4–19.Article 
    CAS 

    Google Scholar 
    Xie R, Wang Y, Huang D, Hou J, Li L, Hu H, et al. Expanding Asgard members in the domain of Archaea sheds new light on the origin of eukaryotes. Sci China Life Sci. 2022;65:818–29.Article 
    CAS 

    Google Scholar 
    Seitz KW, Dombrowski N, Eme L, Spang A, Lombard J, Sieber JR, et al. Asgard archaea capable of anaerobic hydrocarbon cycling. Nat Commun. 2019;10:1822.Article 

    Google Scholar 
    Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Backstrom D, Juzokaite L, Vancaester E, et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 2017;541:353–8.Article 
    CAS 

    Google Scholar 
    Liu Y, Makarova KS, Huang W-C, Wolf YI, Nikolskaya AN, Zhang X, et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 2021;593:553–7.Article 
    CAS 

    Google Scholar 
    Zhang JW, Dong HP, Hou LJ, Liu Y, Ou YF, Zheng YL, et al. Newly discovered Asgard archaea Hermodarchaeota potentially degrade alkanes and aromatics via alkyl/benzyl-succinate synthase and benzoyl-CoA pathway. ISME J. 2021;15:1826–43.Article 
    CAS 

    Google Scholar 
    Cai M, Liu Y, Yin X, Zhou Z, Friedrich MW, Richter-Heitmann T, et al. Diverse Asgard archaea including the novel phylum Gerdarchaeota participate in organic matter degradation. Sci China Life Sci. 2020;63:886–97.Article 
    CAS 

    Google Scholar 
    Baker BJ, De Anda V, Seitz KW, Dombrowski N, Santoro AE, Lloyd KG. Diversity, ecology and evolution of Archaea. Nat Microbiol. 2020;5:887–900.Article 
    CAS 

    Google Scholar 
    Farag Ibrahim F, Zhao R, Biddle Jennifer F, Atomi H. “Sifarchaeota,” a novel Asgard phylum from Costa Rican sediment capable of polysaccharide degradation and anaerobic methylotrophy. Appl Environ Micro. 2021;87:e02584–20.
    Google Scholar 
    Adam PS, Borrel G, Brochier-Armanet C, Gribaldo S. The growing tree of Archaea: new perspectives on their diversity, evolution and ecology. ISME J. 2017;11:2407–25.Article 

    Google Scholar 
    Cai M, Richter-Heitmann T, Yin X, Huang W-C, Yang Y, Zhang C, et al. Ecological features and global distribution of Asgard archaea. Sci Total Environ. 2021;758:143581.Article 
    CAS 

    Google Scholar 
    Zhang C-J, Chen Y-L, Sun Y-H, Pan J, Cai M-W, Li M. Diversity, metabolism and cultivation of archaea in mangrove ecosystems. Mar Life Sci Tech. 2020;3:252–62.Article 

    Google Scholar 
    Dai SS, Yang Z, Tong Y, Chen L, Liu SY, Pan R, et al. Global distribution and environmental drivers of methylmercury production in sediments. J Hazard Mater. 2021;407:124700.Article 
    CAS 

    Google Scholar 
    Tang WL, Liu YR, Guan WY, Zhong H, Qu XM, Zhang T. Understanding mercury methylation in the changing environment: Recent advances in assessing microbial methylators and mercury bioavailability. Sci Total Environ. 2020;714:136827.Article 
    CAS 

    Google Scholar 
    Tsui MTK, Finlay JC, Balogh SJ, Nollet YH. In situ production of methylmercury within a stream channel in northern California. Environ Sci Technol. 2010;44:6998–7004.Article 
    CAS 

    Google Scholar 
    Liu Y, Zhou Z, Pan J, Baker BJ, Gu JD, Li M. Comparative genomic inference suggests mixotrophic lifestyle for Thorarchaeota. ISME J. 2018;12:1021–31.Article 
    CAS 

    Google Scholar 
    Lei P, Zhong H, Duan D, Pan K. A review on mercury biogeochemistry in mangrove sediments: Hotspots of methylmercury production? Sci Total Environ. 2019;680:140–50.Article 
    CAS 

    Google Scholar 
    Beckers F, Rinklebe J. Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Crit Rev Env Sci Tec. 2017;47:693–794.Article 
    CAS 

    Google Scholar 
    de Oliveira DC, Correia RR, Marinho CC, Guimaraes JR. Mercury methylation in sediments of a Brazilian mangrove under different vegetation covers and salinities. Chemosphere 2015;127:214–21.Article 

    Google Scholar 
    Li R, Xu H, Chai M, Qiu GY. Distribution and accumulation of mercury and copper in mangrove sediments in Shenzhen, the world’s most rapid urbanized city. Environ Moni Assess. 2016;188:87.Article 

    Google Scholar 
    O’Connor D, Hou D, Ok YS, Mulder J, Duan L, Wu Q, et al. Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. Environ Int. 2019;126:747–61.Article 

    Google Scholar 
    Obrist D, Kirk JL, Zhang L, Sunderland EM, Jiskra M, Selin NE. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio 2018;47:116–40.Article 

    Google Scholar 
    Capo E, Peterson BD, Kim M, Jones DS, Acinas SG, Amyot M, et al. A consensus protocol for the recovery of mercury methylation genes from metagenomes. Mol Ecol Resour. 2022; https://doi.org/10.1111/1755-0998.13687.Gionfriddo CM, Wymore AM, Jones DS, Wilpiszeski RL, Lynes MM, Christensen GA, et al. An improved hgcAB primer set and direct high-throughput sequencing expand Hg-methylator diversity in nature. Front Microbiol. 2020;11:541554.Article 

    Google Scholar 
    Yu R-Q, Barkay T. Chapter two – microbial mercury transformations: Molecules, functions and organisms. Adv Appl Microbiol. 2022;118:31–90.Article 

    Google Scholar 
    Chételat J, Richardson MC, MacMillan GA, Amyot M, Poulain AJ. Ratio of methylmercury to dissolved organic carbon in water explains methylmercury bioaccumulation across a latitudinal gradient from north-temperate to arctic lakes. Environ Sci Technol. 2018;52:79–88.Article 

    Google Scholar 
    Liu Y-R, Dong J-X, Han L-L, Zheng Y-M, He J-Z. Influence of rice straw amendment on mercury methylation and nitrification in paddy soils. Environ Pollut. 2016;209:53–9.Article 
    CAS 

    Google Scholar 
    Moreau JW, Gionfriddo CM, Krabbenhoft DP, Ogorek JM, DeWild JF, Aiken GR, et al. The effect of natural organic matter on mercury methylation by Desulfobulbus propionicus 1pr3. Front Microbiol. 2015;6:1389.Article 

    Google Scholar 
    Chen C-F, Ju Y-R, Chen C-W, Dong C-D. The distribution of methylmercury in estuary and harbor sediments. Sci Total Environ. 2019;691:55–63.Article 
    CAS 

    Google Scholar 
    Bravo AG, Bouchet S, Guédron S, Amouroux D, Dominik J, Zopfi J. High methylmercury production under ferruginous conditions in sediments impacted by sewage treatment plant discharges. Water Res. 2015;80:245–55.Article 
    CAS 

    Google Scholar 
    Wang H, Su J, Zheng T, Yang X. Insights into the role of plant on ammonia-oxidizing bacteria and archaea in the mangrove ecosystem. J Soil Sediment. 2015;15:1212–23.Article 
    CAS 

    Google Scholar 
    Imachi H, Nobu MK, Nakahara N, Morono Y, Ogawara M, Takaki Y, et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 2020;577:519–25.Article 
    CAS 

    Google Scholar 
    Zhou J, Riccardi D, Beste A, Smith JC, Parks JM. Mercury methylation by HgcA: Theory supports carbanion transfer to Hg(II). Inorg Chem. 2014;53:772–7.Article 
    CAS 

    Google Scholar 
    Smith Steven D, Bridou R, Johs A, Parks Jerry M, Elias Dwayne A, Hurt Richard A, et al. Site-directed mutagenesis of HgcA and HgcB reveals amino acid residues important for mercury methylation. Appl Environ Micro. 2015;81:3205–17.Article 
    CAS 

    Google Scholar 
    Sousa FL, Neukirchen S, Allen JF, Lane N, Martin WF. Lokiarchaeon is hydrogen dependent. Nat Microbiol. 2016;1:16034.Article 
    CAS 

    Google Scholar 
    Schaefer JK, Rocks SS, Zheng W, Liang L, Gu B, Morel FMM. Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria. Proc Natl Acad Sci USA 2011;108:8714.Article 
    CAS 

    Google Scholar 
    Sakai S, Imachi H, Hanada S, Ohashi A, Harada H, Kamagata Y. Methanocella paludicola gen. nov., sp. nov., a methane-producing archaeon, the first isolate of the lineage ‘Rice Cluster I’, and proposal of the new archaeal order Methanocellales ord. nov. Int J Syst Evol Microbiol. 2008;58:929–36.Article 

    Google Scholar 
    Dridi B, Fardeau ML, Ollivier B, Raoult D, Drancourt M. Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol. 2012;62:1902–7.Article 
    CAS 

    Google Scholar 
    Dietz R, Sonne C, Basu N, Braune B, O’Hara T, Letcher RJ, et al. What are the toxicological effects of mercury in arctic biota? Sci Total Environ. 2013;443:775–90.Article 
    CAS 

    Google Scholar 
    Gilmour Cynthia C, Bullock Allyson L, McBurney A, Podar M, Elias Dwayne A, Lovley Derek R. Robust mercury methylation across diverse methanogenic archaea. mBio 2018;9:e02403–17.
    Google Scholar 
    Pan J, Chen Y, Wang Y, Zhou Z, Li M. Vertical distribution of Bathyarchaeotal communities in mangrove wetlands suggests distinct niche preference of Bathyarchaeota subgroup 6. Micro Ecol. 2019;77:417–28.Article 

    Google Scholar 
    Zhang C-J, Pan J, Duan C-H, Wang Y-M, Liu Y, Sun J, et al. Prokaryotic diversity in mangrove sediments across southeastern China fundamentally differs from that in other biomes. mSystems 2019;4:e00442–19.Article 
    CAS 

