Dependency of Queensland and the Great Barrier Reef’s tropical fisheries on reef-associated fish
1.
Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).
ADS CAS Article PubMed PubMed Central Google Scholar
2.
Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 50, 839–866 (1999).
Google Scholar
3.
Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492 (2018).
ADS CAS Article PubMed PubMed Central Google Scholar
4.
Stuart-Smith, R. D., Brown, C. J., Ceccarelli, D. M. & Edgar, G. J. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature 560, 92–96 (2018).
ADS CAS Article PubMed PubMed Central Google Scholar
5.
Richardson, L. E., Graham, N. A., Pratchett, M. S., Eurich, J. G. & Hoey, A. S. Mass coral bleaching causes biotic homogenization of reef fish assemblages. Glob. Change Biol. 24, 3117–3129 (2018).
ADS Article Google Scholar
6.
Robinson, J. P. et al. Productive instability of coral reef fisheries after climate-driven regime shifts. Nat. Ecol. Evol. 3, 183 (2019).
Article PubMed PubMed Central Google Scholar
7.
McClanahan, T., Allison, E. H. & Cinner, J. E. Managing fisheries for human and food security. Fish Fish. 16, 78–103 (2015).
Article Google Scholar
8.
Hanich, Q. et al. Small-scale fisheries under climate change in the Pacific Islands region. Mar. Policy 88, 279–284 (2018).
Article Google Scholar
9.
Bell, J. D. et al. Mixed responses of tropical Pacific fisheries and aquaculture to climate change. Nat. Clim. Change 3, 591 (2013).
ADS Article Google Scholar
10.
Sale, P. F. & Hixon, M. A. in Interrelationships Between Corals and Fisheries (ed S.A. Bortone) 7–18 (CRC Press, Boca Raton, 2015).
11.
Pratchett, M. S., Hoey, A. S., Wilson, S. K., Messmer, V. & Graham, N. A. Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Diversity 3, 424–452 (2011).
Article Google Scholar
12.
Brown, C. J. et al. The assessment of fishery status depends on fish habitats. Fish Fish. 20, 1–14. https://doi.org/10.1111/faf.12318 (2019).
CAS Article Google Scholar
13.
Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373 (2017).
ADS CAS Article Google Scholar
14.
Pratchett, M. S. et al. Effects of climate change on coral grouper (Plectropomus spp) and possible adaptation options. Rev. Fish Biol. Fish. 27, 297–316 (2017).
Article Google Scholar
15.
Schuerch, M. et al. Future response of global coastal wetlands to sea-level rise. Nature 561, 231–234. https://doi.org/10.1038/s41586-018-0476-5 (2018).
ADS CAS Article Google Scholar
16.
Cheal, A. J., MacNeil, M. A., Emslie, M. J. & Sweatman, H. The threat to coral reefs from more intense cyclones under climate change. Glob. Change Biol. 23, 1511–1524 (2017).
ADS Article Google Scholar
17.
Wilson, L. J. et al. Climate-driven changes to ocean circulation and their inferred impacts on marine dispersal patterns. Glob. Ecol. Biogeogr. 25, 923–939. https://doi.org/10.1111/geb.12456 (2016).
Article Google Scholar
18.
Brown, C. J. et al. Habitat change mediates the response of coral reef fish populations to terrestrial run-off. Mar. Ecol. Prog. Ser. 576, 55–68 (2017).
ADS Article Google Scholar
19.
Great Barrier Reef Foundation. www.barrierreef.org (2020).
20.
State of Queensland. Reef 2050 Water Quality Improvement Plan 2017–2020 (Queensland Government, Brisbane, 2018).
Google Scholar
21.
Jiddawi, N. S. & Öhman, M. C. Marine fisheries in Tanzania. Ambio 31, 518–527 (2002).
Article PubMed Google Scholar
22.
Nordlund, L. M., Unsworth, R. K., Gullström, M. & Cullen-Unsworth, L. C. Global significance of seagrass fishery activity. Fish Fish. 19, 399–412. https://doi.org/10.1111/faf.12259 (2018).
Article Google Scholar
23.
State of Queensland Department of Agriculture Fisheries and Forestry. QFish data cube. https://qfish.fisheries.qld.gov.au/ (2020).
24.
Taylor, S., Webley, J. & McInnes, K. 2010 Statewide Recreational Fishing Survey (Queensland Government, Brisbane, 2012).
Google Scholar
25.
Anderson, S. C. et al. Benefits and risks of diversification for individual fishers. Proc. Natl. Acad. Sci. 114, 10797–10802 (2017).
CAS Article PubMed Google Scholar
26.
