1.
Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).
CAS Article Google Scholar
2.
Smeraldo, S. et al. Modelling risks posed by wind turbines and power lines to soaring birds: the black stork (Ciconia nigra) in Italy as a case study. Biodivers. Conserv. 29, 1959–1976 (2020).
Article Google Scholar
3.
Gutierrez, B. L. et al. An island of wildlife in a human-dominated landscape: the last fragment of primary forest on the Osa Peninsula’s Golfo Dulce coastline Costa Rica. PLoS ONE 14, e0214390 (2019).
CAS PubMed Central Article PubMed Google Scholar
4.
Padalia, H. et al. Assessment of historical forest cover loss and fragmentation in Asian elephant ranges in India. Environ. Monit. Assess. 191, 802 (2019).
Article Google Scholar
5.
Sodhi, N. S., Lee, T. M., Koh, L. P. & Brook, B. W. A meta-analysis of the impact of anthropogenic forest disturbance on Southeast Asia’s biotas. Biotropica 41, 103–109 (2009).
Article Google Scholar
6.
Beier, P. Determining minimum habitat areas and habitat corridors for cougars. Conserv. Biol. 7, 94–108 (1993).
Article Google Scholar
7.
MacNally, R. & Bennett, A. F. Species-specific prediction of the impact of habitat fragmentation: local extinction of birds in the box-ironbark forests of central Victoria Australia. Biol. Conserv. 82, 147–155 (1997).
Article Google Scholar
8.
Hanski, I. Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos 8, 209–219 (1999).
Article Google Scholar
9.
Weaver, J. L., Paquet, P. C. & Ruggerio, L. F. Resilience and conservation of large carnivores in the Rocky Mountains. Conserv. Biol. 10, 964–976 (1996).
Article Google Scholar
10.
Smith, J. B., Nielsen, C. K. & Hellgren, E. C. Suitable habitat for recolonizing large carnivores in the midwestern USA. Oryx 50, 555–564 (2016).
Article Google Scholar
11.
Morehouse, A. T., Hughes, C., Manners, N., Bectell, J. & Bruder, T. Carnivores and communities: a case study of human-carnivore conflict mitigation in southwestern Alberta. Front. Ecol. Evol. 8, 2 (2020).
Article Google Scholar
12.
Pelton, M. R. et al. American black bear conservation action plan in Bears (ed. Servheen, C., Herrero, S., & Peyton, B.) 144–146. Status survey and conservation action plan. (IUCN/SSC Bear and Polar Bear Specialist Groups, 1999).
13.
Williamson, D. F. In the Black: Status, Management, and Trade of the American Black Bear (Ursus americanus) in North America (TRAFFIC North America. World Wildlife Fund, Washington, DC, 2002).
Google Scholar
14.
Hristienko, H. & McDonald, J. E. Jr. Going into the 21st century: a perspective on trends and controversies in the management of the American black bear. Ursus 18, 72–88 (2007).
Article Google Scholar
15.
Scheick, B. K. & McCown, W. Geographic distribution of American black bears in North America. Ursus 25, 24–33 (2014).
Article Google Scholar
16.
Wright, S. Evolution and the genetics of populations (The University of Chicago Press, Chicago, 1984).
Google Scholar
17.
Wooding, J. B. & Hardisky, T. S. Home range, habitat use, and mortality of black bears in north-central Florida. Int. Conf. Bear Res. Manag. 9, 349–356 (1994).
Google Scholar
18.
Florida Game and Fresh Water Fish Commission. Management of the Black Bear in Florida: A Staff Report to the Commissioners (Florida Game and Fresh Water Fish Commission, Tallahassee, 1993).
Google Scholar
19.
Florida Fish and Wildlife Conservation Commission. Florida Black Bear Management Plan (Florida Game and Fresh Water Fish Commission, Tallahassee, 2019).
Google Scholar
20.
Dixon, J. D. Genetic consequences of habitat fragmentation and loss: the case of the Florida black bear (Ursus americanus floridanus). Conserv. Genet. 8, 455–464 (2007).
Article Google Scholar
21.
Brown, J. H. Challenges in Estimating Size and Conservation of Black Bear in West-Central Florida. Thesis, University of Kentucky (2004)
22.
Humm, J. M., McCown, J. W., Scheick, B. K. & Clark, J. D. Spatially explicit population estimates for black bears based on cluster sampling. J. Wildl. Manag. 81, 1187–1201 (2017).
Article Google Scholar
23.
