Biochemical and economical effect of application biostimulants containing seaweed extracts and amino acids as an element of agroecological management of bean cultivation
1.
Le Mire, G. et al. Implementing plant biostimulants and biocontrol strategies in the agroecological management of cultivated ecosystems. Biotechnol. Agron. Soc. Environ. 20, 299–313. https://doi.org/10.25518/1780-4507.12717 (2016).
Article Google Scholar
2.
Altieri, M. Á. Agroecology: A new research and development paradigm for world agriculture. Agric. Ecosyst. Environ. 27, 37–46. https://doi.org/10.1016/0167-8809(89)90070-4 (1989).
Article Google Scholar
3.
Posmyk, M. M. & Szafrańska, K. Biostimulators: A new trend towards solving an old problem. Front. Plant Sci. 7, 48. https://doi.org/10.3389/fpls.2016.00748 (2016).
Article Google Scholar
4.
Szparaga, A. & Kocira, S. Generalized logistic functions in modelling emergence of Brassica napus L.. PLoS ONE 13, e0201980. https://doi.org/10.1371/journal.pone.0201980 (2018).
CAS Article PubMed PubMed Central Google Scholar
5.
Koo, A. J. Metabolism of the plant hormone jasmonate: A sentinel for tissue damage and master regulator of stress response. Phytochem. Rev. 17, 51–80. https://doi.org/10.1007/s11101-017-9510-8 (2018).
CAS Article Google Scholar
6.
Trevisan, S., Manoli, A., Ravazzolo, L., Franceschi, C. & Quaggiotti, S. mRNA-sequencing analysis reveals transcriptional changes in root of maize seedlings treated with two increasing concentrations of a new biostimulant. J. Agric. Food Chem. 65, 9956–9969. https://doi.org/10.1021/acs.jafc.7b03069 (2017).
CAS Article PubMed Google Scholar
7.
Szparaga, A. et al. Modification of growth, yield, and the nutraceutical and antioxidative potential of soybean through the use of synthetic biostimulants. Front. Plant Sci. 9, 1401. https://doi.org/10.3389/fpls.2018.01401 (2018).
Article PubMed PubMed Central Google Scholar
8.
Cocetta, G. & Ferrante, A. Nutritional and Nutraceutical Value of Vegetable Crops as Affected by Biostimulants Application. In: eLS. (Wiley, Chichester, 2020). https://doi.org/10.1002/9780470015902.a0028906.
9.
Kocira, S. Effect of applying a biostimulant containing seaweed and amino acids on the content of fiber fractions in three soybean cultivars. Legume Res. 42, 341–347. https://doi.org/10.18805/LR-412 (2019).
Article Google Scholar
10.
Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019. https://eur-lex.europa.eu/eli/reg/2019/1009/oj (2019).
11.
Chehade, A., Chami, A., Angelica, S., Pascali, D. & Paolo, F. Biostimulants from food processing by-products: Agronomic, quality and metabolic impacts on organic tomato (Solanum lycopersicum L.). J. Sci. Food Agric. 98, 1426–1436. https://doi.org/10.1002/jsfa.8610 (2018).
CAS Article PubMed Google Scholar
12.
Stirk, W. A., Tarkowská, D., Turečová, V., Strnad, M. & van Staden, J. Abscisic acid, gibberellins and brassinosteroids in Kelpak®, a commercial seaweed extract made from Ecklonia maxima. J. Appl. Phycol. 26, 561–567. https://doi.org/10.1007/s10811-013-0062-z (2014).
CAS Article Google Scholar
13.
Szczepanek, M., Siwik-Ziomek, A. & Wilczewski, E. Effect of biostimulant on accumulation of Mg in winter oilseed rape under different mineral fertilization rates. J. Elementol. 22, 1375–1385. https://doi.org/10.5601/jelem.2017.22.1.1317 (2017).
Article Google Scholar
14.
Kocira, S. et al. Effect of an amino acids-containing biostimulator on common bean crop. Przem. Chem. 94(10), 1732–1736. https://doi.org/10.15199/62.2015.10.16 (2015).
CAS Article Google Scholar
15.
Calvo, P., Nelson, L. & Kloepper, J. W. Agricultural uses of plant biostimulants. Plant Soil. 383, 3–41. https://doi.org/10.1007/s11104-014-2131-8 (2014).
CAS Article Google Scholar
16.
