More stories

  • in

    Asynchronous multi-decadal time-scale series of biotic and abiotic responses to precipitation during the last 1300 years

    1.
    Ljungqvist, F. C. A new reconstruction of temperature variability in the extra‐tropical northern hemisphere during the last two millennia. Geogr. Ann. Ser. A, Phys. Geogr. 92, 339–351 (2010).
    2.
    Wang, Y. et al. The holocene asian monsoon: links to solar changes and north atlantic climate. Science 80(308), 854–857 (2005).
    ADS  Article  CAS  Google Scholar 

    3.
    Zhang, P. et al. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science 80(322), 940–942 (2008).
    ADS  Article  CAS  Google Scholar 

    4.
    Wang, X. et al. Climate, desertification, and the rise and collapse of China’s historical dynasties. Hum. Ecol. 38, 157–172 (2010).
    Article  Google Scholar 

    5.
    Paulsen, D. E., Li, H.-C. & Ku, T.-L. Climate variability in central China over the last 1270 years revealed by high-resolution stalagmite records. Quat. Sci. Rev. 22, 691–701 (2003).
    ADS  Article  Google Scholar 

    6.
    Lee, H. & Zhang, D. Space-time integration in geography and GIScience. Space-time integration in geography and giscience: research frontiers in the US and China (Springer Netherlands, 2015). https://doi.org/10.1007/978-94-017-9205-9.

    7.
    Jia, D., Li, Y. & Fang, X. Complexity of factors influencing the spatiotemporal distribution of archaeological settlements in northeast China over the past millennium. Quat. Res. 89, 413–424 (2018).
    Article  Google Scholar 

    8.
    Lee, U. The comparative historical study on the weather characteristics in the second half of the 15th century. Korean Stud. 21, 389–415 (2012).
    Google Scholar 

    9.
    Jo, K. et al. 1000-Year quasi-periodicity of weak monsoon events in temperate northeast Asia since the mid-Holocene. Sci. Rep. 7, 15196 (2017).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    10.
    Jo, K. et al. Mid-latitude interhemispheric hydrologic seesaw over the past 550,000 years. Nature 508, 378–382 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    11.
    Lee, E. et al. Multi-proxy records of Holocene hydroclimatic and environmental changes on the southern coast of South Korea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 545, 109642 (2020).
    Article  Google Scholar 

    12.
    Park, J. Solar and tropical ocean forcing of late-Holocene climate change in coastal East Asia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 469, 74–83 (2017).
    Article  Google Scholar 

    13.
    Constantine, M., Kim, M. & Park, J. Mid- to late Holocene cooling events in the Korean Peninsula and their possible impact on ancient societies. Quat. Res. 92, 98–108 (2019).
    CAS  Article  Google Scholar 

    14.
    Lim, J. et al. Holocene coastal environmental change and ENSO-driven hydroclimatic variability in East Asia. Quat. Sci. Rev. 220, 75–86 (2019).
    ADS  Article  Google Scholar 

    15.
    Yum, J. G., Takemura, K., Tokuoka, T. & Yu, K. M. Holocene environmental changes of the Hwajinpo Lagoon on the eastern coast of Korea. J. Paleolimnol. 29, 155–166 (2003).
    Article  Google Scholar 

    16.
    Cheung, R. C. W. et al. Decadal- to centennial-scale East Asian summer monsoon variability over the past millennium: An oceanic perspective. Geophys. Res. Lett. 45, 7711–7718 (2018).
    ADS  Article  Google Scholar 

    17.
    Fujiki, T. & Yasuda, Y. Vegetation history during the Holocene from Lake Hyangho, northeastern Korea. Quat. Int. 123–125, 63–69 (2004).
    Article  Google Scholar 

    18.
    Song, B. et al. Pollen record of the mid- to late-Holocene centennial climate change on the East coast of South Korea and its influential factors. J. Asian Earth Sci. 151, 240–249 (2018).
    ADS  Article  Google Scholar 

    19.
    Hwang, S., Kim, J.-Y. & Kim, S. Environmental changes and embankment addition of Reservoir Gonggeomji, Sangju City between Late Silla- and Early Goryeo dynasty. J. Korean Geomorphol. Assoc. 21, 165–180 (2014).
    Google Scholar 

    20.
    Jhun, J. & Moon, B. Restorations and analyses of rainfall amount observed by Chukwookee. Asia-Pacific J. Atmos. Sci. 33, 691–707 (1997).
    Google Scholar 

    21.
    Yoo, C., Park, M., Kim, H. J. & Jun, C. Comparison of annual maximum rainfall events of modern rain gauge data (1961–2010) and Chukwooki data (1777–1910) in Seoul Korea. J. Water Clim. Chang. 9, 58–73 (2018).
    Article  Google Scholar 

    22.
    Lim, J., Lee, J.-Y., Hong, S.-S. & Kim, J.-Y. Late Holocene flooding records from the floodplain deposits of the Yugu River South Korea. Geomorphology 180–181, 109–119 (2013).
    ADS  Article  Google Scholar 

    23.
    Li, J. et al. Quantitative Holocene climatic reconstructions for the lower Yangtze region of China. Clim. Dyn. 50, 1101–1113 (2018).
    Article  Google Scholar 

    24.
    Sun, J. et al. Quantitative precipitation reconstruction in the east-central monsoonal China since the late glacial period. Quat. Int. 521, 175–184 (2019).
    Article  Google Scholar 

    25.
    Stebich, M. et al. Holocene vegetation and climate dynamics of NE China based on the pollen record from Sihailongwan Maar Lake. Quat. Sci. Rev. 124, 275–289 (2015).
    ADS  Article  Google Scholar 

    26.
    Li, J. et al. East Asian summer monsoon precipitation variations in China over the last 9500 years: A comparison of pollen-based reconstructions and model simulations. The Holocene 26, 592–602 (2016).
    ADS  Article  Google Scholar 

    27.
    Cao, X. et al. Impacts of the spatial extent of pollen-climate calibration-set on the absolute values, range and trends of reconstructed Holocene precipitation. Quat. Sci. Rev. 178, 37–53 (2017).
    ADS  Article  Google Scholar 

    28.
    Wu, D. et al. Decoupled early Holocene summer temperature and monsoon precipitation in southwest China. Quat. Sci. Rev. 193, 54–67 (2018).
    ADS  Article  Google Scholar 

    29.
    Park, J. A modern pollen–temperature calibration data set from Korea and quantitative temperature reconstructions for the Holocene. The Holocene 21, 1125–1135 (2011).
    ADS  Article  Google Scholar 

    30.
    Tian, F. et al. Pollen-climate relationships in time (9 ka, 6 ka, 0 ka) and space (upland vs. lowland) in eastern continental Asia. Quat. Sci. Rev. 156, 1–11 (2017).
    ADS  Article  Google Scholar 

    31.
    Herzschuh, U. et al. Position and orientation of the westerly jet determined Holocene rainfall patterns in China. Nat. Commun. 10, 2376 (2019).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    32.
    Li, C., Wu, Y. & Hou, X. Holocene vegetation and climate in Northeast China revealed from Jingbo Lake sediment. Quat. Int. 229, 67–73 (2011).
    Article  Google Scholar 

    33.
    Hu, C. et al. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records. Earth Planet. Sci. Lett. 266, 221–232 (2008).
    ADS  CAS  Article  Google Scholar 

    34.
    Wen, R. et al. Holocene precipitation and temperature variations in the East Asian monsoonal margin from pollen data from Hulun Lake in northeastern Inner Mongolia China. Boreas 39, 262–272 (2010).
    Article  Google Scholar 

    35.
    Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991).
    ADS  Article  Google Scholar 

    36.
    Zhao, K. et al. Contribution of ENSO variability to the East Asian summer monsoon in the late Holocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 449, 510–519 (2016).
    Article  Google Scholar 

    37.
    Giry, C. et al. Mid- to late Holocene changes in tropical Atlantic temperature seasonality and interannual to multidecadal variability documented in southern Caribbean corals. Earth Planet. Sci. Lett. 331–332, 187–200 (2012).
    ADS  Article  CAS  Google Scholar 

    38.
    Viles, H. Interannual, decadal and multidecadal scale climatic variability and geomorphology. Earth-Science Rev. 61, 105–131 (2003).
    ADS  Article  Google Scholar 

    39.
    Lim, J. & Fujiki, T. Vegetation and climate variability in East Asia driven by low-latitude oceanic forcing during the middle to late Holocene. Quat. Sci. Rev. 30, 2487–2497 (2011).
    ADS  Article  Google Scholar 

    40.
    Williams, J. W., Post*, D. M., Cwynar, L. C., Lotter, A. F. & Levesque, A. J. Rapid and widespread vegetation responses to past climate change in the North Atlantic region. Geology 30, 971 (2002).
    ADS  CAS  Article  Google Scholar 

    41.
    Yu, Z. Late quaternary dynamics of tundra and forest vegetation in the southern niagara escarpment Canada. New Phytol. 157, 365–390 (2003).
    Article  Google Scholar 

    42.
    Yu, Z. Rapid response of forested vegetation to multiple climatic oscillations during the last deglaciation in the northeastern United States. Quat. Res. 67, 297–303 (2007).
    Article  Google Scholar 

    43.
    Richter, H. & Kituta, S. Ecophysiology of long-distance water transport in trees. in Trees in a Changing Environment- Ecophysiology, Adaptation, and Future Survival (eds. Tausz, M. & Grulke, N.) (Springer Nature, 2014).

    44.
    Johnson, M. T. & Agrawal, A. A. The ecological play of predator–prey dynamics in an evolutionary theatre. Trends Ecol. Evol. 18, 549–551 (2003).
    Article  Google Scholar 

    45.
    Tobolski, K. & Ammann, B. Macrofossils as records of plant responses to rapid Late Glacial climatic changes at three sites in the Swiss Alps. Palaeogeogr. Palaeoclimatol. Palaeoecol. 159, 251–259 (2000).
    Article  Google Scholar 

    46.
    Ammann, B. Biotic responses to rapid climatic changes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 159, 191–201 (2000).
    Article  Google Scholar 

    47.
    Walther, G. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).
    ADS  CAS  Article  PubMed  Google Scholar 

    48.
    Lischke, H., Lotter, A. F. & Fischlin, A. Untangling a Holocene pollen record with forest model simulations and independent climate data. Ecol. Modell. 150, 1–21 (2002).
    Article  Google Scholar 

    49.
    Steinhilber, F., Beer, J. & Fröhlich, C. Total solar irradiance during the Holocene. Geophys. Res. Lett. 36, L19704 (2009).
    ADS  Article  Google Scholar 

    50.
    Solanki, S. K., Usoskin, I. G., Kromer, B., Schüssler, M. & Beer, J. Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature 431, 1084–1087 (2004).
    ADS  CAS  Article  PubMed  Google Scholar 

    51.
    Yi, S. & Kim, J.-Y. Pollen analysis at Paju Unjeong, South Korea: Implications of land-use changes since the late Neolithic. The Holocene 22, 227–234 (2012).
    ADS  Article  Google Scholar 

    52.
    Yi, S., Yang, D.-Y. & Jia, H. Pollen record of agricultural cultivation in the west–central Korean Peninsula since the Neolithic Age. Quat. Int. 254, 49–57 (2012).
    Article  Google Scholar 

    53.
    Yi, S., Saito, Y., Zhao, Q. & Wang, P. Vegetation and climate changes in the Changjiang (Yangtze River) Delta, China, during the past 13,000 years inferred from pollen records. Quat. Sci. Rev. 22, 1501–1519 (2003).
    ADS  Article  Google Scholar 

    54.
    Kim, C. & Cheong, K. Research Report of Antiquities Vol. 204: Gonggeomji. Gyeongsangbukdo Institute of Cultural Properties, 230 p (2013) (in Korean).

    55.
    Ammann, B. et al. Quantification of biotic responses to rapid climatic changes around the Younger Dryas- a synthesis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 159, 313–347 (2000).
    Article  Google Scholar 

    56.
    Jo, K., Woo, K. S., Hong, G. H., Kim, S. H. & Suk, B. C. Rainfall and hydrological controls on speleothem geochemistry during climatic events (droughts and typhoons): an example from Seopdong Cave, Republic of Korea. Earth Planet. Sci. Lett. 295, 441–450 (2010).
    ADS  CAS  Article  Google Scholar 

    57.
    Danzeglocke, U., Joris, O. & Weninger, B. CalPal-2007online. Available at: https://www.calpal-online.de.

    58.
    Blaauw, M. Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat. Geochronol. 5, 512–518 (2010).
    Article  Google Scholar 

    59.
    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).
    CAS  Article  Google Scholar 

    60.
    Moore, P. D., Webb, J. A. & Collison, M. E. Pollen Analysis 2nd edn. (Blackwell Scientific Publications, Oxford, 1991).
    Google Scholar 

    61.
    Stockmarr, J. Tablets with spores used in absolute pollen analysis. Pollen Spores 13, 615–621 (1971).
    Google Scholar 

    62.
    Grimm, E. Tilia 1.7.16 Software. Illinois State Museum, Research and Collection Center, Springfield, II. (2011).

    63.
    Chevalier, M., Cheddadi, R. & Chase, B. M. CREST (Climate REconstruction SofTware): a probability density function (PDF)-based quantitative climate reconstruction method. Clim. Past 10, 2081–2098 (2014).
    Article  Google Scholar 

    64.
    Chevalier, M. Enabling possibilities to quantify past climate from fossil assemblages at a global scale. Glob. Planet. Change 175, 27–35 (2019).
    ADS  Article  Google Scholar 

    65.
    Lim, J., Yi, S., Nahm, W.-H. & Kim, J.-Y. Holocene millennial-scale vegetation changes in the Yugu floodplain, Kongju area, central South Korea. Quat. Int. 254, 92–98 (2012).
    Article  Google Scholar 

    66.
    Jung, S.-K. & McDonald, K. Visual gene developer: a fully programmable bioinformatics software for synthetic gene optimization. BMC Bioinformatics 12, 340 (2011).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    67.
    Singal developer. Signal: Signal processing. (2013).

    68.
    Polanco-Martinez, Josue, M., Medina-Elizalde, Martin, A., Goni, Maria, Fernanda, S. & Mudelsee, M. BINCOR: An R package for Estimating the Correlation between Two Unevenly Spaced Time Series. R J. 11, 170 (2019).

    69.
    Yim, T. & Kira, T. Distribution forest vegetation and climate in the Korea Peninsula. I. Distribution of some indices of thermal climate. Japanese J. Ecol. 25, 77–88 (1975).

    70.
    Steinhilber, F. et al. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. Proc. Natl. Acad. Sci. 109, 5967–5971 (2012).
    ADS  CAS  Article  PubMed  Google Scholar 

    71.
    Stott, L. et al. Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch. Nature 431, 56–59 (2004).
    ADS  CAS  Article  PubMed  Google Scholar 

    72.
    Moy, C. M., Seltzer, G. O., Rodbell, D. T. & Anderson, D. M. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, 162–165 (2002).
    ADS  CAS  Article  PubMed  Google Scholar  More

  • in

    Multiscale consensus habitat modeling for landscape level conservation prioritization

    1.
    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).
    CAS  Article  Google Scholar 
    2.
    Smeraldo, S. et al. Modelling risks posed by wind turbines and power lines to soaring birds: the black stork (Ciconia nigra) in Italy as a case study. Biodivers. Conserv. 29, 1959–1976 (2020).
    Article  Google Scholar 

    3.
    Gutierrez, B. L. et al. An island of wildlife in a human-dominated landscape: the last fragment of primary forest on the Osa Peninsula’s Golfo Dulce coastline Costa Rica. PLoS ONE 14, e0214390 (2019).
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    4.
    Padalia, H. et al. Assessment of historical forest cover loss and fragmentation in Asian elephant ranges in India. Environ. Monit. Assess. 191, 802 (2019).
    Article  Google Scholar 

    5.
    Sodhi, N. S., Lee, T. M., Koh, L. P. & Brook, B. W. A meta-analysis of the impact of anthropogenic forest disturbance on Southeast Asia’s biotas. Biotropica 41, 103–109 (2009).
    Article  Google Scholar 

    6.
    Beier, P. Determining minimum habitat areas and habitat corridors for cougars. Conserv. Biol. 7, 94–108 (1993).
    Article  Google Scholar 

    7.
    MacNally, R. & Bennett, A. F. Species-specific prediction of the impact of habitat fragmentation: local extinction of birds in the box-ironbark forests of central Victoria Australia. Biol. Conserv. 82, 147–155 (1997).
    Article  Google Scholar 

    8.
    Hanski, I. Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos 8, 209–219 (1999).
    Article  Google Scholar 

    9.
    Weaver, J. L., Paquet, P. C. & Ruggerio, L. F. Resilience and conservation of large carnivores in the Rocky Mountains. Conserv. Biol. 10, 964–976 (1996).
    Article  Google Scholar 

    10.
    Smith, J. B., Nielsen, C. K. & Hellgren, E. C. Suitable habitat for recolonizing large carnivores in the midwestern USA. Oryx 50, 555–564 (2016).
    Article  Google Scholar 

    11.
    Morehouse, A. T., Hughes, C., Manners, N., Bectell, J. & Bruder, T. Carnivores and communities: a case study of human-carnivore conflict mitigation in southwestern Alberta. Front. Ecol. Evol. 8, 2 (2020).
    Article  Google Scholar 

    12.
    Pelton, M. R. et al. American black bear conservation action plan in Bears (ed. Servheen, C., Herrero, S., & Peyton, B.) 144–146. Status survey and conservation action plan. (IUCN/SSC Bear and Polar Bear Specialist Groups, 1999).

