Long-term capture and handling effects on body condition, reproduction and survival in a semi-aquatic mammal
1.
Jobling, M. Are compensatory growth and catch-up growth two sides of the same coin?. Aquacult. Int. 18, 501–510. https://doi.org/10.1007/s10499-009-9260-8 (2010).
Article Google Scholar
2.
Rebke, M., Coulson, T., Becker, P. H. & Vaupel, J. W. Reproductive improvement and senescence in a long-lived bird. Proc. Natl. Acad. Sci. 107, 7841–7846. https://doi.org/10.1073/pnas.1002645107 (2010).
ADS Article PubMed Google Scholar
3.
Farias, V., Fuller, T. K., Wayne, R. K. & Sauvajot, R. M. Survival and cause-specific mortality of gray foxes (Urocyon cinereoargenteus) in southern California. J. Zool. 266, 249–254. https://doi.org/10.1017/S0952836905006850 (2005).
Article Google Scholar
4.
Clutton-Brock, T. & Sheldon, B. C. Individuals and populations: the role of long-term, individual-based studies of animals in ecology and evolutionary biology. Trends Ecol. Evol. 25, 562–573. https://doi.org/10.1016/j.tree.2010.08.002 (2010).
Article PubMed Google Scholar
5.
Arnemo, J. M. et al. Risk of capture-related mortality in large free-ranging mammals: experiences from Scandinavia. Wildl. Biol. 12, 109–113. https://doi.org/10.1017/S0952836901000309 (2006).
Article Google Scholar
6.
Harcourt, R. G., Turner, E., Hall, A., Waas, J. R. & Hindell, M. Effects of capture stress on free-ranging, reproductively active male Weddell seals. J. Comp. Physiol. A. 196, 147–154. https://doi.org/10.1007/s00359-009-0501-0 (2010).
Article Google Scholar
7.
Pelletier, F., Hogg, J. T. & Festa-Bianchet, M. Effect of chemical immobilization on social status of bighorn rams. Anim. Behav. 67, 1163–1165. https://doi.org/10.1016/j.anbehav.2003.07.009 (2004).
Article Google Scholar
8.
Brivio, F., Grignolio, S., Sica, N., Cerise, S. & Bassano, B. Assessing the impact of capture on wild animals: the case study of chemical immobilisation on alpine ibex. PLoS ONE 10, e0130957. https://doi.org/10.1371/journal.pone.0130957 (2015).
CAS Article PubMed PubMed Central Google Scholar
9.
Cattet, M., Boulanger, J., Stenhouse, G., Powell, R. A. & Reynolds-Hogland, M. J. An evaluation of long-term capture effects in ursids: implications for wildlife welfare and research. J. Mammal. 89, 973–990. https://doi.org/10.1644/08-MAMM-A-095.1 (2008).
Article Google Scholar
10.
Holt, R. D. et al. Estimating duration of short-term acute effects of capture handling and radiomarking. J. Wildl. Manag. 73, 989–995. https://doi.org/10.2193/2008-073 (2009).
Article Google Scholar
11.
Jordan, B. Science-based assessment of animal welfare: wild and captive animals. Revue Sci. Tech. Office Int. Des. Epizooties 24, 515. https://doi.org/10.20506/rst.24.2.1588 (2005).
CAS Article Google Scholar
12.
Jewell, Z. Effect of monitoring technique on quality of conservation science. Conserv Biol 27, 501–508. https://doi.org/10.1111/cobi.12066 (2013).
Article PubMed Google Scholar
13.
Wilson, R. P. & McMahon, C. R. Measuring devices on wild animals: what constitutes acceptable practice?. Front Ecol. Environ. 4, 147–154 (2006).
Article Google Scholar
14.
Bourbonnais, M. L. et al. Environmental factors and habitat use influence body condition of individuals in a species at risk, the grizzly bear. Conserv. Physiol. 2, 1. https://doi.org/10.1093/conphys/cou043 (2014).
CAS Article Google Scholar
15.
Pearson, E., Ortega, Y. K. & Ruggiero, L. F. Trap-induced mass declines in small mammals: mass as a population index. J. Wildl. Manag. 1, 684–691. https://doi.org/10.2307/3802675 (2003).
Article Google Scholar
16.