Florida Fish and Wildlife Conservation Commission. Florida Black Bear Management Plan (Florida Game and Fresh Water Fish Commission, Tallahassee, 2012).
Google Scholar
24.
Carr, M. H. & Zwick, P. D. Technical Report Florida 2070: Mapping Florida’s Future—Alternative Patterns of Development in 2070 (Geoplan Center at the University of Florida, Gainesville, 2016).
Google Scholar
25.
Noss, R. E., Quiqley, H. B., Hornocker, M. G., Merrill, T. & Paquet, P. C. Conservation biology and carnivore conservation in the Rocky Mountains. Conserv. Biol. 10, 94–96 (1996).
Google Scholar
26.
Breitenmoser, U. Large predators in the Alps: the fall and rise of man’s competitors. Biol. Conserv. 83, 279–289 (1998).
Article Google Scholar
27.
Waser, P. M. Patterns and consequences of dispersal in gregarious carnivores. In Carnivore Behavior, Ecology, and Evolution (ed. Gittleman, J. L.) 267–295 (Cornell University Press, Ithaca, 1996).
Google Scholar
28.
Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).
Article Google Scholar
29.
Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
Article Google Scholar
30.
Yackulic, C. B. et al. Presence-only modelling using MAXENT: When can we trust the inferences?. Methods Ecol. Evol. 4, 236–243 (2013).
Article Google Scholar
31.
Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).
Article Google Scholar
32.
De Oliveira Moreira, D. et al. The distributional ecology of the maned sloth: Environmental influences on its distribution and gaps in knowledge. PLoS ONE. 9, 1–12 (2014).
Google Scholar
33.
Martin, J. et al. Brown bear habitat suitability in the Pyrenees: transferability across sites and linking scales to make the most of scarce data. J. Appl. Ecol. 49, 621–631 (2012).
Article Google Scholar
34.
Khosravi, R., Hemami, R. K. M. & Cushman, S. A. Multi-scale niche modeling of three sympatric felids of conservation importance in central Iran. Landsc. Ecol. 34, 2451–2467 (2019).
Article Google Scholar
35.
Maehr, D. S., McCown, J. W., Land, E. D. & Roof, J. C. Southwest Florida Black Bear Habitat Use, Distribution, Movements, and Conservation Strategy (Florida Game and Fresh Water Fish Commission, Gainesville, 1992).
Google Scholar
36.
McCown, W., Kublis, P., Eason, T. & Scheick, B. Black Bear Movements and Habitat Use Relative to Roads in Ocala National Forest (Florida Fish and Wildlife Commission, Gainesville, 2004).
Google Scholar
37.
Dobey, S. Ecology of Florida black bears in the Okefenokee-Osceola ecosystem. Wildl. Monogr. 158, 1–41 (2005).
Google Scholar
38.
Ulrey, W. A. Home Range, Habitat Use, and Food Habits of the Black Bear in South-Central Florida. Thesis, University of Kentucky (2008)
39.
Karelus, D. L., McCown, J. W., Scheick, B. K., van de Kerk, M. & Oli, M. K. Home ranges and habitat selection by black bears in a newly colonized population in Florida. Southeast Nat. 15, 346–364 (2016).
Article Google Scholar
40.
Karelus, D. L., McCown, J. W., Scheick, B. K. & Oli, M. K. Microhabitat features influencing habitat use by Florida black bears. Glob. Ecol. Conserv. 13, e00367 (2018).
Article Google Scholar
41.
Olson, D. M. & Dinerstein, E. The Global 200: Priority ecoregions for global conservation. Ann. MO Bot. Gard. 89, 125–126 (2002).
Article Google Scholar
42.
U.S. Census Bureau. Population and housing unite estimates vintage 2018. Washington, DC (2018).
43.
Burby, R. & May, P. Making Governments Plan (John Hopkins University Press, Baltimore, 1997).
Google Scholar
44.
Boarnet, M. G., McLaughlin, R. B. & Carruthers, J. I. Does state growth management change the pattern of urban growth? Evidence from Florida. Reg. Sci. Urban Econ. 41, 236–252 (2011).
Article Google Scholar
45.
Seibert, S. G. Status and Management of Black Bears in Apalachicola National Forest (Florida Game and Fresh Water Fish Commission, Gainesville, 2013).
Google Scholar
46.
Land, E. D. Southwest Florida Black Bear Habitat Use, Distribution, Movements, and Conservation Strategy (Florida Game and Fresh Water Fish Commission, Tallahassee, 1994).
