New 12S metabarcoding primers for enhanced Neotropical freshwater fish biodiversity assessment
1.
Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).
ADS CAS PubMed Article PubMed Central Google Scholar
2.
WWF. Living Planet Report – 2018: Aiming higher. (WWF International, 2018).
3.
Kelly, R. P. et al. Harnessing DNA to improve environmental management. Science 344, 1455–1456 (2014).
ADS CAS PubMed Article PubMed Central Google Scholar
4.
Bonar, S. A., Hubert, W. A. & Willis, D. W. Standard methods for sampling North American freshwater fishes (2009).
5.
Wheeler, Q. D., Raven, P. H. & Wilson, E. O. Taxonomy: impediment or expedient?. Science (New York, NY) 303, 285 (2004).
CAS Article Google Scholar
6.
Kelly, R. P., Port, J. A., Yamahara, K. M. & Crowder, L. B. Using environmental DNA to census marine fishes in a large mesocosm. PLoS ONE 9, e86175 (2014).
ADS PubMed PubMed Central Article CAS Google Scholar
7.
Valentini, A. et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 25, 929–942 (2016).
CAS PubMed Article PubMed Central Google Scholar
8.
McDevitt, A. D. et al. Environmental DNA metabarcoding as an effective and rapid tool for fish monitoring in canals. J. Fish Biol. 95, 679–682 (2019).
CAS PubMed Article PubMed Central Google Scholar
9.
Taberlet, P., Coissac, E., Hajibabaei, M. & Rieseberg, L. H. Environmental DNA. Mol. Ecol. 21, 1789–1793 (2012).
CAS PubMed Article PubMed Central Google Scholar
10.
Deiner, K. et al. Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895 (2017).
PubMed Article PubMed Central Google Scholar
11.
Nobile, A. B. et al. DNA metabarcoding of neotropical ichthyoplankton: enabling high accuracy with lower cost. Metabarcoding Metagenomics 3, e35060 (2019).
Article Google Scholar
12.
Mariac, C. et al. Metabarcoding by capture using a single COI probe (MCSP) to identify and quantify fish species in ichthyoplankton swarms. PLoS ONE 13, e0202976 (2018).
CAS PubMed PubMed Central Article Google Scholar
13.
Leray, M., Meyer, C. P. & Mills, S. C. Metabarcoding dietary analysis of coral dwelling predatory fish demonstrates the minor contribution of coral mutualists to their highly partitioned, generalist diet. PeerJ 3, e1047 (2015).
PubMed PubMed Central Article CAS Google Scholar
14.
Shokralla, S. et al. Massively parallel multiplex DNA sequencing for specimen identification using an IlluminaMiSeq platform. Sci. Rep. 5, 9687 (2015).
ADS CAS PubMed PubMed Central Article Google Scholar
15.
Kitano, T., Umetsu, K., Tian, W. & Osawa, M. Two universal primer sets for species identification among vertebrates. Int. J. Legal Med. 121, 423–427 (2007).
PubMed Article PubMed Central Google Scholar
16.
Stoeckle, M. Y., Soboleva, L. & Charlop-Powers, Z. Aquatic environmental DNA detects seasonal fish abundance and habitat preference in an urban estuary. PLoS ONE 12, e0175186 (2017).
PubMed PubMed Central Article CAS Google Scholar
17.
Sales, N. G. et al. Fishing for mammals: landscape-level monitoring of terrestrial and semi-aquatic communities using eDNA from riverine systems. J. Appl. Ecol. 57, 707–716 (2020).
CAS Article Google Scholar
18.
Bylemans, J. et al. An environmental DNA-based method for monitoring spawning activity: a case study, using the endangered Macquarie perch (Macquaria australasica). Methods Ecol. Evol. 8, 646–655 (2017).
Article Google Scholar
19.
De Souza, L. S., Godwin, J. C., Renshaw, M. A. & Larson, E. Environmental DNA (eDNA) detection probability is influenced by seasonal activity of organisms. PLoS ONE 11, e0165273 (2016).
PubMed PubMed Central Article CAS Google Scholar
20.
Dejean, T. et al. Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus. J. Appl. Ecol. 49, 953–959 (2012).
Article Google Scholar
21.
Cilleros, K. et al. Unlocking biodiversity and conservation studies in high-diversity environments using environmental DNA (eDNA): a test with Guianese freshwater fishes. Mol. Ecol. Resour. 19(1), 27–46. https://doi.org/10.1111/1755-0998.12900 (2018).
CAS Article PubMed PubMed Central Google Scholar
22.
Sales, N. G., Wangensteen, O. S., Carvalho, D. C. & Mariani, S. Influence of preservation methods, sample medium and sampling time on eDNA recovery in a neotropical river. Environ. DNA 1(2), 119–130. https://doi.org/10.1002/edn3.14 (2019).
Article Google Scholar
23.
Sales, N. G. et al. Assessing the potential of environmental DNA metabarcoding for monitoring Neotropical mammals: a case study in the Amazon and Atlantic Forest, Brazil. Mamm. Rev. 50, 221–225 (2020).
Article Google Scholar
24.
Dejean, T. et al. Persistence of environmental DNA in freshwater ecosystems. PLoS ONE 6, e23398 (2011).
ADS CAS PubMed PubMed Central Article Google Scholar
25.