Colla, G. et al. Protein hydrolysates as biostimulants in horticulture. Sci. Hortic. 196, 28–38. https://doi.org/10.1016/j.scienta.2015.08.037 (2015).
CAS Article Google Scholar
17.
Sharma, H. S. S., Fleming, C., Selby, C., Rao, J. R. & Martin, T. Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J. Appl. Phycol. 26, 465–490. https://doi.org/10.1007/s10811-013-0101-9 (2014).
CAS Article Google Scholar
18.
Ertani, A., Pizzeghello, D., Francioso, O., Tinti, A. & Nardi, S. Biological activity of vegetal extracts containing phenols on plant metabolism. Molecules 21, 205–219. https://doi.org/10.3390/molecules21020205 (2016).
CAS Article PubMed Central Google Scholar
19.
Michałek, W., Kocira, A., Findura, P., Szparaga, A. & Kocira, S. The influence of biostimulant Asahi SL on the photosynthetic activity of selected cultivars of Phaseolus vulgaris L.. Rocz. Ochr. Sr. 20, 1286–1301 (2018).
Google Scholar
20.
Hara, P., Szparaga, A. & Czerwińska, E. Ecological methods used to control fungi that cause diseases of the crop plant. Rocz. Ochr. Sr. 20, 1764–1775 (2018).
Google Scholar
21.
Mejía-Teniente, L. et al. Use of elicitors as an approach for sustainable agriculture. Afr. J. Biotechnol. 9, 9155–9162 (2010).
Google Scholar
22.
Chandler, D. et al. The development, regulation and use of biopesticides for integrated pest management. Philos. Trans. R. Soc. B. 366, 1987–1998. https://doi.org/10.1098/rstb.2010.0390 (2011).
Article Google Scholar
23.
Wezel, A. et al. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 34, 1–20. https://doi.org/10.1007/s13593-013-0180-7 (2014).
Article Google Scholar
24.
Brown, P. & Saa, S. Biostimulants in agriculture. Front. Plant Sci. 6, 671. https://doi.org/10.3389/fpls.2015.00671 (2015).
Article PubMed PubMed Central Google Scholar
25.
Van Oosten, M. J., Pepe, O., De Pascale, S., Silletti, S. & Maggio, A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Technol. Agric. 4, 5. https://doi.org/10.1186/s40538-017-0089-5 (2017).
CAS Article Google Scholar
26.
Grabowska, A., Kunicki, E., Sekara, A., Kalisz, A. & Wojciechowska, R. The effect of cultivar and biostimulant treatment on the carrot yield and its quality. Veg. Crops Res. Bull. 77, 37–48. https://doi.org/10.2478/v10032-012-0014-1 (2012).
Article Google Scholar
27.
Kolomaznik, K., Pecha, J., Friebrova, V., Janacova, D. & Vasek, V. Diffusion of biostimulators into plant tissues. Heat Mass Transf. 48, 1505–1512. https://doi.org/10.1007/s00231-012-0998-6 (2012).
ADS CAS Article Google Scholar
28.
Gozzo, F. & Faoro, F. Systemic acquired resistance (50 years after discovery): Moving from the lab to the field. J. Agric. Food Chem. 61, 12473–12491. https://doi.org/10.1021/jf404156x (2013).
CAS Article PubMed Google Scholar
29.
Bashan, Y., de Bashan, L. E., Prabhu, S. R. & Hernandez, J.-P. Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998–2013). Plant Soil. 378(1–2), 1–33. https://doi.org/10.1007/s11104-013-1956-x (2014).
CAS Article Google Scholar
30.
Cox, M. & Wong, B. Biological crop chemistry primer: Green shoots through green products, Piper Jaffray industry note. Web site 2013 [cited 4 May 2020]. https://files.ctctcdn.com/f569d87b001/8445a3b3-dcf8-4654-8d3b-bd079e55022d.pdf.
31.
Arora, N. K., Khare, E. & Maheshwari, D. K. Plant growth promoting rhizobacteria: constraints in bioformulation, commercialization, and future strategies. In Plant Growth and Health Promoting Bacteria (ed Maheshwari, D.K.) 97–116 (Springer, Dordrecht, 2010). https://doi.org/10.1007/978-3-642-13612-2_5.
32.
Walters, D. R., Ratsep, J. & Havis, N. D. Controlling crop diseases using induced resistance: Challenges for the future. J. Exp. Bot. 64(5), 1263–1280. https://doi.org/10.1093/jxb/ert026 (2013).
