More stories

  • in

    Ocean acidification disrupts the orientation of postlarval Caribbean spiny lobsters

    1.
    Yates, K. K., Dufore, C., Smiley, N., Jackson, C. & Halley, R. B. Diurnal variation of oxygen and carbonate system parameters in Tampa Bay and Florida Bay. Mar. Chem. 104(1–2), 110–124. https://doi.org/10.1016/j.marchem.2006.12.008 (2007).
    CAS  Article  Google Scholar 
    2.
    Wallace, R. B., Baumann, H., Grear, J. S., Aller, R. C. & Gobler, C. J. Coastal ocean acidification: The other eutrophication problem. Estuar. Coast. Shelf Sci. 148, 1–13. https://doi.org/10.1016/j.ecss.2014.05.027 (2014).
    ADS  CAS  Article  Google Scholar 

    3.
    Ekstrom, J. A. et al. Vulnerability and adaptation of US shellfisheries to ocean acidification. Nat. Clim. Change. 5(3), 207–214. https://doi.org/10.1038/nclimate2508 (2015).
    ADS  Article  Google Scholar 

    4.
    Millero, F. J., Hiscock, W. T., Huang, F., Roche, M. & Zhang, J. Z. Seasonal variation of the carbonate system in Florida Bay. Bull. Mar. Sci. 68(1), 101–123 (2001).
    Google Scholar 

    5.
    Manzello, D. P., Enochs, I. C., Melo, N., Gledhill, D. K. & Johns, E. M. Ocean acidification refugia of the Florida Reef Tract. PLoS ONE 7(7), 41715. https://doi.org/10.1371/journal.pone.0041715 (2012).
    ADS  CAS  Article  Google Scholar 

    6.
    Enochs, I. C., Manzello, D. P., Jones, P. R., Stamates, S. J. & Carsey, T. P. Seasonal carbonate chemistry dynamics on southeast Florida coral reefs: Localized acidification hotspots from navigational inlets. Front. Mar. Sci. 6, 160. https://doi.org/10.3389/fmars.2019.00160 (2019).
    Article  Google Scholar 

    7.
    Cyronak, T. et al. Diel temperature and pH variability scale with depth across diverse coral reef habitats. Limnol. Oceanogr. Lett. 5(2), 193–203. https://doi.org/10.1002/lol2.10129 (2020).
    Article  Google Scholar 

    8.
    Whiteley, N. M. Physiological and ecological responses of crustaceans to ocean acidification. Mar. Ecol. Prog. Ser. 430, 257–271. https://doi.org/10.3354/meps09185 (2011).
    ADS  CAS  Article  Google Scholar 

    9.
    Bauer, J. E. et al. The changing carbon cycle of the coastal ocean. Nature 504(7478), 61–70. https://doi.org/10.1038/nature12857 (2013).
    ADS  CAS  Article  PubMed  Google Scholar 

    10.
    IPCC, IPOCC. Special report on global warming of 1.5 °C (SR15, 2018). https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf

    11.
    Munday, P. L., McCormick, M. I. & Nilsson, G. E. Impact of global warming and rising CO2 levels on coral reef fishes: What hope for the future?. J. Exp. Biol. 215(22), 3865–3873. https://doi.org/10.1242/jeb.074765 (2012).
    CAS  Article  PubMed  Google Scholar 

    12.
    Gravinese, P. M. Ocean acidification impacts the embryonic development and hatching success of the Florida stone crab, Menippe mercenaria. J. Exp. Mar. Biol. Ecol. 500, 140–146. https://doi.org/10.1016/j.jembe.2017.09.001 (2018).
    CAS  Article  Google Scholar 

    13.
    Gravinese, P. M. Vertical swimming behavior in larvae of the Florida stone crab, Menippe mercenaria. J. Plankton Res. 40(6), 643–654. https://doi.org/10.1093/plankt/fby040 (2018).
    Article  Google Scholar 

    14.
    Gravinese, P. M., Enochs, I. C., Manzello, D. P. & van Woesik, R. Ocean acidification changes the vertical movement of stone crab larvae. Biol. Lett. 15(12), 20190414. https://doi.org/10.1098/rsbl.2019.0414 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    15.
    Paganini, A. W., Miller, N. A. & Stillman, J. H. Temperature and acidification variability reduce physiological performance in the intertidal zone porcelain crab Petrolisthes cinctipes. J. Exp. Biol. 217(22), 3974–3980. https://doi.org/10.1242/jeb.109801 (2014).
    Article  PubMed  Google Scholar 

    16.
    Ceballos-Osuna, L., Carter, H. A., Miller, N. A. & Stillman, J. H. Effects of ocean acidification on early life-history stages of the intertidal porcelain crab Petrolisthes cinctipes. J. Exp. Biol. 216(8), 1405–1411. https://doi.org/10.1242/jeb.078154 (2013).
    CAS  Article  PubMed  Google Scholar 

    17.
    Giltz, S. M. & Taylor, C. M. Reduced growth and survival in the larval blue crab Callinectes sapidus under predicted ocean acidification. J. Shellfish Res. 36(2), 481–485. https://doi.org/10.2983/035.036.0219 (2017).
    Article  Google Scholar 

    18.
    Ries, J. B., Cohen, A. L. & McCorkle, D. C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37(12), 1131–1134. https://doi.org/10.1130/G30210A.1 (2009).
    ADS  CAS  Article  Google Scholar 

    19.
    Wang, T. & Wang, Y. Behavioral responses to ocean acidification in marine invertebrates: New insights and future directions. J. Oceanol. Limnol. 38(3), 1–14. https://doi.org/10.1007/s00343-019-9118-5 (2019).
    MathSciNet  CAS  Article  Google Scholar 

    20.
    Atema, J., Fay, R. R., Popper, A. N. & Tavolga, W. N. Sensory Biology of Aquatic Animals (Springer, Berlin, 1988).
    Google Scholar 

    21.
    Kingsford, M. J. et al. Sensory environments, larval abilities and local self-recruitment. Bull. Mar. Sci. 70(1), 309–340 (2002).
    Google Scholar 

    22.
    Arvedlund, M. & Kavanagh, K. The senses and environmental cues used by marine larvae of fish and decapod crustaceans to find tropical coastal ecosystems. In Ecological Connectivity Among Tropical Coastal Ecosystems (ed. Nagelkerken, I.) 135–185 (Springer, Berlin, 2009).
    Google Scholar 

    23.
    Munday, P. L. et al. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc. Natl. Acad. Sci. 106(6), 1848–1852. https://doi.org/10.1073/pnas.0809996106 (2009).
    ADS  Article  PubMed  Google Scholar 

    24.
    Dixson, D. L., Munday, P. L. & Jones, G. P. Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecol. Lett. 13(1), 68–75. https://doi.org/10.1111/j.1461-0248.2009.01400.x (2010).
    Article  PubMed  Google Scholar 

    25.
    Nagelkerken, I. & Munday, P. L. Animal behaviour shapes the ecological effects of ocean acidification and warming: Moving from individual to community-level responses. Glob. Change Biol. 22(3), 974–989. https://doi.org/10.1111/gcb.13167 (2016).
    ADS  Article  Google Scholar 

    26.
    Ashur, M. M., Johnston, N. K. & Dixson, D. L. Impacts of ocean acidification on sensory function in marine organisms. Integr. Comp. Biol. 57(1), 63–80. https://doi.org/10.1093/icb/icx010 (2017).
    Article  PubMed  Google Scholar 

    27.
    Ross, E. & Behringer, D. Changes in temperature, pH, and salinity affect the sheltering responses of Caribbean spiny lobsters to chemosensory cues. Sci. Rep. 9(1), 4375. https://doi.org/10.1038/s41598-019-40832-y (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    28.
    Brown, G. E., Adrian, J. C. Jr., Lewis, M. G. & Tower, J. M. The effects of reduced pH on chemical alarm signaling in ostariophysan fishes. Can. J. Fish. Aquat. Sci. 59(8), 1331–1338. https://doi.org/10.1139/f02-104 (2002).
    CAS  Article  Google Scholar 

    29.
    de la Haye, K. L., Spicer, J. I., Widdicombe, S. & Briffa, M. Reduced sea water pH disrupts resource assessment and decision making in the hermit crab Pagurus bernhardus. J. Anim. Behav. 82(3), 495–501. https://doi.org/10.1016/j.anbehav.2011.05.030 (2011).
    Article  Google Scholar 

    30.
    Tierney, A. J. & Atema, J. Amino acid chemoreception: Effects of pH on receptors and stimuli. J. Chem. Ecol. 14(1), 135–141. https://doi.org/10.1007/BF01022537 (1988).
    CAS  Article  PubMed  Google Scholar 

    31.
    Briffa, M., de la Haye, K. & Munday, P. L. High CO2 and marine animal behaviour: Potential mechanisms and ecological consequences. Mar. Poll. Bull. 64(8), 1519–1528. https://doi.org/10.1016/j.marpolbul.2012.05.032 (2012).
    CAS  Article  Google Scholar 

    32.
    Goldstein, J. S. & Butler, M. J. IV. Behavioral enhancement of onshore transport by postlarval Caribbean spiny lobster (Panulirus argus). Limnol. Oceanogr. 54(5), 1669–1678. https://doi.org/10.4319/lo.2009.54.5.1669 (2009).
    ADS  Article  Google Scholar 

    33.
    Zito-Livingston, A. N. & Childress, M. J. Does conspecific density influence the settlement of Caribbean spiny lobster Panulirus argus postlarvae?. N. Z. J. Mar. Freshw. Res. 43(1), 313–325 (2009).
    Google Scholar 

    34.
    Ratchford, S. G. & Eggleston, D. B. Size- and scale-dependent chemical attraction contribute to an ontogenetic shift in sociality. Anim. Behav. 56(4), 1027–1034. https://doi.org/10.1006/anbe.1998.0869 (1998).
    CAS  Article  PubMed  Google Scholar 

    35.
    Nevitt, G., Pentcheff, N. D., Lohmann, K. J. & Den Zimmer, R. K. selection by the spiny lobster Panulirus argus: Testing attraction to conspecific odors in the field. Mar. Ecol. Prog. Ser. 203, 225–231. https://doi.org/10.3354/meps203225 (2000).
    ADS  Article  Google Scholar 

    36.
    Behringer, D. C., Butler, M. J. IV. & Shields, J. D. Avoidance of disease by social lobsters. Nature 441(7092), 421. https://doi.org/10.1038/441421a (2006).
    ADS  CAS  Article  PubMed  Google Scholar 

    37.
    Anderson, J. R. & Behringer, D. C. Spatial dynamics in the social lobster Panulirus argus in response to diseased conspecifics. Mar. Ecol. Prog. Ser. 474, 191–200. https://doi.org/10.3354/meps10091 (2013).
    ADS  Article  Google Scholar 

    38.
    Butler, M. J. IV. et al. Cascading disturbances in Florida Bay, USA: Cyanobacteria blooms, sponge mortality, and implications for juvenile spiny lobsters Panulirus argus. Mar. Ecol. Prog. Ser. 129, 119–125. https://doi.org/10.3354/meps129119 (1995).
    ADS  Article  Google Scholar 

    39.
    Ginsburg, R. N. & Shinn, E. A. Preferential distribution of reefs in the Florida reef tract: The past is the key to the present. Oceanogr. Lit. Rev. 8(42), 674 (1995).
    Google Scholar 

    40.
    Zhang, J. Z. & Fischer, C. J. Carbon dynamics of Florida Bay: Spatiotemporal patterns and biological control. Environ. Sci. Technol. 48(16), 9161–9169. https://doi.org/10.1021/es500510z (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    41.
    Toth, L. T., Kuffner, I. B., Stathakopoulos, A. & Shinn, E. A. A 3000-year lag between the geological and ecological shutdown of Florida’s coral reefs. Glob. Change Biol. 24(11), 5471–5483. https://doi.org/10.1111/gcb.14389 (2018).
    ADS  Article  Google Scholar 

    42.
    Marx, J. M. & Herrnkind, W. F. Macroalgae (Rhodophyta: Laurencia spp.) as habitat for young juvenile spiny lobsters, Panulirus argus. Bull. Mar. Sci. 36(3), 423–431 (1985).
    Google Scholar 

    43.
    Butler, M. J. IV. & Herrnkind, W. F. Effect of benthic microhabitat cues on the metamorphosis of postlarvae of the spiny lobster Panulirus argus. J. Crustac. Biol. 11(1), 23–28. https://doi.org/10.2307/1548541 (1991).
    Article  Google Scholar 

    44.
    Herrnkind, W. F. & Butler, M. J. Factors regulating postlarval settlement and juvenile microhabitat use by spiny lobsters Panulirus argus. Mar. Ecol. Progr. Ser. 34, 23–30 (1986).
    ADS  Article  Google Scholar 

    45.
    FAO. Food and Agriculture Organization Fisheries and aquaculture report (ISSN 2070–6987) 124 (FAO, 2015).

    46.
    Lapointe, B. E. & Matzie, W. R. Effects of stormwater nutrient discharges on eutrophication processes in nearshore waters of the Florida Keys. Estuaries 19(2), 422–435. https://doi.org/10.2307/1352460 (1996).
    CAS  Article  Google Scholar 

    47.
    Cai, W. J. et al. Acidification of subsurface coastal waters enhanced by eutrophication. Nat. Geosci. 4(11), 766–770. https://doi.org/10.1038/ngeo1297 (2011).
    ADS  CAS  Article  Google Scholar 

    48.
    de la Haye, K. L., Spicer, J. I., Widdicombe, S. & Briffa, M. Reduced pH sea water disrupts chemo-responsive behaviour in an intertidal crustacean. J. Exp. Biol. Ecol. 412, 134–140. https://doi.org/10.1016/j.jembe.2011.11.013 (2012).
    CAS  Article  Google Scholar 

    49.
    Dissanayake, A. & Ishimatsu, A. Synergistic effects of elevated CO2 and temperature on the metabolic scope and activity in a shallow-water coastal decapod (Metapenaeus joyneri; Crustacea: Penaeidae). ICES J. Mar. Sci. 68(6), 1147–1154. https://doi.org/10.1093/icesjms/fsq188 (2011).
    Article  Google Scholar 

    50.
    Pörtner, H. O., Langenbuch, M. & Reipschläger, A. Biological impact of elevated ocean CO2 concentrations: Lessons from animal physiology and earth history. J. Oceanogr. 60(4), 705–718. https://doi.org/10.1007/s10872-004-5763-0 (2004).
    Article  Google Scholar 

    51.
    Pane, E. F. & Barry, J. P. Extracellular acid-base regulation during short-term hypercapnia is effective in a shallow-water crab, but ineffective in a deep-sea crab. Mar. Ecol. Prog. Ser. 334, 1–9. https://doi.org/10.3354/meps334001 (2007).
    ADS  CAS  Article  Google Scholar 

    52.
    Small, D. P. et al. The effects of elevated temperature and pCO2 on the energetics and haemolymph pH homeostasis of juveniles of the European lobster, Homarus gammarus. J. Exp. Biol. https://doi.org/10.1242/jeb.209221 (2020).
    Article  PubMed  Google Scholar 

    53.
    Morris, S., Greenaway, P. & McMahon, B. Air breathing by the purple shore crab, Hemigrapsus nudus (Dana). II. Respiratory gas and acid-base status in response to emersion. Physiol. Zool. 69(4), 806–838. https://doi.org/10.1086/physzool.69.4.30164231 (1996).
    CAS  Article  Google Scholar 

    54.
    Schmitt, B. C. & Ache, B. W. Olfaction: responses of a decapod crustacean are enhanced by flicking. Science 205(4402), 204–206. https://doi.org/10.1126/science.205.4402.204 (1979).
    ADS  CAS  Article  PubMed  Google Scholar 

    55.
    Goldman, J. A. & Koehl, M. A. R. Fluid dynamic design of lobster olfactory organs: High speed kinematic analysis of antennule flicking by Panulirus argus. Chem. Senses 26(4), 385–398. https://doi.org/10.1093/chemse/26.4.385 (2001).
    CAS  Article  PubMed  Google Scholar 

    56.
    Reidenbach, M. A., George, N. & Koehl, M. A. R. Antennule morphology and flicking kinematics facilitate odor sampling by the spiny lobster, Panulirus argus. J. Exp. Biol. 211(17), 2849–2858. https://doi.org/10.1242/jeb.016394 (2008).
    Article  PubMed  Google Scholar 

    57.
    Lürling, M. & Scheffer, M. Info-disruption: Pollution and the transfer of chemical information between organisms. Trends Ecol. Evol. 22(7), 374–379. https://doi.org/10.1016/j.tree.2007.04.002 (2007).
    Article  PubMed  Google Scholar 

    58.
    Bednaršek, N. et al. Exoskeleton dissolution with mechanoreceptor damage in larval Dungeness crab related to severity of present-day ocean acidification vertical gradients. Sci. Total Environ. 716, 1346610. https://doi.org/10.1016/j.scitotenv.2020.136610 (2020).
    CAS  Article  Google Scholar 

    59.
    Baeza, J. A., Childress, M. J. & Ambrosio, L. J. Chemical sensing of microhabitat by pueruli of the reef-dwelling Caribbean spiny lobster Panulirus argus: testing the importance of red algae, juveniles, and their interactive effect. Bull. Mar. Sci. 94(3), 603–618. https://doi.org/10.5343/bms.2017.1132 (2018).
    Article  Google Scholar 