    13.
    Williamson, D. F. In the Black: Status, Management, and Trade of the American Black Bear (Ursus americanus) in North America (TRAFFIC North America. World Wildlife Fund, Washington, DC, 2002).
    Google Scholar 

    14.
    Hristienko, H. & McDonald, J. E. Jr. Going into the 21st century: a perspective on trends and controversies in the management of the American black bear. Ursus 18, 72–88 (2007).
    Article  Google Scholar 

    15.
    Scheick, B. K. & McCown, W. Geographic distribution of American black bears in North America. Ursus 25, 24–33 (2014).
    Article  Google Scholar 

    16.
    Wright, S. Evolution and the genetics of populations (The University of Chicago Press, Chicago, 1984).
    Google Scholar 

    17.
    Wooding, J. B. & Hardisky, T. S. Home range, habitat use, and mortality of black bears in north-central Florida. Int. Conf. Bear Res. Manag. 9, 349–356 (1994).
    Google Scholar 

    18.
    Florida Game and Fresh Water Fish Commission. Management of the Black Bear in Florida: A Staff Report to the Commissioners (Florida Game and Fresh Water Fish Commission, Tallahassee, 1993).
    Google Scholar 

    19.
    Florida Fish and Wildlife Conservation Commission. Florida Black Bear Management Plan (Florida Game and Fresh Water Fish Commission, Tallahassee, 2019).
    Google Scholar 

    20.
    Dixon, J. D. Genetic consequences of habitat fragmentation and loss: the case of the Florida black bear (Ursus americanus floridanus). Conserv. Genet. 8, 455–464 (2007).
    Article  Google Scholar 

    21.
    Brown, J. H. Challenges in Estimating Size and Conservation of Black Bear in West-Central Florida. Thesis, University of Kentucky (2004)

    22.
    Humm, J. M., McCown, J. W., Scheick, B. K. & Clark, J. D. Spatially explicit population estimates for black bears based on cluster sampling. J. Wildl. Manag. 81, 1187–1201 (2017).
    Article  Google Scholar 

    23.
    Florida Fish and Wildlife Conservation Commission. Florida Black Bear Management Plan (Florida Game and Fresh Water Fish Commission, Tallahassee, 2012).
    Google Scholar 

    24.
    Carr, M. H. & Zwick, P. D. Technical Report Florida 2070: Mapping Florida’s Future—Alternative Patterns of Development in 2070 (Geoplan Center at the University of Florida, Gainesville, 2016).
    Google Scholar 

    25.
    Noss, R. E., Quiqley, H. B., Hornocker, M. G., Merrill, T. & Paquet, P. C. Conservation biology and carnivore conservation in the Rocky Mountains. Conserv. Biol. 10, 94–96 (1996).
    Google Scholar 

    26.
    Breitenmoser, U. Large predators in the Alps: the fall and rise of man’s competitors. Biol. Conserv. 83, 279–289 (1998).
    Article  Google Scholar 

    27.
    Waser, P. M. Patterns and consequences of dispersal in gregarious carnivores. In Carnivore Behavior, Ecology, and Evolution (ed. Gittleman, J. L.) 267–295 (Cornell University Press, Ithaca, 1996).
    Google Scholar 

    28.
    Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).
    Article  Google Scholar 

    29.
    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
    Article  Google Scholar 

    30.
    Yackulic, C. B. et al. Presence-only modelling using MAXENT: When can we trust the inferences?. Methods Ecol. Evol. 4, 236–243 (2013).
    Article  Google Scholar 

    31.
    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).
    Article  Google Scholar 

    32.
    De Oliveira Moreira, D. et al. The distributional ecology of the maned sloth: Environmental influences on its distribution and gaps in knowledge. PLoS ONE. 9, 1–12 (2014).
    Google Scholar 

    33.
    Martin, J. et al. Brown bear habitat suitability in the Pyrenees: transferability across sites and linking scales to make the most of scarce data. J. Appl. Ecol. 49, 621–631 (2012).
    Article  Google Scholar 

    34.
    Khosravi, R., Hemami, R. K. M. & Cushman, S. A. Multi-scale niche modeling of three sympatric felids of conservation importance in central Iran. Landsc. Ecol. 34, 2451–2467 (2019).
    Article  Google Scholar 

    35.
    Maehr, D. S., McCown, J. W., Land, E. D. & Roof, J. C. Southwest Florida Black Bear Habitat Use, Distribution, Movements, and Conservation Strategy (Florida Game and Fresh Water Fish Commission, Gainesville, 1992).
    Google Scholar 

    36.
    McCown, W., Kublis, P., Eason, T. & Scheick, B. Black Bear Movements and Habitat Use Relative to Roads in Ocala National Forest (Florida Fish and Wildlife Commission, Gainesville, 2004).
    Google Scholar 

    37.
    Dobey, S. Ecology of Florida black bears in the Okefenokee-Osceola ecosystem. Wildl. Monogr. 158, 1–41 (2005).
    Google Scholar 

    38.
    Ulrey, W. A. Home Range, Habitat Use, and Food Habits of the Black Bear in South-Central Florida. Thesis, University of Kentucky (2008)

    39.
    Karelus, D. L., McCown, J. W., Scheick, B. K., van de Kerk, M. & Oli, M. K. Home ranges and habitat selection by black bears in a newly colonized population in Florida. Southeast Nat. 15, 346–364 (2016).
    Article  Google Scholar 

    40.
    Karelus, D. L., McCown, J. W., Scheick, B. K. & Oli, M. K. Microhabitat features influencing habitat use by Florida black bears. Glob. Ecol. Conserv. 13, e00367 (2018).
    Article  Google Scholar 

    41.
    Olson, D. M. & Dinerstein, E. The Global 200: Priority ecoregions for global conservation. Ann. MO Bot. Gard. 89, 125–126 (2002).
    Article  Google Scholar 

    42.
    U.S. Census Bureau. Population and housing unite estimates vintage 2018. Washington, DC (2018).

    43.
    Burby, R. & May, P. Making Governments Plan (John Hopkins University Press, Baltimore, 1997).
    Google Scholar 

    44.
    Boarnet, M. G., McLaughlin, R. B. & Carruthers, J. I. Does state growth management change the pattern of urban growth? Evidence from Florida. Reg. Sci. Urban Econ. 41, 236–252 (2011).
    Article  Google Scholar 

    45.
    Seibert, S. G. Status and Management of Black Bears in Apalachicola National Forest (Florida Game and Fresh Water Fish Commission, Gainesville, 2013).
    Google Scholar 

    46.
    Land, E. D. Southwest Florida Black Bear Habitat Use, Distribution, Movements, and Conservation Strategy (Florida Game and Fresh Water Fish Commission, Tallahassee, 1994).
    Google Scholar 

    47.
    McCown, W., Eason, T. H. & Cunningham, M. W. Black Bear Movements and Habitat Use Relative to Roads in Ocala National Forest (Florida Fish and Wildlife Conservation Commission, Gainesville, 2001).
    Google Scholar 

    48.
    Stratman, M. R., Alden, C. D., Pelton, M. R. & Sunquist, M. E. Habitat use by American black bears in the sandhills of Florida. Ursus 12, 109–114 (2001).
    Google Scholar 

    49.
    Maehr, D. W. et al. Spatial characteristics of an isolated Florida black bear population. Southeast Nat. 2, 433–446 (2003).
    Article  Google Scholar 

    50.
    Orlando, M. A. The Ecology and Behavior of an Isolated Black Bear Population in West Central Florida. Thesis, University of Kentucky (2003)

    51.
    Annis, K. M. The Impact of Translocation on Nuisance Florida Black Bears. Thesis, University of Florida (2007).

    52.
    Neils, A. M. Florida Black Bear (Ursus americanus floridanus) at the Urban-Wildlife Interface: Are They Different? Thesis, University of Florida (2011).

    53.
    Guthrie, J. M. Modeling Movement Behavior and Road Crossing the Black Bear of South Central Florida. Thesis, University of Kentucky (2012).

    54.
    Baruch-Mordo, S. et al. Stochasticity in natural forage production affects use of urban areas by black bears: implications to management of human-bear conflicts. PLoS ONE 9, e85122 (2014).
    ADS  PubMed Central  Article  CAS  PubMed  Google Scholar 

    55.
    Lewis, J. S., Rachlow, J. L., Garton, E. O. & Vierling, L. A. Effects of habitat on GPS collar performance: using data screening to reduce location error. J. Appl. Ecol. 44, 663–671 (2007).
    Article  Google Scholar 

    56.
    Clark, J. D., Laufenberg, J. S., Davidson, M. & Murrow, J. L. Connectivity among subpopulations of Louisiana black bears as estimated by a step selection function. J. Wildl. Manage. 79, 1347–1360 (2015).
    Article  Google Scholar 

    57.
    Beumer, L. T., van Beest, F. M., Stelvig, M. & Schmidt, N. M. Spatiotemproal dynamics in habitat suitability of a large Arctic herbivore: environmental heterogeneity is key to a sedentary lifestyle. Glob. Ecol. Conserv. 18, e00647 (2019).
    Article  Google Scholar 

    58.
    Hinton, J. W. et al. Space use and habitat selection by resident and transient red wolves (Canis rufus). PLoS ONE 11, e0167603 (2016).
    PubMed Central  Article  CAS  PubMed  Google Scholar 

    59.
    Fourcade, Y., Engler, J. O., Rodder, D. & Secondi, J. Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS ONE 9, e97122 (2014).
    ADS  PubMed Central  Article  CAS  PubMed  Google Scholar 

    60.
    Pellerin, M., Said, S. & Gaillard, J.-M. Roe deer Capreolus capreolus home-range sizes estimated from VHF and GPS data. Wildl. Biol. 14, 101–110 (2009).
    Article  Google Scholar 

    61.
    Signer, J., Fieberg, J. & Avgar, T. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol. 9, 880–890 (2019).
    PubMed Central  Article  PubMed  Google Scholar 

    62.
    Maehr, D. S. & Brady, J. R. Food habits of Florida black bears. J. Wildl. Manag. 48, 230–235 (1984).
    Article  Google Scholar 

    63.
    Hellgren, E. C., Vaughan, M. R. & Stauffer, D. F. Macrohabitat use by black bears in a southeastern wetland. J Wildl. Manag. 55, 442–448 (1991).
    Article  Google Scholar 

    64.
    Karelus, D. L. et al. Effects of environmental factors and landscape features on movement patterns of Florida black bears. J. Mammal. 98, 1463–1478 (2017).
    Article  Google Scholar 

    65.
    Florida Natural Areas Inventory. Florida Forever Board of Trustees Projects (2018).

    66.
    McGarigal, K., Cushman, S. A. & Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. University of Massachusetts, Amherst, MA. https://www.umass.edu/landeco/research/fragstats/fragstats.html. (2012).

    67.
    Riley, S. J., DeGloria, S. D. & Elliot, R. A terrain ruggedness index that quantifies topographic heterogeneity. Intermt. J. Sci. 5, 1–4 (1999).
    Google Scholar 

    68.
    Clark, J. D., Dunn, J. E. & Smith, K. G. A multivariate model of female black bear habitat use for a geographic information system. J. Wildl. Manag. 57, 519–526 (1993).
    Article  Google Scholar 

    69.
    U.S. Geological Survey. National Elevation Dataset. Washington, DC (2016).

    70.
    Ditmer, M. A., Noyce, K. V., Fieberg, J. R. & Garshelisa, D. L Delineating the ecological and geographic edge of an opportunist: The American black bear exploiting an agricultural landscape. Ecol. Model. 387, 205–219 (2018).
    Article  Google Scholar 

    71.
    U.S. Department of Agriculture National Agriculture Statistics Service. Census of Agriculture, Ag Census Web Maps. Washington, DC (2016).

    72.
    Hostetler, J. A. et al. Demographic consequences of anthropogenic influences: Florida black bears in north-central Florida. Biol. Conserv. 142, 2456–2463 (2009).
    Article  Google Scholar 

    73.
    Center for International Earth Science Information Network – CIESIN – Columbia University. Gridded Population of the World, Version 4 (GPWv4): Population Density. Palisades, NY (2016).

    74.
    Brody, A. J. & Pelton, M. R. Effects of roads on black bears in western North Carolina. Wildl. Soc. B 17, 5–10 (1989).
    Google Scholar 

    75.
    U.S. Census Bureau. TIGER/Line Shapefiles (machine readable data files). Washington DC (2016).

    76.
    U.S. Geological Survey. National Hydrology Dataset. Washington, DC (2018).

    77.
    U.S. Fish & Wildlife Service. National Wetlands Inventory Data. St Petersburg, FL (2018).

    78.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2019).

    79.
    Esri. ArcGIS Desktop: Release 10.4. Redlands, CA: Environmental Systems Research Institute (2015).

    80.
    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).
    Article  Google Scholar 

    81.
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
    Article  Google Scholar 

    82.
    Calenge, C. The package adehabitat for the R software: a tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 516–519 (2016).
    Article  Google Scholar 

    83.
    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).
    Article  Google Scholar 

    84.
    Phillips, S. J., Dudik, M., & Schapire, R. E. A maximum entropy approach to species distribution modeling in Proceedings of the twenty-first international conference on machine learning (technical coordinators Greiner, R. & Schuurmans, D.) 655–662 (ACM Press, 2004).

    85.
    Hernandez, P. A. et al. Predicting species distributions in poorly-studied landscapes. Biodivers. Conserv. 17, 1353–1366 (2008).
    Article  Google Scholar 

    86.
    Poor, E. E., Loucks, C., Jakes, A. & Urban, D. L. Comparing habitat suitability and connectivity modeling methods for conserving pronghorn migrations. PLoS ONE 7, e49390 (2012).
    ADS  CAS  PubMed Central  Article  PubMed  Google Scholar 

    87.
    Duan, R.-Y., Kong, X.-Q., Huang, M.-Y., Fan, W.-Y. & Wang, Z.-G. The predictive performance and stability of six species distribution models. PLoS ONE 9, e112764 (2014).
    ADS  PubMed Central  Article  CAS  PubMed  Google Scholar 

    88.
    Zhang, J. et al. MaxEnt modeling for predicting the spatial distribution of three raptors in the Sanjiangyuan National Park China. Ecol. Evol. 9, 6643–6654 (2019).
    PubMed Central  Article  PubMed  Google Scholar 

    89.
    Bertolino, S. et al. Spatially-explicit models as tools for implementing effective management strategies for invasive alien mammals. Mammal. Rev. 50, 87–199 (2020).
    Google Scholar 

    90.
    Alsamadisi, A. G., Tran, L. T. & Papes, M. Employing inferences across scales: integrating spatial data with different resolutions to enhance Maxent models. Ecol. Model. 415, 108857 (2020).
    Article  Google Scholar 

    91.
    Peralvo, M. F., Cuesta, F. & van Manen, F. Delineating priority habitat areas for the conservation of Andean bears in northern Ecuador. Ursus 16, 222–233 (2005).
    Article  Google Scholar 

    92.
    Mahalanobis, P. C. On the generalized distance in statistics. Proc. Natl. Aacd. Sci. India 2, 49–55 (1936).
    MATH  Google Scholar 

    93.
    Browning, D. M., Beaupre, S. J. & Duncan, L. Using partitioned Mahalanobis D2 (K) to formulate a GIS-based model of timber rattlesnake hibernacula. J. Wildl. Manag. 69, 33–44 (2005).
    Article  Google Scholar 

    94.
    Griffin, S. C., Taper, M. L., Hoffman, R. & Mills, L. S. Ranking Mahalanobis Distance models for predictions of occupancy from presence-only data. J. Wildl. Manag. 74, 1112–1121 (2010).
    Article  Google Scholar 

    95.
    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).
    Article  Google Scholar 

    96.
    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).
    Article  Google Scholar 

    97.
    Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300 (2002).
    Article  Google Scholar 

    98.
    Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).
    Article  Google Scholar 

    99.
    Murrow, J. L. & Clark, J. D. Effects of hurricanes Katrina and Rita on Louisiana black bear habitat. Ursus 23, 192–205 (2012).
    Article  Google Scholar 

    100.
    Sing, T., Sander, O., Beerenwinkel, N. & Lengauer, T. ROCR: visualizing classifier performance in R. Bioinformatics 21, 7881 (2005).
    Article  CAS  Google Scholar 

    101.
    Broennimann, B. & Di Cola, V. A. ecospat: Spatial Ecology Miscellaneous Methods. R package version 3.0 (2018).

    102.
    Liu, C., White, M. & Newell, G. Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 40, 778–789 (2013).
    Article  Google Scholar 

    103.
    Hellgren, E. C., Bales, S. L., Gregory, M. S., Leslie, D. M. Jr. & Clark, J. D. Testing a Mahalanobis Distance model of black bear habitat use in the Ouichita Mountains of Oklahoma. J. Wildl. Manag. 71, 924–928 (2007).
    Article  Google Scholar 

    104.
    Murrow, J. L., Thatcher, C. A., van Manen, F. T. & Clark, J. A data-based conservation planning tool for Florida Panthers. Environ. Model. Assess. 18, 159–170 (2013).
    Article  Google Scholar 

    105.
    NOAA Office for Coastal Management. Detailed method for mapping sea level rise inundation. (NOAA, 2017).

    106.
    Pelton, M. R. 2003. Black bear. In Wild Mammals of North America: Biology, Management, and Conservation (eds Feldhamer, J. A. et al.) 547–555 (Johns Hopkins University, Baltimore, 2003).
    Google Scholar 

    107.
    Thuiller, W., Brotons, L., Araujo, M. B. & Lavorel, S. Effects of restricting environmental range of data to project current and future species distributions. Ecography 27, 165–172 (2004).
    Article  Google Scholar 

    108.
    Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28, 385–393 (2005).
    Article  Google Scholar 

    109.
    Kopp, R. E. et al. Probalistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth’s Future 2, 383–406 (2014).
    ADS  Article  Google Scholar 

    110.
    Xiao, H. & Tang, Y. Assess the “superposed” effects of storm surge from a Category 3 hurricane. and continuous sea-level rise on saltwater intrusion into the surficial aquifer in coastal east-central Florida (USA). Environ. Sci. Pollut Res. 26, 21882–21889 (2019).
    CAS  Article  Google Scholar 

    111.
    Laurance, W. F. et al. A global strategy for road building. Nature 513, 229–234 (2014).
    ADS  CAS  Article  Google Scholar 

    112.
    Mukul, S. A. et al. Combined effects of climate change and sea-level rise project dramatic habitat loss of the globally endangered Bengal tiger in the Bangladesh Sundarbans. Sci. Total Environ. 663, 830–840 (2019).
    ADS  CAS  Article  Google Scholar 

    113.
    Poor, E. E., Shao, Y. & Kelly, M. J. Mapping and predicting forest loss in a Sumatran tiger landscape from 2002 to 2050. J. Environ. Manag. 231, 397–404 (2019).
    Article  Google Scholar 

    114.
    Durner, G. M. et al. Predicting 21st-century polar bear habitat distribution from global climate models. Ecol. Monogr. 79, 25–58 (2009).

