More stories

  • in

    The fast-acting “pulse” of Heinrich Stadial 3 in a mid-latitude boreal ecosystem

    1.
    Goñi, M. F. S. & Harrison, S. P. Millennial-scale climate variability and vegetation changes during the Last Glacial: Concepts and terminology. Quat. Sci. Rev. 29, 2823–2827 (2010).
    ADS  Article  Google Scholar 
    2.
    Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: Refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014).
    ADS  Article  Google Scholar 

    3.
    McManus, J. F., Oppo, D. W. & Cullen, J. L. A 0.5-million-year record of millennial-scale climate variability in the North Atlantic. Science 283, 971–975 (1999).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Jouzel, J. et al. Orbital and millennial antarctic climate variability over the past 800,000 years. Science 317, 793–796 (2007).
    ADS  CAS  Article  Google Scholar 

    5.
    Seierstad, I. K. et al. Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores for the past 104ka reveal regional millennial-scale δ18O gradients with possible Heinrich event imprint. Quat. Sci. Rev. 106, 29–46 (2014).
    ADS  Article  Google Scholar 

    6.
    Cvijanovic, I. & Chiang, J. C. H. Global energy budget changes to high latitude North Atlantic cooling and the tropical ITCZ response. Clim. Dyn. 40, 1435–1452 (2013).
    Article  Google Scholar 

    7.
    Markle, B. R. et al. Global atmospheric teleconnections during Dansgaard-Oeschger events. Nat. Geosci. 10, 36–40 (2017).
    ADS  CAS  Article  Google Scholar 

    8.
    Fischer, H., Siggaard-Andersen, M.-L., Ruth, U., Röthlisberger, R. & Wolff, E. Glacial/interglacial changes in mineral dust and sea-salt records in polar ice cores: Sources, transport, and deposition. Rev. Geophys. 45, 1–26 (2007).

    9.
    Biscaye, P. E. et al. Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 Ice Core, Summit, Greenland. J. Geophys. Res. Ocean. 102, 26765–26781 (1997).
    ADS  CAS  Article  Google Scholar 

    10.
    Bory, A. J.-M., Biscaye, P. E. & Grousset, F. E. Two distinct seasonal Asian source regions for mineral dust deposited in Greenland (NorthGRIP). Geophys. Res. Lett. 30, 1167 (2003).

    11.
    Han, C. et al. High-resolution isotopic evidence for a potential Saharan provenance of Greenland glacial dust. Sci. Rep. 8, 1–9 (2018).
    ADS  Article  CAS  Google Scholar 

    12.
    Murphy, L. N. et al. Simulated changes in atmospheric dust in response to a Heinrich stadial. Paleoceanography 29, 30–43 (2014).
    ADS  Article  Google Scholar 

    13.
    Zhang, X. Y., Arimoto, R. & An, Z. S. Dust emission from Chinese desert sources linked to variations in atmospheric circulation. J. Geophys. Res. Atmos. 102, 28041–28047 (1997).
    ADS  CAS  Article  Google Scholar 

    14.
    Hughen, K., Southon, J., Lehman, S., Bertrand, C. & Turnbull, J. Marine-derived 14C calibration and activity record for the past 50,000 years updated from the Cariaco Basin. Quat. Sci. Rev. 25, 3216–3227 (2006).
    ADS  Article  Google Scholar 

    15.
    Goñi, M. F. S. et al. Contrasting impacts of Dansgaard-Oeschger events over a western European latitudinal transect modulated by orbital parameters. Quat. Sci. Rev. 27, 1136–1151 (2008).
    ADS  Article  Google Scholar 

    16.
    Naughton, F. et al. Wet to dry climatic trend in north-western Iberia within Heinrich events. Earth Planet. Sci. Lett. 284, 329–342 (2009).
    ADS  CAS  Article  Google Scholar 

    17.
    Fleitmann, D. et al. Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey. Geophys. Res. Lett. 36, 1–5 (2009).
    Article  CAS  Google Scholar 

    18.
    Moseley, G. E. et al. NALPS19: Sub-orbital-scale climate variability recorded in northern Alpine speleothems during the last glacial period. Clim. Past 16, 29–50 (2020).
    Article  Google Scholar 

    19.
    Moseley, G. E. et al. Multi-speleothem record reveals tightly coupled climate between central Europe and Greenland during marine isotope stage 3. Geology 42, 1043–1046 (2014).
    ADS  Article  Google Scholar 

    20.
    Cheng, H. et al. Atmospheric 14C/12C changes during the last glacial period from Hulu Cave. Science 362, 1293–1297 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Fletcher, W. J. et al. Millennial-scale variability during the last glacial in vegetation records from Europe. Quat. Sci. Rev. 29, 2839–2864 (2010).
    ADS  Article  Google Scholar 

    22.
    Tzedakis, P. C. et al. Ecological thresholds and patterns of millennial-scale climate variability: The response of vegetation in Greece during the last glacial period. Geology 32, 109–112 (2004).
    ADS  Article  Google Scholar 

    23.
    Duprat-Oualid, F. et al. Vegetation response to abrupt climate changes in Western Europe from 45 to 14.7 k cal a BP: The Bergsee lacustrine record (Black Forest, Germany). J. Quat. Sci. 32, 1008–1021 (2017).
    Article  Google Scholar 

    24.
    Újvári, G. et al. Coupled European and Greenland last glacial dust activity driven by North Atlantic climate. Proc. Natl. Acad. Sci. USA 114, E10632–E10638 (2017).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    25.
    Stager, J. C., Ryves, D. B., Chase, B. M. & Pausata, F. S. R. Catastrophic drought in the Afro-Asian monsoon region during Heinrich event 1. Science 331, 1299–1302 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Jullien, E. et al. Low-latitude ‘dusty events’ vs. high-latitude ‘icy Heinrich events’. Quat. Res. 68, 379–386 (2007).
    Article  Google Scholar 

    27.
    Deplazes, G. et al. Links between tropical rainfall and North Atlantic climate during the last glacial period. Nat. Geosci. 6, 213–217 (2013).
    ADS  CAS  Article  Google Scholar 

    28.
    Grimm, E. C., Jacobson, G. L. Jr, Watts, W. A., Hansen, B. C. S. & Maasch, K. A. A 50,000-year record of climate oscillations from Florida and its temporal correlation with the Heinrich Events. Science 261, 198–200 (1993).  

    29.
    De Abreu, L., Shackleton, N. J., Schönfeld, J., Hall, M. & Chapman, M. Millennial-scale oceanic climate variability off the Western Iberian margin during the last two glacial periods. Mar. Geol. 196, 1–20 (2003).
    ADS  Article  Google Scholar 

    30.
    Lynch-Stieglitz, J. et al. Muted change in Atlantic overturning circulation over some glacial-aged Heinrich events. Nat. Geosci. 7, 144–150 (2014).
    ADS  CAS  Article  Google Scholar 

    31.
    Lowe, D. J. Tephrochronology and its application: A review. Quat. Geochronol. 6, 107–153 (2011).
    Article  Google Scholar 

    32.
    Luetscher, M. et al. North Atlantic storm track changes during the Last Glacial Maximum recorded by Alpine speleothems. Nat. Commun. 6, 27–32 (2015).
    Article  CAS  Google Scholar 

    33.
    Columbu, A. et al. Speleothem record attests to stable environmental conditions during Neanderthal–modern human turnover in southern Italy. Nat. Ecol. Evol. 4, 1188–1195 (2020).  

    34.
    McDermott, F., Schwarcz, H. & Rowe, P. J. Isotopes in speleothems in Isotopes in Palaeoenvironmental Research (ed. Leng, M.) 185–225 (Kluwer Academic Publishers, 2006).  

    35.
    Fairchild, I. J. & Treble, P. C. Trace elements in speleothems as recorders of environmental change. Quat. Sci. Rev. 28, 449–468 (2009).
    ADS  Article  Google Scholar 

    36.
    Ammann, B. et al. Vegetation responses to rapid warming and to minor climatic fluctuations during the late-glacial interstadial (GI-1) at gerzensee (switzerland). Palaeogeogr. Palaeoclimatol. Palaeoecol. 391, 40–59 (2013).
    Article  Google Scholar 

    37.
    Lydersen, J. M., Collins, B. M., Miller, J. D., Fry, D. L. & Stephens, S. L. Relating fire-caused change in forest structure to remotely sensed estimates of fire severity. Fire Ecol. 12, 99–116 (2016).
    Article  Google Scholar 

    38.
    Darfeuil, S. et al. Sea surface temperature reconstructions over the last 70 k year off Portugal: Biomarker data and regional modeling. Paleoceanography 31, 40–65 (2016).
    ADS  Article  Google Scholar 

    39.
    Waelbroeck, C. et al. Consistently dated Atlantic sediment cores over the last 40 thousand years. Sci. Data 6, 165 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    40.
    Hemming, S. R. Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys. 42, RG1005 (2004).

    41.
    Turney, C. S. M. et al. High-precision dating and correlation of ice, marine and terrestrial sequences spanning Heinrich Event 3: Testing mechanisms of interhemispheric change using New Zealand ancient kauri (Agathis australis). Quat. Sci. Rev. 137, 126–134 (2016).
    ADS  Article  Google Scholar 

    42.
    Turney, C. S. M. et al. Rapid global ocean–atmosphere response to Southern Ocean freshening during the last glacial. Nat. Commun. 8, 1–9 (2017).
    CAS  Article  Google Scholar 

    43.
    Monegato, G., Scardia, G., Hajdas, I., Rizzini, F. & Piccin, A. The Alpine LGM in the boreal ice-sheets game. Sci. Rep. 7, 1–8 (2017).
    CAS  Article  Google Scholar 

    44.
    Makos, M. et al. Last Glacial Maximum and Lateglacial in the Polish High Tatra Mountains—Revised deglaciation chronology based on the 10Be exposure age dating. Quat. Sci. Rev. 187, 130–156 (2018).
    ADS  Article  Google Scholar 

    45.
    Oliva, M. et al. Late Quaternary glacial phases in the Iberian Peninsula. Earth Sci. Rev. 192, 564–600 (2019).
    ADS  Article  Google Scholar 

    46.
    Bradwell, T. et al. Pattern, style and timing of British–Irish Ice Sheet retreat: Shetland and northern North Sea sector. J. Quat. Sci. 1–42 (2019).

    47.
    Pini, R., Ravazzi, C. & Reimer, P. J. The vegetation and climate history of the last glacial cycle in a new pollen record from Lake Fimon (southern Alpine foreland, N-Italy). Quat. Sci. Rev. 29, 3115–3137 (2010).
    ADS  Article  Google Scholar 

    48.
    Monegato, G., Pini, R., Ravazzi, C., Reimer, P. J. & Wick, L. Correlating Alpine glaciation with Adriatic sea-level changes through lake and alluvial stratigraphy. J. Quat. Sci. 26, 791–804 (2011).
    Article  Google Scholar 

    49.
    Moss, E. H. Forest communities in northwestern Alberta. Can. J. Bot. 31, 212–252 (1953).
    Article  Google Scholar 

    50.
    Ruuhijärvi, R. The Finnish mire types and their regional distribution. In Mires: Swamp, Bog, Fen and Moor. Ecosystems of the World 4B (ed. Gore, A. J. P.) 47–67 (Elsevier, New York, 1983).
    Google Scholar 

    51.
    Allen, J. R. M. & Huntley, B. Weichselian palynological records from southern Europe: Correlation and chronology. Quat. Int. 73–74, 111–125 (2000).
    Article  Google Scholar 

    52.
    Margari, V., Gibbard, P. L., Bryant, C. L. & Tzedakis, P. C. Character of vegetational and environmental changes in southern Europe during the last glacial period; evidence from Lesvos Island, Greece. Quat. Sci. Rev. 28, 1317–1339 (2009).
    ADS  Article  Google Scholar 

    53.
    Pross, J. et al. The 1.35-Ma-long terrestrial climate archive of Tenaghi Philippon, northeastern Greece: Evolution, exploration, and perspectives for future research. Newslett. Stratigr. 48, 253–276 (2015).
    Article  Google Scholar 

    54.
    Allen, J. R. M. et al. Rapid environmental changes in southern Europe during the last glacial period. Nature 400, 740–743 (1999).
    ADS  CAS  Article  Google Scholar 

    55.
    Wulf, S. et al. The marine isotope stage 1–5 cryptotephra record of Tenaghi Philippon, Greece: Towards a detailed tephrostratigraphic framework for the Eastern Mediterranean region. Quat. Sci. Rev. 186, 236–262 (2018).
    ADS  Article  Google Scholar 

    56.
    Benjamin, J. et al. Late Quaternary sea-level changes and early human societies in the central and eastern Mediterranean Basin: An interdisciplinary review. Quat. Int. 449, 29–57 (2017).
    Article  Google Scholar 

    57.
    Rossato, S., Carraro, A., Monegato, G., Mozzi, P. & Tateo, F. Glacial dynamics in pre-Alpine narrow valleys during the Last Glacial Maximum inferred by lowland fluvial records (northeast Italy). Earth Surf. Dynam 6, 809–828 (2018).
    ADS  Article  Google Scholar 

    58.
    Ravazzi, C., Badino, F., Marsetti, D., Patera, G. & Reimer, P. J. Glacial to paraglacial history and forest recovery in the Oglio glacier system (Italian Alps) between 26 and 15 ka cal BP. Quat. Sci. Rev. 58, 146–161 (2012).
    ADS  Article  Google Scholar 

    59.
    Gianotti, F. et al. Stratigraphy of the Ivrea morainic amphitheatre (NW Italy); an updated synthesis. Alp. Mediterr. Quat. 28, 29–58 (2015).
    Google Scholar 

    60.
    Braakhekke, J. et al. Timing and flow pattern of the Orta Glacier (European Alps) during the Last Glacial Maximum. Boreas 49, 315–332 (2020).
    Article  Google Scholar 

    61.
    Ivy-Ochs, S. et al. New geomorphological and chronological constraints for glacial deposits in the Rivoli-Avigliana end-moraine system and the lower Susa Valley (Western Alps, NW Italy). J. Quat. Sci. 33, 550–562 (2018).
    Article  Google Scholar 

    62.
    Miko, S. et al. Submerged karst landscapes of the Eastern Adriatic. in 5th Regional Scientific Meeting on Quaternary Geology Dedicated to Geohazards and Final conference of the LoLADRIA project “Submerged Pleistocene landscapes of the Adriatic Sea/Marjanac, Lj.—Zagreb : Hrvatska akademija znanosti i umjetnosti 53–54 (2017).

    63.
    Maselli, V. et al. Delta growth and river valleys: The influence of climate and sea level changes on the South Adriatic shelf (Mediterranean Sea). Quat. Sci. Rev. 99, 146–163 (2014).
    ADS  Article  Google Scholar 

    64.
    Bigi, G. et al. Structural Model of Italy, Sheets 1 (CNR S.EL.CA, Firenze, 1990).
    Google Scholar 

    65.
    Bartolomei, G. et al. Note illustrative della carta geologica d’Italia alla scala 1:100,000, foglio 021-Trento, Poligrafica e Cartevalori, Ercolano. (1969).

    66.
    Dal Piaz, G., Fabiani, R., Trevisan, L. & Venzo, S. Carta geologica delle tre Venezie al 100.000, foglio 37-Bassano del Grappa, Ufficio Idrografico Magistrato delle Acque, Venezia. (1946).

    67.
    Barbieri, G. & Grandesso, P. Note illustrative della Carta Geologica d’Italia alla scala 1:50,000, foglio 082-Asiago, APAT, S.EL.CA., Firenze, 135. (2007).

    68.
    Avanzini, M., Bargossi, G. M., Borsato, A. & Selli, L. Note Illustrative della Carta Geologica d’Italia alla scala 1:50,000, foglio 060-Trento, ISPRA-Servizio Geologico d’Italia, Trento. (2010).

    69.
    Rossato, S. et al. Late Quaternary glaciations and connections to the piedmont plain in the prealpine environment: The middle and lower Astico Valley (NE Italy). Quat. Int. 288, 8–24 (2013).
    Article  Google Scholar 

    70.
    Bosellini, A. et al. Note illustrative della Carta Geologica d’Italia, Foglio 49 Verona, Servizio Geologico d’Italia. (1967).

    71.
    Antonelli, R. & Fabbri, P. Analysis and comparison of some values of transmissivity, permeability and storage from the Euganean Thermal Basin. IAHS-AISH Publ. 176, 707–718 (1988).
    Google Scholar 

    72.
    Bassi, D., Nebelsick, J. H., Puga-Bernabéu, Á. & Luciani, V. Middle Eocene Nummulites and their offshore re-deposition: A case study from the Middle Eocene of the Venetian area, northeastern Italy. Sediment. Geol. 297, 1–15 (2013).
    ADS  Article  Google Scholar 

    73.
    Pola, M., Ricciato, A., Fantoni, R., Fabbri, P. & Zampieri, D. Architecture of the western margin of the North Adriatic foreland: The Schio-Vicenza fault system. Ital. J. Geosci. 133, 223–234 (2014).
    Article  Google Scholar 

    74.
    Fontana, A., Mozzi, P. & Marchetti, M. Alluvial fans and megafans along the southern side of the Alps. Sed. Geol. 301, 150–171 (2014).
    Article  Google Scholar 

    75.
    Walter, H., Breckle, S.-W., Walter, H. & Breckle, S.-W. The Zonoecotones in Ecological Systems of the Geobiosphere 104–107 (Springer Berlin Heidelberg, 1986).  

    76.
    Archibold, O. W. Temperate forest ecosystems in Ecology of World Vegetation 165–203 (Springer, Dordrecht, 1995).  

    77.
    Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).
    Article  Google Scholar 

    78.
    Reimer, P. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 kcal BP). Radiocarbon, 62(4), 725–757 (2020).

    79.
    Oksanen, J. et al. Package ‘vegan’. R Packag. version 3.4.0 (2019).

    80.
    R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/ (2019).

    81.
    Higuera, P. E., Brubaker, L. B., Anderson, P. M., Hu, F. S. & Brown, T. A. Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska. Ecol. Monogr. 79, 201–219 (2009).
    Article  Google Scholar 

    82.
    Lofverstrom, M. A dynamic link between high-intensity precipitation events in southwestern North America and Europe at the Last Glacial Maximum. Earth Planet. Sci. Lett. 534, 116081 (2020).
    CAS  Article  Google Scholar 

    83.
    Goñi, M. S. et al. Synchroneity between marine and terrestrial responses to millennial scale climatic variability during the last glacial period in the Mediterranean region. Clim. Dyn. 19, 95–105 (2002).
    Article  Google Scholar 

    84.
    Tzedakis, P. C., Lawson, I. T., Frogley, M. R., Hewitt, G. M. & Preece, R. C. Buffered tree population changes in a Quaternary refugium: Evolutionary implications. Science 297, 2044–2047 (2002).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    85.
    Ravazzi, C. et al. Birch-sedge communities, forest withdrawal and flooding at the beginning of Heinrich Stadial 3 at the southern Alpine foreland. Rev. Palaeobot. Palynol. 280, 104276 (2020).
    Article  Google Scholar 

    86.
    Cheng, H. et al. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534, 640–646 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    87.
    Holtmeier, F. Mountain Timberlines Mountain Timberlines (Springer, Dordrecht, 2009).
    Google Scholar 

    88.
    Magyari, E. K. et al. Late Pleniglacial vegetation in eastern-central Europe: Are there modern analogues in Siberia?. Quat. Sci. Rev. 95, 60–79 (2014).
    ADS  Article  Google Scholar 

    89.
    Chytrý, M. et al. Diversity of forest vegetation across a strong gradient of climatic continentality: Western Sayan Mountains, southern Siberia. Plant Ecol. 196, 61–83 (2008).
    Article  Google Scholar 

    90.
    Makunina, N. I. Botanical and geographical characteristics of forest steppe of the Altai-Sayan mountain region. Contemp. Probl. Ecol. 9, 342–348 (2016).
    Article  Google Scholar 

    91.
    Gunin, P. D., Vostokova, E. A., Dorofeyuk, N. I., Tarasov, P. E. & Black, C. C. Vegetation dynamics of Mongolia Vol. 26 (Springer Science & Business Media, New York, 2013).
    Google Scholar 

    92.
    Zhambazhamts, B. & Bat, B. The Atlas of the Climate and Ground Water Resources in the Mongolian People’s Republic (Goskomgidromet SSSR GUGMS MNR GUGK SSSR, Ulaanbaatar, 1985).
    Google Scholar 

    93.
    Klinge, M. & Sauer, D. Spatial pattern of Late Glacial and Holocene climatic and environmental development in Western Mongolia—A critical review and synthesis. Quat. Sci. Rev. 210, 26–50 (2019).
    ADS  Article  Google Scholar 

    94.
    Guiot, J., Reille, M., de Beaulieu, J. L. & Pons, A. Calibration of the climatic signal in a new pollen sequence from La Grande Pile. Clim. Dyn. 6, 259–264 (1992).
    Article  Google Scholar 

    95.
    Seret, G., Guiot, J., Wansard, G., de Beaulieu, J. L. & Reille, M. Tentative palaeoclimatic reconstruction linking pollen and sedimentology in La Grande Pile (Vosges, France). Quat. Sci. Rev. 11, 425–430 (1992).
    ADS  Article  Google Scholar 

    96.
    Wohlfarth, B. et al. Rapid ecosystem response to abrupt climate changes during the last glacial period in western Europe, 40–16 ka. Geology 36, 407–410 (2008).
    ADS  CAS  Article  Google Scholar 

    97.
    Tzedakis, P. C. The last climatic cycle at Kopais, central Greece. J. Geol. Soc. London. 156, 425–434 (1999).
    Article  Google Scholar 

    98.
    Tzedakis, P. C., Hooghiemstra, H. & Pälike, H. The last 1.35 million years at Tenaghi Philippon: Revised chronostratigraphy and long-term vegetation trends. Quat. Sci. Rev. 25, 3416–3430 (2006).
    ADS  Article  Google Scholar 

    99.
    Müller, U. C. et al. The role of climate in the spread of modern humans into Europe. Quat. Sci. Rev. 30, 273–279 (2011).
    ADS  Article  Google Scholar 

    100.
    Ohlson, M., Korbøl, A. & Økland, R. H. The macroscopic charcoal record in forested boreal peatlands in southeast Norway. Holocene 16, 731–741 (2006).
    ADS  Article  Google Scholar 

    101.
    Hörnberg, G., Ohlson, M. & Zackrisson, O. Stand dynamics, regeneration patterns and long-term continuity in boreal old-growth Picea abies swamp-forests. J. Veg. Sci. 6, 291–298 (1995).
    Article  Google Scholar 

    102.
    Tryterud, E. Forest fire history in Norway: From fire-disturbed pine forests to fire-free spruce forests. Ecography (Cop.) 26, 161–170 (2003).
    Article  Google Scholar 

    103.
    Yefremova, T. T. & Yefremov, S. P. Ecological Effects of Peat Fire on Forested Bog Ecosystems in Fire in ecosystems of boreal Eurasia (ed Goldammer, JG., Furyaev, VV.) 350–357 (Kluwer, The Netherlands, 1996).  

    104.
    Kasischke, E. S. & Turetsky, M. R. Recent changes in the fire regime across the North American boreal region—Spatial and temporal patterns of burning across Canada and Alaska. Geophys. Res. Lett. 33, L09703 (2006).
    ADS  Google Scholar 

    105.
    Flanningan, M., Stocks, B., Turetsky, M. & Wotton, M. Impacts of climate change on fire activity and fire management in the circumboreal forest. Glob. Chang. Biol. 15, 549–560 (2009).
    ADS  Article  Google Scholar 

    106.
    Camill, P. et al. Climate-vegetation-fire interactions and their impact on long-term carbon dynamics in a boreal peatland landscape in northern Manitoba, Canada. J. Geophys. Res. Biogeosci. 114, 1–10 (2009).
    Article  CAS  Google Scholar 

    107.
    Sofronov, M., Volokitina, A., Shvidenko, A. Wildland fires in the north of Central Siberia. Commonwealth Forestry Rev. 77, 124–127 (1998).  

    108.
    Kobayashi, M. et al. Regeneration after forest fires in mixed conifer broad-leaved forests of the Amur Region in Far Eastern Russia: The relationship between species specific traits against fire and recent fire regimes. Eurasian J. For. Res. 10, 51–58 (2007).
    Google Scholar 

    109.
    Berg, E. E. & Chapin, F. S. III. Needle loss as a mechanism of winter drought avoidance in boreal conifers. Can. J. For. Res. 24, 1144–1148 (1994).
    Article  Google Scholar 

    110.
    Gower, S. T. & Richards, J. H. Larches: Deciduous conifers in an evergreen world. Bioscience 40, 818–826 (1990).
    Article  Google Scholar 

    111.
    Schulze, E.-D. et al. Aboveground biomass and nitrogen nutrition in a chronosequence of pristine Dahurian Larix stands in eastern Siberia. Can. J. For. Res. 25, 943–960 (1995).
    Article  Google Scholar 

    112.
    Sakai, A. & Larcher, W. Frost Survival of Plants: Responses and Adaptation to Freezing Stress Vol. 62 (Springer Science & Business Media, New York, 2012).
    Google Scholar 

    113.
    Bourgeau-Chavez, L. L. et al. Assessing boreal peat fire severity and vulnerability of peatlands to early season wildland fire. Front. Genet. 3, 1–13 (2020).
    Google Scholar 

    114.
    Vachula, R. S., Russell, J. M., Huang, Y. & Richter, N. Assessing the spatial fidelity of sedimentary charcoal size fractions as fire history proxies with a high-resolution sediment record and historical data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 508, 166–175 (2018).
    Article  Google Scholar 

    115.
    Turetsky, M. R., Amiro, B. D., Bosch, E. & Bhatti, J. S. Historical burn area in western Canadian peatlands and its relationship to fire weather indices. Glob. Biogeochem. Cycles 18, 4014 (2004).