Smith, J. B., Windels, S. K., Wolf, T., Klaver, R. W. & Belant, J. L. Do transmitters affect survival and body condition of American beavers Castor canadensis?. Wildl. Biol 22, 117–123. https://doi.org/10.2981/wlb.00160 (2016).
Article Google Scholar
17.
Alibhai, S. K., Jewell, Z. C. & Towindo, S. S. Effects of immobilization on fertility in female black rhino (Diceros bicornis). J. Zool. 253, 333–345 (2001).
Article Google Scholar
18.
Carey, M. J. The effects of investigator disturbance on procellariiform seabirds: a review. N. Z. J. Zool. 36, 367–377. https://doi.org/10.1080/03014220909510161 (2009).
Article Google Scholar
19.
Côté, S. D., Festa-Bianchet, M. & Fournier, F. Life-history effects of chemical immobilization and radiocollars on mountain goats. J. Wildl. Manag. 1, 745–752. https://doi.org/10.2307/3802351 (1998).
Article Google Scholar
20.
Omsjoe, E. H. et al. Evaluating capture stress and its effects on reproductive success in Svalbard reindeer. Can. J. Zool. 87, 73–85. https://doi.org/10.1139/Z08-139 (2009).
Article Google Scholar
21.
Sharpe, F., Bolton, M., Sheldon, R. & Ratcliffe, N. Effects of color banding, radio tagging, and repeated handling on the condition and survival of Lapwing chicks and consequences for estimates of breeding productivity. J. Field Ornithol. 80, 101–110. https://doi.org/10.1111/j.1557-9263.2009.00211.x (2009).
Article Google Scholar
22.
Igual, J. M. et al. Short-term effects of data-loggers on Cory’s shearwater (Calonectris diomedea). Mar. Biol. 146, 619–624 (2005).
Article Google Scholar
23.
Casas, F. et al. Assessing the short-term effects of capture, handling and tagging of sandgrouse. Ibis 157, 115–124. https://doi.org/10.1111/ibi.12222 (2015).
Article Google Scholar
24.
Clinchy, M., Krebs, C. J. & Jarman, P. J. Dispersal sinks and handling effects: interpreting the role of immigration in common brushtail possum populations. J. Anim. Ecol. 70, 515–526. https://doi.org/10.1046/j.1365-2656.2001.00510.x (2001).
Article Google Scholar
25.
Dugger, K. M., Ballard, G., Ainley, D. G. & Barton, K. J. Effects of flipper bands on foraging behavior and survival of Adélie penguins (Pygoscelis adeliae). Auk 123, 858–869. https://doi.org/10.1093/auk/123.3.858 (2006).
Article Google Scholar
26.
Esler, D., Mulcahy, D. M. & Jarvis, R. L. Testing assumptions for unbiased estimation of survival of radiomarked harlequin ducks. J. Wildl. Manag. 1, 591–598. https://doi.org/10.2307/3803257 (2000).
Article Google Scholar
27.
Gibson, D. et al. Effects of radio collars on survival and lekking behavior of male greater sage-grouse. The Condor 115, 769–776. https://doi.org/10.1525/cond.2013.120176 (2013).
Article Google Scholar
28.
Ginsberg, J. R. et al. Handling and survivorship of African wild dog (Lycaon pictus) in five ecosystems. Conserv. Biol. 9, 665–674. https://doi.org/10.1046/j.1523-1739.1995.09030665.x (1995).
Article Google Scholar
29.
Ponjoan, A. et al. Adverse effects of capture and handling little bustard. J. Wildl. Manag. 72, 315–319. https://doi.org/10.2193/2006-443 (2008).
Article Google Scholar
30.
Kukalová, M., Gazárková, A. & Adamík, P. Should I stay or should I go? The influence of handling by researchers on den use in an arboreal nocturnal rodent. Ethology 119, 848–859. https://doi.org/10.1111/eth.12126 (2013).
Article Google Scholar
31.
Wingfield, J. C. & Sapolsky, R. M. Reproduction and resistance to stress: when and how. J. Neuroendocrinol. 15, 711–724. https://doi.org/10.1046/j.1365-2826.2003.01033.x (2003).
CAS Article PubMed Google Scholar
32.
Grissom, N. & Bhatnagar, S. Habituation to repeated stress: get used to it. Neurobiol. Learn. Mem. 92, 215–224. https://doi.org/10.1016/j.nlm.2008.07.001 (2009).