    60.
    Butler, M. J. IV. & Herrnkind, W. F. A test of the recruitment limitation and the potential for artificial enhancement of spiny lobster (Panulirus argus) populations in Florida. Can. J. Fish. Aquat. Sci. 54(2), 452–463. https://doi.org/10.1139/f2011-146 (1997).
    CAS  Article  Google Scholar 

    61.
    Sharp, W. C. et al. The use of coded microwire tags for mark–recapture studies of juvenile Caribbean spiny lobster, Panulirus argus. J. Crustac. Biol. 20(3), 510–521. https://doi.org/10.1163/20021975-99990067 (2000).
    Article  Google Scholar 

    62.
    Heatwole, D. W., Hunt, J. H. & Blonder, B. I. Offshore recruitment of postlarval spiny lobster (Panulirus argus) at Looe Key Reef, Florida. Proc. Gulf Carib. Fish. Inst. 40, 429–433 (1991).
    Google Scholar 

    63.
    Herrnkind, W. F. & Butler, M. J. IV. Settlement of spiny lobster, Panulirus argus (Latreille, 1804), in Florida: Pattern without predictability?. Crustaceana 67(1), 46–64. https://doi.org/10.1163/156854094X00288 (1994).
    Article  Google Scholar 

    64.
    Cook, G. S., Fletcher, P. J. & Kelble, C. R. Towards marine ecosystem based management in South Florida: Investigating the connections among ecosystem pressures, states, and services in a complex coastal system. Ecol. Indic. 44, 26–39. https://doi.org/10.1016/j.ecolind.2013.10.026 (2014).
    Article  Google Scholar 

    65.
    Kuffner, I. B., Lidz, B. H., Hudson, J. H. & Anderson, J. S. A century of ocean warming on Florida keys coral reefs: Historic in situ observations. Estuar. Coasts 38(3), 1085–1096. https://doi.org/10.1007/s12237-014-9875-5 (2014).
    Article  Google Scholar 

    66.
    Koch, M. S. et al. Climate change projected effects on coastal foundation communities of the greater Everglades using a 2060 scenario: Need for a new management paradigm. Environ. Manag. 55(4), 857–875. https://doi.org/10.1007/s00267-014-0375-y (2015).
    ADS  CAS  Article  Google Scholar 

    67.
    Obeysekera, J., Barnes, J. & Nungesser, M. Climate sensitivity runs and regional hydrologic modeling for predicting the response of the greater Florida Everglades ecosystem to climate change. Environ. Manag. 55(4), 749–762. https://doi.org/10.1007/s00267-014-0315-x (2015).
    ADS  Article  Google Scholar 

    68.
    Okazaki, R. R., Swart, P. K. & Langdon, C. Stress tolerant corals of Florida Bay are vulnerable to ocean acidification. Coral Reefs 32, 671–683 (2013).
    ADS  Article  Google Scholar 

    69.
    Challener, R. A., Robbins, L. L. & McClintock, J. B. Variability of the carbonate chemistry in a shallow, seagrass-dominated exosystem: Implications for ocean acidification experiments. Mar. Freshw. Res. 67, 163–172 (2016).
    CAS  Article  Google Scholar 

    70.
    Dickson, A. G., Sabine, C. L. & Christian, J. R. (Eds.) Guide to best practices for ocean CO2measurement. PICES Special Publication 3, 191. (PICES, 2007).

    71.
    Lavigne, H., Epitalon, J. M. & Gattuso, J. P. seacarb: seawater carbonate chemistry with R. R package version 3.0. https://CRAN.R-project.org/package=seacarb (2011).

    72.
    R Development Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2016).

    73.
    Lueker, T. J., Dickson, A. G. & Keeling, C. D. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: Validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar. Chem. 70(1–3), 105–119. https://doi.org/10.1016/S0304-4203(00)00022-0 (2000).
    CAS  Article  Google Scholar 

    74.
    Forward, R. B. Jr. & Costlow, J. D. Jr. The ontogeny of phototaxis by larvae of the crab Rhithropanopeus harrisii. Mar. Biol. 26(1), 27–33. https://doi.org/10.1007/BF00389083 (1974).
    Article  Google Scholar  More

  • in

    The evolution of coexistence from competition in experimental co-cultures of Escherichia coli and Saccharomyces cerevisiae

    1.
    Foster KR, Bell T. Competition, not cooperation, dominates interactions among culturable microbial species. Curr Biol. 2012;22:1845–50.
    CAS  PubMed  Article  Google Scholar 
    2.
    Gause GF. Experimental analysis of Vito Volterra’s mathematical theory of the struggle for existence. Science. 1934;79:16–7.
    CAS  PubMed  Article  Google Scholar 

    3.
    Chesson P. Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst. 2000;31:343–66.
    Article  Google Scholar 

    4.
    Lankau RA. Rapid evolutionary change and the coexistence of species. Annu Rev Ecol Evol Syst. 2011;42:335–54.
    Article  Google Scholar 

    5.
    Kawecki TJ, Ebert D. Conceptual issues in local adaptation. Ecol Lett. 2004;7:1225–41.
    Article  Google Scholar 

    6.
    Hubbell SP. Neutral theory and the evolution of ecological equivalence. Ecology. 2006;87:1387–98.
    PubMed  Article  Google Scholar 

    7.
    MacArthur R, Levins R. The limiting similarity, convergence, and divergence of coexisting species. Am Nat. 1967;101:377–85.
    Article  Google Scholar 

    8.
    Bailey JK, Hendry AP, Kinnison MT, Post DM, Palkovacs EP, Pelletier F, et al. From genes to ecosystems: an emerging synthesis of eco-evolutionary dynamics. N Phytol. 2009;184:746–9.
    Article  Google Scholar 

    9.
    Baquero F, Blázquez J. Evolution of antibiotic resistance. Trends Ecol Evol. 1997;12:482–7.
    CAS  PubMed  Article  Google Scholar 

    10.
    Grant PR, Grant BR. Evolution of character displacement in Darwin’s finches. Science. 2006;313:224–6.
    CAS  PubMed  Article  Google Scholar 

    11.
    Koeppel AF, Wertheim JO, Barone L, Gentile N, Krizanc D, Cohan FM. Speedy speciation in a bacterial microcosm: new species can arise as frequently as adaptations within a species. ISME J. 2013;7:1080–91.
    PubMed  PubMed Central  Article  Google Scholar 

    12.
    Stuart YE, Campbell T, Hohenlohe P, Reynolds RG, Revell L, Losos J. Rapid evolution of a native species following invasion by a congener. Science. 2014;346:463–6.
    CAS  PubMed  Article  Google Scholar 

    13.
    Schulte RD, Makus C, Hasert B, Michiels NK, Schulenburg H. Multiple reciprocal adaptations and rapid genetic change upon experimental coevolution of an animal host and its microbial parasite. Proc Natl Acad Sci USA. 2010;107:7359–64.
    CAS  PubMed  Article  Google Scholar 

    14.
    Pimentel D, Feinberg EH, Wood PW, Hayes JT. Selection, spatial distribution, and the coexistence of competing fly species. Am Nat. 1965;99:97–109.
    Article  Google Scholar 

    15.
    Hart SP, Turcotte MM, Levine JM. Effects of rapid evolution on species coexistence. Proc Natl Acad Sci USA. 2019;116:2112–7.
    CAS  PubMed  Article  Google Scholar 

    16.
    Traverse CC, Mayo-Smith LM, Poltak SR, Cooper VS. Tangled bank of experimentally evolved Burkholderia biofilms reflects selection during chronic infections. Proc Natl Acad Sci USA. 2012;110:250–9.
    Article  Google Scholar 

    17.
    Turner CB, Marshall CW, Cooper VS. Parallel genetic adaptation across environments differing in mode of growth or resource availability. Evolution Lett. 2018;2:355–67.
    Article  Google Scholar 

    18.
    Elena SF, Lenski RE. Microbial genetics: evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet. 2003;4:457.
    CAS  PubMed  Article  Google Scholar 

    19.
    Rainey PB, Travisano M. Adaptive radiation in a heterogeneous environment. Nature. 1998;394:69.
    CAS  PubMed  Article  Google Scholar 

    20.
    Ferguson GC, Bertels F, Rainey PB. Adaptive divergence in experimental populations of Pseudomonas fluorescens. V. Insight into the niche specialist fuzzy spreader compels revision of the model Pseudomonas radiation. Genetics. 2013;195:1319–35.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Frenkel EM, McDonald MJ, Van Dyken JD, Kosheleva K, Lang GI, Desai MM. Crowded growth leads to the spontaneous evolution of semistable coexistence in laboratory yeast populations. Proc Natl Acad Sci USA. 2015;112:11306–11.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Zuppinger-Dingley D, Schmid B, Petermann JS, Yadav V, De Deyn GB, Flynn DF. Selection for niche differentiation in plant communities increases biodiversity effects. Nature. 2014;515:108.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Le Gac M, Plucain J, Hindré T, Lenski RE, Schneider D. Ecological and evolutionary dynamics of coexisting lineages during a long-term experiment with Escherichia coli. Proc Natl Acad Sci USA. 2012;109:9487–92.
    PubMed  Article  PubMed Central  Google Scholar 

    24.
    Rosenzweig RF, Sharp R, Treves DS, Adams J. Microbial evolution in a simple unstructured environment: genetic differentiation in Escherichia coli. Genetics. 1994;137:903–17.
    CAS  PubMed  PubMed Central  Google Scholar 

    25.
    Helling RB, Vargas CN, Adams J. Evolution of Escherichia coli during growth in a constant environment. Genetics. 1987;116:349–58.
    CAS  PubMed  PubMed Central  Google Scholar 

    26.
    D’Souza G, Kost C. Experimental evolution of metabolic dependency in bacteria. PLoS Genet. 2016;12:e1006364.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    27.
    Oliveira NM, Niehus R, Foster KR. Evolutionary limits to cooperation in microbial communities. Proc Natl Acad Sci USA. 2014;111:17941–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Kallus Y, Miller JH, Libby E. Paradoxes in leaky microbial trade. Nat Commun. 2017;8:1361.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    29.
    Muller EE, Faust K, Widder S, Herold M, Arbas SM, Wilmes P. Using metabolic networks to resolve ecological properties of microbiomes. Curr Opin Syst Biol. 2018;8:73–80.
    Article  Google Scholar 

    30.
    Friedman J, Higgins LM, Gore J. Community structure follows simple assembly rules in microbial microcosms. Nat Ecol Evol. 2017;1:0109.
    Article  Google Scholar 

    31.
    Harcombe WR, Betts A, Shapiro JW, Marx CJ. Adding biotic complexity alters the metabolic benefits of mutualism. Evolution. 2016;70:1871–81.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Harcombe WR, Chacón JM, Adamowicz EM, Chubiz LM, Marx CJ. Evolution of bidirectional costly mutualism from byproduct consumption. Proc Natl Acad Sci USA. 2018;115:12000–4.
    CAS  PubMed  Article  Google Scholar 

    33.
    Farrell JM, Brown SP. Evolution of bacterial trade in a two-species community. Proc Natl Acad Sci USA. 2018;115:11874–5.
    CAS  PubMed  Article  Google Scholar 

    34.
    Morris JJ. Black Queen evolution: the role of leakiness in structuring microbial communities. Trends Genet. 2015;31:475–82.
    CAS  PubMed  Article  Google Scholar 

    35.
    Lawrence D, Fiegna F, Behrends V, Bundy JG, Phillimore AB, Bell T, et al. Species interactions alter evolutionary responses to a novel environment. PLoS Biol. 2012;10:e1001330.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Goldford JE, Lu N, Bajić D, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, et al. Emergent simplicity in microbial community assembly. Science. 2018;361:469–74.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Cordero OX, Ventouras L-A, DeLong EF, Polz MF. Public good dynamics drive evolution of iron acquisition strategies in natural bacterioplankton populations. Proc Natl Acad Sci USA. 2012;109:20059–64.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Adler PB, HilleRisLambers J, Levine JM. A niche for neutrality. Ecol Lett. 2007;10:95–104.
    PubMed  Article  PubMed Central  Google Scholar 

    39.
    Paterson S, Vogwill T, Buckling A, Benmayor R, Spiers AJ, Thomson NR, et al. Antagonistic coevolution accelerates molecular evolution. Nature. 2010;464:275.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Buckling A, Rainey PB. Antagonistic coevolution between a bacterium and a bacteriophage. Proc R Soc Lond Ser B: Biol Sci. 2002;269:931–6.
    Article  Google Scholar 

    41.
    Piccardi P, Vessman B, Mitri S. Toxicity drives facilitation between 4 bacterial species. Proc Natl Acad Sci USA. 2019;116:15979–84.
    CAS  PubMed  Article  Google Scholar 

    42.
    Goddard MR, Greig D. Saccharomyces cerevisiae: a nomadic yeast with no niche? FEMS Yeast Res. 2015;15:fov009.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    43.
    Van Elsas JD, Semenov AV, Costa R, Trevors JT. Survival of Escherichia coli in the environment: fundamental and public health aspects. ISME J. 2011;5:173–83.
    PubMed  Article  Google Scholar 

    44.
    Good BH, McDonald MJ, Barrick JE, Lenski RE, Desai MM. The dynamics of molecular evolution over 60,000 generations. Nature. 2017;551:45.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    45.
    Lang GI, Botstein D, Desai MM. Genetic variation and the fate of beneficial mutations in asexual populations. Genetics. 2011;188:647–61.
    PubMed  PubMed Central  Article  Google Scholar 

    46.
    Ratzke C, Barrere J, Gore J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat Ecol Evol. 2020;4:376–83.
    PubMed  Article  Google Scholar 

    47.
    Braun V. Energy-coupled transport and signal transduction through the gram-negative outer membrane via TonB-ExbB-ExbD-dependent receptor proteins. FEMS Microbiol Rev. 1995;16:295–307.
    CAS  PubMed  Article  Google Scholar 

    48.
    Branco P, Francisco D, Chambon C, Hebraud M, Arneborg N, Almeida MG, et al. Identification of novel GAPDH-derived antimicrobial peptides secreted by Saccharomyces cerevisiae and involved in wine microbial interactions. Appl Microbiol Biotechnol. 2014;98:843–53.
    CAS  PubMed  Article  Google Scholar 

    49.
    Noinaj N, Guillier M, Barnard TJ, Buchanan SK. TonB-dependent transporters: regulation, structure, and function. Annu Rev Microbiol. 2010;64:43–60.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Howard SP, Herrmann C, Stratilo CW, Braun V. In vivo synthesis of the periplasmic domain of TonB inhibits transport through the FecA and FhuA iron siderophore transporters of Escherichia coli. J Bacteriol. 2001;183:5885–95.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R, Armour CD, et al. Functional discovery via a compendium of expression profiles. Cell. 2000;102:109–26.
    CAS  PubMed  Article  Google Scholar 

    52.
    Zhou K, Qiao K, Edgar S, Stephanopoulos G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat Biotechnol. 2015;33:377.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Barrick JE, Colburn G, Deatherage DE, Traverse CC, Strand MD, Borges JJ, et al. Identifying structural variation in haploid microbial genomes from short-read resequencing data using breseq. BMC Genom. 2014;15:1039.
    Article  CAS  Google Scholar 

    54.
    Hall BG, Acar H, Nandipati A, Barlow M. Growth rates made easy. Mol Biol Evol. 2014;31:232–8.
    CAS  PubMed  Article  Google Scholar 

    55.
    Sprouffske K, Wagner A. Growthcurver: an R package for obtaining interpretable metrics from microbial growth curves. BMC Bioinform. 2016;17:172.
    Article  Google Scholar 

    56.
    Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol. 2015;81:2506–14.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Stemmer M, Thumberger T, del Sol Keyer M, Wittbrodt J, Mateo JL. CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS ONE. 2015;10:e0124633.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    58.
    Zhang H, Cheng Q-X, Liu A-M, Zhao G-P, Wang J. A novel and efficient method for bacteria genome editing employing both CRISPR/Cas9 and an antibiotic resistance cassette. Front Microbiol. 2017;8:812.
    PubMed  PubMed Central  Article  Google Scholar 

    59.
    Sharan SK, Thomason LC, Kuznetsov SG, Court DL. Recombineering: a homologous recombination-based method of genetic engineering. Nat Protoc. 2009;4:206.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 2013;41:4336–43.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Biot-Pelletier D, Martin VJ. Seamless site-directed mutagenesis of the Saccharomyces cerevisiae genome using CRISPR-Cas9. J Biol Eng. 2016;10:6.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    62.
    Quan J, Tian J. Circular polymerase extension cloning of complex gene libraries and pathways. PLoS ONE. 2009;4:e6441.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    63.
    Gietz RD, Schiestl RH. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc. 2007;2:31–34.
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Applying species distribution models in public health research by predicting snakebite risk using venomous snakes’ habitat suitability as an indicating factor

    1.
    Chippaux, J. P. Snake-bites: appraisal of the global situation. Bull. World Health Organ. 76, 515.9868843 (1998).
    Google Scholar 
    2.
    White, J. Bites and stings from venomous animals: a global overview. Ther. Drug Monit. 22, 65–68 (2000).
    CAS  PubMed  Article  Google Scholar 

    3.
    Juckett, G. & Hancox, J. G. Venomous snakebites in the United States: management review and update. Am. Fam. Phys. 65, 1367–1378 (2002).
    Google Scholar 

    4.
    Kasturiratne, A. et al. Estimates of disease burden due to land-snake bite in Sri Lankan hospitals. Southeast. Asian. J. Trop. Med. Public Health 36, 733 (2005).
    CAS  Google Scholar 

