Ocean acidification disrupts the orientation of postlarval Caribbean spiny lobsters
1.
Yates, K. K., Dufore, C., Smiley, N., Jackson, C. & Halley, R. B. Diurnal variation of oxygen and carbonate system parameters in Tampa Bay and Florida Bay. Mar. Chem. 104(1–2), 110–124. https://doi.org/10.1016/j.marchem.2006.12.008 (2007).
CAS Article Google Scholar
2.
Wallace, R. B., Baumann, H., Grear, J. S., Aller, R. C. & Gobler, C. J. Coastal ocean acidification: The other eutrophication problem. Estuar. Coast. Shelf Sci. 148, 1–13. https://doi.org/10.1016/j.ecss.2014.05.027 (2014).
ADS CAS Article Google Scholar
3.
Ekstrom, J. A. et al. Vulnerability and adaptation of US shellfisheries to ocean acidification. Nat. Clim. Change. 5(3), 207–214. https://doi.org/10.1038/nclimate2508 (2015).
ADS Article Google Scholar
4.
Millero, F. J., Hiscock, W. T., Huang, F., Roche, M. & Zhang, J. Z. Seasonal variation of the carbonate system in Florida Bay. Bull. Mar. Sci. 68(1), 101–123 (2001).
Google Scholar
5.
Manzello, D. P., Enochs, I. C., Melo, N., Gledhill, D. K. & Johns, E. M. Ocean acidification refugia of the Florida Reef Tract. PLoS ONE 7(7), 41715. https://doi.org/10.1371/journal.pone.0041715 (2012).
ADS CAS Article Google Scholar
6.
Enochs, I. C., Manzello, D. P., Jones, P. R., Stamates, S. J. & Carsey, T. P. Seasonal carbonate chemistry dynamics on southeast Florida coral reefs: Localized acidification hotspots from navigational inlets. Front. Mar. Sci. 6, 160. https://doi.org/10.3389/fmars.2019.00160 (2019).
Article Google Scholar
7.
Cyronak, T. et al. Diel temperature and pH variability scale with depth across diverse coral reef habitats. Limnol. Oceanogr. Lett. 5(2), 193–203. https://doi.org/10.1002/lol2.10129 (2020).
Article Google Scholar
8.
Whiteley, N. M. Physiological and ecological responses of crustaceans to ocean acidification. Mar. Ecol. Prog. Ser. 430, 257–271. https://doi.org/10.3354/meps09185 (2011).
ADS CAS Article Google Scholar
9.
Bauer, J. E. et al. The changing carbon cycle of the coastal ocean. Nature 504(7478), 61–70. https://doi.org/10.1038/nature12857 (2013).
ADS CAS Article PubMed Google Scholar
10.
IPCC, IPOCC. Special report on global warming of 1.5 °C (SR15, 2018). https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf
11.
Munday, P. L., McCormick, M. I. & Nilsson, G. E. Impact of global warming and rising CO2 levels on coral reef fishes: What hope for the future?. J. Exp. Biol. 215(22), 3865–3873. https://doi.org/10.1242/jeb.074765 (2012).
CAS Article PubMed Google Scholar
12.
Gravinese, P. M. Ocean acidification impacts the embryonic development and hatching success of the Florida stone crab, Menippe mercenaria. J. Exp. Mar. Biol. Ecol. 500, 140–146. https://doi.org/10.1016/j.jembe.2017.09.001 (2018).
CAS Article Google Scholar
13.
Gravinese, P. M. Vertical swimming behavior in larvae of the Florida stone crab, Menippe mercenaria. J. Plankton Res. 40(6), 643–654. https://doi.org/10.1093/plankt/fby040 (2018).
Article Google Scholar
14.
Gravinese, P. M., Enochs, I. C., Manzello, D. P. & van Woesik, R. Ocean acidification changes the vertical movement of stone crab larvae. Biol. Lett. 15(12), 20190414. https://doi.org/10.1098/rsbl.2019.0414 (2019).
Article PubMed PubMed Central Google Scholar
15.
Paganini, A. W., Miller, N. A. & Stillman, J. H. Temperature and acidification variability reduce physiological performance in the intertidal zone porcelain crab Petrolisthes cinctipes. J. Exp. Biol. 217(22), 3974–3980. https://doi.org/10.1242/jeb.109801 (2014).