Article PubMed Google Scholar
33.
Lindenmayer, D. B. et al. Value of long-term ecological studies. Austral. Ecol. 37, 745–757. https://doi.org/10.1111/j.1442-9993.2011.02351.x (2012).
Article Google Scholar
34.
Schell, C. J., Young, J. K., Lonsdorf, E. V., Santymire, R. M. & Mateo, J. M. Parental habituation to human disturbance over time reduces fear of humans in coyote offspring. Ecol. Evol. 8, 12965–12980. https://doi.org/10.1002/ece3.4741 (2018).
Article PubMed PubMed Central Google Scholar
35.
Campbell, R. D., Newman, C., Macdonald, D. W. & Rosell, F. Proximate weather patterns and spring green-up phenology effect Eurasian beaver (Castor fiber) body mass and reproductive success: the implications of climate change and topography. Global Change Biol. 19, 1311–1324. https://doi.org/10.1111/gcb.12114 (2013).
ADS Article Google Scholar
36.
Campbell, R. D., Rosell, F., Newman, C. & Macdonald, D. W. Age-related changes in somatic condition and reproduction in the Eurasian beaver: resource history influences onset of reproductive senescence. PLoS ONE 12, e0187484. https://doi.org/10.1371/journal.pone.0187484 (2017).
CAS Article PubMed PubMed Central Google Scholar
37.
Parker, H., Zedrosser, A. & Rosell, F. Age-specific reproduction in relation to body size and condition in female Eurasian beavers. J. Zool. 302, 236–243. https://doi.org/10.1111/jzo.12458 (2017).
Article Google Scholar
38.
Sun, L. X. & Muller-Schwarze, D. Anal gland secretion codes for relatedness in the beaver Castor canadensis. Ethology 104, 917–927. https://doi.org/10.1111/j.1439-0310.1998.tb00041.x (1998).
Article Google Scholar
39.
Rosell, F., Bergan, P. & Parker, H. Scent-marking in the Eurasian beaver (Castor fiber) as a means of territory defense. J. Chem. Ecol. 24, 207–219. https://doi.org/10.1023/A:1022524223435 (1998).
CAS Article Google Scholar
40.
Mayer, M., Frank, S. C., Zedrosser, A. & Rosell, F. Causes and consequences of inverse density-dependent territorial behaviour and aggression in a monogamous mammal. J. Anim. Ecol. 89, 577–588. https://doi.org/10.1111/1365-2656.13100 (2019).
Article PubMed Google Scholar
41.
Hohwieler, K., Rosell, F. & Mayer, M. Scent-marking behavior by subordinate Eurasian beavers. Ethology 124, 591–599. https://doi.org/10.1111/eth.12762 (2018).
Article Google Scholar
42.
Steyaert, S. M. J. G., Zedrosser, A. & Rosell, F. Socio-ecological features other than sex affect habitat selection in the socially obligate monogamous Eurasian beaver. Oecologia 179, 1023–1032. https://doi.org/10.1007/s00442-015-3388-1 (2015).
ADS Article PubMed PubMed Central Google Scholar
43.
Gallant, D., Bérubé, C. H., Tremblay, E. & Vasseur, L. An extensive study of the foraging ecology of beavers (Castor canadensis) in relation to habitat quality. Can. J. Zool. 82, 922–933. https://doi.org/10.1139/z04-067 (2004).
Article Google Scholar
44.
Haarberg, O. & Rosell, F. Selective foraging on woody plant species by the Eurasian beaver (Castor fiber) in Telemark Norway. J. Zool. 270, 201–208. https://doi.org/10.1111/j.1469-7998.2006.00142.x (2006).
Article Google Scholar
45.
Pinto, B., Santos, M. J. & Rosell, F. Habitat selection of the Eurasian beaver (Castor fiber) near its carrying capacity: an example from Norway. Can. J. Zool. 87, 317–325. https://doi.org/10.1139/Z09-015 (2009).
Article Google Scholar
46.
Sharpe, F. & Rosell, F. Time budgets and sex differences in the Eurasian beaver. Anim. Behav. 66, 1059–1067. https://doi.org/10.1006/anbe.2003.2274 (2003).
Article Google Scholar
47.