    116.
    Stocks, B. J. et al. Large forest fires in Canada, 1959–1997. J. Geophys. Res. Atmos. 107, FFR 5-1 (2002).
    Google Scholar 

    117.
    Wang, Y. J. et al. A high-resolution absolute-dated late pleistocene monsoon record from Hulu Cave, China. Science 294, 2345–2348 (2001).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    118.
    Guillevic, M. et al. Evidence for a three-phase sequence during heinrich stadial 4 using a multiproxy approach based on Greenland ice core records. Clim. Past 10, 2115–2133 (2014).
    Article  Google Scholar 

    119.
    Marcott, S. A. et al. Ice-shelf collapse from subsurface warming as a trigger for Heinrich events. Proc. Natl. Acad. Sci. USA 108, 13415–13419 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    120.
    Barker, S. et al. Icebergs not the trigger for North Atlantic cold events. Nature 520, 333–336 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    121.
    Dean, W. E. Jr. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: Comparison with other methods. SEPM J. Sediment. Res. 44, 242–248 (1974).
    CAS  Google Scholar 

    122.
    Stockmarr, J. Tablets with spores used in absolute pollen analysis. Pollen et Spores 13, 615–621 (1971).  

    123.
    Moore, P. D., Webb, J. A. & Collinson, M. E. Pollen Analysis (Blackwell Scientific Publications, Oxford University Press, Oxford, 1991).
    Google Scholar 

    124.
    Reille, M. Pollen et spores d’Europe et d’Afrique du Nord–Supplément II. (1998).

    125.
    Beug, H. J. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Verlag Dr. Friedrich Pfeil. (2004).

    126.
    Reille, M. Pollen et Spores d’Europe et d’Afrique du Nord. Laboratoire de Botanique Historique et Palynologie. (1992).

    127.
    Grimm, E. T. TGView 19 Version 2.0. 41. Software (Illinois State Museum, Research and Collection Center, Springfield, 2015).
    Google Scholar 

    128.
    Grimm, E. C. CONISS: a Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput. Geosci. 13, 13–35 (1987).
    ADS  Article  Google Scholar 

    129.
    Clark, J. S. Particle motion and the theory of charcoal analysis: Source area, transport, deposition, and sampling. Quat. Res. 30, 67–80 (1988).
    ADS  Article  Google Scholar 

    130.
    Whitlock, C. & Larsen, C. Charcoal as a fire proxy. Track. Environ. Change Lake Sediments 3, 75–97 (2002).
    Article  Google Scholar 

    131.
    Higuera, P. E., Whitlock, C. & Gage, J. A. Linking tree-ring and sediment-charcoal records to reconstruct fire occurrence and area burned in subalpine forests of yellowstone National Park, USA. Holocene 21, 327–341 (2011).
    ADS  Article  Google Scholar 

    132.
    Higuera, P. E., Peters, M. E., Brubaker, L. B. & Gavin, D. G. Understanding the origin and analysis of sediment-charcoal records with a simulation model. Quat. Sci. Rev. 26, 1790–1809 (2007).
    ADS  Article  Google Scholar 

    133.
    Kelly, R. F., Higuera, P. E., Barrett, C. M. & Sheng Hu, F. A signal-to-noise index to quantify the potential for peak detection in sediment-charcoal records. Quat. Res., 75(1), 11–17 (2011).   More

  • in

    Causes of Variations in Sediment Yield in the Jinghe River Basin, China

    Sediment reduction analysis method
    This section presents the methods used to calculate sediment reduction caused by the major contributors, i.e., reservoir works, water diversion works, soil and water conservation works, and rainfall.
    Sediment reduction by reservoir works
    Reservoir works reduce sediment by impounding and retaining the sediment. Recent variations in sediment reduction due to reservoir works were analysed according to the variations in the average annual sediment deposition in the reservoirs of the basin during different periods.
    The average annual sediment reduction by various reservoirs can be calculated by dividing the accumulated sediment in each reservoir during a certain period by the number of years:

    $$ WS_{r} = sumlimits_{1}^{n} {D_{i} /N} , $$
    (1)

    where (D_{i}) is the accumulated sediment (100,000,000 t) in a reservoir during a certain period, N is the number of years in the period, and WSr is the average annual sediment reduction (100,000,000 t) in the period by all reservoirs in the basin.
    The Hydrological Bureau under the Yellow River Water Conservancy Commission annually measures and calculates the deposition of sediment in all reservoirs in the Yellow River Basin. Two methods can be used, namely, the topographic method and the section method. In the topographic method, the area enclosed by contour lines on the topographic map of the reservoir area is measured to calculate the reservoir volume. The cumulative deposition of sediment during a specific period is the difference between the current and the previous reservoir volume. The topographic method requires closed contour lines on the map. In reality, however, the contour lines cannot be closed due to the presence of farmland, houses, and other artificial structures in the reservoir area, resulting in measurement errors. Therefore, the section method is mainly used at present. Here, M test sections were deployed in the reservoir area, and the test section data were used to calculate the total storage capacity of the reservoir in sections by period, as follows:

    $$ V_{i} = sumlimits_{m = 1}^{M – 1} {V_{i,m} } . $$
    (2)

    The difference in the storage capacity measured twice is the cumulative deposition of sediment in reservoir (D_{i}):

    $$ D_{i} = V_{i – 1} – V_{i} , $$
    (3)

    where Vi is the storage capacity measured at the end of period i and Vi,m is the storage capacity measured in section m – 1.
    Sediment reduction by water diversion works
    During water diversion, a certain amount of sediment is diverted, along with water, and is deposited in irrigation areas, resulting in a decrease in the volume of the sediment in the river channel. The average annual sediment reduction by water diversion works can be calculated by multiplying the average annual water diversion in different periods in the Jinghe River Basin by the average annual sediment concentration in the water diversion period, as follows:

    $$ WS_{d} = sumlimits_{1}^{n} {W_{di} /N times overline{S}} /{1}000, $$
    (4)

    where (W_{di}) is the cumulative water diversion (100,000,000 m3) in the basin in the water diversion period, N is the number of years in the period, (overline{S}) is the average annual sediment concentration in the period (kg/m3), and (WS_{d}) is the average annual sediment reduction (100,000,000 t) in the basin during the period. Recent variations in sediment discharge caused by water diversion works were analysed according to the variations in the average annual water diversion in the basin in different periods.
    Sediment reduction by soil and water conservation works
    A commonly used method to compute the sediment reduction by soil and water conservation works is to multiply the area subject to the soil and water conservation works, such as terracing, forestation, grassing, creating enclosures, and constructing silt-arrester dams, by the sediment reduction by each measure per unit area, followed by their summation, as follows:

    $$ WS_{SC} = sumlimits_{1}^{n} {F_{i} times S_{j} /10^{8} ,} $$
    (5)

    where Sj is the sediment reduction due to each soil and water conservation measure (t/hm2), published by the soil and water conservation monitoring institutions in each basin based on the analysis of the long-term observation data, Fi is the area subjected to each measure (hm2), and WSSC is the comprehensive sediment concentration for each measure (100,000,000 t). The variations in sediment reduction by soil and water conservation works were analysed based on the variations in the soil and water conservation areas in the basin during different periods.
    Analysis of rainfall-induced sediment yield
    The deduction method was adopted to analyse the rainfall-induced variations in the sediment yield. Recent variations in sediment reduction attributable to reservoirs, water diversion, and soil and water conservation works were computed and deducted from the measured sediment reduction in recent years (2000–2015):

    $$ Delta WS_{p} = Delta WS_{t} – Delta WS_{r} – Delta WS_{d} – Delta WS_{sc} , $$
    (6)

    where (Delta WS_{t}) is the recently measured sediment reduction (100,000,000 t), (Delta WS_{r}) is the recent variation in the sediment reduction (100,000,000 t) caused by variations in the sediment retention due to reservoir works, (Delta WS_{d}) is the recent variation in sediment reduction (100,000,000 t) caused by variations in water diversion, (Delta {text{WS}}_{{{text{SC}}}}) is the recent variation in sediment reduction (100,000,000 t) caused by variations in the soil and water conservation area, and (Delta WS_{p}) is the recent variation in the rainfall-induced sediment yield caused by variations in rainfall.
    Sediment yield calculation method
    Figure 6 depicts the computational process for the sediment calculation. First, a reduction calculation of the natural runoff was performed as follows:

    $$ W_{0} = W_{m} + W_{cum} + W_{s} + W_{e} + W_{SC} , $$
    (7)

    where W0 is the natural runoff, Wm is the measured runoff, Wcuw is the industrial water consumption in the basin, Ws is the water retention by reservoirs, We is the water evaporation and seepage losses, Wsc is the water reduction by soil and water conservation, and W0 is the natural water volume in the basin. All these terms are in 100,000,000 m3.
    Second, the runoff-sediment relationship in the natural state was established based on the measured runoff and sediment data in periods with negligible human activity, as well as when the underlying surface was in a nearly natural state. Natural sediment discharge was calculated using the relationship between runoff and sediment discharge. According to the observation data from the basin for the past 35 years, runoff was closely related to sediment discharge. Given China’s climatic conditions and economic growth, the basin was nearly in a natural state up to 1960 because human activity had a minor impact on runoff and sediment discharge. Based on the runoff and sediment discharge measurements at Zhangjiashan Station from 1932 to 1960, the relationship between the natural runoff and sediment discharge was established as WS0 = f(W0). Natural sediment discharge in the basin was calculated considering the restored natural runoff.
    Third, the natural sediment discharge was calculated using the natural runoff results and the runoff-sediment relationship. Based on the major contributors to sediment reduction in the basin, the future sustainable sediment reduction was calculated as the sum of sediment reduction due to reservoirs, water diversion, and soil and water conservation measures. Sediment reduction caused by variations in rainfall was limited to certain periods. For example, recent reduced heavy rainfall has led to a decreased rainfall-induced sediment yield and consequently a decreased sediment discharge. However, according to forecasts by the Intergovernmental Panel on Climate Change (2014)50, extreme weather and heavy rainfall events are likely to increase in the future. The reduction in sediment due to variations in rainfall was calculated as follows:

    $$ WS_{d} = WS_{r} + WS_{d} + W_{SC} , $$
    (8)

    where WSr is the future sediment reduction caused by reservoir works, i.e., the sum of the sediment retention potential of the remaining capacity of the existing reservoirs and that of planned future reservoirs; WSd is the sediment reduction caused by future water diversion works, which can be obtained by multiplying the water diversion in the basin forecasted according to the social and economic development by the average sediment concentration in the water diversion period; WSsc is the future sediment reduction caused by soil and water conservation, obtained from areas subject to existing and planned soil and water conservation works and the corresponding sediment reduction rates; and WSd is the forecasted value of sediment reduction in the basin. All these terms are in 100,000,000 t.
    Fourth, the sustainable sediment reduction in the basin was calculated considering variations in the contributions to sediment reduction in a future period and their effect. Future sediment discharge in the basin is the difference between the natural and future sediment reduction, as follows:

    $$ WS_{f} = WS_{0} – WS_{d} , $$
    (9)

    where WS0 is the natural sediment discharge in the basin, WSd is the forecasted sediment reduction in the basin, and WSf is the forecasted sediment discharge in the basin. All these terms are in 100,000,000 t.
    Finally, future river sediment discharge was obtained by subtracting the future sustainable sediment reduction from the natural sediment discharge.
    Data acquisition
    Hydrological data
    A total of 28 hydrometric stations and 190 rainfall stations are located along the main stream and tributaries of the Jinghe River to effectively monitor rainfall, runoff, and sediment in the basin.
    Zhangjiashan Station, located at the outlet of the Jinghe River Basin, has a catchment area of 432,160,000 km2, covering 95% of the total area of the basin. Few hydrometric and rainfall stations were operational in this basin before 1956, and hence incomplete data were collected. Analyses in this study were based on data from the Zhangjiashan Station from 1956–2015. At this station, the cross-sections in the main stream and Jinghui Canal (a water diversion canal) were hydrologically measured to determine the discharge, sediment transport rate, and sediment concentration.
    Engineering data
    Data on sediment reduction due to reservoir works and terraces, forests, grasslands, enclosures, and dams in the basin were based on the results of the National Water Resources Census and official data collated by the Upper and Middle Yellow River Bureau of the Yellow River Conservancy Commission. These data are thus accurate and reliable.
    For data collection and erosion–deposition calculations, DL/T 5089–1999 “Specification for Sediment Design of Hydropower and Water Conservancy Projects” provided that “The calculated results of erosion and deposition should be compared with the measured data for several years of operation. If the amount and location of sedimentation are 70% consistent, and the elevation of sedimentation in the reservoir differs by 1 to 2 m, then the calculated results are deemed reliable. For erosion–deposition calculation results, only reliability is considered”.
    Relevant data from the stations were systematically verified and collated by the Hydrological Bureau of the Yellow River Conservancy Commission and are therefore accurate and reliable. More

  • in

    Survive or swim: different relationships between migration potential and larval size in three sympatric Mediterranean octocorals

    1.
    Grinnell, I. Geography and evolution. Ecology 5, 225–229 (1924).
    Article  Google Scholar 
    2.
    Elton, C. Animal Ecology. 204 p. (Sidgewick & Jackson , 1927)

    3.
    Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Ann. Rev. Ecol. Evol. Syst. 40, 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159 (2009).
    Article  Google Scholar 

    4.
    Fordham, D. A. et al. How complex should models be? Comparing correlative and mechanistic range dynamics models. Glob. Change Biol. 24, 1357–1370 (2018).
    ADS  Article  Google Scholar 

    5.
    Pagel, J. & Schurr, F. M. Forecasting species ranges by statistical estimation of ecological niches and spatial population dynamics. Glob. Ecol. Biogeogr. 21, 293–304. https://doi.org/10.1111/j.1466-8238.2011.00663.x (2012).
    Article  Google Scholar 

    6.
    Hanski, I. Metapopulation dynamics: does it help to have more of the same?. TREE 4, 113–114 (1989).
    CAS  PubMed  Google Scholar 

    7.
    Leibold, M. A. et al. The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7(7), 601–613 (2004).
    Article  Google Scholar 

    8.
    Urban, M. C. et al. Improving the forecast of biodiversity under climate change. Science 353(6304), 8466 (2016).
    Article  CAS  Google Scholar 

    9.
    Thomson, F. J. et al. Chasing the unknown: predicting seed dispersal mechanisms from plant traits. J. Ecol. 98, 1310–1318 (2010).
    Article  Google Scholar 

    10.
    Scheltema, R. S. On dispersal and planktonic larvae of benthic invertebrates: an eclectic overview and summary of the problem. Bull. Mar. Sci. 39(2), 290–322 (1986).
    Google Scholar 

    11.
    Levinton, J.S. Marine biology: function, biodiversity, ecology. 420 p. (Oxford University Press, 1995)

    12.
    Szmant, A. M. Reproductive ecology of Caribbean reef corals. Coral Reefs 5, 43–53. https://doi.org/10.1007/BF00302170 (1986).
    ADS  Article  Google Scholar 

    13.
    Harrison, P. L., & Wallace, C. C. Reproduction, dispersal and recruitment of scleractinian corals in Coral reef ecosystems (ed Dubinsky, Z. . 133–207 (Elsevier, 1990)

    14.
    Chia, F. S., Buckland-Nicks, J. & Young, C. M. Locomotion of marine invertebrates larvae: a review. Can. J. Zool. 62, 1205–1222 (1984).
    Article  Google Scholar 

    15.
    Kinlan, B. P. & Gaines, S. D. Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84, 2007–2020 (2003).
    Article  Google Scholar 

    16.
    Botsford, L. W. et al. Connectivity, sustainanility, and yield: bridging the gap between conventional fisheries management and marine protected areas. Rev. Fish Biol. Fisheries 19, 69–95 (2009).
    Article  Google Scholar 

    17.
    Siegel, D. A., Kinlan, B. P., Gaylord, B. & Gaines, S. D. Lagrangian descriptions of marine larval dispersion. Mar. Ecol. Prog. Ser. 260, 83–96 (2003).
    ADS  Article  Google Scholar 

    18.
    Bohonak, A. J. Dispersal, gene flow, and population structure. Q. Rev. Biol. 74(1), 21–45 (1999).
    CAS  PubMed  Article  Google Scholar 

    19.
    Fitzpatrick, M. C. & Hargrove, W. W. The projection of species distribution models and the problem of non-analog climate. Biodiversity Conserv. 18, 2255–2261 (2009).
    Article  Google Scholar 

    20.
    Guizien, K., Brochier, T., Duchêne, J. C., Koh, B. S. & Marsaleix, P. Dispersal of Owenia fusiformis larvae by wind-driven currents: turbulence, swimming behaviour and mortality in a three-dimensional stochastic model. Mar. Ecol. Prog. Ser. 311, 47–66 (2006).
    ADS  Article  Google Scholar 

    21.
    Guizien, K., Belharet, M., Marsaleix, P. & Guarini, J. M. Using larval dispersal simulations for marine protected area design: application to the Gulf of Lions (NW Mediterranean). Limnol. Oceanogr. 57(4), 1099–1112. https://doi.org/10.4319/lo.2012.57.4.1099 (2012).
    ADS  Article  Google Scholar 

    22.
    Weinberg, S. & Weinberg, F. The life cycle of a gorgonian: Eunicella singularis (Esper, 1794). Bijdr Dierkd 48, 127–140 (1979).
    Article  Google Scholar 

    23.
    Weinberg, S. Revision of the common Octocorallia of the Mediterranean circalittoral I. Gorgonacea. Beaufortia 24, 63–104 (1976).
    Google Scholar 

    24.
    Gori, A. et al. Spatial distribution patterns of the gorgonians Eunicella singularis, Paramuricea clavata and Leptogorgia sarmentosa (Cape of Creus, Northwestern Mediterranean Sea). Mar. Biol. 158, 143–158 (2011).
    Article  Google Scholar 

    25.
    Theodor, J. Contribution à l’étude des gorgones (VII): écologie et comportement de la planula. Vie et Milieu 18(2A), 291–301 (1967).
    Google Scholar 

    26.
    Ribes, M., Coma, R., Rossi, S. & Michelli, M. The cycle of gonadal development of Eunicella singularis (Cnidaria: Octocorallia). Invertebr. Biol. 126, 307–317 (2007).
    Article  Google Scholar 

    27.
    Santangelo, G. & Abbiati, M. Red coral: conservation and management of an over-exploited Mediterranean species. Aquat. Conserv. Mar. Freshw. Ecosys. 259, 253–259 (2001).
    Article  Google Scholar 

    28.
    Costantini, F. et al. Deep-water Corallium rubrum (L., 1758) from the Mediterranean Sea: preliminary genetic characterisation. Mar. Ecol. 31, 261–269 (2010).
    ADS  Article  Google Scholar 

    29.
    Santangelo, G., Carletti, E., Maggi, E. & Bramanti, L. Reproduction and population sexual structure of the overexploited Mediterranean red coral Corallium rubrum. Mar. Ecol. Prog. Ser. 248, 99–108. https://doi.org/10.3354/meps248099 (2003).
    ADS  Article  Google Scholar 

    30.
    Lacaze-Duthiers, H. Histoire Naturelle du Corail, 371 p (J.B, Baillière et Fils, 1864).
    Google Scholar 

    31.
    Martinez-Quintana, A., Bramanti, L., Viladrich, N., Rossi, S. & Guizien, K. Quantification of Corallium rubrum larvae motility behavior: implications for population connectivity. Mar. Biol. 162, 309–318 (2015).
    Article  Google Scholar 

    32.
    Coma, R., Ribes, M., Zabala, M. & Gili, J. M. Growth in a modular colonial marine invertebrate. Estuar. Coast Shelf Sci. 47, 459–470 (1998).
    ADS  Article  Google Scholar 

    33.
    Coma, R., Ribes, M., Zabala, M. & Gili, J. M. Reproduction and cycle of gonadal development in the Mediterranean gorgonian Paramuricea clavata. Mar. Ecol. Prog. Ser. 117, 173–183 (1995).
    ADS  Article  Google Scholar 

    34.
    Linares, C. et al. Early life history of the Mediterranean gorgonian Paramuricea clavata: implications for population dynamics. Invertebr. Biol. 127(1), 1–11 (2008).
    Article  Google Scholar 

    35.
    Muscatine, L. Glycerol excretion by symbiotic algae from corals and Tridacna and tts control by the host. Science 156(3774), 516–519. https://doi.org/10.1126/science.156.3774.516 (1967).
    ADS  CAS  Article  PubMed  Google Scholar 

    36.
    Pennington, J. T. & Emlet, R. B. Ontogenic and diel vertical migration of a planktonic echinoid larva, Dendraste rexcentricus (Eschscholtz): occurrence, causes, and probable consequences. J. Exp. Mar. Biol. and Ecol. 104, 69–95 (1986).
    Article  Google Scholar 

    37.
    Vogel, S. Life in a moving fluid: the physical biology of flow. 488 p. (Princeton University Press, 1994)

    38.
    Ben-David-Zaslow, R. & Benayahu, Y. Competence and longevity in planulae of several species of soft corals. Mar. Ecol. Prog. Ser. 163, 235–243 (1998).
    ADS  Article  Google Scholar 

    39.
    Maldonado, M. The ecology of sponge larvae. Can. J. Zool. 84(2), 175–194 (2006).
    Article  Google Scholar 

    40.
    Nishikawa, A., Masaya, K. & Sakai, K. Larval settlement rates and gene flow of broadcast-spawning (Acropora Tenuis) and Planula-Brooding (Stylophora Pistillata) corals. Mar. Ecol. Prog. Ser. 256, 87–97. https://doi.org/10.3354/meps256087 (2003).
    ADS  CAS  Article  Google Scholar 

    41.
    Keough, M. J. & Chernoff, H. Dispersal and population variation in the bryozoan Bugula neritina. Ecology 68, 199–210 (1987).
    Article  Google Scholar 

    42.
    Mc Edward, L. R. Ecology of marine invertebrate larvae. 464 p. (CRC Press, 1995)

    43.
    Zelli, E. et al. Settlement dynamics and recruitment responses of Mediterranean gorgonians larvae to different crustose coralline algae species. J. Exp. Mar. Biol. Ecol. 1, 530–531. https://doi.org/10.1016/j.jembe.2020.151427 (2020).
    Article  Google Scholar 

    44.
    Knight-Jones, E. W. Gregariousness and some other aspects of the settling behaviour of Spirorbis. J. Mar. Biol. Assoc. UK 30, 201–222 (1951)

    45.
    Wilson, D. P. The settlement of Ophelia bicornis Savigny larvae. J. Mar. Biol. Assoc. UK 32, 209–233 (1953).
    Article  Google Scholar 

    46.
    Cowen, R. K., Lwiza, K. M. M., Sponaugle, S., Paris, C. B. & Olson, D. B. Connectivity of marine populations: open or closed?. Science 287, 857–859 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 

    47.
    Stearns, S. C. The Evolution of Life Histories. 249 p. (Oxford University Press 1992)

    48.
    Viladrich, N. et al. Variations of lipid and free fatty acid contents during spawning in two temperate octocorals with different reproductive strategies: surface versus internal brooder. Coral Reefs 35(3), 1033–1045. https://doi.org/10.1007/s00338-016-1440-1 (2016).
    ADS  Article  Google Scholar 

    49.
    Viladrich, N. et al. Variation of lipid and free fatty acid contents during larval release in two temperate octocorals according to their trophic strategy. Mar. Ecol. Prog. Ser. 573, 117–128. https://doi.org/10.3354/meps12141 (2017).
    ADS  CAS  Article  Google Scholar 

    50.
    Santangelo, G., Bramanti, L. & Iannelli, M. Population dynamics and conservation biology of the overexploited Mediterranean Red coral. J. Theor. Biol. 244, 416–423 (2007).
    PubMed  Article  Google Scholar 

    51.
    Gori, A., Linares, C., Rossi, S., Coma, R. & Gili, J. M. Spatial variability in reproductive cycles of the gorgonians Paramuricea clavata and Eunicella singularis in the western Mediterranean. Mar. Biol. 151, 1571–1584 (2007).
    Article  Google Scholar 

    52.
    Caldwell, R. L. & Edmonds, D. A. The effects of sediment properties ondeltaic processes and morphologies: a numerical modeling study. J. Geophys. Res. Earth Surf. 119, 961–982. https://doi.org/10.1002/2013JF002965 (2014).
    ADS  Article  Google Scholar 

    53.
    Richmond, R. H. Energetics, competency, and long-distance dispersal of planula larvae of the coral Pocillopora damicornis. Mar. Biol. 93(4), 527–533 (1987).
    Article  Google Scholar 