    Google Scholar 
    Peng Y, Leung HC, Yiu SM, Chin FY. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012;28:1420–8.Article 
    CAS 

    Google Scholar 
    Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015;31:1674–6.Article 
    CAS 

    Google Scholar 
    Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.Article 

    Google Scholar 
    Zhang C-J, Pan J, Liu Y, Duan C-H, Li M. Genomic and transcriptomic insights into methanogenesis potential of novel methanogens from mangrove sediments. Microbiome. 2020;8:94.Article 
    CAS 

    Google Scholar 
    Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 2015;3:e1165.Article 

    Google Scholar 
    Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836–43.Article 
    CAS 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.Article 
    CAS 

    Google Scholar 
    Olm MR, Brown CT, Brooks B, Banfield JF. dRep: A tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.Article 
    CAS 

    Google Scholar 
    Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2019;36:1925–7.
    Google Scholar 
    Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.Article 
    CAS 

    Google Scholar 
    Huerta-Cepas J, Forslund K, Szklarczyk D, Jensen LJ, von Mering C, Bork P. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–22.Article 
    CAS 

    Google Scholar 
    Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29–W37.Article 
    CAS 

    Google Scholar 
    Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:e1002195.Article 
    CAS 

    Google Scholar 
    Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.Article 
    CAS 

    Google Scholar 
    Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009;25:1972–3.Article 

    Google Scholar 
    Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.Article 
    CAS 

    Google Scholar 
    Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. Plos ONE. 2010;5:e9490.Article 

    Google Scholar 
    Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–5.Article 
    CAS 

    Google Scholar 
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021;596:583–9.Article 
    CAS 

    Google Scholar 
    Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–61.CAS 

    Google Scholar 
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.Article 
    CAS 

    Google Scholar 
    Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinforma (Oxf, Engl). 2010;26:841–2.Article 
    CAS 

    Google Scholar 
    Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1754–60.Article 
    CAS 

    Google Scholar  More

  • in

    Variable effects of vegetation characteristics on a recreation service depending on natural and social environment

    Study areaWe focused on hiking activity in the four main islands of Japan (Honshu, Hokkaido, Kyushu, and Shikoku) and nearby small islands connected to the main islands by a bridge (Fig. 1a). These islands lie between latitudes 31.0° and 45.5°N, and the total area is 361,000 km2. The islands are generally mountainous and tallest mountains in central Honshu exceed 3000 m a.s.l. (Fig. 1c). In Tokyo, mean monthly temperatures range between 5.2 °C in January and 26.4 °C in August, while they range between − 18.4 °C in January and 6.2 °C in August at the summit of the highest mountain, Mt. Fuji (3776 m a.s.l., Japan Meteorological Agency). In northern Honshu and Hokkaido, snow depth can exceed 1 m even at low elevations and high mountains are covered with snow even in southern Japan.Vegetation excluding farmland and pasture covers 70.9% of the study area and the 93.9% is forest. Plantations of mostly evergreen conifers such as Japanese cedar (Cryptomeria japonica) occupy 37.6% of the vegetation area (National Surveys on the Natural Environment by the Biodiversity Center of Japan 2nd–7th; http://www.biodic.go.jp/trialSystem/top_en.html). Secondary vegetation after past human disturbances occupies 39.4% of the total vegetation and the remaining 23.0% is primary vegetation. The typical primary vegetation types are, from north to south, boreal mixed forest, deciduous broad leaved forest, and evergreen broad leaved forest.Grid squaresRecords of hiking activity were summarized for 4244 secondary grid squares based on Standard Grid Square System, which was defined by the Minister’s Order of Administrative Management Agency in 1973. In the system, the secondary grid was defined as a grid of 5′ in latitude and 7′ 30″ in longitude, which roughly corresponds to a 10 km grid in the study area. This is the standard grid system of the government and we adopted the system for convenience in future application uses and communication with practitioners. The grids, which are defined by latitude and longitude, are different in the area up to 22% between the north and south ends. Therefore, area of each grid was included in a model as an offset term.Hiking activityAccording to a government survey in 2016, (the Survey on Time Use and Leisure Activities by the Statistics Bureau of Japan, http://www.stat.go.jp/english/data/shakai/index.htm), 10.0% (about 10.7 million people) of Japan’s population age 15 or over enjoyed hiking/mountaineering in the last year. The census showed also that hiking is more popular among urban residents in the metropolitan areas. Both multi-day expedition to high mountains and day trek to low mountains in suburban areas are popular. Because of the severe winter climate, unskilled hikers use the high mountains in summer and early autumn only. During a summer vacation, whose peak time in Japan is August, many hikers enjoy multi-day trips to distant mountains. Spring and autumn are also popular seasons because of the mild weather and the scenic beauty of the fresh green or autumn colors.Data collectionIn this study, we used number of hiking records accumulated on the most popular social networking service for hikers in Japan (Yamareco; https://www.yamareco.com) as a surrogate for flow of recreation service. For all the registered destinations in the study area, the number of hiking records for each month and the latitude and longitude of the destination were collected from the service in September 2016 with the rvest28 package in R software29. This service launched in October 2005 hosts records of the hiking route, photos, participants, and impressions of a hiking trip and facilitates communication among users. Although monthly number of records for each destination is always available on the site, the exact date of each hiking record is not always public information for privacy reasons; therefore, all of the records from the almost 11 years since the start of the service were lumped together in our analysis. Hikers may record multiple places in a single trip, so the total number of records must be larger than the number of unique trips. Users of the service sometime record a place that is not a destination, e.g. start points and stations of trails, parking areas, stations of transports, and bus stops. Such records were excluded before analyses as far as it can be judged from the name of the place. As a result, the total number of hiking records was 4,708,229 records for 16,179 destinations. Finally, these records were assigned to the 4244 grids based on the latitude and longitude of each destination and then total number of records for each grid was used as a surrogate of the recreation service flow in our analysis. Not only total number but also monthly number was used in our analysis to examine seasonal changes in associations between the service and vegetation. Total record number of the grids was strongly right-skewed; no record (handled as 0 in our analysis) was found in 2036 grids while mean and maximum record number were 1109 and 350,384, respectively.Explanation variablesFifty ecological, environmental, and social/infrastructural variables (Table S1) were prepared for each grid by using ArcGIS version 10.5 (ESRI, Redlands, CA, USA). For vegetation and land-use attributes, National Surveys on the Natural Environment by the Biodiversity Center of Japan (2nd–7th; http://www.biodic.go.jp/trialSystem/top_en.html) and National Land Numerical Information (http://nlftp.mlit.go.jp/ksj-e/index.html) were used. The proportion of sea, that of total vegetation cover (excluding agricultural land and pasture) to land area, that of agricultural land (including pasture) to land area, that of natural vegetation (vegetation excluding plantations) to total vegetated area, and that of primary vegetation (vegetation with no record or evidence of a disturbance) to natural vegetation were summarized at four spatial scales: a radius of 10 km, 20 km, 50 km, and 100 km from the center of each grid. Spatial patterns of the three vegetation variables in 10 km radius were summarized in Fig. 1d–f.Maximum elevation, minimum elevation, and ruggedness (index of topographic heterogeneity30) were summarized at the four spatial scales based on a digital elevation model (10-m resolution) provided by the Geospatial Information Authority of Japan (https://fgd.gsi.go.jp/download/menu.php). For climatic variables (annual and monthly mean temperature, annual and monthly precipitation, annual and monthly hours of sunshine, and annual maximum snow depth), the National Land Numeric Information provided by the Ministry of Land, Infrastructure, Transport and Tourism of Japan (http://nlftp.mlit.go.jp/ksj-e/index.html) was referenced. Densities of population and roads at the four spatial scales were prepared from population census data from the Statistics Bureau of Japan (http://e-stat.go.jp/SG2/eStatGIS/page/download.html) and the National Land Numeric Information. For calculation of these densities, the sea surface was excluded. In addition, latitude and longitude of center of each grid were also used as explanatory variables to average effects of spatial coordinates.Statistical analysisIn this study, we employed BRT, a machine-learning method based on regression trees31 for modeling the complex relationship between a CES flow and landscape attributes12. BRT is an ensemble learning method where multiple regression trees are sequentially combined to minimize the loss function by means of gradient descent. This technique has advantage in the development of a model with a high predictive performance, in which high-dimensional interactions among explanatory variables and nonlinear responses are fully accounted for. In ecology, BRT has been frequently used for modeling of a species distribution32.Total and monthly numbers of hiking records were modeled as a function of the 50 variables described above under the assumption of a Poisson response. For temperature, precipitation, and hours of sunshine, annual and monthly average were used for the analysis of total and monthly records, respectively. In modeling by BRT, parameters for building of each learner and assembly of the learners must be carefully chosen to maximize generalization ability of a model31. In our case, candidate parameters were 2, 5, and 10 for the maximum depth of variable interactions for each learner; 2, 5, 10, and 20 for the minimum number of observations in the terminal nodes for each learner; 0.5 and 0.75 for the proportion of training data used for building each learner; and 1000, 2000, 4000, 6000, 8000 and 10,000 for the total number of learners (Table S2). In the model assembling process, the value of 0.01 was used as a shrinkage parameter. Ten-fold cross validation was used to obtain the best suites of parameters. R2 based on sum of squares:$${R}^{2}=1-frac{{sum ({y}_{i}-widehat{{y}_{i}})}^{2}}{{sum ({y}_{i}-overline{{y }_{i}})}^{2}}$$
    was used for evaluation of the model’s prediction performance. The importance of explanatory variables was evaluated as an increase of mean absolute error after 100-times permutation of a variable33.Effects of each explanatory variable (a landscape attribute) on the response variable (record number) and the context dependence were visually inspected by individual conditional expectation (ICE) plot34. ICE plot visualizes the effect of a given explanatory variable for each observation by connecting outcome of a model for shifting values of the focal explanatory variable throughout the range while keeping other explanatory variables as the original value. Predictions were performed in log-scale and each line was centered to be zero at the left end of the x-axis to show relative effects of explanatory variables (c-ICE plot sensu Goltstein et al.34). Each line in ICE plot can be colored based on value of the second explanatory variable to assist assessment of the interactive effects of the two predictors. Friedman’s H statistic35 was used to detect explanatory variables whose interaction with the vegetation variables are important and therefore should be used for color-coding of an ICE plot. Friedman’s H is defined as a proportion of variance of partial dependence estimates explained by interactive effects for arbitrary suites of explanatory variables.Then, expected impacts of 0.1 decrease in the three local vegetation variables were assessed by the trained model and mapped. Although vegetation variables were sometimes more important at larger spatial scales (see “Results”), we focused on vegetation at a local (10 km radius) scale because most changes in vegetation occur at the scale in Japan (National Surveys on the Natural Environment by the Biodiversity Center of Japan, https://www.biodic.go.jp/kiso/fnd_list_h.html).All statistical analyses were performed using the R software packag29. The gbm36 package was used for BRT, the iml37 package was used for calculation of Friedman’s H statistic, and the cv.models (Oguro, https://github.com/Marchen/cv.models) packages was used for cross validation and parameter tuning. More