    5.
    Gutiérrez, J. M., Theakston, R. D. G. & Warrell, D. A. Confronting the neglected problem of snake bite envenoming: the need for a global partnership. PLoS Med. 3, e150 (2006).
    PubMed  PubMed Central  Article  Google Scholar 

    6.
    Kasturiratne, A. et al. The global burden of snakebite: a literature analysis and modeling based on regional estimates of envenoming and deaths. PLoS Med. 5, 1591–1604 (2008).
    Article  Google Scholar 

    7.
    Cruz, L. S., Vargas, R. & Lopes, A. A. Snakebite envenomation and death in the developing world. Ethn. Dis. 19, 42 (2009).
    Google Scholar 

    8.
    Warrell, D. Snake bite. Lancet 375, 77–88 (2010).
    PubMed  Article  Google Scholar 

    9.
    Chippaux, J. P. Estimate of the burden of snakebites in sub-Saharan Africa: a meta-analytic approach. Toxicon 57, 586–599 (2011).
    CAS  PubMed  Article  Google Scholar 

    10.
    Gutiérrez, J. M. Snakebite envenoming: a public health perspective. In Public Health-Methodology, Environmental and Systems Issues (ed. Maddock, J.) (InTech, London, 2012).
    Google Scholar 

    11.
    Hansson, E., Sasa, M., Mattisson, K., Robles, A. & Gutiérrez, J. M. Using geographical information systems to identify populations in need of improved accessibility to antivenom treatment for snakebite envenoming in Costa Rica. PLoS Negl. Trop. Dis. 7, e2009 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    12.
    Nori, J., Carrasco, P. A. & Leynaud, G. C. Venomous snakes and climate change: ophidism as a dynamic problem. Clim. Change 122, 67–80 (2014).
    ADS  Article  Google Scholar 

    13.
    Chippaux, J. P. Incidence and mortality due to snakebite in the Americas. PLoS Negl. Trop. Dis. 11, e0005662-e5739 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    14.
    Longbottom, J. et al. Vulnerability to snakebite envenoming: a global mapping of hotspots. Lancet 392, 673–684 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    15.
    Gutiérrez, J. M. et al. Snakebite envenoming. Nature 3, 17063 (2017).
    Google Scholar 

    16.
    Alirol, E., Sharma, S. K., Bawaskar, H. S., Kuch, U. & Chappuis, F. Snake bite in South Asia: a review. PLoS Negl. Trop. Dis. 4, e603 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    17.
    Yañez-Arenas, C., Díaz-Gamboa, L., Patrón-Rivero, C., López-Reyes, K. & Chiappa-Carrara, X. Estimating geographic patterns of ophidism risk in Ecuador. Neotrop. Biodivers. 4, 55–61 (2018).
    Article  Google Scholar 

    18.
    Dehghani, R., Fathi, B., Panjeh Shahi, M. & Jazayeri, M. Ten years of snakebites in Iran. Toxicon 90, 291–298 (2014).
    CAS  PubMed  Article  Google Scholar 

    19.
    Latifi, M. The Snakes of Iran (Department of Environment, Tehran, 2000).
    Google Scholar 

    20.
    Monzavi, S. M., Dadpour, B. & Afshari, R. Snakebite management in Iran: devising a protocol. J. Res. Med. Sci. 19, 153–163 (2014).
    PubMed  PubMed Central  Google Scholar 

    21.
    Rastegar-Pouyani, E. et al. A re-evaluation of taxonomic status of Montivipera (Squamata: Viperidae) from Iran using a DNA barcoding approach. Biochem. Syst. Ecol. 57, 350–356 (2014).
    CAS  Article  Google Scholar 

    22.
    Oraie, H. et al. Molecular and morphological analyses have revealed a new species of blunt-nosed viper of the genus Macrovipera in Iran. Salamandra 54, 233–238 (2018).
    Google Scholar 

    23.
    Moradi, N., Rastegra-Pouyani, N. & Rastegra-Pouyani, E. Geographic variation in the morphology of Macrovipera lebetina (Linnaeus, 1758) (Ophidia: Viperidae) in Iran. Acta Herpetol. 9, 187–202 (2014).

    24.
    Fathinia, B., Rastegar-Pouyani, N., Rastegar-Pouyani, E., Toodeh-Dehghan, F. & Rajabizadeh, M. Molecular systematics of the genus Pseudocerastes (Ophidia: Viperidae) based on the mitochondrial cytochrome b gene. Turk. J. Zool. 38, 575–581 (2014).
    CAS  Article  Google Scholar 

    25.
    Behrooz, R. et al. Habitat modeling and conservation of the endemic Latifi’s viper (Montivipera latifii) in Lar National Park Northern Iran. Herpetol. Conserv. Biol. 10, 572–582 (2015).
    Google Scholar 

    26.
    Khani, Sh., Kami, H. G. & Rajabizadeh, M. Geographic variation of Gloydius halys caucasicus (Serpentes: Viperidae) in Iran. Zool. Middle East. 63, 303–310 (2017).
    Article  Google Scholar 

    27.
    Fathinia, B., Rastegar-Pouyani, N. & Rastegar-Pouyani, E. Molecular phylogeny and historical biogeography of genera Eristicophis and Pseudocerastes (Ophidia, Viperidae). Zool. Scr. 47, 673–685 (2018).
    Article  Google Scholar 

    28.
    Rastegar-Pouyani, E., Oraie, H., Khosravani, A. & Akbari, A. Phylogenetic position of Iranian pitvipers (Viperidae, Crotalinae, Gloydius) inferred from mitochondrial cytochrome b sequences. Trop. Zool. 31, 55–67 (2018).
    Article  Google Scholar 

    29.
    Eslamian, L. et al. Snake bite in Northwest Iran: a retrospective study. J. Anal. Res. Clin. Med. 4, 133–138 (2016).
    Article  Google Scholar 

    30.
    Dehghani, R., Rabani, D., Panjeh-Shahi, M., Jazayeri, M. & Sabahi Bidgoli, M. Incidence of snake bite in Kashan, IR Iran during an eight-year period (2004–2011). Arch. Trauma Res. 1, 67–71 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    31.
    Farzaneh, E. et al. Epidemiological study of snakebites in Ardabil Province (Iran). Electron. Phys. 9, 3986–3990 (2017).
    Article  Google Scholar 

    32.
    Ebrahimi, V., Hamdami, E., Khademian, M. H., Moemenbellah-Fard, M. D. & Vazirianzadeh, B. Epidemiologic prediction of snake bites in tropical south Iran: using seasonal time series methods. Clin. Epidemiol. Glob. Health 6, 208–215 (2018).
    Article  Google Scholar 

    33.
    Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).
    Article  Google Scholar 

    34.
    Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models: With Applications in R (Cambridge University Press, Cambridge, 2017).
    Google Scholar 

    35.
    Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Milanesi, P., Holderegger, R., Caniglia, R., Fabbri, E. & Randi, E. Different habitat suitability models yield different least-cost path distances for landscape genetic analysis. Basic Appl. Ecol. 17, 61–71 (2015).
    Article  Google Scholar 

    37.
    Moradi, S., Sheykhi Ilanloo, S., Kafash, A. & Yousefi, Y. Identifying high-priority conservation areas for avian biodiversity using species distribution modeling. Ecol. Indic. 97, 159–164 (2019).
    Article  Google Scholar 

    38.
    Farrell, A. et al. Machine learning of large-scale spatial distributions of wild turkeys with high-dimensional environmental data. Ecol. Evol. 9, 5938–5949 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    39.
    Kalle, R., Ramesh, T., Qureshi, Q. & Sankar, K. Predicting the distribution pattern of small carnivores in response to environmental factors in the Western Ghats. PLoS ONE 8, e79295 (2013).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    40.
    Bradie, J. & Leung, B. A. quantitative synthesis of the importance of variables used in MaxEnt species distribution models. J. Biogeogr. 44, 1344–1361 (2017).
    Article  Google Scholar 

    41.
    Ashoori, A. et al. Habitat modeling of the common pheasant Phasianus colchicus (Galliformes: Phasianidae) in a highly modified landscape: application of species distribution models in the study of a poorly documented bird in Iran. Eur. Zool. J. 85, 373–381 (2018).
    Article  Google Scholar 

    42.
    Sutton, L. J. & Puschendorf, R. Climatic niche of the Saker Falcon Falco cherrug: predicted new areas to direct population surveys in Central Asia. Ibis 162, 27–41 (2020).
    Article  Google Scholar 

    43.
    Andrade-Díaz, M. S. et al. Expansion of the agricultural frontier in the largest South American Dry Forest: identifying priority conservation areas for snakes before everything is lost. PLoS ONE 14, e0221901 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    44.
    Smeraldo, S. et al. Modelling risks posed by wind turbines and power lines to soaring birds: the black stork (Ciconia nigra) in Italy as a case study. Biodivers. Conserv. 29, 1959–1976 (2020).
    Article  Google Scholar 

    45.
    Qin, A. et al. Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch, an extremely endangered conifer from southwestern China. Glob. Ecol. Conserv. 10, 139–146 (2017).
    Article  Google Scholar 

    46.
    Wang, R. et al. Modeling and mapping the current and future distribution of Pseudomonas syringae pv. actinidiae under climate change in China. PLoS ONE 13, e0192153 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    47.
    Kafash, A. et al. Climate change produces winners and losers: differential responses of amphibians in mountain forests of the Near East. Glob. Ecol. Conserv. 16, e00471 (2018).
    Article  Google Scholar 

    48.
    Schivo, F., Bauni, V., Krug, P. & Quintana, R. D. Distribution and richness of amphibians under different climate change scenarios in a subtropical region of South America. Appl Geogr. 103, 70–89 (2019).
    Article  Google Scholar 

    49.
    Ashrafzadeh, M. R., Naghipour, A. A., Haidarian, M., Kusza, S. & Pilliod, D. S. Effects of climate change on habitat and connectivity for populations of a vulnerable, endemic salamander in Iran. Glob. Ecol. Conserv. 19, e00637 (2019).
    Article  Google Scholar 

    50.
    Yousefi, M., Jouladeh-Rodbar, A. & Kafash, A. Using endemic freshwater fishes as proxies of their ecosystems to identify high priority rivers for conservation under climate change. Ecol. Indic. 112, 106137 (2020).
    Article  Google Scholar 

    51.
    Segura, S., Coppens d’Eeckenbrugge, G., López, L., Grum, M. & Guarino, L. Mapping the potential distribution of five species of Passiflora in Andean countries. Genet. Resour. Crop Evol. 50, 555–566 (2003).
    Article  Google Scholar 

    52.
    Rebelo, H. & Jones, G. Ground validation of presence-only modelling with rare species: a case study on barbastelles Barbastella barbastellus (Chiroptera: Vespertilionidae). J. Appl. Ecol. 47, 410–420 (2010).
    Article  Google Scholar 

    53.
    Rhoden, C. M., Peterman, W. E. & Taylor, C. A. Maxent-directed field surveys identify new populations of narrowly endemic habitat specialists. PeerJ 5, e3632 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    54.
    Bertolino, S. et al. Spatially-explicit models as tools for implementing effective management strategies for invasive alien mammals. Mamm. Rev. 50, 187–199 (2020).
    Article  Google Scholar 

    55.
    Pauli, B. P. et al. Human habitat selection: using tools from wildlife ecology to predict recreation in natural landscapes. Nat. Areas J. 39, 142–149 (2019).
    Article  Google Scholar 

    56.
    Yañez-Arenas, C., Peterson, A. T., Mokondoko, P., Rojas-Soto, O. & Martínez-Meyer, E. The use of ecological niche modeling to infer potential risk areas of snakebite in the Mexican State of Veracruz. PLoS ONE 9, e100957 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    57.
    Yañez-Arenas, C., Peterson, A. T., Rodriguez-Medina, K. & Barve, N. Mapping current and future potential snakebite risk in the new world. Clim. Change 134, 697–711 (2016).
    ADS  Article  Google Scholar 

    58.
    Zacarias, D. & Loyola, R. Climate change impacts on the distribution of venomous snakes and snakebite risk in Mozambique. Clim. Change 152, 195 (2019).
    ADS  Article  Google Scholar 

    59.
    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).
    PubMed  Article  Google Scholar 

    60.
    Yousefi, M. et al. Climate change is a major problem for biodiversity conservation: a systematic review of recent studies in Iran. Contemp. Probl. Ecol. 12, 394–403 (2019).
    Article  Google Scholar 

    61.
    Hannah, L. Climate Change Biology 2nd edn. (Academic Press, Cambridge, 2015).
    Google Scholar 

    62.
    Yousefi, M. & Kafash, A. Venomous snakes of Iran under climate change. In SCCS Europe—4th Hungarian Student Conference on Conservation Science, 4–8 September (2018).

    63.
    Maritz, B. et al. Identifying global priorities for the conservation of vipers. Biol. Conserv. 204, 94–102 (2016).
    Article  Google Scholar 

    64.
    Sharma, S. K. et al. Effectiveness of rapid transport of victims and community health education on snake bite fatalities in rural Nepal. Am. J. Trop. Med. Hyg. 89, 145–150 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    65.
    WHO. Guidelines for the Management of Snakebites (World Health Organization, Geneva, 2016).
    Google Scholar 

    66.
    Trogridou, A. Prevention is Better Than Cure: Snakebite Education in India (Episthmes Agogis, 2018).

    67.
    Chappuis, F., Sharma, S. K., Jha, N., Loutan, L. & Bovier, P. A. Protection against snake bites by sleeping under a bed net in southeastern Nepal. Am. J. Trop. Med. Hyg. 77, 197–199 (2007).
    PubMed  Article  Google Scholar 

    68.
    Khatchikian, C., Sangermano, F., Kendell, D. & Livdahl, T. Evaluation of species distribution model algorithms for fine-scale container-breeding mosquito risk prediction. Med. Vet. Entomol. 25, 268–275 (2011).
    CAS  PubMed  Article  Google Scholar 

    69.
    Escobar, L. E. et al. Ecology and geography of transmission of two bat-borne rabies lineages in Chile. PLoS Negl. Trop. Dis. 7, e2577 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    70.
    Du, Z. et al. Ecological niche modeling for predicting the potential risk areas of severe fever with thrombocytopenia syndrome. Int. J. Infect. Dis. 26, 1–8 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    71.
    Peterson, T. Mapping Disease Transmission Risk: Enriching Models Using Biogeography and Ecology (Johns Hopkins University Press, Baltimore, 2014).
    Google Scholar 

    72.
    Escobar, L. E. & Craft, M. E. Advances and limitations of disease biogeography using ecological niche modeling. Front. Microbiol. 7, 1174 (2016).
    PubMed  PubMed Central  Google Scholar 

    73.
    Escobar, L. E. et al. Ecological approaches in veterinary epidemiology: mapping the risk of bat-borne rabies using vegetation indices and night-time light satellite imagery. Vet. Res. 46, 92 (2015).
    MathSciNet  PubMed  PubMed Central  Article  CAS  Google Scholar 

    74.
    Nyakarahuka, L. et al. Ecological niche modeling for filoviruses: a risk map for Ebola and Marburg virus disease outbreaks in Uganda.PLoS Curr. (2017). Edition 1 2017.https://doi.org/10.1371/currents.outbreaks.07992a87522e1f229c7cb023270a2af1.

    75.
    Soucy, J. P. R. et al. High-resolution ecological niche modeling of Ixodes scapularis ticks based on passive surveillance data at the Northern Frontier of Lyme disease emergence in North America. Vector Borne Zoonotic Dis. 18, 235–242 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    76.
    Little, E. A. H. et al. Predicting spatiotemporal patterns of Lyme disease incidence from passively collected surveillance data for Borrelia burgdorferi sensu lato-infected Ixodes scapularis ticks. Ticks. Ticks Tick Borne Dis. 10, 970–980 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    77.
    Johnson, E. E., Escobar, L. E. & Zambrana-Torrelio, C. An ecological framework for modeling the geography of disease transmission. Trends Ecol. Evol. 34, 655–668 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    78.
    Yousefi, M. et al. Upward altitudinal shifts in habitat suitability of mountain vipers since the last glacial maximum. PLoS ONE 10, e0138087 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    79.
    Rajabizadeh, M. Snakes of Iran (IranShenasi Publishing, Tehran, 2017).
    Google Scholar 

    80.
    IUCN. The IUCN Red List of Threatened Species. Version 2019.3. https://www.iucnredlist.org. Accessed 10 March 2020 (2019).

    81.
    Pettorelli, N. et al. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 20, 503–510 (2005).
    PubMed  Article  Google Scholar 

    82.
    Terribile, L. C. et al. Global richness patterns of venomous snakes reveal contrasting influences of ecology and history in two different clades. Oecologia 159, 617 (2009).
    ADS  PubMed  Article  Google Scholar 

    83.
    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    84.
    Venter, O. et al. Global terrestrial human footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    85.
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Article  Google Scholar 

    86.
    Broxton, P. D., Zeng, X., Schefic, W. & Troch, P. A. A MODIS-Based global 1-km maximum green vegetation fraction dataset. J. Appl. Meteorol. Clim. 53, 1996–2004 (2014).
    ADS  Article  Google Scholar 

    87.
    Hijmans, R. J. Raster: Geographic Data Analysis and Modeling. R Package (2015).

    88.
    Jarvis, A., Reuter, H. I., Nelson, A. & Guevara, E. Hole-filled SRTM for the globe Version 4. Available from the CGIAR-CSI SRTM 90m Database. https://srtm.csi.cgiar.org. Accessed on 15 Apr 2015 (2008).