CAS Article PubMed Google Scholar
33.
Rodriguez-Saona, C., Kaplan, I., Braasch, J., Chinnasamy, D. & Williams, L. Field responses of predaceous arthropods to methyl salicylate: A meta-analysis and case study in cranberries. Biol. Control. 59(2), 294–303. https://doi.org/10.1016/j.biocontrol.2011.06.017 (2011).
CAS Article Google Scholar
34.
Łączyński, A. et al. Wyniki produkcji roślinnej w 2017 r. (Główny Urząd Statystyczny Warszawa, 2018).
35.
Szparaga, A. et al. Towards sustainable agriculture—agronomic and economic effects of biostimulant use in common bean cultivation. Sustainability. 11, 4575. https://doi.org/10.3390/su11174575 (2019).
CAS Article Google Scholar
36.
Kocira, S. et al. Effects of seaweed extract on yield and protein content of two common bean (Phaseolus vulgaris L.) cultivars. Legume Res. 41, 589–593 (2018).
Google Scholar
37.
Kocira, A., Świeca, M., Kocira, S., Złotek, U. & Jakubczyk, A. Enhancement of yield, nutritional and nutraceutical properties of two common bean cultivars following the application of seaweed extract (Ecklonia maxima). Saudi J. Biol. Sci. 25, 563–571. https://doi.org/10.1016/j.sjbs.2016.01.039 (2018).
CAS Article PubMed Google Scholar
38.
Kocira, S. Effect of amino acid biostimulant on the yield and nutraceutical potential of soybean. Chil. J. Agric. Res. 79, 17–25. https://doi.org/10.4067/S0718-58392019000100017 (2019).
Article Google Scholar
39.
Kocira, A. et al. Changes in biochemistry and yield in response to biostimulants applied in bean (Phaseolus vulgaris L.). Agronomy 10, 189. https://doi.org/10.3390/agronomy10020189 (2020).
CAS Article Google Scholar
40.
Rouphael, Y., Cardarelli, M., Bonini, P. & Colla, G. Synergistic action of a microbial-based biostimulant and a plant derived-protein hydrolysate enhances lettuce tolerance to alkalinity and salinity. Front. Plant Sci. 8, 131. https://doi.org/10.3389/fpls.2017.00131 (2017).
Article PubMed PubMed Central Google Scholar
41.
Shahabivand, S., Padash, A., Aghaee, A., Nasiri, Y. & Rezaei, P. F. Plant biostimulants (Funneliformis mosseae and humic substances) rather than chemical fertilizer improved biochemical responses in peppermint. Iran. J. Plant Physiol. 8, 2333–2344. https://doi.org/10.22034/ijpp.2018.539109 (2018).
Article Google Scholar
42.
Fujita, Y., Fujita, M., Shinozaki, K. & Yamaguchi-Shinozaki, K. ABA-mediated transcriptional regulation in response to osmotic stress in plants. J. Plant Res. 124, 509–525. https://doi.org/10.1007/s10265-011-0412-3 (2011).
CAS Article PubMed Google Scholar
43.
Xiong, H. et al. Overexpression of OsMYB48–1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS ONE 9, e92913. https://doi.org/10.1371/journal.pone0092913 (2014).
ADS Article PubMed PubMed Central Google Scholar
44.
Trivellini, A. et al. Survive or die? A molecular insight into salt-dependant signaling network. Environ. Exp. Bot. 132, 140–153. https://doi.org/10.1016/j.envexpbot.2016.07.007 (2016).
CAS Article Google Scholar
45.
Hare, P. D. & Cress, W. A. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul. 21, 79–102. https://doi.org/10.1023/A:1005703923347 (1997).
CAS Article Google Scholar
46.
Mattioli, R., Costantino, P. & Trovato, M. Proline accumulation in plants. Plant Signal. Behav. 4, 1016–1018. https://doi.org/10.4161/psb.4.11.9797 (2009).
CAS Article PubMed PubMed Central Google Scholar
47.
Cheynier, V., Comte, G., Davies, K. M. & Lattanzio, V. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol. Biochem. 72, 1–20. https://doi.org/10.1016/j.plaphy.2013.05.009 (2013).
CAS Article PubMed Google Scholar
48.