    115.
    Yovovich, V., Allen, M. L., Macaulay, L. T. & Wilmers, C. C. Using spatial characteristics of apex carnivore communication and reproductive behaviors to predict responses to future human development. Biodivers. Conserv. 29, 2589–2603 (2020).
    Article  Google Scholar 

    116.
    Muhly, T. B. et al. Functional response of wolves to human development across boreal North America. Ecol. Evol. 9, 10801–10815 (2019).
    PubMed Central  Article  PubMed  Google Scholar 

    117.
    Zeller, K. A., Wattles, D. W., Conlee, L. & Destefano, S. Response of female black bears to a high-density road network and identification of long-term road mitigation sites. Anim. Conserv. https://doi.org/10.1111/acv.12621 (2020).
    Article  Google Scholar 

    118.
    Morales-González, A., Ruiz-Villar, H., Ordiz, A. & Penteriani, V. Large carnivores living alongside humans: Brown bears in human-modified landscapes. Glob. Ecol. Conserv. 22, 1–13 (2020).
    Google Scholar 

    119.
    Maletzke, B. et al. Cougar response to a gradient of human development. Ecosphere 8, 1–14 (2017).
    Article  Google Scholar 

    120.
    Barrington-Leigh, C. & Millard-Ball, A. A century of sprawl in the United States. PNAS https://doi.org/10.1073/pnas.1504033112 (2015).
    Article  Google Scholar  More

  • in

    Conspecific recognition of pedal scent in domestic dogs

    1.
    Owen, M. A. et al. An experimental investigation of chemical communication in the polar bear. J. Zool. 295, 36–43. https://doi.org/10.1111/jzo.12181 (2015).
    Article  Google Scholar 
    2.
    Yasui, T., Tsukise, A. & Meyer, W. Histochemical analysis of glycoconjugates in the eccrine glands of the raccoon digital pads. Eur. J. Histochem. 48, 393–402 (2009).
    Google Scholar 

    3.
    Meyer, W. & Bartels, T. Histochemical study on the eccrine glands in the foot pad of the cat. Basic Appl. Histochem. 33, 219–238 (1989).
    CAS  PubMed  Google Scholar 

    4.
    Meyer, W. & Tsukise, A. Lectin histochemistry of snout skin and foot pads in the wolf and the domesticated dog (Mammalia: Canidae). Ann. Anat. Anatomischer Anzeiger 177, 39–49. https://doi.org/10.1016/S0940-9602(11)80129-9 (1995).
    CAS  Article  PubMed  Google Scholar 

    5.
    Parillo, F. & Diverio, S. Glycocomposition of the apocrine interdigital gland secretions in the fallow deer (Dama dama). Res. Vet. Sci. 86, 194–199. https://doi.org/10.1016/j.rvsc.2008.08.004 (2009).
    CAS  Article  PubMed  Google Scholar 

    6.
    Müller-Schwarze, D., Källquist, L., Mossing, T., Brundin, A. & Andersson, G. Responses of reindeer to interdigital secretions of conspecifics. J. Chem. Ecol. 4, 325–335. https://doi.org/10.1007/bf00989341 (1978).
    Article  Google Scholar 

    7.
    Sergiel, A. et al. Histological, chemical and behavioural evidence of pedal communication in brown bears. Sci. Rep. 7, 1052. https://doi.org/10.1038/s41598-017-01136-1 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    8.
    Kruuk, H. Otters: Ecology, Behaviour and Conservation (Oxford University Press, Oxford, 2006).
    Google Scholar 

    9.
    Gorman, M. L. & Trowbridge, B. J. in Carnivore Behavior, Ecology, and Evolution (ed John L. Gittleman) 57–88 (Springer, New York, 1989).

    10.
    Spotte, S. Societies of Wolves and Free-Ranging Dogs (Cambridge University Press, Cambridge, 2012).
    Google Scholar 

    11.
    Sillero-Zubiri, C. & Macdonald, D. W. Scent-marking and territorial behaviour of Ethiopian wolves Canis simensis. J. Zool. 245, 351–361. https://doi.org/10.1111/j.1469-7998.1998.tb00110.x (1998).
    Article  Google Scholar 

    12.
    Cassidy, K. A., Mech, L. D., MacNulty, D. R., Stahler, D. R. & Smith, D. W. Sexually dimorphic aggression indicates male gray wolves specialize in pack defense against conspecific groups. Behav. Proc. 136, 64–72. https://doi.org/10.1016/j.beproc.2017.01.011 (2017).
    Article  Google Scholar 

    13.
    Rothman, R. J. & Mech, L. D. Scent-marking in lone wolves and newly formed pairs. Anim. Behav. 27, 750–760. https://doi.org/10.1016/0003-3472(79)90010-1 (1979).
    Article  Google Scholar 

    14.
    Udell, M. A. R., Dorey, N. R. & Wynne, C. D. L. What did domestication do to dogs? A new account of dogs’ sensitivity to human actions. Biol. Rev. 85, 327–345. https://doi.org/10.1111/j.1469-185X.2009.00104.x (2010).
    Article  PubMed  Google Scholar 

    15.
    Miklósi, Á. Dog Behaviour, Evolution, and Cognition 2nd edn. (Oxford University Press, Oxford, 2015).
    Google Scholar 

    16.
    Rosell, F. Secrets of the Snout: The Dog’s Incredible Nose (University of Chicago Press, Chicago, 2018).
    Google Scholar 

    17.
    Dunbar, I. F. Olfactory preferences in dogs: the response of male and female beagles to conspecific odors. Behav. Biol. 20, 471–481 (1977).
    CAS  Article  PubMed  Google Scholar 

    18.
    Lisberg, A. E. & Snowdon, C. T. Effects of sex, social status and gonadectomy on countermarking by domestic dogs, Canis familiaris. Anim. Behav. 81, 757–764. https://doi.org/10.1016/j.anbehav.2011.01.006 (2011).
    Article  Google Scholar 

    19.
    Ranson, E. & Beach, F. A. Effects of testosterone on ontogeny of urinary behavior in male and female dogs. Horm. Behav. 19, 36–51. https://doi.org/10.1016/0018-506X(85)90004-2 (1985).
    CAS  Article  PubMed  Google Scholar 

    20.
    Natynczuk, S., Bradshaw, J. W. S. & McDonald, D. W. Chemical constituents of the anal sacs of domestic dogs. Biochem. Syst. Ecol. 17, 83–87. https://doi.org/10.1016/0305-1978(89)90047-1 (1989).
    CAS  Article  Google Scholar 

    21.
    Sherman, C. K., Reisner, I. R., Taliaferro, L. A. & Houpt, K. A. Characteristics, treatment, and outcome of 99 cases of aggression between dogs. Appl. Anim. Behav. Sci. 47, 91–108. https://doi.org/10.1016/0168-1591(95)01013-0 (1996).
    Article  Google Scholar 

    22.
    Pal, S. K., Ghosh, B. & Roy, S. Agonistic behaviour of free-ranging dogs (Canis familiaris) in relation to season, sex and age. Appl. Anim. Behav. Sci. 59, 331–348. https://doi.org/10.1016/S0168-1591(98)00108-7 (1998).
    Article  Google Scholar 

    23.
    Trisko, R. K., Sandel, A. A. & Smuts, B. Affiliation, dominance and friendship among companion dogs. Behaviour 153, 693–725. https://doi.org/10.1163/1568539X-00003352 (2016).
    Article  Google Scholar 

    24.
    Rosvall, K. A. Intrasexual competition in females: evidence for sexual selection?. Behav. Ecol. 22, 1131–1140. https://doi.org/10.1093/beheco/arr106 (2011).
    Article  PubMed  PubMed Central  Google Scholar 

    25.
    Beach, F. A. Coital behaviour in dogs. VIII. Social affinity, dominance and sexual preference in the bitch. Behaviour 36, 131. https://doi.org/10.1163/156853970X00088 (1970).
    Article  Google Scholar 

    26.
    Pageat, P. & Gaultier, E. Current research in canine and feline pheromones. Vet. Clin. Small Anim. Pract. 33, 187–211. https://doi.org/10.1016/s0195-5616(02)00128-6 (2003).
    Article  Google Scholar 

    27.
    Bekoff, M. Ground scratching by male domestic dogs: a composite signal. J. Mammal. 60, 847–848. https://doi.org/10.2307/1380206 (1979).
    Article  Google Scholar 

    28.
    Hepper, P. & Wells, D. in Handbook of Olfaction and Gustation (ed Richard Doty) 591–604 (Wiley-Blackwell, 2015).

    29.
    Nicolaides, N. Skin lipids: their biochemical uniqueness. Science 186, 19–26 (1974).
    ADS  CAS  Article  PubMed  Google Scholar 

    30.
    Fierer, N., Hamady, M., Lauber, C. L. & Knight, R. The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc. Natl. Acad. Sci. 105, 17994–17999. https://doi.org/10.1073/pnas.0807920105 (2008).
    ADS  Article  PubMed  Google Scholar 

    31.
    Craig, A. Forebrain emotional asymmetry: a neuroanatomical basis?. Trends Cognit. Sci. 9, 566–571. https://doi.org/10.1016/j.tics.2005.10.005 (2005).
    Article  Google Scholar 

    32.
    Royet, J.-P. & Plailly, J. Lateralization of olfactory processes. Chem. Senses 29, 731–745. https://doi.org/10.1093/chemse/bjh067 (2004).
    Article  PubMed  Google Scholar 

    33.
    Siniscalchi, M. et al. Sniffing with the right nostril: lateralization of response to odour stimuli by dogs. Anim. Behav. 82, 399–404. https://doi.org/10.1016/j.anbehav.2011.05.020 (2011).
    Article  Google Scholar 

    34.
    Lisberg, A. E. & Snowdon, C. T. The effects of sex, gonadectomy and status on investigation patterns of unfamiliar conspecific urine in domestic dogs, Canis familiaris. Anim. Behav. 77, 1147–1154. https://doi.org/10.1016/j.anbehav.2008.12.033 (2009).
    Article  Google Scholar 

    35.
    Fanjul, M. S., Zenuto, R. R. & Busch, C. Use of olfaction for sexual recognition in the subterranean rodent Ctenomys talarum. Acta theriologica 48, 35–46 (2003).
    Article  Google Scholar 

    36.
    Hart, B. L. Environmental and hormonal influences on urine marking behavior in the adult male dog. Behav. Biol. 11, 167–176. https://doi.org/10.1016/S0091-6773(74)90321-6 (1974).
    CAS  Article  PubMed  Google Scholar 

    37.
    Johnston, R. E., Derzie, A., Chiang, G., Jernigan, P. & Lee, H.-C. Individual scent signatures in golden hamsters: evidence for specialization of function. Anim. Behav. 45, 1061–1070. https://doi.org/10.1006/anbe.1993.1132 (1993).
    Article  Google Scholar 

    38.
    Gilfillan, G. D., Vitale, J. D., McNutt, J. W. & McComb, K. Spontaneous discrimination of urine odours in wild African lions, Panthera leo. Anim. Behav. 126, 177–185. https://doi.org/10.1016/j.anbehav.2017.02.003 (2017).
    Article  Google Scholar 

    39.
    Rostain, R. R., Ben-David, M., Groves, P. & Randall, J. A. Why do river otters scent-mark? An experimental test of several hypotheses. Anim. Behav. 68, 703–711. https://doi.org/10.1016/j.anbehav.2003.10.027 (2004).
    Article  Google Scholar 

    40.
    Blundell, G. M., Ben-David, M. & Bowyer, R. T. Sociality in river otters: cooperative foraging or reproductive strategies?. Behav. Ecol. 13, 134–141. https://doi.org/10.1093/beheco/13.1.134 (2002).
    Article  Google Scholar 

    41.
    Mills, M. Behavioural mechanisms in territory and group maintenance of the brown hyaena, Hyaena brunnea, in the southern Kalahari. Anim. Behav. 31, 503–510. https://doi.org/10.1016/s0003-3472(83)80072-4 (1983).
    Article  Google Scholar 

    42.
    Boydston, E. E., Morelli, T. L. & Holekamp, K. E. Sex differences in territorial behavior exhibited by the spotted hyena (Hyaenidae, Crocuta crocuta). Ethology 107, 369–385. https://doi.org/10.1046/j.1439-0310.2001.00672.x (2001).
    Article  Google Scholar 

    43.
    Bamberger, M. & Houpt, K. A. Signalment factors, comorbidity, and trends in behavior diagnoses in dogs: 1,644 cases (1991–2001). J. Am. Vet. Med. Assoc. 229, 1591–1601. https://doi.org/10.2460/javma.229.10.1591 (2006).
    Article  PubMed  Google Scholar 

    44.
    Starling, M. J., Branson, N., Thomson, P. C. & McGreevy, P. D. Age, sex and reproductive status affect boldness in dogs. Vet. J. 197, 868–872. https://doi.org/10.1016/j.tvjl.2013.05.019 (2013).
    Article  PubMed  Google Scholar 

    45.
    Bodnariu, A. L. I. N. A. Indicators of stress and stress assessment in dogs. Lucr. Stiint. Med. Vet. 41, 20–26 (2008).
    Google Scholar 

    46.
    Pal, S. K. Factors influencing intergroup agonistic behaviour in free-ranging domestic dogs (Canis familiaris). Acta Ethol. 18, 209–220. https://doi.org/10.1007/s10211-014-0208-2 (2015).
    Article  Google Scholar 

    47.
    Derix, R. et al. Male and female mating competition in wolves: female suppression vs. male intervention. Behaviour 127(1–2), 141–174 (1993).
    Article  Google Scholar 

    48.
    Udell, M. A. R. & Wynne, C. D. L. A review of domestic dogs’ (Canis familiaris) human-like behaviors: or why behavior analysts should stop worrying and love their dogs. J. Exp. Anal. Behav. 89, 247–261. https://doi.org/10.1901/jeab.2008.89-247 (2008).
    Article  PubMed  PubMed Central  Google Scholar 

    49.
    Kubinyi, E., Turcsán, B. & Miklósi, Á. Dog and owner demographic characteristics and dog personality trait associations. Behav. Proc. 81, 392–401. https://doi.org/10.1016/j.beproc.2009.04.004 (2009).
    Article  Google Scholar 

    50.
    Siniscalchi, M., d’Ingeo, S. & Quaranta, A. The dog nose “KNOWS” fear: asymmetric nostril use during sniffing at canine and human emotional stimuli. Behav. Brain Res. 304, 34–41. https://doi.org/10.1016/j.bbr.2016.02.011 (2016).
    Article  PubMed  Google Scholar 

    51.
    Peters, R. & Mech, L. D. in Wolf and Man (eds Roberta L. Hall & Henry S. Sharp) 133–147 (Academic Press, 1978).

    52.
    Thoß, M. et al. Regulation of volatile and non-volatile pheromone attractants depends upon male social status. Sci. Rep. 9, 489. https://doi.org/10.1038/s41598-018-36887-y (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    53.
    Samuel, L. et al. Fears from the past? The innate ability of dogs to detect predator scents. Anim. Cognit. 23, 1–9 (2020).
    Article  Google Scholar 

    54.
    Thomsett, L. R. Structure of canine skin. Br. Vet. J. 142(2), 116–123 (1986).
    CAS  Article  PubMed  Google Scholar 

    55.
    Traniello, J. F. & Bakker, T. C. Minimizing observer bias in behavioral research: blinded methods reporting requirements for behavioral ecology and sociobiology. Behav. Ecol. 69, 1573–1574. https://doi.org/10.1007/s00265-015-2001-2 (2015).
    Article  Google Scholar 

    56.
    Fugazza, C. & Miklósi, Á. Domestic dog cognition and behavior 177–200 (Springer, Berlin, 2014).
    Google Scholar 

    57.
    Siniscalchi, M., Bertino, D. & Quaranta, A. Laterality and performance of agility-trained dogs. Later. Asymmetries Body Br. Cognit. 19, 219–234. https://doi.org/10.1080/1357650X.2013.794815 (2014).
    Article  Google Scholar 

    58.
    McKinley, J. & Sambrook, T. D. Use of human-given cues by domestic dogs (Canis familiaris) and horses (Equus caballus). Anim. Cogn. 3, 13–22. https://doi.org/10.1007/s100710050046 (2000).
    Article  Google Scholar 

    59.
    Johnen, D., Heuwieser, W. & Fischer-Tenhagen, C. An approach to identify bias in scent detection dog testing. Appl. Anim. Behav. Sci. 189, 1–12 (2017).
    Article  Google Scholar 

    60.
    Mulholland, M. M., Olivas, V. & Caine, N. G. The nose may not know: dogs’ reactions to rattlesnake odours. Appl. Anim. Behav. Sci. 204, 108–112. https://doi.org/10.1016/j.applanim.2018.04.001 (2018).
    Article  Google Scholar 

    61.
    Greer, K. A., Canterberry, S. C. & Murphy, K. E. Statistical analysis regarding the effects of height and weight on life span of the domestic dog. Res. Vet. Sci. 82, 208–214. https://doi.org/10.1016/j.rvsc.2006.06.005 (2007).
    Article  PubMed  Google Scholar 

    62.
    Gardner, M. & McVety, D. Treatment and Care of the Geriatric Veterinary Patient (Wiley, Hoboken, 2017).
    Google Scholar 

    63.
    Crowley, J. & Adelman, B. The Complete Dog Book: Official Publication of the American Kennel Club (Howell House, New York, 1998).
    Google Scholar 

    64.
    Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794. https://doi.org/10.7717/peerj.4794 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    65.
    MuMIn: Multi-Model Inference (2018).