    89.
    Quinn, G. P. & Keough, M. J. Experimental Designs and Data Analysis for Biologists (Cambridge University Press, Cambridge, 2002).
    Google Scholar 

    90.
    Naimi, B. Uncertainty Analysis for Species Distribution Models. R Package Version 1.1-15 (2015).

    91.
    R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, Vienna, 2017).
    Google Scholar 

    92.
    Ridgeway, G. The state of boosting. Comput. Stat. 31, 172–181 (1999).
    Google Scholar 

    93.
    Hastie, T. J. & Tibshirani, R. Generalized Additive Models (Chapman and Hall, London, 1990).
    Google Scholar 

    94.
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
    Article  Google Scholar 

    95.
    McCullagh, P. & Nelder, J. A. Generalized Linear Models (Chapman and Hall, London, 1989).
    Google Scholar 

    96.
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
    MATH  Article  Google Scholar 

    97.
    Thuiller, W., Georges, D., Engler, R. & Breiner, F. biomod2: Ensemble Platform for Species Distribution Modeling. R package version 3.3-7 (2016).

    98.
    Freeman, E. A. & Moisen, G. PresenceAbsence: an r package for presence absence model analysis. J. Stat. Softw. 23, 1–31 (2008).
    Article  Google Scholar 

    99.
    Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240, 1285–1293 (1988).
    ADS  MathSciNet  CAS  PubMed  PubMed Central  MATH  Article  Google Scholar 

    100.
    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence–absence models. Environ. Conserv. 24, 38–49 (1997).
    Article  Google Scholar 

    101.
    Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300 (2002).
    Article  Google Scholar 

    102.
    Liu, C., White, M. & Newell, G. Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 40, 778–789 (2013).
    Article  Google Scholar  More

  • in

    Trophic downgrading reduces spatial variability on rocky reefs

    1.
    Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Estes, J. A., Tinker, M. T., Williams, T. M. & Doak, D. F. Killer whale predation on sea otters linking oceanic and nearshore ecosystems. Science 282, 473–476 (1998).
    ADS  CAS  PubMed  Article  Google Scholar 

    3.
    Hamilton, S. L. & Caselle, J. E. Exploitation and recovery of a sea urchin predator has implications for the resilience of southern California kelp forests. Proc. R. Soc. B Biol. Sci. 282, 20141817 (2015).
    Article  Google Scholar 

    4.
    Power, M. E. Effects of fish in river food webs. Science 250, 811–814 (1990).
    ADS  CAS  PubMed  Article  Google Scholar 

    5.
    Saleem, M. Loss of microbiome ecological niches and diversity by global change and trophic downgrading. Microbiome Commun. Ecol. 20, 89–113 (2015).
    Google Scholar 

    6.
    Risch, A. C. et al. Size-dependent loss of aboveground animals differentially affects grassland ecosystem coupling and functions. Nat. Commun. 9, 1–11 (2018).
    CAS  Article  Google Scholar 

    7.
    Eisaguirre, J. H. et al. Trophic redundancy and predator size class structure drive differences in kelp forest ecosystem dynamics. Ecology 101, e02993 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    8.
    Stromayer, K. A. & Warren, R. J. Are overabundant deer herds in the eastern United States creating alternate stable states in forest plant communities?. Wildl. Soc. Bul. 25, 227–234 (1997).
    Google Scholar 

    9.
    Steneck, R. S. et al. Kelp forest ecosystems: Biodiversity, stability, resilience and future. Environ. Cons. 29, 436–459 (2002).
    Article  Google Scholar 

    10.
    Strickland, M. S., Hawlena, D., Reese, A., Bradford, M. A. & Schmitz, O. J. Trophic cascade alters ecosystem carbon exchange. Proc. Natl. Acad. Sci. 110, 11035–11038 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Atwood, T. B. et al. Predator-induced reduction of freshwater carbon dioxide emissions. Nat. Geosci. 6, 191–194 (2013).
    ADS  CAS  Article  Google Scholar 

    12.
    Edwards, M. S. et al. Marine deforestation leads to widespread loss of ecosystem function. PLoS One https://doi.org/10.1371/journal.pone.0226173 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    13.
    Ripple, W. J. & Becshta, R. L. Hardwood tree decline following large carnivore loss on the Great Plains, USA. Front. Ecol. Environ. 5, 241–246 (2004).
    Article  Google Scholar 

    14.
    Ripple, W. J. Wolves and the ecology of fear: Can predation risk structure ecosystems. Bioscience 54, 55–766 (2004).
    Article  Google Scholar 

    15.
    Beschta, R. L. & Ripple, W. J. Recovering riparian plant communities with wolves in northern Yellowstone, USA. Rest. Ecol. 18, 380–389 (2010).
    Article  Google Scholar 

    16.
    Metzger, J. R., Konar, B. & Edwards, M. S. Assessing a macroalgal foundation species: Community variation with shifting algal assemblages. Mar. Biol. 166, 156 (2019).
    Article  Google Scholar 

    17.
    Gabara, S, Konar, B. & Edwards, M. Biodiversity loss leads to reductions in community-wide trophic complexity. Ecosphere. (in press).

    18.
    Hamilton, S. L., Caselle, J. E., Malone, D. P. & Carr, M. H. Incorporating biogeography into evaluations of the Channel Islands marine reserve network. Proc. Natl. Acad. Sci. 107, 18272–18277 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    19.
    Bauer, H. et al. Lion (Panthera leo) populations are declining rapidly across Africa, except in intensively managed areas. Proc. Natl. Acad. Sci. 112, 14894–14899 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    20.
    Mellin, C., MacNeil, A. M., Cheal, A. J., Emslie, M. J. & Caley, J. M. Marine protected areas increase resilience among coral reef communities. Ecol. Lett. 19, 629–637 (2016).
    PubMed  Article  Google Scholar 

    21.
    Levin, S. A. The problem of pattern and scale in ecology. Ecology 73, 1943–1967 (1992).
    Article  Google Scholar 

    22.
    Bengtsson, J., Baillie, S. R. & Lawton, J. Community variability increases with time. Oikos 78, 249–256 (1997).
    Article  Google Scholar 

    23.
    Connell, J. H., Hughes, T. P. & Wallace, C. C. A 30-year study of coral abundance, recruitment, and disturbance at several scales in space and time. Ecol. Monogr. 67, 461–488 (1997).
    Article  Google Scholar 

    24.
    Deutschman, D. H., Levin, S. A., Devine, C. & Buttel, L. A. Scaling from trees to forests: Analysis of a complex simulation model. Science 277, 1688 (1997).
    Article  Google Scholar 

    25.
    Brown, B. L. Spatial heterogeneity reduces temporal variability in stream insect communities. Ecol. Lett. 6, 316–325 (2003).
    Article  Google Scholar 

    26.
    Hughes, T. P. et al. Patterns of recruitment and abundance of corals along the Great Barrier Reef. Nature 397, 59–63 (1999).
    ADS  CAS  Article  Google Scholar 

    27.
    Edwards, M. S. & Estes, J. A. Catastrophe, recovery, and range limitation in NE Pacific kelp forests: A large-scale perspective. Mar. Ecol. Prog. Ser. 320, 79–87 (2006).
    ADS  Article  Google Scholar 

    28.
    Parepa, M., Fischer, M. & Bossdorf, O. Environmental variability priomotes plant invasion. Nat. Commun. 4, 1604 (2013).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    29.
    Dunstan, P. K. & Johnson, C. R. Linking richness, community variability, and invasion resisteance with patch size. Ecology 87, 2842–2850 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    30.
    Prevéy, J. S., Germino, M. J., Huntly, N. J. & Inouye, R. S. Exotic plants increase and native plants decrease with loss of foundation species in sagebrush steppe. Plant Ecol. 207, 39–51 (2010).
    Article  Google Scholar 

    31.
    Marks, L. M., Reed, D. C. & Obaza, A. K. Assessment of control methods for the invasive seaweed Sargassum horneri in California, USA. Manag. Biol. Invasions 8, 205–213 (2017).
    Article  Google Scholar 

    32.
    Wiens, J. A. Spatial scaling in ecology. Funct. Ecol. 3, 385–397 (1989).
    Article  Google Scholar 

    33.
    Edwards, M. S. Estimating scale-dependency in disturbance impacts: El Niños and giant kelp forests in the northeast Pacific. Oecologia 138, 436–447 (2004).
    ADS  PubMed  Article  Google Scholar 

    34.
    Dayton, P. K. & Tegner, M. J. The importance of scale in community ecology: A kelp forest example with terrestrial analogs. In A New Ecology: Novel Approaches To Interactive Systems (eds Price, P. W. et al.) (Wiley, New York, 1984).
    Google Scholar 

    35.
    Jenkinson, R. S., Hovel, K. A., Dunn, R. P. & Edwards, M. S. Biogeographical variation in the distribution, abundance, and interactions among key species on rocky reefs of the northeast Pacific. Mar. Ecol. Prog. Ser. 648, 51–65 (2020).
    ADS  Article  Google Scholar 

    36.
    Mann, K. H. Seaweeds: Their productivity and strategy for growth: The role of large marine algae in coastal productivity is far more important than has been suspected. Science 182, 975–981 (1973).
    ADS  CAS  PubMed  Article  Google Scholar 

    37.
    Leith, H. & Whittaker, R. H. Primary Productivity of the Biosphere (Springer, Berin, 1975).
    Google Scholar 

    38.
    Reed, D. C. & Brzezinski, M. A. Kelp forests. In The Management of Natural Coastal Carbon Sinks (eds Laffoley, D. & Grimsditch, G.) 31 (Springer, Gland, 2009).
    Google Scholar 

    39.
    Spector, M. & Edwards, M. S. Modelling the impacts of kelp deforestation on benthic primary production on temperate rocky reefs. Algae 35, 1–16 (2020).
    Article  Google Scholar 

    40.
    Dayton, P. K. Ecology of kelp communities. Ann. Rev. Ecol. Syst. 16, 215–245 (1985).
    Article  Google Scholar 

    41.
    Krumhansl, K. A. & Scheibling, R. E. Production and fate of kelp detritus. Mar. Ecol. Prog. Ser. 467, 281–302 (2012).
    ADS  Article  Google Scholar 

    42.
    Estes, J. A. et al. Complex trophic interactions in kelp forest ecosystems. Bull. Mar. Sci. 74, 621–638 (2004).
    ADS  Google Scholar 

    43.
    Krumhansl, K. A. et al. Global patterns of kelp forest change over the past half-century. Proc. Natl. Acad. Sci. 113, 13785–13790 (2016).
    CAS  PubMed  Article  Google Scholar 

    44.
    Kriegisch, N., Reeves, S. E., Johnson, C. R. & Ling, S. D. Top-down sea urchin overgrazing overwhelms bottom-up stimulation of kelp beds despite sediment enhanncement. J. Exp. Mar. Biol. Ecol. 514(515), 48–58 (2019).
    Article  Google Scholar 

    45.
    Schiebling, R. E., Hennigar, A. W. & Balch, T. Destructive grazing, epiphytism, and disease: The dynamics of sea urchin—kelp interactions in Nova Scotia. Can. J. Fish. Sci. Aquat. 56, 2300–2314 (1999).
    Article  Google Scholar 

    46.
    Fagerli, C. W., Norderhaug, K. M. & Christie, H. C. Lack of sea urchin settlement may explain kelp forest recovery in overgrazed areas in Norway. Mar. Ecol. Prog. Ser. 488, 119–132 (2012).
    ADS  Article  Google Scholar 

    47.
    Filbee-Dexter, K. & Scheibling, R. E. Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. Mar. Ecol. Prog. Ser. 495, 1–25 (2014).
    ADS  Article  Google Scholar 

    48.
    Ling, S. D., Johnson, C. R., Frusher, S. D. & Ridgway, K. R. Overfishing reduces resilience of kelp beds to climate-drivebn catastrophic phase shift. Proc. Natl. Acad. Sci. 106, 22341–22345 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    49.
    Simenstad, C. A., Estes, J. A. & Kenyon, K. W. Aleuts, sea otters, and alternate stable state communities. Science 200, 403–411 (1978).
    ADS  CAS  PubMed  Article  Google Scholar 

    50.
    Christie, H., Norderhaug, K. M. & Fredriksen, S. Macrophytes as habitat for fauna. Mar. Ecol. Prog. Ser. 396, 221–233 (2009).
    ADS  Article  Google Scholar 

    51.
    Greig-Smith, P. Pattern in vegetation. J. Ecol. 67, 755–779 (1979).
    Article  Google Scholar 

    52.
    Clark, W. C. Scales of climate impacts. Clim. Change 7, 5–27 (1985).
    ADS  Article  Google Scholar 

    53.
    Woodward, F. I. Climate and Plant Distribution (Cambridge University Press, Cambridge, 1987).
    Google Scholar 

    54.
    Levin, S. A. Multiple scales and the maintenance of biodiversity. Ecosystems 3, 498–506 (2000).
    Article  Google Scholar 

    55.
    Edwards, M.S. Scale-dependent patterns of community regulation in giant kelp forests. Ph.D. dissertation, University of California Santa Cruz (2001).

    56.
    Estes, J. A. Serendipity: An Ecologists Quest to understand Nature (University of California Press, California, 2016) ((ISBN-13:978-0520285033)).
    Google Scholar 

    57.
    Doroff, A. M. et al. Sea otter population declines in the Aleutian archipelago. J. Mammal. 84, 55–64 (2003).
    Article  Google Scholar 

    58.
    Konar, B. K., Edwards, M. S. & Estes, J. A. Biological interactions maintain the boundaries between kelp forests and urchin barrens in the Aleutian Archipelago. Hydrobiol. 724, 91–107 (2014).
    Article  Google Scholar 

    59.
    Graham, M. H. & Edwards, M. S. Statistical significance versus factor fit: Estimating the importance of individual factor in ecological analysis of variance. Oikos 93, 505–513 (2001).
    Article  Google Scholar 

    60.
    Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods (K PRIMER-E, Plymouth, 2006).
    Google Scholar 

    61.
    Estes, J. A. & Duggins, D. O. Sea otters and kelp forests in Alaska: Generality and variation in a community ecological paradigm. Ecol. Monogr. 65, 75–100 (1995).
    Article  Google Scholar 

    62.
    Levin, S. A. Challenges in the development of a theory of ecosystem structure and function. In Perspectives in Ecological Theory (eds Roughgarden, J. et al.) 242–255 (Princeton, Princeton University Press, 1989).
    Google Scholar 

    63.
    Tegner, M. J., Dayton, P. K., Edwards, P. B. & Riser, K. L. Large-scale, low-frequency oceanographic effects on kelp forest successions: A tale of two cohorts. Mar. Ecol. Prog. Ser. 146, 17–134 (1997).
    Article  Google Scholar 

    64.
    Karlson, R. H. & Cornell, H. V. Scale-dependent variation in local vs regional effects on coral species richness. Ecol. Monogr. 68, 259–274 (1998).
    Article  Google Scholar 

    65.
    Reed, R. K. & Stabeno, P. J. The recent return of the Alaskan Stream to Near Strait. J. Mar. Res. 51, 515–527 (1993).
    Article  Google Scholar 

    66.
    Ladd, C., Hunt, G. L., Mordy, C. W., Salo, S. A. & Stabeno, P. J. Marine environment of the eastern and central Aleutian Islands. Fish. Oceanogr. 14, 22–38 (2005).
    Article  Google Scholar 

    67.
    Reed, R. K. & Stabeno, P. J. The Aleutian North slope current. In Dynamics of the Bering Sea 177–191 (University of Alaska Sea Grant, Alaska, 1999).
    Google Scholar 

    68.
    Stabeno, P. J. & Reed, R. K. A major circulation anomaly in the western Bering Sea. Geophys. Res. Let. 19, 1671–1674 (1992).
    ADS  Article  Google Scholar 

    69.
    Hunt, G. L. & Stabeno, P. J. Oceanography and ecology of the Aleutian Archipelago: Spatial and temporal variation. Fish. Oceanogr. 14, 292–306 (2005).
    Article  Google Scholar 

    70.
    Konar, et al. A swath across the great divide: Kelp forests across the Samalga Pass biogeographic break. Cont. Shelf Res. 143, 78–88 (2017).
    ADS  Article  Google Scholar 

    71.
    Wilkinson, C. R. & Cheshire, A. C. Patterns in the distribution of sponge populations across the central Great Barrier Reef. Coral Reefs 8, 127–134 (1989).
    ADS  Article  Google Scholar 

    72.
    Wilkinson, C. R. & Cheshire, A. C. Comparisons of sponge populations across the Barrier Reefs of Australia and Belize: Evidence for higher productivity in the Caribbean. Mar. Ecol. Prog. Ser. 67, 285–294 (1990).
    ADS  Article  Google Scholar 

    73.
    Dayton, P. K., Tegner, M. J., Edwards, P. B. & Riser, K. L. Temporal and spatial scales of kelp demography: The role of oceanographic climate. Ecol. Monogr. 69, 219–250 (1999).
    Article  Google Scholar 

    74.
    Konar, B., Edwards, M. & Efird, T. Local habitat and regional oceanographic influence on fish distribution patterns in the diminishing kelp forests across the Aleutian Archipelago. Environ. Biol. Fish. 98, 1935–1951 (2015).
    Article  Google Scholar 

    75.
    Blanchette, C. A., Broitman, B. R. & Gaines, S. D. Intertidal community structure and oceanographic patterns around Santa Cruz Island, CA, USA. Mar. Biol. 149, 689–701 (2006).
    Article  Google Scholar 