Graf, P. M., Mayer, M., Zedrosser, A., Hacklander, K. & Rosell, F. Territory size and age explain movement patterns in the Eurasian beaver. Mamm. Biol. 81, 587–594. https://doi.org/10.1016/j.mambio.2016.07.046 (2016).
Article Google Scholar
48.
Gallant, D. et al. Linking time budgets to habitat quality suggests that beavers (Castor canadensis) are energy maximizers. Can. J. Zool. 94, 671–676. https://doi.org/10.1139/cjz-2016-0016 (2016).
ADS Article Google Scholar
49.
Graf, P. M., Hochreiter, J., Hacklander, K., Wilson, R. P. & Rosell, F. Short-term effects of tagging on activity and movement patterns of Eurasian beavers (Castor fiber). Eur. J. Wildl. Res. 62, 725–736. https://doi.org/10.1007/s10344-016-1051-8 (2016).
Article Google Scholar
50.
Deguchi, T., Suryan, R. M. & Ozaki, K. Muscle damage and behavioral consequences from prolonged handling of albatross chicks for transmitter attachment. J. Wildl. Manag. 78, 1302–1309. https://doi.org/10.1002/jwmg.765 (2014).
Article Google Scholar
51.
Grisham, B. A. et al. Evaluation of capture techniques on Lesser Prairie-Chicken trap injury and survival. J. Fish Wildl. Manag. 6, 318–326. https://doi.org/10.3996/032015-JFWM-022 (2015).
Article Google Scholar
52.
Laurenson, M. K. & Caro, T. Monitoring the effects of non-trivial handling in free-living cheetahs. Anim. Behav. 47, 547–557. https://doi.org/10.1006/anbe.1994.1078 (1994).
Article Google Scholar
53.
Jakob, E. M., Marshall, S. D. & Uetz, G. W. Estimating fitness: a comparison of body condition indices. Oikos 77, 61–67. https://doi.org/10.2307/3545585 (1996).
Article Google Scholar
54.
Millar, J. S. & Hickling, G. J. Fasting endurance and the evolution of mammalian body size. Funct. Ecol. 4, 5–12. https://doi.org/10.2307/2389646 (1990).
Article Google Scholar
55.
Guinet, C., Roux, J. P., Bonnet, M. & Mison, V. Effect of body size, body mass, and body condition on reproduction of female South African fur seals (Arctocephalus pusillus) in Namibia. Can. J. Zool. 76, 1418–1424. https://doi.org/10.1139/z98-082 (1998).
Article Google Scholar
56.
Smith, D. W. & Jenkins, S. H. Seasonal change in body mass and size of tail of northern beavers. J. Mammal. 78, 869–876. https://doi.org/10.2307/1382945 (1997).
Article Google Scholar
57.
Magurran, A. E. & Garcia, C. M. Sex differences in behaviour as an indirect consequence of mating system. J. Fish Biol. 57, 839–857. https://doi.org/10.1111/j.1095-8649.2000.tb02196.x (2000).
Article Google Scholar
58.
Drickamer, L. C., Vandenbergh, J. G. & Colby, D. R. Predictors of dominance in the male golden hamster (Mesocricetus auratus). Anim. Behav. 21, 557–563. https://doi.org/10.1016/s0003-3472(73)80016-8 (1973).
CAS Article PubMed Google Scholar
59.
Bernstein, I. S. Dominance: the baby and the bathwater. Behav. Brain Sci. 4, 419–429. https://doi.org/10.1017/S0140525X00009614 (1981).
Article Google Scholar
60.
Taillon, J. & Côté, S. D. The role of previous social encounters and body mass in determining social rank: an experiment with white-tailed deer. Anim. Behav. 72, 1103–1110. https://doi.org/10.1016/j.anbehav.2006.03.016 (2006).
Article Google Scholar
61.
Marolf, B., McElligott, A. G. & Müller, A. E. Female social dominance in two Eulemur species with different social organizations. Zoo. Biol. 26, 201–214. https://doi.org/10.1002/zoo.20135 (2007).
Article PubMed Google Scholar
62.
Huang, B., Wey, T. W. & Blumstein, D. T. Correlates and consequences of dominance in a social rodent. Ethology 117, 573–585 (2011).
Article Google Scholar
63.
Righton, D., Miller, M. & Ormond, R. Correlates of territory size in the butterflyfish Chaetodon austriacus (Rüppell). J. Exp. Mar. Biol. Ecol. 226, 183–193. https://doi.org/10.1016/s0022-0981(97)00235-9 (1998).