Bulgari, R., Trivellini, A. & Ferrante, A. Effects of two doses of organic extract-based biostimulant on greenhouse lettuce grown under increasing NaCl concentrations. Front. Plant Sci. 9, 1870. https://doi.org/10.3389/fpls.2018.01870 (2019).
Article PubMed PubMed Central Google Scholar
49.
Rouphael, Y. et al. Effect of Ecklonia maxima seaweed extract on yield, mineral composition, gas exchange and leaf anatomy of zucchini squash grown under saline conditions. J. Appl. Phychol. 29, 459–470. https://doi.org/10.1007/s10811-016-0937-x (2017).
CAS Article Google Scholar
50.
Vanacker, H., Carver, T. L. W. & Foyer, C. H. Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves. Plant Physiol. 117, 1103–1114. https://doi.org/10.1104/pp.117.3.1103 (1998).
CAS Article PubMed PubMed Central Google Scholar
51.
Lawlor, D. W. & Tezara, W. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: A critical evaluation of mechanisms and integration of processes. Ann. Bot. 103, 561–579. https://doi.org/10.1093/aob/mcn244 (2009).
CAS Article PubMed PubMed Central Google Scholar
52.
Ertani, A., Schiavon, M., Altissimo, A., Franceschi, A. & Nardi, S. Phenol-containing organic substances stimulate phenylpropanoid metabolism in Zea mays. J. Plant Nutr. Soil Sci. 174, 496–503. https://doi.org/10.1002/jpln.201000075 (2011).
CAS Article Google Scholar
53.
Bettoni, M. M. et al. Nutritional quality and yield of onion as affected by different application methods and doses of humic substances. J. Food Comp. Anal. 51, 37–44. https://doi.org/10.1016/j.jfca.2016.06.008 (2016).
CAS Article Google Scholar
54.
Ertani, A., Schiavon, M., Muscolo, A. & Nardi, S. Alfalfa plant-derived biostimulant stimulates short-term growth of salt stressed Zea mays L. plants. Plant Soil. 364, 145–158. https://doi.org/10.1007/s11104-012-1335-z (2013).
CAS Article Google Scholar
55.
Ertani, A. et al. The use of organic biostimulants in hot pepper plants to help low input sustainable agriculture. Chem. Biol. Technol. Agric. 2, 11. https://doi.org/10.1186/s40538-015-0039-z (2015).
CAS Article Google Scholar
56.
Oboh, G. & Ademosun, A. O. Characterization of the antioxidant properties of phenolic extracts from some citrus peels. J. Food Sci. Technol. 49, 729–736. https://doi.org/10.1007/s13197-010-0222-y (2012).
CAS Article PubMed Google Scholar
57.
Serrano, M. et al. Antioxidant and nutritive constituents during sweet pepper development and ripening are enhanced by nitrophenolate treatments. Food Chem. 118, 497–503. https://doi.org/10.1016/j.foodchem.2009.05.006 (2010).
CAS Article Google Scholar
58.
Krasensky, J., Carmody, M., Sierla, M. & Kangasjärvi, J. Ozone and reactive oxygen species. Wiley Online Library Web side. 2017 March 20 [cited 4 May 2020]. https://doi.org/10.1002/9780470015902.a0001299.pub3.
59.
Ciarmiello, L. F., Woodrow, P., Fuggi, A., Pontecorvo, G. & Carillo, P. Plant genes for abiotic stress. In Abiotic Stress in Plants—Mechanisms and Adaptations (eds Shanker, A. & Venkateswarlu, B.) 283–308 (InTech, Croatia, 2011).
Google Scholar
60.
Woziak, E., Blaszczak, A., Wiatrak, P. & Canady, M. Biostimulant mode of action: Impact of biostimulant on whole-plant. In The Chemical Biology of Plant Biostimulants (eds Geelen, D. & Xu, L.) 207–227 (Wiley, Hoboken, 2020).
Google Scholar
61.
Woziak, E., Blaszczak A., Wiatrak, P. & Canady M. Biostimulant mode of action: Impact of biostimulant on cellular level. In The Chemical Biology of Plant Biostimulants (eds. Geelen, D. & Xu, L.) 229–243 (Wiley, Hoboken, 2020).
62.
Upadhyay, S. & Dixit, M. Role of polyphenols and other phytochemicals on molecular signaling. Oxid. Med. Cell. Longev. https://doi.org/10.1155/2015/504253 (2015).
Article PubMed PubMed Central Google Scholar
63.