  • in

    Spatial genetic structure of European wild boar, with inferences on late-Pleistocene and Holocene demographic history

    Ai H, Fang X, Yang B, Huang Z, Chen H, Mao L et al. (2015) Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing. Nat Genet 47:217–225Article 
    CAS 

    Google Scholar 
    Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:1655–1664Article 
    CAS 

    Google Scholar 
    Alexandri P, Megens HJ, Crooijmans RPMA, Groenen MAM, Goedbloed DJ, Herrero-Medrano JM et al. (2017) Distinguishing migration events of different timing for wild boar in the Balkans. J Biogeogr 44:259–270Article 

    Google Scholar 
    Alexandri P, Triantafyllidis A, Papakostas S, Chatzinikos E, Platis P, Papageorgiou N et al. (2012) The Balkans and the colonization of Europe: the post-glacial range expansion of the wild boar, Sus scrofa. J Biogeogr 39:713–723Article 

    Google Scholar 
    Alves PC, Pinheiro I, Godinho R, Vicente JJ, Gortázar C, Scandura M et al. (2010) Genetic diversity of wild boar populations and domestic pig breeds (Sus scrofa) in South-western Europe. Biol J Linn Soc 101:797–822Article 

    Google Scholar 
    Apollonio M, Andersen R, Putman R (2010) European ungulates and their management in the 21st century (M Apollonio, R Andersen, and R Putman, Eds.) Cambridge University Press: Cambridge, UKAzzaroli A, De Giuli C, Ficcarelli G, Torre D (1988) Late pliocene to early mid-pleistocene mammals in Eurasia: Faunal succession and dispersal events. Palaeogeogr Palaeoclimatol Palaeoecol 66:77–100Article 

    Google Scholar 
    Bérénos C, Ellis PA, Pilkington JG, Pemberton JM (2016) Genomic analysis reveals depression due to both individual and maternal inbreeding in a free‐living mammal population. Mol Ecol 25:3152–3168Article 

    Google Scholar 
    Braga RT, Rodrigues JFM, Diniz-Filho JAF, Rangel TF (2019) Genetic population structure and allele surfing during range expansion in dynamic habitats. An da Academia Brasileira de Ciências 91:e20180179Article 

    Google Scholar 
    Bragina EV, Ives AR, Pidgeon AM, Kuemmerle T, Baskin LM, Gubar YP, Piquer-Rodríguez M, Keuler NS, Petrosyan VG, Radeloff VC (2015) Rapid Declines of Large Mammal Populations after the Collapse of the Soviet Union. Cons Biol 29:844–853Article 

    Google Scholar 
    Brewer S, Cheddadi R, de Beaulieu JL, Reille M, Allen J, Almqvist-Jacobson H et al. (2002) The spread of deciduous Quercus throughout Europe since the last glacial period. For Ecol Manag 156:27–48Article 

    Google Scholar 
    Cahill S, Llimona F, Cabañeros L, Calomardo F (2012) Characteristics of wild boar (Sus scrofa) habituation to urban areas in the Collserola Natural Park (Barcelona) and comparison with other locations. Anim Biodivers Conserv 35:221–233Article 

    Google Scholar 
    Canu A, Costa S, Iacolina L, Piatti P, Apollonio M, Scandura M (2014) Are captive wild boar more introgressed than free-ranging wild boar? Two case studies in Italy. Eur J Wildl Res 60:459–467Article 

    Google Scholar 
    Canu A, Vilaça STT, Iacolina L, Apollonio M, Bertorelle G, Scandura M (2016) Lack of polymorphism at the MC1R wild-type allele and evidence of domestic allele introgression across European wild boar populations. Mamm Biol 81:477–479Article 

    Google Scholar 
    Carranza J, Salinas M, de Andrés D, Pérez-González J (2016) Iberian red deer: paraphyletic nature at mtDNA but nuclear markers support its genetic identity. Ecol Evol 6:905–922Article 

    Google Scholar 
    Chang CC, Chow CC, Tellier LCAM, Vattikuti S, Purcell SM, Lee JJ (2015) Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 4:1–16Article 

    Google Scholar 
    Cheddadi R, Bar-Hen A (2009) Spatial gradient of temperature and potential vegetation feedback across Europe during the late Quaternary. Clim Dyn 32:371–379Article 

    Google Scholar 
    Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B et al. (2009) The Last Glacial Maximum. Science 325:710–714Article 
    CAS 

    Google Scholar 
    DeGiorgio M, Rosenberg NA (2013) Geographic sampling scheme as a determinant of the major axis of genetic variation in principal components analysis. Mol Biol Evol 30:480–488Article 
    CAS 

    Google Scholar 
    Deinet S, Ieronymidou C, McRae L, Burfield IJ, Foppen RP, Collen B, et al. (2013) Wildlife comeback in Europe. The recovery of selected mammal and bird species. London, UKEckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol Ecol 17:1170–1188Article 
    CAS 

    Google Scholar 
    Fang M, Berg F, Ducos A, Andersson L (2006) Mitochondrial haplotypes of European wild boars with 2n = 36 are closely related to those of European domestic pigs with 2n = 38. Anim Genet 37:459–464Article 
    CAS 

    Google Scholar 
    Ferenčaković M, Sölkner J, Curik I (2013) Estimating autozygosity from high-throughput information: Effects of SNP density and genotyping errors. Genet Sel Evol 45:42Article 

    Google Scholar 
    Ferreira E, Souto L, Soares AMVM, Fonseca C (2009) Genetic structure of the wild boar population in Portugal: Evidence of a recent bottleneck. Mamm Biol 74:274–285Article 

    Google Scholar 
    Franois O, Currat M, Ray N, Han E, Excoffier L, Novembre J (2010) Principal component analysis under population genetic models of range expansion and admixture. Mol Biol Evol 27:1257–1268Article 

    Google Scholar 
    Frantz AC, Bertouille S, Eloy MC, Licoppe A, Chaumont F, Flamand MC (2012) Comparative landscape genetic analyses show a Belgian motorway to be a gene flow barrier for red deer (Cervus elaphus), but not wild boars (Sus scrofa). Mol Ecol 21:3445–3457Article 
    CAS 

    Google Scholar 
    Fulgione D, Rippa D, Buglione M, Trapanese M, Petrelli S, Maselli V (2016) Unexpected but welcome. Artificially selected traits may increase fitness in wild boar. Evol Appl 9:769–776Article 
    CAS 

    Google Scholar 
    Goedbloed DJ, Megens HJ, van Hooft P, Herrero-Medrano JM, Lutz W, Alexandri P et al. (2013a) Genome-wide single nucleotide polymorphism analysis reveals recent genetic introgression from domestic pigs into Northwest European wild boar populations. Mol Ecol 22:856–866Article 
    CAS 

    Google Scholar 
    Goedbloed DJ, van Hooft P, Megens HJ, Langenbeck K, Lutz W, Crooijmans RPMA et al. (2013b) Reintroductions and genetic introgression from domestic pigs have shaped the genetic population structure of Northwest European wild boar. BMC Genet 14:2–10Article 

    Google Scholar 
    Groenen MAM, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF et al. (2012) Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491:393–398Article 
    CAS 

    Google Scholar 
    Herrero-Medrano JM, Megens H-J, Groenen MAM, Ramis G, Bosse M, Pérez-Enciso M et al. (2013) Conservation genomic analysis of domestic and wild pig populations from the Iberian Peninsula. BMC Genet 14:1–13Article 

    Google Scholar 
    Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68:87–112Article 

    Google Scholar 
    Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc Lond Ser B Biol Sci 359:183–195Article 
    CAS 

    Google Scholar 
    Hiemstra PH, Pebesma EJ, Twenhöfel CJW, Heuvelink GBM (2009) Real-time automatic interpolation of ambient gamma dose rates from the Dutch radioactivity monitoring network. Comput Geosci 35:1711–1721Article 
    CAS 

    Google Scholar 
    Howrigan DP, Simonson MA, Keller MC (2011) Detecting autozygosity through runs of homozygosity: a comparison of three autozygosity detection algorithms. BMC Genomics 12:460Article 
    CAS 

    Google Scholar 
    Huisman J, Kruuk LEB, Ellis PA, Clutton-Brock T, Pemberton JM (2016) Inbreeding depression across the lifespan in a wild mammal population. Proc Natl Acad Sci 113:3585–3590Article 
    CAS 

    Google Scholar 
    Iacolina L, Corlatti L, Buzan E, Safner T, Šprem N (2019) Hybridisation in European ungulates: an overview of the current status, causes, and consequences. Mamm Rev 49:45–59Article 

    Google Scholar 
    Iacolina L, Pertoldi C, Amills M, Kusza S, Megens H-J, Bâlteanu VA et al. (2018) Hotspots of recent hybridization between pigs and wild boars in Europe. Sci Rep. 8:17372Article 
    CAS 

    Google Scholar 
    Iacolina L, Scandura M, Goedbloed DJ, Alexandri P, Crooijmans RPMA, Larson G et al. (2016) Genomic diversity and differentiation of a managed island wild boar population. Heredity 116:60–67Article 
    CAS 

    Google Scholar 
    Jombart T, Ahmed I (2011) adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27:1–2Article 

    Google Scholar 
    de Jong JF, Hooft van P, Megens HJ, Crooijmans RPMA, Groot de GA, Pemberton JM, Huisman J et al. (2020) Fragmentation and translocation distort the genetic landscape of ungulates: red deer in the Netherlands. Front Ecol Evol 8:535715Article 