Article Google Scholar
64.
Bobek, B. Summer food as the factor limiting roe deer population size. Nature 268, 47. https://doi.org/10.1038/268047a0 (1977).
ADS Article Google Scholar
65.
Myers, J. P., Connors, P. G. & Pitelka, F. A. Territory size in wintering sanderlings: the effects of prey abundance and intruder density. Auk 96, 551–561. https://doi.org/10.1093/auk/96.3.551 (1979).
Article Google Scholar
66.
Gass, C. L., Angehr, G. & Centa, J. Regulation of food supply by feeding territoriality in the rufous hummingbird. Can. J. Zool. 54, 2046–2054. https://doi.org/10.1139/z76-238 (1976).
Article Google Scholar
67.
Adams, E. S. Approaches to the study of territory size and shape. Annu. Rev. Ecol. Syst. 32, 277–303. https://doi.org/10.1146/annurev.ecolsys.32.081501.114034 (2001).
Article Google Scholar
68.
Kelly, K. G., Diamond, A. W., Holberton, R. L. & Bowser, A. K. Researcher handling of incubating Atlantic Puffins Fratercula arctica has no effect on reproductive success. Mar. Ornithol. 43, 77–82 (2015).
Google Scholar
69.
Ramsay, M. A. & Stirling, I. Long-term effects of drugging and handling free-ranging polar bears. J. Wildl. Manag. 1, 619–626. https://doi.org/10.2307/3800972 (1986).
CAS Article Google Scholar
70.
Serventy, D. L. & Curry, P. J. Observations on colony size, breeding success, recruitment and inter-colony dispersal in a Tasmanian colony of Short-tailed Shearwaters Puffinus tenuirostris over a 30-year peroid. EMU 84, 71–79. https://doi.org/10.1071/MU9840071 (1984).
Article Google Scholar
71.
Schradin, C. & Hayes, L. D. A synopsis of long-term field studies of mammals: achievements, future directions, and some advice. J. Mammal. 98, 670–677. https://doi.org/10.1093/jmammal/gyx031 (2017).
Article Google Scholar
72.
Blumstein, D. T. Habituation and sensitization: new thoughts about old ideas. Anim. Behav. 120, 255–262. https://doi.org/10.1016/j.anbehav.2016.05.012 (2016).
Article Google Scholar
73.
Baudains, T. P. & Lloyd, P. Habituation and habitat changes can moderate the impacts of human disturbance on shorebird breeding performance. Anim. Conserv. 10, 400–407. https://doi.org/10.1111/j.1469-1795.2007.00126.x (2007).
Article Google Scholar
74.
Vincze, E. et al. Habituation to human disturbance is faster in urban than rural house sparrows. Behav. Ecol. 27, 1304–1313. https://doi.org/10.1093/beheco/arw047 (2016).
Article Google Scholar
75.
Van Oers, K. & Carere, C. Long-term effects of repeated handling and bleeding in wild caught great tits Parus major. J. Ornithol. 148, 185–190. https://doi.org/10.1007/s10336-007-0200-y (2007).
Article Google Scholar
76.
Ordiz, A. et al. Habituation, sensitization, or consistent behavioral responses? Brown bear responses after repeated approaches by humans on foot. Biol. Conserv. 232, 228–237. https://doi.org/10.1016/j.biocon.2019.01.016 (2019).
Article Google Scholar
77.
Seress, G. et al. Effects of capture and video-recording on the behavior and breeding success of Great Tits in urban and forest habitats. J. Field Ornithol. 88, 299–312. https://doi.org/10.1111/jofo.12205 (2017).
Article Google Scholar
78.
Ellenberg, U., Mattern, T., Houston, D. M., Davis, L. S. & Seddon, P. J. Previous experiences with humans affect responses of Snares Penguins to experimental disturbance. J. Ornithol. 153, 621–631. https://doi.org/10.1007/s10336-011-0780-4 (2012).
Article Google Scholar
79.
Ditmer, M. A. et al. Bears habituate to the repeated exposure of a novel stimulus, unmanned aircraft systems. Conserv. Physiol. 7, 67. https://doi.org/10.1093/conphys/coy067 (2019).
Article Google Scholar
80.