Article PubMed Google Scholar
16.
Ceballos-Osuna, L., Carter, H. A., Miller, N. A. & Stillman, J. H. Effects of ocean acidification on early life-history stages of the intertidal porcelain crab Petrolisthes cinctipes. J. Exp. Biol. 216(8), 1405–1411. https://doi.org/10.1242/jeb.078154 (2013).
CAS Article PubMed Google Scholar
17.
Giltz, S. M. & Taylor, C. M. Reduced growth and survival in the larval blue crab Callinectes sapidus under predicted ocean acidification. J. Shellfish Res. 36(2), 481–485. https://doi.org/10.2983/035.036.0219 (2017).
Article Google Scholar
18.
Ries, J. B., Cohen, A. L. & McCorkle, D. C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37(12), 1131–1134. https://doi.org/10.1130/G30210A.1 (2009).
ADS CAS Article Google Scholar
19.
Wang, T. & Wang, Y. Behavioral responses to ocean acidification in marine invertebrates: New insights and future directions. J. Oceanol. Limnol. 38(3), 1–14. https://doi.org/10.1007/s00343-019-9118-5 (2019).
MathSciNet CAS Article Google Scholar
20.
Atema, J., Fay, R. R., Popper, A. N. & Tavolga, W. N. Sensory Biology of Aquatic Animals (Springer, Berlin, 1988).
Google Scholar
21.
Kingsford, M. J. et al. Sensory environments, larval abilities and local self-recruitment. Bull. Mar. Sci. 70(1), 309–340 (2002).
Google Scholar
22.
Arvedlund, M. & Kavanagh, K. The senses and environmental cues used by marine larvae of fish and decapod crustaceans to find tropical coastal ecosystems. In Ecological Connectivity Among Tropical Coastal Ecosystems (ed. Nagelkerken, I.) 135–185 (Springer, Berlin, 2009).
Google Scholar
23.
Munday, P. L. et al. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc. Natl. Acad. Sci. 106(6), 1848–1852. https://doi.org/10.1073/pnas.0809996106 (2009).
ADS Article PubMed Google Scholar
24.
Dixson, D. L., Munday, P. L. & Jones, G. P. Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecol. Lett. 13(1), 68–75. https://doi.org/10.1111/j.1461-0248.2009.01400.x (2010).
Article PubMed Google Scholar
25.
Nagelkerken, I. & Munday, P. L. Animal behaviour shapes the ecological effects of ocean acidification and warming: Moving from individual to community-level responses. Glob. Change Biol. 22(3), 974–989. https://doi.org/10.1111/gcb.13167 (2016).
ADS Article Google Scholar
26.
Ashur, M. M., Johnston, N. K. & Dixson, D. L. Impacts of ocean acidification on sensory function in marine organisms. Integr. Comp. Biol. 57(1), 63–80. https://doi.org/10.1093/icb/icx010 (2017).
Article PubMed Google Scholar
27.
Ross, E. & Behringer, D. Changes in temperature, pH, and salinity affect the sheltering responses of Caribbean spiny lobsters to chemosensory cues. Sci. Rep. 9(1), 4375. https://doi.org/10.1038/s41598-019-40832-y (2019).
ADS CAS Article PubMed PubMed Central Google Scholar
28.
Brown, G. E., Adrian, J. C. Jr., Lewis, M. G. & Tower, J. M. The effects of reduced pH on chemical alarm signaling in ostariophysan fishes. Can. J. Fish. Aquat. Sci. 59(8), 1331–1338. https://doi.org/10.1139/f02-104 (2002).
CAS Article Google Scholar
29.
de la Haye, K. L., Spicer, J. I., Widdicombe, S. & Briffa, M. Reduced sea water pH disrupts resource assessment and decision making in the hermit crab Pagurus bernhardus. J. Anim. Behav. 82(3), 495–501. https://doi.org/10.1016/j.anbehav.2011.05.030 (2011).
Article Google Scholar
30.
Tierney, A. J. & Atema, J. Amino acid chemoreception: Effects of pH on receptors and stimuli. J. Chem. Ecol. 14(1), 135–141. https://doi.org/10.1007/BF01022537 (1988).
CAS Article PubMed Google Scholar
31.