Martindale, J. L. & Holbrook, N. J. Cellular response to oxidative stress: Signaling for suicide and survival. J. Cell. Physiol. 192, 1–15. https://doi.org/10.1002/jcp.10119 (2002).
CAS Article PubMed Google Scholar
64.
Los, F. G. B., Zielinski, A. A. F., Wojeicchowski, J. P., Nogueira, A. & Demiate, I. M. Beans (Phaseolus vulgaris L.): Whole seeds with complex chemical composition. Curr. Opin. Food Sci. 19, 63–71. https://doi.org/10.1016/j.cofs.2018.01.010 (2018).
Article Google Scholar
65.
Abbas, S. M. The influence of biostimulants on the growth and on the biochemical composition of viciafaba CV. Giza 3 beans. Rom. Biotechnol. Lett. 18, 8061–8068 (2013).
ADS CAS Google Scholar
66.
Aloni, R., Langhans, M., Aloni, E. & Ullrich, C. I. Role of cytokinin in the regulation of root gravitropism. Planta 220, 177–182. https://doi.org/10.1007/s00425-004-1381-8 (2004).
CAS Article PubMed Google Scholar
67.
Aloni, R., Aloni, E., Langhans, M. & Ullrich, C. I. Role of cytokinin and auxin in shaping root architecture: Regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann. Bot. 97, 883–893. https://doi.org/10.1093/aob/mcl027 (2006).
CAS Article PubMed PubMed Central Google Scholar
68.
Aloni, R., Tollier, M. T. & Monties, B. The role of auxin and gibberellin in controlling lignin formation in primary phloem fibers and in xylem of Coleus-blumei stems. Plant Physiol. 94, 1743–1747. https://doi.org/10.1104/pp.94.4.1743 (1990).
CAS Article PubMed PubMed Central Google Scholar
69.
Mauriat, M. & Moritz, T. Analyses of GA20ox- and GID1-over-expressing aspen suggest that gibberellins play two distinct roles in wood formation. Plant J. 58, 989–1003. https://doi.org/10.1111/j.1365-313X.2009.03836.x (2009).
CAS Article PubMed Google Scholar
70.
Dayan, J., Schwarzkopf, M., Avni, A. & Aloni, R. Enhancing plant growth and fiber production by silencing GA 2-oxidase. Plant Biotechnol. J. 8, 425–435. https://doi.org/10.1111/j.1467-7652.2009.00480.x (2010).
CAS Article PubMed Google Scholar
71.
Dombrowski, J. E. & Martin, R. C. Evaluation of reference genes for quantitative RT-PCR in Lolium temulentum under abiotic stress. Plant Sci. 176, 390–396. https://doi.org/10.1016/j.plantsci.2008.12.005 (2009).
CAS Article Google Scholar
72.
Gómez-Merino, F. C. & Trejo-Téllez, L. I. The role of beneficial elements in triggering adaptive responses to environmental stressors and improving plant performance. In Biotic and Abiotic Stress Tolerance in Plants (ed Vats, S) 137–172 (Springer, Singapore, 2018). https://doi.org/10.1007/978-981-10-9029-5_6.
73.
Nemes, N. Comparatice analysis of organic and non-organic farming systems: A critical assessment of farm profitability. FAO Web side. [cited 4 May 2020]. https://www.fao.org/tempref/docrep/fao/011/ak355e/ak355e00.pdf (2017).
74.
Mariano, R. A. Profitability analysis of irradiated carrageenan as a biostimulant in small-scale rice farming in selected provinces in the Philippines. J. Glob. Bus. Trade. 14, 15–30 (2018).
Article Google Scholar
75.
Abad, L. V., Aranilla, C. T., Relleve, L. S. & Dela Rosa, A. M. Emerging applications of radiation-modified carrageenans. Nucl. Instrum. Methods B. 336, 167–172. https://doi.org/10.1016/j.nimb.2014.07.005 (2014).
ADS CAS Article Google Scholar
76.
Khan, W. et al. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 28, 386–399. https://doi.org/10.1007/s00344-009-9103-x (2009).
CAS Article Google Scholar
77.
Jesus, A. A., Lima, S. F., Vendruscolo, E. P., Alvarez, R. C. F. & Contardi, L. M. Agroeconomic analysis of sweet corn grown with biostimulant applied on seed. Rev. Fac. Agron. 115, 119–127 (2016).
Google Scholar
78.