    54.
    Huhn, K., Paul, A. & Seyferth, M. Modeling sediment transport patterns during an upwelling event. J. Geophys. Res. 112(C10003), 1. https://doi.org/10.1029/2005JC003107 (2007).
    Article  Google Scholar 

    55.
    Bakun, A. & Agostini, V. N. Seasonal patterns of wind-induced upwelling/downwelling in the Mediterranean Sea. Sci. Mar. 65(3), 243–257 (2001).
    Article  Google Scholar 

    56.
    Mokhtar-Jamaï, K. et al. From global to local genetic structuring in the red gorgonian Paramuricea clavata: the interplay between oceanographic conditions and limited larval dispersal. Mol. Ecol. 20, 3291–3305 (2011).
    PubMed  Article  Google Scholar 

    57.
    Mokhtar-Jamaï, K. et al. Role of evolutionary and ecological factors in the reproductive success and the spatial genetic structure of the temperate gorgonian Paramuricea clavata. Ecol. Evol. 3(6), 1765–1779. https://doi.org/10.1002/ece3.588 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    58.
    Pilczynska, J., Cocito, S., Boavida, J., Serrão, E. & Queiroga, H. Genetic diversity and local connectivity in the Mediterranean red gorgonian coral after mass mortality events. PLoS ONE 11(3), e0150590. https://doi.org/10.1371/journal.pone.0150590 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    59.
    Padron, M., Costantini, F., Bramanti, L., Guizien, K. & Abbiati, M. Genetic connectivity fosters recovery of gorgonian populations impacted by climate change. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 779–787. https://doi.org/10.1002/aqc.2912 (2018).
    Article  Google Scholar 

    60.
    Ledoux, J.-B. et al. Genetic survey of shallow populations of the Mediterranean red coral [Corallium rubrum (Linnaeus,1758)]: new insights into evolutionary processes shaping nuclear diversity and implications for conservation. Mol. Ecol. 19, 675–690 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    61.
    Padron, M., Costantini, F., Baksay, S., Bramanti, L. & Guizien, K. Passive larval transport explains recent gene flow in a Mediterranean gorgonian. Coral Reefs 37, 495–506. https://doi.org/10.1007/s00338-018-1674-1 (2018).
    ADS  Article  Google Scholar 

    62.
    Selkoe, K. A. et al. A decade of seascape genetics: contributions tobasic and applied marine connectivity. Mar. Ecol. Prog. Ser. 554, 1–19 (2016).
    ADS  Article  Google Scholar 

    63.
    Isomura, N. & Nishihira, M. Size variation of planulae and its effect on the lifetime of planulae in three pocilloporid corals. Coral Reefs 20, 309–315 (2001).
    Article  Google Scholar 

    64.
    Hoegh-Guldberg, O. & Jones, R. J. Photoinhibition and photoprotection in symbiotic dinoflagellates from reef-building corals. Mar. Ecol. Prog. Ser. 183, 73–86 (1999).
    ADS  Article  Google Scholar 

    65.
    Rumrill, S. S. Natural mortality of marine invertebrate larvae. Ophelia 32, 163–198 (1990).
    Article  Google Scholar 

    66.
    Frost, B. W. Feeding processes at lower trophic levels in pelagic communities in The Biology of the Oceanic Pacific. 59–77 (Oregon State University Press 1974)

    67.
    Williamson, C. E. & Stoeckel, M. E. Estimating predation risk in zooplankton communities: the importance of vertical overlap. Hydrobiologia 198, 125–131 (1990).
    Article  Google Scholar 

    68.
    Almeda, R., van Someren Greve, H. & Kiørboe, T. Behavior is a major determinant of predation risk inzooplankton. Ecosphere 8(2), 1668. https://doi.org/10.1002/ecs2.1668 (2017).
    Article  Google Scholar 

    69.
    Moran, A. L. & Emlet, R. B. Offspring size and performance in variable environments: field studies on a marine snail. Ecology 82, 1597–1612 (2001).
    Article  Google Scholar  More

  • in

    A biphasic navigational strategy in loggerhead sea turtles

    1.
    Guilford, T. et al. Migratory navigation in birds: New opportunities in an era of fast-developing tracking technology. J. Exp. Biol. 214, 3705–3712 (2011).
    PubMed  Article  PubMed Central  Google Scholar 
    2.
    Lohmann, K. J., Luschi, P. & Hays, G. C. Goal navigation and island-finding in sea turtles. J. Exp. Mar. Biol. Ecol. 356, 83–95 (2008).
    Article  Google Scholar 

    3.
    Kishkinev, D. Sensory mechanisms of long-distance navigation in birds: a recent advance in the context of previous studies. J. Ornithol. 156, 145–161 (2015).
    Article  Google Scholar 

    4.
    Mouritsen, H. Long-distance navigation and magnetoreception in migratory animals. Nature 558, 50–59 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Luschi, P. et al. Testing the navigational abilities of ocean migrants: displacement experiments on green sea turtles (Chelonia mydas). Behav. Ecol. Sociobiol. 50, 528–534 (2001).
    Article  Google Scholar 

    6.
    Benhamou, S., Bonadonna, F. & Jouventin, P. Successful homing of magnet-carrying white-chinned petrels released in the open sea. Anim. Behav. 65, 729–734 (2003).
    Article  Google Scholar 

    7.
    Wikelski, M. et al. True navigation in migrating gulls requires intact olfactory nerves. Sci. Rep. 5, 17061 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Gagliardo, A. et al. Oceanic navigation in Cory’s shearwaters: evidence for a crucial role of olfactory cues for homing after displacement. J. Exp. Biol. 216, 2798–2805 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    9.
    Luschi, P. Long-distance animal migrations in the oceanic environment: Orientation and navigation correlates. ISRN Zool. ID 631839 23, https://doi.org/10.1155/2013/631839 (2013).

    10.
    Papi, F., Luschi, P., Crosio, E. & Hughes, G. R. Satellite tracking experiments on the navigational ability and migratory behaviour of the loggerhead turtle Caretta caretta. Mar. Biol. 129, 215–220 (1997).
    Article  Google Scholar 

    11.
    Luschi, P., Papi, F., Liew, H. C., Chan, E. H. & Bonadonna, F. Long-distance migration and homing after displacement in the green turtle (Chelonia mydas): A satellite tracking study. J. Comp. Physiol. 178A, 447–452 (1996).
    Google Scholar 

    12.
    Luschi, P. et al. Satellite tracking of migrating loggerhead sea turtles (Caretta caretta) displaced in the open sea. Mar. Biol. 143, 793–801 (2003).
    Article  Google Scholar 

    13.
    Avens, L., Braun-McNeil, J., Epperly, S. P. & Lohmann, K. J. Site fidelity and homing behavior in juvenile loggerhead sea turtles (Caretta caretta). Mar. Biol. 143, 211–220 (2003).
    Article  Google Scholar 

    14.
    Girard, C., Sudre, J., Benhamou, S., Roos, D. & Luschi, P. Homing in green turtles Chelonia mydas: Oceanic currents act as a constraint rather than as an information source. Mar. Ecol. Prog. Ser. 322, 281–289 (2006).
    ADS  Article  Google Scholar 

    15.
    Benhamou, S. et al. The role of geomagnetic cues in green turtle open sea navigation. PLoS ONE 6, e26672 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Shimada, T. et al. Sea turtles return home after intentional displacement from coastal foraging areas. Mar. Biol. 163, 8 (2016).
    Article  CAS  Google Scholar 

    17.
    Lohmann, K. J., Lohmann, C. M. F., Ehrhart, L. M., Bagley, D. A. & Swing, T. Geomagnetic map used in sea-turtle navigation. Nature 428, 909–910 (2004).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Bingman, V. P. & Cheng, K. Mechanisms of animal global navigation: Comparative perspectives and enduring challenges. Ethol. Ecol. Evol. 17, 295–318 (2006).
    Article  Google Scholar 

    19.
    Holland, R. A. True navigation in birds: from quantum physics to global migration. J. Zool. 293, 1–15 (2014).
    Article  Google Scholar 

    20.
    Hays, G. C. et al. Island-finding ability of marine turtles. Proc. R. Soc. Lond. B 270(Suppl. 1), 5–7 (2003).
    Google Scholar 

    21.
    Gaspar, P. et al. Marine animal behaviour: Neglecting ocean currents can lead us up the wrong track. Proc. R. Soc. Lond. B 273, 2697–2702 (2006).
    Google Scholar 

    22.
    Chapman, J. W. et al. Animal orientation strategies for movement in flows. Curr. Biol. 21, R861–R870 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Luschi, P. et al. Marine turtles use geomagnetic cues during open-sea homing. Curr. Biol. 17, 126–133 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Putman, N. F. & He, R. Tracking the long-distance dispersal of marine organisms: Sensitivity to ocean model resolution. J. R. Soc. Interface 10, 20120979 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    25.
    Narazaki, T., Sato, K., Abernathy, K. J., Marshall, G. J. & Miyazaki, N. Sea turtles compensate deflection of heading at the sea surface during directional travel. J. Exp. Biol. 212, 4019–4026 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Shiomi, K. et al. Data-processing artefacts in three-dimensional dive path reconstruction from geomagnetic and acceleration data. Aquat. Biol. 8, 299–304 (2010).
    Article  Google Scholar 

    27.
    Narazaki, T., Sato, K., Abernathy, K. J., Marshall, G. J. & Miyazaki, N. Loggerhead turtles (Caretta caretta) use vision to forage on gelatinous prey in mid-water. PLoS ONE 8(6), e66043 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Fukuoka, T., Narazaki, T., Kinoshita, C. & Sato, K. Diverse foraging habits of juvenile green turtles (Chelonia mydas) in a summer-restricted foraging habitat in the northwest Pacific Ocean. Mar. Biol. 166, 25 (2019).
    Article  Google Scholar 

    29.
    Luschi, P. & Casale, P. Movement patterns of marine turtles in the Mediterranean Sea: a review. Ital. J. Zool. 81, 478–495 (2014).
    Article  Google Scholar 

    30.
    Türkozan, O., Taskavak, E. & Ilgaz, C. A review of the biology of the loggerhead turtle, Caretta caretta, at five major nesting beaches on the south-western Mediterranean coast of Turkey. J. Herpetol. 13, 27–34 (2003).
    Google Scholar 

    31.
    Canbolat, A. F. A review of sea turtle nesting activity along the Mediterranean coast of Turkey. Biol. Conserv. 116, 81–91 (2004).
    Article  Google Scholar 

    32.
    Papi, F., Liew, H. C., Luschi, P. & Chan, E. H. Long-range migratory travel of a green turtle tracked by satellite: Evidence for navigational ability in the open sea. Mar. Biol. 122, 171–175 (1995).
    Article  Google Scholar 

    33.
    Dujon, A. M., Schofield, G., Lester, R. E., Esteban, N. & Hays, G. C. Fastloc-GPS reveals daytime departure and arrival during long-distance migration and the use of different resting strategies in sea turtles. Mar. Biol. 164, 187 (2017).
    Article  Google Scholar 

    34.
    Wallraff, H. G. Avian navigation: Pigeon homing as a paradigm (Springer, Berlin, 2005).
    Google Scholar 

    35.
    Giunchi, D., Pollonara, E. & Baldaccini, N. E. The influence of transport conditions on the initial orientation of sand martins (Riparia riparia). Ethol. Ecol. Evol. 15, 83–97 (2003).
    Article  Google Scholar 

    36.
    Parker, D. M. et al. Conservation considerations revealed by the movements of post-nesting green turtles from the Republic of the Marshall Islands. Micronesica 3, 1–9 (2015).
    CAS  Google Scholar 

    37.
    Hays, G. C., Cerritelli, G., Esteban, N., Rattray, A. & Luschi, P. Open ocean reorientation and challenges of island finding by sea turtles during long-distance migration. Curr. Biol. 30, 3236-3242.e3 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Hays, G. C. et al. Biphasal long-distance migration in green turtles. Anim. Behav. 64, 895–898 (2002).
    Article  Google Scholar 

    39.
    Broderick, A. C., Coyne, M., Fuller, W. J., Glen, F. & Godley, B. J. Fidelity and over-wintering of sea turtles. Proc. R. Soc. Lond. B 274, 1533–1538 (2007).
    Google Scholar 

    40.
    Hays, G. C. et al. Route optimisation and solving Zermelo’s navigation problem during long distance migration in cross flows. Ecol. Lett. 17, 137–143 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    41.
    Hays, G. C., Mortimer, J. A., Ierodiaconou, D. & Esteban, N. Use of long-distance migration patterns of an endangered species to inform conservation planning for the world’s largest marine protected area. Conserv. Biol. 6, 1636–1644 (2014).
    Article  Google Scholar 

    42.
    Mingozzi, T., Mencacci, R., Cerritelli, G., Giunchi, D. & Luschi, P. Living between widely separated areas: Long-term monitoring of Mediterranean loggerhead turtles sheds light on cryptic aspects of females spatial ecology. J. Exp. Mar. Biol. Ecol. 485, 8–17 (2016).
    Article  Google Scholar 

    43.
    Mettler, E., Clyde-Brockway, C., Honarvar, S. & Paladino, F. V. Migratory corridor linking Atlantic green turtle, Chelonia mydas, nesting site on Bioko Island, Equatorial Guinea to Ghanaian foraging grounds. PlosONE 14(6), e0213231 (2019).
    CAS  Article  Google Scholar 

    44.
    Endres, C. S. et al. Multi-modal homing in sea turtles: Modeling dual use of geomagnetic and chemical cues in island-finding. Front. Behav. Neurosci. 10, 19 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    45.
    Lohmann, K.J. & Lohmann, C.M.F. There and back again: natal homing by magnetic navigation in sea turtles and salmon. J. Exp. Biol. 222, jeb184077 (2019)

    46.
    Holland, R. A. et al. Testing the role of sensory systems in the migratory heading of a songbird. J. Exp. Biol. 212, 4065–4071 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Berthold, P. Spatiotemporal programmes and genetics of orientation. in Orientation in Birds (ed. Berthold, P.) 86–105 (Birkauser, Basel, 1991).

    48.
    Scott, R., Marsh, R. & Hays, G. C. Ontogeny of long distance migration. Ecology 95, 2840–2850 (2014).
    Article  Google Scholar 

    49.
    Cerritelli, G. et al. Assessing reliance on vector navigation in the long-distance oceanic migrations of green sea turtles. Behav. Ecol. 30, 68–79 (2019).
    Article  Google Scholar 

    50.
    Kaska, Y., Başkale, E., Katılmış, Y., Sözbilen, D. & Şirin, A. Monitoring and Conservation of Sea Turtles (Caretta caretta and Chelonia mydas) and soft-shelled Nile turtle (Trionyx triunguis) populations within the scope of Köyceðiz-Dalyan specially protected area- monitoring species and habitat project, 2018 (Turkish Ministry of Environment and Urbanization, Ankara, 2018).
    Google Scholar 

    51.
    Telonics 2017 Gen4 GPS Systems Manual, Document Number PB008383 Rev L Mesa, AZ.

    52.
    Luschi, P., Hays, G. C., Del Seppia, C., Marsh, R. & Papi, F. The navigational feats of green sea turtles migrating from Ascension Island investigated by satellite telemetry. Proc. R. Soc. Lond. B 265, 2279–2284 (1998).
    CAS  Article  Google Scholar 

    53.
    Benhamou, S. How to reliably estimate the tortuosity of an animal’s path: straightness, sinuosity, or fractal dimension?. J. Theor. Biol. 229, 209–220 (2004).
    MathSciNet  PubMed  MATH  Article  PubMed Central  Google Scholar 

    54.
    Savitzky, A. & Golay, M. J. E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964).
    ADS  CAS  Article  Google Scholar 

    55.
    Fisher, C.J. Using an accelerometer for inclination sensing. AN-1057, application note. Analog. Dev. 1–8 (2010)

    56.
    Batschelet, E. Circular Statistics in Biology (Academic Press, New York, 1981).
    Google Scholar  More

  • in

    Marine plankton show threshold extinction response to Neogene climate change

    1.
    Beaugrand, G., Edwards, M., Raybaud, V., Goberville, E. & Kirby, R. R. Future vulnerability of marine biodiversity compared with contemporary and past changes. Nat. Clim. Change 5, 695–701 (2015).
    ADS  Google Scholar 
    2.
    Barton, A. D., Irwin, A. J., Finkel, Z. V. & Stock, C. A. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. Proc. Natl. Acad. Sci. USA 113, 2964–2969 (2016).
    ADS  CAS  PubMed  Google Scholar 

    3.
    Thomas, M. K., Kremer, C. T., Klausmeier, C. A. & Litchman, E. A global pattern of thermal adaptation in marine phytoplankton. Science 338, 1085–1088 (2012).
    ADS  CAS  PubMed  Google Scholar 

    4.
    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Chang. 3, 919–925 (2013).
    ADS  Google Scholar 

    5.
    Jensen, L. Ø., Mousing, E. A. & Richardson, K. Using species distribution modelling to predict future distributions of phytoplankton: case study using species important for the biological pump. Mar. Ecol. 38, e12427 (2017).
    ADS  Google Scholar 

    6.
    Chivers, W. J., Walne, A. W. & Hays, G. C. Mismatch between marine plankton range movements and the velocity of climate change. Nat. Commun. 8, 1–8 (2017).
    Google Scholar 

    7.
    Lazarus, D., Barron, J., Renaudie, J., Diver, P. & Türke, A. Cenozoic planktonic marine diatom diversity and correlation to climate change. PLoS One 9, e84857 (2014).

    8.
    Herbert, T. D. et al. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 9, 843–847 (2016).
    ADS  CAS  Google Scholar 

    9.
    Renaudie, J. & Lazarus, D. B. On the accuracy of paleodiversity reconstructions: a case study in Antarctic Neogene radiolarians. Paleobiology 39, 491–509 (2013).
    Google Scholar 

    10.
    Caron, D. A. Ocean science: the rise of Rhizaria. Nature 532, 444–445 (2016).
    ADS  CAS  PubMed  Google Scholar 

    11.
    Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465–470 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    12.
    de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).
    PubMed  Google Scholar 

    13.
    Moreira, D. et al. Global eukaryote phylogeny: combined small- and large-subunit ribosomal DNA trees support monophyly of Rhizaria, Retaria and Excavata. Mol. Phylogenet. Evol. 44, 255–266 (2007).
    CAS  PubMed  Google Scholar 

    14.
    Biard, T. et al. In situ imaging reveals the biomass of giant protists in the global ocean. Nature 532, 504–507 (2016).
    ADS  CAS  PubMed  Google Scholar 

    15.
    Gutierrez-Rodriguez, A. et al. High contribution of Rhizaria (Radiolaria) to vertical export in the California Current Ecosystem revealed by DNA metabarcoding. ISME J. 13, 964–976 (2019).
    CAS  PubMed  Google Scholar 

    16.
    Lampitt, R. S., Salter, I. & Johns, D. Radiolaria: major exporters of organic carbon to the deep ocean. Glob. Biogeochem. Cycles 23, 1–9 (2009).
    Google Scholar 

    17.
    Llopis Monferrer, N. et al. Estimating biogenic silica production of rhizaria in the global ocean. Global Biogeochem. Cycles 34, 1–13 (2020).

    18.
    Lowery, C. M., Bown, P. R., Fraass, A. J. & Hull, P. M. Ecological response of plankton to environmental change: thresholds for extinction. Annu. Rev. Earth Planet. Sci. 48, 081619–052818 (2020).
    Google Scholar 

    19.
    Lazarus, D. WoRMS Polycystina: world list of Polycystina (Radiolaria) (version 2019-03-05). In Species 2000 & ITIS Catalogue of Life [2020-01-10] Beta (eds Roskov, Y. et al.) (accessed 18 October 2019). Digital resource at www.catalogueoflife.org/col (2019).

    20.
    Boltovskoy, D., Kling, S. A., Takahashi, K. & BjØrklund, K. World atlas of distribution of recent Polycystina (Radiolaria). Palaeontol. Electron. 13, 1–230 (2010).
    Google Scholar 

    21.
    Boltovskoy, D. & Correa, N. Planktonic equatorial diversity troughs: fact or artifact? Latitudinal diversity gradients in radiolaria. Ecology 98, 112–124 (2017).
    PubMed  Google Scholar 

    22.
    Lazarus, D. B. The deep-sea microfossil record of macroevolutionary change in plankton and its study. Geol. Soc. Spec. Publ. 358, 141–166 (2011).
    ADS  Google Scholar 

    23.
    Longhurst, A. Ecological Geography of the Sea. (Academic Press, San Diego, 1998).

    24.
    Suzuki, N. & Not, F. Biology and ecology of radiolaria. In Marine Protists: Diversity and Dynamics. (eds. Ohtsuka, S., Suzaki, T., Horiguchi, T., Suzuki, N. &Not, F.) 179–222 (Springer, Japan, 2015).

    25.
    Boltovskoy, D. Vertical distribution patterns of Radiolaria Polycystina (Protista) in the World Ocean: living ranges, isothermal submersion and settling shells. J. Plankton Res. 39, 330–349 (2017).
    Google Scholar 

    26.
    Casey, R. E., Spaw, J. M., & Kunze, F. R. Polycystine radiolarian distribution and enhancements related to oceanographic conditions in a hypothetical ocean. Am. Assoc. Pet. Geol. Bull. 66, 319–332 (1982).

    27.
    Kling, S. A. Relation of radiolarian distributions to subsurface hydrography in the North Pacific. Deep Res. Oceanogr. Abstr. 23, 1043–1058 (1976).
    ADS  Google Scholar 

    28.
    Sanfilippo, A., Westberg-Smith, M. & Riedel, W. Cenozoic radiolaria. In Plankton Stratigraphy (eds. Bolli, H. M., Perch-Nielsen, K., & Saunders, J. B.) (Cambridge University Press, Cambridge, 1985).

    29.
    Liu, J. et al. Eastern equatorial Pacific cold tongue evolution since the late Miocene linked to extratropical climate. Sci. Adv. 5, eaau6060 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    30.
    Zhang, Y. G., Pagani, M. & Liu, Z. A 12-million-year temperature history of the tropical pacific ocean. Science 344, 84–87 (2014).
    ADS  CAS  PubMed  Google Scholar 

    31.
    Tian, J. et al. Paleoceanography of the east equatorial Pacific over the past 16 Myr and Pacific–Atlantic comparison: high resolution benthic foraminiferal δ18O and δ13C records at IODP Site U1337. Earth Planet. Sci. Lett. 499, 185–196 (2018).
    ADS  CAS  Google Scholar 

    32.
    Close, R. A., Evers, S. W., Alroy, J. & Butler, R. J. How should we estimate diversity in the fossil record? Testing richness estimators using sampling-standardised discovery curves. Methods Ecol. Evol. 9, 1386–1400 (2018).
    Google Scholar 

    33.
    Good, I. J. The population frequencies of species and the estimation of population parameters. Biometrika 40, 1–237 (1953).
    MathSciNet  MATH  Google Scholar 

    34.
    Chao, A. et al. Quantifying sample completeness and comparing diversities among assemblages. Ecol. Res. 35, 292–314 (2020).
    Google Scholar 

    35.
    Kamikuri, S. I., Motoyama, I., Nishi, H. & Iwai, M. Neogene radiolarian biostratigraphy and faunal evolution rates in the eastern equatorial pacific ODP sites 845 and 1241. Acta Palaeontol. Pol. 54, 713–742 (2009).
    Google Scholar 

    36.
    Sandoval, M. I., Boltovskoy, D., Baxter, A. T. & Baumgartner, P. O. Neogene paleoceanography of the eastern equatorial Pacific based on the radiolarian record of IODP drill sites off Costa Rica. Geochem. Geophys. Geosyst. 18, 1–26 (2017).
    Google Scholar 

    37.
    Renaudie, J., Lazarus, D. & Diver, P. NSB (Neptune Sandbox Berlin): an expanded and improved database of marine planktonic microfossil data and deep-sea stratigraphy. Palaeontol. Electron. 23, a11 (2020).
    Google Scholar 

    38.
    Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).
    Google Scholar 

    39.
    Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).
    PubMed  Google Scholar 

    40.
    Holland, S. M. Ecological disruption precedes mass extinction. Proc. Natl. Acad. Sci. USA 113, 8349–8351 (2016).
    ADS  CAS  PubMed  Google Scholar 

    41.
    Foote, M. Perspective: evolutionary patterns in the fossil record. Evolution 50, 1–11 (1996).
    PubMed  Google Scholar 

    42.
    Boltovskoy, D. The range-through method and first-last appearance data in paleontological surveys. J. Paleontol. 62, 157–159 (1988).
    Google Scholar 

    43.
    Wiebe, P. H. & Boyd, S. H. Limits of Nematoscelis megalops in the northwestern Atlantic in relation to Gulf Stream cold core rings. I, Horizontal and vertical distributions. J. Mar. Res. 36, 119–142 (1978).
    Google Scholar 

    44.
    Boltovskoy, D. & Correa, N. Biogeography of Radiolaria Polycystina (Protista) in the world ocean. Prog. Oceanogr. 149, 82–105 (2016).
    ADS  Google Scholar 

    45.
    Masson-Delmotte, V. et al. Summary for policymakers. In Global Warming of 1.5°C: An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change.  (eds. Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, & T. Waterfield) 1–32 (World Meteorological Organization, Geneva, 2018).