Briffa, M., de la Haye, K. & Munday, P. L. High CO2 and marine animal behaviour: Potential mechanisms and ecological consequences. Mar. Poll. Bull. 64(8), 1519–1528. https://doi.org/10.1016/j.marpolbul.2012.05.032 (2012).
CAS Article Google Scholar
32.
Goldstein, J. S. & Butler, M. J. IV. Behavioral enhancement of onshore transport by postlarval Caribbean spiny lobster (Panulirus argus). Limnol. Oceanogr. 54(5), 1669–1678. https://doi.org/10.4319/lo.2009.54.5.1669 (2009).
ADS Article Google Scholar
33.
Zito-Livingston, A. N. & Childress, M. J. Does conspecific density influence the settlement of Caribbean spiny lobster Panulirus argus postlarvae?. N. Z. J. Mar. Freshw. Res. 43(1), 313–325 (2009).
Google Scholar
34.
Ratchford, S. G. & Eggleston, D. B. Size- and scale-dependent chemical attraction contribute to an ontogenetic shift in sociality. Anim. Behav. 56(4), 1027–1034. https://doi.org/10.1006/anbe.1998.0869 (1998).
CAS Article PubMed Google Scholar
35.
Nevitt, G., Pentcheff, N. D., Lohmann, K. J. & Den Zimmer, R. K. selection by the spiny lobster Panulirus argus: Testing attraction to conspecific odors in the field. Mar. Ecol. Prog. Ser. 203, 225–231. https://doi.org/10.3354/meps203225 (2000).
ADS Article Google Scholar
36.
Behringer, D. C., Butler, M. J. IV. & Shields, J. D. Avoidance of disease by social lobsters. Nature 441(7092), 421. https://doi.org/10.1038/441421a (2006).
ADS CAS Article PubMed Google Scholar
37.
Anderson, J. R. & Behringer, D. C. Spatial dynamics in the social lobster Panulirus argus in response to diseased conspecifics. Mar. Ecol. Prog. Ser. 474, 191–200. https://doi.org/10.3354/meps10091 (2013).
ADS Article Google Scholar
38.
Butler, M. J. IV. et al. Cascading disturbances in Florida Bay, USA: Cyanobacteria blooms, sponge mortality, and implications for juvenile spiny lobsters Panulirus argus. Mar. Ecol. Prog. Ser. 129, 119–125. https://doi.org/10.3354/meps129119 (1995).
ADS Article Google Scholar
39.
Ginsburg, R. N. & Shinn, E. A. Preferential distribution of reefs in the Florida reef tract: The past is the key to the present. Oceanogr. Lit. Rev. 8(42), 674 (1995).
Google Scholar
40.
Zhang, J. Z. & Fischer, C. J. Carbon dynamics of Florida Bay: Spatiotemporal patterns and biological control. Environ. Sci. Technol. 48(16), 9161–9169. https://doi.org/10.1021/es500510z (2014).
ADS CAS Article PubMed Google Scholar
41.
Toth, L. T., Kuffner, I. B., Stathakopoulos, A. & Shinn, E. A. A 3000-year lag between the geological and ecological shutdown of Florida’s coral reefs. Glob. Change Biol. 24(11), 5471–5483. https://doi.org/10.1111/gcb.14389 (2018).
ADS Article Google Scholar
42.
Marx, J. M. & Herrnkind, W. F. Macroalgae (Rhodophyta: Laurencia spp.) as habitat for young juvenile spiny lobsters, Panulirus argus. Bull. Mar. Sci. 36(3), 423–431 (1985).
Google Scholar
43.
Butler, M. J. IV. & Herrnkind, W. F. Effect of benthic microhabitat cues on the metamorphosis of postlarvae of the spiny lobster Panulirus argus. J. Crustac. Biol. 11(1), 23–28. https://doi.org/10.2307/1548541 (1991).
Article Google Scholar
44.
Herrnkind, W. F. & Butler, M. J. Factors regulating postlarval settlement and juvenile microhabitat use by spiny lobsters Panulirus argus. Mar. Ecol. Progr. Ser. 34, 23–30 (1986).
ADS Article Google Scholar
45.
FAO. Food and Agriculture Organization Fisheries and aquaculture report (ISSN 2070–6987) 124 (FAO, 2015).