    Google Scholar 
    Kamvar ZN, Tabima JF, Grünwald NJ (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281Article 

    Google Scholar 
    Kardos M, Åkesson M, Fountain T, Flagstad Ø, Liberg O, Olason P et al. (2018) Genomic consequences of intensive inbreeding in an isolated wolf population. Nat Ecol Evol 2:124–131Article 

    Google Scholar 
    Kaplan JO, Krumhardt KM, Zimmermann N (2009) The prehistoric and preindustrial deforestation of Europe. Quat Sci Rev 28:3016–3034. https://doi.org/10.1016/j.quascirev.2009.09.028Koemle D, Zinngrebe Y, Yu X (2018) Highway construction and wildlife populations: Evidence from Austria. Land use policy 73:447–457Article 

    Google Scholar 
    Krže B (1982) Divji prašič: biologija, gojitev, ekologija. Lovska zveza Slovenije, Ljubljana
    Google Scholar 
    Kusza S, Podgórski T, Scandura M, Borowik T, Jávor A, Sidorovich VE et al. (2014) Contemporary genetic structure, phylogeography and past demographic processes of wild boar Sus scrofa population in central and eastern Europe. PLoS One 9:e91401Article 

    Google Scholar 
    Lorenzini R, Lovari S, Masseti M (2002) The rediscovery of the Italian roe deer: Genetic differentiation and management implications. Ital J Zool 69(4):367–379Article 

    Google Scholar 
    Lorenzini R, San José C, Braza F, Aragón S (2003) Genetic differentiation and phylogeography of roe deer in Spain, as suggested by mitochondrial DNA and microsatellite analysis. Ital J Zool 70(1):89–99Article 
    CAS 

    Google Scholar 
    Magri D (2013) Early to Middle Pleistocene dynamics of plant and mammal communities in South West Europe. Quat Int 288:63–72Article 

    Google Scholar 
    Manunza A, Zidi A, Yeghoyan S, Balteanu VA, Carsai TC, Scherbakov O et al. (2013) A high throughput genotyping approach reveals distinctive autosomal genetic signatures for European and Near Eastern wild boar. PLoS One 8:e55891Article 
    CAS 

    Google Scholar 
    Maselli V, Rippa D, De Luca A, Larson G, Wilkens B, Linderholm A et al. (2016) Southern Italian wild boar population, hotspot of genetic diversity. Hystrix 27:137–144
    Google Scholar 
    McVean G (2009) A genealogical interpretation of principal components analysis. PLoS Genet 5:e1000686Article 

    Google Scholar 
    Megens H-J, Crooijmans RP, Cristobal M, Hui X, Li N, Groenen MA (2008) Biodiversity of pig breeds from China and Europe estimated from pooled DNA samples: differences in microsatellite variation between two areas of domestication. Genet Sel Evol 40:103
    Google Scholar 
    Melis C, Szafrańska PA, Jȩdrzejewska B, Bartoń K (2006) Biogeographical variation in the population density of wild boar (Sus scrofa) in western Eurasia. J Biogeogr 33:803–811Article 

    Google Scholar 
    Mihalik B, Stéger V, Frank K, Szendrei L, Kusza S (2018) Barrier effect of the M3 highway in Hungary on the genetic diversity of wild boar (Sus scrofa) population. Res J Biotechnol 13:32–38
    Google Scholar 
    NCBI (2018) Genome Organism Overview: Sus scrofa (pig). https://www.ncbi.nlm.nih.gov/genome?term=sus%20scrofa%20%5BOrganism%5D&cmd=DetailsSearch&report=OverviewNikolov IS, Gum B, Markov G, Kuehn R (2009) Population genetic structure of wild boar Sus scrofa in Bulgaria as revealed by microsatellite analysis. Acta Theriol (Warsz) 54:193–205Article 

    Google Scholar 
    Nykänen M, Rogan E, Foote AD, Kaschner K, Dabin W, Louis M et al. (2019) Postglacial colonization of northern coastal habitat by bottlenose dolphins: a marine leading-edge expansion? J Hered 110:662–674Article 

    Google Scholar 
    Palombo M, Romana AV-G (2003) Remarks on the biochronology of mammalian faunal complexes from the Pliocene to the Middle Pleistocene in France. Geol Rom: 145–163Paradis E, Claude J, Strimmer K (2004) APE: analysis of phylogenetics and evolution in R language. Bioinformatics 20:289–290Article 
    CAS 

    Google Scholar 
    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D et al (2007) PLINK: A tool Set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575. www.cog-genomics.org/plink/1.9/Putman R, Apollonio M, Andersen R (2011) Ungulate management in Europe: problems and practices. Cambridge University Press, Cambridge, UKBook 

    Google Scholar 
    R Core Team (2018) R: A language and environment for statistical computing. Vienna, AustriaRejduch B, Sota E, Ró M, Ko M (2003) Chromosome number polymorphism in a litter of European wild boar (Sus scrofa scrofa L.). Anim Sci Pap Rep. 21:57–62
    Google Scholar 
    Scandura M, Iacolina L, Apollonio M (2011a) Genetic diversity in the European wild boar Sus scrofa: phylogeography, population structure and wild x domestic hybridization: Genetic variation in European wild boar. Mamm Rev 41:125–137Article 

    Google Scholar 
    Scandura M, Iacolina L, Cossu A, Apollonio M (2011b) Effects of human perturbation on the genetic make-up of an island population: The case of the Sardinian wild boar. Heredity 106:1012–1020Article 
    CAS 

    Google Scholar 
    Scandura M, Iacolina L, Crestanello B, Pecchioli E, Di Benedetto MF, Russo V et al. (2008) Ancient vs. recent processes as factors shaping the genetic variation of the European wild boar: Are the effects of the last glaciation still detectable? Mol Ecol 17:1745–1762Article 
    CAS 

    Google Scholar 
    Scandura M, Fabbri G, Caniglia R, Iacolina L, Mattucci F, Mengoni C, Pante G, Apollonio M, Mucci N (2022) Resilience to Historical Human Manipulations in the Genomic Variation of Italian Wild Boar Populations. Front Ecol Evol 10:833081Article 

    Google Scholar 
    Schmitt T, Varga Z (2012) Extra-Mediterranean refugia: the rule and not the exception. Front Zool 9:22Article 

    Google Scholar 
    Sommer RS, Fahlke JM, Schmölcke U, Benecke N, Zachos FE (2009) Quaternary history of the European roe deer Capreolus capreolus. Mamm Rev 39:1–16Article 

    Google Scholar 
    Sommer RS, Nadachowski A (2006) Glacial refugia of mammals in Europe: evidence from fossil records. Mamm Rev 36:251–265Article 

    Google Scholar 
    Sommer RS, Zachos FE (2009) Fossil evidence and phylogeography of temperate species: ‘glacial refugia’ and post-glacial recolonization. J Biogeogr 36:2013–2020Article 

    Google Scholar 
    Sommer RS, Zachos FE, Street M, Jöris O, Skog A, Benecke N (2008) Late Quaternary distribution dynamics and phylogeography of the red deer (Cervus elaphus) in Europe. Quat Sci Rev 27:714–733Article 

    Google Scholar 
    Stillfried M, Fickel J, Börner K, Wittstatt U, Heddergott M, Ortmann S et al. (2017) Do cities represent sources, sinks or isolated islands for urban wild boar population structure? J Appl Ecol 54:272–281Article 

    Google Scholar 
    Taberlet P, Fumagalli L, Wust-Saucy AG, Cossons JF (1998) Comparative phylogeography and post-glacial colonization routes in Europe. Mol Ecol 7:453–461.Article 
    CAS 

    Google Scholar 
    Veličković N, Djan M, Ferreira E, Stergar M, Obreht D, Maletić V et al. (2015) From north to south and back: the role of the Balkans and other southern peninsulas in the recolonization of Europe by wild boar. J Biogeogr 42:716–728Article 

    Google Scholar 
    Veličković N, Ferreira E, Djan M, Ernst M, Obreht Vidaković D, Monaco A et al. (2016) Demographic history, current expansion and future management challenges of wild boar populations in the Balkans and Europe. Heredity 117:348–357Article 

    Google Scholar 
    Vernesi C, Crestanello B, Pecchioli E, Tartari D, Caramelli D, Hauffe H et al. (2003) The genetic impact of demographic decline and reintroduction in the wild boar (Sus scrofa): A microsatellite analysis. Mol Ecol 12:585–595Article 
    CAS 

    Google Scholar 
    Vilaça ST, Biosa D, Zachos F, Iacolina L, Kirschning J, Alves PC et al. (2014) Mitochondrial phylogeography of the European wild boar: The effect of climate on genetic diversity and spatial lineage sorting across Europe. J Biogeogr 41:987–998Article 

    Google Scholar 
    Zachos FE, Frantz AC, Kuehn R, Bertouille S, Colyn M, Niedziałkowska M et al. (2016) Genetic structure and effective population sizes in European red deer (Cervus elaphus) at a continental scale: insights from microsatellite DNA. J Hered 107:318–326 More

  • in

    Global patterns of climate change impacts on desert bird communities

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Bowler, D. E. et al. Cross-realm assessment of climate change impacts on species’ abundance trends. Nat. Ecol. Evol. 1, 1–7 (2017).Article 

    Google Scholar 
    Barrett, J. E. et al. Persistent effects of a discrete warming event on a polar desert ecosystem. Glob. Change Biol. 14, 2249–2261 (2008).Article 
    ADS 

    Google Scholar 
    Gooseff, M. N. et al. Decadal ecosystem response to an anomalous melt season in a polar desert in Antarctica. Nat. Ecol. Evol. 1, 1334–1338 (2017).Article 

    Google Scholar 
    Iknayan, K. J. & Beissinger, S. R. In transition: Avian biogeographic responses to a century of climate change across desert biomes. Glob. Change Biol. 26, 3268–3284 (2020).Article 
    ADS 