Rabdeau, J., Badenhausser, I., Moreau, J., Bretagnolle, V. & Monceau, K. To change or not to change experimenters: caveats for repeated behavioural and physiological measures in Montagu’s harrier. J. Avian Biol. 50, 1. https://doi.org/10.1111/jav.02160 (2019).
Article Google Scholar
81.
Rode, K. D. et al. Effects of capturing and collaring on polar bears: findings from long-term research on the southern Beaufort Sea population. Wildl. Res. 41, 311–322. https://doi.org/10.1071/WR13225 (2014).
Article Google Scholar
82.
Larsen, K. W. & Boutin, S. Movements, survival, and settlement of red squirrel (Tamiasciurus hudsonicus) offspring. Ecology 75, 214–223. https://doi.org/10.2307/1939395 (1994).
Article Google Scholar
83.
Mayer, M., Zedrosser, A. & Rosell, F. Couch potatoes do better: Delayed dispersal and territory size affect the duration of territory occupancy in a monogamous mammal. Ecol. Evol. 7, 4347–4356. https://doi.org/10.1002/ece3.2988 (2017).
Article PubMed PubMed Central Google Scholar
84.
Mayer, M., Zedrosser, A. & Rosell, F. Extra-territorial movements differ between territory holders and subordinates in a large, monogamous rodent. Sci. Rep. 7, 15261. https://doi.org/10.1038/s41598-017-15540-0 (2017).
ADS CAS Article PubMed PubMed Central Google Scholar
85.
Rosell, F., Johansen, G. & Parker, H. Eurasian beavers (Castor fiber) behavioral response to simulated territorial intruders. Can. J. Zool. 78, 931–935. https://doi.org/10.1139/cjz-78-6-931 (2000).
Article Google Scholar
86.
Rosell, F. & Bjorkoyli, T. A test of the dear enemy phenomenon in the Eurasian beaver. Anim. Behav. 63, 1073–1078. https://doi.org/10.1006/anbe.2002.3010 (2002).
Article Google Scholar
87.
Tinnesand, H. V., Jojola, S., Zedrosser, A. & Rosell, F. The smell of desperadoes? Beavers distinguish between dominant and subordinate intruders. Behav. Ecol. Sociobiol. 67, 895–904. https://doi.org/10.1007/s00265-013-1512-y (2013).
Article Google Scholar
88.
Fretwell, S. D. Populations in a seasonal environment. (Princeton University Press, 1972).
89.
Rosell, F., Parker, H. & Steifetten, O. Use of dawn and dusk sight observations to determine colony size and family composition in Eurasian beaver Castor fiber. Acta Theriol. 51, 107–112. https://doi.org/10.1007/Bf03192662 (2006).
Article Google Scholar
90.
Shier, D. M. & Swaisgood, R. R. Fitness costs of neighborhood disruption in translocations of a solitary mammal. Conserv. Biol. 26, 116–123. https://doi.org/10.1111/j.1523-1739.2011.01748.x (2012).
Article PubMed Google Scholar
91.
Shier, D. M. Effect of family support on the success of translocated black-tailed prairie dogs. Conserv. Biol. 20, 1780–1790. https://doi.org/10.1111/j.1523-1739.2006.00512.x (2006).
CAS Article PubMed Google Scholar
92.
Gaillard, J. M., Allainé, D., Pontier, D., Yoccoz, N. G. & Promislow, D. E. L. Senescence in natural populations of mammals: a reanalysis. Evolution 48, 509–516. https://doi.org/10.1111/j.1558-5646.1994.tb01329.x (1994).
Article PubMed Google Scholar
93.
Lindenmayer, D. B. & Likens, G. E. Adaptive monitoring: a new paradigm for long-term research and monitoring. Trends Ecol. Evol. 24, 482–486. https://doi.org/10.1016/j.tree.2009.03.005 (2009).
Article PubMed Google Scholar
94.
Campbell, R. D., Rosell, F., Nolet, B. A. & Dijkstra, V. A. A. Territory and group sizes in Eurasian beavers (Castor fiber): echoes of settlement and reproduction?. Behav. Ecol. Sociobiol. 58, 597–607. https://doi.org/10.1007/s00265-005-0942-6 (2005).
Article Google Scholar
95.