Fulton, C. J. et al. Macroalgal meadow habitats support fish and fisheries in diverse tropical seascapes. Fish Fish. https://doi.org/10.1111/faf.12455 (2020).
Article Google Scholar
27.
Graham, N. A. et al. Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems. Conserv. Biol. 21, 1291–1300 (2007).
Article PubMed Google Scholar
28.
Pratchett, M. S. et al. Bleaching susceptibility of aquarium corals collected across northern Australia. Coral Reefs 39, 663–673 (2020).
Article Google Scholar
29.
Delbeek, J. C. in Biology of Butterflyfishes (eds MS Pratchett, Michael L Berumen, & B Kapoor) 292–395 (CRC Press, Boca Raton, 2013).
30.
Wilson, S. K., Graham, N. A. & Pratchett, M. S. in Biology of Butterflyfishes (eds MS Pratchett, Michael L Berumen, & B Kapoor) 226–245 (CRC Press, Boca Raton, 2013).
31.
Beldade, R., Blandin, A., O’Donnell, R. & Mills, S. C. Cascading effects of thermally-induced anemone bleaching on associated anemonefish hormonal stress response and reproduction. Nat. Commun. 8, 716 (2017).
ADS Article CAS PubMed PubMed Central Google Scholar
32.
Donnelly, R. Stewardship Action Plan 2013: Mitigating Ecological Risk in a Changing Climate (Pro-Vision Reef Inc., Cairns, 2013).
Google Scholar
33.
Leigh, G. M., Campbell, A. B., Lunow, C. P. & O’Neill, M. F. Stock Assessment of the Queensland East Coast Common Coral Trout (Plectropomus leopardus) fishery (Queensland Government, Brisbane, 2014).
Google Scholar
34.
Russell, D. & Garrett, R. Use by juvenile barramundi, Lates calcarifer (Bloch), and other fishes of temporary supralittoral habitats in a tropical estuary in northern Australia. Mar. Freshw. Res. 34, 805–811 (1983).
Article Google Scholar
35.
Eriksson, H., Fabricius-Dyg, J., Lichtenberg, M., Perez-Landa, V. & Byrne, M. Biology of a high-density population of Stichopus herrmanni at One Tree Reef, Great Barrier Reef, Australia. SPC Beche-de-mer Information Bulletin 30, 41–45 (2010).
Google Scholar
36.
Wen, C., Pratchett, M., Almany, G. & Jones, G. Patterns of recruitment and microhabitat associations for three predatory coral reef fishes on the southern Great Barrier Reef, Australia. Coral Reefs 32, 389–398. https://doi.org/10.1007/s00338-012-0985-x (2013).
ADS Article Google Scholar
37.
Graham, N. A. J. et al. Extinction vulnerability of coral reef fishes. Ecol. Lett. 14, 341–348 (2011).
Article PubMed PubMed Central Google Scholar
38.
DNRME. Reefs and Shoals—Queensland. (2018).
39.
Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 71, 319–392 (2009).
MathSciNet MATH Article Google Scholar
40.
Teixeira, D., Zischke, M. T. & Webley, J. A. Investigating bias in recreational fishing surveys: Fishers listed in public telephone directories fish similarly to their unlisted counterparts. Fish. Res. 181, 127–136 (2016).
Article Google Scholar
41.
Webley, J., McInnes, K., Teixeira, D., Lawson, A. & Quinn, R. 2014 Statewide Recreational Fishing Survey (Queensland Government, Brisbane, 2015).
Google Scholar
42.
Hilborn, R. et al. Effective fisheries management instrumental in improving fish stock status. Proc. Natl. Acad. Sci. 117, 2218–2224 (2020).
CAS Article PubMed PubMed Central Google Scholar
43.
Millar, R. B. & Meyer, R. Non-linear state space modelling of fisheries biomass dynamics by using Metropolis-Hastings within-Gibbs sampling. J. Roy. Stat. Soc. Ser. C (Appl. Stat.) 49, 327–342 (2000).
MathSciNet MATH Article Google Scholar
44.
Meynecke, J.-O., Lee, S. Y., Duke, N. C. & Warnken, J. Effect of rainfall as a component of climate change on estuarine fish production in Queensland, Australia. Estuar. Coast. Shelf Sci. 69, 491–504 (2006).
ADS Article Google Scholar
45.
Mercier, A., Battaglene, S. C. & Hamel, J.-F. Settlement preferences and early migration of the tropical sea cucumber Holothuria scabra. J. Exp. Mar. Biol. Ecol. 249, 89–110 (2000).
CAS Article PubMed PubMed Central Google Scholar
46.