    76.
    García-Charton, J. A. et al. Multi-scale spatial heterogeneity, habitat structure, and the effect of marine reserves on Western Mediterranean rocky reef fish assemblages. Mar. Biol. 144, 161–182 (2004).
    Article  Google Scholar 

    77.
    Hewitt, J. E., Thrush, S. F. & Dayton, P. D. Habitat variation, species diversity and ecological functioning in a marine system. J. Exp. Mar. Biol. Ecol. 366, 116–122 (2008).
    Article  Google Scholar 

    78.
    Bland, A., Konar, B. & Edwards, M. Spatial trends and environmental drivers of epibenthic shelf community structure across the Aleutian Islands. Cont. Shelf Res. 175, 12–29 (2019).
    ADS  Article  Google Scholar 

    79.
    Bruno, J. F., Petes, L. E., Drew Harvell, C. & Hettinger, A. Nutrient enrichment can increase the severity of coral diseases. Ecol. Lett. 6, 1056–1061 (2003).
    Article  Google Scholar 

    80.
    Halpern, B. S., Selkoe, K. A., Micheli, F. & Kappel, C. V. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Cons. Biol. 21, 1301–1315 (2007).
    Article  Google Scholar 

    81.
    Hoffman, G. et al. High-frequency dynamics of ocean pH: A multi-ecosystem comparison. PLoS One 20, 20 (2011).
    Google Scholar 

    82.
    Svenning, J. C. et al. Science for a wilder Anthropocene: Synthesis and future directions for trophic rewilding research. Proc. Natl. Acad. Sci. 113, 898–906 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    83.
    Stewart, N. & Konar, B. Kelp forests versus urchin barrens: Alternate stable states and their effect on sea otter prey quality in the Aleutian Islands. J. Mar. Sci. https://doi.org/10.1155/2012/492308 (2012).
    Article  Google Scholar 

    84.
    Rogachev, K. A. & Shlyk, N. V. The role of the Aleutian eddies in the Kamchatka current warming. Russ. Meteorol. Hydrol. 43, 43–48 (2018).
    Article  Google Scholar 

    85.
    Scheibling, R. E. & Hennigar, A. W. Recurrent outbreaks of disease in sea urchins Strongylocentrotus droebachiensis in Nova Scotia: Evidence for a link with large-scale meterologic and oceanographic events. Mar. Ecol. Prog. Ser. 152, 155–165 (1997).
    ADS  Article  Google Scholar 

    86.
    Girard, D., Clemente, S., Toledo-Guedes, K., Brito, A. & Hernández, J. C. A mass mortality of subtropical intertidal populations of the sea urchin Paracentrotus lividus: Analysis of potential links with environmental conditions. Mar. Ecol. 33, 377–385 (2012).
    ADS  Article  Google Scholar 

    87.
    Feehan, C. J. & Scheibling, R. E. Disease as a control of sea urchin populations in Nova Scotian kelp beds. Mar. Ecol. Prog. Ser. 500, 149–158 (2014).
    ADS  Article  Google Scholar 

    88.
    Hagen, N. T. Sea urchin outbreaks and nematode epizootics in Vestfjorden, northern Norway. Sarsia 72, 213–229 (1987).
    Article  Google Scholar 

    89.
    Shimizu, M. & Nagakura, K. Acid phosphatase activity in the body wall of the sea urchin, Strongylocentrotus intermedius, cultured at varying water temperatures. Comp. Biochem. Physiol. 106B, 303–307 (1993).
    CAS  Google Scholar 

    90.
    Wang, Y. et al. Isolation and characterization of bacteria associated with a syndrome disease of sea urchin Strongylocentrotus intermedius in North China. Aquacult. Res. 44, 691–700 (2013).
    CAS  Article  Google Scholar 

    91.
    Behrens, M. D. & Lafferty, K. D. Effects of marine reserves and urchin disease on southern Californian rocky reef communities. Mar. Ecol. Prog. Ser. 279, 129–139 (2004).
    ADS  Article  Google Scholar 

    92.
    Feehan, C. J. & Scheibling, R. E. A mass mortality of subtropical intertidal populations of the sea urchin Paracentrotus lividus: Analysis of potential links with environmental conditions. Mar. Biol. 161, 1467–1485 (2014).
    CAS  Article  Google Scholar 

    93.
    Stabeno, P. J., Kachel, D. G., Kachel, N. B. & Sullivan, M. E. Observations from moorings in the Aleutian Passes: Temperature, salinity and transport. Fish. Oceanogr. 14, 39–54 (2005).
    Article  Google Scholar 

    94.
    Favorite, F. Flow into the Bering Sea through the Aleutian Passes. In Oceanography of the Bering Sea with Emphasis on Renewable Resources (eds Hood, D. W. & Kelly, E. J.) 3–37 (Institute of Marine Science University of Alaska, Fairbanks, 1974).
    Google Scholar  More

  • in

    Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization

    1.
    Paustian, K. et al. Perspective climate-smart soils. Nature 532, 49–57 (2016).
    CAS  Article  Google Scholar 
    2.
    Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Glob. Change Biol. 19, 988–995 (2013).
    Article  Google Scholar 

    3.
    Lehmann, J. & Kleber, M. The contentious nature of soil organic matter. Nature 528, 60–68 (2015).
    CAS  Article  Google Scholar 

    4.
    Miltner, A., Bombach, P., Schmidt-Brucken, B. & Kastner, M. SOM genesis: Microbial biomass as a significant source. Biogeochemistry 111, 41–55 (2012).
    CAS  Article  Google Scholar 

    5.
    Solomon, D. et al. Micro- and nano-environments of carbon sequestration: multi-element STXM–NEXAFS spectromicroscopy assessment of microbial carbon and mineral associations. Chem. Geol. 329, 53–73 (2012).
    CAS  Article  Google Scholar 

    6.
    Kallenbach, C. M., Frey, S. D. & Grandy, A. S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 7, 13630 (2016).
    CAS  Article  Google Scholar 

    7.
    Liang, C. & Balser, T. C. Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy. Nat. Rev. Microbiol. 9, 75–75 (2011).
    CAS  Article  Google Scholar 

    8.
    Liang, C., Amelung, W., Lehmann, J. & Kästner, M. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob. Change Biol. 25, 3578–3590 (2019).
    Article  Google Scholar 

    9.
    Bradford, M. A., Keiser, A. D., Davies, C. A., Mersmann, C. A. & Strickland, M. S. Empirical evidence that soil carbon formation from plant inputs is positively related to microbial growth. Biogeochemistry 113, 271–281 (2013).
    CAS  Article  Google Scholar 

    10.
    Sinsabaugh, R. L., Moorhead, D. L., Xu, X. & Litvak, M. E. Plant, microbial and ecosystem carbon use efficiencies interact to stabilize microbial growth as a fraction of gross primary production. New Phytol. 214, 1518–1526 (2017).
    CAS  Article  Google Scholar 

    11.
    Walker, T. W. N. et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat. Clim. Change 8, 885–889 (2018).
    CAS  Article  Google Scholar 

    12.
    Kallenbach, C. M., Wallenstein, M. D., Schipanksi, M. E. & Stuart Grandy, A. Managing agroecosystems for soil microbial carbon use efficiency: ecological unknowns, potential outcomes, and a path forward. Front. Microbiol. 10, 1146 (2019).
    Article  Google Scholar 

    13.
    Geisseler, D. & Scow, K. M. Long-term effects of mineral fertilizers on soil microorganisms—a review. Soil Biol. Biochem. 75, 54–63 (2014).
    CAS  Article  Google Scholar 

    14.
    Trivedi, P. et al. Microbial regulation of the soil carbon cycle: evidence from gene-enzyme relationships. ISME J. 10, 2593–2604 (2016).
    CAS  Article  Google Scholar 

    15.
    Griffiths, R. I. et al. The bacterial biogeography of British soils. Environ. Microbiol. 13, 1642–1654 (2011).
    Article  Google Scholar 

    16.
    Fierer, N. et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc. Natl Acad. Sci. 109, 21390–21395 (2012).
    CAS  Article  Google Scholar 

    17.
    Whitaker, J. et al. Microbial carbon mineralization in tropical lowland and montane forest soils of Peru. Front. Microbiol. 5, 720 (2014).
    Article  Google Scholar 

    18.
    Zheng, Q. et al. Growth explains microbial carbon use efficiency across soils differing in land use and geology. Soil Biol. Biochem. 128, 45–55 (2019).
    CAS  Article  Google Scholar 

    19.
    Blüthgen, N. et al. A quantitative index of land-use intensity in grasslands: integrating mowing, grazing and fertilization. Basic Appl. Ecol. 13, 207–220 (2012).
    Article  Google Scholar 

    20.
    Hagerty, S. B., Allison, S. D. & Schimel, J. P. Evaluating soil microbial carbon use efficiency explicitly as a function of cellular processes: implications for measurements and models. Biogeochemistry 140, 269–283 (2018).
    CAS  Article  Google Scholar 

    21.
    Guo, L. B. & Gifford, R. M. Soil carbon stocks and land use change: a meta analysis. Glob. Change Biol. 8, 345–360 (2002).
    Article  Google Scholar 

    22.
    Ward, S. E. et al. Legacy effects of grassland management on soil carbon to depth. Glob. Change Biol. 22, 2929–2938 (2016).
    Article  Google Scholar 

    23.
    Kramer, M. G., Lajtha, K. & Aufdenkampe, A. K. Depth trends of soil organic matter C:N and 15N natural abundance controlled by association with minerals. Biogeochemistry 136, 237–248 (2017).
    CAS  Article  Google Scholar 

    24.
    Naveed, M. et al. Plant exudates may stabilize or weaken soil depending on species, origin and time. Eur. J. Soil Sci. 68, 806–816 (2017).
    CAS  Article  Google Scholar 

    25.
    Keiluweit, M., Wanzek, T., Kleber, M., Nico, P. & Fendorf, S. Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nat. Commun. 8, 1771 (2017).
    Article  CAS  Google Scholar 

    26.
    Kleber, M., Sollins, P. & Sutton, R. A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry 85, 9–24 (2007).
    Article  Google Scholar 

    27.
    Kopittke, P. M. et al. Nitrogen-rich microbial products provide new organo-mineral associations for the stabilization of soil organic matter. Glob. Change Biol. 12, 3218–3221 (2017).
    Google Scholar 

    28.
    Sauvadet, M., Lashermes, G., Alavoine, G. & Recous, S. High carbon use efficiency and low priming effect promote soil C stabilization under reduced tillage. Soil Biol. Biochem. 123, 64–73 (2018).
    CAS  Article  Google Scholar 

    29.
    Malik, A. A. et al. Land use driven change in soil pH affects microbial carbon cycling processes. Nat. Commun. 9, 3591 (2018).
    Article  CAS  Google Scholar 

    30.
    Averill, C., Waring, B. G. & Hawkes, C. V. Historical precipitation predictably alters the shape and magnitude of microbial functional response to soil moisture. Glob. Change Biol. 22, 1957–1964 (2016).
    Article  Google Scholar 

    31.
    Hawkes, C. V., Waring, B. G., Rocca, J. D. & Kivlin, S. N. Historical climate controls soil respiration responses to current soil moisture. Proc. Natl Acad. Sci. 114, 6322–6327 (2017).
    CAS  Article  Google Scholar 

    32.
    Liu, Z. et al. Precipitation thresholds regulate net carbon exchange at the continental scale. Nat. Commun. 9, 3596 (2018).
    Article  CAS  Google Scholar 

    33.
    Roller, B. R. & Schmidt, T. M. The physiology and ecological implications of efficient growth. ISME J. 9, 1481–1487 (2015).
    Article  Google Scholar 

    34.
    Shade, A. et al. Fundamentals of microbial community resistance and resilience. Front. Microbiol. 3, 417 (2012).
    Article  Google Scholar 

    35.
    Manzoni, S., Jackson, R. B., Trofymow, J. A. & Porporato, A. The global stoichiometry of litter nitrogen mineralization. Science 321, 684–686 (2008).
    CAS  Article  Google Scholar 

    36.
    Manzoni, S. et al. Reviews and syntheses: carbon use efficiency from organisms to ecosystems—definitions, theories, and empirical evidence. Biogeosciences 15, 5929–5949 (2018).
    CAS  Article  Google Scholar 

    37.
    Martiny, J. B. H., Jones, S. E., Lennon, J. T. & Martiny, A. C. Microbiomes in light of traits: a phylogenetic perspective. Science 350, aac9323–aac9323 (2015).
    Article  CAS  Google Scholar 

    38.
    Zelles, L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol. Fertil. Soils 29, 111–129 (1999).
    CAS  Article  Google Scholar 

    39.
    Apostel, C. et al. Food for microorganisms: position-specific 13C labeling and 13C-PLFA analysis reveals preferences for sorbed or necromass C. Geoderma 312, 86–94 (2018).
    CAS  Article  Google Scholar 

    40.
    Cáceres, M. DE & Legendre, P. Associations between species and groups of sites:nindices and statistical inference. Ecology 90, 3566–3574 (2009).
    Article  Google Scholar 

    41.
    Bergmann, G. T. et al. The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol. Biochem. 43, 1450–1455 (2011).
    CAS  Article  Google Scholar 

    42.
    Agricultural Budgeting & Costing Book, 81st edn. (Agro Business Consultants Ltd, 2015) https://abcbooks.co.uk/product/abc-budgeting-costing-book-2/.

    43.
    Gossner, M. M. et al. Land-use intensification causes multitrophic homogenization of grassland communities. Nature 540, 266–269 (2016).
    CAS  Article  Google Scholar 

    44.
    Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).
    Article  Google Scholar 

    45.
    Throckmorton, H. M., Bird, J. A., Dane, L., Firestone, M. K. & Horwath, W. R. The source of microbial C has little impact on soil organic matter stabilisation in forest ecosystems. Ecol. Lett. 15, 1257–1265 (2012).
    Article  Google Scholar 

    46.
    Elias, D. M. O. et al. Functional differences in the microbial processing of recent assimilates under two contrasting perennial bioenergy plantations. Soil Biol. Biochem. 114, 248–262 (2017).
    CAS  Article  Google Scholar 

    47.
    Fierer, N., Allen, A. S., Schimel, J. P. & Holden, P. A. Controls on microbial CO2 production: a comparison of surface and subsurface soil horizons. Glob. Chang. Biol. 9, 1322–1332 (2003).
    Article  Google Scholar 

    48.
    Emmett, B. A. et al. Countryside Survey. Soils Manual. NERC/Centre for Ecology & Hydrology. 180pp. (CS Technical Report No.3/07 CEH Project Number: C03259) (2008) http://www.countrysidesurvey.org.uk/sites/default/files/CS_UK_2007_TR3%20-%20Soils%20Manual.pdf.

    49.
    Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).
    CAS  Article  Google Scholar 

    50.
    Muyzer, G., Muyzer, G., Smalla, K. & Smalla, K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Int. J. Gen. Mol. Microbiol. 73, 127–141 (1998).
    CAS  Google Scholar 

    51.
    Yu, Y., Lee, C., Kim, J. & Hwang, S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol. Bioeng. 89, 670–679 (2005).
    CAS  Article  Google Scholar 

    52.
    Ihrmark, K. et al. New primers to amplify the fungal ITS2 region—evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 82, 666–677 (2012).
    CAS  Article  Google Scholar 

    53.
    Gweon, H. S. et al. PIPITS: An automated pipeline for analyses of fungal internal transcribed spacer sequences from the Illumina sequencing platform. Methods Ecol. Evol. 6, 973–980 (2015).
    Article  Google Scholar 

    54.
    Crossman, Z. M., Abraham, F. & Evershed, R. P. Stable isotope pulse-chasing and compound specific stable carbon isotope analysis of phospholipid fatty acids to assess methane oxidizing bacterial populations in landfill cover soils. Environ. Sci. Technol. 38, 1359–1367 (2004).
    CAS  Article  Google Scholar  More

  • in

    Characterization of bacterial communities associated with the exotic and heavy metal tolerant wetland plant Spartina alterniflora

    1.
    Williams, S. L. & Grosholz, E. D. The invasive species challenge in estuarine and coastal environments: marrying management and science. Estuar. Coasts 31, 3–20 (2008).
    Article  Google Scholar 
    2.
    Blumenthal, D., Mitchell, C. E., Pysek, P. & Jarosik, V. Synergy between pathogen release and resource availability in plant invasion. Proc. Natl. Acad. Sci. U.S.A. 106, 7899–7904 (2009).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Jemaneh, Z. et al. Effects of Spartinaalterniflora invasion on the communities of methanogens and sulfate-reducing bacteria in estuarine marsh sediments. Front. Microbiol. 4, 243 (2013).
    Google Scholar 

    4.
    Miché, L., Battistoni, F., Gemmer, S., Belghazi, M. & Reinhold-Hurek, B. Upregulation of jasmonate-inducible defense proteins and differential colonization of roots of Oryza sativa cultivars with the endophyte Azoarcus sp. Mol. Plant Microbe Interact. 19, 502–511 (2006).
    PubMed  Article  CAS  Google Scholar 

    5.
    Compant, S., Clément, C. & Sessitsch, A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 42, 669–678 (2010).
    CAS  Article  Google Scholar 

    6.
    Sobariu, D. L. et al. Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation. Nat. Biotechnol. 39, 125–134 (2016).
    Google Scholar 

    7.
    Förstner, U. & Wittmann, G. T. W. Metal Pollution in the Aquatic Environment (Springer, Berlin, 1983).
    Google Scholar 