    66.
    Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35. https://doi.org/10.1007/s00265-010-1029-6 (2011).
    Article  Google Scholar 

    67.
    Anderson, D. R. Model Based Inference in the Life Sciences: A Primer on Evidence (Springer, Berlin, 2007).
    Google Scholar 

    68.
    Cumming, G. Understanding the New Statistics: Effect Sizes, Confidence Intervals, and Meta-Analysis (Routledge, London, 2013).
    Google Scholar 

    69.
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biomet. J. 50, 346–363. https://doi.org/10.1002/bimj.200810425 (2008).
    MathSciNet  Article  MATH  Google Scholar  More

  • in

    Reference transcriptomes and comparative analyses of six species in the threatened rosewood genus Dalbergia

    1.
    Vatanparast, M. et al. First molecular phylogeny of the pantropical genus Dalbergia: implications for infrageneric circumscription and biogeography. S. Afr. J. Bot. 89, 143–149 (2013).
    CAS  Article  Google Scholar 
    2.
    Saha, S. et al. Ethnomedicinal, phytochemical, and pharmacological profile of the genus Dalbergia L. (Fabaceae). Phytopharmacology 4, 291–346 (2013).
    Google Scholar 

    3.
    Sprent, J. I. Legume Nodulation: A Global Perspective (Wiley, Hoboken, 2009).
    Google Scholar 

    4.
    Bhagwat, R. M., Dholakia, B. B., Kadoo, N. Y., Balasundaran, M. & Gupta, V. S. Two new potential barcodes to discriminate Dalbergia species. PLoS ONE 10, 1–18 (2015).
    Article  CAS  Google Scholar 

    5.
    EIA. Routes of Extinction: The Corruption and Violence Destroying SIAMESE Rosewood in the Mekong (Environmental Investigation Agency, London, 2014).
    Google Scholar 

    6.
    EIA. The Hongmu Challenge: A Briefing for the 66th Meeting of the CITES Standing Committee, January 2016 (2016).

    7.
    Winfield, K., Scott, M. & Graysn, C. Global status of Dalbergia and Pterocarpus rosewood producing species in trade. in Convention on International Trade in Endangered Species 17th Conference of Parties – Johannesburg (2016).

    8.
    Bentham, G. Synopsis of Dalbergieae, a Tribe of Leguminosae. J. Proc. Linn. Soc. Lond. Bot. 4, 1–128 (1860).
    MathSciNet  Article  Google Scholar 

    9.
    Lavin, M. et al. The dalbergioid legumes (Fabaceae): delimitation of a pantropical monophyletic clade. Am. J. Bot. 88, 503 (2001).
    CAS  Article  PubMed  Google Scholar 

    10.
    Hartvig, I. et al. Population genetic structure of the endemic rosewoods Dalbergia cochinchinensis and D. oliveri at a regional scale reflects the Indochinese landscape and life-history traits. Ecol. Evol. 8, 530–545 (2018).
    Article  PubMed  Google Scholar 

    11.
    Hartvig, I., Czako, M., Kjær, E. D., Nielsen, L. R. & Theilade, I. The use of DNA barcoding in identification and conservation of rosewood (Dalbergia spp.). PLoS ONE 10, e0138231 (2015).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    12.
    Wattoo, J. I., Saleem, M. Z., Shahzad, M. S., Arif, A. & Hameed, A. DNA barcoding: amplification and sequence analysis of rbcl and matK genome regions in three divergent plant species. Adv. Life Sci. 4, 03–07 (2016).
    CAS  Google Scholar 

    13.
    Phong, D. T., Tang, D. V., Hien, V. T. T., Ton, N. D. & Van, H. N. Nucleotide diversity of a nuclear and four chloroplast DNA regions in rare tropical wood species of dalbergia in Vietnam: a DNA barcode identifying utility. Asian J. Appl. Sci. 02, 116–125 (2014).
    Google Scholar 

    14.
    Resende, L. C., Ribeiro, R. A. & Lovato, M. B. Diversity and genetic connectivity among populations of a threatened tree (Dalbergia nigra) in a recently fragmented landscape of the Brazilian Atlantic Forest. Genetica 139, 1159–1168 (2011).
    Article  PubMed  Google Scholar 

    15.
    Buzatti, R. S. O., Ribeiro, R. A., Filho, J. P. L. & Lovato, M. B. Fine-scale spatial genetic structure of Dalbergia nigra (Fabaceae), a threatened and endemic tree of the Brazilian Atlantic Forest. Genet. Mol. Biol. 35, 838–846 (2012).
    Article  Google Scholar 

    16.
    Liu, F.-M. et al. De novo transcriptome analysis of Dalbergia odorifera and transferability of SSR markers developed from the transcriptome. Forests 10, 98 (2019).
    Article  Google Scholar 

    17.
    Xu, D.-P., Xu, S.-S., Zhang, N.-N., Yang, Z.-J. & Hong, Z. Chloroplast genome of Dalbergia cochinchinensis (Fabaceae), a rare and Endangered rosewood species in Southeast Asia. Mitochondrial DNA B 4, 1144–1145 (2019).
    Article  Google Scholar 

    18.
    Wariss, H. M., Yi, T.-S., Wang, H. & Zhang, R. Characterization of the complete chloroplast genome of Dalbergia odorifera (Leguminosae), a rare and critically endangered legume endemic to China. Conserv. Genet. Resour. https://doi.org/10.1007/s12686-017-0866-2 (2017).
    Article  Google Scholar 

    19.
    Liu, Y., Huang, P., Li, C.-H., Zang, F.-Q. & Zheng, Y.-Q. Characterization of the complete chloroplast genome of Dalbergia cultrata (Leguminosae). Mitochondrial DNA B 4, 2369–2370 (2019).
    Article  Google Scholar 

    20.
    Deng, C., Xin, G., Zhang, J. & Zhao, D. Characterization of the complete chloroplast genome of Dalbergia hainanensis (Leguminosae), a vulnerably endangered legume endemic to China. Conserv. Genet. Resour. 1, 105–108 (2018).
    Google Scholar 

    21.
    Song, Y., Zhang, Y., Xu, J., Li, W. & Li, M. F. Characterization of the complete chloroplast genome sequence of Dalbergia species and its phylogenetic implications. Sci. Rep. 9, 1–10 (2019).
    ADS  Article  CAS  Google Scholar 

    22.
    Lateef, A., Prabhudas, S. K. & Natarajan, P. RNA sequencing and de novo assembly of Solanum trilobatum leaf transcriptome to identify putative transcripts for major metabolic pathways. Sci. Rep. 8, 15375 (2018).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Keilwagen, J., Hartung, F., Paulini, M., Twardziok, S. O. & Grau, J. Combining RNA-seq data and homology-based gene prediction for plants, animals and fungi. BMC Bioinform. 19, 189 (2018).
    Article  CAS  Google Scholar 

    24.
    Wang, B., Kumar, V., Olson, A. & Ware, D. Reviving the transcriptome studies: an insight into the emergence of single-molecule transcriptome sequencing. Front. Genet. 10, 384 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    25.
    Lamble, S. et al. Improved workflows for high throughput library preparation using the transposome-based nextera system. BMC Biotechnol. 13, 104 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    26.
    Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    27.
    Buffalo, V. Scythe—a Bayesian adapter trimmer (version 0.994 BETA) [Software] (2011). https://github.com/vsbuffalo/scythe.

    28.
    Joshi, N. A. & Fass, J. N. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software] (2011). https://github.com/najoshi/sickle.

    29.
    Carruthers, M. et al. De novo transcriptome assembly, annotation and comparison of four ecological and evolutionary model salmonid fish species. BMC Genomics 19, 32 (2018).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    30.
    Haas, B. J. et al. De novo transcript sequence reconstruction from RNA seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    31.
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    32.
    Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).
    CAS  Article  Google Scholar 

    33.
    Haas, B. J. TransDecoder (2018). https://github.com/TransDecoder/TransDecoder.

    34.
    Kriventseva, E. V. et al. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucl. Acids Res. 47, D807–D811 (2019).
    CAS  Article  PubMed  Google Scholar 

    35.
    Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543 (2017).
    Article  CAS  PubMed Central  Google Scholar 

    36.
    Bertioli, D. J. et al. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat. Genet. 48, 438–446 (2016).
    CAS  Article  Google Scholar 

    37.
    Smith-Unna, R., Boursnell, C., Patro, R., Hibberd, J. M. & Kelly, S. TransRate: reference-free quality assessment of de novo transcriptome assemblies. Genome Res. 26, 1134–1144 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    38.
    UniProt: a worldwide hub of protein knowledge. Nucl. Acids Res.47, D506–D515 (2019).

    39.
    Cheng, C.-Y. et al. Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 89, 789–804 (2017).
    CAS  Article  PubMed  Google Scholar 

    40.
    El-Gebali, S. et al. The Pfam protein families database in 2019. Nucl. Acids Res. 47, D427–D432 (2019).
    CAS  Article  PubMed  Google Scholar 

    41.
    Almagro Armenteros, J. J. et al. SignalP 50 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423 (2019).
    CAS  Article  PubMed  Google Scholar 

    42.
    Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).
    CAS  Article  PubMed  Google Scholar 

    43.
    Emms, D. M. & Kelly, S. OrthoFinder2: fast and accurate phylogenomic orthology analysis from gene sequences. BioRxiv https://doi.org/10.1101/466201 (2018).
    Article  Google Scholar 

    44.
    Guo, L. et al. The opium poppy genome and morphinan production. Science 362, 343–347 (2018).
    ADS  CAS  Article  PubMed  Google Scholar 

    45.
    Nakamura, T., Yamada, K. D., Tomii, K. & Katoh, K. Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics 34, 2490–2492 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    46.
    Suyama, M., Torrents, D. & Bork, P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucl. Acids Res. 34, W609–W612 (2006).
    CAS  Article  PubMed  Google Scholar 

    47.
    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and high-performance computing. Nat. Methods 9, 772 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    48.
    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    49.
    Bouckaert, R. et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    50.
    Brea, M., Zamuner, A. B., Matheos, S. D., Iglesias, A. & Zucol, A. F. Fossil wood of the Mimosoideae from the early Paleocene of Patagonia, Argentina. Alcheringa An Australas. J. Palaeontol. 32, 427–441 (2008).
    Article  Google Scholar 

    51.
    Hane, J. K. et al. A comprehensive draft genome sequence for lupin (Lupinus angustifolius), an emerging health food: insights into plant-microbe interactions and legume evolution. Plant Biotechnol. J. 15, 318–330 (2017).
    CAS  Article  PubMed  Google Scholar 

    52.
    Lavin, M., Herendeen, P. S. & Wojciechowski, M. F. Evolutionary rates analysis of leguminosae implicates a rapid diversification of lineages during the tertiary. Syst. Biol. 54, 575–594 (2005).
    Article  PubMed  Google Scholar 

    53.
    Moretzsohn, M. C. et al. A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers. Ann. Bot. 111, 113–126 (2013).
    CAS  Article  PubMed  Google Scholar 

    54.
    Ye, J. et al. WEGO 2.0: a web tool for analyzing and plotting GO annotations, 2018 update. Nucl. Acids Res. 46, W71 (2018).
    CAS  Article  PubMed  Google Scholar 

    55.
    De Bie, T., Cristianini, N., Demuth, J. P. & Hahn, M. W. CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22, 1269–1271 (2006).
    Article  CAS  PubMed  Google Scholar 

    56.
    Mi, H., Muruganujan, A. & Thomas, P. D. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucl. Acids Res. 41, D377–D386 (2013).
    CAS  Article  PubMed  Google Scholar 

    57.
    Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).
    CAS  Article  PubMed  Google Scholar 

    58.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodological) 57(1), 289–300 (1995).
    MathSciNet  MATH  Google Scholar 

    59.
    Sun, J. et al. Adaptation to deep-sea chemosynthetic environments as revealed by mussel genomes. Nat. Ecol. Evol. 1, 0121 (2017).
    Article  Google Scholar 

    60.
    Yu, G., Wang, L. G., Han, Y. & He, Q. Y. ClusterProfiler: an R package for comparing biological themes among gene clusters. Omi. A J. Integr. Biol. 16, 284–287 (2012).
    CAS  Article  Google Scholar 

    61.
    Soltis, D. E., Soltis, P. S., Bennett, M. D. & Leitch, I. J. Evolution of genome size in the angiosperms. Am. J. Bot. 90, 1596–1603 (2003).
    Article  PubMed  Google Scholar 

    62.
    Hiremath, S. C. & Nagasampige, M. H. Genome size variation and evolution in some species of Dalbergia Linn.f. (Fabaceae). Caryologia 57, 367–372 (2004).
    Article  Google Scholar 

    63.
    Lawrence, G. H. M. Taxonomy of Vascular Plants (IBH Publishing Co., Oxford, 1973).
    Google Scholar 

    64.
    Lombello, R. A. & Forni-Martins, E. R. Chromosome studies and evolution in Sapindaceae. Caryologia 51, 89–93 (1998).
    Article  Google Scholar 

    65.
    Sheremet’ev, S. N. & Gamalei, Y. V. Towards angiosperms genome evolution in time. arXiv (2013).

    66.
    Carlquist, S. Anatomy of vine and liana stems: a review and synthesis. In The Biology of Vines (eds Putz, F. E. & Mooney, H. A.) 53–72 (University of Cambridge Press, Cambridge, 1991).
    Google Scholar 

    67.
    Li, Q. et al. The phylogenetic analysis of Dalbergia (Fabaceae: Papilionaceae) based on different DNA barcodes. Holzforschung 71, 939–949 (2017).
    CAS  Article  Google Scholar 

    68.
    Lavin, M. et al. Metacommunity process rather than continental tectonic history better explains geographically structured phylogenies in legumes. Philos. Trans. R. Soc. B Biol. Sci. 359, 1509–1522 (2004).
    CAS  Article  Google Scholar 

    69.
    Kučerová, J. Miocénna flóra z lokalít Kalonda a Mučín. Acta Geol. Slovaca 1, 65–70 (2009).
    Google Scholar 

    70.
    Gao, S.-X. & Zhou, Z.-K. The megafossil legumes from China. In Advances in Legume Systematics (eds Herendeen, P. S. & Dilcher, D. L.) (The Royal Botanic Gardens, Kew, 1992).
    Google Scholar 

    71.
    de Saporta, G. Dalbergia phleboptera Saporta. Muséum national d’Histoire naturelle (2015). https://science.mnhn.fr/institution/mnhn/collection/f/item/14084.?lang=en_US.