    46.
    Moore, K. J. et al. Sustained climate warming drives declining marine biological productivity. Science 359, 113–1143 (2018).
    Google Scholar 

    47.
    Hull, P. Life in the aftermath of mass extinctions. Curr. Biol. 25, R941–R952 (2015).
    CAS  PubMed  Google Scholar 

    48.
    Langer, M. R., Weinmann, A. E., Lötters, S., Bernhard, J. M. & Rödder, D. Climate-driven range extension of Amphistegina (Protista, Foraminiferida): models of current and predicted future ranges. PLoS One 8, e54443 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    49.
    Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: scaling from organisms to communities. Ann. Rev. Mar. Sci. 12, 153–179 (2020).
    PubMed  Google Scholar 

    50.
    Thierstein, H. R. Terminal Cretaceous plankton extinctions: a critical assessment. Spec. Pap. Geol. Soc. Am. 190, 385–399 (1982).
    Google Scholar 

    51.
    Lewandowska, A. M. et al. Scale dependence of temporal biodiversity change in modern and fossil marine plankton. Glob. Ecol. Biogeogr. 29, 1008–1019 (2020).
    Google Scholar 

    52.
    Broecker, W. S. & Peng, T. H. Tracers in the Sea (Eldigio Press, 1982).

    53.
    Brown, J. et al. Ocean Circulation (Pergamon Press, The Open University, 1989).

    54.
    Spencer-Cervato, C. The Cenozoic deep sea microfossil record: explorations of the DSDP/ODP sample set using the Neptune Database. Palaeontol. Electron. 2, 1–38 (1999).
    Google Scholar 

    55.
    Nigrini, C. & Caulet, J. Late Neogene radiolarian assemblages characteristic of Indo-Pacific areas of upwelling. Micropaleontology 38, 139–164 (1992).
    Google Scholar 

    56.
    McGowan, J. A. The nature of oceanic ecosystems. In The Biology of the Oceanic Pacific—Proceedings of the 33rd Annual Biology Colloquium (ed. Miller, C. B.) 9–28 (Oregon State University, 1974).

    57.
    Pierrot-Bults, A. C., Van Der Spoel, S., Zahuranec, B. J. & Johnson, R. K. Pelagic Biogeography (UNESCO, 1986).

    58.
    Hemleben, C., Spindler, M. & Anderson, O. R. Modern Planktonic Foraminifera (Springer Verlag, 1989).

    59.
    Kucera, M. Planktonic foraminifera as tracers of past oceanic environments. In Proxies in Late Cenozoic Paleoceanography (eds. Hillaire-Marcel, C. & de Vernal, A.) 213–262 (Elsevier, 2007).

    60.
    Morard, R. et al. PFR2: a curated database of planktonic foraminifera 18S ribosomal DNA as a resource for studies of plankton ecology, biogeography and evolution. Mol. Ecol. Resour. 15, 1472–1485 (2015).
    CAS  PubMed  Google Scholar 

    61.
    Ishitani, Y., Ujiié, Y. & Takishita, K. Uncovering sibling species in Radiolaria: evidence for ecological partitioning in a marine planktonic protist. Mol. Phylogenet. Evol. 78, 215–222 (2014).
    PubMed  Google Scholar 

    62.
    Ishitani, Y. & Takishita, K. Molecular evidence for wide vertical distribution of the marine planktonic protist Larcopyle buetschlii (Radiolaria) in a semi-enclosed marginal sea. J. Plankton Res. 37, 851–856 (2015).
    CAS  Google Scholar 

    63.
    Moore, T. C. Method of randomly distributing grains for microscopic examination. J. Sediment. Petrol. 43, 904–906 (1973).
    Google Scholar 

    64.
    Palike, H., et al. Expedition 320/321 scientists. Site U1337. Proc. Integr. Ocean Drill. Progr. 320/321, 1–146 (2010).

    65.
    Lazarus, D. B., Renaudie, J., Lenz, D., Diver, P. & Klump, J. Raritas: a program for counting high diversity categorical data with highly unequal abundances. PeerJ 6, e5453 (2018).

    66.
    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).
    Google Scholar 

    67.
    Kocsis, Á. T., Reddin, C. J., Alroy, J. & Kiessling, W. The R package divDyn for quantifying diversity dynamics using fossil sampling data. Methods Ecol. Evol. 10, 735–743 (2019).
    Google Scholar 

    68.
    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. Past: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
    Google Scholar 

    69.
    Magurran, A. E. Ecological Diversity and Its Measurement (Princeton University Press, 1988).

    70.
    Foote, M. Origination and extinction components of taxonomic diversity: general problems. Paleobiology 26, 74–102 (2000).
    Google Scholar 

    71.
    Warnock, R. C. M., Heath, T. A. & Stadler, T. Assessing the impact of incomplete species sampling on estimates of speciation and extinction rates. Paleobiology 46, 137–157 (2020).
    Google Scholar 

    72.
    Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–137 (R Found., Vienna, 2018).

    73.
    Wald, A. Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans. Am. Math. Soc. 54, 426–482 (1943).
    MathSciNet  MATH  Google Scholar  More

  • in

    Patterns of ties in problem-solving networks and their dynamic properties

    1.
    Braha, D. & Bar-Yam, Y. Topology of large-scale engineering problem-solving networks. Phys. Rev. E 69, 016113 (2004).
    ADS  Article  CAS  Google Scholar 
    2.
    Braha, D. & Bar-Yam, Y. The statistical mechanics of complex product development: Empirical and analytical results. Manag. Sci. 53, 1127–1145 (2007).
    MATH  Article  Google Scholar 

    3.
    Simon, H. The sciences of the Artificial 3rd edn. (MIT Press, Cambridge, 1996).
    Google Scholar 

    4.
    Braha, D. & Maimon, O. A Mathematical Theory of Design: Foundations. Algorithms and Applications (Kluwer Academic Publishers, Dordrecht, 1998).
    Google Scholar 

    5.
    Yassine, A. & Braha, D. Complex concurrent engineering and the design structure matrix method. Concurr. Eng. 11, 165–176 (2003).
    Article  Google Scholar 

    6.
    Lazer, D. & Friedman, A. The network structure of exploration and exploitation. Adm. Sci. Q. 52, 667–694 (2007).
    Article  Google Scholar 

    7.
    March, J. G. Exploration and exploitation in organizational learning. Organ Sci. 2, 71–87 (1991).
    ADS  Article  Google Scholar 

    8.
    Berger-Tal, O., Nathan, J., Meron, E. & Saltz, D. The exploration-exploitation dilemma: a multidisciplinary framework. PLoS ONE 9, 4 (2014).
    Article  CAS  Google Scholar 

    9.
    Schumpeter, J. A. The Theory of Economic Development (Harvard University Press, Cambridge, 1934).
    Google Scholar 

    10.
    Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT Press, Cambridge, 1998).
    Google Scholar 

    11.
    Azoulay-Schwartz, R., Kraus, S. & Wilkenfeld, J. Exploitation vs exploration: Choosing a supplier in an environment of incomplete information. Decis Support Syst. 38, 1–18 (2004).
    Article  Google Scholar 

    12.
    Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B. & Dolan, R. J. Cortical substrates for exploratory decisions in humans. Nature 441, 876–879 (2006).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Eliassen, S., Jorgensen, C., Mangel, M. & Giske, J. Exploration or exploitation: Life expectancy changes the value of learning in foraging strategies. Oikos 116, 513–523 (2007).
    Article  Google Scholar 

    14.
    Uotila, J., Maula, M., Keil, T. & Zahra, S. A. Exploration, exploitation, and financial performance: Analysis of S&P 500 corporations. Strat. Mgmt. J. 30, 221–231 (2009).
    Article  Google Scholar 

    15.
    Molina-Castillo, F. J., Jimenez-Jimenez, D. & Munuera-Aleman, J. L. Product competence exploitation and exploration strategies: The impact on new product performance through quality and innovativeness. Ind. Market Manag. 40, 1172–1182 (2011).
    Article  Google Scholar 

    16.
    Cohen, J. D., McClure, S. M. & Yu, A. J. Should I stay or should I go? How the human brain manages the trade-off between exploitation and exploration. Philos. Trans. R. Soc. B. 362, 933–942 (2007).
    Article  Google Scholar 

    17.
    Berger-Tal, O. & Avgar, T. The glass is half full: Overestimating the quality of a novel environment is advantageous. PLoS ONE 7, e34578 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Shore, J., Bernstein, E. & Lazer, D. Facts and figuring: An experimental investigation of network structure and performance in information and solution spaces. Organ. Sci. 26, 1432–1446 (2015).
    Article  Google Scholar 

    19.
    Subrahmanian, E. et al. Equations aren’t enough: Informal modeling in design. AI EDAM. 7, 257–274 (1993).
    Google Scholar 

    20.
    Axelrod, R. & Hamilton, W. D. The evolution of cooperation. Science 211, 1390–1396 (1981).
    ADS  MathSciNet  CAS  PubMed  MATH  Article  Google Scholar 

    21.
    Banerjee, J., Layek, R. K., Sasmal, S. K. & Ghosh, D. Delayed evolutionary model for public goods competition with policing in phenotypically variant bacterial biofilms. Europhys. Lett. 126, 18002 (2019).
    CAS  Article  Google Scholar 

    22.
    Szabó, G. & Fath, G. Evolutionary games on graphs. Phys. Rep. 446, 97–216 (2007).
    ADS  MathSciNet  Article  Google Scholar 

    23.
    Nag Chowdhury, S., Kundu, S., Duh, M., Perc, M. & Ghosh, D. Cooperation on interdependent networks by means of migration and stochastic imitation. Entropy. 22, 485 (2020).
    ADS  Article  Google Scholar 

    24.
    Axelrod, R. The complexity of cooperation: Agent-based models of competition and collaboration (Princeton University Press, Princeton, 1997).
    Google Scholar 

    25.
    Steward, D. V. The design structure system: A method for managing the design of complex systems. IEEE Trans. Eng. Manage. 3, 71–74 (1981).
    Article  Google Scholar 

    26.
    Eppinger, S. D., Whitney, D. E., Smith, R. P. & Gebala, D. A. A model-based method for organizing tasks in product development. Res. Eng. Design 6, 1–13 (1994).
    Article  Google Scholar 

    27.
    Browning, T. R. Applying the design structure matrix to system decomposition and integration problems: A review and new directions. IEEE Trans. Eng. Manag. 48, 292–306 (2001).
    Article  Google Scholar 

    28.
    Eppinger, S. D. & Browning, T. R. Design structure Matrix Methods and Applications (MIT press, Cambridge, 2012).
    Google Scholar 

    29.
    Yassine, A., Joglekar, N., Braha, D., Eppinger, S. & Whitney, D. Information hiding in product development: The design churn effect. Res. Eng. Design 14, 145–161 (2003).
    Article  Google Scholar 

    30.
    Braha, D. & Bar-Yam, Y. Information flow structure in large-scale product development organizational networks. J. Inf. Technol. 19, 244–253 (2004).
    Article  Google Scholar 

    31.
    Braha, D. The complexity of design networks: Structure and dynamics. In Experimental Design Research (eds Cash, P. et al.) 129–151 (Springer, Berlin, 2016).
    Google Scholar 

    32.
    Albert, R. & Barabási, A. L. Statistical mechanics of complex networks. Rev. Modern Phys. 74, 47–97 (2002).
    ADS  MathSciNet  MATH  Article  Google Scholar 

    33.
    Katz, N., Lazer, D., Arrow, H. & Contractor, N. The network perspective on teams. Small Group Res. 35, 307–332 (2004).
    Article  Google Scholar 

    34.
    Balkundi, P. & Harrison, D. A. Ties, leaders, and time in teams: Strong inference about the effects of network structure on team viability and performance. Acad. Manag. J. 49, 49–68 (2006).
    Article  Google Scholar 

    35.
    Leenders, R. T. A., Van Engelen, J. M. & Kratzer, J. Virtuality, communication, and new product team creativity: A social network perspective. J. Eng. Tech. Manag. 20, 69–92 (2003).
    Article  Google Scholar 

    36.
    Oh, H., Chung, M. H. & Labianca, G. Group social capital and group effectiveness: The role of informal socializing ties. Acad. Manag. J. 47, 860–875 (2004).
    Article  Google Scholar 

    37.
    Uzzi, B. & Spiro, J. Collaboration and creativity: The small world problem. Am. J. Sociol. 111, 447–504 (2005).
    Article  Google Scholar 

    38.
    Sparrowe, R. T., Liden, R. C., Wayne, S. J. & Kraimer, M. L. Social networks and the performance of individuals and groups. Acad. Manag. J. 44, 316–325 (2001).
    Google Scholar 

    39.
    Kearns, M., Suri, S. & Montfort, N. An experimental study of the coloring problem on human subject networks. Science 313, 824–827 (2006).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    McCubbins, M. D., Paturi, R. & Weller, N. Connected coordination network structure and group coordination. Am. Polit. Res. 37, 899–920 (2009).
    Article  Google Scholar 

    41.
    Enemark, D., McCubbins, M. D. & Weller, N. Knowledge and networks: An experimental test of how network knowledge affects coordination. Soc. Netw. 36, 122–133 (2014).
    Article  Google Scholar 

    42.
    Mason, W. A. & Watts, D. J. Collaborative learning in networks. Proc. Natl. Acad. Sci. USA 109, 764–769 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    43.
    Mason, W. A., Jones, A. & Goldstone, R. L. Propagation of innovations in networked groups. J. Exp. Psychol. Gen. 137, 422–433 (2008).
    PubMed  Article  Google Scholar 

    44.
    Levinthal, D. A. Adaptation on rugged landscapes. Manag. Sci. 43, 934–950 (1997).
    MATH  Article  Google Scholar 

    45.
    Rivkin, J. W. & Siggelkow, N. Balancing search and stability: Interdependencies among elements of organizational design. Manag. Sci. 49, 290–312 (2003).
    Article  Google Scholar 

    46.
    Milo, R. et al. Network motifs: Simple building blocks of complex networks. Science 298, 824–827 (2002).
    ADS  CAS  PubMed  Article  Google Scholar 

    47.
    Milo, R. et al. Superfamilies of evolved and designed networks. Science 303, 1538–1542 (2004).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Alon, U. An Introduction to Systems Biology: Design Principles of Biological Circuits (CRC Press, Boca Raton, 2019).
    Google Scholar 

    49.
    Prill, R. J., Iglesias, P. A. & Levchenko, A. Dynamic properties of network motifs contribute to biological network organization. PLoS Biol. 3, 11 (2005).
    Article  CAS  Google Scholar 

    50.
    Wasserman, S. & Faust, K. Social Network Analysis: Methods and applications (Cambridge University Press, Cambridge, 1994).
    Google Scholar 

    51.
    Stone, L., Simberloff, D. & Artzy-Randrup, Y. Network motifs and their origins. PloS Comput. Biol. 15, 2 (2019).
    Article  CAS  Google Scholar 

    52.
    Holland, P.W. & Leinhardt, S. The statistical analysis of local structure in social networks. National Bureau of Economic Research. No. w0044 (1974).

    53.
    Pimm, S. L. Food webs (Springer, Berlin, 1982).
    Google Scholar 

    54.
    Stone, L. & Roberts, A. Competitive exclusion, or species aggregation?—An aid in deciding. Oecologia 91, 419–424 (1992).
    ADS  PubMed  Article  Google Scholar 

    55.
    Connor, E. F. & Simberloff, D. The assembly of species communities: Chance or competition?. Ecology 60, 1132–1140 (1979).
    Article  Google Scholar 

    56.
    Saracco, F., Di Clemente, R., Gabrielli, A. & Squartini, T. Detecting early signs of the 2007–2008 crisis in the world trade. Sci Rep. 6, 1–11 (2016).
    Article  CAS  Google Scholar 

    57.
    Saracco, F., Di Clemente, R., Gabrielli, A. & Squartini, T. Randomizing bipartite networks: The case of the world trade web. Sci Rep. 5, 1–18 (2015).
    Article  CAS  Google Scholar 

    58.
    Sporns, O. & Kötter, R. Motifs in brain networks. PloS Biol. 2, 11 (2004).
    Article  CAS  Google Scholar 

    59.
    Alon, U. Network motifs: Theory and experimental approaches. Nat. Rev. Genet. 8, 450–461 (2007).
    CAS  PubMed  Article  Google Scholar 

    60.
    May, R. M. Stability and Complexity in Model Ecosystems (Princeton University Press, Princeton, 2019).
    Google Scholar 

    61.
    Gardner, M. R. & Ashby, W. R. Connectance of large dynamic (cybernetic) systems: Critical values for stability. Nature 228, 784–784 (1970).
    ADS  CAS  PubMed  Article  Google Scholar 

    62.
    Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N. & Barabási, A. L. Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002).
    ADS  CAS  PubMed  Article  Google Scholar 

    63.
    Bulloch, B. & Sullivan, J. Information—the key to the real estate development process. Cornell Real Estate Rev. 8, 78–87 (2010).
    Google Scholar 

    64.
    Scheurmann, E. & Atkinson, L. Strategy Development Process for Meat & Livestock Australia. In Design Structure Matrix Methods and Applications (eds Eppinger, S. D. & Browning, T. R.) 164–168 (MIT press, Cambridge, 2012).
    Google Scholar 

    65.
    Osborne, S.M. Product Development Cycle Time Characterization Through Modeling of Process Iteration. Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA. (1993).

    66.
    Scheurmann, E. & Samuel, D. Bioscience Facility at University of Melbourne. In Design Structure Matrix Methods and Applications (eds Eppinger, S. D. & Browning, T. R.) 155–159 (MIT press, Cambridge, 2012).
    Google Scholar 

    67.
    Yassine, A., Whitney, D. & Zambito, T. Assessment of rework probabilities for design structure matrix (DSM) simulation in product development management in 13thInternational Conference on Design Theory and Methodology (ASME, 2001).

    68.
    Tripathy, A. & Eppinger, S. Dover Motion Precision Systems Development Process. In Design structure matrix methods and applications (eds Eppinger, S. D. & Browning, T. R.) 192–195 (MIT press, Cambridge, 2012).
    Google Scholar 

    69.
    Tukey, J. W. Exploratory Data Analysis (Addison-Wesley, Boston, 1977).
    Google Scholar 

    70.
    Zar, J. H. Biostatistical Analysis (Prentice Hall, New Jersey, 2010).
    Google Scholar 

    71.
    Kleiner, B. & Graedel, T. E. Exploratory data analysis in the geophysical sciences. Rev. Geophys. 18, 699–717 (1980).
    ADS  Article  Google Scholar 

    72.
    Williamson, D. F., Parker, R. A. & Kendrick, J. S. The box plot: a simple visual method to interpret data. Ann. Intern. Med. 110, 916–921 (1989).
    CAS  PubMed  Article  Google Scholar 

    73.
    Ray, A., Rakshit, S., Basak, G. K., Dana, S. K. & Ghosh, D. Understanding the origin of extreme events in El Niño southern oscillation. Phys. Rev. E 101, 062210 (2020).
    ADS  MathSciNet  PubMed  Article  Google Scholar 

    74.
    Törnqvist, L., Vartia, P. & Vartia, Y. O. How should relative changes be measured?. Am. Stat. 39, 43–46 (1985).
    Google Scholar 

    75.
    Braha, D. & Bar-Yam, Y. From centrality to temporary fame: Dynamic centrality in complex networks. Complexity. 12, 59–63 (2006).
    Article  Google Scholar 

    76.
    Braha, D. & Bar-Yam, Y. Time-dependent complex networks: Dynamic centrality, dynamic motifs, and cycles of social interactions. In Adaptive Networks (eds Gross, T. & Hiroki, S.) 39–50 (Springer, Berlin, 2009).
    Google Scholar 

    77.
    Bassok, M. & Novick, L. R. Problem Solving. In The Oxford Handbook of Thinking and Reasoning (eds Holyoak, K. J. & Morrison, R. G.) 413–429 (Oxford University Press, Oxford, 2012).
    Google Scholar 

    78.
    Nelson, R. R. & Winter, S. G. An Evolutionary Theory of Economic Change (Harvard University Press, Cambridge, 1982).
    Google Scholar 

    79.
    Becker, M. C. Organizational routines: A review of the literature. Ind. Corpor. Change. 13, 643–678 (2004).
    Article  Google Scholar 

    80.
    Pentland, B. T., Hærem, T. & Hillison, D. The (n)ever-changing world: Stability and change in organizational routines. Organ. Sci. 22, 1369–1383 (2011).
    Article  Google Scholar 

    81.
    Feldman, M. S. & Pentland, B. T. Reconceptualizing organizational routines as a source of flexibility and change. Adm. Sci. Q. 48, 94–118 (2003).
    Article  Google Scholar  More

  • in

    The fingerprints of climate warming on cereal crops phenology and adaptation options

    1.
    Sarwar, M. H., Sarwar, M. F., Sarwar, M., Qadri, N. A. & Moghal, S. The importance of cereals (Poaceae: Gramineae) nutrition in human health: a review. J. Cereals Oilseeds 4, 32–35 (2013).
    Article  Google Scholar 
    2.
    Ranjan, R. & Yadav, R. Targeting nitrogen use efficiency for sustained production of cereal crops. J. Plant Nutr. 42, 1086–1113. https://doi.org/10.1080/01904167.2019.1589497 (2019).
    CAS  Article  Google Scholar 

    3.
    Sofi, F. et al. Health and nutrition studies related to cereal biodiversity: a participatory multi-actor literature review approach. Nutrients 10, 1207 (2018).
    Article  Google Scholar 

    4.
    Stewart, B. A. & Lal, R. In Advances in Agronomy Vol. 151 (ed Donald L. Sparks) 1–44 (Academic Press, 2018).

    5.
    Sadras, V. et al. In Advances in Agronomy Vol. 163 (ed Donald L. Sparks) 153–177 (Academic Press, 2020).

    6.
    Yu, S. & Tian, L. Breeding major cereal grains through the lens of nutrition sensitivity. Mol. Plant 11, 23–30. https://doi.org/10.1016/j.molp.2017.08.006 (2018).
    CAS  Article  PubMed  Google Scholar 

    7.
    Wang, J., Vanga, S., Saxena, R., Orsat, V. & Raghavan, V. Effect of climate change on the yield of cereal crops: a review. Climate 6, 41 (2018).
    Article  Google Scholar 

    8.
    Chmielewski, F.-M., Müller, A. & Bruns, E. Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000. Agric. For. Meteorol. 121, 69–78. https://doi.org/10.1016/S0168-1923(03)00161-8 (2004).
    ADS  Article  Google Scholar 

    9.
    Price, R. K. & Welch, R. W. In Encyclopedia of Human Nutrition (3rd Edn) (ed Benjamin Caballero) 307–316 (Academic Press, 2013).

    10.
    McKevith, B. Nutritional aspects of cereals. Nutr. Bull. 29, 111–142. https://doi.org/10.1111/j.1467-3010.2004.00418.x (2004).
    Article  Google Scholar 

    11.
    Wang, H. L. et al. Phenological trends in winter wheat and spring cotton in response to climate changes in northwest China. Agric. For. Meteorol. 148, 1242–1251. https://doi.org/10.1016/j.agrformet.2008.03.003 (2008).
    ADS  Article  Google Scholar 

    12.
    Chen, X. et al. Does any phenological event defined by remote sensing deserve particular attention? An examination of spring phenology of winter wheat in Northern China. Ecol. Ind. 116, 106456. https://doi.org/10.1016/j.ecolind.2020.106456 (2020).
    Article  Google Scholar 

    13.
    Li, Y., Hou, R. & Tao, F. Interactive effects of different warming levels and tillage managements on winter wheat growth, physiological processes, grain yield and quality in the North China Plain. Agr. Ecosyst. Environ. 295, 106923. https://doi.org/10.1016/j.agee.2020.106923 (2020).
    CAS  Article  Google Scholar 

    14.
    Li, Z. et al. Response of maize phenology to climate warming in Northeast China between 1990 and 2012. Reg. Environ. Change 14, 39–48. https://doi.org/10.1007/s10113-013-0503-x (2014).
    CAS  Article  Google Scholar 

    15.
    Rojas-Downing, M. M., Nejadhashemi, A. P., Harrigan, T. & Woznicki, S. A. Climate change and livestock: impacts, adaptation, and mitigation. Clim. Risk Manag. 16, 145–163. https://doi.org/10.1016/j.crm.2017.02.001 (2017).
    Article  Google Scholar 

    16.
    Akram, R. et al. In Advances in Rice Research for Abiotic Stress Tolerance (eds Hasanuzzaman, M. et al.) 69–85 (Woodhead Publishing, 2019).