Gomes, L. C., Pessali, T. C., Sales, N. G., Pompeu, P. S. & Carvalho, D. C. Integrative taxonomy detects cryptic and overlooked fish species in a neotropical river basin. Genetica 143, 581–588 (2015).
PubMed Article PubMed Central Google Scholar
26.
Pugedo, M. L., de Andrade Neto, F. R., Pessali, T. C., Birindelli, J. L. O. & Carvalho, D. C. Integrative taxonomy supports new candidate fish species in a poorly studied neotropical region: the Jequitinhonha River Basin. Genetica 144, 341–349 (2016).
PubMed Article PubMed Central Google Scholar
27.
Ramirez, J. L. et al. Revealing hidden diversity of the underestimated NeotropicalIchthyofauna: DNA barcoding in the recently described genus Megaleporinus (Characiformes: Anostomidae). Front. Genet. 8, 1–11 (2017).
Article CAS Google Scholar
28.
Carvalho, D. C. et al. Deep barcode divergence in Brazilian freshwater fishes: the case of the São Francisco River basin. Mitochondrial DNA 22, 80–86 (2011).
PubMed Article CAS PubMed Central Google Scholar
29.
Collins, R. A. et al. Non-specific amplification compromises environmental DNA metabarcoding with COI. Methods Ecol. Evol. 10, 1985–2001 (2019).
Article Google Scholar
30.
Shaw, J. L. A. et al. Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system. Biol. Conserv. 197, 131–138 (2016).
Article Google Scholar
31.
Yamamoto, S. et al. Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Sci. Rep. 7, 40368 (2017).
ADS CAS PubMed PubMed Central Article Google Scholar
32.
Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2, 150088 (2015).
ADS CAS PubMed PubMed Central Article Google Scholar
33.
MacDonald, A. J. & Sarre, S. D. A framework for developing and validating taxon-specific primers for specimen identification from environmental DNA. Mol. Ecol. Resour. 17, 708–720 (2017).
CAS PubMed Article PubMed Central Google Scholar
34.
Aljanabi, S. M. & Martinez, I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res. 25, 4692–4693 (1997).
CAS PubMed PubMed Central Article Google Scholar
35.
Thomsen, P. F. et al. Environmental DNA from seawater samples correlate with trawl catches of subarctic deepwater fishes. PLoS ONE 11, e0165252 (2016).
PubMed PubMed Central Article CAS Google Scholar
36.
Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).
CAS PubMed Article PubMed Central Google Scholar
37.
Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).
CAS Article Google Scholar
38.
Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).
ADS CAS Article Google Scholar
39.
Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees’. Mol. Biol. Evol. 4, 406–425 (1987).
CAS PubMed PubMed Central Google Scholar
40.
Felsenstein, J. Evolutionary trees from gene frequencies and quantitative characters: finding maximum likelihood estimates. Evolution (N. Y.) 35, 1229–1242 (1981).
Google Scholar
41.
Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).
PubMed PubMed Central Article Google Scholar
42.
Proutski, V. & Holmes, E. SWAN: sliding window analysis of nucleotide sequence variability. Bioinformatics 14, 467–468 (1998).
CAS PubMed Article PubMed Central Google Scholar
43.
Brown, S. D. J. et al. Spider: an R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. Mol. Ecol. Resour. 12, 562–565 (2012).
PubMed Article PubMed Central Google Scholar
44.
R Core Team. R: A Language and Environment for Statistical Computing (2020).
45.
Meusnier, I. et al. A universal DNA mini-barcode for biodiversity analysis. BMC Genomics 9, 214 (2008).
PubMed PubMed Central Article CAS Google Scholar
46.
Ye, J. et al. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 134 (2012).
CAS Article Google Scholar
47.
Fujisawa, T. & Barraclough, T. G. Delimiting species using single-locus data and the generalized mixed yule coalescent approach: a revised method and evaluation on simulated data sets. Syst. Biol. 62, 707–724 (2013).
PubMed PubMed Central Article Google Scholar
48.
Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876 (2013).
CAS PubMed PubMed Central Article Google Scholar
49.
Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877 (2012).
CAS PubMed Article PubMed Central Google Scholar
50.
Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).
PubMed PubMed Central Article CAS Google Scholar
51.
Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. Tracer 1.6 http://beast.bio.ed.ac.uk/tracer (2014).
52.
Rambaut, A. & Drummond, A. J. TreeAnnotator, version 1.7. 5. Available beast. bio. ed. ac. uk/TreeAnnotator (accessed 15 April 2010) (2012).
53.
Ward, R. D. DNA barcode divergence among species and genera of birds and fishes. Mol. Ecol. Resour. 9, 1077–1085 (2009).
CAS PubMed Article PubMed Central Google Scholar
54.
Hajibabaei, M. et al. A minimalist barcode can identify a specimen whose DNA is degraded. Mol. Ecol. Notes 6, 959–964 (2006).
CAS Article Google Scholar
55.
Yu, H.-J. & You, Z.-H. Comparison of DNA truncated barcodes and full-barcodes for species identification. in International Conference on Intelligent Computing 108–114 (Springer, 2010).
56.
Harper, L. R. et al. Environmental DNA (eDNA) metabarcoding of pond water as a tool to survey conservation and management priority mammals. Biol. Conserv. 238, 108225 (2019).
Article Google Scholar More