    72.
    De Bruyn, M. et al. Borneo and Indochina are major evolutionary hotspots for southeast Asian biodiversity. Syst. Biol. 63, 879–901 (2014).
    Article  PubMed  Google Scholar 

    73.
    Koenen, E. J. M. et al. The origin and early evolution of the legumes are a complex paleopolyploid phylogenomic tangle closely associated with the cretaceous-paleogene (K-Pg) boundary. biorxiv https://doi.org/10.1101/577957 (2019).
    Article  Google Scholar 

    74.
    Lespinet, O., Wolf, Y. I., Koonin, E. V. & Aravind, L. The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res. 12, 1048–1059 (2002).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    75.
    Ming, Y. et al. Molecular footprints of inshore aquatic adaptation in Indo-Pacific humpback dolphin (Sousa chinensis). Genomics https://doi.org/10.1016/j.ygeno.2018.07.015 (2018).
    Article  PubMed  Google Scholar 

    76.
    Force, A. et al. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531–1545 (1999).
    CAS  PubMed  PubMed Central  Google Scholar 

    77.
    Luengo, T. M., Mayer, M. P. & Rüdiger, S. G. The Hsp70–Hsp90 chaperone cascade in protein folding. Trends Cell Biol. 29(2), 164–177. https://doi.org/10.1016/j.tcb.2018.10.004 (2019).
    CAS  Article  Google Scholar 

    78.
    Jacob, P., Hirt, H. & Bendahmane, A. The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnol. J. 15, 405–414 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    79.
    Yamada, K. et al. Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana. J. Biol. Chem. 282, 37794–37804 (2007).
    CAS  Article  PubMed  Google Scholar 

    80.
    Clément, M. et al. The cytosolic/nuclear HSC70 and HSP90 molecular chaperones are important for stomatal closure and modulate abscisic acid-dependent physiological responses in arabidopsis. Plant Physiol. 156, 1481–1492 (2011).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    81.
    Hou, Q. & Bartels, D. Comparative study of the aldehyde dehydrogenase (ALDH) gene superfamily in the glycophyte Arabidopsis thaliana and Eutrema halophytes. Ann. Bot. 115, 465–479 (2015).
    CAS  Article  PubMed  Google Scholar 

    82.
    Missihoun, T. D. & Kotchoni, S. O. Aldehyde dehydrogenases and the hypothesis of a glycolaldehyde shunt pathway of photorespiration. Plant Signal. Behav. 13, e1449544 (2018).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    83.
    Estioko, L. P. et al. Differences in responses to flooding by germinating seeds of two contrasting rice cultivars and two species of economically important grass weeds. AoB Plants 6, plu064 (2014).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    84.
    Brocker, C. et al. Aldehyde dehydrogenase (ALDH) superfamily in plants: Gene nomenclature and comparative genomics. Planta 237, 189–210 (2013).
    CAS  Article  PubMed  Google Scholar 

    85.
    Sharma, B., Joshi, D., Yadav, P. K., Gupta, A. K. & Bhatt, T. K. Role of ubiquitin-mediated degradation system in plant biology. Front. Plant Sci. 7, 806 (2016).
    PubMed  PubMed Central  Google Scholar 

    86.
    Walters, K. J., Goh, A. M., Wang, Q., Wagner, G. & Howley, P. M. Ubiquitin family proteins and their relationship to the proteasome: a structural perspective. Biochimica et Biophysica Acta Mol. Cell Res. 1695, 73–87 (2004).
    CAS  Article  Google Scholar 

    87.
    Liu, Z.-B. et al. A novel membrane-bound E3 ubiquitin ligase enhances the thermal resistance in plants. Plant Biotechnol. J. 12, 93–104 (2014).
    Article  CAS  PubMed  Google Scholar 

    88.
    Macho, A. P. & Zipfel, C. Plant PRRs and the activation of innate immune signaling. Mol. Cell 54, 263–272 (2014).
    CAS  Article  PubMed  Google Scholar 

    89.
    Martin, G. B., Bogdanove, A. J. & Sessa, G. Understanding the functions of plant disease resistance proteins. Annu. Rev. Plant Biol. 54, 23–61 (2003).
    CAS  Article  PubMed  Google Scholar 

    90.
    Cohn, J., Sessa, G. & Martin, G. B. Innate immunity in plants. Curr. Opin. Immunol. 13, 55–62 (2001).
    CAS  Article  PubMed  Google Scholar 

    91.
    Lehmann, P. Structure and evolution of plant disease resistance genes. J. Appl. Genet. 43, 403–414 (2002).
    ADS  PubMed  Google Scholar 

    92.
    Jeffares, D. C., Tomiczek, B., Sojo, V. & dos Reis, M. A beginners guide to estimating the non-synonymous to synonymous rate ratio of all protein-coding genes in a genome. in Parasite Genomics Protocols: Second Edition 65–90 (Springer Fachmedien, 2014). https://doi.org/10.1007/978-1-4939-1438-8_4.

    93.
    Andersen, E. J., Ali, S., Byamukama, E., Yen, Y. & Nepal, M. P. Disease resistance mechanisms in plants. Genes 9(7), 339 (2018).
    Article  CAS  PubMed Central  Google Scholar 

    94.
    IUCN. The IUCN Red List of Threatened Species. Veresion 2019–2 (2019). https://www.iucnredlist.org.

    95.
    Federhen, S. The NCBI taxonomy database. Nucl. Acids Res. 40(D1), D136–D143 (2012).
    CAS  Article  PubMed  Google Scholar 

    96.
    Brandies, P., Peel, E., Hogg, C. J. & Belov, K. The value of reference genomes in the conservation of threatened species. Genes 10, 846 (2019).
    CAS  Article  PubMed Central  Google Scholar 

    97.
    Supple, M. A. & Shapiro, B. Conservation of biodiversity in the genomics era. Genome Biol. 19(1), 1–12 (2018).
    Article  Google Scholar 

    98.
    Fuentes-Pardo, A. P. & Ruzzante, D. E. Whole-genome sequencing approaches for conservation biology: advantages, limitations and practical recommendations. Mol. Ecol. 26, 5369–5406 (2017).
    CAS  Article  PubMed  Google Scholar 

    99.
    Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    100.
    Bragg, J. G., Potter, S., Bi, K. & Moritz, C. Exon capture phylogenomics: efficacy across scales of divergence. Mol. Ecol. Resour. 16, 1059–1068 (2016).
    CAS  Article  PubMed  Google Scholar 

    101.
    İpek, A., İpek, M., Ercişli, S. & Tangu, N. A. Transcriptome-based SNP discovery by GBS and the construction of a genetic map for olive. Funct. Integr. Genomics 17, 493–501 (2017).
    Article  CAS  PubMed  Google Scholar 

    102.
    Vatanparast, M., Powell, A., Doyle, J. J. & Egan, A. N. Targeting legume loci: a comparison of three methods for target enrichment bait design in Leguminosae phylogenomics. Appl. Plant Sci. 6, e1036 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    103.
    Ouborg, N. J. Integrating population genetics and conservation biology in the era of genomics. Biol. Lett. 6, 3–6 (2010).
    Article  PubMed  Google Scholar 

    104.
    CITES. Consideration of Proposals for Amendment of Appendices I and II. Convention on International Trade in Endangered Species of Wild Fauna and Flora. (Convention on International Trade in Endangered Species of Wild Fauna and Flora, 2017).

    105.
    Asian Regional Workshop (Conservation & Sustainable Management of Trees Viet Nam). Dalbergia cochinchinensis. The IUCN Red List of Threatened Species. e.T32625A9719096 (1998). https://doi.org/10.2305/IUCN.UK.1998.RLTS.T32625A9719096.en.

    106.
    Bernal, R., Gradstein, S. & Celis, M. Catálogo de plantas y líquenes de Colombia (Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, 2015).
    Google Scholar 

    107.
    World Conservation Monitoring Centre. Dalbergia melanoxylon. The IUCN Red List of Threatened Species 1998. e.T32504A9710439 (1998). https://doi.org/10.2305/IUCN.UK.1998.RLTS.T32504A9710439.en.

    108.
    ILDIS. International Legume Database and Information Service V10.39 (2011).

    109.
    Nghia, N. H. Dalbergia oliveri. The IUCN Red List of Threatened Species 1998. e.T32306A9693932 (1998). https://doi.org/10.2305/IUCN.UK.1998.RLTS.T32306A9693932.en.

    110.
    Orwa, C., Mutua, A., Kindt, R., Jamnadass, R. & Anthony, S. Agroforestree Database: A Tree Reference and Selection Guide Version 4.0. (2009). https://www.worldagroforestry.org/sites/treedbs/treedatabases.asp. More

  • in

    A possible link between coral reef success, crustose coralline algae and the evolution of herbivory

    The role of CCA as reef consolidators
    We found a significant correlation between the proportion of reefs that contain CCA as secondary reef builders and the proportion of true reefs over the last 150 million years. Coral reefs can benefit from CCA in various ways. Relating to the reef ridge, the stony pavement made up by the algae protects the ridge from onrushing waves and also consolidates the reef flats behind the ridges11. With reference to the whole reef, CCA reinforce the structure created by corals, fill cracks, bind together much of the sand, dead corals and debris, and thereby create a stable substrate and reduce reef erosion22. Larval settlement, metamorphosis, and recruitment of several coral species is strictly determined by chemosensory recognition of specific signal molecules uniquely available in specific CCA23.
    However, it has to be considered that there are modern reefs that cope with wavy, high-energy environments without the aid of CCA, as for example the Alacran reef in Mexico12. CCA are not the only possibility to add rigidity to a reef. Submarine lithification can be more important than CCA in creating calcite precipitates, especially when environmental and ecological conditions are unfavourable for the growth of CCA, e.g. because of the lack of light. Submarine lithification in the form of Mg-calcite precipitates exists in many forms, including cemented micritic crusts and infillings of cracks. Additionally, their respective carbonate sources may be abiotic24 or originate from a great variety of organisms, including reef fish25. Therefore, they do also play an important role for the structural integrity of coral reefs24. CCA abundance may benefit from reef growth in terms of ecological niches provided, additionally increasing the positive correlation. We thus suggest that the significant correlation between the proportion of reefs reinforced by CCA as secondary reef builders and the proportion of true reefs can be interpreted as a mutual benefit. On the one hand, the presence of CCA can add stability to coral reefs, especially when the reef ridge is exposed to heavy wave action. On the other hand, sufficient reef growth can be a prerequisite for a larger abundance of CCA. A shift towards one side in this mutual dependence is subject to the particular features of each reef, as for example if CCA rather benefit from the shelter of crevices in reefs with high grazing pressure or if corals rather benefit from the presence of CCA at sites of intense wave exposure.
    The physicochemical parameters ocean temperature, sea level, and RCO2
    CCA occur worldwide from the tropics10 to polar latitudes26 and temperature is one of the primary determinants in their geographical distribution, and the boundaries of their biogeographical regions are associated with isotherms27. Therefore, the identification of ocean temperature as an important driver of CCA reefs is reasonable. Aguirre, et al.28 reported that throughout the history of CCA, species richness broadly correlates with global mean palaeotemperature. However, only the diversity of the order Sporolithales varies positively with temperature, whereas the diversity of the order Corallinales varies negatively with temperature. Accordingly, the warm-water Sporolithales were most species-rich during the warm Cretaceous, but they declined and were rapidly replaced by the Corallinales as Cenozoic temperatures declined. In recent environments, members of the Sporolithales are confined to greater water depths while in euphotic reefs, they do not play a role as reef stabilizers28 and occupy only cryptic habitats sensu Kobluk29, i.e. cavities that serve as well-protected habitats and are not subject to the full spectrum of environmental and biotic controls that exist on the reef surface28. The wave-pounded intertidal algal ridges are built predominantly by Porolithon onkodes (Heydrich) Foslie 1909, P. gardineri (Foslie) Foslie 1909, P. craspedium (Foslie) Foslie 1909, and Lithophyllum kotschyanum Unger 1858 in the Indo-Pacific. In the Atlantic, the main reef reinforcers are Porolithon onkodes (Heydrich) Foslie 1909 and Lithophyllum congestum (Foslie) Foslie 1900. All these species belong to the ‘cool’-water adapted Corallinales. Thus, the increasing capacity of CCA to stabilize coral reefs is in line with the general trend of decreasing ocean temperatures.
    A change in sea level does not impact the capacity of CCA to reinforce coral reefs, likely because sea level changes measured on the level of geological stages have no effect on reef formation5. On shorter time scales, sea level is expected to influence the formation of coral reefs, but probably not the CCA’s reef enforcing capacity. We conclude this because the environmental tolerances of CCA in terms of sea level fluctuation are much wider than those of reef corals. Most CCA species appear uniquely tolerant of aerial exposure10. Additionally, many CCA are very well adapted to changes in salinity and especially to low photon irradiances30. The environmental tolerances of reef corals are narrower31,32.
    Considering our assumption that there is a mutual relationship between the presence of CCA and the growth of true reefs, another reason might be that one of the most important genera in modern coral reefs, Acropora Oken, 1815, is well adapted to cope with rapid sea-level changes. First observed as an important reef builder in the Oligocene33, Acropora has become a dominant reef builder from the Pleistocene until today, when sea-level fluctuations increased in rate and magnitude34. Indeed, there is a temporal overlap between the first decline in the fraction of CCA reefs—between the Turonian and the Campanian—and a maximum in sea level. Despite this, sea level is not selected as a relevant explanatory variable for the fraction of CCA reefs by the GLM because the relationship between the fraction of CCA reefs and sea level varies inconsistently throughout entire time series of the analysed 150 million years. While the decline in the fraction of CCA reefs may additionally be linked to an increase in temperature before and a significant drop in CCA diversity during the period with a low fraction of CCA reefs, data of the analysis are not suitable to conclusively identify the driver for this particular CCA crisis.
    For the entire time series, RCO2, was identified by the model as a minor driver, which may be explained by the fact that an increase of atmospheric pCO2 has only little to no impact on mean ocean surface pH on timescales exceeding 10,000 years35. A plausible reason is that slow rates of CO2 release lead to a different balance of carbonate chemistry changes and a smaller seawater CaCO3 saturation response. This is because the alkalinity released by rock weathering on land must ultimately be balanced by the preservation and burial of CaCO3 in marine sediments. The burial is controlled by the CaCO3 saturation state of the ocean and therefore, the saturation is ultimately regulated by weathering on long time scales, and not by atmospheric pCO2. The effect of weathering on atmospheric pCO2 is much weaker than the effect of weathering on ocean pH. The much stronger effect of weathering on ocean pH allows pH and CaCO3 saturation to be almost decoupled for slowly increasing atmospheric pCO235.
    The influence of CCA species diversity
    The quantification of CCA species diversity in the geological past is associated to a number of challenges. While for recent CCA the extensive use of molecular phylogenetic methods resolved the four orders (Corallinales, Hapalidiales, Sporolithales, and Rhodogorgonales) currently recognized in the subclass Corallinophycidae as monophyletic lineages36,37, we have to rely on morphological characters since molecular methods are not available for the identification of fossil CCA. Because CCA show a pronounced phenotypic plasticity depending on environmental factors, their taxonomic identification depends on morphological characters like conceptacles (i.e. spore chambers) and the arrangement of cells in different areas of the thallus, features often not adequately preserved in fossil CCA. This has led to a great number of fossil CCA taxa that have been described on the basis of only a few anatomical characters of doubtful taxonomic value38. The inclusion of such taxa precludes fully reliable diversity estimations. To circumvent such problems, we used rarefied species data reviewed by experts on fossil CCA taxonomy28.
    Our results show that high CCA diversity is linked to a higher abundance of CCA in true coral reefs. This might seem to contrast with the fact that in modern reefs, the wave-pounded intertidal algal ridges are built predominantly by only a few species while the ones making up the majority of diversity have a cryptic, hidden mode of life protected from full or direct exposure to major physical environmental factors and therefore do not contribute significantly to reef stabilization. However, if several CCA species were contributing to the same ecosystem function, a higher species diversity may have buffered reef systems from losing all species associated with the key function of supporting reef development39. As discussed in detail in the next section, the abundance of CCA in true reefs was transiently reduced four times since the Early Cretaceous. Except for the earliest crisis, this was likely caused by the origin and diversification of echinoids and parrot fish, prominent groups of bioeroding organisms that denude CCA. However, the CCA-coral reef system successfully recovered all times. We argue that this was supported by functional redundancy of CCA, because a diverse group of abundant species with a wider range of responses can help absorb disturbances39. This redundancy of responses to events among species within a functional group—the reef cementers—is an important component of resilience and the maintenance of ecosystem services. The amount of CCA biomass is critical in terms of the cementing capacity. Multi-species community models40 have shown that with consecutive native species’ extinctions at high diversity levels, species extinction usually only leads to a slight decrease in the total biomass of the native community. However, when starting from a lower initial diversity, a few consecutive species extinctions cause a relatively large biomass loss that ultimately leads to collapse. It should also be stressed that sometimes single species are responsible for the functioning of an ecosystem (i.e., keystone species), even if the ecosystem features a generally high biodiversity. Therefore, such ecosystems will decline if this key species is removed41.
    Experiments with plants in rangelands42 showed that functional diversity maintains ecosystem functioning. At heavily grazed sites, some species dominant in the ungrazed communities were lost or substantially reduced. In four out of five cases, the minor species that replaced these lost ones were their functional analogues. Accordingly, we suggest that formerly less dominant but functionally analogous grazing-tolerant species increased in abundance and contributed to the maintenance of ecosystem functions. CCA species removed or reduced in biomass by grazing pressure can be replaced in terms of their ecosystem service, i.e. reef cementation, by other CCA that are better adapted to grazing.
    This implies that in recent coral reef environments, areas with high CCA diversity—potentially including species occupying cryptic habitats—are more resilient against disturbance. Because the skeletal mineralogies of CCA vary considerably among species43, this resilience possibly applies also to future ocean acidification.
    The evolution of herbivory and transient reef crises
    The data reveal four crises in the abundance of CCA within true reefs, during the Cretaceous (Turonian–Campanian), the Paleocene (Selandian–Thanetian), the Miocene (Serravallian), and the Pliocene (Zanclean–Piacenzian). The reason that the timing of the Paleocene crisis differs from the known Paleocene–Eocene crisis20 might be that our study focuses on the number of true reefs, while the Paleocene-Eocene crisis is expressed by a change in cumulative metazoan reef volume. Except for the first one, all crises observed here occurred synchronous with pronounced evolutionary events in clades of grazing organisms. Cementing and binding is the main function of CCA in the facilitation of true coral reefs. The decline in CCA abundance during the Selandian–Thanetian corresponds with a marked increase in the rate of morphological evolution in echinoids (Fig. 2). This includes major shifts in lifestyle and the evolution of new subclades in this group44, with a net trend towards improved mobility and feeding ability also on CCA16. Regarding the Serravallian and Zanclean–Piacenzian crises, echinoids appear to play a very minor role as their evolutionary rates constantly decreased over time44. However, another important clade of coralline grazers, the parrot fishes (Scarinae Rafinesque, 1810) may have become major players45. Although reef-grazing fish have existed for nearly 400 Ma, specialized detritivores feeding on macroalgae have only been known since the Miocene46. This is also in line with the radiation of acroporid corals since the mid Miocene47, whose branched morphologies create interstitial niches for parrot fish but also for cryptic CCA species. The parrot fishes (Scarinae) first appeared in the Serravallian45, which may have caused the third crisis in CCA reef cementing capacity. The lineage diversification of Scarinae was most pronounced during the Zanclean-Piacenzian, which we deem responsible for the third crisis.
    The abundance of CCA in true coral reefs recovered relatively fast after all crises probably due to morphological adaptations developed within the CCA. Experiments have shown that echinoids are able to graze tissues to depths averaging 88 µm16, which is critical for CCA with thin crust morphologies. The resulting decline of thin crust morphologies led to the occupation of niches by branching CCA16. The twig-like morphologies of branching CCA prevent echinoids from denuding CCA thallus and confine this process to the tips of the branches. CCA are able to transfer nutrients within their thallus16. Therefore, these superficial grazing wounds can be rapidly healed if sufficient nutrient reservoirs are present in other, ungrazed parts of the algae. Meristems and conceptacles engulfed in the thallus may be another adaptation pertinent to the relatively low impact of echinoid grazing, as this is a plausible strategy to protect the reproductive and growth structures of the CCA. The more intense grazing pressure exerted by the parrot fishes, which bite CCA to an average depth of 288 µm16 and are able to eat the tips of branched CCA48 may have resulted in a greater abundance of CCA with very thick crusts. Thick-crust CCA possess larger nutrient reservoirs making them capable to recover also from grazing exerted by parrot fishes. All these adaptations and their development are congruent with the origination and diversification of the grazer clades as already outlined in other studies16,49,50. Today and potentially already during the geological history, CCA did not only successfully adapt to various grazer clades but even required the grazing pressure to stay free of epiphytes49. Here we show for the first time that the process of grazer evolution may also have affected the potential capacity of the CCA to reinforce coral reefs for three times during the geological past.
    Future implications for the capacity of CCA to reinforce coral reefs
    As it concerns some of the most important biodiversity hot spots on our planet2, the potential future impact of the ongoing global change on the capacity of CCA to reinforce coral reefs should become a focal point of reef research. Despite the implementation of numerous mesocosm and aquaria experiments51,52,53, long-term data in the magnitude of months on CCA responses to modified environmental parameters are still sparse. Also, the change from ambient to modified parameters (e.g. pCO2, temperature) happens much faster than at natural rates.
    The impact of elevated pCO2 on CCA depends on the rate of change. While fast rates are critical, slow pCO2 increase may even result in increased net calcification at moderately elevated pCO2 levels54. However, this comes at the cost of structural integrity of the CCA skeleton which, in turn, makes the CCA likely more susceptible to bioerosion. Bioerosion by echinoids and parrot fishes is beneficial to CCA at the present state, as it removes fast growing fleshy algae and other epiphytes49, but nothing is known about the future of this interaction when the integrity of the CCA skeletons is altered. Additionally, it has been shown that elevated pCO2 levels accelerate sponge reef bioerosion55,56,57. Therefore, a combination of increased bioerosion rates affecting corals and CCA might lead to strongly deteriorated conditions for coral reef formation. As outlined above, a greater CCA diversity might also increase their resilience against ocean acidification because of the great variety in skeletal mineralogies.
    Regarding elevated temperatures, the outcome for CCA is unpredictable. Depending on the examined species, elevated temperatures affect CCA primary production in different ways: some species show no or negligible response30, some change their skeletal chemistry in terms of dolomite concentration58, and others respond with strongly impaired germination success59 or declining skeletal densities60. Due to the positive influence of cooler temperatures on CCA’s abundance in true reefs detected in our study, elevated temperatures will likely have a negative outcome but also here, the rate of change might be similarly important as the magnitude.
    To estimate the future of CCA’s potential to facilitate coral reef growth in the face of global change, we encourage long term experiments—preferably in near-natural mesocosm studies—including the main reef stabilizing CCA species. More