    8.
    Watling, R. J. & Watling, H. R. Metal surveys in South African estuaries. I. Swartkops River. Water S A. 8, 26–35 (1982).
    CAS  Google Scholar 

    9.
    Singh, J. & Kalamdhad, A. S. Chemical speciation of heavy metals in compost and compost amended soil—a review. Int. J. Environ. Eng. Res. 2, 27–37 (2013).
    Google Scholar 

    10.
    Sun, Q., Ye, Z. H., Wang, X. R. & Wong, M. H. Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii. J. Plant Physiol. 164, 1489–1498 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Phillips, D. P., Human, L. R. D. & Adams, J. B. Wetland plants as indicators of heavy metal contamination. Mar. Pollut. Bull. 92, 227–232 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Kloepper, J. W., Leong, J., Teintze, M. & Schroth, M. N. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286, 885–886 (1980).
    ADS  CAS  Article  Google Scholar 

    13.
    Ma, Y., Prasad, M. N. V., Rajkumar, M. & Freitas, H. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol. Adv. 29, 248–258 (2011).
    CAS  PubMed  Article  Google Scholar 

    14.
    Wan, S., Pei, Q., Liu, J. & Zhou, H. X. The positive and negative effects of exotic Spartina alterniflora in China. Ecol. Eng. 35, 444–452 (2009).
    Article  Google Scholar 

    15.
    Zhang, Y., Huang, G., Wang, W., Chen, L. & Lin, G. Interactions between mangroves and exotic Spartina in an anthropogenically disturbed estuary in southern China. Ecology 93, 588–597 (2012).
    PubMed  Article  Google Scholar 

    16.
    Zhang, Q. et al. Abundance and composition of denitrifiers in response to Spartina alterniflora invasion in estuarine sediment. Can. J. Microbiol. 59, 825–836 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    17.
    Zhao, C., Liu, X., Bai, J., Fengchun, L. & Li, J. Impact of Spartina alterniflora on benthic macro-invertebrates communities on mangrove wetland in Xicungang Estuary, Guangxi. Biodivers. Sci. 22, 630–639 (2014).
    Article  Google Scholar 

    18.
    Youwei, H., Dan, L., Anyi, H., Han, W. & Jinsheng, C. Diversity of endophytic and rhizoplane bacterial communities associated with exotic Spartina alterniflora and native mangrove using Illumina amplicon sequencing. Can. J. Microbiol. 61, 723–733 (2015).
    Article  CAS  Google Scholar 

    19.
    Yu, R. L. & Hu, G. R. Speciation and ecological risk of heavy metals in sediments from Quanzhou bay. J. Huaqiao Univ. 29, 419–423 (2008).
    Google Scholar 

    20.
    Hu, G., Yu, R., Zhao, J. & Chen, L. Distribution and enrichment of acid-leachable heavy metals in the intertidal sediments from Quanzhou Bay, southeast coast of China. Environ. Monit. Assess. 173, 107–116 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Wu, Y. & Liu, R. The Plants’ Adaptability to Environment of Quanzhou Bay Estuary Wetland (Science Press, Beijing, 2011).
    Google Scholar 

    22.
    Lv, X. et al. A meta-analysis of the bacterial and archaeal diversity observed in wetland soils. Sci. World J. 2014, 437684 (2014).
    Google Scholar 

    23.
    Zhu, J. et al. Phylogenetic analysis of bacterial community composition in sediment contaminated with multiple heavy metals from the Xiangjiang River in China. Mar. Pollut. Bull. 70, 134–139 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Wang, Y. et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl. Environ. Microbiol. 78, 8264–8271 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Wilhelm, R. C., Niederberger, T. D., Greer, C. & Whyte, L. G. Microbial diversity of active layer and permafrost in an acidic wetland from the Canadian High Arctic. Can. J. Microbiol. 57, 303–315 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Sorokin, D. Y. et al. Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi. ISME J. 6, 2245–2256 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Björnsson, L., Hugenholtz, P., Tyson, G. W. & Blackall, L. L. Filamentous Chloroflexi (green non-sulfur bacteria) are abundant in wastewater treatment processes with biological nutrient removal. Microbiology 148, 2309–2318 (2002).
    PubMed  Article  PubMed Central  Google Scholar 

    28.
    Hug, L. A., Castelle, C. J., Wrighton, K. C., Thomas, B. C. & Banfield, J. F. Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. Microbiome 1, 1–17 (2013).
    Article  Google Scholar 

    29.
    Krzmarzick, M. J. et al. Natural niche for organohalide-respiring Chloroflexi. Appl. Environ. Microbiol. 78, 393–401 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Watts, J. E., Fagervold, S. K., May, H. D. & Sowers, K. R. A PCR-based specific assay reveals a population of bacteria within the Chloroflexi associated with the reductive dehalogenation of polychlorinated biphenyls. Microbiology 151, 2039–2046 (2005).
    CAS  PubMed  Article  Google Scholar 

    31.
    Jiang, X. T. et al. Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland. Microb. Ecol. 66, 96–104 (2013).
    PubMed  Article  Google Scholar 

    32.
    Yin, H. et al. An integrated insight into the response of sedimentary microbial communities to heavy metal contamination. Sci. Rep. 5, 14266 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Li, Y. H., Zhu, J. N., Zhai, Z. H. & Zhang, Q. Endophytic bacterial diversity in roots of Phragmites australis in constructed Beijing Cuihu Wetland (China). FEMS Microbiol. Lett. 309, 84–93 (2010).
    CAS  PubMed  Google Scholar 

    34.
    Wang, M., Chen, J. K. & Bo, L. I. Characterization of bacterial community structure and diversity in rhizosphere soils of three plants in rapidly changing salt marshes using 16S rDNA. Pedosphere 17, 545–556 (2007).
    CAS  Article  Google Scholar 

    35.
    Zhang, Q. et al. Endophytic bacterial communities associated with roots and leaves of plants growing in Chilean extreme environments. Sci. Rep. 9, 4950 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    36.
    Nie, M., Wang, M. & Bo, L. Effects of salt marsh invasion by Spartina alterniflora on sulfate-reducing bacteria in the Yangtze River estuary, China. Ecol. Eng. 35, 1804–1808 (2009).
    Article  Google Scholar 

    37.
    Muyzer, G. & Stams, A. J. M. The ecology and biotechnology of sulphate-reducing bacteria. Nat. Rev. Microbiol. 6, 441–454 (2008).
    CAS  PubMed  Article  Google Scholar 

    38.
    Vladár, P., Rusznyák, A., Márialigeti, K. & Andrea, K. B. Diversity of sulfate-reducing bacteria inhabiting the rhizosphere of Phragmites australis in Lake Velencei (Hungary) revealed by a combined cultivation-based and molecular approach. Microb. Ecol. 56, 64–75 (2008).
    PubMed  Article  CAS  Google Scholar 

    39.
    Zhou, H. W. et al. BIPES, a cost-effective high-throughput method for assessing microbial diversity. ISME J. 5, 741–749 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Halkjær, N. P., Caroline, K., Seviour, R. J. & Lund, N. J. Identity and ecophysiology of filamentous bacteria in activated sludge. FEMS Microbiol. Rev. 33, 6 (2009).
    Google Scholar 

    41.
    Ma, Y., Rajkumar, M. & Freitas, H. Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria. J. Hazard. Mater. 166, 1154–1161 (2009).
    CAS  PubMed  Article  Google Scholar 

    42.
    Ma, Y., Rajkumar, M. & Freitas, H. Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Chemosphere 75, 719–725 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    43.
    He, M. et al. Characterization and genomic analysis of a highly chromate resistant and reducing bacterial strain Lysinibacillusfusiformis ZC1. J. Hazard. Mater. 185, 682–688 (2011).
    CAS  PubMed  Article  Google Scholar 

    44.
    Raja, C. E. & Omine, K. Characterization of boron resistant and accumulating bacteria Lysinibacillusfusiformis M1, Bacilluscereus M2, Bacilluscereus M3, Bacilluspumilus M4 isolated from former mining site, Hokkaido, Japan. J. Environ. Sci. Health A Toxic/Hazard. Subst. Environ. Eng. 47, 1341–1349 (2012).
    CAS  Article  Google Scholar 

    45.
    Vendan, R. T., Yu, Y. J., Sun, H. L. & Rhee, Y. H. Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. J. Microbiol. 48, 559–565 (2010).
    CAS  PubMed  Article  Google Scholar 

    46.
    Gantar, M., Rowell, P., Kerby, N. W. & Sutherland, I. W. Role of extracellular polysaccharide in the colonization of wheat (Triticumvulgare L.) roots by N2-fixing cyanobacteria. Biol. Fertil. Soils 19, 41–48 (1995).
    CAS  Article  Google Scholar 

    47.
    Barraquio, W. L., Revilla, L. & Ladha, J. K. Isolation of endophytic diazotrophic bacteria from wetland rice. Plant Soil. 194, 15–24 (1997).
    CAS  Article  Google Scholar 

    48.
    Ladha, J. K., Barraquio, W. L. & Watanabe, I. Isolation and identification of nitrogen-fixing Enterobacter cloacae and Klebsiella planticola associated with rice plants. Can. J. Microbiol. 29, 1301–1308 (1983).
    Article  Google Scholar 

    49.
    Reinhold-Hurek, B. et al. Azoarcus gen. nov., nitrogen-fixing proteobacteria associated with roots of kallar grass (Leptochloafusca (L.) Kunth), and description of two species, Azoarcusindigens sp. nov. and Azoarcuscommunis sp. nov.. Int. J. Syst. Bacteriol. 43, 574–584 (1993).
    Article  Google Scholar 

    50.
    Iniguez, A., Dong, Y. & Triplett, E. Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol. Plant Microbe Interact. 17, 1078–1085 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Reiter, B., Bürgmann, H., Burg, K. & Sessitsch, A. Endophytic nifH gene diversity in African sweet potato. Can. J. Microbiol. 49, 549–555 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Ryan, R. P., Kieran, G., Ashley, F., Ryan, D. J. & Dowling, D. N. Bacterial endophytes: recent developments and applications. FEMS Microbiol. Lett. 278, 1–9 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Lee, S. et al. Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome c biogenesis genes. J. Bacteriol. 186, 5384–5391 (2004).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Subhash, C. V., Jagdish, K. L. & Anil, K. T. Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J. Biotechnol. 91, 127–141 (2001).
    Article  Google Scholar 

    55.
    Wakelin, S., Warren, R., Harvey, P. & Ryder, M. Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol. Fertil. Soils 40, 36–43 (2004).
    CAS  Article  Google Scholar 

    56.
    Compant, S. et al. Endophytic colonization of Vitisvinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl. Environ. Microbiol. 71, 1685–1693 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Wang, Y., Brown, H. N., Crowley, D. E. & Szaniszlo, P. J. Evidence for direct utilization of a siderophore, ferrioxamine B, in axenically grown cucumber. Plant Cell Environ. 16, 579–585 (1993).
    CAS  Article  Google Scholar 

    58.
    Cindy, L., Jaco, V., Fiona, P., Edward, R. B. & Moore, S. Endophytic bacteria and their potential applications. Crit. Rev. Plant Sci. 21, 583–606 (2002).
    Article  Google Scholar 

    59.
    Puente, M. E., Li, C. Y. & Bashan, Y. Endophytic bacteria in cacti seeds can improve the development of cactus seedlings. Environ. Exp. Bot. 66, 402–408 (2009).
    CAS  Article  Google Scholar 

    60.
    Grichko, V. P., Filby, B. & Glick, B. R. Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd Co, Cu, Ni, Pb, and Zn. J. Biotechnol. 81, 45–53 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    61.
    Grichko, V. P. & Glick, B. R. Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol. Biochem. 39, 11–17 (2001).
    CAS  Article  Google Scholar 

    62.
    Liao, C. et al. Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze Estuary, China. Ecosystems 10, 1351–1361 (2007).
    CAS  Article  Google Scholar 

    63.
    Thomas, F., Giblin, A. E., Cardon, Z. G. & Sievert, S. M. Rhizosphere heterogeneity shapes abundance and activity of sulfur-oxidizing bacteria in vegetated salt marsh sediments. Front. Microbiol. 5, 309 (2014).
    PubMed  PubMed Central  Google Scholar 

    64.
    Idris, R., Trifonova, R., Puschenreiter, M., Wenzel, W. W. & Sessitsch, A. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl. Environ. Microbiol. 70, 2667–2677 (2004).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Wang, F., Men, X., Zhang, G., Liang, K. & Wu, L. Assessment of 16S rRNA gene primers for studying bacterial community structure and function of aging flue-cured tobaccos. AMB Express. 8, 182 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    66.
    Haas, B. J. et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21, 494–504 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    67.
    Margalef, R. Information theory in ecology. Gen. Syst. 3, 36–71 (1958).
    Google Scholar 

    68.
    Menhinick, E. F. A comparison of some species-individuals diversity indices applied to samples of field insects. Ecology 45, 859–861 (1964).
    Article  Google Scholar 

    69.
    Pielou, E. C. An Introduction to Mathematical Ecology (Wiley, New York, 1969).
    Google Scholar 

    70.
    Gordon, S. A. & Weber, R. P. Colorimetric estimation of indoleacetic acid. Plant Physiol. 26, 192–195 (1951).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    71.
    Penrose, D. M. & Glick, B. R. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol. Plant. 118, 10–15 (2010).
    Article  Google Scholar 

    72.
    Payne, S. M. Detection, isolation, and characterization of siderophores. Method Enzymol. 235, 329–344 (1994).
    CAS  Article  Google Scholar 

    73.
    Liang, S. X., Wang, X., Wu, H. & Sun, H. W. Determination of 9 heavy metal elements in sediment by ICP-MS using microwave digestion for sample preparation. Spectrosc. Spectr. Anal. 32, 809–812 (2012).
    CAS  Google Scholar  More

  • in

    The fast-acting “pulse” of Heinrich Stadial 3 in a mid-latitude boreal ecosystem

    1.
    Goñi, M. F. S. & Harrison, S. P. Millennial-scale climate variability and vegetation changes during the Last Glacial: Concepts and terminology. Quat. Sci. Rev. 29, 2823–2827 (2010).
    ADS  Article  Google Scholar 
    2.
    Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: Refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014).
    ADS  Article  Google Scholar 

    3.
    McManus, J. F., Oppo, D. W. & Cullen, J. L. A 0.5-million-year record of millennial-scale climate variability in the North Atlantic. Science 283, 971–975 (1999).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Jouzel, J. et al. Orbital and millennial antarctic climate variability over the past 800,000 years. Science 317, 793–796 (2007).
    ADS  CAS  Article  Google Scholar 

    5.
    Seierstad, I. K. et al. Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores for the past 104ka reveal regional millennial-scale δ18O gradients with possible Heinrich event imprint. Quat. Sci. Rev. 106, 29–46 (2014).
    ADS  Article  Google Scholar 

    6.
    Cvijanovic, I. & Chiang, J. C. H. Global energy budget changes to high latitude North Atlantic cooling and the tropical ITCZ response. Clim. Dyn. 40, 1435–1452 (2013).
    Article  Google Scholar 

    7.
    Markle, B. R. et al. Global atmospheric teleconnections during Dansgaard-Oeschger events. Nat. Geosci. 10, 36–40 (2017).
    ADS  CAS  Article  Google Scholar 

    8.
    Fischer, H., Siggaard-Andersen, M.-L., Ruth, U., Röthlisberger, R. & Wolff, E. Glacial/interglacial changes in mineral dust and sea-salt records in polar ice cores: Sources, transport, and deposition. Rev. Geophys. 45, 1–26 (2007).

    9.
    Biscaye, P. E. et al. Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 Ice Core, Summit, Greenland. J. Geophys. Res. Ocean. 102, 26765–26781 (1997).
    ADS  CAS  Article  Google Scholar 

    10.
    Bory, A. J.-M., Biscaye, P. E. & Grousset, F. E. Two distinct seasonal Asian source regions for mineral dust deposited in Greenland (NorthGRIP). Geophys. Res. Lett. 30, 1167 (2003).