    17.
    Farooq, M., Hussain, M., Wakeel, A. & Siddique, K. H. M. Salt stress in maize: effects, resistance mechanisms, and management. A review. Agron. Sustain. Dev. 35, 461–481. https://doi.org/10.1007/s13593-015-0287-0 (2015).
    CAS  Article  Google Scholar 

    18.
    Farooq, M., Hussain, M. & Siddique, K. H. M. Drought stress in wheat during flowering and grain-filling periods. Crit. Rev. Plant Sci. 33, 331–349. https://doi.org/10.1080/07352689.2014.875291 (2014).
    CAS  Article  Google Scholar 

    19.
    Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. & Basra, S. M. A. Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 29, 185–212. https://doi.org/10.1051/agro:2008021 (2009).
    Article  Google Scholar 

    20.
    Hussain, J., Khaliq, T., Ahmad, A., Akhter, J. & Asseng, S. Wheat responses to climate change and its adaptations: a focus on arid and semi-arid environment. Int. J. Environ. Res. https://doi.org/10.1007/s41742-018-0074-2 (2018).
    Article  Google Scholar 

    21.
    Hussain, M. et al. In Advances in Agronomy Vol. 148 (ed Donald L. Sparks) 231–287 (Academic Press, 2018).

    22.
    Dyer, G. A., López-Feldman, A., Yúnez-Naude, A. & Taylor, J. E. Genetic erosion in maize’s center of origin. Proc. Natl. Acad. Sci. 111, 14094–14099. https://doi.org/10.1073/pnas.1407033111 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    23.
    Nicholson, S. E., Funk, C. & Fink, A. H. Rainfall over the African continent from the 19th through the 21st century. Global Planet. Change 165, 114–127. https://doi.org/10.1016/j.gloplacha.2017.12.014 (2018).
    ADS  Article  Google Scholar 

    24.
    Pour, S. H., Wahab, A. K. A. & Shahid, S. Spatiotemporal changes in aridity and the shift of drylands in Iran. Atmos. Res. 233, 104704. https://doi.org/10.1016/j.atmosres.2019.104704 (2020).
    Article  Google Scholar 

    25.
    Sadras, V. O. & Monzon, J. P. Modelled wheat phenology captures rising temperature trends: shortened time to flowering and maturity in Australia and Argentina. Field Crops Res. 99, 136–146. https://doi.org/10.1016/j.fcr.2006.04.003 (2006).
    Article  Google Scholar 

    26.
    Menzel, A. et al. European phenological response to climate change matches the warming pattern. Glob. Change Biol. 12, 1969–1976. https://doi.org/10.1111/j.1365-2486.2006.01193.x (2006).
    ADS  Article  Google Scholar 

    27.
    Liu, Y., Qin, Y., Ge, Q., Dai, J. & Chen, Q. Reponses and sensitivities of maize phenology to climate change from 1981 to 2009 in Henan Province, China. J. Geogr. Sci. 27, 1072–1084. https://doi.org/10.1007/s11442-017-1422-4 (2017).
    Article  Google Scholar 

    28.
    Liu, L. et al. Uncertainty in wheat phenology simulation induced by cultivar parameterization under climate warming. Eur. J. Agron. 94, 46–53. https://doi.org/10.1016/j.eja.2017.12.001 (2018).
    Article  Google Scholar 

    29.
    Ye, Z. et al. Impacts of 1.5°C and 2.0°C global warming above pre-industrial on potential winter wheat production of China. Eur. J. Agron. 120, 126149. https://doi.org/10.1016/j.eja.2020.126149 (2020).
    Article  Google Scholar 

    30.
    Kawakita, S., Takahashi, H. & Moriya, K. Prediction and parameter uncertainty for winter wheat phenology models depend on model and parameterization method differences. Agric. For. Meteorol. 290, 107998. https://doi.org/10.1016/j.agrformet.2020.107998 (2020).
    ADS  Article  Google Scholar 

    31.
    Ahmed, K., Shabbir, G., Ahmed, M. & Shah, K. N. Phenotyping for drought resistance in bread wheat using physiological and biochemical traits. Sci. Total Environ. 729, 139082. https://doi.org/10.1016/j.scitotenv.2020.139082 (2020).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    32.
    Ahmed, M., Aslam, M. A., Fayyaz-Ul, H., Hayat, R. & Ahmad, S. Biochemical, physiological and agronomic response of wheat to changing climate of rainfed Pakistan. Pak. J. Bot 51, 535–551. https://doi.org/10.30848/PJB2019-2(10) (2019).
    CAS  Article  Google Scholar 

    33.
    Tamburino, L., Bravo, G., Clough, Y. & Nicholas, K. A. From population to production: 50 years of scientific literature on how to feed the world. Global Food Secur. 24, 100346. https://doi.org/10.1016/j.gfs.2019.100346 (2020).
    Article  Google Scholar 

    34.
    Gomez-Zavaglia, A., Mejuto, J. C. & Simal-Gandara, J. Mitigation of emerging implications of climate change on food production systems. Food Res. Int. 134, 109256. https://doi.org/10.1016/j.foodres.2020.109256 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    35.
    Wreford, A. & Topp, C. F. E. Impacts of climate change on livestock and possible adaptations: a case study of the United Kingdom. Agric. Syst. 178, 102737. https://doi.org/10.1016/j.agsy.2019.102737 (2020).
    Article  Google Scholar 

    36.
    Hu, Q., Weiss, A., Feng, S. & Baenziger, P. S. Earlier winter wheat heading dates and warmer spring in the U.S. Great Plains. Agric. For. Meteorol. 135, 284–290. https://doi.org/10.1016/j.agrformet.2006.01.001 (2005).
    ADS  Article  Google Scholar 

    37.
    He, L., Jin, N. & Yu, Q. Impacts of climate change and crop management practices on soybean phenology changes in China. Sci. Total Environ. 707, 135638. https://doi.org/10.1016/j.scitotenv.2019.135638 (2020).
    ADS  CAS  Article  PubMed  Google Scholar 

    38.
    Tao, F., Yokozawa, M., Liu, J. & Zhang, Z. Climate-crop yield relationships at provincial scales in China and the impacts of recent climate trends. Climate Res. 38, 83–94 (2008).
    ADS  Article  Google Scholar 

    39.
    Estrella, N., Sparks, T. H. & Menzel, A. Effects of temperature, phase type and timing, location, and human density on plant phenological responses in Europe. Climate Res. 39, 235–248 (2009).
    ADS  Article  Google Scholar 

    40.
    Ahmed, M., Fayyaz-ul-Hassan & Ahmad, S. In Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability (eds Ahmed, M. & Claudio O. Stockle) 91–111 (Springer International Publishing, 2017).

    41.
    García-Mozo, H., Mestre, A. & Galán, C. Phenological trends in southern Spain: a response to climate change. Agric. For. Meteorol. 150, 575–580. https://doi.org/10.1016/j.agrformet.2010.01.023 (2010).
    ADS  Article  Google Scholar 

    42.
    Wu, D. et al. Measured phenology response of unchanged crop varieties to long-term historical climate change. Int. J. Plant Prod. 13, 47–58. https://doi.org/10.1007/s42106-018-0033-z (2019).
    Article  Google Scholar 

    43.
    Sujetovienė, G. et al. Climate-change-related long-term historical and projected changes to spring barley phenological development in Lithuania. J. Agric. Sci. 156, 1061–1069. https://doi.org/10.1017/S0021859618000904 (2019).
    Article  Google Scholar 

    44.
    Ahmad, A. et al. In Handbook of Climate Change and Agroecosystems Vol. 3 (eds Rosenzweig, C. & Hillel, D.) 219–258 (World Scientific 2015).

    45.
    Tsimba, R., Edmeades, G. O., Millner, J. P. & Kemp, P. D. The effect of planting date on maize: phenology, thermal time durations and growth rates in a cool temperate climate. Field Crops Res. 150, 145–155. https://doi.org/10.1016/j.fcr.2013.05.021 (2013).
    Article  Google Scholar 

    46.
    Bai, H., Tao, F., Xiao, D., Liu, F. & Zhang, H. Attribution of yield change for rice-wheat rotation system in China to climate change, cultivars and agronomic management in the past three decades. Clim. Change 135, 539–553. https://doi.org/10.1007/s10584-015-1579-8 (2016).
    ADS  Article  Google Scholar 

    47.
    Shim, D., Lee, K.-J. & Lee, B.-W. Response of phenology- and yield-related traits of maize to elevated temperature in a temperate region. Crop J. 5, 305–316. https://doi.org/10.1016/j.cj.2017.01.004 (2017).
    Article  Google Scholar 

    48.
    Yang, J. et al. Yield-maturity relationships of summer maize from 2003 to 2017 in the Huanghuaihai plain of China. Sci. Rep. 9, 11417. https://doi.org/10.1038/s41598-019-47561-2 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    49.
    Teller, A. S. Moving the conversation on climate change and inequality to the local: socio-ecological vulnerability in agricultural Tanzania. Soc. Dev. 2, 25–50. https://doi.org/10.1525/sod.2016.2.1.25 (2016).
    Article  Google Scholar 

    50.
    Tao, F., Zhang, S. & Zhang, Z. Spatiotemporal changes of wheat phenology in China under the effects of temperature, day length and cultivar thermal characteristics. Eur. J. Agron. 43, 201–212. https://doi.org/10.1016/j.eja.2012.07.005 (2012).
    Article  Google Scholar 

    51.
    Shi, W., Wang, M. & Liu, Y. Crop yield and production responses to climate disasters in China. Sci. Total Environ. 750, 141147. https://doi.org/10.1016/j.scitotenv.2020.141147 (2021).
    ADS  CAS  Article  Google Scholar 

    52.
    Siebert, S. & Ewert, F. Spatio-temporal patterns of phenological development in Germany in relation to temperature and day length. Agric. For. Meteorol. 152, 44–57. https://doi.org/10.1016/j.agrformet.2011.08.007 (2012).
    ADS  Article  Google Scholar 

    53.
    Porter, J. R. & Gawith, M. Temperatures and the growth and development of wheat: a review. Eur. J. Agron. 10, 23–36. https://doi.org/10.1016/S1161-0301(98)00047-1 (1999).
    Article  Google Scholar 

    54.
    McMaster, G. S. & Wilhelm, W. W. Growing degree-days: one equation, two interpretations. Agric. For. Meteorol. 87, 291–300. https://doi.org/10.1016/S0168-1923(97)00027-0 (1997).
    ADS  Article  Google Scholar 

    55.
    Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A. & Schwartz, M. D. Shifting plant phenology in response to global change. Trends Ecol. Evol. 22, 357–365. https://doi.org/10.1016/j.tree.2007.04.003 (2007).
    Article  PubMed  Google Scholar 

    56.
    Xiao, D. et al. Impact of warming climate and cultivar change on maize phenology in the last three decades in North China Plain. Theor. Appl. Climatol. 124, 653–661. https://doi.org/10.1007/s00704-015-1450-x (2016).
    ADS  Article  Google Scholar 

    57.
    Craufurd, P. Q. & Wheeler, T. R. Climate change and the flowering time of annual crops. J. Exp. Bot. 60, 2529–2539. https://doi.org/10.1093/jxb/erp196 (2009).
    CAS  Article  PubMed  Google Scholar 

    58.
    van Bussel, L. G. J., Ewert, F. & Leffelaar, P. A. Effects of data aggregation on simulations of crop phenology. Agric. Ecosyst. Environ. 142, 75–84. https://doi.org/10.1016/j.agee.2010.03.019 (2011).
    Article  Google Scholar 

    59.
    van Oort, P. A. J., Zhang, T., de Vries, M. E., Heinemann, A. B. & Meinke, H. Correlation between temperature and phenology prediction error in rice (Oryza sativa L.). Agric. For. Meteorol. 151, 1545–1555. https://doi.org/10.1016/j.agrformet.2011.06.012 (2011).
    ADS  Article  Google Scholar 

    60.
    Rezaei, E. E., Siebert, S., Hüging, H. & Ewert, F. Climate change effect on wheat phenology depends on cultivar change. Sci. Rep. 8, 4891. https://doi.org/10.1038/s41598-018-23101-2 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    61.
    Croitoru, A.-E., Holobaca, I.-H., Lazar, C., Moldovan, F. & Imbroane, A. Air temperature trend and the impact on winter wheat phenology in Romania. Clim. Change 111, 393–410. https://doi.org/10.1007/s10584-011-0133-6 (2012).
    ADS  Article  Google Scholar 

    62.
    Hussain, M., Shabir, G., Farooq, M., Jabran, K. & Farooq, S. Developmental and phenological responses of wheat to sowing dates. Pak. J. Agri. Sci 49, 459–468 (2012).
    Google Scholar 

    63.
    Zhang, S. & Tao, F. Modeling the response of rice phenology to climate change and variability in different climatic zones: comparisons of five models. Eur. J. Agron. 45, 165–176. https://doi.org/10.1016/j.eja.2012.10.005 (2013).
    Article  Google Scholar 

    64.
    Yue, Y. et al. Prediction of maize growth stages based on deep learning. Comput. Electron. Agric. 172, 105351. https://doi.org/10.1016/j.compag.2020.105351 (2020).
    Article  Google Scholar 

    65.
    Luo, Q. Temperature thresholds and crop production: a review. Clim. Change 109, 583–598. https://doi.org/10.1007/s10584-011-0028-6 (2011).
    ADS  Article  Google Scholar 

    66.
    Ramirez-Villegas, J., Challinor, A. J., Thornton, P. K. & Jarvis, A. Implications of regional improvement in global climate models for agricultural impact research. Environ. Res. Lett. 8, 024018. https://doi.org/10.1088/1748-9326/8/2/024018 (2013).
    ADS  Article  Google Scholar 

    67.
    Luo, Q., Bange, M. & Clancy, L. Cotton crop phenology in a new temperature regime. Ecol. Model. 285, 22–29. https://doi.org/10.1016/j.ecolmodel.2014.04.018 (2014).
    Article  Google Scholar 

    68.
    Pulatov, B., Linderson, M.-L., Hall, K. & Jönsson, A. M. Modeling climate change impact on potato crop phenology, and risk of frost damage and heat stress in northern Europe. Agric. For. Meteorol. 214–215, 281–292. https://doi.org/10.1016/j.agrformet.2015.08.266 (2015).
    ADS  Article  Google Scholar 

    69.
    Hatfield, J. L. & Dold, C. Climate change impacts on corn phenology and productivity. Corn: Production and Human Health in Changing Climate, 95 (2018).

    70.
    Zhang, T., Huang, Y. & Yang, X. Climate warming over the past three decades has shortened rice growth duration in China and cultivar shifts have further accelerated the process for late rice. Glob. Change Biol. 19, 563–570. https://doi.org/10.1111/gcb.12057 (2013).
    ADS  Article  Google Scholar 

    71.
    Lin, Y. et al. Potential impacts of climate change and adaptation on maize in northeast China. Agron. J. 109, 1476–1490 (2017).
    Article  Google Scholar 

    72.
    Wang, N. et al. Modelling maize phenology, biomass growth and yield under contrasting temperature conditions. Agric. For. Meteorol. 250–251, 319–329. https://doi.org/10.1016/j.agrformet.2018.01.005 (2018).
    ADS  Article  Google Scholar 

    73.
    Ge, Q., Wang, H., Rutishauser, T. & Dai, J. Phenological response to climate change in China: a meta-analysis. Glob. Change Biol. 21, 265–274 (2015).
    ADS  Article  Google Scholar 

    74.
    Srivastava, R. K., Panda, R. K. & Chakraborty, A. Assessment of climate change impact on maize yield and yield attributes under different climate change scenarios in eastern India. Ecol. Ind. 120, 106881. https://doi.org/10.1016/j.ecolind.2020.106881 (2021).
    Article  Google Scholar 

    75.
    Gordo, O. & Sanz, J. J. Phenology and climate change: a long-term study in a Mediterranean locality. Oecologia 146, 484–495. https://doi.org/10.1007/s00442-005-0240-z (2005).
    ADS  Article  PubMed  Google Scholar 

    76.
    Brown, M. E., de Beurs, K. M. & Marshall, M. Global phenological response to climate change in crop areas using satellite remote sensing of vegetation, humidity and temperature over 26years. Remote Sens. Environ. 126, 174–183. https://doi.org/10.1016/j.rse.2012.08.009 (2012).
    ADS  Article  Google Scholar 

    77.
    Kim, Y.-U. & Lee, B.-W. Earlier planting offsets the adverse effect of global warming on spring potato in South Korea. Sci. Total Environ. 742, 140667. https://doi.org/10.1016/j.scitotenv.2020.140667 (2020).
    ADS  CAS  Article  PubMed  Google Scholar 

    78.
    Baum, M. E., Licht, M. A., Huber, I. & Archontoulis, S. V. Impacts of climate change on the optimum planting date of different maize cultivars in the central US Corn Belt. Eur. J. Agron. 119, 126101. https://doi.org/10.1016/j.eja.2020.126101 (2020).
    Article  Google Scholar 

    79.
    Menzel, A. et al. Climate change fingerprints in recent European plant phenology. Glob. Change Biol. 26, 2599–2612. https://doi.org/10.1111/gcb.15000 (2020).
    ADS  Article  Google Scholar 

    80.
    Menzel, A. Trends in phenological phases in Europe between 1951 and 1996. Int. J. Biometeorol. 44, 76–81. https://doi.org/10.1007/s004840000054 (2000).
    ADS  CAS  Article  PubMed  Google Scholar 

    81.
    Oteros, J., García-Mozo, H., Botey, R., Mestre, A. & Galán, C. Variations in cereal crop phenology in Spain over the last twenty-six years (1986–2012). Clim. Change 130, 545–558. https://doi.org/10.1007/s10584-015-1363-9 (2015).
    ADS  CAS  Article  Google Scholar 

    82.
    Wang, Y., Luo, Y. & Shafeeque, M. Interpretation of vegetation phenology changes using daytime and night-time temperatures across the Yellow River Basin, China. Sci. Total Environ. 693, 133553. https://doi.org/10.1016/j.scitotenv.2019.07.359 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 

    83.
    Moriondo, M. & Bindi, M. Impact of climate change on the phenology of typical Mediterranean crops. Italian J. Agrometeorol. 3, 5–12 (2007).
    Google Scholar 

    84.
    Anwar, M. R. et al. Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia. Agric. Syst. 132, 133–144. https://doi.org/10.1016/j.agsy.2014.09.010 (2015).
    ADS  Article  Google Scholar 

    85.
    Jackson, R. B. et al. Global energy growth is outpacing decarbonization. Environ. Res. Lett. 13, 120401. https://doi.org/10.1088/1748-9326/aaf303 (2018).
    ADS  CAS  Article  Google Scholar 

    86.
    Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194. https://doi.org/10.5194/essd-10-2141-2018 (2018).
    ADS  Article  Google Scholar 

    87.
    Balch, J. K. et al. Global combustion: the connection between fossil fuel and biomass burning emissions (1997–2010). Philos. Trans. R. Soc. B Biol. Sci. 371, 20150177. https://doi.org/10.1098/rstb.2015.0177 (2016).
    Article  Google Scholar 

    88.
    Ahmad, S. et al. Climate warming and management impact on the change of phenology of the rice-wheat cropping system in Punjab, Pakistan. Field Crops Res. 230, 46–61. https://doi.org/10.1016/j.fcr.2018.10.008 (2019).
    Article  Google Scholar 

    89.
    Ahmad, S. et al. Application of DSSAT Model for sowing date management of C 4 summer cereals for fodder and grain crops under irrigated arid environment. Pakistan J. Life Soc. Sci. 14 (2016).

    90.
    Hatfield, J. L. & Prueger, J. H. Temperature extremes: effect on plant growth and development. Weather Clim. Extremes 10, 4–10. https://doi.org/10.1016/j.wace.2015.08.001 (2015).
    Article  Google Scholar 

    91.
    Aslam, M. A. et al. Can growing degree days and photoperiod predict spring wheat phenology?. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2017.00057 (2017).
    Article  Google Scholar 

    92.
    Zhang, L., Zhang, Z., Luo, Y., Cao, J. & Li, Z. Optimizing genotype-environment-management interactions for maize farmers to adapt to climate change in different agro-ecological zones across China. Sci. Total Environ. 728, 138614. https://doi.org/10.1016/j.scitotenv.2020.138614 (2020).
    ADS  CAS  Article  PubMed  Google Scholar 

    93.
    Tryjanowski, P. et al. Changing phenology of potato and of the treatment for its major pest (colorado potato beetle)—a long-term analysis. Am. J. Potato Res. https://doi.org/10.1007/s12230-017-9611-3 (2017).
    Article  Google Scholar 

    94.
    Ahmad, S. et al. Quantification of climate warming and crop management impacts on cotton phenology. Plants (Basel) 6, 7. https://doi.org/10.3390/plants6010007 (2017).
    Article  Google Scholar 

    95.
    Huang, J. & Ji, F. Effects of climate change on phenological trends and seed cotton yields in oasis of arid regions. Int. J. Biometeorol. 59, 877–888. https://doi.org/10.1007/s00484-014-0904-7 (2015).
    ADS  Article  PubMed  Google Scholar 

    96.
    Wang, Z. et al. Response of cotton phenology to climate change on the North China Plain from 1981 to 2012. Sci. Rep. 7, 6628. https://doi.org/10.1038/s41598-017-07056-4 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    97.
    Srivastava, A., NareshKumar, S. & Aggarwal, P. K. Assessment on vulnerability of sorghum to climate change in India. Agric. Ecosyst. Environ. 138, 160–169. https://doi.org/10.1016/j.agee.2010.04.012 (2010).
    Article  Google Scholar 

    98.
    Sultan, B. et al. Robust features of future climate change impacts on sorghum yields in West Africa. Environ. Res. Lett. 9, 104006. https://doi.org/10.1088/1748-9326/9/10/104006 (2014).
    ADS  CAS  Article  Google Scholar 

    99.
    Shew, A. M., Tack, J. B., Nalley, L. L. & Chaminuka, P. Yield reduction under climate warming varies among wheat cultivars in South Africa. Nat. Commun. 11, 4408. https://doi.org/10.1038/s41467-020-18317-8 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    100.
    Sonkar, G. et al. Vulnerability of Indian wheat against rising temperature and aerosols. Environ. Pollut. 254, 112946. https://doi.org/10.1016/j.envpol.2019.07.114 (2019).
    CAS  Article  PubMed  Google Scholar 

    101.
    Fatima, Z. et al. Quantification of climate warming and crop management impacts on phenology of pulses-based cropping systems. Int. J. Plant Prod. https://doi.org/10.1007/s42106-020-00112-6 (2020).
    Article  Google Scholar 

    102.
    Liu, Y., Qin, Y., Wang, H., Lv, S. & Ge, Q. Trends in maize (Zea mays L.) phenology and sensitivity to climate factors in China from 1981 to 2010. Int J Biometeorol 64, 461–470. https://doi.org/10.1007/s00484-019-01832-9 (2020).
    Article  PubMed  Google Scholar 

    103.
    Zhou, X. et al. Legacy effect of spring phenology on vegetation growth in temperate China. Agric. For. Meteorol. 281, 107845. https://doi.org/10.1016/j.agrformet.2019.107845 (2020).
    ADS  Article  Google Scholar 

    104.
    Das, S., Kumar, A., Barman, M., Pal, S. & Bandopadhyay, P. In Agronomic Crops: Volume 3: Stress Responses and Tolerance (ed. Hasanuzzaman, M.) 13–28 (Springer Singapore, 2020).