    Google Scholar 
    Conradie, S. R., Woodborne, S. M., Cunningham, S. J. & McKechnie, A. E. Chronic, sublethal effects of high temperatures will cause severe declines in southern African arid-zone birds during the 21st century. Proc. Natl Acad. Sci. USA 116, 14065–14070 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    du Plessis, K. L., Martin, R. O., Hockey, P. A. R., Cunningham, S. J. & Ridley, A. R. The costs of keeping cool in a warming world: implications of high temperatures for foraging, thermoregulation and body condition of an arid-zone bird. Glob. Change Biol. 18, 3063–3070 (2012).Article 
    ADS 

    Google Scholar 
    Ward, D. The Biology of Deserts (OUP Oxford, 2016).Reid, V. W. et al. Millennium Ecosystem Assessment, 2005. In Ecosystems and Human Well-being: Synthesis (Island Press, 2005).Zhou, L., Chen, H. & Dai, Y. Stronger warming amplification over drier ecoregions observed since 1979. Environ. Res. Lett. 10, 064012 (2015).Article 
    ADS 

    Google Scholar 
    Hoegh-Guldberg, O. et al. 2018: Impacts of 1.5ºC Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (eds Masson-Delmotte, V. et al.) Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 175-312, https://doi.org/10.1017/9781009157940.005.Albright, T. P. et al. Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration. Proc. Natl Acad. Sci. USA 114, 2283–2288 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Friedrich, T., Timmermann, A., Tigchelaar, M., Timm, O. E. & Ganopolski, A. Nonlinear climate sensitivity and its implications for future greenhouse warming. Sci. Adv. 2, e1501923 (2016).Article 
    ADS 

    Google Scholar 
    Kearney, M. R. & Porter, W. P. NicheMapR—an R package for biophysical modelling: the microclimate model. Ecography 40, 664–674 (2017).Article 

    Google Scholar 
    Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367, 1665–1679 (2012).Article 

    Google Scholar 
    Kearney, M. & Porter, W. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12, 334–350 (2009).Article 

    Google Scholar 
    Bicudo, J. E. P., Buttemer, W. A., Chappell, M. A., Pearson, J. T. & Bech, C. Ecological and Environmental Physiology of Birds Vol. 2 (Oxford University Press, 2010).McKechnie, A. E. & Wolf, B. O. Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. Biol. Lett. 6, 253–256 (2010).Article 

    Google Scholar 
    Riddell, E. A. et al. Exposure to climate change drives stability or collapse of desert mammal and bird communities. Science 371, 633–636 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Williams, J. B. & Tieleman, B. I. Physiological adaptation in desert birds. BioScience 55, 416–425 (2005).Article 

    Google Scholar 
    Iknayan, K. J. & Beissinger, S. R. Collapse of a desert bird community over the past century driven by climate change. Proc. Natl Acad. Sci. USA 115, 8597–8602 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Albright, T. P. et al. Combined effects of heat waves and droughts on avian communities across the conterminous United States. Ecosphere 1, art12 (2010).Article 

    Google Scholar 
    Cruz-McDonnell, K. K. & Wolf, B. O. Rapid warming and drought negatively impact population size and reproductive dynamics of an avian predator in the arid southwest. Glob. Change Biol. 22, 237–253 (2016).Article 
    ADS 

    Google Scholar 
    Dawson, W. R. Temperature Regulation and Water Requirements of the Brown and Abert Towhees, Pipilo Fuscus and Pipilo Aberti.[With Plates.] (University of California Press, 1954).Riddell, E. A., Iknayan, K. J., Wolf, B. O., Sinervo, B. & Beissinger, S. R. Cooling requirements fueled the collapse of a desert bird community from climate change. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1908791116 (2019).Wolf, B. Global warming and avian occupancy of hot deserts; a physiological and behavioral perspective. Rev. Chil. Hist. Nat. 73, 395–400 (2000).Article 

    Google Scholar 
    Kier, G. et al. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl Acad. Sci. USA 106, 9322–9327 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Ioffe, S. Improved consistent sampling, weighted Minhash and L1 sketching. In Proceedings of the 2010 IEEE International Conference on Data Mining 246–255 (IEEE Computer Society, 2010).Losos, E., Hayes, J., Phillips, A., Wilcove, D. & Alkire, C. Taxpayer-subsidized resource extraction harms species. BioScience 45, 446–455 (1995).Article 

    Google Scholar 
    Rodríguez-Estrella, R. Land use changes affect distributional patterns of desert birds in the Baja California peninsula, Mexico. Divers. Distrib. 13, 877–889 (2007).Article 

    Google Scholar 
    Stralberg, D. et al. Climate-change refugia in boreal North America: what, where, and for how long? Front. Ecol. Environ. 18, 261–270 (2020).Article 

    Google Scholar 
    Hinkel, J. et al. Sea-level rise scenarios and coastal risk management. Nat. Clim. Change 5, 188–190 (2015).Article 
    ADS 

    Google Scholar 
    He, Q. & Silliman, B. R. Climate change, human impacts, and coastal ecosystems in the anthropocene. Curr. Biol. 29, R1021–R1035 (2019).Article 
    CAS 

    Google Scholar 
    C. B. D. Zero Draft of the Post-2020 Global Biodiversity Framework CBD/WG2020/2/3. https://www.cbd.int/doc/c/efb0/1f84/a892b98d2982a829962b6371/wg2020-02-03-en.pdf Convention on Biology Diversity, Montreal, Canada (2020).Jung, M. et al. A global map of terrestrial habitat types. Sci. Data 7, 256 (2020).Article 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1 km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Meigs, P. World distributions of arid and semi-arid homoclimates. In Review of Research on Arid Zone Hydrology (UNESCO, 1953).Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science 339, 74–78 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci. Data 5, 170191 (2018).Article 

    Google Scholar 
    Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).Article 
    ADS 

    Google Scholar 
    Kearney, M. R. & Porter, W. P. NicheMapR – an R package for biophysical modelling: the microclimate model. Ecography 40, 664–674 (2017).Article 

    Google Scholar 
    Pattinson, N. B. et al. Heat dissipation behaviour of birds in seasonally hot arid-zones: are there global patterns? J. Avian Biol. 51, e02350 (2020).Smith, E. K., O’Neill, J., Gerson, A. R. & Wolf, B. O. Avian thermoregulation in the heat: resting metabolism, evaporative cooling and heat tolerance in Sonoran Desert doves and quail. J. Exp. Biol. 218, 3636–3646 (2015).Article 

    Google Scholar 
    Smith, E. K., O’Neill, J. J., Gerson, A. R., McKechnie, A. E. & Wolf, B. O. Avian thermoregulation in the heat: resting metabolism, evaporative cooling and heat tolerance in Sonoran Desert songbirds. J. Exp. Biol. 220, 3290–3300 (2017).
    Google Scholar 
    Kearney, M. NicheMapR: R implementation of Niche Mapper software for biophysical modelling. https://github.com/mrke/NicheMapR. (2020).Cunningham, S. J., Martin, R. O. & Hockey, P. A. Can behaviour buffer the impacts of climate change on an arid-zone bird? Ostrich 86, 119–126 (2015).Article 

    Google Scholar 
    Czenze, Z. J. et al. Regularly drinking desert birds have greater evaporative cooling capacity and higher heat tolerance limits than non-drinking species. Funct. Ecol. 34, 1589–1600 (2020).Article 

    Google Scholar 
    Smit, B. et al. Avian thermoregulation in the heat: phylogenetic variation among avian orders in evaporative cooling capacity and heat tolerance. J. Exp. Biol. 221, jeb174870 (2018).Worcester, S. E. The scaling of the size and stiffness of primary flight feathers. J. Zool. 239, 609–624 (1996).Article 

    Google Scholar 
    Wang, X., Nudds, R. L., Palmer, C. & Dyke, G. J. Size scaling and stiffness of avian primary feathers: implications for the flight of Mesozoic birds. J. Evol. Biol. 25, 547–555 (2012).Article 
    CAS 

    Google Scholar 
    McKechnie, A. E., Gerson, A. R. & Wolf, B. O. Thermoregulation in desert birds: scaling and phylogenetic variation in heat tolerance and evaporative cooling. J. Exp. Biol. 224, jeb229211 (2021).Flint, L. E., Flint, A. L., Thorne, J. H. & Boynton, R. Fine-scale hydrologic modeling for regional landscape applications: the California Basin Characterization Model development and performance. Ecol. Process. 2, 25 (2013).Article 

    Google Scholar 
    Handbook of the Birds of the World and BirdLife International. Handbook of the Birds of the World and BirdLife International digital checklist of the birds of the world. Version 5. http://datazone.birdlife.org/userfiles/file/Species/Taxonomy/HBW-BirdLife_Checklist_v5_Dec20.zip (2020).Brooks, T. M. et al. Measuring terrestrial Area of Habitat (AOH) and its utility for the IUCN red list. Trends Ecol. Evol. 34, 977–986 (2019).Article 

    Google Scholar 
    Pastore, M. Overlapping: a R package for estimating overlapping in empirical distributions. J. Open Source Softw. 3, 1023 (2018).Article 
    ADS 

    Google Scholar 
    UNEP-WCMC and IUCN, Protected Planet: The World Database on Protected Areas (WDPA) [Online], June 2021, Cambridge, UK: UNEP-WCMC and IUCN www.protectedplanet.net (2021).Butchart, S. H. M. et al. Shortfalls and solutions for meeting national and global conservation area targets. Conserv. Lett. 8, 329–337 (2015).Article 

    Google Scholar 
    Dudley, N. Guidelines for Applying Protected Area Management Categories (ICUN, 2008).Mangiafico, S. rcompanion: Functions to Support Extension Education Program Evaluation. https://CRAN.R-project.org/package=rcompanion. (2021).Crawford, C. L., Estes, L. D., Searchinger, T. D. & Wilcove, D. S. Consequences of underexplored variation in biodiversity indices used for land-use prioritization. Ecol. Appl. 31, e02396 (2021).Article 

    Google Scholar 
    Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).Article 
    ADS 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020). More

  • in

    Partial COVID-19 closure of a national park reveals negative influence of low-impact recreation on wildlife spatiotemporal ecology

    Laundré, J. W., Hernández, L. & Altendorf, K. B. Wolves, elk, and bison: reestablishing the “landscape of fear” in Yellowstone National Park, U.S.A.. Can. J. Zool. 79, 1401–1409 (2001).Article 