Zhang, X. & Schmidt, R. E. Hormone-containing products’ impact on antioxidant status of tall fescue and creeping bentgrass subjected to drought. Crop Sci. 40, 1344–1249. https://doi.org/10.2135/cropsci2000.4051344x (2000).
CAS Article Google Scholar
79.
Crepaldi, S. A. Contabilidade Rural: Uma Abordagem Decisorial 2nd edn. (São Paulo, Atlas, 1998).
Google Scholar
80.
Kocira, S., Szparaga, A., Kuboń, M., Czerwińska, E. & Piskier, T. Morphological and biochemical responses of Glycine max (L.) Merr. to the use of seaweed extract. Agronomy 9, 93. https://doi.org/10.3390/agronomy9020093 (2019).
CAS Article Google Scholar
81.
Świeca, M., Gawlik-Dziki, U., Kowalczyk, D. & Złotek, U. Impact of germination time and type of illumination on the antioxidant compounds and antioxidant capacity of Lens culinaris sprouts. Sci. Hortic. 140, 87–95. https://doi.org/10.1016/j.scienta.2012.04.005 (2012).
CAS Article Google Scholar
82.
Singleton, V. & Rossi, J. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144–158 (1965).
CAS Google Scholar
83.
Lamaison, J. L. C. & Carnet, A. Teneurs en principaux flavonoids des fleurs de Crataegeus monogyna Jacq et de Crataegeus laevigata (Poiret D. C) en fonction de la vegetation. Pharm. Acta Helv. 65, 315–320. https://doi.org/10.1016/j.nfs.2018.10.001 (1990).
CAS Article Google Scholar
84.
Fuleki, T. & Francis, F. J. Quantitative methods for anthocyanins. 1. Extraction and determination of total anthocyanin in cranberries. J. Food Sci. 33, 72–77. https://doi.org/10.1111/j.1365-2621.1968.tb00887.x (1968).
CAS Article Google Scholar
85.
Pulido, R., Bravo, L. & Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 48, 3396–3402. https://doi.org/10.1021/jf9913458 (2000).
CAS Article PubMed Google Scholar
86.
Jimenez-Alvarez, D. et al. High-throughput methods to assess lipophilic and hydrophilic antioxidant capacity of food extracts in vitro. J. Agric. Food Chem. 56(10), 3470–3477. https://doi.org/10.1021/jf703723ss (2008).
CAS Article PubMed Google Scholar
87.
Sancho, R. A. S., Pavan, V. & Pastore, G. M. Effect of in vitro digestion on bioactive compounds and antioxidant activity of common bean seed coats. Food Res. Int. 76, 74–78. https://doi.org/10.1016/j.foodres.2014.11.042 (2015).
CAS Article Google Scholar
88.
Carillo, P. & Gibon, Y. Protocol: extraction and determination of proline. [cited 4 January 2020]. https://prometheuswiki.publish.csiro.au/tiki.
89.
Redmile-Gordon, M. A., Armenise, E., White, R. P., Hirsch, P. R. & Goulding, K. W. T. A comparison of two colorimetric assays, based upon Lowry and Bradford techniques, to estimate total protein in soil extracts. Soil Biol. Biochem. 67, 166–173. https://doi.org/10.1016/j.soilbio.2013.08.017 (2013).
CAS Article PubMed PubMed Central Google Scholar
90.
Goñi, I., Garcia-Alonso, A. & Saura-Calixto, F. A starch hydrolysis procedure to estimate glycemic index. Nutr. Res. 17(3), 427–437. https://doi.org/10.1016/S0271-5317(97)00010-9 (1997).
Article Google Scholar
91.
AOCS Approved Procedure Ba 6a-05. [cited 2 September 2020]. https://www.ssco.com.tw/Ankom/PDF_file/Crude%20Fiber%20Method%20A200.pdf.
92.
Szparaga, A. Wybrane Właściwości Fizyczne, Mechaniczne, Chemiczne i Plon Nasion Fasoli Zwykłej (Phaseolus Vulgaris L.) w Zależności od Metody Aplikacji Biostymulatorów. (Polskie Towarzystwo Inżynierii Rolniczej, 2019).
93.
Szparaga, A. et al. Survivability of probiotic bacteria in model systems of non-fermented and fermented coconut and hemp milks. Sustainability. 11, 6093. https://doi.org/10.3390/su11216093 (2019).
CAS Article Google Scholar More