    105.
    Xiao, D., Liu, D. L., Wang, B., Feng, P. & Waters, C. Designing high-yielding maize ideotypes to adapt changing climate in the North China Plain. Agric. Syst. 181, 102805. https://doi.org/10.1016/j.agsy.2020.102805 (2020).
    Article  Google Scholar 

    106.
    Liu, Y. et al. Impacts of 1.5 and 2.0°C global warming on rice production across China. Agric. For. Meteorol. 284, 107900. https://doi.org/10.1016/j.agrformet.2020.107900 (2020).
    ADS  Article  Google Scholar 

    107.
    Rani, B. A. & Maragatham, N. Effect of elevated temperature on rice phenology and yield. Indian J. Sci. Technol. 6, 5095–5097 (2013).
    Google Scholar 

    108.
    Shrestha, S. et al. Phenological responses of upland rice grown along an altitudinal gradient. Environ. Exp. Bot. 89, 1–10. https://doi.org/10.1016/j.envexpbot.2012.12.007 (2013).
    Article  Google Scholar 

    109.
    Abbas, G. et al. Quantification the impacts of climate change and crop management on phenology of maize-based cropping system in Punjab, Pakistan. Agric. For. Meteorol. 247, 42–55. https://doi.org/10.1016/j.agrformet.2017.07.012 (2017).
    ADS  Article  Google Scholar 

    110.
    Estrella, N., Sparks, T. H. & Menzel, A. Trends and temperature response in the phenology of crops in Germany. Glob. Change Biol. 13, 1737–1747. https://doi.org/10.1111/j.1365-2486.2007.01374.x (2007).
    ADS  Article  Google Scholar 

    111.
    Li, K. et al. Effects of changing climate and cultivar on the phenology and yield of winter wheat in the North China Plain. Int. J. Biometeorol. 60, 21–32. https://doi.org/10.1007/s00484-015-1002-1 (2016).
    ADS  Article  PubMed  Google Scholar 

    112.
    He, D. et al. Uncertainty in canola phenology modelling induced by cultivar parameterization and its impact on simulated yield. Agric. For. Meteorol. 232, 163–175. https://doi.org/10.1016/j.agrformet.2016.08.013 (2017).
    ADS  Article  Google Scholar 

    113.
    Wei, W., Wu, W., Li, Z., Yang, P. & Zhou, Q. Selecting the optimal ndvi time-series reconstruction technique for crop phenology detection. Intell. Autom. Soft Comput. 22, 237–247. https://doi.org/10.1080/10798587.2015.1095482 (2016).
    Article  Google Scholar 

    114.
    Chakraborty, A., Das, P. K., Sai, M. V. R. S. & Behera, G. Spatial pattern of temporal trend of crop phenology matrices over india using timeseries gimms NDVI data (19826ndash;2006). ISPRS Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 3820, 113–118 (2012).
    Article  Google Scholar 

    115.
    Komal, C., Shi, W., Boori, M. S. & Corgne, S. Agriculture phenology monitoring using NDVI time series based on remote sensing satellites: a case study of Guangdong, China. Opt. Mem. Neural Netw. 28, 204–214. https://doi.org/10.3103/S1060992X19030093 (2019).
    Article  Google Scholar 

    116.
    Liu, Y., Chen, Q., Ge, Q. & Dai, J. Spatiotemporal differentiation of changes in wheat phenology in China under climate change from 1981 to 2010. Sci. China Earth Sci. 61, 1088–1097. https://doi.org/10.1007/s11430-017-9149-0 (2018).
    ADS  Article  Google Scholar 

    117.
    Xiao, D. et al. Observed changes in winter wheat phenology in the North China Plain for 1981–2009. Int. J. Biometeorol. 57, 275–285. https://doi.org/10.1007/s00484-012-0552-8 (2013).
    ADS  Article  PubMed  Google Scholar 

    118.
    Hossain, A., da Silva Teixeira, J. A., Lozovskaya, M. V. & Zvolinsky, V. P. High temperature combined with drought affect rainfed spring wheat and barley in South-Eastern Russia: I. Phenology and growth. Saudi J. Biol. Sci. 19, 473–487. https://doi.org/10.1016/j.sjbs.2012.07.005 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    119.
    Martínez-Núñez, M. et al. The phenological growth stages of different amaranth species grown in restricted spaces based in BBCH code. South African J. Bot. 124, 436–443. https://doi.org/10.1016/j.sajb.2019.05.035 (2019).
    Article  Google Scholar 

    120.
    Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. 114, 9326–9331. https://doi.org/10.1073/pnas.1701762114 (2017).
    CAS  Article  PubMed  Google Scholar 

    121.
    Li, T. et al. Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Glob. Change Biol. 21, 1328–1341. https://doi.org/10.1111/gcb.12758 (2015).
    ADS  CAS  Article  Google Scholar 

    122.
    Subash, N. & Ram Mohan, H. S. Evaluation of the impact of climatic trends and variability in rice–wheat system productivity using Cropping System Model DSSAT over the Indo-Gangetic Plains of India. Agric. For. Meteorol. 164, 71–81. https://doi.org/10.1016/j.agrformet.2012.05.008 (2012).
    ADS  Article  Google Scholar 

    123.
    Tian, D. et al. Does decadal climate variation influence wheat and maize production in the southeast USA?. Agric. For. Meteorol. 204, 1–9. https://doi.org/10.1016/j.agrformet.2015.01.013 (2015).
    ADS  Article  Google Scholar 

    124.
    Quiring, S. M. & Legates, D. R. Application of CERES-Maize for within-season prediction of rainfed corn yields in Delaware, USA. Agric. For. Meteorol. 148, 964–975. https://doi.org/10.1016/j.agrformet.2008.01.009 (2008).
    ADS  Article  Google Scholar 

    125.
    Blecharczyk, A., Sawinska, Z., Małecka, I., Sparks, T. H. & Tryjanowski, P. The phenology of winter rye in Poland: an analysis of long-term experimental data. Int. J. Biometeorol. 60, 1341–1346. https://doi.org/10.1007/s00484-015-1127-2 (2016).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    126.
    Luo, Q., O’Leary, G., Cleverly, J. & Eamus, D. Effectiveness of time of sowing and cultivar choice for managing climate change: wheat crop phenology and water use efficiency. Int. J. Biometeorol. 62, 1049–1061. https://doi.org/10.1007/s00484-018-1508-4 (2018).
    ADS  Article  PubMed  Google Scholar 

    127.
    He, L. et al. Impacts of recent climate warming, cultivar changes, and crop management on winter wheat phenology across the Loess Plateau of China. Agric. For. Meteorol. 200, 135–143. https://doi.org/10.1016/j.agrformet.2014.09.011 (2015).
    ADS  Article  Google Scholar 

    128.
    Wang, J., Wang, E., Feng, L., Yin, H. & Yu, W. Phenological trends of winter wheat in response to varietal and temperature changes in the North China Plain. Field Crops Res. 144, 135–144. https://doi.org/10.1016/j.fcr.2012.12.020 (2013).
    CAS  Article  Google Scholar 

    129.
    Zheng, Z., Cai, H., Wang, Z. & Wang, X. Simulation of climate change impacts on phenology and production of winter wheat in Northwestern China using CERES-wheat model. Atmosphere 11, 681 (2020).
    ADS  Article  Google Scholar 

    130.
    Hyles, J., Bloomfield, M. T., Hunt, J. R., Trethowan, R. M. & Trevaskis, B. Phenology and related traits for wheat adaptation. Heredity https://doi.org/10.1038/s41437-020-0320-1 (2020).
    Article  PubMed  Google Scholar 

    131.
    Li, Q.-Y. et al. Determination of optimum growing degree-days (GDD) range before winter for wheat cultivars with different growth characteristics in North China Plain. J. Integr. Agric. 11, 405–415. https://doi.org/10.1016/S2095-3119(12)60025-2 (2012).
    Article  Google Scholar 

    132.
    Herndl, M., Shan, C.-G., Wang, P., Graeff, S. & Claupein, W. A model based ideotyping approach for wheat under different environmental conditions in North China Plain. Agric. Sci. China 6, 1426–1436. https://doi.org/10.1016/S1671-2927(08)60004-8 (2007).
    Article  Google Scholar 

    133.
    Asseng, S., Turner, N. C., Ray, J. D. & Keating, B. A. A simulation analysis that predicts the influence of physiological traits on the potential yield of wheat. Eur. J. Agron. 17, 123–141. https://doi.org/10.1016/S1161-0301(01)00149-6 (2002).
    Article  Google Scholar 

    134.
    Rezaei, E. E., Siebert, S. & Ewert, F. Intensity of heat stress in winter wheat—phenology compensates for the adverse effect of global warming. Environ. Res. Lett. 10, 024012 (2015).
    ADS  Article  Google Scholar 

    135.
    Eyshi Rezaei, E., Siebert, S. & Ewert, F. Climate and management interaction cause diverse crop phenology trends. Agric. For. Meteorol. 233, 55–70. https://doi.org/10.1016/j.agrformet.2016.11.003 (2017).
    ADS  Article  Google Scholar 

    136.
    Wang, Y., Zhang, J., Song, G., Long, Z. & Chen, C. Impacts of recent temperatures rise on double-rice phenology across Southern China. Int. J. Plant Prod. 13, 1–10. https://doi.org/10.1007/s42106-018-0029-8 (2019).
    Article  Google Scholar 

    137.
    Hu, X., Huang, Y., Sun, W. & Yu, L. Shifts in cultivar and planting date have regulated rice growth duration under climate warming in China since the early 1980s. Agric. For. Meteorol. 247, 34–41. https://doi.org/10.1016/j.agrformet.2017.07.014 (2017).
    ADS  Article  Google Scholar 

    138.
    Zhang, S., Tao, F. & Zhang, Z. Rice reproductive growth duration increased despite of negative impacts of climate warming across China during 1981–2009. Eur. J. Agron. 54, 70–83. https://doi.org/10.1016/j.eja.2013.12.001 (2014).
    CAS  Article  Google Scholar 

    139.
    Bai, H. & Xiao, D. Spatiotemporal changes of rice phenology in China during 1981–2010. Theor Appl Climatol 140, 1483–1494. https://doi.org/10.1007/s00704-020-03182-8 (2020).
    ADS  Article  Google Scholar 

    140.
    Abbas, G. et al. Sowing date and hybrid choice matters production of maize-maize system. Int. J. Plant Prod. https://doi.org/10.1007/s42106-020-00104-6 (2020).
    Article  Google Scholar 

    141.
    Abbas, G. et al. Nitrogen rate and hybrid selection matters productivity of maize-maize cropping system under irrigated arid environment of Southern Punjab, Pakistan. Int. J. Plant Prod. 14, 309–320. https://doi.org/10.1007/s42106-020-00086-5 (2020).
    Article  Google Scholar 

    142.
    Xiao, D., Zhao, Y., Bai, H., Hu, Y. & Cao, J. Impacts of climate warming and crop management on maize phenology in northern China. J. Arid Land 11, 892–903. https://doi.org/10.1007/s40333-019-0028-3 (2019).
    Article  Google Scholar 

    143.
    Wang, Z. et al. Effects of climate change and cultivar on summer maize phenology. International Journal of Plant Production 10, 509–525 (2016).
    Google Scholar 

    144.
    Sacks, W. J. & Kucharik, C. J. Crop management and phenology trends in the U.S. Corn Belt: Impacts on yields, evapotranspiration and energy balance. Agricultural and Forest Meteorology 151, 882–894. https://doi.org/10.1016/j.agrformet.2011.02.010 (2011).

    145.
    Mo, F. et al. Phenological responses of spring wheat and maize to changes in crop management and rising temperatures from 1992 to 2013 across the Loess Plateau. Field Crops Research 196, 337–347. https://doi.org/10.1016/j.fcr.2016.06.024 (2016).
    Article  Google Scholar 

    146.
    Wang, P. et al. Summer maize growth under different precipitation years in the Huang-Huai-Hai Plain of China. Agric. For. Meteorol. 285–286, 107927. https://doi.org/10.1016/j.agrformet.2020.107927 (2020).
    ADS  Article  Google Scholar 

    147.
    Liu, Y., Qin, Y. & Ge, Q. Spatiotemporal differentiation of changes in maize phenology in China from 1981 to 2010. J. Geog. Sci. 29, 351–362. https://doi.org/10.1007/s11442-019-1602-5 (2019).
    Article  Google Scholar 

    148.
    Chen, C. et al. Global warming and shifts in cropping systems together reduce China’s rice production. Global Food Security 24, 100359. https://doi.org/10.1016/j.gfs.2020.100359 (2020).
    Article  Google Scholar 

    149.
    Lv, Z., Li, F. & Lu, G. Adjusting sowing date and cultivar shift improve maize adaption to climate change in China. Mitig Adapt Strat Glob Change 25, 87–106. https://doi.org/10.1007/s11027-019-09861-w (2020).
    Article  Google Scholar 

    150.
    Nahar, K., Ahamed, K. U. & Fujita, M. Phenological variation and its relation with yield in several wheat (Triticum aestivum L.) cultivars under normal and late sowing mediated heat stress condition. Notulae Scientia Biologicae 2, 51–56 (2010).

    151.
    Raoufi, R. S. & Soufizadeh, S. Simulation of the impacts of climate change on phenology, growth, and yield of various rice genotypes in humid sub-tropical environments using AquaCrop-Rice. Int J Biometeorol https://doi.org/10.1007/s00484-020-01946-5 (2020).
    Article  PubMed  Google Scholar 

    152.
    Karapinar, B. & Özertan, G. Yield implications of date and cultivar adaptation to wheat phenological shifts: a survey of farmers in Turkey. Climatic Change 158, 453–472. https://doi.org/10.1007/s10584-019-02532-4 (2020).
    ADS  CAS  Article  Google Scholar 

    153.
    Ahmad, M. J., Iqbal, M. A. & Choi, K. S. Climate-driven constraints in sustaining future wheat yield and water productivity. Agric. Water Manag. 231, 105991. https://doi.org/10.1016/j.agwat.2019.105991 (2020).
    Article  Google Scholar 

    154.
    Zacharias, M., Singh, S., Naresh Kumar, S., Harit, R. & Aggarwal, P. Impact of elevated temperature at different phenological stages on the growth and yield of wheat and rice. Ind J Plant Physiol. 15, 350 (2010).
    Google Scholar 

    155.
    Sadok, W. & Jagadish, S. V. K. The Hidden Costs of Nighttime Warming on Yields. Trends Plant Sci. 25, 644–651. https://doi.org/10.1016/j.tplants.2020.02.003 (2020).
    CAS  Article  PubMed  Google Scholar 

    156.
    Kahiluoto, H. et al. Decline in climate resilience of European wheat. Proc. Natl. Acad. Sci. 116, 123–128. https://doi.org/10.1073/pnas.1804387115 (2019).
    CAS  Article  PubMed  Google Scholar 

    157.
    Lavee, H., Imeson, A. C. & Sarah, P. The impact of climate change on geomorphology and desertification along a mediterranean-arid transect. Land Degrad. Dev. 9, 407–422. https://doi.org/10.1002/(sici)1099-145x(199809/10)9:5%3c407::aid-ldr302%3e3.0.co;2-6 (1998).
    Article  Google Scholar 

    158.
    Traill, L. W. et al. Managing for change: wetland transitions under sea-level rise and outcomes for threatened species. Divers. Distrib. 17, 1225–1233. https://doi.org/10.1111/j.1472-4642.2011.00807.x (2011).
    Article  Google Scholar 

    159.
    Bellard, C., Leclerc, C. & Courchamp, F. Impact of sea level rise on the 10 insular biodiversity hotspots. Glob. Ecol. Biogeogr. 23, 203–212. https://doi.org/10.1111/geb.12093 (2014).
    Article  Google Scholar 

    160.
    Feng, Q., Ma, H., Jiang, X., Wang, X. & Cao, S. What Has Caused Desertification in China?. Scientific Reports 5, 15998. https://doi.org/10.1038/srep15998 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    161.
    Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nature Climate Change 6, 166–171. https://doi.org/10.1038/nclimate2837 (2016).
    ADS  Article  Google Scholar 

    162.
    Liu, B. et al. Global wheat production with 1.5 and 2.0°C above pre-industrial warming. Global Change Biology 25, 1428–1444. https://doi.org/10.1111/gcb.14542 (2019).

    163.
    Asseng, S. et al. Climate change impact and adaptation for wheat protein. Glob. Change Biol. 25, 155–173. https://doi.org/10.1111/gcb.14481 (2019).
    ADS  Article  Google Scholar 

    164.
    Nayak, D. et al. Management opportunities to mitigate greenhouse gas emissions from Chinese agriculture. Agr. Ecosyst. Environ. 209, 108–124. https://doi.org/10.1016/j.agee.2015.04.035 (2015).
    CAS  Article  Google Scholar 

    165.
    Kang, Y., Khan, S. & Ma, X. Climate change impacts on crop yield, crop water productivity and food security – A review. Prog. Nat. Sci. 19, 1665–1674. https://doi.org/10.1016/j.pnsc.2009.08.001 (2009).
    Article  Google Scholar 

    166.
    Korres, N. E. et al. Cultivars to face climate change effects on crops and weeds: a review. Agron. Sustain. Dev. 36, 12. https://doi.org/10.1007/s13593-016-0350-5 (2016).
    Article  Google Scholar 

    167.
    167Ortiz., R. in Food Security and Climate Change145–158 (2018).

    168.
    Kumar, S. & Sidana, B. K. Farmers’ perceptions and adaptation strategies to climate change in Punjab agriculture. Indian J. Agric. Sci 88, 1573–1581 (2018).
    Google Scholar 

    169.
    Burke, M. & Emerick, K. Adaptation to climate change: Evidence from US agriculture. American Economic Journal: Economic Policy 8, 106–140 (2016).
    Google Scholar 

    170.
    Pradhan, A., Chan, C., Roul, P. K., Halbrendt, J. & Sipes, B. Potential of conservation agriculture (CA) for climate change adaptation and food security under rainfed uplands of India: A transdisciplinary approach. Agric. Syst. 163, 27–35. https://doi.org/10.1016/j.agsy.2017.01.002 (2018).
    Article  Google Scholar 

    171.
    Bahri, H., Annabi, M., Cheikh M’Hamed, H. & Frija, A. Assessing the long-term impact of conservation agriculture on wheat-based systems in Tunisia using APSIM simulations under a climate change context. Science of The Total Environment 692, 1223–1233. https://doi.org/10.1016/j.scitotenv.2019.07.307 (2019).

    172.
    Zampieri, M. et al. Estimating resilience of crop production systems: From theory to practice. Sci. Total Environ. 735, 139378. https://doi.org/10.1016/j.scitotenv.2020.139378 (2020).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    173.
    Wiebe, K., Robinson, S. & Cattaneo, A. in Sustainable Food and Agriculture (eds Clayton Campanhola & Shivaji Pandey) 55–74 (Academic Press, 2019).

    174.
    Abebe, T., Guenzi, A. C., Martin, B. & Cushman, J. C. Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol. 131, 1748–1755 (2003).
    CAS  Article  Google Scholar 

    175.
    Lee, S.-H. et al. Identification and functional characterization of Siberian wild rye (Elymus sibiricus L.) small heat shock protein 16.9 gene (EsHsp16.9) conferring diverse stress tolerance in prokaryotic cells. Biotechnology Letters 37, 881–890. https://doi.org/10.1007/s10529-014-1749-1 (2015).

    176.
    Yamakawa, H., Hirose, T., Kuroda, M. & Yamaguchi, T. Comprehensive Expression Profiling of Rice Grain Filling-Related Genes under High Temperature Using DNA Microarray. Plant Physiol. 144, 258–277. https://doi.org/10.1104/pp.107.098665 (2007).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    177.
    Lehmann, N., Finger, R., Klein, T., Calanca, P. & Walter, A. Adapting crop management practices to climate change: Modeling optimal solutions at the field scale. Agric. Syst. 117, 55–65. https://doi.org/10.1016/j.agsy.2012.12.011 (2013).
    Article  Google Scholar 

    178.
    Pimentel, A. J. B. et al. Characterization of heat tolerance in wheat cultivars and effects on production components. Revista Ceres 62, 191–198 (2015).
    Article  Google Scholar 

    179.
    Lin, B. B. Resilience in Agriculture through Crop Diversification: Adaptive Management for Environmental Change. Bioscience 61, 183–193. https://doi.org/10.1525/bio.2011.61.3.4 (2011).
    Article  Google Scholar 

    180.
    Deryng, D., Sacks, W. J., Barford, C. C. & Ramankutty, N. Simulating the effects of climate and agricultural management practices on global crop yield. Global Biogeochemical Cycles 25, n/a-n/a. https://doi.org/10.1029/2009GB003765 (2011).

    181.
    Mase, A. S., Gramig, B. M. & Prokopy, L. S. Climate change beliefs, risk perceptions, and adaptation behavior among Midwestern U.S. crop farmers. Climate Risk Management 15, 8–17. https://doi.org/10.1016/j.crm.2016.11.004 (2017).

    182.
    Hernandez-Ochoa, I. M. et al. Adapting irrigated and rainfed wheat to climate change in semi-arid environments: Management, breeding options and land use change. Eur. J. Agron. 109, 125915. https://doi.org/10.1016/j.eja.2019.125915 (2019).
    Article  Google Scholar 

    183.
    Meza, F. J. & Silva, D. Dynamic adaptation of maize and wheat production to climate change. Climatic Change 94, 143–156. https://doi.org/10.1007/s10584-009-9544-z (2009).
    ADS  Article  Google Scholar 

    184.
    Luo, Q., Bellotti, W., Williams, M. & Wang, E. Adaptation to climate change of wheat growing in South Australia: Analysis of management and breeding strategies. Agr. Ecosyst. Environ. 129, 261–267. https://doi.org/10.1016/j.agee.2008.09.010 (2009).
    Article  Google Scholar 

    185.
    Wang, B. et al. Designing wheat ideotypes to cope with future changing climate in South-Eastern Australia. Agric. Syst. 170, 9–18. https://doi.org/10.1016/j.agsy.2018.12.005 (2019).
    Article  Google Scholar 

    186.
    Li, Y. et al. Quantifying irrigation cooling benefits to maize yield in the US Midwest. Glob. Change Biol. 26, 3065–3078. https://doi.org/10.1111/gcb.15002 (2020).
    ADS  Article  Google Scholar 

    187.
    Hampton, K. N. Persistent and pervasive community: New communication technologies and the future of community. Am. Behav. Sci. 60, 101–124 (2016).
    Article  Google Scholar 

    188.
    Asseng, S., Zhu, Y., Wang, E. & Zhang, W. in Crop Physiology (Second Edition) (ed Victor O. SadrasDaniel F. Calderini) 505–546 (Academic Press, 2015).

    189.
    Sadras, V. O., Vadez, V., Purushothaman, R., Lake, L. & Marrou, H. Unscrambling confounded effects of sowing date trials to screen for crop adaptation to high temperature. Field Crops Research 177, 1–8. https://doi.org/10.1016/j.fcr.2015.02.024 (2015).
    Article  Google Scholar 

    190.
    Rodriguez, D. & Sadras, V. Opportunities from integrative approaches in farming systems design. Field Crops Research 124, 131–141 (2011).
    Google Scholar 

    191.
    Cabezas, J. M. et al. Identifying adaptation strategies to climate change for Mediterranean olive orchards using impact response surfaces. Agric. Syst. 185, 102937. https://doi.org/10.1016/j.agsy.2020.102937 (2020).
    Article  Google Scholar 

    192.
    Ahmad, I., Ahmad, B., Boote, K. & Hoogenboom, G. Adaptation strategies for maize production under climate change for semi-arid environments. Eur. J. Agron. 115, 126040. https://doi.org/10.1016/j.eja.2020.126040 (2020).
    CAS  Article  Google Scholar 

    193.
    Abbas, G. et al. in Cotton Production and Uses: Agronomy, Crop Protection, and Postharvest Technologies (eds Shakeel Ahmad & Mirza Hasanuzzaman) 429–445 (Springer Singapore, 2020).

    194.
    Ahmed, M. et al. Novel multimodel ensemble approach to evaluate the sole effect of elevated CO2 on winter wheat productivity. Scientific Reports 9, 7813. https://doi.org/10.1038/s41598-019-44251-x (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    195.
    Ahmed, M. & Ahmad, S. in Agronomic Crops: Volume 2: Management Practices (ed Mirza Hasanuzzaman) 31–46 (Springer Singapore, 2019).

    196.
    van Ogtrop, F., Ahmad, M. & Moeller, C. Principal components of sea surface temperatures as predictors of seasonal rainfall in rainfed wheat growing areas of Pakistan. Meteorological Applications 21, 431–443. https://doi.org/10.1002/met.1429 (2014).

    197.
    Abedinpour, M. et al. Performance evaluation of AquaCrop model for maize crop in a semi-arid environment. Agric. Water Manag. 110, 55–66. https://doi.org/10.1016/j.agwat.2012.04.001 (2012).
    Article  Google Scholar 

    198.
    Sareen, S. et al. Molecular genetic diversity analysis for heat tolerance of indigenous and exotic wheat genotypes. J. Plant Biochem. Biotechnol. 29, 15–23. https://doi.org/10.1007/s13562-019-00501-7 (2020).
    CAS  Article  Google Scholar 

    199.
    Rezaei, E. E. et al. Quantifying the response of wheat yields to heat stress: The role of the experimental setup. Field Crops Research 217, 93–103. https://doi.org/10.1016/j.fcr.2017.12.015 (2018).
    Article  Google Scholar 

    200.
    Mechanisms and modelling. Eyshi Rezaei, E., Webber, H., Gaiser, T., Naab, J. & Ewert, F. Heat stress in cereals. Eur. J. Agron. 64, 98–113. https://doi.org/10.1016/j.eja.2014.10.003 (2015).
    Article  Google Scholar 

    201.
    Abbas, G. et al. Nitrogen rate and hybrid selection matters productivity of maize-maize cropping system under irrigated arid environment of Southern Punjab, Pakistan. Int. J. Plant Prod. https://doi.org/10.1007/s42106-020-00086-5 (2020).
    Article  Google Scholar 

    202.
    Jahan, M. A. H. S. et al. Optimizing sowing window for wheat cultivation in Bangladesh using CERES-wheat crop simulation model. Agr. Ecosyst. Environ. 258, 23–29. https://doi.org/10.1016/j.agee.2018.02.008 (2018).
    Article  Google Scholar 

    203.
    Ahmed, S., Humphreys, E. & Chauhan, B. S. Optimum sowing date and cultivar duration of dry-seeded boro on the High Ganges River Floodplain of Bangladesh. Field Crops Research 190, 91–102. https://doi.org/10.1016/j.fcr.2015.12.004 (2016).
    Article  Google Scholar 

    204.
    Basso, B., Liu, L. & Ritchie, J. T. in Advances in Agronomy Vol. 136 (ed Donald L. Sparks) 27–132 (Academic Press, 2016).

    205.
    Xiong, W. et al. A calibration procedure to improve global rice yield simulations with EPIC. Ecol. Model. 273, 128–139. https://doi.org/10.1016/j.ecolmodel.2013.10.026 (2014).
    Article  Google Scholar 

    206.
    Jalota, S. K., Vashisht, B. B., Kaur, H., Kaur, S. & Kaur, P. Location specific climate change scenario and its impact on rice and wheat in Central Indian Punjab. Agric. Syst. 131, 77–86. https://doi.org/10.1016/j.agsy.2014.07.009 (2014).
    Article  Google Scholar 

    207.
    Peng, S. et al. Rice yields decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. U.S.A. 101, 9971–9975. https://doi.org/10.1073/pnas.0403720101 (2004).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    208.
    Ritchie, J. T., Singh, U., Godwin, D. C. & Bowen, W. T. in Understanding Options for Agricultural Production Vol. 7 Systems Approaches for Sustainable Agricultural Development (eds GordonY Tsuji, Gerrit Hoogenboom, & PhilipK Thornton) Ch. 5, 79–98 (Springer Netherlands, 1998).