  • in

    Presence of ice-nucleating Pseudomonas on wheat leaves promotes Septoria tritici blotch disease (Zymoseptoria tritici) via a mutually beneficial interaction

    Plants
    Wheat (variety Galaxie) was sown on John Innes No. 2 compost in 24-cell trays with 2–5 plants per cell, and maintained on a 16:8 h light:dark cycle at 18 °C (day) and 15 °C(night), with 80% RH in a MLR-352H-PE climate chamber (Sanyo). All plants were used for experiments at 2 weeks old.
    Bacteria and fungi
    Pseudomonas syringae pv. syringae strains reported to exhibit ice nucleation activity (281, 3010) or not reported to exhibit ice nucleation activity (1902, 3012) were purchased from the National Collection of Plant Pathogenic Bacteria (FERA, UK). Strains selected were not originally isolated from wheat (281, 1902—isolated from Syringa vulgaris; 3010, 3012—isolated from Malus sylvestris) and are not known wheat pathogens. Ice-nucleation activity was confirmed by floating smooth foil squares on the surface of a water/methanol ice bath, cooled to − 10, − 8, − 6, − 4 or − 2 °C. 100 μL droplets of sterile, distilled water were pipetted onto the foil squares and ice crystals formed spontaneously, within 1 min, only at − 10 °C. Two microliters of overnight bacterial culture were added to water droplets and time taken for ice formation recorded. Strain 281 showed the strongest ice nucleation activity and 1902 showed no detectable effect on ice formation; 3010 and 3012 were intermediate (Supplementary Table S1). Bacteria were maintained in 50% glycerol at − 80 °C and were grown on LB agar at 28 °C for all applications. For all experiments involving Z. tritici, the model isolate IPO3237 was used.
    Bacterial pathogenicity tests
    Bacteria were streaked onto LB agar and grown for 3 days before resuspension in 10 mM MgCl2 at 107 cfu/mL. Bacterial suspensions were sprayed onto wheat plants using a hand held atomiser at a rate of approximately 0.5 mL per cell of 2–5 two week old plants, giving visible misting of both leaf surfaces, on all leaves, without runoff of inoculum. Six cells of plants were inoculated with each strain. Plants were then returned to growth chambers and monitored for symptom development for 28 days. Only strain 3010 induced clear symptoms within this timeframe, although some plants inoculated with strain 3012 also showed mild chlorosis of leaf tips after day 14 (Supplementary Table S2). In further experiments, only strains 281 (INA+) and 1902 (INA−) were used.
    Ion leakage measurements
    10 cm lengths of 6–9 treated leaves were excised and placed in 10 mL ddH2O for 12 h. Conductivity of the ddH2O was measured using a conductivity meter and then leaves were boiled for 1 h and measurement repeated. ddH2O controls, without leaves, were treated in the same fashion. Ion leakage was reported as a percentage of total conductivity after boiling; control values were subtracted.
    Propidium iodide staining for cell death
    1 cm leaf sections were immersed for 1 h, in the dark, in 0.05% (w/v) propidium iodide (PI), mounted in 0.1% (v/v) phosphate buffered saline (PBS, pH 7) and viewed using a Leica SP8 confocal microscope using argon laser emission at 500 nm with detection at 600–630 nm. Five leaf sections were viewed for each treatment and 3 fields of view visualised in each leaf section. Cell death was scored as number of cells showing internal (cytoplasmic or nuclear) red fluorescence / total number of cells in field of view. No cell death was recorded.
    Wheat inoculation
    14 day-old wheat plants were inoculated with either INA+ or INA− bacteria suspended in 10 mM MgCl2 at 107 cfu/mL by spraying with a handheld atomiser until leaves were visibly beaded with moisture on both surfaces, avoiding runoff. Controls were sprayed with 10 mM MgCl2 only.
    For assays involving co-inoculation of plants with bacteria and Z. tritici, plants were allowed to dry for an hour before inoculation with Z. tritici blastospores. Blastospores were suspended in sterile distilled water at 105 cfu/mL, a low inoculum density preventing saturation of infection28. Inoculated plants were returned to growth chambers and kept under plastic cloches for 72 h, then maintained as usual.
    Analysis of STB speed and severity
    Plants were observed at 7, 10, 12, 14, 16, 18, 21, 24 and 28 days post inoculation (dpi) and the most severe symptom on each leaf recorded. At 28 dpi, all inoculated leaves were harvested, rehydrated for 1 h, then scanned at high resolution. Pycnidia were enumerated and leaf area measured in scanned images using ImageJ28.
    Antibiotic and competitor application
    INA+ bacterial inoculation was carried out as before. Plants were allowed to dry for 1 h at room temperature, then spray inoculated with INA− bacteria suspended in 10 mM MgCl2 at 107 cfu/mL, or sprayed with ampicillin solution (50 μg/mL). Following this second treatment, plants were returned to growth chambers for 24 h. Freezing treatment and subsequent Z. tritici inoculation was then carried out as above.
    Estimation of bacterial populations
    Two methods were used to estimate bacterial populations on leaves. Firstly, 1 cm leaf samples were harvested from 3 randomly selected leaves in each treatment. These samples were mounted on glass slides in phosphate buffered saline, to which BacLight Green bacterial stain and propidium iodide counterstain were added at 0.05% (w/v) each. After 10 min, leaf samples were imaged at 20× magnification using a Leica SP8 confocal microscope. 5 μM z-stacks were collected at three randomly selected fields of view for each leaf sample and maximum projections created from these. Laser power, gain, and other parameters were held constant between fields of view and samples. The number of green pixels in each projection was then counted using ImageJ software and summed across the three fields of view. The percentage of pixels in the three fields of view which were green was then calculated and used as a proxy for percentage leaf area covered by bacteria. Secondly, 1 cm leaf samples were harvested from 3 more randomly selected leaves in each treatment and homogenised in 10 mM MgCl2. Homogenate was diluted 1/10, 1/100 and 1/1000 in MgCl2 and five 10 μL samples of each dilution spotted onto King’s B29 agar with Pseudomonas selective supplement CFC (Oxoid). Colonies were counted after 24 h incubation at 28 °C. Both procedures were carried out at 1, 4, 7, 10 and 14 dpi.
    Experimental design and statistical methods
    Specific details of experimental design and analyses are presented in the figure legends alongside the relevant results. Some general principles were applied. Randomisation: where a set of pots of plants was divided between treatments, pots were numbered and randomly generated numbers used to select those assigned to each treatment. For selection of microscope fields of view within a leaf, the slide was placed so that the ‘bottom left’ part of the leaf was in view and a random distance (in mm, bounded by length and width of the leaf) moved in the x and y dimensions to select each field of view, returning to the 0,0 position before each selection.
    Replication: technical replication was used in all experiments, with the number of such replicates given in each figure legend. Three complete repeat experiments were carried out in most cases, with figure legends stating where replication was different (min. 2 repeats) and all data presented represent the mean of such replicates, with error bars showing standard errors. Statistical analyses: data were analysed using ANOVA unless otherwise stated, with appropriate checks for homoscedasticity and other assumptions. More

  • in

    A putative chordate luciferase from a cosmopolitan tunicate indicates convergent bioluminescence evolution across phyla

    1.
    van Soest, R. W. M. A monograph of the order Pyrosomatida (Tunicata, Thaliacea). J. Plankton Res. 3, 603–631 (1981).
    Article  Google Scholar 
    2.
    Archer, S. K. et al. Pyrosome consumption by benthic organisms during blooms in the northeast Pacific and Gulf of Mexico. Ecology 99, 981–984 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    3.
    Kuo, C.-Y. et al. An unusual bloom of the tunicate, Pyrosoma atlanticum, in southern Taiwan. Bull. Mar. Sci. 91, 363–364 (2015).
    ADS  Article  Google Scholar 

    4.
    Huxley, T. H. Observations upon the anatomy and physiology of Salpa and Pyrosoma. Philos. Trans. R. Soc. Lond. 141, 567–593 (1851).
    ADS  Google Scholar 

    5.
    Péron, F. Mémoire sur le nouveau genre Pyrosoma. Annales du Museum d’histoire naturelle, Paris 4, 437–446 (1803).
    Google Scholar 

    6.
    Panceri, P. The luminous organs and light of Prosoma. Q. J. Microsc. Sci. 13, 45–51 (1873).
    Google Scholar 

    7.
    Burghause, F. Kreislauf und Herzschlag bei Pyrosoma giganteum nebst Bemerkungen zum Leuchtvermögen. Zeitschrift für Wissenschaftliche Zoologie 108, 430–497 (1914).
    Google Scholar 

    8.
    Haddock, S. H. D., Moline, M. A. & Case, J. F. Bioluminescence in the sea. Ann. Rev. Mar. Sci. 2, 443–493 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    9.
    Pierantoni, U. Gli organi luminosi simbiotici ed il loro ciclo ereditario in Pyrosoma giganteum. Pubblicazioni della Stazione zoologica di Napoli3, 191–222 (1921).

    10.
    Mackie, G. O. & Bone, Q. Luminescence and associated effector activity in Pyrosoma (Tunicata: Pyrosomida). Proc. R. Soci. B Biol. Sci. 202, 483–495 (1978).
    ADS  Google Scholar 

    11.
    Phillips, B. T. et al. A dexterous, glove-based teleoperable low-power soft robotic arm for delicate deep-sea biological exploration. Sci. Rep. 8, 14779 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    12.
    Brodeur, R. et al. An unusual gelatinous plankton event in the NE Pacific: the great pyrosome bloom of 2017. PICES Press 26, 22–27 (2018).
    Google Scholar 

    13.
    Sutherland, K. R., Sorensen, H. L., Blondheim, O. N., Brodeur, R. D. & Galloway, A. W. E. Range expansion of tropical pyrosomes in the northeast Pacific Ocean. Ecology 99, 2397–2399 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    14.
    Kocot, K. M., Tassia, M. G., Halanych, K. M. & Swalla, B. J. Phylogenomics offers resolution of major tunicate relationships. Mol. Phylogenet. Evol. 121, 166–173 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    15.
    Lebrato, M. & Jones, D. O. B. Mass deposition event of Pyrosoma atlanticum carcasses off Ivory Coast (West Africa). Limnol. Oceanogr. 54, 1197–1209 (2009).
    ADS  CAS  Article  Google Scholar 

    16.
    Drits, A. V., Arashkevich, E. G. & Semenova, T. N. Pyrosoma atlanticum (Tunicata, Thaliacea): grazing impact on phytoplankton standing stock and role in organic carbon flux. J. Plankton Res. 14, 799–809 (1992).
    Article  Google Scholar 

    17.
    Perissinotto, R., Mayzaud, P., Nichols, P. D. & Labat, J. P. Grazing by Pyrosoma atlanticum (Tunicata, Thaliacea) in the south Indian Ocean. Mar. Ecol. Prog. Ser. 330, 1–11 (2007).
    ADS  CAS  Article  Google Scholar 

    18.
    Bone, Q. The Biology of Pelagic Tunicates (Oxford University Press on Demand, Oxford, 1998).
    Google Scholar 

    19.
    Sweeney, B. M., Fork, D. C. & Satoh, K. Stimulation of bioluminescence in dinoflagellates by red light. Photochem. Photobiol. 37, 457–465 (1983).
    CAS  Article  Google Scholar 

    20.
    Mauchline, J. IX.—the biology of the euphausiid crustacean, Meganyctiphanes norvegica (M. Sars). Proc. R. Soc. Edinb. Biol. 67, 141–179 (1959).
    Google Scholar 

    21.
    Widder, E. Bioluminescence and the pelagic visual environment. Mar. Freshw. Behav. Physiol. 35, 1–26 (2002).
    Article  Google Scholar 

    22.
    Bowlby, M. R., Widder, E. A. & Case, J. F. Patterns of stimulated bioluminescence in two pyrosomes (Tunicata: Pyrosomatidae). Biol. Bull. 179, 340–350 (1990).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Herring, P. J. The spectral characteristics of luminous marine organisms. Proc. R. Soc. B Biol. Sci. 220, 183–217 (1983).
    ADS  Google Scholar 