46.
Lapointe, B. E. & Matzie, W. R. Effects of stormwater nutrient discharges on eutrophication processes in nearshore waters of the Florida Keys. Estuaries 19(2), 422–435. https://doi.org/10.2307/1352460 (1996).
CAS Article Google Scholar
47.
Cai, W. J. et al. Acidification of subsurface coastal waters enhanced by eutrophication. Nat. Geosci. 4(11), 766–770. https://doi.org/10.1038/ngeo1297 (2011).
ADS CAS Article Google Scholar
48.
de la Haye, K. L., Spicer, J. I., Widdicombe, S. & Briffa, M. Reduced pH sea water disrupts chemo-responsive behaviour in an intertidal crustacean. J. Exp. Biol. Ecol. 412, 134–140. https://doi.org/10.1016/j.jembe.2011.11.013 (2012).
CAS Article Google Scholar
49.
Dissanayake, A. & Ishimatsu, A. Synergistic effects of elevated CO2 and temperature on the metabolic scope and activity in a shallow-water coastal decapod (Metapenaeus joyneri; Crustacea: Penaeidae). ICES J. Mar. Sci. 68(6), 1147–1154. https://doi.org/10.1093/icesjms/fsq188 (2011).
Article Google Scholar
50.
Pörtner, H. O., Langenbuch, M. & Reipschläger, A. Biological impact of elevated ocean CO2 concentrations: Lessons from animal physiology and earth history. J. Oceanogr. 60(4), 705–718. https://doi.org/10.1007/s10872-004-5763-0 (2004).
Article Google Scholar
51.
Pane, E. F. & Barry, J. P. Extracellular acid-base regulation during short-term hypercapnia is effective in a shallow-water crab, but ineffective in a deep-sea crab. Mar. Ecol. Prog. Ser. 334, 1–9. https://doi.org/10.3354/meps334001 (2007).
ADS CAS Article Google Scholar
52.
Small, D. P. et al. The effects of elevated temperature and pCO2 on the energetics and haemolymph pH homeostasis of juveniles of the European lobster, Homarus gammarus. J. Exp. Biol. https://doi.org/10.1242/jeb.209221 (2020).
Article PubMed Google Scholar
53.
Morris, S., Greenaway, P. & McMahon, B. Air breathing by the purple shore crab, Hemigrapsus nudus (Dana). II. Respiratory gas and acid-base status in response to emersion. Physiol. Zool. 69(4), 806–838. https://doi.org/10.1086/physzool.69.4.30164231 (1996).
CAS Article Google Scholar
54.
Schmitt, B. C. & Ache, B. W. Olfaction: responses of a decapod crustacean are enhanced by flicking. Science 205(4402), 204–206. https://doi.org/10.1126/science.205.4402.204 (1979).
ADS CAS Article PubMed Google Scholar
55.
Goldman, J. A. & Koehl, M. A. R. Fluid dynamic design of lobster olfactory organs: High speed kinematic analysis of antennule flicking by Panulirus argus. Chem. Senses 26(4), 385–398. https://doi.org/10.1093/chemse/26.4.385 (2001).
CAS Article PubMed Google Scholar
56.
Reidenbach, M. A., George, N. & Koehl, M. A. R. Antennule morphology and flicking kinematics facilitate odor sampling by the spiny lobster, Panulirus argus. J. Exp. Biol. 211(17), 2849–2858. https://doi.org/10.1242/jeb.016394 (2008).
Article PubMed Google Scholar
57.
Lürling, M. & Scheffer, M. Info-disruption: Pollution and the transfer of chemical information between organisms. Trends Ecol. Evol. 22(7), 374–379. https://doi.org/10.1016/j.tree.2007.04.002 (2007).
Article PubMed Google Scholar
58.
Bednaršek, N. et al. Exoskeleton dissolution with mechanoreceptor damage in larval Dungeness crab related to severity of present-day ocean acidification vertical gradients. Sci. Total Environ. 716, 1346610. https://doi.org/10.1016/j.scitotenv.2020.136610 (2020).
CAS Article Google Scholar
59.