    209.
    Nissanka, S. P. et al. Calibration of the phenology sub-model of APSIM-Oryza: Going beyond goodness of fit. Environmental Modelling & Software 70, 128–137. https://doi.org/10.1016/j.envsoft.2015.04.007 (2015).
    Article  Google Scholar 

    210.
    Weerakoon, W. M. W. et al. Direct-seeded rice culture in Sri Lanka: Lessons from farmers. Field Crops Research 121, 53–63. https://doi.org/10.1016/j.fcr.2010.11.009 (2011).
    Article  Google Scholar 

    211.
    Iftekharuddaula, K. M. et al. Development of early maturing submergence-tolerant rice varieties for Bangladesh. Field Crops Research 190, 44–53. https://doi.org/10.1016/j.fcr.2015.12.001 (2016).
    Article  Google Scholar 

    212.
    Haefele, S. M., Kato, Y. & Singh, S. Climate ready rice: Augmenting drought tolerance with best management practices. Field Crops Research 190, 60–69. https://doi.org/10.1016/j.fcr.2016.02.001 (2016).
    Article  Google Scholar 

    213.
    Latif, M. A., Islam, M. R., Ali, M. Y. & Saleque, M. A. Validation of the system of rice intensification (SRI) in Bangladesh. Field Crops Research 93, 281–292. https://doi.org/10.1016/j.fcr.2004.10.005 (2005).
    Article  Google Scholar 

    214.
    Sarangi, S. K. et al. Using improved variety and management enhances rice productivity in stagnant flood -affected tropical coastal zones. Field Crops Research 190, 70–81. https://doi.org/10.1016/j.fcr.2015.10.024 (2016).
    Article  Google Scholar 

    215.
    Raza, M. A. et al. Effect of planting patterns on yield, nutrient accumulation and distribution in maize and soybean under relay intercropping systems. Scientific Reports 9, 4947. https://doi.org/10.1038/s41598-019-41364-1 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    216.
    Paudel, B., Khanal, R. C., KC, A., Bhatta, K. & Chaudhary, P. Climate-smart agriculture in Nepal. Research program on Climate Change, Agriculture and food security (2017).

    217.
    Chauhan, B. S., Mahajan, G., Sardana, V., Timsina, J. & Jat, M. L. in Advances in Agronomy Vol. Volume 117 (ed L. Sparks Donald) 315–369 (Academic Press, 2012).

    218.
    Yadvinder, S., Kukal, S. S., Jat, M. L. & Sidhu, H. S. in Advances in Agronomy Vol. 127 (ed Donald Sparks) 157–258 (Academic Press, 2014).

    219.
    Jat, M. L. et al. in Advances in Agronomy Vol. 137 (ed Donald L. Sparks) 127–235 (Academic Press, 2016).

    220.
    Kukal, S. S., Yadvinder, S., Jat, M. L. & Sidhu, H. S. in Advances in Agronomy Vol. Volume 127 (ed Sparks Donald) 157–258 (Academic Press, 2014).

    221.
    Witt, C., Pasuquin, J. & Dobermann, A. Towards a site-specific nutrient management approach for maize in Asia. Better Crops 90, 28–31 (2006).
    Google Scholar 

    222.
    Ullah, A., Ahmad, A., Khaliq, T. & Akhtar, J. Recognizing production options for pearl millet in Pakistan under changing climate scenarios. Journal of Integrative Agriculture 16, 762–773. https://doi.org/10.1016/S2095-3119(16)61450-8 (2017).
    Article  Google Scholar 

    223.
    Ullah, A., Salehnia, N., Kolsoumi, S., Ahmad, A. & Khaliq, T. Prediction of effective climate change indicators using statistical downscaling approach and impact assessment on pearl millet (Pennisetum glaucum L.) yield through Genetic Algorithm in Punjab, Pakistan. Ecological Indicators 90, 569–576. https://doi.org/10.1016/j.ecolind.2018.03.053 (2018).

    224.
    Ausiku, A. P., Annandale, J. G., Steyn, J. M. & Sanewe, A. J. Improving Pearl Millet (Pennisetum glaucum) Productivity through Adaptive Management of Water and Nitrogen. Water 12, 422 (2020).
    CAS  Article  Google Scholar 

    225.
    Alauddin, M., Rashid Sarker, M. A., Islam, Z. & Tisdell, C. Adoption of alternate wetting and drying (AWD) irrigation as a water-saving technology in Bangladesh: Economic and environmental considerations. Land Use Policy 91, 104430. https://doi.org/10.1016/j.landusepol.2019.104430 (2020).
    Article  Google Scholar 

    226.
    Rahman, M. H. u. et al. in Cotton Production and Uses: Agronomy, Crop Protection, and Postharvest Technologies (eds Shakeel Ahmad & Mirza Hasanuzzaman) 447–484 (Springer Singapore, 2020).

    227.
    Ishfaq, M. et al. Alternate wetting and drying: A water-saving and ecofriendly rice production system. Agric. Water Manag. 241, 106363. https://doi.org/10.1016/j.agwat.2020.106363 (2020).
    Article  Google Scholar 

    228.
    Rejesus, R. M., Palis, F. G., Rodriguez, D. G. P., Lampayan, R. M. & Bouman, B. A. M. Impact of the alternate wetting and drying (AWD) water-saving irrigation technique: Evidence from rice producers in the Philippines. Food Policy 36, 280–288. https://doi.org/10.1016/j.foodpol.2010.11.026 (2011).
    Article  Google Scholar 

    229.
    Carrijo, D. R., Lundy, M. E. & Linquist, B. A. Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis. Field Crops Research 203, 173–180. https://doi.org/10.1016/j.fcr.2016.12.002 (2017).
    Article  Google Scholar 

    230.
    Stuart, D., Schewe, R. L. & McDermott, M. Reducing nitrogen fertilizer application as a climate change mitigation strategy: Understanding farmer decision-making and potential barriers to change in the US. Land Use Policy 36, 210–218. https://doi.org/10.1016/j.landusepol.2013.08.011 (2014).
    Article  Google Scholar 

    231.
    Zheng, W., Luo, B. & Hu, X. The determinants of farmers’ fertilizers and pesticides use behavior in China: An explanation based on label effect. Journal of Cleaner Production 272, 123054. https://doi.org/10.1016/j.jclepro.2020.123054 (2020).
    Article  Google Scholar 

    232.
    Jiang, G. et al. Soil organic carbon sequestration in upland soils of northern China under variable fertilizer management and climate change scenarios. Global Biogeochem. Cycles 28, 319–333. https://doi.org/10.1002/2013gb004746 (2014).
    ADS  CAS  Article  Google Scholar 

    233.
    Omotesho, A., Fakayode, S. & Tariya, Y. Curtailing fertilizer scarcity and climate change; an appraisal of factors affecting organic materials use option in Nigeria’s agriculture. Ethiopian Journal of Environmental Studies and Management 5, 281–290 (2012).
    Article  Google Scholar 

    234.
    Raza, A. et al. Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants 8, 34 (2019).
    CAS  Article  Google Scholar 

    235.
    Sloan, K. et al. in The Climate-Smart Agriculture Papers: Investigating the Business of a Productive, Resilient and Low Emission Future (eds Todd S. Rosenstock, Andreea Nowak, & Evan Girvetz) 227–233 (Springer International Publishing, 2019).

    236.
    Keith, W. et al. Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios. Environ. Res. Lett. 10, 085010 (2015).
    Article  Google Scholar 

    237.
    Zhang, Z., Yu, K., Siddique, K. H. M. & Nan, Z. Phenology and sowing time affect water use in four warm-season annual grasses under a semi-arid environment. Agric. For. Meteorol. 269–270, 257–269. https://doi.org/10.1016/j.agrformet.2019.02.027 (2019).
    ADS  Article  Google Scholar 

    238.
    Dreccer, M. F., Fainges, J., Whish, J., Ogbonnaya, F. C. & Sadras, V. O. Comparison of sensitive stages of wheat, barley, canola, chickpea and field pea to temperature and water stress across Australia. Agric. For. Meteorol. 248, 275–294. https://doi.org/10.1016/j.agrformet.2017.10.006 (2018).
    ADS  Article  Google Scholar 

    239.
    Abid, M. et al. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Scientific Reports 8, 4615. https://doi.org/10.1038/s41598-018-21441-7 (2018).

    240.
    Macabuhay, A. A. Physiological and biochemical responses of wheat to combined heat stress and elevated CO2 during grain-filling  (2016).

    241.
    Stratonovitch, P. & Semenov, M. A. Heat tolerance around flowering in wheat identified as a key trait for increased yield potential in Europe under climate change. J. Exp. Bot. https://doi.org/10.1093/jxb/erv070 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    242.
    Hernández, F., Poverene, M., Mercer, K. L. & Presotto, A. Genetic variation for tolerance to extreme temperatures in wild and cultivated sunflower (Helianthus annuus) during early vegetative phases. Crop and Pasture Science 71, 578–591. https://doi.org/10.1071/CP20005 (2020).
    CAS  Article  Google Scholar 

    243.
    Acharjee, T. K., van Halsema, G., Ludwig, F., Hellegers, P. & Supit, I. Shifting planting date of Boro rice as a climate change adaptation strategy to reduce water use. Agric. Syst. 168, 131–143. https://doi.org/10.1016/j.agsy.2018.11.006 (2019).
    Article  Google Scholar 

    244.
    Chibarabada, T. P., Modi, A. T. & Mabhaudhi, T. Options for improving water productivity: a case study of bambara groundnut and groundnut. Phys. Chem. Earth Parts A/B/C 115, 102806. https://doi.org/10.1016/j.pce.2019.10.003 (2020).
    Article  Google Scholar 

    245.
    Islam, A. R. M. T., Shen, S., Yang, S., Hu, Z. & Atiqur Rahman, M. Spatiotemporal rice yield variations and potential agro-adaptation strategies in Bangladesh: A biophysical modeling approach. Sustain. Prod. Consum. 24, 121–138. https://doi.org/10.1016/j.spc.2020.07.005 (2020).
    Article  Google Scholar 

    246.
    Tsegay, A. et al. Sowing and irrigation strategies for improving rainfed tef (Eragrostis tef (Zucc.) Trotter) production in the water scarce Tigray region, Ethiopia. Agric. Water Manag. 150, 81–91. https://doi.org/10.1016/j.agwat.2014.11.014 (2015).
    Article  Google Scholar 

    247.
    van Oort, P. A. J., Timmermans, B. G. H. & van Swaaij, A. C. P. M. Why farmers’ sowing dates hardly change when temperature rises. Eur. J. Agron. 40, 102–111. https://doi.org/10.1016/j.eja.2012.02.005 (2012).
    Article  Google Scholar 

    248.
    Bassu, S., Asseng, S., Motzo, R. & Giunta, F. Optimising sowing date of durum wheat in a variable Mediterranean environment. Field Crops Res. 111, 109–118. https://doi.org/10.1016/j.fcr.2008.11.002 (2009).
    Article  Google Scholar 

    249.
    Aasen, H., Kirchgessner, N., Walter, A. & Liebisch, F. PhenoCams for field phenotyping: using very high temporal resolution digital repeated photography to investigate interactions of growth, phenology, and harvest traits. Front. Plant Sci. https://doi.org/10.3389/fpls.2020.00593 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    250.
    Singh, S., Sandhu, S., Dhaliwal, L. & Singh, I. Effect of planting geometry on microclimate, growth and yield of mung-bean (Vigna radiata L.). J. Agric. Phys. 12, 70–73 (2012).
    Google Scholar 

    251.
    van Etten, J. et al. Crop variety management for climate adaptation supported by citizen science. Proc. Natl. Acad. Sci. 116, 4194–4199. https://doi.org/10.1073/pnas.1813720116 (2019).
    CAS  Article  PubMed  Google Scholar 

    252.
    Mahato, M. & Adhikari, B. B. Effect of planting geometry on growth of rice varieties. Int. J. Appl. Sci. Biotechnol. 5, 423–429 (2017).
    CAS  Article  Google Scholar 

    253.
    Raza, M. A. et al. Optimum strip width increases dry matter, nutrient accumulation, and seed yield of intercrops under the relay intercropping system. Food Energy Secur. 9, e199. https://doi.org/10.1002/fes3.199 (2020).
    Article  Google Scholar 

    254.
    Raza, M. A., van der Werf, W., Ahmed, M. & Yang, W. Removing top leaves increases yield and nutrient uptake in maize plants. Nutr. Cycl. Agroecosyst. 118, 57–73. https://doi.org/10.1007/s10705-020-10082-w (2020).
    CAS  Article  Google Scholar 

    255.
    Raza, M. A. et al. Effects of contrasting shade treatments on the carbon production and antioxidant activities of soybean plants. Funct. Plant Biol. FPB 47, 342–354. https://doi.org/10.1071/fp19213 (2020).
    CAS  Article  PubMed  Google Scholar 

    256.
    Raza, M. A. et al. Optimum leaf defoliation: a new agronomic approach for increasing nutrient uptake and land equivalent ratio of maize soybean relay intercropping system. Field Crops Res. 244, 107647. https://doi.org/10.1016/j.fcr.2019.107647 (2019).
    Article  Google Scholar 

    257.
    Raza, M. A. et al. Growth and development of soybean under changing light environments in relay intercropping system. PeerJ 7, e7262. https://doi.org/10.7717/peerj.7262 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    258.
    Raza, M. A. et al. Narrow-wide-row planting pattern increases the radiation use efficiency and seed yield of intercrop species in relay-intercropping system. Food Energy Secur. 8, e170. https://doi.org/10.1002/fes3.170 (2019).
    Article  Google Scholar 

    259.
    Huang, F., Liu, Z., Zhang, P. & Jia, Z. Hydrothermal effects on maize productivity with different planting patterns in a rainfed farmland area. Soil Tillage Res. 205, 104794. https://doi.org/10.1016/j.still.2020.104794 (2021).
    Article  Google Scholar 

    260.
    Rio, M., Rey, D., Prudhomme, C. & Holman, I. P. Evaluation of changing surface water abstraction reliability for supplemental irrigation under climate change. Agric. Water Manag. 206, 200–208. https://doi.org/10.1016/j.agwat.2018.05.005 (2018).
    Article  Google Scholar 

    261.
    Muluneh, A., Stroosnijder, L., Keesstra, S. & Biazin, B. Adapting to climate change for food security in the Rift Valley dry lands of Ethiopia: supplemental irrigation, plant density and sowing date. J. Agric. Sci. 155, 703–724. https://doi.org/10.1017/S0021859616000897 (2016).
    CAS  Article  Google Scholar 

    262.
    Ndhleve, S., Nakin, M. & Longo-Mbenza, B. Impacts of supplemental irrigation as a climate change adaptation strategy for maize production: a case of the Eastern Cape Province of South Africa. Water SA 43, 222–228 (2017).
    Article  Google Scholar 

    263.
    Bigelow, D. P. & Zhang, H. Supplemental irrigation water rights and climate change adaptation. Ecol. Econ. 154, 156–167. https://doi.org/10.1016/j.ecolecon.2018.07.015 (2018).
    Article  Google Scholar 

    264.
    Trevaskis, B. Wheat gene for all seasons. Proc. Natl. Acad. Sci. 112, 11991–11992. https://doi.org/10.1073/pnas.1516398112 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    265.
    Matthew, G., Pierre, M. & Ariel, O.-B. Negative impacts of climate change on cereal yields: statistical evidence from France. Environ. Res. Lett. 12, 054007 (2017).
    ADS  Article  Google Scholar 

    266.
    Ortiz, R. et al. Climate change: can wheat beat the heat?. Agric. Ecosyst. Environ. 126, 46–58. https://doi.org/10.1016/j.agee.2008.01.019 (2008).
    Article  Google Scholar 

    267.
    Lobell, D. B. et al. Analysis of wheat yield and climatic trends in Mexico. Field Crops Res. 94, 250–256. https://doi.org/10.1016/j.fcr.2005.01.007 (2005).
    Article  Google Scholar 

    268.
    Nazim Ud Dowla, M. A. N., Edwards, I., O’Hara, G., Islam, S. & Ma, W. Developing wheat for improved yield and adaptation under a changing climate: optimization of a few key genes. Engineering 4, 514–522. https://doi.org/10.1016/j.eng.2018.06.005 (2018).
    CAS  Article  Google Scholar 

    269.
    Mohammadi, R. The use of a combination scoring index to improve durum productivity under drought stress. Exp. Agric. 56, 161–170. https://doi.org/10.1017/S0014479719000231 (2019).
    Article  Google Scholar 

    270.
    Cui, L. et al. Development of perennial wheat through hybridization between wheat and wheatgrasses: a review. Engineering 4, 507–513. https://doi.org/10.1016/j.eng.2018.07.003 (2018).
    CAS  Article  Google Scholar 

    271.
    Zachariah, M., Mondal, A., Das, M., AchutaRao, K. M. & Ghosh, S. On the role of rainfall deficits and cropping choices in loss of agricultural yield in Marathwada, India. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ab93fc (2020).
    Article  Google Scholar 

    272.
    Gahlaut, V., Samtani, H. & Khurana, P. Genome-wide identification and expression profiling of cytosine-5 DNA methyltransferases during drought and heat stress in wheat (Triticum aestivum). Genomics 112, 4796–4807. https://doi.org/10.1016/j.ygeno.2020.08.031 (2020).
    CAS  Article  Google Scholar 

    273.
    Boote, K. J., Prasad, V., Allen, L. H., Singh, P. & Jones, J. W. Modeling sensitivity of grain yield to elevated temperature in the DSSAT crop models for peanut, soybean, dry bean, chickpea, sorghum, and millet. Eur. J. Agron. 100, 99–109. https://doi.org/10.1016/j.eja.2017.09.002 (2018).
    Article  Google Scholar 

    274.
    Elbashir, A. A. E. et al. Genetic variation in heat tolerance-related traits in a population of wheat multiple synthetic derivatives. Breed Sci. 67, 483–492. https://doi.org/10.1270/jsbbs.17048 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    275.
    Reynolds, M. P. et al. An integrated approach to maintaining cereal productivity under climate change. Global Food Secur. 8, 9–18. https://doi.org/10.1016/j.gfs.2016.02.002 (2016).
    Article  Google Scholar 

    276.
    Asseng, S. et al. Model-driven multidisciplinary global research to meet future needs: the case for “improving radiation use efficiency to increase yield”. Crop Sci. https://doi.org/10.2135/cropsci2018.09.0562 (2019).
    Article  Google Scholar 

    277.
    Smit, B. & Skinner, M. W. Adaptation options in agriculture to climate change: a typology. Mitig. Adapt. Strat. Glob. Change 7, 85–114. https://doi.org/10.1023/A:1015862228270 (2002).
    Article  Google Scholar 

    278.
    Liu, Y., Chen, Q., Ge, Q., Dai, J. & Dou, Y. Effects of climate change and agronomic practice on changes in wheat phenology. Clim. Change 150, 273–287. https://doi.org/10.1007/s10584-018-2264-5 (2018).
    ADS  CAS  Article  Google Scholar 

    279.
    Loboguerrero, A. M. et al. Food and earth systems: priorities for climate change adaptation and mitigation for agriculture and food systems. Sustainability 11, 1372 (2019).
    Article  Google Scholar 

    280.
    Howden, S. M. et al. Adapting agriculture to climate change. Proc. Natl. Acad. Sci. 104, 19691–19696. https://doi.org/10.1073/pnas.0701890104 (2007).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    281.
    Bryan, E., Deressa, T. T., Gbetibouo, G. A. & Ringler, C. Adaptation to climate change in Ethiopia and South Africa: options and constraints. Environ. Sci. Policy 12, 413–426. https://doi.org/10.1016/j.envsci.2008.11.002 (2009).
    Article  Google Scholar 

    282.
    Wongnaa, C. A. & Babu, S. Building resilience to shocks of climate change in Ghana’s cocoa production and its effect on productivity and incomes. Technol. Soc. 62, 101288. https://doi.org/10.1016/j.techsoc.2020.101288 (2020).
    Article  Google Scholar 

    283.
    Kumar, S., Mishra, A. K., Pramanik, S., Mamidanna, S. & Whitbread, A. Climate risk, vulnerability and resilience: supporting livelihood of smallholders in semiarid India. Land Use Policy 97, 104729. https://doi.org/10.1016/j.landusepol.2020.104729 (2020).
    Article  Google Scholar 

    284.
    Morales-Castilla, I. et al. Diversity buffers winegrowing regions from climate change losses. Proc. Natl. Acad. Sci. 117, 2864–2869. https://doi.org/10.1073/pnas.1906731117 (2020).
    CAS  Article  PubMed  Google Scholar 

    285.
    Nelson, G. C. et al. Climate change: Impact on agriculture and costs of adaptation. Vol. 21 (Intl Food Policy Res Inst, 2009).

    286.
    Olesen, J. E. et al. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 34, 96–112. https://doi.org/10.1016/j.eja.2010.11.003 (2011).
    Article  Google Scholar 

    287.
    Sloat, L. L. et al. Climate adaptation by crop migration. Nat. Commun. 11, 200. https://doi.org/10.1038/s41467-020-15076-4 (2020).
    ADS  CAS  Article  Google Scholar 

    288.
    Mertz, O., Mbow, C., Reenberg, A. & Diouf, A. Farmers’ perceptions of climate change and agricultural adaptation strategies in Rural Sahel. Environ. Manag. 43, 804–816. https://doi.org/10.1007/s00267-008-9197-0 (2009).
    ADS  Article  Google Scholar 

    289.
    Smit, B., Burton, I., Klein, R. J. T. & Wandel, J. An anatomy of adaptation to climate change and variability. Clim. Change 45, 223–251. https://doi.org/10.1023/A:1005661622966 (2000).
    Article  Google Scholar 

    290.
    Thamo, T. et al. Climate change impacts and farm-level adaptation: economic analysis of a mixed cropping–livestock system. Agric. Syst. 150, 99–108. https://doi.org/10.1016/j.agsy.2016.10.013 (2017).
    Article  Google Scholar 

    291.
    Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291. https://doi.org/10.1038/nclimate2153 (2014).
    ADS  Article  Google Scholar 

    292.
    Reidsma, P., Janssen, S., Jansen, J. & van Ittersum, M. K. On the development and use of farm models for policy impact assessment in the European Union—a review. Agric. Syst. 159, 111–125. https://doi.org/10.1016/j.agsy.2017.10.012 (2018).
    Article  Google Scholar 

    293.
    Reidsma, P. et al. Climate change impact and adaptation research requires integrated assessment and farming systems analysis: a case study in the Netherlands. Environ. Res. Lett. 10, 045004 (2015).
    ADS  Article  Google Scholar 

    294.
    Reidsma, P., Ewert, F., Lansink, A. O. & Leemans, R. Adaptation to climate change and climate variability in European agriculture: the importance of farm level responses. Eur. J. Agron. 32, 91–102. https://doi.org/10.1016/j.eja.2009.06.003 (2010).
    Article  Google Scholar 

    295.
    Shahzad, A. N. & Ahmad, S. In Agronomic Crops: Volume 2: Management Practices (ed Hasanuzzaman, M.) 111–126 (Springer Singapore, 2019).

    296.
    Ahmed, M. Introduction to Modern Climate Change. Andrew E. Dessler: Cambridge University Press, 2011, 252 pp, ISBN-10: 0521173159. Science of The Total Environment734, 139397, 10.1016/j.scitotenv.2020.139397 (2020).

    297.
    Singh, S. Farmers’ perception of climate change and adaptation decisions: a micro-level evidence from Bundelkhand Region, India. Ecol. Ind. 116, 106475. https://doi.org/10.1016/j.ecolind.2020.106475 (2020).
    Article  Google Scholar 

    298.
    Wallach, D. et al. Multimodel ensembles improve predictions of crop–environment–management interactions. Glob. Change Biol. 24, 5072–5083. https://doi.org/10.1111/gcb.14411 (2018).
    ADS  Article  Google Scholar 

    299.
    Aslam, M. U. et al. In Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability (eds Ahmed, M. & Stockle, C.O.) 113–136 (Springer International Publishing, 2017).

    300.
    Ijaz, W., Ahmed, M., Fayyaz-ul-Hassan, Asim, M. & Aslam, M. in Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability (eds Ahmed, M. & Stockle, C.O.) 371–386 (Springer International Publishing, 2017).

    301.
    Jabeen, M., Gabriel, H. F., Ahmed, M., Mahboob, M. A. & Iqbal, J. In Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability (eds Ahmed, M. & Stockle, C.O.) 387–411 (Springer International Publishing, 2017).

    302.
    Aslam, M. A., Ahmed, M., Fayyaz-ul-Hassan & Hayat, R. In Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability (eds Ahmed, M. & Stockle, C.O.) 71–90 (Springer International Publishing, 2017).