Google Scholar
47.
McCown, W., Eason, T. H. & Cunningham, M. W. Black Bear Movements and Habitat Use Relative to Roads in Ocala National Forest (Florida Fish and Wildlife Conservation Commission, Gainesville, 2001).
Google Scholar
48.
Stratman, M. R., Alden, C. D., Pelton, M. R. & Sunquist, M. E. Habitat use by American black bears in the sandhills of Florida. Ursus 12, 109–114 (2001).
Google Scholar
49.
Maehr, D. W. et al. Spatial characteristics of an isolated Florida black bear population. Southeast Nat. 2, 433–446 (2003).
Article Google Scholar
50.
Orlando, M. A. The Ecology and Behavior of an Isolated Black Bear Population in West Central Florida. Thesis, University of Kentucky (2003)
51.
Annis, K. M. The Impact of Translocation on Nuisance Florida Black Bears. Thesis, University of Florida (2007).
52.
Neils, A. M. Florida Black Bear (Ursus americanus floridanus) at the Urban-Wildlife Interface: Are They Different? Thesis, University of Florida (2011).
53.
Guthrie, J. M. Modeling Movement Behavior and Road Crossing the Black Bear of South Central Florida. Thesis, University of Kentucky (2012).
54.
Baruch-Mordo, S. et al. Stochasticity in natural forage production affects use of urban areas by black bears: implications to management of human-bear conflicts. PLoS ONE 9, e85122 (2014).
ADS PubMed Central Article CAS PubMed Google Scholar
55.
Lewis, J. S., Rachlow, J. L., Garton, E. O. & Vierling, L. A. Effects of habitat on GPS collar performance: using data screening to reduce location error. J. Appl. Ecol. 44, 663–671 (2007).
Article Google Scholar
56.
Clark, J. D., Laufenberg, J. S., Davidson, M. & Murrow, J. L. Connectivity among subpopulations of Louisiana black bears as estimated by a step selection function. J. Wildl. Manage. 79, 1347–1360 (2015).
Article Google Scholar
57.
Beumer, L. T., van Beest, F. M., Stelvig, M. & Schmidt, N. M. Spatiotemproal dynamics in habitat suitability of a large Arctic herbivore: environmental heterogeneity is key to a sedentary lifestyle. Glob. Ecol. Conserv. 18, e00647 (2019).
Article Google Scholar
58.
Hinton, J. W. et al. Space use and habitat selection by resident and transient red wolves (Canis rufus). PLoS ONE 11, e0167603 (2016).
PubMed Central Article CAS PubMed Google Scholar
59.
Fourcade, Y., Engler, J. O., Rodder, D. & Secondi, J. Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS ONE 9, e97122 (2014).
ADS PubMed Central Article CAS PubMed Google Scholar
60.
Pellerin, M., Said, S. & Gaillard, J.-M. Roe deer Capreolus capreolus home-range sizes estimated from VHF and GPS data. Wildl. Biol. 14, 101–110 (2009).
Article Google Scholar
61.
Signer, J., Fieberg, J. & Avgar, T. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol. 9, 880–890 (2019).
PubMed Central Article PubMed Google Scholar
62.
Maehr, D. S. & Brady, J. R. Food habits of Florida black bears. J. Wildl. Manag. 48, 230–235 (1984).
Article Google Scholar
63.
Hellgren, E. C., Vaughan, M. R. & Stauffer, D. F. Macrohabitat use by black bears in a southeastern wetland. J Wildl. Manag. 55, 442–448 (1991).
Article Google Scholar
64.
Karelus, D. L. et al. Effects of environmental factors and landscape features on movement patterns of Florida black bears. J. Mammal. 98, 1463–1478 (2017).
Article Google Scholar
65.
Florida Natural Areas Inventory. Florida Forever Board of Trustees Projects (2018).
66.
McGarigal, K., Cushman, S. A. & Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. University of Massachusetts, Amherst, MA. https://www.umass.edu/landeco/research/fragstats/fragstats.html. (2012).
67.
Riley, S. J., DeGloria, S. D. & Elliot, R. A terrain ruggedness index that quantifies topographic heterogeneity. Intermt. J. Sci. 5, 1–4 (1999).
Google Scholar
68.
Clark, J. D., Dunn, J. E. & Smith, K. G. A multivariate model of female black bear habitat use for a geographic information system. J. Wildl. Manag. 57, 519–526 (1993).
Article Google Scholar
69.