    11.
    Han, C. et al. High-resolution isotopic evidence for a potential Saharan provenance of Greenland glacial dust. Sci. Rep. 8, 1–9 (2018).
    ADS  Article  CAS  Google Scholar 

    12.
    Murphy, L. N. et al. Simulated changes in atmospheric dust in response to a Heinrich stadial. Paleoceanography 29, 30–43 (2014).
    ADS  Article  Google Scholar 

    13.
    Zhang, X. Y., Arimoto, R. & An, Z. S. Dust emission from Chinese desert sources linked to variations in atmospheric circulation. J. Geophys. Res. Atmos. 102, 28041–28047 (1997).
    ADS  CAS  Article  Google Scholar 

    14.
    Hughen, K., Southon, J., Lehman, S., Bertrand, C. & Turnbull, J. Marine-derived 14C calibration and activity record for the past 50,000 years updated from the Cariaco Basin. Quat. Sci. Rev. 25, 3216–3227 (2006).
    ADS  Article  Google Scholar 

    15.
    Goñi, M. F. S. et al. Contrasting impacts of Dansgaard-Oeschger events over a western European latitudinal transect modulated by orbital parameters. Quat. Sci. Rev. 27, 1136–1151 (2008).
    ADS  Article  Google Scholar 

    16.
    Naughton, F. et al. Wet to dry climatic trend in north-western Iberia within Heinrich events. Earth Planet. Sci. Lett. 284, 329–342 (2009).
    ADS  CAS  Article  Google Scholar 

    17.
    Fleitmann, D. et al. Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey. Geophys. Res. Lett. 36, 1–5 (2009).
    Article  CAS  Google Scholar 

    18.
    Moseley, G. E. et al. NALPS19: Sub-orbital-scale climate variability recorded in northern Alpine speleothems during the last glacial period. Clim. Past 16, 29–50 (2020).
    Article  Google Scholar 

    19.
    Moseley, G. E. et al. Multi-speleothem record reveals tightly coupled climate between central Europe and Greenland during marine isotope stage 3. Geology 42, 1043–1046 (2014).
    ADS  Article  Google Scholar 

    20.
    Cheng, H. et al. Atmospheric 14C/12C changes during the last glacial period from Hulu Cave. Science 362, 1293–1297 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Fletcher, W. J. et al. Millennial-scale variability during the last glacial in vegetation records from Europe. Quat. Sci. Rev. 29, 2839–2864 (2010).
    ADS  Article  Google Scholar 

    22.
    Tzedakis, P. C. et al. Ecological thresholds and patterns of millennial-scale climate variability: The response of vegetation in Greece during the last glacial period. Geology 32, 109–112 (2004).
    ADS  Article  Google Scholar 

    23.
    Duprat-Oualid, F. et al. Vegetation response to abrupt climate changes in Western Europe from 45 to 14.7 k cal a BP: The Bergsee lacustrine record (Black Forest, Germany). J. Quat. Sci. 32, 1008–1021 (2017).
    Article  Google Scholar 

    24.
    Újvári, G. et al. Coupled European and Greenland last glacial dust activity driven by North Atlantic climate. Proc. Natl. Acad. Sci. USA 114, E10632–E10638 (2017).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    25.
    Stager, J. C., Ryves, D. B., Chase, B. M. & Pausata, F. S. R. Catastrophic drought in the Afro-Asian monsoon region during Heinrich event 1. Science 331, 1299–1302 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Jullien, E. et al. Low-latitude ‘dusty events’ vs. high-latitude ‘icy Heinrich events’. Quat. Res. 68, 379–386 (2007).
    Article  Google Scholar 

    27.
    Deplazes, G. et al. Links between tropical rainfall and North Atlantic climate during the last glacial period. Nat. Geosci. 6, 213–217 (2013).
    ADS  CAS  Article  Google Scholar 

    28.
    Grimm, E. C., Jacobson, G. L. Jr, Watts, W. A., Hansen, B. C. S. & Maasch, K. A. A 50,000-year record of climate oscillations from Florida and its temporal correlation with the Heinrich Events. Science 261, 198–200 (1993).  

    29.
    De Abreu, L., Shackleton, N. J., Schönfeld, J., Hall, M. & Chapman, M. Millennial-scale oceanic climate variability off the Western Iberian margin during the last two glacial periods. Mar. Geol. 196, 1–20 (2003).
    ADS  Article  Google Scholar 

    30.
    Lynch-Stieglitz, J. et al. Muted change in Atlantic overturning circulation over some glacial-aged Heinrich events. Nat. Geosci. 7, 144–150 (2014).
    ADS  CAS  Article  Google Scholar 

    31.
    Lowe, D. J. Tephrochronology and its application: A review. Quat. Geochronol. 6, 107–153 (2011).
    Article  Google Scholar 

    32.
    Luetscher, M. et al. North Atlantic storm track changes during the Last Glacial Maximum recorded by Alpine speleothems. Nat. Commun. 6, 27–32 (2015).
    Article  CAS  Google Scholar 

    33.
    Columbu, A. et al. Speleothem record attests to stable environmental conditions during Neanderthal–modern human turnover in southern Italy. Nat. Ecol. Evol. 4, 1188–1195 (2020).  

    34.
    McDermott, F., Schwarcz, H. & Rowe, P. J. Isotopes in speleothems in Isotopes in Palaeoenvironmental Research (ed. Leng, M.) 185–225 (Kluwer Academic Publishers, 2006).  

    35.
    Fairchild, I. J. & Treble, P. C. Trace elements in speleothems as recorders of environmental change. Quat. Sci. Rev. 28, 449–468 (2009).
    ADS  Article  Google Scholar 

    36.
    Ammann, B. et al. Vegetation responses to rapid warming and to minor climatic fluctuations during the late-glacial interstadial (GI-1) at gerzensee (switzerland). Palaeogeogr. Palaeoclimatol. Palaeoecol. 391, 40–59 (2013).
    Article  Google Scholar 

    37.
    Lydersen, J. M., Collins, B. M., Miller, J. D., Fry, D. L. & Stephens, S. L. Relating fire-caused change in forest structure to remotely sensed estimates of fire severity. Fire Ecol. 12, 99–116 (2016).
    Article  Google Scholar 

    38.
    Darfeuil, S. et al. Sea surface temperature reconstructions over the last 70 k year off Portugal: Biomarker data and regional modeling. Paleoceanography 31, 40–65 (2016).
    ADS  Article  Google Scholar 

    39.
    Waelbroeck, C. et al. Consistently dated Atlantic sediment cores over the last 40 thousand years. Sci. Data 6, 165 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    40.
    Hemming, S. R. Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys. 42, RG1005 (2004).

    41.
    Turney, C. S. M. et al. High-precision dating and correlation of ice, marine and terrestrial sequences spanning Heinrich Event 3: Testing mechanisms of interhemispheric change using New Zealand ancient kauri (Agathis australis). Quat. Sci. Rev. 137, 126–134 (2016).
    ADS  Article  Google Scholar 

    42.
    Turney, C. S. M. et al. Rapid global ocean–atmosphere response to Southern Ocean freshening during the last glacial. Nat. Commun. 8, 1–9 (2017).
    CAS  Article  Google Scholar 

    43.
    Monegato, G., Scardia, G., Hajdas, I., Rizzini, F. & Piccin, A. The Alpine LGM in the boreal ice-sheets game. Sci. Rep. 7, 1–8 (2017).
    CAS  Article  Google Scholar 

    44.
    Makos, M. et al. Last Glacial Maximum and Lateglacial in the Polish High Tatra Mountains—Revised deglaciation chronology based on the 10Be exposure age dating. Quat. Sci. Rev. 187, 130–156 (2018).
    ADS  Article  Google Scholar 

    45.
    Oliva, M. et al. Late Quaternary glacial phases in the Iberian Peninsula. Earth Sci. Rev. 192, 564–600 (2019).
    ADS  Article  Google Scholar 

    46.
    Bradwell, T. et al. Pattern, style and timing of British–Irish Ice Sheet retreat: Shetland and northern North Sea sector. J. Quat. Sci. 1–42 (2019).

    47.
    Pini, R., Ravazzi, C. & Reimer, P. J. The vegetation and climate history of the last glacial cycle in a new pollen record from Lake Fimon (southern Alpine foreland, N-Italy). Quat. Sci. Rev. 29, 3115–3137 (2010).
    ADS  Article  Google Scholar 

    48.
    Monegato, G., Pini, R., Ravazzi, C., Reimer, P. J. & Wick, L. Correlating Alpine glaciation with Adriatic sea-level changes through lake and alluvial stratigraphy. J. Quat. Sci. 26, 791–804 (2011).
    Article  Google Scholar 

    49.
    Moss, E. H. Forest communities in northwestern Alberta. Can. J. Bot. 31, 212–252 (1953).
    Article  Google Scholar 

    50.
    Ruuhijärvi, R. The Finnish mire types and their regional distribution. In Mires: Swamp, Bog, Fen and Moor. Ecosystems of the World 4B (ed. Gore, A. J. P.) 47–67 (Elsevier, New York, 1983).
    Google Scholar 

    51.
    Allen, J. R. M. & Huntley, B. Weichselian palynological records from southern Europe: Correlation and chronology. Quat. Int. 73–74, 111–125 (2000).
    Article  Google Scholar 

    52.
    Margari, V., Gibbard, P. L., Bryant, C. L. & Tzedakis, P. C. Character of vegetational and environmental changes in southern Europe during the last glacial period; evidence from Lesvos Island, Greece. Quat. Sci. Rev. 28, 1317–1339 (2009).
    ADS  Article  Google Scholar 

    53.
    Pross, J. et al. The 1.35-Ma-long terrestrial climate archive of Tenaghi Philippon, northeastern Greece: Evolution, exploration, and perspectives for future research. Newslett. Stratigr. 48, 253–276 (2015).
    Article  Google Scholar 

    54.
    Allen, J. R. M. et al. Rapid environmental changes in southern Europe during the last glacial period. Nature 400, 740–743 (1999).
    ADS  CAS  Article  Google Scholar 

    55.
    Wulf, S. et al. The marine isotope stage 1–5 cryptotephra record of Tenaghi Philippon, Greece: Towards a detailed tephrostratigraphic framework for the Eastern Mediterranean region. Quat. Sci. Rev. 186, 236–262 (2018).
    ADS  Article  Google Scholar 

    56.
    Benjamin, J. et al. Late Quaternary sea-level changes and early human societies in the central and eastern Mediterranean Basin: An interdisciplinary review. Quat. Int. 449, 29–57 (2017).
    Article  Google Scholar 

    57.
    Rossato, S., Carraro, A., Monegato, G., Mozzi, P. & Tateo, F. Glacial dynamics in pre-Alpine narrow valleys during the Last Glacial Maximum inferred by lowland fluvial records (northeast Italy). Earth Surf. Dynam 6, 809–828 (2018).
    ADS  Article  Google Scholar 

    58.
    Ravazzi, C., Badino, F., Marsetti, D., Patera, G. & Reimer, P. J. Glacial to paraglacial history and forest recovery in the Oglio glacier system (Italian Alps) between 26 and 15 ka cal BP. Quat. Sci. Rev. 58, 146–161 (2012).
    ADS  Article  Google Scholar 

    59.
    Gianotti, F. et al. Stratigraphy of the Ivrea morainic amphitheatre (NW Italy); an updated synthesis. Alp. Mediterr. Quat. 28, 29–58 (2015).
    Google Scholar 

    60.
    Braakhekke, J. et al. Timing and flow pattern of the Orta Glacier (European Alps) during the Last Glacial Maximum. Boreas 49, 315–332 (2020).
    Article  Google Scholar 

    61.
    Ivy-Ochs, S. et al. New geomorphological and chronological constraints for glacial deposits in the Rivoli-Avigliana end-moraine system and the lower Susa Valley (Western Alps, NW Italy). J. Quat. Sci. 33, 550–562 (2018).
    Article  Google Scholar 

    62.
    Miko, S. et al. Submerged karst landscapes of the Eastern Adriatic. in 5th Regional Scientific Meeting on Quaternary Geology Dedicated to Geohazards and Final conference of the LoLADRIA project “Submerged Pleistocene landscapes of the Adriatic Sea/Marjanac, Lj.—Zagreb : Hrvatska akademija znanosti i umjetnosti 53–54 (2017).

    63.
    Maselli, V. et al. Delta growth and river valleys: The influence of climate and sea level changes on the South Adriatic shelf (Mediterranean Sea). Quat. Sci. Rev. 99, 146–163 (2014).
    ADS  Article  Google Scholar 

    64.
    Bigi, G. et al. Structural Model of Italy, Sheets 1 (CNR S.EL.CA, Firenze, 1990).
    Google Scholar 

    65.
    Bartolomei, G. et al. Note illustrative della carta geologica d’Italia alla scala 1:100,000, foglio 021-Trento, Poligrafica e Cartevalori, Ercolano. (1969).

    66.
    Dal Piaz, G., Fabiani, R., Trevisan, L. & Venzo, S. Carta geologica delle tre Venezie al 100.000, foglio 37-Bassano del Grappa, Ufficio Idrografico Magistrato delle Acque, Venezia. (1946).

    67.
    Barbieri, G. & Grandesso, P. Note illustrative della Carta Geologica d’Italia alla scala 1:50,000, foglio 082-Asiago, APAT, S.EL.CA., Firenze, 135. (2007).

    68.
    Avanzini, M., Bargossi, G. M., Borsato, A. & Selli, L. Note Illustrative della Carta Geologica d’Italia alla scala 1:50,000, foglio 060-Trento, ISPRA-Servizio Geologico d’Italia, Trento. (2010).

    69.
    Rossato, S. et al. Late Quaternary glaciations and connections to the piedmont plain in the prealpine environment: The middle and lower Astico Valley (NE Italy). Quat. Int. 288, 8–24 (2013).
    Article  Google Scholar 

    70.
    Bosellini, A. et al. Note illustrative della Carta Geologica d’Italia, Foglio 49 Verona, Servizio Geologico d’Italia. (1967).

    71.
    Antonelli, R. & Fabbri, P. Analysis and comparison of some values of transmissivity, permeability and storage from the Euganean Thermal Basin. IAHS-AISH Publ. 176, 707–718 (1988).
    Google Scholar 

    72.
    Bassi, D., Nebelsick, J. H., Puga-Bernabéu, Á. & Luciani, V. Middle Eocene Nummulites and their offshore re-deposition: A case study from the Middle Eocene of the Venetian area, northeastern Italy. Sediment. Geol. 297, 1–15 (2013).
    ADS  Article  Google Scholar 

    73.
    Pola, M., Ricciato, A., Fantoni, R., Fabbri, P. & Zampieri, D. Architecture of the western margin of the North Adriatic foreland: The Schio-Vicenza fault system. Ital. J. Geosci. 133, 223–234 (2014).
    Article  Google Scholar 

    74.
    Fontana, A., Mozzi, P. & Marchetti, M. Alluvial fans and megafans along the southern side of the Alps. Sed. Geol. 301, 150–171 (2014).
    Article  Google Scholar 

    75.
    Walter, H., Breckle, S.-W., Walter, H. & Breckle, S.-W. The Zonoecotones in Ecological Systems of the Geobiosphere 104–107 (Springer Berlin Heidelberg, 1986).  

    76.
    Archibold, O. W. Temperate forest ecosystems in Ecology of World Vegetation 165–203 (Springer, Dordrecht, 1995).  

    77.
    Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).
    Article  Google Scholar 

    78.
    Reimer, P. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 kcal BP). Radiocarbon, 62(4), 725–757 (2020).

    79.
    Oksanen, J. et al. Package ‘vegan’. R Packag. version 3.4.0 (2019).

    80.
    R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/ (2019).

    81.
    Higuera, P. E., Brubaker, L. B., Anderson, P. M., Hu, F. S. & Brown, T. A. Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska. Ecol. Monogr. 79, 201–219 (2009).
    Article  Google Scholar 

    82.
    Lofverstrom, M. A dynamic link between high-intensity precipitation events in southwestern North America and Europe at the Last Glacial Maximum. Earth Planet. Sci. Lett. 534, 116081 (2020).
    CAS  Article  Google Scholar 

    83.
    Goñi, M. S. et al. Synchroneity between marine and terrestrial responses to millennial scale climatic variability during the last glacial period in the Mediterranean region. Clim. Dyn. 19, 95–105 (2002).
    Article  Google Scholar 

    84.
    Tzedakis, P. C., Lawson, I. T., Frogley, M. R., Hewitt, G. M. & Preece, R. C. Buffered tree population changes in a Quaternary refugium: Evolutionary implications. Science 297, 2044–2047 (2002).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    85.
    Ravazzi, C. et al. Birch-sedge communities, forest withdrawal and flooding at the beginning of Heinrich Stadial 3 at the southern Alpine foreland. Rev. Palaeobot. Palynol. 280, 104276 (2020).
    Article  Google Scholar 

    86.
    Cheng, H. et al. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534, 640–646 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    87.
    Holtmeier, F. Mountain Timberlines Mountain Timberlines (Springer, Dordrecht, 2009).
    Google Scholar 

    88.
    Magyari, E. K. et al. Late Pleniglacial vegetation in eastern-central Europe: Are there modern analogues in Siberia?. Quat. Sci. Rev. 95, 60–79 (2014).
    ADS  Article  Google Scholar 

    89.
    Chytrý, M. et al. Diversity of forest vegetation across a strong gradient of climatic continentality: Western Sayan Mountains, southern Siberia. Plant Ecol. 196, 61–83 (2008).
    Article  Google Scholar 

    90.
    Makunina, N. I. Botanical and geographical characteristics of forest steppe of the Altai-Sayan mountain region. Contemp. Probl. Ecol. 9, 342–348 (2016).
    Article  Google Scholar 

    91.
    Gunin, P. D., Vostokova, E. A., Dorofeyuk, N. I., Tarasov, P. E. & Black, C. C. Vegetation dynamics of Mongolia Vol. 26 (Springer Science & Business Media, New York, 2013).
    Google Scholar 

    92.
    Zhambazhamts, B. & Bat, B. The Atlas of the Climate and Ground Water Resources in the Mongolian People’s Republic (Goskomgidromet SSSR GUGMS MNR GUGK SSSR, Ulaanbaatar, 1985).
    Google Scholar 

    93.
    Klinge, M. & Sauer, D. Spatial pattern of Late Glacial and Holocene climatic and environmental development in Western Mongolia—A critical review and synthesis. Quat. Sci. Rev. 210, 26–50 (2019).
    ADS  Article  Google Scholar 

    94.
    Guiot, J., Reille, M., de Beaulieu, J. L. & Pons, A. Calibration of the climatic signal in a new pollen sequence from La Grande Pile. Clim. Dyn. 6, 259–264 (1992).
    Article  Google Scholar 

    95.
    Seret, G., Guiot, J., Wansard, G., de Beaulieu, J. L. & Reille, M. Tentative palaeoclimatic reconstruction linking pollen and sedimentology in La Grande Pile (Vosges, France). Quat. Sci. Rev. 11, 425–430 (1992).
    ADS  Article  Google Scholar 

    96.
    Wohlfarth, B. et al. Rapid ecosystem response to abrupt climate changes during the last glacial period in western Europe, 40–16 ka. Geology 36, 407–410 (2008).
    ADS  CAS  Article  Google Scholar 

    97.
    Tzedakis, P. C. The last climatic cycle at Kopais, central Greece. J. Geol. Soc. London. 156, 425–434 (1999).
    Article  Google Scholar 

    98.
    Tzedakis, P. C., Hooghiemstra, H. & Pälike, H. The last 1.35 million years at Tenaghi Philippon: Revised chronostratigraphy and long-term vegetation trends. Quat. Sci. Rev. 25, 3416–3430 (2006).
    ADS  Article  Google Scholar 

    99.
    Müller, U. C. et al. The role of climate in the spread of modern humans into Europe. Quat. Sci. Rev. 30, 273–279 (2011).
    ADS  Article  Google Scholar 

    100.
    Ohlson, M., Korbøl, A. & Økland, R. H. The macroscopic charcoal record in forested boreal peatlands in southeast Norway. Holocene 16, 731–741 (2006).
    ADS  Article  Google Scholar 

    101.
    Hörnberg, G., Ohlson, M. & Zackrisson, O. Stand dynamics, regeneration patterns and long-term continuity in boreal old-growth Picea abies swamp-forests. J. Veg. Sci. 6, 291–298 (1995).
    Article  Google Scholar 

    102.
    Tryterud, E. Forest fire history in Norway: From fire-disturbed pine forests to fire-free spruce forests. Ecography (Cop.) 26, 161–170 (2003).
    Article  Google Scholar 

    103.
    Yefremova, T. T. & Yefremov, S. P. Ecological Effects of Peat Fire on Forested Bog Ecosystems in Fire in ecosystems of boreal Eurasia (ed Goldammer, JG., Furyaev, VV.) 350–357 (Kluwer, The Netherlands, 1996).  