    Google Scholar 
    Laundré, J. W., Hernandez, L. & Ripple, W. J. The landscape of fear: Ecological implications of being afraid. Open Ecol. J. 3, 1–7 (2010).Article 

    Google Scholar 
    Suraci, J. P., Clinchy, M., Zanette, L. Y. & Wilmers, C. C. Fear of humans as apex predators has landscape-scale impacts from mountain lions to mice. Ecol. Lett. 22, 1578–1586 (2019).Article 

    Google Scholar 
    Miller, S. G., Knight, R. L. & Miller, C. K. Wildlife responses to pedestrians and dogs. Wildl. Soc. B. 29, 124–132 (2001).
    Google Scholar 
    Larson, C., Reed, S., Merenlender, A. M. & Crooks, K. R. Effects of recreation on animals revealed as widespread through a global systemic review. PLoS ONE 11, 1–21 (2016).Article 

    Google Scholar 
    Balmford, A. et al. Walk on the wild side: Estimating the global magnitude of visits to protected areas. PLoS Biol 13, 1–6 (2015).Article 

    Google Scholar 
    Baker, A. D. & Leberg, P. L. Impacts of human recreation on carnivores in protected areas. PLoS Biol 13, 1–21 (2018).
    Google Scholar 
    Schulze, K. et al. An assessment of threats to terrestrial protected areas. Cons. Lett. 11, 1–10 (2018).Article 

    Google Scholar 
    Suraci, J. P. et al. Disturbance type and species life history predict mammal responses to humans. Glob. Change Biol. 27, 3718–3731 (2021).Article 
    CAS 

    Google Scholar 
    Reilly, M. L., Tobler, M. W., Sonderegger, D. L. & Beier, P. Spatial and temporal response of wildlife to recreational activities in the San Francisco Bay ecoregion. Biol. Conserv. 207, 117–126 (2017).Article 

    Google Scholar 
    Naidoo, R. & Burton, A. C. Relative effects of recreational activities on a temperate terrestrial wildlife assemblage. Conserv. Sci. Pract. 2, e271 (2020).
    Google Scholar 
    Nickel, B. A., Suraci, J. P., Allen, M. L. & Wilmers, C. C. Human presence and human footprint have non-equivalent effects on wildlife spatiotemporal habitat use. Biol. Conserv. 241, 1–11 (2020).Article 

    Google Scholar 
    Blanchet, F. G., Cazelles, K. & Gravel, D. Co-occurrence is not evidence of ecological interactions. Ecol. Lett. 23, 1050–1063 (2020).Article 

    Google Scholar 
    Poggiato, G. et al. On the interpretations of joint modeling in community ecology. TREE 36, 391–401 (2021).
    Google Scholar 
    Bates, A. E., Primack, R. B., Moraga, P. & Duarte, C. M. COVID-19 pandemic and associated lockdown as a “Global Human Confinement Experiment” to investigate biodiversity conservation. Biol. Conserv. 248, 1–6 (2020).Article 

    Google Scholar 
    Rutz, C. et al. COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nat. Ecol. Evol. 4, 1156–1159 (2020).Article 

    Google Scholar 
    Wang, Y., Allen, M. L. & Wilmers, C. C. Mesopredator spatial and temporal responses to large predators and human development in the Santa Cruz Mountains of California. Biol. Conserv. 190, 23–33 (2015).Article 

    Google Scholar 
    Lewis, J. S. et al. Human activity influences wildlife populations and activity patterns: implications for spatial and temporal refuges. Ecosphere 12, 1–16 (2021).Article 

    Google Scholar 
    Corradini, A. et al. Effects of cumulated outdoor activity on wildlife habitat use. Biol. Conserv. 253, 108818 (2021).Article 

    Google Scholar 
    Soule, M. E. et al. Dynamics of rapid extinctions of chaparral-requiring birds in urban habitat islands. Conserv. Biol. 2, 75–92 (1988).Article 

    Google Scholar 
    Feit, B., Feit, A. & Letnic, M. Apex predators decouple population dynamics between mesopredators and their prey. Ecosystems 22, 1606–1617 (2019).Article 

    Google Scholar 
    Berger, J. Fear, human shields and the redistribution of prey and predators in protected areas. Biol. Lett. 3, 620–623 (2007).Article 

    Google Scholar 
    Sarmento, W., Biel, M. & Berger, J. Redistribution, human shields and loss of migratory behavior in the crown of the continent. Intermt. J. Sci. 22, 2016 (2016).
    Google Scholar 
    Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Microsoft. AI for Earth camera trap image processing API (2020).Niedballa, J., Sollmann, R., Courtiol, A. & Wilting, A. camtrapR: an R package for efficient camera trap data management. Methods Ecol. Evol. 7, 1457–1462 (2016).Article 

    Google Scholar 
    MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G. & Franklin, A. B. Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207. https://doi.org/10.1890/02-3090 (2003).Article 

    Google Scholar 
    MacKenzie, D. I. et al. Occupancy estimation and modeling (Elsevier, 2018).
    Google Scholar 
    Fiske, I. & Chandler, R. unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance. J. Stat. Soft. 4, 1–23 (2011).
    Google Scholar 
    Mazerolle, M. J. AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). R package version 2.3-1 (2020). https://cran.r-project.org/package=AICcmodavg.Ladle, A., Steenweg, R., Shepherd, B. & Boyce, M. S. The role of human outdoor recreation in shaping patterns of grizzly bear-black bear co-occurrence. PLoS ONE 13, 1–16 (2018).Article 

    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    Ridout, M. S. & Linkie, M. Estimating overlap of daily activity patterns from camera trap data. J. Agric. Biol. Environ. Stat. 14, 322–337 (2009).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Agostinelli, C. & Lund, U. R package ‘circular’: circular statistics (version 0.4-94.1 (2022). https://r-forge.r-project.org/projects/circular/.Santos, F. et al. Prey availability and temporal partitioning modulate felid coexistence in Neotropical forests. PLoS ONE 14, 1–23 (2019).Article 

    Google Scholar 
    Olea, P. P., Iglesias, N. & Mateo-Tomás, P. Temporal resource partitioning mediates vertebrate coexistence at carcasses: the role of competitive and facilitative interactions. Basic Appl. Ecol. 60, 63–75 (2022).Article 

    Google Scholar 
    Shilling, F. et al. A reprieve from US wildlife mortality on roads during the COVID-19 pandemic. Biol. Conserv. 256, 109013 (2021).Article 

    Google Scholar 
    Behera, A. K. et al. The impacts of COVID-19 lockdown on wildlife in Deccan Plateau. India. Sci. Total Environ. 822, 153268 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Procko, M., Naidoo, R., LeMay, V. & Burton, A. C. Human impacts on mammals in and around a protected area before, during, and after COVID-19 lockdowns. Conserv. Sci. Pract. 4, e12743. https://doi.org/10.1111/csp2.12743 (2022).Article 

    Google Scholar 
    Sanderfoot, O. V., Kaufman, J. D. & Gardner, B. Drivers of avian habitat use and detection of backyard birds in the Pacific Northwest during COVID-19 pandemic lockdowns. Sci. Rep. 12, 12655 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Nevin, J. A. & Grace, R. C. Behavioral momentum and the law of effect. Behav. Brain Sci. 23, 73–90 (2000).Article 
    CAS 

    Google Scholar 
    Kautz, T. M. et al. Large carnivore response to human road use suggests a landscape of coexistence. Glob. Ecol. Conserv. 30, e01772 (2021).Article 

    Google Scholar 
    Frey, S., Volpe, J. P., Heim, N. A., Paczkowski, J. & Fisher, J. T. Move to nocturnality not a universal trend in carnivore species on disturbed landscapes. Oikos 129, 1128–1140 (2020).Article 

    Google Scholar 
    Schwartz, C. C. et al. Contrasting activity patterns of sympatric and allopatric black and grizzly bears. J. Wildl. Manag. 74, 1628–1638 (2010).Article 

    Google Scholar 
    Fortin, J. K. et al. Impacts of human recreation on brown bears (Ursus arctos): a review and new management tool. PLoS ONE 11, 1–26 (2016).Article 

    Google Scholar 
    Kendall, K. C. et al. Grizzly bear density in Glacier National Park. Montana. J. Wildl. Manag. 72, 1693–1705 (2008).Article 

    Google Scholar 
    Stetz, J. B., Kendall, K. C. & Macleod, A. C. Black bear density in Glacier National Park, Montana. Wildl. Soc. Bull. 38, 60–70 (2014).Article 

    Google Scholar 
    Sargeant, A. B. & Allen, S. H. Observed interactions between coyotes and red foxes. J. Mamm. 70, 631–633 (1989).Article 

    Google Scholar 
    Newsome, T. M. & Ripple, W. J. A continental scale trophic cascade from wolves through coyotes to foxes. J. Anim. Ecol. 84, 49–59 (2015).Article 

    Google Scholar 
    Naylor, L. M., Wisdom, M. J. & Anthony, R. G. Behavioral responses of North American elk to recreational activity. J. Wildl. Manag. 73, 328–338 (2009).Article 

    Google Scholar 
    Sarmento, W. M. & Berger, J. Human visitation limits the utility of protected areas as ecological baselines. Biol. Conserv. 212, 316–326 (2017).Article 

    Google Scholar 
    Garber, S. D. & Burger, J. A 20-year study documenting the relationship between turtle decline and human recreation. Ecol. Appl. 5, 1151–1162 (1995).Article 

    Google Scholar 
    Winter, P. L., Selin, S., Cerveny, L. & Bricker, K. Outdoor recreation, nature-based tourism, and sustainability. Sustainability 12, 1–12 (2020).
    Google Scholar 
    Geffroy, B., Samia, D. S. M., Bessa, E. & Blumstein, D. T. How nature-based tourism might increase prey vulnerability to predators. TREE 30, 755–765 (2015).
    Google Scholar 
    Eagles, P. F. J., McCool, S. F. & Haynes, C. D. Sustainable Tourism in Protected Areas: Guidelines for Planning and Management Vol. 8 (IUCN, 2002).Book 

    Google Scholar  More

  • in

    Gene loss and symbiont switching during adaptation to the deep sea in a globally distributed symbiosis

    Cavanaugh CM, McKiness ZP, Newton ILG, Stewart FJ. Marine chemosynthetic symbioses. Prokaryotes. 2006;1:475–507.Article 