    303.
    Ahmed, M. et al. Calibration and validation of APSIM-Wheat and CERES-Wheat for spring wheat under rainfed conditions: models evaluation and application. Comput. Electron. Agric. 123, 384–401. https://doi.org/10.1016/j.compag.2016.03.015 (2016).
    Article  Google Scholar 

    304.
    Ahmed, M. & Stockle, C. O. Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability (Springer, Berlin, 2016).
    Google Scholar 

    305.
    Ahmed, M., Fayyaz Ul, H. & Van Ogtrop, F. F. Can models help to forecast rainwater dynamics for rainfed ecosystem?. Weather Clim. Extremes 5–6, 48–55. https://doi.org/10.1016/j.wace.2014.07.001 (2014).
    Article  Google Scholar 

    306.
    Ahmed, M., Hassan, F., Aslam, M. A., Akram, M. N. & Akmal, M. Regression model for the study of sole and cumulative effect of temperature and solar radiation on wheat yield. Afr. J. Biotech. 10, 9114–9121 (2011).
    Article  Google Scholar 

    307.
    Ahmed, M. & Ahmad, S. In Systems Modeling (ed Ahmed, M.) 1–44 (Springer Singapore, 2020).

    308.
    Tariq, M., Ahmed, M., Iqbal, P., Fatima, Z. & Ahmad, S. In Systems Modeling (ed Ahmed, M.) 45–60 (Springer Singapore, 2020).

    309.
    Ahmed, M., Raza, M. A. & Hussain, T. In Systems Modeling (ed Ahmed, M.) 111–150 (Springer Singapore, 2020).

    310.
    Ahmed, M. et al. In Systems Modeling (ed Ahmed, M.) 151–178 (Springer Singapore, 2020).

    311.
    Kheir, A. M. S. et al. In Systems Modeling (ed Ahmed, M.) 179–202 (Springer Singapore, 2020).

    312.
    Ahmad, S., & Hasanuzzaman, M. Cotton Production and Uses. Springer Nature Singapore Pte Ltd. (https://link.springer.com/book/10.1007/978-981-15-1472-2); doi: 10.1007/978-981-15-1472-2 (2020) 

    313.
    Khan, A., Ahmad, M., Shah, M. K. N. & Ahmed, M. Performance of wheat genotypes for Morpho-Physiological traits using multivariate analysis under terminal heat stress. Pak. J. Bot. 52(6), 1981–1988. https://doi.org/10.30848/PJB2020-6(30)(2020).

    314.
    Khan, A., Ahmad, M., Shah, M. K. N., & Ahmed, M. Genetic manifestation of physio-morphic and yield related traits conferring thermotolerance in wheat. Pak. J. Bot. 52(5), 1545–1552. https://doi.org/10.30848/PJB2020-5(27) (2020). More

  • in

    Plastic, nutrition and pollution; relationships between ingested plastic and metal concentrations in the livers of two Pachyptila seabirds

    1.
    Law, K. L. et al. Distribution of surface plastic debris in the eastern pacific ocean from an 11-year data set. Environ. Sci. Technol. 48, 4732–4738. https://doi.org/10.1021/es4053076 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 
    2.
    Naser, H. A. Assessment and management of heavy metal pollution in the marine environment of the Arabian Gulf: a review. Mar. Pollut. Bull. 72, 6–13. https://doi.org/10.1016/j.marpolbul.2013.04.030 (2013).
    ADS  CAS  Article  PubMed  Google Scholar 

    3.
    Meng, W., Qin, Y., Zheng, B. & Zhang, L. Heavy metal pollution in Tianjin Bohai Bay, China. J. Environ. Sci. 20, 814–819. https://doi.org/10.1016/S1001-0742(08)62131-2 (2008).
    CAS  Article  Google Scholar 

    4.
    Rainbow, P. S. Bioaccumulation of trace metals: biological significance. Oceanis 25, 547–561 (1999).
    CAS  Google Scholar 

    5.
    Reeder, R. J., Schoonen, M. A. & Lanzirotti, A. Metal speciation and its role in bioaccessibility and bioavailability. Rev. Mineral. Geochem. 64, 59–113 (2006).
    CAS  Article  Google Scholar 

    6.
    Kastury, F., Karna, R. R., Scheckel, K. G. & Juhasz, A. L. Correlation between lead speciation and inhalation bioaccessibility using two different simulated lung fluids. Environ. Pollut., 114609 (2020).

    7.
    Kastury, F. et al. Relationship between Pb relative bioavailability and bioaccessibility in phosphate amended soil: Uncertainty associated with predicting Pb immobilization efficacy using in vitro assays. Environ. Int. 131, 104967 (2019).
    CAS  Article  Google Scholar 

    8.
    Ryan, P. G. Handbook of Environmental Chemistry 78, 235–266 (2019).
    ADS  Google Scholar 

    9.
    Holmes, L. A., Turner, A. & Thompson, R. C. Adsorption of trace metals to plastic resin pellets in the marine environment. Environ. Pollut. 160, 42–48. https://doi.org/10.1016/j.envpol.2011.08.052 (2012).
    CAS  Article  PubMed  Google Scholar 

    10.
    Holmes, L. A., Turner, A. & Thompson, R. C. Interactions between trace metals and plastic production pellets under estuarine conditions. Mar. Chem. 167, 25–32. https://doi.org/10.1016/j.marchem.2014.06.001 (2014).
    CAS  Article  Google Scholar 

    11.
    Brennecke, D., Duarte, B., Paiva, F., Caçador, I. & Canning-Clode, J. Microplastics as vector for heavy metal contamination from the marine environment. Estuar. Coast. Shelf Sci. 178, 189–195. https://doi.org/10.1016/j.ecss.2015.12.003 (2016).
    ADS  CAS  Article  Google Scholar 

    12.
    Vedolin, M. C., Teophilo, C. Y. S., Turra, A. & Figueira, R. C. L. Spatial variability in the concentrations of metals in beached microplastics. Mar. Pollut. Bull. 129, 487–493. https://doi.org/10.1016/j.marpolbul.2017.10.019 (2018).
    CAS  Article  PubMed  Google Scholar 

    13.
    Shen, K. K., Kochesfahani, S. & Jouffret, F. Zinc borates as multifunctional polymer additives. Polym. Adv. Technol. 19, 469–474. https://doi.org/10.1002/pat.1119 (2008).
    CAS  Article  Google Scholar 

    14.
    Lu, K., Qiao, R., An, H. & Zhang, Y. Influence of microplastics on the accumulation and chronic toxic effects of cadmium in zebrafish (Danio rerio). Chemosphere 202, 514–520. https://doi.org/10.1016/j.chemosphere.2018.03.145 (2018).
    ADS  CAS  Article  PubMed  Google Scholar 

    15.
    Mallory, M. L., Robinson, S. A., Hebert, C. E. & Forbes, M. R. Seabirds as indicators of aquatic ecosystem conditions: a case for gathering multiple proxies of seabird health. Mar. Pollut. Bull. 60, 7–12. https://doi.org/10.1016/j.marpolbul.2009.08.024 (2010).
    CAS  Article  PubMed  Google Scholar 

    16.
    Furness, R. W. & Camphuysen, K. Seabirds as monitors of the marine environment. ICES J. Mar. Sci. 54, 726–737. https://doi.org/10.1006/jmsc.1997.0243 (1997).
    Article  Google Scholar 

    17.
    Elliott, J. E. Trace metals, stable isotope ratios, and trophic relations in seabirds from the North Pacific Ocean. Environ. Toxicol. Chem. 24, 3099–3105. https://doi.org/10.1897/04-474R.1 (2005).
    CAS  Article  PubMed  Google Scholar 

    18.
    Kim, E. Y., Goto, R., Tanabe, S., Tanaka, H. & Tatsukawa, R. Distribution of 14 elements in tissues and organs of oceanic seabirds. Arch. Environ. Contam. Toxicol. 35, 638–645. https://doi.org/10.1007/s002449900426 (1998).
    CAS  Article  PubMed  Google Scholar 

    19.
    Murphy, M. E. in Avian energetics and nutritional ecology 31–60 (Springer, 1996).

    20.
    McCue, M. D. Starvation physiology: Reviewing the different strategies animals use to survive a common challenge. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 156, 1–18. https://doi.org/10.1016/j.cbpa.2010.01.002 (2010).
    CAS  Article  Google Scholar 

    21.
    Cherel, Y., Robin, J.-P. & Maho, Y. L. Physiology and biochemistry of long-term fasting in birds. Can. J. Zool. 66, 159–166 (1988).
    CAS  Article  Google Scholar 

    22.
    Richards, M. P., Rosebrough, R. W. & Steele, N. C. Effects of starvation and refeeding on tissue zinc, copper and iron in turkey poults. J. Nutr. 117, 481–489. https://doi.org/10.1093/jn/117.3.481 (1987).
    CAS  Article  PubMed  Google Scholar 

    23.
    Debacker, V., Rutten, A., Jauniaux, T., Daemers, C. & Bouquegneau, J. M. Combined effects of experimental heavy-metal contamination (Cu, Zn, and CH3Hg) and starvation on quail’s body condition: parallelism with a wild common guillemot (Uria aalge) population found stranded at the Belgian coast. Biol. Trace Elem. Res. 82, 87–107. https://doi.org/10.1385/bter:82:1-3:087 (2001).
    CAS  Article  PubMed  Google Scholar 

    24.
    Wenzel, C. & Adelung, D. The suitability of oiled guillemots (Uria aalge) as monitoring organisms for geographical comparisons of trace element contaminants. Arch. Environ. Contam. Toxicol. 31, 368–377. https://doi.org/10.1007/BF00212675 (1996).
    CAS  Article  PubMed  Google Scholar 

    25.
    Brady, L. J., Romsos, D. R., Brady, P. S., Bergen, W. G. & Leveille, G. A. The effects of fasting on body composition, glucose turnover, enzymes and metabolites in the chicken. J. Nutr. 108, 648–657 (1978).
    CAS  Article  Google Scholar 

    26.
    McCauley, S. J. & Bjorndal, K. A. Conservation implications of dietary dilution from debris ingestion: sublethal effects in post-hatchling loggerhead sea turtles. Conserv. Biol. 13, 925–929. https://doi.org/10.1046/j.1523-1739.1999.98264.x (1999).
    Article  Google Scholar 

    27.
    Raubenheimer, D. & Simpson, S. J. in Encyclopedia of Animal Behavior (Second Edition) (ed Jae Chun Choe) 127–138 (Academic Press, London, 2019).

    28.
    Santos, R. G. et al. Exploring plastic-induced satiety in foraging green turtles. Environ. Pollut., 114918 (2020).

    29.
    Lavers, J. L., Bond, A. L. & Hutton, I. Plastic ingestion by flesh-footed shearwaters (Puffinus carneipes): implications for fledgling body condition and the accumulation of plastic-derived chemicals. Environ. Pollut. 187, 124–129. https://doi.org/10.1016/j.envpol.2013.12.020 (2014).
    CAS  Article  PubMed  Google Scholar 

    30.
    Puskic, P. S., Lavers, J. L., Adams, L. R. & Bond, A. L. Ingested plastic and trace element concentrations in short-tailed shearwaters (Ardenna tenuirostris). Mar. Pollut. Bull. https://doi.org/10.1016/j.marpolbul.2020.111143 (2020).
    Article  PubMed  Google Scholar 

    31.
    Lavers, J. L. & Bond, A. L. Ingested plastic as a route for trace metals in Laysan Albatross (Phoebastria immutabilis) and Bonin Petrel (Pterodroma hypoleuca) from Midway Atoll. Mar. Pollut. Bull. 110, 493–500. https://doi.org/10.1016/j.marpolbul.2016.06.001 (2016).
    CAS  Article  PubMed  Google Scholar 

    32.
    Ishii, C. et al. Contamination status and accumulation characteristics of heavy metals and arsenic in five seabird species from the central Bering Sea. J. Vet. Med. Sci. 79, 807–814. https://doi.org/10.1292/jvms.16-0441 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    33.
    Ishii, C. et al. Heavy metal pollution in Japanese seabirds. Jpn. J. Vet. Res. 61, S75–S76 (2013).
    PubMed  Google Scholar 

    34.
    Burger, J. & Gochfeld, M. Metal levels in feathers of 12 species of seabirds from Midway Atoll in the northern Pacific Ocean. Sci. Total Environ. 257, 37–52. https://doi.org/10.1016/S0048-9697(00)00496-4 (2000).
    ADS  CAS  Article  PubMed  Google Scholar 

    35.
    Ashton, K., Holmes, L. & Turner, A. Association of metals with plastic production pellets in the marine environment. Mar. Pollut. Bull. 60, 2050–2055. https://doi.org/10.1016/j.marpolbul.2010.07.014 (2010).
    CAS  Article  PubMed  Google Scholar 

    36.
    Honda, K., Marcovecchio, J. E., Kan, S., Tatsukawa, R. & Ogi, H. Metal concentrations in pelagic seabirds from the North Pacific Ocean. Arch. Environ. Contam. Toxicol. 19, 704–711. https://doi.org/10.1007/BF01183988 (1990).
    CAS  Article  PubMed  Google Scholar 

    37.
    Muirhead, S. J. & Furness, R. W. Heavy metal concentrations in the tissues of seabirds from Gough Island, South Atlantic Ocean. Mar. Pollut. Bull. 19, 278–283. https://doi.org/10.1016/0025-326X(88)90599-1 (1988).
    CAS  Article  Google Scholar 

    38.
    Lock, J. W., Thompson, D. R., Furness, R. W. & Bartle, J. A. Metal concentrations in seabirds of the New Zealand region. Environ. Pollut. 75, 289–300. https://doi.org/10.1016/0269-7491(92)90129-X (1992).
    CAS  Article  PubMed  Google Scholar 

    39.
    Turner, A. Heavy metals, metalloids and other hazardous elements in marine plastic litter. Mar. Pollut. Bull. 111, 136–142. https://doi.org/10.1016/j.marpolbul.2016.07.020 (2016).
    CAS  Article  PubMed  Google Scholar 

    40.
    Davranche, M. et al. Are nanoplastics able to bind significant amount of metals? The lead example. Environ. Pollut. 249, 940–948. https://doi.org/10.1016/j.envpol.2019.03.087 (2019).
    CAS  Article  PubMed  Google Scholar 

    41.
    Turner, A. Mobilisation kinetics of hazardous elements in marine plastics subject to an avian physiologically-based extraction test. Environ. Pollut. 236, 1020–1026. https://doi.org/10.1016/j.envpol.2018.01.023 (2018).
    CAS  Article  PubMed  Google Scholar 

    42.
    Burger, J. & Gochfeld, M. Mercury and other metals in feathers of common eider (Somateria mollissima) and tufted puffin (Fratercula cirrhata) from the Aleutian chain of Alaska. Arch. Environ. Contam. Toxicol. 56, 596–606. https://doi.org/10.1007/s00244-008-9207-5 (2009).
    CAS  Article  PubMed  Google Scholar 

    43.
    Roman, L., Hardesty, B. D., Hindell, M. A. & Wilcox, C. A quantitative analysis linking seabird mortality and marine debris ingestion. Sci. Rep. https://doi.org/10.1038/s41598-018-36585-9 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    44.
    Pierce, K. E., Harris, R. J., Larned, L. S. & Pokras, M. A. Obstruction and starvation associated with plastic ingestion in a Northern Gannet Morus bassanus and a greater shearwater Puffinus gravis. Mar. Ornithol. 32, 187–189 (2004).
    Google Scholar 

    45.
    Rochman, C. M. et al. The ecological impacts of marine debris: Unraveling the demonstrated evidence from what is perceived. Ecology 97, 302–312. https://doi.org/10.1890/14-2070.1 (2016).
    Article  PubMed  Google Scholar 

    46.
    Tanaka, K. et al. (2013) Accumulation of plastic-derived chemicals in tissues of seabirds ingesting marine plastics. Mar. Pollut. Bull. http://doi.org/https://doi.org/10.1016/j.marpolbul.2012.12.010 (2013).

    47.
    Marchant, S. & Higgins, P. J. Handbook of Australian, New Zealand and Antarctic Birds 1 Part A ( Oxford University Press, Ratites to Ducks, 1990).
    Google Scholar 

    48.
    Roman, L., Bell, E., Wilcox, C., Hardesty, B. D. & Hindell, M. Ecological drivers of marine debris ingestion in Procellariiforme seabirds Sci. Rep. (2019).

    49.
    Powlesland, R. G. Seabirds found dead on New Zealand beaches in 1986 and a review of Pachyptila species recoveries since 1960. Notornis 36 (1989).

    50.
    Veitch, C. Seabirds found dead in New Zealand in 1979. Notornis 28, 41–47 (1981).
    Google Scholar 

    51.
    Post, P. W. Observations of prion (Pachyptila) wrecks on the west coast of South America. Notornis 54, 220–225 (2007).
    Google Scholar 

    52.
    Martuscelli, P. & Olmos, F. A large prion Pachyptila wreck in south-east Brazil. Cotinga 8, 55–57 (1997).
    Google Scholar 

    53.
    Davidson, N. & Evans, P. Mortality of Redshanks and Oystercatchers from starvation during severe weather. Bird Study 29, 183–188 (1982).
    Article  Google Scholar 

    54.
    van Franeker, J. Save the North Sea Fulmar-Litter-EcoQO Manual Part 1: Collection and dissection procedures. Vol. 672 (2004).

    55.
    Kastury, F. et al. In vitro, in vivo, and spectroscopic assessment of lead exposure reduction via ingestion and inhalation pathways using phosphate and iron amendments. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.9b02448 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    56.
    Environmental Protection Agency, U. S. A. Method 6020A Inductively coupled plasma – mass spectrometry. (1998).

    57.
    R Core Team. R: A Language and Environment for Statistical Computing, https://www.R-project.org (2018).

    58.
    Naimi, B. Package ‘usdm’, R package version 1.1–18. (2017).

    59.
    Barton, K. Package ‘MuMIn’. R package version 1.43.17. (2019).

    60.
    Anderson, D. & Burnham, K. Model Selection and Multi-Model Inference 2nd edn, 63 (Springer, New York, 2004).
    Google Scholar 

    61.
    Burnham, K. & Anderson, D. A practical information-theoretic approach, in Model Selection and mUltimodel Inference, 2nd ed. (Springer, New York, 2002).

    62.
    Totzke, U. et al. The influence of fasting on blood and plasma composition of herring gulls (Larus argentatus). Physiol. Biochem. Zool. Ecol. Evol. Approac. 72, 426–437. https://doi.org/10.1086/316675 (1999).
    CAS  Article  Google Scholar 

    63.
    McKnight, G. S., Lee, D. C., Hemmaplardh, D., Finch, C. A. & Palmiter, R. D. Transferrin gene expression. effects of nutritional iron deficiency. J. Biol. Chem. 255, 144–147 (1980).
    CAS  PubMed  Google Scholar 

    64.
    Urien, N. et al. Subcellular partitioning of metals and metalloids (As, Cd, Cu, Se and Zn) in liver and gonads of wild white suckers (Catostomus commersonii) collected downstream from a mining operation. Aquat. Toxicol. 202, 105–116. https://doi.org/10.1016/j.aquatox.2018.07.001 (2018).
    CAS  Article  PubMed  Google Scholar 

    65.
    Krężel, A. & Maret, W. The functions of metamorphic metallothioneins in zinc and copper metabolism. Int. J. Mol. Sci. 18, 1237. https://doi.org/10.3390/ijms18061237 (2017).
    CAS  Article  PubMed Central  Google Scholar 

    66.
    Rainbow, P. S. Copper, cadmium and zinc concentrations in oceanic amphipod and euphausiid crustaceans, as a source of heavy metals to pelagic seabirds. Mar. Biol. 103, 513–518. https://doi.org/10.1007/BF00399583 (1989).
    CAS  Article  Google Scholar 

    67.
    Cherel, Y., Robin, J.-P., Heitz, A., Calgari, C. & Le Maho, Y. Relationships between lipid availability and protein utilization during prolonged fasting. J. Comput. Physiol. B. 162, 305–313 (1992).
    CAS  Article  Google Scholar 

    68.
    Kojadinovic, J., Corre, M. L., Cosson, R. P. & Bustamante, P. Trace elements in three marine birds breeding on Reunion Island (Western Indian Ocean): part 1 – factors influencing their bioaccumulation. Arch. Environ. Contam. Toxicol. 52, 418–430. https://doi.org/10.1007/s00244-005-0225-2 (2007).
    CAS  Article  PubMed  Google Scholar 

    69.
    Stewart, F. M., Phillips, R. A., Bartle, J. A., Craig, J. & Shooter, D. Influence of phylogeny, diet, moult schedule and sex on heavy metal concentrations in New Zealand Procellariiformes. Mar. Ecol. Prog. Ser. 178, 295–305. https://doi.org/10.3354/meps178295 (1999).
    ADS  CAS  Article  Google Scholar 

    70.
    Fromant, A. et al. Wide range of metallic and organic contaminants in various tissues of the Antarctic prion, a planktonophagous seabird from the Southern Ocean. Sci. Total Environ. 544, 754–764. https://doi.org/10.1016/j.scitotenv.2015.11.114 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    71.
    Van Franeker, J. A. & Law, K. L. Seabirds, gyres and global trends in plastic pollution. Environ. Pollut. 203, 89–96. https://doi.org/10.1016/j.envpol.2015.02.034 (2015).
    CAS  Article  PubMed  Google Scholar 

    72.
    Ryan, P. G. How quickly do albatrosses and petrels digest plastic particles?. Environ. Pollut. 207, 438–440. https://doi.org/10.1016/j.envpol.2015.08.005 (2015).
    CAS  Article  PubMed  Google Scholar 

    73.
    Thouzeau, C., Robin, J.-P., Le Maho, Y. & Handrich, Y. Body reserve dynamics and energetics of barn owls during fasting in the cold. J. Comput. Physiol. B. 169, 612–620 (1999).
    Article  Google Scholar 

    74.
    Parker, H. & Holm, H. Patterns of nutrient and energy expenditure in female common eiders nesting in the high arctic. Auk 107, 660–668 (1990).
    Article  Google Scholar 

    75.
    Esselink, H. et al. Biomonitoring heavy metals using the barn owl (Tyto alba guttata): sources of variation especially relating to body condition. Arch. Environ. Contam. Toxicol. 28, 471–486 (1995).
    CAS  Article  Google Scholar 

    76.
    Raiswell, R., Benning, L. G., Tranter, M. & Tulaczyk, S. Bioavailable iron in the Southern Ocean: the significance of the iceberg conveyor belt. Geochem. Trans. 9, 7 (2008).
    Article  Google Scholar 

    77.
    Boyd, P. W. et al. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407, 695–702 (2000).
    ADS  CAS  Article  Google Scholar 

    78.
    De Baar, H. J. et al. Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean. Nature 373, 412–415 (1995).
    ADS  Article  Google Scholar 

    79.
    Scharek, R., Van Leeuwe, M. A. & De Baar, H. J. W. Responses of Southern Ocean phytoplankton to the addition of trace metals. Deep Sea Res. II 44, 209–227. https://doi.org/10.1016/S0967-0645(96)00074-4 (1997).
    ADS  CAS  Article  Google Scholar 

    80.
    Bannon, D. I., Abounader, R., Lees, P. S. J. & Bressler, J. P. Effect of DMT1 knockdown on iron, cadmium, and lead uptake in Caco-2 cells. Am. J. Physiol. Cell Physiol. 284, C44–C50 (2003).
    CAS  Article  Google Scholar 

    81.
    Bressler, J. P., Olivi, L., Cheong, J. H., Kim, Y. & Bannona, D. Divalent metal transporter 1 in lead and cadmium transport. Ann. N. Y. Acad. Sci. 1012, 142–152. https://doi.org/10.1196/annals.1306.011 (2004).
    ADS  CAS  Article  PubMed  Google Scholar 

    82.
    Roman, L., Bell, E., Wilcox, C., Hardesty, B. D. & Hindell, M. Ecological drivers of marine debris ingestion in Procellariiform Seabirds. Sci. Rep. http://doi.org/https://doi.org/10.1038/s41598-018-37324-w (2019).

    83.
    Ryan, P. G. The incidence and characteristics of plastic particles ingested by seabirds. Mar. Environ. Res. 23, 175–206. https://doi.org/10.1016/0141-1136(87)90028-6 (1987).
    Article  Google Scholar 

    84.
    Ainley, D. G., Fraser, W. R. & Spear, L. B. The incidence of plastic in the diets of Antarctic seabirds. Second International Conference on Marine Debris, 2–7 April 1989 (1990).

    85.
    Avery-Gomm, S. et al. Northern fulmars as biological monitors of trends of plastic pollution in the eastern North Pacific. Mar. Pollut. Bull. 64, 1776–1781. https://doi.org/10.1016/j.marpolbul.2012.04.017 (2012).
    CAS  Article  PubMed  Google Scholar 

    86.
    Terepocki, A. K., Brush, A. T., Kleine, L. U., Shugart, G. W. & Hodum, P. Size and dynamics of microplastic in gastrointestinal tracts of Northern Fulmars (Fulmarus glacialis) and Sooty Shearwaters (Ardenna grisea). Mar. Pollut. Bull. 116, 143–150. https://doi.org/10.1016/j.marpolbul.2016.12.064 (2017).
    CAS  Article  PubMed  Google Scholar 

    87.
    Youngren, S. M., Rapp, D. C. & Hyrenbach, K. D. Plastic ingestion by Tristram’s Storm-petrel (Oceanodroma tristrami) chicks from French frigate shoals, Northwestern Hawaiian Islands. Mar. Pollut. Bull. 128, 369–378. https://doi.org/10.1016/j.marpolbul.2018.01.053 (2018).
    CAS  Article  PubMed  Google Scholar 

    88.
    GIMP Development Team. GIMP 2.10.10, https://www.gimp.org/ (2019). More