Campbell, A., Leigh, G., Bessel-Browne, P. & Lovett, R. Stock assessment of the Queensland east coast common coral trout (Plectropomus leopardus) fishery. April 2019. (State of Queensland., Brisbane, 2019).
47.
Leigh, G., Williams, A., Begg, G., Gribble, N. & Whybird, O. Stock Assessment of the Queensland East Coast Red Throat Emperor (Lethrinus miniatus), Queensland Department of Primary Industries and Fisheries, Brisbane (Queensland Government, Brisbane, 2006).
Google Scholar
48.
Rudd, M. B. & Branch, T. A. Does unreported catch lead to overfishing?. Fish Fish. 18, 313–323 (2017).
Article Google Scholar
49.
Hempson, T. N. et al. Coral reef mesopredators switch prey, shortening food chains, in response to habitat degradation. Ecol. Evol. 7, 2626–2635 (2017).
Article PubMed PubMed Central Google Scholar
50.
Williamson, D. H., Ceccarelli, D. M., Evans, R. D., Jones, G. P. & Russ, G. R. Habitat dynamics, marine reserve status, and the decline and recovery of coral reef fish communities. Ecol. Evol. 4, 337–354 (2014).
Article PubMed PubMed Central Google Scholar
51.
Rogers, A., Blanchard, J. L. & Mumby, P. J. Fisheries productivity under progressive coral reef degradation. J. Appl. Ecol. 55, 1041–1049 (2018).
Article Google Scholar
52.
Graham, N. & Nash, K. The importance of structural complexity in coral reef ecosystems. Coral Reefs 32, 315–326. https://doi.org/10.1007/s00338-012-0984-y (2013).
ADS Article Google Scholar
53.
Robinson, J. P. et al. Diversification insulates fisher catch and revenue in heavily exploited tropical fisheries. Sci. Adv. 6, eaaz0587 (2020).
ADS Article PubMed PubMed Central Google Scholar
54.
Edgar, G. J., Ward, T. J. & Stuart-Smith, R. D. Rapid declines across Australian fishery stocks indicate global sustainability targets will not be achieved without an expanded network of ‘no-fishing’reserves. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 1337–1350 (2018).
Article Google Scholar
55.
Johansen, J. et al. Large predatory coral trout species unlikely to meet increasing energetic demands in a warming ocean. Sci. Rep. 5, 13830 (2015).
ADS CAS Article PubMed PubMed Central Google Scholar
56.
Clark, T. D., Messmer, V., Tobin, A. J., Hoey, A. S. & Pratchett, M. S. Rising temperatures may drive fishing-induced selection of low-performance phenotypes. Sci. Rep. 7, 1–11 (2017).
Article CAS Google Scholar
57.
Brodeur, R. D., Hunsicker, M. E., Hann, A. & Miller, T. W. Effects of warming ocean conditions on feeding ecology of small pelagic fishes in a coastal upwelling ecosystem: a shift to gelatinous food sources. Mar. Ecol. Prog. Ser. 617, 149–163 (2019).
ADS Article Google Scholar
58.
Krieger, J. R., Beaudreau, A. H., Heintz, R. A. & Callahan, M. W. Growth of young-of-year sablefish (Anoplopoma fimbria) in response to temperature and prey quality: insights from a life stage specific bioenergetics model. J. Exp. Mar. Biol. Ecol. 526, 151340 (2020).
Article Google Scholar
59.
Ryan, S. Ecological assessment of the Queensland East Coast Spanish Mackerel fishery. 103 (Queensland Government, Department of Primary Industries and Fisheries, Brisbane, Queensland, 2004).
60.
Rogers, A. & Mumby, P. J. Mangroves reduce the vulnerability of coral reef fisheries to habitat degradation. PLoS Biol. 17, e3000510. https://doi.org/10.1371/journal.pbio.3000510 (2019).
CAS Article PubMed PubMed Central Google Scholar
61.
Morais, R. A. & Bellwood, D. R. Pelagic subsidies underpin fish productivity on a degraded coral reef. Curr. Biol. 29, 1521–1527 (2019).
CAS Article PubMed Google Scholar
62.
Dee, L., Karr, K., Landesberg, C. & Thornhill, D. Assessing vulnerability of fish in the U.S. marine aquarium trade. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00527 (2019).
Article Google Scholar
63.
Plagányi, É. E., Skewes, T., Murphy, N., Pascual, R. & Fischer, M. Crop rotations in the sea: Increasing returns and reducing risk of collapse in sea cucumber fisheries. Proc. Natl. Acad. Sci. 112, 6760–6765 (2015).
ADS Article CAS PubMed Google Scholar More