    Google Scholar 
    Beinart RA, Luo C, Konstantinidis KT, Stewart FJ, Girguis PR. The bacterial symbionts of closely related hydrothermal vent snails with distinct geochemical habitats show broad similarity in chemoautotrophic gene content. Front Microbiol. 2019;10:1818.Article 

    Google Scholar 
    Robidart JC, Bench SR, Feldman RA, Novoradovsky A, Podell SB, Gaasterland T, et al. Metabolic versatility of the Riftia pachyptila endosymbiont revealed through metagenomics. Environ Microbiol. 2008;10:727–37.Article 
    CAS 

    Google Scholar 
    Ponnudurai R, Sayavedra L, Kleiner M, Heiden SE, Thürmer A, Felbeck H, et al. Genome sequence of the sulfur-oxidizing Bathymodiolus thermophilus gill endosymbiont. Stand Genom Sci. 2017;12:50.Article 

    Google Scholar 
    Duperron S, Bergin C, Zielinski F, Blazejak A, Pernthaler A, McKiness ZP, et al. A dual symbiosis shared by two mussel species, Bathymodiolus azoricus and Bathymodiolus puteoserpentis (Bivalvia: Mytilidae), from hydrothermal vents along the northern Mid-Atlantic Ridge. Environ Microbiol. 2006;8:1441–7.Article 
    CAS 

    Google Scholar 
    Dubilier N, Bergin C, Lott C. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol. 2008;6:725–40.Article 
    CAS 

    Google Scholar 
    Sogin EM, Leisch N, Dubilier N. Chemosynthetic symbioses. Curr Biol. 2020;30:R1137–R1142.Article 
    CAS 

    Google Scholar 
    Roeselers G, Newton ILG. On the evolutionary ecology of symbioses between chemosynthetic bacteria and bivalves. Appl Microbiol Biotechnol. 2012;94:1–10.Article 
    CAS 

    Google Scholar 
    Moran NA. Symbiosis as an adaptive process and source of phenotypic complexity. Proc Natl Acad Sci USA. 2007;104 Suppl 1:8627–33.Article 
    CAS 

    Google Scholar 
    McMullen JG, Peterson BF, Forst S, Blair HG, Patricia Stock S. Fitness costs of symbiont switching using entomopathogenic nematodes as a model. BMC Evol Biol. 2017;17. https://doi.org/10.1186/s12862-017-0939-6.Taylor JD, Glover E. Biology, evolution and generic review of the chemosymbiotic bivalve family Lucinidae. London, UK: Ray Society; 2021.Osvatic JT, Wilkins LGE, Leibrecht L, Leray M, Zauner S, Polzin J, et al. Global biogeography of chemosynthetic symbionts reveals both localized and globally distributed symbiont groups. Proc Natl Acad Sci USA. 2021;118. https://doi.org/10.1073/pnas.2104378118.Petersen JM, Kemper A, Gruber-Vodicka H, Cardini U, van der Geest M, Kleiner M, et al. Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation. Nat Microbiol. 2016;2:16195.Article 
    CAS 

    Google Scholar 
    Lim SJ, Davis B, Gill D, Swetenburg J, Anderson LC, Engel AS, et al. Gill microbiome structure and function in the chemosymbiotic coastal lucinid Stewartia floridana. FEMS Microbiol Ecol. 2021;97. https://doi.org/10.1093/femsec/fiab042.Lim SJ, Davis BG, Gill DE, Walton J, Nachman E, Engel AS, et al. Taxonomic and functional heterogeneity of the gill microbiome in a symbiotic coastal mangrove lucinid species. ISME J. 2019;13:902–20.Article 
    CAS 

    Google Scholar 
    Gros O, Liberge M, Felbeck H. Interspecific infection of aposymbiotic juveniles of Codakia orbicularis by various tropical lucinid gill-endosymbionts. Mar Biol. 2003;142:57–66.Article 

    Google Scholar 
    Gros O, Elisabeth NH, Gustave SDD, Caro A, Dubilier N. Plasticity of symbiont acquisition throughout the life cycle of the shallow-water tropical lucinid Codakia orbiculata (Mollusca: Bivalvia). Environ Microbiol. 2012;14:1584–95.Article 
    CAS 

    Google Scholar 
    Gros O, Frenkiel L, Mouëza M. Embryonic, larval, and post-larval development in the symbiotic clam Codakia orbicularis (Bivalvia: Lucinidae). Invertebr Biol. 1997;116:86–101.Article 

    Google Scholar 
    König S, Gros O, Heiden SE, Hinzke T, Thürmer A, Poehlein A, et al. Nitrogen fixation in a chemoautotrophic lucinid symbiosis. Nat Microbiol. 2016;2:16193.Article 

    Google Scholar 
    Fiore CL, Jarett JK, Olson ND, Lesser MP. Nitrogen fixation and nitrogen transformations in marine symbioses. Trends Microbiol. 2010;18:455–63.Article 
    CAS 

    Google Scholar 
    Cardini U, Bednarz VN, Foster RA, Wild C. Benthic N2 fixation in coral reefs and the potential effects of human-induced environmental change. Ecol Evol. 2014;4:1706–27.Article 

    Google Scholar 
    Glover EA, Taylor JD. Lucinidae of the Philippines: highest known diversity and ubiquity of chemosymbiotic bivalves from intertidal to bathyal depths (Mollusca: Bivalvia). mém Mus Natl Hist Nat. 2016;208:65–234.
    Google Scholar 
    Taylor JD, Glover EA, Williams ST. Diversification of chemosymbiotic bivalves: origins and relationships of deeper water Lucinidae. Biol J Linn Soc Lond. 2014;111:401–20.Article 

    Google Scholar 
    von Cosel R. Taxonomy of tropical West African bivalves. VI. Remarks on Lucinidae (Mollusca, Bivalvia), with description of six new genera and eight new species. Zoosystema. 2006;28:805.
    Google Scholar 
    Glover EA, Taylor JD, Rowden AA. Bathyaustriella thionipta, a new lucinid bivalve from a hydrothermal vent on the Kermadec Ridge, New Zealand and its relationship to shallow-water taxa (Bivalvia: Lucinidae). J Mollusca Stud. 2004;70:283–95.Article 

    Google Scholar 
    Paulus E Shedding light on deep-sea biodiversity—a highly vulnerable habitat in the face of anthropogenic change. Front Mar Sci. 2021;8. https://doi.org/10.3389/fmars.2021.667048.Brown A, Thatje S. Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: physiological contributions to adaptation of life at depth. Biol Rev Camb Philos Soc. 2014;89:406–26.Article 

    Google Scholar 
    Smith CR, De Leo FC, Bernardino AF, Sweetman AK, Arbizu PM. Abyssal food limitation, ecosystem structure and climate change. Trends Ecol Evol. 2008;23:518–28.Article 

    Google Scholar 
    Gage JD, Tyler PA. Deep-sea biology: a natural history of organisms at the deep-sea floor. Cambridge, UK: Cambridge University Press; 1991.Iken K, Brey T, Wand U, Voigt J, Junghans P. Food web structure of the benthic community at the Porcupine Abyssal Plain (NE Atlantic): a stable isotope analysis. Prog Oceanogr. 2001;50:383–405.Article 

    Google Scholar 
    von Cosel R, Bouchet P. Tropical deep-water lucinids (Mollusca: Bivalvia) from the Indo-Pacific: essentially unknown, but diverse and occasionally gigantic. mém Mus Natl Hist Nat. 2008;196:115–213.
    Google Scholar 
    Stearns REC Scientific results of explorations by the US Fish Commission steamer Albatross. No. XVII. Descriptions of new West American land, fresh-water, and marine shells, with notes and comments. Proceedings of the United States National Museum. 1890. https://repository.si.edu/bitstream/handle/10088/13174/1/USNMP-13_813_1890.pdf.Taylor JD, Glover EA. The lucinid bivalve genus Cardiolucina (Mollusca, Bivalvia, Lucinidae): systematics, anatomy and relationships. Bull Br Mus Nat Hist Zoo. 1997;63:93–122.
    Google Scholar 
    Coan EV, Valentich-Scott P, Sadeghian PS. Bivalve seashells of tropical West America: marine bivalve mollusks from Baja California to Northern Peru. Santa Barbara, USA: Museum of Natural History; 2012.von Cosel R, Gofas S. Marine bivalves of tropical West Africa: from Rio de Oro to southern Angola. Marseille, France: Muséum national d’Histoire naturelle, Paris; 2019. p 1104.Atkinson L, Sink K. Field guide to the offshore marine invertebrates of South Africa. 2018. https://doi.org/10.15493/SAEON.PUB.10000001.Montagu G. Testacea Britannica, or natural history of British shells. London, UK: JS Hollis; 1803.Taylor J, Glover E. New lucinid bivalves from shallow and deeper water of the Indian and West Pacific Oceans (Mollusca, Bivalvia, Lucinidae). ZooKeys. 2013;326:69–90.Article 

    Google Scholar 
    Apprill A, McNally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Micro Ecol. 2015;75:129–37.Article 

    Google Scholar 
    Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.Article 
    CAS 

    Google Scholar 
    Pjevac P, Hausmann B, Schwarz J, Kohl G, Herbold CW, Loy A, et al. An economical and flexible dual barcoding, two-step PCR approach for highly multiplexed amplicon sequencing. Front Microbiol. 2021;12:669776.Article 

    Google Scholar 
    McLaren MR, Callahan BJ. Silva 138.1 prokaryotic SSU taxonomic training data formatted for DADA2 [Data set]. Zenodo. https://doi.org/10.5281/zenodo.4587955.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.Article 
    CAS 

    Google Scholar 
    Andersen KS, Kirkegaard RH, Karst SM, Albertsen M. ampvis2: an R package to analyse and visualise 16S rRNA amplicon data. 2018. https://www.biorxiv.org/content/10.1101/299537v1.Bushnell B. BBMap: a fast, accurate, splice-aware aligner. Berkeley, CA, USA: Lawrence Berkeley National Lab. (LBNL); 2014.Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.Article 
    CAS 

    Google Scholar 
    Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A, Lapidus A, et al. Assembling genomes and mini-metagenomes from highly chimeric reads. In: Research in Computational Molecular Biology. Springer Berlin Heidelberg; 2013. p. 158–70.Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.Article 