Baeza, J. A., Childress, M. J. & Ambrosio, L. J. Chemical sensing of microhabitat by pueruli of the reef-dwelling Caribbean spiny lobster Panulirus argus: testing the importance of red algae, juveniles, and their interactive effect. Bull. Mar. Sci. 94(3), 603–618. https://doi.org/10.5343/bms.2017.1132 (2018).
Article Google Scholar
60.
Butler, M. J. IV. & Herrnkind, W. F. A test of the recruitment limitation and the potential for artificial enhancement of spiny lobster (Panulirus argus) populations in Florida. Can. J. Fish. Aquat. Sci. 54(2), 452–463. https://doi.org/10.1139/f2011-146 (1997).
CAS Article Google Scholar
61.
Sharp, W. C. et al. The use of coded microwire tags for mark–recapture studies of juvenile Caribbean spiny lobster, Panulirus argus. J. Crustac. Biol. 20(3), 510–521. https://doi.org/10.1163/20021975-99990067 (2000).
Article Google Scholar
62.
Heatwole, D. W., Hunt, J. H. & Blonder, B. I. Offshore recruitment of postlarval spiny lobster (Panulirus argus) at Looe Key Reef, Florida. Proc. Gulf Carib. Fish. Inst. 40, 429–433 (1991).
Google Scholar
63.
Herrnkind, W. F. & Butler, M. J. IV. Settlement of spiny lobster, Panulirus argus (Latreille, 1804), in Florida: Pattern without predictability?. Crustaceana 67(1), 46–64. https://doi.org/10.1163/156854094X00288 (1994).
Article Google Scholar
64.
Cook, G. S., Fletcher, P. J. & Kelble, C. R. Towards marine ecosystem based management in South Florida: Investigating the connections among ecosystem pressures, states, and services in a complex coastal system. Ecol. Indic. 44, 26–39. https://doi.org/10.1016/j.ecolind.2013.10.026 (2014).
Article Google Scholar
65.
Kuffner, I. B., Lidz, B. H., Hudson, J. H. & Anderson, J. S. A century of ocean warming on Florida keys coral reefs: Historic in situ observations. Estuar. Coasts 38(3), 1085–1096. https://doi.org/10.1007/s12237-014-9875-5 (2014).
Article Google Scholar
66.
Koch, M. S. et al. Climate change projected effects on coastal foundation communities of the greater Everglades using a 2060 scenario: Need for a new management paradigm. Environ. Manag. 55(4), 857–875. https://doi.org/10.1007/s00267-014-0375-y (2015).
ADS CAS Article Google Scholar
67.
Obeysekera, J., Barnes, J. & Nungesser, M. Climate sensitivity runs and regional hydrologic modeling for predicting the response of the greater Florida Everglades ecosystem to climate change. Environ. Manag. 55(4), 749–762. https://doi.org/10.1007/s00267-014-0315-x (2015).
ADS Article Google Scholar
68.
Okazaki, R. R., Swart, P. K. & Langdon, C. Stress tolerant corals of Florida Bay are vulnerable to ocean acidification. Coral Reefs 32, 671–683 (2013).
ADS Article Google Scholar
69.
Challener, R. A., Robbins, L. L. & McClintock, J. B. Variability of the carbonate chemistry in a shallow, seagrass-dominated exosystem: Implications for ocean acidification experiments. Mar. Freshw. Res. 67, 163–172 (2016).
CAS Article Google Scholar
70.
Dickson, A. G., Sabine, C. L. & Christian, J. R. (Eds.) Guide to best practices for ocean CO2measurement. PICES Special Publication 3, 191. (PICES, 2007).
71.
Lavigne, H., Epitalon, J. M. & Gattuso, J. P. seacarb: seawater carbonate chemistry with R. R package version 3.0. https://CRAN.R-project.org/package=seacarb (2011).
72.
R Development Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2016).
73.
Lueker, T. J., Dickson, A. G. & Keeling, C. D. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: Validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar. Chem. 70(1–3), 105–119. https://doi.org/10.1016/S0304-4203(00)00022-0 (2000).
CAS Article Google Scholar
74.
Forward, R. B. Jr. & Costlow, J. D. Jr. The ontogeny of phototaxis by larvae of the crab Rhithropanopeus harrisii. Mar. Biol. 26(1), 27–33. https://doi.org/10.1007/BF00389083 (1974).
Article Google Scholar More