U.S. Geological Survey. National Elevation Dataset. Washington, DC (2016).
70.
Ditmer, M. A., Noyce, K. V., Fieberg, J. R. & Garshelisa, D. L Delineating the ecological and geographic edge of an opportunist: The American black bear exploiting an agricultural landscape. Ecol. Model. 387, 205–219 (2018).
Article Google Scholar
71.
U.S. Department of Agriculture National Agriculture Statistics Service. Census of Agriculture, Ag Census Web Maps. Washington, DC (2016).
72.
Hostetler, J. A. et al. Demographic consequences of anthropogenic influences: Florida black bears in north-central Florida. Biol. Conserv. 142, 2456–2463 (2009).
Article Google Scholar
73.
Center for International Earth Science Information Network – CIESIN – Columbia University. Gridded Population of the World, Version 4 (GPWv4): Population Density. Palisades, NY (2016).
74.
Brody, A. J. & Pelton, M. R. Effects of roads on black bears in western North Carolina. Wildl. Soc. B 17, 5–10 (1989).
Google Scholar
75.
U.S. Census Bureau. TIGER/Line Shapefiles (machine readable data files). Washington DC (2016).
76.
U.S. Geological Survey. National Hydrology Dataset. Washington, DC (2018).
77.
U.S. Fish & Wildlife Service. National Wetlands Inventory Data. St Petersburg, FL (2018).
78.
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2019).
79.
Esri. ArcGIS Desktop: Release 10.4. Redlands, CA: Environmental Systems Research Institute (2015).
80.
Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).
Article Google Scholar
81.
Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
Article Google Scholar
82.
Calenge, C. The package adehabitat for the R software: a tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 516–519 (2016).
Article Google Scholar
83.
Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).
Article Google Scholar
84.
Phillips, S. J., Dudik, M., & Schapire, R. E. A maximum entropy approach to species distribution modeling in Proceedings of the twenty-first international conference on machine learning (technical coordinators Greiner, R. & Schuurmans, D.) 655–662 (ACM Press, 2004).
85.
Hernandez, P. A. et al. Predicting species distributions in poorly-studied landscapes. Biodivers. Conserv. 17, 1353–1366 (2008).
Article Google Scholar
86.
Poor, E. E., Loucks, C., Jakes, A. & Urban, D. L. Comparing habitat suitability and connectivity modeling methods for conserving pronghorn migrations. PLoS ONE 7, e49390 (2012).
ADS CAS PubMed Central Article PubMed Google Scholar
87.
Duan, R.-Y., Kong, X.-Q., Huang, M.-Y., Fan, W.-Y. & Wang, Z.-G. The predictive performance and stability of six species distribution models. PLoS ONE 9, e112764 (2014).
ADS PubMed Central Article CAS PubMed Google Scholar
88.
Zhang, J. et al. MaxEnt modeling for predicting the spatial distribution of three raptors in the Sanjiangyuan National Park China. Ecol. Evol. 9, 6643–6654 (2019).
PubMed Central Article PubMed Google Scholar
89.
Bertolino, S. et al. Spatially-explicit models as tools for implementing effective management strategies for invasive alien mammals. Mammal. Rev. 50, 87–199 (2020).
Google Scholar
90.
Alsamadisi, A. G., Tran, L. T. & Papes, M. Employing inferences across scales: integrating spatial data with different resolutions to enhance Maxent models. Ecol. Model. 415, 108857 (2020).
Article Google Scholar
91.
Peralvo, M. F., Cuesta, F. & van Manen, F. Delineating priority habitat areas for the conservation of Andean bears in northern Ecuador. Ursus 16, 222–233 (2005).
Article Google Scholar
92.
Mahalanobis, P. C. On the generalized distance in statistics. Proc. Natl. Aacd. Sci. India 2, 49–55 (1936).
MATH Google Scholar
93.
Browning, D. M., Beaupre, S. J. & Duncan, L. Using partitioned Mahalanobis D2 (K) to formulate a GIS-based model of timber rattlesnake hibernacula. J. Wildl. Manag. 69, 33–44 (2005).
Article Google Scholar
94.
Griffin, S. C., Taper, M. L., Hoffman, R. & Mills, L. S. Ranking Mahalanobis Distance models for predictions of occupancy from presence-only data. J. Wildl. Manag. 74, 1112–1121 (2010).
Article Google Scholar
95.
Phillips, S. J. et al. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).
Article Google Scholar
96.
Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).
Article Google Scholar
97.
Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300 (2002).
Article Google Scholar
98.
Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).
Article Google Scholar
99.
Murrow, J. L. & Clark, J. D. Effects of hurricanes Katrina and Rita on Louisiana black bear habitat. Ursus 23, 192–205 (2012).
Article Google Scholar
100.
Sing, T., Sander, O., Beerenwinkel, N. & Lengauer, T. ROCR: visualizing classifier performance in R. Bioinformatics 21, 7881 (2005).
Article CAS Google Scholar
101.
Broennimann, B. & Di Cola, V. A. ecospat: Spatial Ecology Miscellaneous Methods. R package version 3.0 (2018).
102.
Liu, C., White, M. & Newell, G. Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 40, 778–789 (2013).
Article Google Scholar
103.
Hellgren, E. C., Bales, S. L., Gregory, M. S., Leslie, D. M. Jr. & Clark, J. D. Testing a Mahalanobis Distance model of black bear habitat use in the Ouichita Mountains of Oklahoma. J. Wildl. Manag. 71, 924–928 (2007).
Article Google Scholar
104.
Murrow, J. L., Thatcher, C. A., van Manen, F. T. & Clark, J. A data-based conservation planning tool for Florida Panthers. Environ. Model. Assess. 18, 159–170 (2013).
Article Google Scholar
105.
NOAA Office for Coastal Management. Detailed method for mapping sea level rise inundation. (NOAA, 2017).
106.
Pelton, M. R. 2003. Black bear. In Wild Mammals of North America: Biology, Management, and Conservation (eds Feldhamer, J. A. et al.) 547–555 (Johns Hopkins University, Baltimore, 2003).
Google Scholar
107.
Thuiller, W., Brotons, L., Araujo, M. B. & Lavorel, S. Effects of restricting environmental range of data to project current and future species distributions. Ecography 27, 165–172 (2004).
Article Google Scholar
108.
Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28, 385–393 (2005).
Article Google Scholar
109.
Kopp, R. E. et al. Probalistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth’s Future 2, 383–406 (2014).
ADS Article Google Scholar
110.
Xiao, H. & Tang, Y. Assess the “superposed” effects of storm surge from a Category 3 hurricane. and continuous sea-level rise on saltwater intrusion into the surficial aquifer in coastal east-central Florida (USA). Environ. Sci. Pollut Res. 26, 21882–21889 (2019).
CAS Article Google Scholar
111.
Laurance, W. F. et al. A global strategy for road building. Nature 513, 229–234 (2014).
ADS CAS Article Google Scholar
112.
Mukul, S. A. et al. Combined effects of climate change and sea-level rise project dramatic habitat loss of the globally endangered Bengal tiger in the Bangladesh Sundarbans. Sci. Total Environ. 663, 830–840 (2019).
ADS CAS Article Google Scholar
113.
Poor, E. E., Shao, Y. & Kelly, M. J. Mapping and predicting forest loss in a Sumatran tiger landscape from 2002 to 2050. J. Environ. Manag. 231, 397–404 (2019).
Article Google Scholar
114.
Durner, G. M. et al. Predicting 21st-century polar bear habitat distribution from global climate models. Ecol. Monogr. 79, 25–58 (2009).
115.
Yovovich, V., Allen, M. L., Macaulay, L. T. & Wilmers, C. C. Using spatial characteristics of apex carnivore communication and reproductive behaviors to predict responses to future human development. Biodivers. Conserv. 29, 2589–2603 (2020).
Article Google Scholar
116.
Muhly, T. B. et al. Functional response of wolves to human development across boreal North America. Ecol. Evol. 9, 10801–10815 (2019).
PubMed Central Article PubMed Google Scholar
117.
Zeller, K. A., Wattles, D. W., Conlee, L. & Destefano, S. Response of female black bears to a high-density road network and identification of long-term road mitigation sites. Anim. Conserv. https://doi.org/10.1111/acv.12621 (2020).
Article Google Scholar
118.
Morales-González, A., Ruiz-Villar, H., Ordiz, A. & Penteriani, V. Large carnivores living alongside humans: Brown bears in human-modified landscapes. Glob. Ecol. Conserv. 22, 1–13 (2020).
Google Scholar
119.
Maletzke, B. et al. Cougar response to a gradient of human development. Ecosphere 8, 1–14 (2017).
Article Google Scholar
120.
Barrington-Leigh, C. & Millard-Ball, A. A century of sprawl in the United States. PNAS https://doi.org/10.1073/pnas.1504033112 (2015).
Article Google Scholar More