    Google Scholar 
    Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3:e1319.Article 

    Google Scholar 
    Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–6.Article 
    CAS 

    Google Scholar 
    Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.Article 

    Google Scholar 
    Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.Article 
    CAS 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.Article 
    CAS 

    Google Scholar 
    Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2019. https://doi.org/10.1093/bioinformatics/btz848.Parks DH, Chuvochina M, Chaumeil P-A, Rinke C, Mussig AJ, Hugenholtz P. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol. 2020;38:1079–86.Article 
    CAS 

    Google Scholar 
    Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.Article 
    CAS 

    Google Scholar 
    Matsen FA, Kodner RB, Armbrust EV. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform. 2010;11:538.Article 

    Google Scholar 
    Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.Article 

    Google Scholar 
    Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:119.Article 

    Google Scholar 
    Price MN, Dehal PS, Arkin AP. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.Article 

    Google Scholar 
    Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:e1002195.Article 
    CAS 

    Google Scholar 
    Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 2016;17:132.Article 

    Google Scholar 
    Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:W232–5.Article 
    CAS 

    Google Scholar 
    Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–W296.Article 
    CAS 

    Google Scholar 
    Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K, Kyrpides NC, et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res. 2015;43:6761–71.Article 
    CAS 

    Google Scholar 
    Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C, Zhou J, et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol. 2014;196:2210–5.Article 

    Google Scholar 
    Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309–D314.Article 
    CAS 

    Google Scholar 
    Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol Biol Evol. 2017;34:2115–22.Article 
    CAS 

    Google Scholar 
    Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep. 2015;5:8365.Article 

    Google Scholar 
    Mahram A, Herbordt MC. NCBI BLASTP on high-performance reconfigurable computing systems. ACM Trans Reconfigurable Technol Syst. 2015;7:1–20.Article 

    Google Scholar 
    Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 1997;13:555–6.CAS 

    Google Scholar 
    Osvatic J, Wilkins L. Strength of selection scripts. FigShare. 2022;8. https://doi.org/10.6084/m9.figshare.20626746.v1.Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol. 1990;56:1919–25.Article 
    CAS 

    Google Scholar 
    Lan Y, Sun J, Chen C, Sun Y, Zhou Y, Yang Y, et al. Hologenome analysis reveals dual symbiosis in the deep-sea hydrothermal vent snail Gigantopelta aegis. Nat Commun. 2021;12:1165.Article 
    CAS 

    Google Scholar 
    Leray M, Wilkins LGE, Apprill A, Bik HM, Clever F, Connolly SR, et al. Natural experiments and long-term monitoring are critical to understand and predict marine host-microbe ecology and evolution. PLoS Biol. 2021;19:e3001322.Article 
    CAS 

    Google Scholar 
    Petersen Jillian M, Yuen B, Alexandre G. The symbiotic ‘all-rounders’: partnerships between marine animals and chemosynthetic nitrogen-fixing bacteria. Appl Environ Microbiol 2020;87:e02129–20.Johnson KS, Childress JJ, Hessler RR, Sakamoto-Arnold CM, Beehler CL. Chemical and biological interactions in the Rose Garden hydrothermal vent field, Galapagos spreading center. Deep Sea Res A. 1988;35:1723–44.Article 

    Google Scholar 
    Kennicutt ME II, Brooks JM, Burke RA Jr. Hydrocarbon seepage, gas hydrates, and authigenic carbonate in the northwestern Gulf of Mexico. Offshore Technology Conference; 1989. https://doi.org/10.4043/5952-ms.Lilley MD, Butterfield DA, Olson EJ, Lupton JE, Macko SA, McDuff RE. Anomalous CH4 and NH4+ concentrations at an unsedimented mid-ocean-ridge hydrothermal system. Nature. 1993;364:45–47.Article 
    CAS 

    Google Scholar 
    Von Damm KL, Edmond JM, Measures CI, Grant B. Chemistry of submarine hydrothermal solutions at Guaymas Basin, Gulf of California. Geochim Cosmochim Acta. 1985;49:2221–37.Article 

    Google Scholar 
    Lee RW, Thuesen EV, Childress JJ. Ammonium and free amino acids as nitrogen sources for the chemoautotrophic symbiosis Solemya reidi Bernard (Bivalvia: Protobranchia). J Exp Mar Bio Ecol. 1992;158:75–91.Article 
    CAS 

    Google Scholar 
    Sanders JG, Beinart RA, Stewart FJ, Delong EF, Girguis PR. Metatranscriptomics reveal differences in in situ energy and nitrogen metabolism among hydrothermal vent snail symbionts. ISME J. 2013;7:1556–67.Article 
    CAS 

    Google Scholar 
    Touchette BW, Burkholder JM. Review of nitrogen and phosphorus metabolism in seagrasses. J Exp Mar Bio Ecol. 2000;250:133–67.Article 
    CAS 

    Google Scholar 
    Fourqurean JW, Zieman JC, Powell GVN. Relationships between porewater nutrients and seagrasses in a subtropical carbonate environment. Mar Biol. 1992;114:57–65.Article 
    CAS 

    Google Scholar 
    Williams SL. Experimental studies of Caribbean seagrass bed development. Ecol Monogr. 1990;60:449–69.Article 

    Google Scholar 
    Herbert RA. Nitrogen cycling in coastal marine ecosystems. FEMS Microbiol Rev. 1999;23:563–90.Article 
    CAS 

    Google Scholar 
    Risgaard-Petersen N, Dalsgaard T, Rysgaard S, Christensen PB, Borum J, McGlathery K, et al. Nitrogen balance of a temperate eelgrass Zostera marina bed. Mar Ecol Prog Ser. 1998;174:281–91.Article 
    CAS 

    Google Scholar 
    Bristow LA, Dalsgaard T, Tiano L, Mills DB, Bertagnolli AD, Wright JJ, et al. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters. Proc Natl Acad Sci USA. 2016;113:10601–6.Article 
    CAS 

    Google Scholar 
    Karthäuser C, Ahmerkamp S, Marchant HK, Bristow LA, Hauss H, Iversen MH, et al. Small sinking particles control anammox rates in the Peruvian oxygen minimum zone. Nat Commun. 2021;12:3235.Article 

    Google Scholar 
    Kuypers MMM, Lavik G, Woebken D, Schmid M, Fuchs BM, Amann R, et al. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proc Natl Acad Sci USA. 2005;102:6478–83.Article 
    CAS 

    Google Scholar 
    Johnson KS, Beehler CL, Sakamoto-Arnold CM, Childress JJ. In situ measurements of chemical distributions in a deep-sea hydrothermal vent field. Science. 1986;231:1139–41.Article 
    CAS 

    Google Scholar 
    Childress JJ, Girguis PR. The metabolic demands of endosymbiotic chemoautotrophic metabolism on host physiological capacities. J Exp Biol. 2011;214:312–25.Article 
    CAS 

    Google Scholar 
    Hentschel U, Hand S, Felbeck H. The contribution of nitrate respiration to the energy budget of the symbiont-containing clam Lucinoma aequizonata: a calorimetric study. J Exp Biol. 1996;199:427–33.Article 
    CAS 

    Google Scholar 
    Breusing C, Mitchell J, Delaney J, Sylva SP, Seewald JS, Girguis PR, et al. Physiological dynamics of chemosynthetic symbionts in hydrothermal vent snails. ISME J. 2020;14:2568–79.Article 
    CAS 

    Google Scholar 
    Amorim K, Loick-Wilde N, Yuen B, Osvatic JT, Wäge-Recchioni J, Hausmann B, et al. Chemoautotrophy, symbiosis and sedimented diatoms support high biomass of benthic molluscs in the Namibian shelf. Sci Rep. 2022;12:9731.Article 
    CAS 

    Google Scholar 
    Breusing C, Johnson SB, Tunnicliffe V, Clague DA, Vrijenhoek RC, Beinart RA. Allopatric and sympatric drivers of speciation in Alviniconcha hydrothermal vent snails. Mol Biol Evol. 2020;37:3469–84.Article 
    CAS 

    Google Scholar 
    Giovannoni SJ, Cameron Thrash J, Temperton B. Implications of streamlining theory for microbial ecology. ISME J. 2014;8:1553–65.Article 

    Google Scholar 
    Brissac T, Gros O, Merçot H. Lack of endosymbiont release by two Lucinidae (Bivalvia) of the genus Codakia: consequences for symbiotic relationships. FEMS Microbiol Ecol. 2009;67:261–7.Article 
    CAS 

    Google Scholar 
    Werner GDA, Cornelissen JHC, Cornwell WK, Soudzilovskaia NA, Kattge J, West SA, et al. Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown. Proc Natl Acad Sci USA. 2018;115:5229–34.Article 
    CAS 

    Google Scholar 
    Sudakaran S, Kost C, Kaltenpoth M. Symbiont acquisition and replacement as a source of ecological innovation. Trends Microbiol. 2017;25:375–90.Article 
    CAS 

    Google Scholar 
    Li Y, Liles MR, Halanych KM. Endosymbiont genomes yield clues of tubeworm success. ISME J. 2018;12:2785–95.Article 
    CAS 

    Google Scholar 
    Moran NA, Yun Y. Experimental replacement of an obligate insect symbiont. Proc Natl Acad Sci USA. 2015;112:2093–6.Article 
    CAS 

    Google Scholar 
    Sørensen MES, Wood AJ, Cameron DD, Brockhurst MA. Rapid compensatory evolution can rescue low fitness symbioses following partner switching. Curr Biol. 2021;31:3721–3728.e4.Article 

    Google Scholar 
    Taylor JD, Glover EA, Smith L, Ikebe C, Williams ST. New molecular phylogeny of Lucinidae: increased taxon base with focus on tropical Western Atlantic species (Mollusca: Bivalvia). Zootaxa. 2016;4196:zootaxa.4196.3.2.Article 

    Google Scholar 
    Osvatic J. Fig1 gtdb tree and alignment. figshare. 2021. https://doi.org/10.6084/m9.figshare.16837216.v1.Osvatic J. Figure 2: GTDB alignment and phylogeny. 2021. https://doi.org/10.6084/m9.figshare.16837237. More