    24.
    Swift, E., Biggley, W. H. & Napora, T. A. The bioluminescence emission spectra of Pyrosoma atlanticum, P. spinosum (Tunicata), Euphausia tenera (Crustacea) and Gonostoma sp. (Pisces). J. Mar. Biol. Assoc. UK 57, 817 (1977).
    Article  Google Scholar 

    25.
    Mackie, G. O. Unconventional signalling in tunicates. Mar. Freshw. Behav. Physiol. 26, 197–205 (1995).
    Article  Google Scholar 

    26.
    Verdes, A. & Gruber, D. F. Glowing worms: biological, chemical, and functional diversity of bioluminescent annelids. Integr. Comput. Biol. 57, 18–32 (2017).
    CAS  Article  Google Scholar 

    27.
    Davis, M. P., Holcroft, N. I., Wiley, E. O., Sparks, J. S. & Leo Smith, W. Species-specific bioluminescence facilitates speciation in the deep sea. Mar. Biol. 161, 1139–1148 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Nealson, K. H. & Hastings, J. W. Bacterial bioluminescence: its control and ecological significance. Microbiol. Rev. 43, 496–518 (1979).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Delroisse, J. et al. A puzzling homology: a brittle star using a putative cnidarian-type luciferase for bioluminescence. Open Biol. 7, 160300 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    30.
    Janssen, D. B. Evolving haloalkane dehalogenases. Curr. Opin. Chem. Biol. 8, 150–159 (2004).
    CAS  PubMed  Article  Google Scholar 

    31.
    Loening, A. M., Fenn, T. D., Wu, A. M. & Gambhir, S. S. Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output. Protein Eng. Des. Sel. 19, 391–400 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Woo, J., Howell, M. H. & von Arnim, A. G. Structure-function studies on the active site of the coelenterazine-dependent luciferase from Renilla. Protein Sci. 17, 725–735 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Loening, A. M., Fenn, T. D. & Gambhir, S. S. Crystal structures of the luciferase and green fluorescent protein from Renilla reniformis. J. Mol. Biol. 374, 1017–1028 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Shimomura, O. Bioluminescence Chemical Principles and Methods (World Scientific, Singapore, 2006).
    Google Scholar 

    35.
    Kaskova, Z. M., Tsarkova, A. S. & Yampolsky, I. V. 1001 lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine. Chem. Soc. Rev. 45, 6048–6077 (2016).
    CAS  PubMed  Article  Google Scholar 

    36.
    Shimomura, O., Masugi, T., Johnson, F. H. & Haneda, Y. Properties and reaction mechanism of the bioluminescence system of the deep-sea shrimp Oplophorus gracilorostris. Biochemistry 17, 994–998 (1978).
    CAS  PubMed  Article  Google Scholar 

    37.
    Lorenz, W. W., McCann, R. O., Longiaru, M. & Cormier, M. J. Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc. Natl. Acad. Sci. USA 88, 4438–4442 (1991).
    ADS  CAS  PubMed  Article  Google Scholar 

    38.
    Martini, S. & Haddock, S. H. D. Quantification of bioluminescence from the surface to the deep sea demonstrates its predominance as an ecological trait. Sci. Rep. 7, 45750 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Shimomura, O., Inoue, S., Johnson, F. H. & Haneda, Y. Widespread occurrence of coelenterazine in marine bioluminescence. Comp. Biochem. Physiol. Part B Comp. Biochem. 65, 435–437 (1980).
    Article  Google Scholar 

    40.
    Shimomura, O. Presence of coelenterazine in non-bioluminescent marine organisms. Comp. Biochem. Physiol. Part B Comp. Biochem. 86, 361–363 (1987).
    Article  Google Scholar 

    41.
    Rees, J. F. et al. The origins of marine bioluminescence: turning oxygen defense mechanisms into deep-sea communication tools. J. Exp. Biol. 201, 1211–1221 (1998).
    CAS  PubMed  PubMed Central  Google Scholar 

    42.
    Julin, C. The specific histological characters of the ‘luminous cells’ of Pyrosoma giganteum and of Cyclosalpa pinnata. Rep. Brit. Ass. 492–493 (1912).

    43.
    Leisman, G., Cohn, D. H. & Nealson, K. H. Bacterial origin of luminescence in marine animals. Science 208, 1271–1273 (1980).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    44.
    Fortova, A. et al. DspA from Strongylocentrotus purpuratus: the first biochemically characterized haloalkane dehalogenase of non-microbial origin. Biochimie 95, 2091–2096 (2013).
    CAS  PubMed  Article  Google Scholar 

    45.
    Chaloupkova, R. et al. Light-emitting dehalogenases: reconstruction of multifunctional biocatalysts. ACS Catal. 9, 4810–4823 (2019).
    CAS  Article  Google Scholar 

    46.
    Viviani, V. R. The origin, diversity, and structure function relationships of insect luciferases. Cell. Mol. Life Sci. 59, 1833–1850 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Haddock, S. H. D., Mastroianni, N. & Christianson, L. M. A photoactivatable green-fluorescent protein from the phylum Ctenophora. Proc. Biol. Sci. 277, 1155–1160 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Tessler, M. et al. Ultra-gentle soft robot fingers induce minimal transcriptomic response in a fragile marine animal during handling. Curr. Biol. 30, R157–R158 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    Tessler, M. et al. Marine leech anticoagulant diversity and evolution. J. Parasitol. 104, 210–220 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Tessler, M. et al. Luciferin production and luciferase transcription in the bioluminescent copepod. PeerJ 6, e5506 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    51.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Brugler, M. R., Aguado, M. T., Tessler, M. & Siddall, M. E. The transcriptome of the Bermuda fireworm Odontosyllis enopla (Annelida: Syllidae): a unique luciferase gene family and putative epitoky-related genes. PLoS ONE 13, e0200944 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    54.
    Biasini, M. et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42, W252–W258 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Brozovic, M. et al. ANISEED 2017: extending the integrated ascidian database to the exploration and evolutionary comparison of genome-scale datasets. Nucleic Acids Res. 46, D718–D725 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Gissi, C. et al. An unprecedented taxonomic revision of a model organism: the paradigmatic case of Ciona robusta and Ciona intestinalis. Zool. Scr. 46, 521–522 (2017).
    Article  Google Scholar 

    57.
    Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 5, 113 (2004).
    Article  CAS  Google Scholar 

    58.
    Nguyen, L.-T. et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    59.
    Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In 2010 Gateway Computing Environments Workshop (GCE) (2010). https://doi.org/10.1109/gce.2010.5676129. More

  • in

    Differential effects of pollution on adult and recruits of a canopy-forming alga: implications for population viability under low pollutant levels

    1.
    Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).
    ADS  CAS  Article  PubMed  Google Scholar 
    2.
    Jackson, J. B. C. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).
    CAS  Article  PubMed  Google Scholar 

    3.
    Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933 (2003).
    ADS  CAS  Article  PubMed  Google Scholar 

    4.
    Schiel, D. R., Steinbeck, J. R. & Foster, M. S. Ten years of induced ocean warming causes comprehensive changes in marine benthic communities. Ecology 85, 1833–1839 (2014).
    Article  Google Scholar 

    5.
    Filbee-Dexter, K. & Scheibling, R. E. Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. Mar. Ecol. Prog. Ser. 495, 1–25 (2014).
    ADS  Article  Google Scholar 

    6.
    Dayton, P. K. et al. Patch dynamics and stability of some California kelp communities. Ecol. Monogr. 54, 253–289 (1984).
    Article  Google Scholar 

    7.
    Dayton, P. K., Tegner, M. J., Parnell, P. E. & Edwards, P. B. Temporal and spatial patterns of disturbance and recovery in a kelp forest community. Ecol. Monogr. 62, 421–445 (1992).
    Article  Google Scholar 

    8.
    Ballesteros, E. et al. Deep-water stands of Cystoseira zosteroides C. Agardh (Fucales, Ochrophyta) in the Northwestern Mediterranean: Insights into assemblage structure and population dynamics. Estuar. Coast. Shelf Sci. 82, 477–484 (2009).
    ADS  Article  Google Scholar 

    9.
    Reed, D. C. & Foster, M. S. The effects of canopy shadings on algal recruitment and growth in a giant kelp forest. Ecology 65, 937–948 (1984).
    Article  Google Scholar 

    10.
    Gianni, F. et al. Conservation and restoration of marine forests in the Mediterranean Sea and the potential role of Marine Protected Areas. Adv. Oceanogr. Limnol. 4, 83–101 (2013).
    Article  Google Scholar 

    11.
    Wernberg, T. & Filbee-Dexter, K. Missing the marine forest for the trees. Mar. Ecol. Prog. Ser. 612, 209–215 (2019).
    ADS  Article  Google Scholar 

    12.
    Steneck, R. S. et al. Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ. Conserv. 29, 436–459 (2002).
    Article  Google Scholar 

    13.
    Airoldi, L. & Beck, M. Loss, status and trends for coastal marine habitats of Europe. In Oceanography and Marine Biology: An Annual Review (eds. Gibson, R. N., Atkinson, R. J. A. & Gordon, D. M.) vol. 45 345–405 (Taylor & Francis, Milton Park, 2007).
    Google Scholar 

    14.
    Krumhansl, K. A. et al. Global patterns of kelp forest change over the past half-century. Proc. Natl. Acad. Sci. 113, 13785–13790 (2016).
    CAS  Article  PubMed  Google Scholar 

    15.
    Connell, S. et al. Recovering a lost baseline: missing kelp forests from a metropolitan coast. Mar. Ecol. Prog. Ser. 360, 63–72 (2008).
    ADS  Article  Google Scholar 

    16.
    Gorman, D., Russell, B. D. & Connell, S. D. Land-to-sea connectivity: linking human-derived terrestrial subsidies to subtidal habitat change on open rocky coasts. Ecol. Appl. 19, 1114–1126 (2009).
    Article  PubMed  Google Scholar 

    17.
    Ling, S. D., Johnson, C. R., Frusher, S. D. & Ridgway, K. R. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc. Natl. Acad. Sci. 106, 22341–22345 (2009).
    ADS  CAS  Article  PubMed  Google Scholar 

    18.
    Sales, M. & Ballesteros, E. Long-term comparison of algal assemblages dominated by Cystoseira crinita (Fucales, Heterokontophyta) from Cap Corse (Corsica, North Western Mediterranean). Eur. J. Phycol. 45, 404–412 (2010).
    Article  Google Scholar 

    19.
    Vergés, A. et al. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B Biol. Sci. 281, 20140846 (2014).
    Article  Google Scholar 

    20.
    Vergés, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl. Acad. Sci. U. S. A. 113, 13791–13796 (2016).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    21.
    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    22.
    Capdevila, P. et al. Warming impacts on early life stages increase the vulnerability and delay the population recovery of a long-lived habitat-forming macroalga. J. Ecol. 107, 1129–1140 (2019).
    Article  Google Scholar 

    23.
    Filbee-Dexter, K. & Wernberg, T. Rise of turfs: a new battlefront for globally declining kelp forests. Bioscience 68, 64–76 (2018).
    Article  Google Scholar 

    24.
    Sagarin, R. D., Barry, J. P., Gilman, S. E. & Baxter, C. H. Climate-related change in an intertidal community over short and long time scales. Ecol. Monogr. 69, 465–490 (1999).
    Article  Google Scholar 

    25.
    Eriksson, B. K., Johansson, G. & Snoeijs, P. Long-term changes in the macroalgal vegetation of the inner Gullmar fjord Swedish Skagerrak coast. J. Phycol. 38, 284–296 (2002).
    Article  Google Scholar 

    26.
    Thibaut, T., Blanfuné, A., Boudouresque, C. F. & Verlaque, M. Decline and local extinction of Fucales in French Riviera: the harbinger of future extinctions?. Mediterr. Mar. Sci. 16, 206 (2015).
    Article  Google Scholar 

    27.
    Brown, C. J., Saunders, M. I., Possingham, H. P. & Richardson, A. J. Interactions between global and local stressors of ecosystems determine management effectiveness in cumulative impact mapping. Divers. Distrib. 20, 538–546 (2014).
    Article  Google Scholar 

    28.
    Feldmann, J. Recherches sur la végétation marine de la Méditerranée. La côte des Albères. Rev. Algol. (Université de Paris, 1937).

    29.
    Giaccone, G. Écologie et chorologie des Cystoseira de Méditerranée. Rapp. Comm. int. Mer Médit 22, 49–50 (1973).
    Google Scholar 

    30.
    Cormaci, M. & Furnari, G. Changes of the benthic algal flora of the Tremiti Islands (southern Adriatic) Italy. In Sixteenth International Seaweed Symposium vols 398–399 75–79 (Springer, Netherlands, 1999).

    31.
    Thibaut, T., Pinedo, S., Torras, X. & Ballesteros, E. Long-term decline of the populations of Fucales (Cystoseira spp. and Sargassum spp.) in the Albères coast (France, North-western Mediterranean). Mar. Pollut. Bull. 50, 1472–1489 (2005).
    CAS  Article  PubMed  Google Scholar 

    32.
    Thibaut, T., Blanfuné, A., Verlaque, M., Boudouresque, C.-F. & Ruitton, S. The Sargassum conundrum: very rare, threatened or locally extinct in the NW Mediterranean and still lacking protection. Hydrobiologia 781, 3–23 (2016).
    Article  Google Scholar 

    33.
    Blanfuné, A., Boudouresque, C. F., Verlaque, M. & Thibaut, T. The fate of Cystoseira crinita, a forest-forming Fucale (Phaeophyceae, Stramenopiles), in France (North Western Mediterranean Sea). Estuar. Coast. Shelf Sci. 181, 196–208 (2016).
    ADS  Article  Google Scholar 

    34.
    Mariani, S. et al. Past and present of Fucales from shallow and sheltered shores in Catalonia. Reg. Stud. Mar. Sci. 32, 100824 (2019).
    Article  Google Scholar 

    35.
    Pinedo, S., Zabala, M. & Ballesteros, E. Long-term changes in sublittoral macroalgal assemblages related to water quality improvement. Bot. Mar. 56, 461–469 (2013).
    Article  Google Scholar 

    36.
    Munda, I. M. Changes and degradation of seaweed stands in the Northern Adriatic. Hydrobiologia 260–261, 239–253 (1993).
    Article  Google Scholar 

    37.
    Munda, I. M. Impact of pollution on benthic marine algae in the Northern Adriatic. Int. J. Environ. Stud. 43, 185–199 (1993).
    CAS  Article  Google Scholar 

    38.
    Béthoux, J. P. et al. Nutrients in the Mediterranean Sea, mass balance and statistical analysis of concentrations with respect to environmental change. Mar. Chem. 63, 155–169 (1998).
    Article  Google Scholar 

    39.
    Palanques, A., Sánchez-Cabeza, J. A., Masqué, P. & Leon, L. Historical record of heavy metals in a highly contaminated Mediterranean deposit: the Besos prodelta. Mar. Chem. 61, 209–217 (1998).
    CAS  Article  Google Scholar 

    40.
    Terlizzi, A., Fraschetti, S., Gianguzza, P., Faimali, M. & Boero, F. Environmental impact of antifouling technologies: state of the art and perspectives. Aquat. Conserv. Mar. Freshw. Ecosyst. 11, 311–317 (2001).
    Article  Google Scholar 

    41.
    Bokn, T. L., Moy, F. E. & Walday, M. Improvement of the shallow water communities following reductions of industrial outlets and sewage discharge in the Hvaler estuary Norway. Hydrobiologia 326–327, 297–304 (1996).
    Article  Google Scholar 

    42.
    Pinedo, S., Arévalo, R. & Ballesteros, E. Seasonal dynamics of upper sublittoral assemblages on Mediterranean rocky shores along a eutrophication gradient. Estuar. Coast. Shelf Sci. 161, 93–101 (2015).
    CAS  Article  Google Scholar 

    43.
    Arévalo, R., Pinedo, S. & Ballesteros, E. Changes in the composition and structure of Mediterranean rocky-shore communities following a gradient of nutrient enrichment: descriptive study and test of proposed methods to assess water quality regarding macroalgae. Mar. Pollut. Bull. 55, 104–113 (2007).
    Article  CAS  PubMed  Google Scholar 

    44.
    Sales, M., Cebrian, E., Tomas, F. & Ballesteros, E. Pollution impacts and recovery potential in three species of the genus Cystoseira (Fucales, Heterokontophyta). Estuar. Coast. Shelf Sci. 92, 347–357 (2011).
    ADS  CAS  Article  Google Scholar 

    45.
    Andersson, S. & Kautsky, L. Copper effects on reproductive stages of Baltic Sea Fucus vesiculosus. Mar. Biol. 125, 171–176 (1996).
    CAS  Article  Google Scholar 

    46.
    Bond, P. et al. Arrested development in Fucus spiralis (Phaeophyceae) germlings exposed to copper. Eur. J. Phycol. 34, 513–521 (1999).
    Article  Google Scholar 

    47.
    Nielsen, S. L., Nielsen, H. D. & Pedersen, M. F. Juvenile life stages of the brown alga Fucus serratus L. are more sensitive to combined stress from high copper concentration and temperature than adults. Mar. Biol. 161, 1895–1904 (2014).
    CAS  Article  Google Scholar 