    104.
    Kasischke, E. S. & Turetsky, M. R. Recent changes in the fire regime across the North American boreal region—Spatial and temporal patterns of burning across Canada and Alaska. Geophys. Res. Lett. 33, L09703 (2006).
    ADS  Google Scholar 

    105.
    Flanningan, M., Stocks, B., Turetsky, M. & Wotton, M. Impacts of climate change on fire activity and fire management in the circumboreal forest. Glob. Chang. Biol. 15, 549–560 (2009).
    ADS  Article  Google Scholar 

    106.
    Camill, P. et al. Climate-vegetation-fire interactions and their impact on long-term carbon dynamics in a boreal peatland landscape in northern Manitoba, Canada. J. Geophys. Res. Biogeosci. 114, 1–10 (2009).
    Article  CAS  Google Scholar 

    107.
    Sofronov, M., Volokitina, A., Shvidenko, A. Wildland fires in the north of Central Siberia. Commonwealth Forestry Rev. 77, 124–127 (1998).  

    108.
    Kobayashi, M. et al. Regeneration after forest fires in mixed conifer broad-leaved forests of the Amur Region in Far Eastern Russia: The relationship between species specific traits against fire and recent fire regimes. Eurasian J. For. Res. 10, 51–58 (2007).
    Google Scholar 

    109.
    Berg, E. E. & Chapin, F. S. III. Needle loss as a mechanism of winter drought avoidance in boreal conifers. Can. J. For. Res. 24, 1144–1148 (1994).
    Article  Google Scholar 

    110.
    Gower, S. T. & Richards, J. H. Larches: Deciduous conifers in an evergreen world. Bioscience 40, 818–826 (1990).
    Article  Google Scholar 

    111.
    Schulze, E.-D. et al. Aboveground biomass and nitrogen nutrition in a chronosequence of pristine Dahurian Larix stands in eastern Siberia. Can. J. For. Res. 25, 943–960 (1995).
    Article  Google Scholar 

    112.
    Sakai, A. & Larcher, W. Frost Survival of Plants: Responses and Adaptation to Freezing Stress Vol. 62 (Springer Science & Business Media, New York, 2012).
    Google Scholar 

    113.
    Bourgeau-Chavez, L. L. et al. Assessing boreal peat fire severity and vulnerability of peatlands to early season wildland fire. Front. Genet. 3, 1–13 (2020).
    Google Scholar 

    114.
    Vachula, R. S., Russell, J. M., Huang, Y. & Richter, N. Assessing the spatial fidelity of sedimentary charcoal size fractions as fire history proxies with a high-resolution sediment record and historical data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 508, 166–175 (2018).
    Article  Google Scholar 

    115.
    Turetsky, M. R., Amiro, B. D., Bosch, E. & Bhatti, J. S. Historical burn area in western Canadian peatlands and its relationship to fire weather indices. Glob. Biogeochem. Cycles 18, 4014 (2004).

    116.
    Stocks, B. J. et al. Large forest fires in Canada, 1959–1997. J. Geophys. Res. Atmos. 107, FFR 5-1 (2002).
    Google Scholar 

    117.
    Wang, Y. J. et al. A high-resolution absolute-dated late pleistocene monsoon record from Hulu Cave, China. Science 294, 2345–2348 (2001).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    118.
    Guillevic, M. et al. Evidence for a three-phase sequence during heinrich stadial 4 using a multiproxy approach based on Greenland ice core records. Clim. Past 10, 2115–2133 (2014).
    Article  Google Scholar 

    119.
    Marcott, S. A. et al. Ice-shelf collapse from subsurface warming as a trigger for Heinrich events. Proc. Natl. Acad. Sci. USA 108, 13415–13419 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    120.
    Barker, S. et al. Icebergs not the trigger for North Atlantic cold events. Nature 520, 333–336 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    121.
    Dean, W. E. Jr. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: Comparison with other methods. SEPM J. Sediment. Res. 44, 242–248 (1974).
    CAS  Google Scholar 

    122.
    Stockmarr, J. Tablets with spores used in absolute pollen analysis. Pollen et Spores 13, 615–621 (1971).  

    123.
    Moore, P. D., Webb, J. A. & Collinson, M. E. Pollen Analysis (Blackwell Scientific Publications, Oxford University Press, Oxford, 1991).
    Google Scholar 

    124.
    Reille, M. Pollen et spores d’Europe et d’Afrique du Nord–Supplément II. (1998).

    125.
    Beug, H. J. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Verlag Dr. Friedrich Pfeil. (2004).

    126.
    Reille, M. Pollen et Spores d’Europe et d’Afrique du Nord. Laboratoire de Botanique Historique et Palynologie. (1992).

    127.
    Grimm, E. T. TGView 19 Version 2.0. 41. Software (Illinois State Museum, Research and Collection Center, Springfield, 2015).
    Google Scholar 

    128.
    Grimm, E. C. CONISS: a Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput. Geosci. 13, 13–35 (1987).
    ADS  Article  Google Scholar 

    129.
    Clark, J. S. Particle motion and the theory of charcoal analysis: Source area, transport, deposition, and sampling. Quat. Res. 30, 67–80 (1988).
    ADS  Article  Google Scholar 

    130.
    Whitlock, C. & Larsen, C. Charcoal as a fire proxy. Track. Environ. Change Lake Sediments 3, 75–97 (2002).
    Article  Google Scholar 

    131.
    Higuera, P. E., Whitlock, C. & Gage, J. A. Linking tree-ring and sediment-charcoal records to reconstruct fire occurrence and area burned in subalpine forests of yellowstone National Park, USA. Holocene 21, 327–341 (2011).
    ADS  Article  Google Scholar 

    132.
    Higuera, P. E., Peters, M. E., Brubaker, L. B. & Gavin, D. G. Understanding the origin and analysis of sediment-charcoal records with a simulation model. Quat. Sci. Rev. 26, 1790–1809 (2007).
    ADS  Article  Google Scholar 

    133.
    Kelly, R. F., Higuera, P. E., Barrett, C. M. & Sheng Hu, F. A signal-to-noise index to quantify the potential for peak detection in sediment-charcoal records. Quat. Res., 75(1), 11–17 (2011).   More

  • in

    Causes of Variations in Sediment Yield in the Jinghe River Basin, China

    Sediment reduction analysis method
    This section presents the methods used to calculate sediment reduction caused by the major contributors, i.e., reservoir works, water diversion works, soil and water conservation works, and rainfall.
    Sediment reduction by reservoir works
    Reservoir works reduce sediment by impounding and retaining the sediment. Recent variations in sediment reduction due to reservoir works were analysed according to the variations in the average annual sediment deposition in the reservoirs of the basin during different periods.
    The average annual sediment reduction by various reservoirs can be calculated by dividing the accumulated sediment in each reservoir during a certain period by the number of years:

    $$ WS_{r} = sumlimits_{1}^{n} {D_{i} /N} , $$
    (1)

    where (D_{i}) is the accumulated sediment (100,000,000 t) in a reservoir during a certain period, N is the number of years in the period, and WSr is the average annual sediment reduction (100,000,000 t) in the period by all reservoirs in the basin.
    The Hydrological Bureau under the Yellow River Water Conservancy Commission annually measures and calculates the deposition of sediment in all reservoirs in the Yellow River Basin. Two methods can be used, namely, the topographic method and the section method. In the topographic method, the area enclosed by contour lines on the topographic map of the reservoir area is measured to calculate the reservoir volume. The cumulative deposition of sediment during a specific period is the difference between the current and the previous reservoir volume. The topographic method requires closed contour lines on the map. In reality, however, the contour lines cannot be closed due to the presence of farmland, houses, and other artificial structures in the reservoir area, resulting in measurement errors. Therefore, the section method is mainly used at present. Here, M test sections were deployed in the reservoir area, and the test section data were used to calculate the total storage capacity of the reservoir in sections by period, as follows:

    $$ V_{i} = sumlimits_{m = 1}^{M – 1} {V_{i,m} } . $$
    (2)

    The difference in the storage capacity measured twice is the cumulative deposition of sediment in reservoir (D_{i}):

    $$ D_{i} = V_{i – 1} – V_{i} , $$
    (3)

    where Vi is the storage capacity measured at the end of period i and Vi,m is the storage capacity measured in section m – 1.
    Sediment reduction by water diversion works
    During water diversion, a certain amount of sediment is diverted, along with water, and is deposited in irrigation areas, resulting in a decrease in the volume of the sediment in the river channel. The average annual sediment reduction by water diversion works can be calculated by multiplying the average annual water diversion in different periods in the Jinghe River Basin by the average annual sediment concentration in the water diversion period, as follows:

    $$ WS_{d} = sumlimits_{1}^{n} {W_{di} /N times overline{S}} /{1}000, $$
    (4)

    where (W_{di}) is the cumulative water diversion (100,000,000 m3) in the basin in the water diversion period, N is the number of years in the period, (overline{S}) is the average annual sediment concentration in the period (kg/m3), and (WS_{d}) is the average annual sediment reduction (100,000,000 t) in the basin during the period. Recent variations in sediment discharge caused by water diversion works were analysed according to the variations in the average annual water diversion in the basin in different periods.
    Sediment reduction by soil and water conservation works
    A commonly used method to compute the sediment reduction by soil and water conservation works is to multiply the area subject to the soil and water conservation works, such as terracing, forestation, grassing, creating enclosures, and constructing silt-arrester dams, by the sediment reduction by each measure per unit area, followed by their summation, as follows:

    $$ WS_{SC} = sumlimits_{1}^{n} {F_{i} times S_{j} /10^{8} ,} $$
    (5)

    where Sj is the sediment reduction due to each soil and water conservation measure (t/hm2), published by the soil and water conservation monitoring institutions in each basin based on the analysis of the long-term observation data, Fi is the area subjected to each measure (hm2), and WSSC is the comprehensive sediment concentration for each measure (100,000,000 t). The variations in sediment reduction by soil and water conservation works were analysed based on the variations in the soil and water conservation areas in the basin during different periods.
    Analysis of rainfall-induced sediment yield
    The deduction method was adopted to analyse the rainfall-induced variations in the sediment yield. Recent variations in sediment reduction attributable to reservoirs, water diversion, and soil and water conservation works were computed and deducted from the measured sediment reduction in recent years (2000–2015):

    $$ Delta WS_{p} = Delta WS_{t} – Delta WS_{r} – Delta WS_{d} – Delta WS_{sc} , $$
    (6)

    where (Delta WS_{t}) is the recently measured sediment reduction (100,000,000 t), (Delta WS_{r}) is the recent variation in the sediment reduction (100,000,000 t) caused by variations in the sediment retention due to reservoir works, (Delta WS_{d}) is the recent variation in sediment reduction (100,000,000 t) caused by variations in water diversion, (Delta {text{WS}}_{{{text{SC}}}}) is the recent variation in sediment reduction (100,000,000 t) caused by variations in the soil and water conservation area, and (Delta WS_{p}) is the recent variation in the rainfall-induced sediment yield caused by variations in rainfall.
    Sediment yield calculation method
    Figure 6 depicts the computational process for the sediment calculation. First, a reduction calculation of the natural runoff was performed as follows:

    $$ W_{0} = W_{m} + W_{cum} + W_{s} + W_{e} + W_{SC} , $$
    (7)

    where W0 is the natural runoff, Wm is the measured runoff, Wcuw is the industrial water consumption in the basin, Ws is the water retention by reservoirs, We is the water evaporation and seepage losses, Wsc is the water reduction by soil and water conservation, and W0 is the natural water volume in the basin. All these terms are in 100,000,000 m3.
    Second, the runoff-sediment relationship in the natural state was established based on the measured runoff and sediment data in periods with negligible human activity, as well as when the underlying surface was in a nearly natural state. Natural sediment discharge was calculated using the relationship between runoff and sediment discharge. According to the observation data from the basin for the past 35 years, runoff was closely related to sediment discharge. Given China’s climatic conditions and economic growth, the basin was nearly in a natural state up to 1960 because human activity had a minor impact on runoff and sediment discharge. Based on the runoff and sediment discharge measurements at Zhangjiashan Station from 1932 to 1960, the relationship between the natural runoff and sediment discharge was established as WS0 = f(W0). Natural sediment discharge in the basin was calculated considering the restored natural runoff.
    Third, the natural sediment discharge was calculated using the natural runoff results and the runoff-sediment relationship. Based on the major contributors to sediment reduction in the basin, the future sustainable sediment reduction was calculated as the sum of sediment reduction due to reservoirs, water diversion, and soil and water conservation measures. Sediment reduction caused by variations in rainfall was limited to certain periods. For example, recent reduced heavy rainfall has led to a decreased rainfall-induced sediment yield and consequently a decreased sediment discharge. However, according to forecasts by the Intergovernmental Panel on Climate Change (2014)50, extreme weather and heavy rainfall events are likely to increase in the future. The reduction in sediment due to variations in rainfall was calculated as follows:

    $$ WS_{d} = WS_{r} + WS_{d} + W_{SC} , $$
    (8)

    where WSr is the future sediment reduction caused by reservoir works, i.e., the sum of the sediment retention potential of the remaining capacity of the existing reservoirs and that of planned future reservoirs; WSd is the sediment reduction caused by future water diversion works, which can be obtained by multiplying the water diversion in the basin forecasted according to the social and economic development by the average sediment concentration in the water diversion period; WSsc is the future sediment reduction caused by soil and water conservation, obtained from areas subject to existing and planned soil and water conservation works and the corresponding sediment reduction rates; and WSd is the forecasted value of sediment reduction in the basin. All these terms are in 100,000,000 t.
    Fourth, the sustainable sediment reduction in the basin was calculated considering variations in the contributions to sediment reduction in a future period and their effect. Future sediment discharge in the basin is the difference between the natural and future sediment reduction, as follows:

    $$ WS_{f} = WS_{0} – WS_{d} , $$
    (9)

    where WS0 is the natural sediment discharge in the basin, WSd is the forecasted sediment reduction in the basin, and WSf is the forecasted sediment discharge in the basin. All these terms are in 100,000,000 t.
    Finally, future river sediment discharge was obtained by subtracting the future sustainable sediment reduction from the natural sediment discharge.
    Data acquisition
    Hydrological data
    A total of 28 hydrometric stations and 190 rainfall stations are located along the main stream and tributaries of the Jinghe River to effectively monitor rainfall, runoff, and sediment in the basin.
    Zhangjiashan Station, located at the outlet of the Jinghe River Basin, has a catchment area of 432,160,000 km2, covering 95% of the total area of the basin. Few hydrometric and rainfall stations were operational in this basin before 1956, and hence incomplete data were collected. Analyses in this study were based on data from the Zhangjiashan Station from 1956–2015. At this station, the cross-sections in the main stream and Jinghui Canal (a water diversion canal) were hydrologically measured to determine the discharge, sediment transport rate, and sediment concentration.
    Engineering data
    Data on sediment reduction due to reservoir works and terraces, forests, grasslands, enclosures, and dams in the basin were based on the results of the National Water Resources Census and official data collated by the Upper and Middle Yellow River Bureau of the Yellow River Conservancy Commission. These data are thus accurate and reliable.
    For data collection and erosion–deposition calculations, DL/T 5089–1999 “Specification for Sediment Design of Hydropower and Water Conservancy Projects” provided that “The calculated results of erosion and deposition should be compared with the measured data for several years of operation. If the amount and location of sedimentation are 70% consistent, and the elevation of sedimentation in the reservoir differs by 1 to 2 m, then the calculated results are deemed reliable. For erosion–deposition calculation results, only reliability is considered”.
    Relevant data from the stations were systematically verified and collated by the Hydrological Bureau of the Yellow River Conservancy Commission and are therefore accurate and reliable. More