Sun, L., Müller-Schwarze, D. & Schulte, B. A. Dispersal pattern and effective population size of the beaver. Can. J. Zool. 78, 393–398. https://doi.org/10.1139/z99-226 (2000).
Article Google Scholar
96.
Campbell, R. D., Nouvellet, P., Newman, C., Macdonald, D. W. & Rosell, F. The influence of mean climate trends and climate variance on beaver survival and recruitment dynamics. Global Change Biol. 18, 2730–2742. https://doi.org/10.1111/j.1365-2486.2012.02739.x (2012).
ADS Article Google Scholar
97.
Rosell, F. & Hovde, B. Methods of aquatic and terrestrial netting to capture Eurasian beavers. Wildl. Soc. Bull. 29, 269–274 (2001).
Google Scholar
98.
Rosell, F. & Sun, L. Use of anal gland secretion to distinguish the two beaver species Castor canadensis and C. fiber. Wildl. Biol. 5, 119–123. https://doi.org/10.2981/wlb.1999.015 (1999).
Article Google Scholar
99.
Rosell, F., Zedrosser, A. & Parker, H. Correlates of body measurements and age in Eurasian beaver from Norway. Eur. J. Wildl. Res. 56, 43–48. https://doi.org/10.1007/s10344-009-0289-9 (2010).
Article Google Scholar
100.
Mayer, M., Künzel, F., Zedrosser, A. & Rosell, F. The 7-year itch: non-adaptive mate change in the Eurasian beaver. Behav. Ecol. Sociobiol. 71, 1. https://doi.org/10.1007/s00265-016-2259-z (2017).
Article Google Scholar
101.
Buchanan, K. et al. Guidelines for the treatment of animals in behavioural research and teaching. Anim. Behav. 83, 301–309. https://doi.org/10.1016/j.anbehav.2011.10.031 (2012).
Article Google Scholar
102.
Aleksiuk, M. The function of the tail as a fat storage depot in the beaver (Castor canadensis). J. Mammal. 51, 145–148. https://doi.org/10.2307/1378541 (1970).
CAS Article PubMed Google Scholar
103.
Parker, H., Rosell, F. & Mysterud, A. Harvesting of males delays female breeding in a socially monogamous mammal; the beaver. Biol. Lett. 3, 107–109. https://doi.org/10.1098/rsbl.2006.0563 (2007).
Article Google Scholar
104.
Fouchet, D., Santin-Janin, H., Sauvage, F., Yoccoz, N. G. & Pontier, D. An R package for analysing survival using continuous-time open capture–recapture models. Methods Ecol. Evol. 7, 518–528. https://doi.org/10.1111/2041-210x.12497 (2016).
Article Google Scholar
105.
Borchers, D., Distiller, G., Foster, R., Harmsen, B. & Milazzo, L. Continuous-time spatially explicit capture–recapture models, with an application to a jaguar camera-trap survey. Methods Ecol. Evol. 5, 656–665. https://doi.org/10.1111/2041-210X.12196 (2014).
Article Google Scholar
106.
Lebreton, J.-D., Burnham, K. P., Clobert, J. & Anderson, D. R. Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol. Monogr. 62, 67–118. https://doi.org/10.2307/2937171 (1992).
Article Google Scholar
107.
Bonnet, X., Naulleau, G. & Shine, R. The dangers of leaving home: dispersal and mortality in snakes. Biol. Conserv. 89, 39–50. https://doi.org/10.1016/S0006-3207(98)00140-2 (1999).
Article Google Scholar
108.
Lucas, J. R., Waser, P. M. & Creel, S. R. Death and disappearance: estimating mortality risks associated with philopatry and dispersal. Behav. Ecol. 5, 135–141. https://doi.org/10.1093/beheco/5.2.135 (1994).
Article Google Scholar
109.
Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. (Springer, Berlin, 2009).
110.
Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a practical information-theoretic approach. (Springer, Berlin, 2002).
111.
Magnusson, A. et al. Package ‘glmmTMB’. R Package (2017).
112.
Barton, K. R-package ‘MuMIn’ (2018).
113.
Arnold, T. W. Uninformative parameters and model selection using Akaike’s information criterion. J. Wildl. Manage 74, 1175–1178. https://doi.org/10.1111/j.1937-2817.2010.tb01236.x (2010).
Article Google Scholar
114.
Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package (2017).
115.
Team, R. C. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Austria, 2015. (2018). More