    48.
    Nielsen, H. D. & Nielsen, S. L. Adaptation to high light irradiances enhances the photosynthetic Cu2+ resistance in Cu2+ tolerant and non-tolerant populations of the brown macroalgae Fucus serratus. Mar. Pollut. Bull. 60, 710–717 (2010).
    CAS  Article  PubMed  Google Scholar 

    49.
    Capdevila, P., Hereu, B., Riera, J. L. & Linares, C. Unravelling the natural dynamics and resilience patterns of underwater Mediterranean forests: insights from the demography of the brown alga Cystoseira zosteroides. J. Ecol. 104, 1799–1808 (2016).
    Article  Google Scholar 

    50.
    Falace, A. et al. Effects of a glyphosate-based herbicide on Fucus virsoides (Fucales, Ochrophyta) photosynthetic efficiency. Environ. Pollut. 243, 912–918 (2018).
    CAS  Article  PubMed  Google Scholar 

    51.
    Mercurio, P., Flores, F., Mueller, J. F., Carter, S. & Negri, A. P. Glyphosate persistence in seawater. Mar. Pollut. Bull. 85, 385–390 (2014).
    CAS  Article  PubMed  Google Scholar 

    52.
    Orellana, S., Hernández, M. & Sansón, M. Diversity of Cystoseira sensu lato (Fucales, Phaeophyceae) in the eastern Atlantic and Mediterranean based on morphological and DNA evidence, including Carpodesmia gen. emend. and Treptacantha gen. emend. Eur. J. Phycol. 54, 447–465 (2019).
    CAS  Article  Google Scholar 

    53.
    Sales, M. & Ballesteros, E. Seasonal dynamics and annual production of Cystoseira crinita (Fucales: Ochrophyta)-dominated assemblages from the northwestern Mediterranean. Sci. Mar. 76, 391–401 (2012).
    Article  Google Scholar 

    54.
    Ballesteros, E. Els vegetals i la zonació litoral: espècies, comunitats i factors que influeixen en la seva distribució. Arx. Secc. Ciències IEC 101, 1–616 (1992).
    Google Scholar 

    55.
    Ballesteros, E. Flora Phycologica Iberica. Vol. 1. Fucales. Gómez-Garreta, A. (ed.). Sci. Mar. 66, 187–188 (2002).
    Article  Google Scholar 

    56.
    Sales, M. & Ballesteros, E. Shallow Cystoseira (Fucales: Ochrophyta) assemblages thriving in sheltered areas from Menorca (NW Mediterranean): relationships with environmental factors and anthropogenic pressures. Estuar. Coast. Shelf Sci. 84, 476–482 (2009).
    ADS  CAS  Article  Google Scholar 

    57.
    Munda, I. The effects of organic pollution on the distribution of fucoid algae from the Istrian coast (vicinity of Rovinj). Acta Adriat. 23, 329–337 (1982).
    Google Scholar 

    58.
    Montesanto, B. & Panayotidis, P. The Cystoseira spp. Communities from the Aegean Sea (NE Mediterranean). Mediterr. Mar. Sci. 2, 57 (2001).
    Article  Google Scholar 

    59.
    Bianchi, C. N., Corsini-Foka, M., Morri, C. & Zenetos, A. Thirty years after: dramatic change in the coastal marine ecosystems of Kos Island (Greece), 1981–2013. Mediterr. Mar. Sci. 15, 482–497 (2014).
    Article  Google Scholar 

    60.
    Mačić, V. & Antolić, B. Distribution of rare Cystoseira species along the Montenegro coast (South-Eastern Adriatic sea). Period. Biol. 117, 441–447 (2015).
    Article  Google Scholar 

    61.
    Iveša, L., Djakovac, T. & Devescovi, M. Long-term fluctuations in Cystoseira populations along the west Istrian Coast (Croatia) related to eutrophication patterns in the northern Adriatic Sea. Mar. Pollut. Bull. 106, 162–173 (2016).
    Article  CAS  PubMed  Google Scholar 

    62.
    Ignatiades, L., Gotsis-Skretas, O., Pagou, K. & Krasakopoulou, E. Diversification of phytoplankton community structure and related parameters along a large-scale longitudinal east-west transect of the Mediterranean Sea. J. Plankton Res. 31, 411–428 (2009).
    Article  Google Scholar 

    63.
    Burgeot, T. et al. Oyster summer mortality risks associated with environmental stress. In Summer Mortality of Pacific Oyster Crassostrea gigas. The Morest Project. (eds. Samain, J. F. & McCombie, H.) 107–151 (EditionsQu. Versailles, 2008).

    64.
    Kittle, R. P. & McDermid, K. J. Glyphosate herbicide toxicity to native Hawaiian macroalgal and seagrass species. J. Appl. Phycol. 28, 2597–2604 (2016).
    CAS  Article  Google Scholar 

    65.
    Verdura, J., Sales, M., Ballesteros, E., Cefalì, M. E. & Cebrian, E. Restoration of a canopy-forming alga based on recruitment enhancement: methods and long-term success assessment. Front. Plant Sci. 9, 1832 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    66.
    Murchie, E. H. & Lawson, T. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J. Exp. Bot. 64, 3983–3998 (2013).
    CAS  Article  PubMed  Google Scholar 

    67.
    Pinheiro, J. C. & Bates, D. M. Linear Mixed-Effects Models: Basic Concepts and Examples. In Mixed-Effects Models in Sand S-PLUS. Statistics and Computing. (eds. Pinheiro, J. C. & Bates, D. M.) 3–56 (Springer, New York, 2000). https://doi.org/10.1007/978-1-4419-0318-1_1.

    68.
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    69.
    Venables, W. N. & Ripley, B. D. Modern applied statistics with S. (2002).

    70.
    Fox, J. & Weisberg, S. An R Companion to Applied Regression. (SAGE Pubblications, Inc., 2019).

    71.
    Lenth, R. V. Least-squares means: the R package lsmeans. J. Stat. Softw. 69, 1–33 (2016).
    Article  Google Scholar 

    72.
    Abdala-Díaz, R. T., Cabello-Pasini, A., Pérez-Rodríguez, E., Álvarez, R. M. C. & Figueroa, F. L. Daily and seasonal variations of optimum quantum yield and phenolic compounds in Cystoseira tamariscifolia (Phaeophyta). Mar. Biol. 148, 459–465 (2006).
    Article  CAS  Google Scholar 

    73.
    Yu, Y. Q. et al. Diurnal changes of photosynthetic quantum yield in the intertidal macroalga Sargassum thunbergii under simulated tidal emersion conditions. J. Sea Res. 80, 50–57 (2013).
    ADS  Article  Google Scholar 

    74.
    Gévaert, F. et al. Laminaria saccharina photosynthesis measured in situ: photoinhibition and xanthophyll cycle during a tidal cycle. Mar. Ecol. Prog. Ser. 247, 43–50 (2003).
    ADS  Article  Google Scholar 

    75.
    Huppertz, K., Hanelt, D. & Nultsch, W. Photoinhibition of photosynthesis in the marine brown algae Fucus serratus as studied in field experiments. Mar. Ecol. Prog. Ser. 66, 175–182 (1990).
    ADS  Article  Google Scholar 

    76.
    Davis, T. A. et al. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 26, 265–275 (2011).
    ADS  Google Scholar 

    77.
    Evans, L. K. & Edwards, M. S. Bioaccumulation of copper and zinc by the giant kelp Macrocystis pyrifera. Algae 26, 265–275 (2011).
    CAS  Article  Google Scholar 

    78.
    Pan, Y. et al. Screening of seaweeds in the East China Sea as potential bio-monitors of heavy metals. Environ. Sci. Pollut. Res. 25, 16640–16651 (2018).
    CAS  Article  Google Scholar 

    79.
    Hopkin, R. & Kain, J. M. The effects of some pollutants on the survival, growth and respiration of Laminaria hyperborea. Estuar. Coast. Mar. Sci. 7, 531–553 (1978).
    ADS  CAS  Article  Google Scholar 

    80.
    Marsden, A. D., DeWreede, R. E. & Levings, C. D. Survivorship and growth of Fucus gardneri after transplant to an acid mine drainage-polluted area. Mar. Pollut. Bull. 46, 65–73 (2003).
    Article  PubMed  Google Scholar 

    81.
    Pellegrini, M. et al. Interactions between the toxicity of the heavy metals cadmium, copper, zinc in combinations and the detoxifying role of calcium in the brown alga Cystoseira barbata. J. Appl. Phycol. 5, 351–361 (1993).
    CAS  Article  Google Scholar 

    82.
    Mangialajo, L., Chiantore, M. & Cattaneo-Vietti, R. Loss of fucoid algae along a gradient of urbanisation, and structure of benthic assemblages. Mar. Ecol. Prog. Ser. 358, 63–74 (2008).
    ADS  Article  Google Scholar 

    83.
    Strömgren, T. The effect of dissolved copper on the increase in length of four species of intertidal fucoid algae. Mar. Environ. Res. 3, 5–13 (1980).
    Article  Google Scholar 

    84.
    Rodríguez-Prieto, C. & Polo, L. Effects of sewage pollution in the structure and dynamics of the community of Cystoseira mediterranea (Fucales, Phaeophyceae). Sci. Mar. 60, 253–263 (1996).
    Google Scholar 

    85.
    Boudouresque, C. F., Marcot-Coqueugniot, J. & Nédélec, H. The phytobentos of a Mediterranean Harbour, Port Vendres. In Proceedings of the International Seaweed Symposium 229–234 (1981).

    86.
    Costa, G. B. et al. Effects of copper and lead exposure on the ecophysiology of the brown seaweed Sargassum cymosum. Protoplasma 253, 111–125 (2016).
    CAS  Article  PubMed  Google Scholar 

    87.
    Baumann, H. A., Morrison, L. & Stengel, D. B. Metal accumulation and toxicity measured by PAM-Chlorophyll fluorescence in seven species of marine macroalgae. Ecotoxicol. Environ. Saf. 72, 1063–1075 (2009).
    CAS  Article  PubMed  Google Scholar 

    88.
    Topinka, J. A. & Robbins, J. V. Effects of nitrate and ammonium enrichment on growth and nitrogen physiology in Fucus spiralis. Limnol. Oceanogr. 21, 659–664 (1976).
    ADS  CAS  Article  Google Scholar 

    89.
    Chapman, A. R. O. & Craigie, J. S. Seasonal growth in Laminaria longicruris: relations with dissolved inorganic nutrients and internal reserves of nitrogen. Mar. Biol. 40, 197–205 (1977).
    CAS  Article  Google Scholar 

    90.
    Gerard, V. A. In situ rates of nitrate uptake by giant kelp, Macrocystis pyrifera (L.) C. Agardh: tissue differences, environmental effects, and predictions of nitrogen-limited growth. J. Exp. Mar. Biol. Ecol. 62, 211–224 (1982).
    CAS  Article  Google Scholar 

    91.
    Buschmann, A. H. et al. Ecophysiological plasticity of annual populations of giant kelp (Macrocystis pyrifera) in a seasonally variable coastal environment in the Northern Patagonian Inner Seas of Southern Chile. J. Appl. Phycol. 26, 837–847 (2014).
    Article  Google Scholar 

    92.
    Braga, A. D. C. & Yoneshigue-Valentin, Y. Growth of Laminaria abyssalis (Phaeophyta) at different nitrate concentrations. Phycologia 33, 271–274 (1994).
    Article  Google Scholar 

    93.
    Wallentinus, I. Comparisons of nutrient uptake rates for Baltic macroalgae with different thallus morphologies. Mar. Biol. 80, 215–225 (1984).
    CAS  Article  Google Scholar 

    94.
    Gordillo, F. J. L., Dring, M. J. & Savidge, G. Nitrate and phosphate uptake characteristics of three species of brown algae cultured at low salinity. Mar. Ecol. Prog. Ser. 234, 111–118 (2002).
    ADS  CAS  Article  Google Scholar 

    95.
    Thomas, T. E., Harrison, P. J. & Taylor, E. B. Nitrogen uptake and growth of the germlings and mature thalli of Fucus distichus. Mar. Biol. 84, 267–274 (1985).
    Article  Google Scholar 

    96.
    Nielsen, H. D., Brownlee, C., Coelho, S. M. & Brown, M. T. Inter-population differences in inherited copper tolerance involve photosynthetic adaptation and exclusion mechanisms in Fucus serratus. New Phytol. 160, 157–165 (2003).
    CAS  Article  Google Scholar 

    97.
    Guillemin, M. L., Valenzuela, P., Gaitán-Espitia, J. D. & Destombe, C. Evidence of reproductive cost in the triphasic life history of the red alga Gracilaria chilensis (Graciliarales, Rhodophyta). J. Appl. Phycol. 26, 569–575 (2014).
    CAS  Article  Google Scholar 

    98.
    Scanlan, C. M. & Wilkinson, M. The use of seaweeds in biocide toxicity testing. Part 1. The sensitivity of different stages in the life-history of Fucus, and of other algae, to certain biocides. Mar. Environ. Res. 21, 11–29 (1987).
    CAS  Article  Google Scholar 

    99.
    Garman, G. D., Pillai, M. C. & Cherr, G. N. Inhibition of cellular events during early algal gametophyte development: effects of select metals and an aqueous petroleum waste. Aquat. Toxicol. 28, 127–144 (1994).
    CAS  Article  Google Scholar 

    100.
    Chung, I. K. & Brinkhuis, B. H. Copper effects in early stages of the kelp Laminaria saccharina. Mar. Pollut. Bull. 17, 213–218 (1986).
    CAS  Article  Google Scholar 

    101.
    Giesy, J. P., Dobson, S. & Solomon, K. R. Ecotoxicological Risk Assessment for Roundup® Herbicide. Rev. Environ. Contam. Toxicol. 167, 35–120 (2000).
    CAS  Google Scholar 

    102.
    Pérez, G. L., Solange Vera, M. & Miranda, L. A. Nitrate and phosphate uptake characteristics of three species of brown algae cultured at low salinity. In Herbicides and Environment (ed. Kortekamp, A.) 343–368 (InTech, 2011). https://doi.org/10.5772/57353.

    103.
    Solomon, K. R. & Thompson, D. G. Ecological risk assessment for aquatic organisms from over-water uses of glyphosate. J. Toxicol. Environ. Heal. Part B Crit. Rev. 6, 289–324 (2003).

    104.
    Cedergreen, N. & Streibig, J. C. The toxicity of herbicides to non-target aquatic plants and algae: assessment of predictive factors and hazard. Pest Manag. Sci. 61, 1152–1160 (2005).
    CAS  Article  PubMed  Google Scholar 

    105.
    Pang, T., Liu, J., Liu, Q., Zhang, L. & Lin, W. Impacts of glyphosate on photosynthetic behaviors in Kappaphycus alvarezii and Neosiphonia savatieri detected by JIP-test. J. Appl. Phycol. 24, 467–473 (2012).
    CAS  Article  Google Scholar 

    106.
    Franz, J. E., Mao, M. K. & Sikorinski, J. A. Glyphosate, a unique global herbicide. Weed Technol. 12, 564–565 (1998).
    Article  Google Scholar 

    107.
    Siehl, D. L. Inhibitors of EPSP synthase, glutamine synthetase and histidine synthesis. In Herbicide Activity:Toxicology, Biochemistry and Molecular Biology (eds. Roe, R. M., Burton, J. D. & Kuhr, R. J.) 37–67 (1997).

    108.
    Duke, S. O., Baerson, S. R. & Rimando, A. M. Glyphosate. In Encyclopedia of Agrochemicals (John Wiley & Sons, Inc., 2003). https://doi.org/10.1002/047126363X.agr119.

    109.
    Billen, G. et al. Nitrogen flows from European regional watersheds to coastal marine waters. Eur. Nitrogen Assess. 271–297 (2011). https://doi.org/10.1017/cbo9780511976988.016.

    110.
    Giani, M. et al. Recent changes in the marine ecosystems of the northern Adriatic Sea. Estuar. Coast. Shelf Sci. 115, 63–74 (2012).
    ADS  Article  Google Scholar 

    111.
    EEA. Nutrients in transitional, coastal and marine waters (CSI 021). https://www.eea.europa.eu/data-and-maps/indicators/nutrients-in-transitional-coastal-and-3/assessment (2015).

    112.
    Strain, E. M. A., Thomson, R. J., Micheli, F., Mancuso, F. P. & Airoldi, L. Identifying the interacting roles of stressors in driving the global loss of canopy-forming to mat-forming algae in marine ecosystems. Glob. Change Biol. 20, 3300–3312 (2014).
    ADS  Article  Google Scholar 

    113.
    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).
    ADS  CAS  Article  PubMed  Google Scholar 

    114.
    Verdura, J., Sales, M., Ballesteros, E., Cefalí, M. E. VI Jornades de Medi Ambient de les Illes Balears. In Programa de seguiment científic de l’Estació d’Investigació “Jaume Ferrer”: recuperació d’una població de Cystoseira barbata desapareguda a Cala Teulera (Port de Maó) (ed. Pons, G. X., del Valle, L., Vicens, D., Pinya, S., McMinn, M., Pomar, F.) 180–183 (Societat d’Història Natural de les Balears. Maó, Spain, 2018).

    115.
    Falace, A., Kaleb, S., De La Fuente, G., Asnaghi, V. & Chiantore, M. Ex situ cultivation protocol for Cystoseira amentacea var. stricta (Fucales, Phaeophyceae) from a restoration perspective. PLoS ONE 13, e0193011 (2018). More