Asynchronous multi-decadal time-scale series of biotic and abiotic responses to precipitation during the last 1300 years
1.
Ljungqvist, F. C. A new reconstruction of temperature variability in the extra‐tropical northern hemisphere during the last two millennia. Geogr. Ann. Ser. A, Phys. Geogr. 92, 339–351 (2010).
2.
Wang, Y. et al. The holocene asian monsoon: links to solar changes and north atlantic climate. Science 80(308), 854–857 (2005).
ADS Article CAS Google Scholar
3.
Zhang, P. et al. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science 80(322), 940–942 (2008).
ADS Article CAS Google Scholar
4.
Wang, X. et al. Climate, desertification, and the rise and collapse of China’s historical dynasties. Hum. Ecol. 38, 157–172 (2010).
Article Google Scholar
5.
Paulsen, D. E., Li, H.-C. & Ku, T.-L. Climate variability in central China over the last 1270 years revealed by high-resolution stalagmite records. Quat. Sci. Rev. 22, 691–701 (2003).
ADS Article Google Scholar
6.
Lee, H. & Zhang, D. Space-time integration in geography and GIScience. Space-time integration in geography and giscience: research frontiers in the US and China (Springer Netherlands, 2015). https://doi.org/10.1007/978-94-017-9205-9.
7.
Jia, D., Li, Y. & Fang, X. Complexity of factors influencing the spatiotemporal distribution of archaeological settlements in northeast China over the past millennium. Quat. Res. 89, 413–424 (2018).
Article Google Scholar
8.
Lee, U. The comparative historical study on the weather characteristics in the second half of the 15th century. Korean Stud. 21, 389–415 (2012).
Google Scholar
9.
Jo, K. et al. 1000-Year quasi-periodicity of weak monsoon events in temperate northeast Asia since the mid-Holocene. Sci. Rep. 7, 15196 (2017).
ADS Article CAS PubMed PubMed Central Google Scholar
10.
Jo, K. et al. Mid-latitude interhemispheric hydrologic seesaw over the past 550,000 years. Nature 508, 378–382 (2014).
ADS CAS Article PubMed Google Scholar
11.
Lee, E. et al. Multi-proxy records of Holocene hydroclimatic and environmental changes on the southern coast of South Korea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 545, 109642 (2020).
Article Google Scholar
12.
Park, J. Solar and tropical ocean forcing of late-Holocene climate change in coastal East Asia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 469, 74–83 (2017).
Article Google Scholar
13.
Constantine, M., Kim, M. & Park, J. Mid- to late Holocene cooling events in the Korean Peninsula and their possible impact on ancient societies. Quat. Res. 92, 98–108 (2019).
CAS Article Google Scholar
14.
Lim, J. et al. Holocene coastal environmental change and ENSO-driven hydroclimatic variability in East Asia. Quat. Sci. Rev. 220, 75–86 (2019).
ADS Article Google Scholar
15.
Yum, J. G., Takemura, K., Tokuoka, T. & Yu, K. M. Holocene environmental changes of the Hwajinpo Lagoon on the eastern coast of Korea. J. Paleolimnol. 29, 155–166 (2003).
Article Google Scholar
16.
Cheung, R. C. W. et al. Decadal- to centennial-scale East Asian summer monsoon variability over the past millennium: An oceanic perspective. Geophys. Res. Lett. 45, 7711–7718 (2018).
ADS Article Google Scholar
17.
Fujiki, T. & Yasuda, Y. Vegetation history during the Holocene from Lake Hyangho, northeastern Korea. Quat. Int. 123–125, 63–69 (2004).
Article Google Scholar
18.
Song, B. et al. Pollen record of the mid- to late-Holocene centennial climate change on the East coast of South Korea and its influential factors. J. Asian Earth Sci. 151, 240–249 (2018).
ADS Article Google Scholar
19.
Hwang, S., Kim, J.-Y. & Kim, S. Environmental changes and embankment addition of Reservoir Gonggeomji, Sangju City between Late Silla- and Early Goryeo dynasty. J. Korean Geomorphol. Assoc. 21, 165–180 (2014).
Google Scholar
20.
Jhun, J. & Moon, B. Restorations and analyses of rainfall amount observed by Chukwookee. Asia-Pacific J. Atmos. Sci. 33, 691–707 (1997).
Google Scholar
21.
Yoo, C., Park, M., Kim, H. J. & Jun, C. Comparison of annual maximum rainfall events of modern rain gauge data (1961–2010) and Chukwooki data (1777–1910) in Seoul Korea. J. Water Clim. Chang. 9, 58–73 (2018).
Article Google Scholar
22.
Lim, J., Lee, J.-Y., Hong, S.-S. & Kim, J.-Y. Late Holocene flooding records from the floodplain deposits of the Yugu River South Korea. Geomorphology 180–181, 109–119 (2013).
ADS Article Google Scholar
23.
Li, J. et al. Quantitative Holocene climatic reconstructions for the lower Yangtze region of China. Clim. Dyn. 50, 1101–1113 (2018).
Article Google Scholar
24.
Sun, J. et al. Quantitative precipitation reconstruction in the east-central monsoonal China since the late glacial period. Quat. Int. 521, 175–184 (2019).
Article Google Scholar
25.
Stebich, M. et al. Holocene vegetation and climate dynamics of NE China based on the pollen record from Sihailongwan Maar Lake. Quat. Sci. Rev. 124, 275–289 (2015).
ADS Article Google Scholar
26.
Li, J. et al. East Asian summer monsoon precipitation variations in China over the last 9500 years: A comparison of pollen-based reconstructions and model simulations. The Holocene 26, 592–602 (2016).
ADS Article Google Scholar
27.
Cao, X. et al. Impacts of the spatial extent of pollen-climate calibration-set on the absolute values, range and trends of reconstructed Holocene precipitation. Quat. Sci. Rev. 178, 37–53 (2017).
ADS Article Google Scholar
28.
Wu, D. et al. Decoupled early Holocene summer temperature and monsoon precipitation in southwest China. Quat. Sci. Rev. 193, 54–67 (2018).
ADS Article Google Scholar
29.
Park, J. A modern pollen–temperature calibration data set from Korea and quantitative temperature reconstructions for the Holocene. The Holocene 21, 1125–1135 (2011).
ADS Article Google Scholar
30.
Tian, F. et al. Pollen-climate relationships in time (9 ka, 6 ka, 0 ka) and space (upland vs. lowland) in eastern continental Asia. Quat. Sci. Rev. 156, 1–11 (2017).
ADS Article Google Scholar
31.
Herzschuh, U. et al. Position and orientation of the westerly jet determined Holocene rainfall patterns in China. Nat. Commun. 10, 2376 (2019).
ADS Article CAS PubMed PubMed Central Google Scholar
32.
Li, C., Wu, Y. & Hou, X. Holocene vegetation and climate in Northeast China revealed from Jingbo Lake sediment. Quat. Int. 229, 67–73 (2011).
Article Google Scholar
33.
Hu, C. et al. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records. Earth Planet. Sci. Lett. 266, 221–232 (2008).
ADS CAS Article Google Scholar
34.
Wen, R. et al. Holocene precipitation and temperature variations in the East Asian monsoonal margin from pollen data from Hulun Lake in northeastern Inner Mongolia China. Boreas 39, 262–272 (2010).
Article Google Scholar
35.
Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991).
ADS Article Google Scholar
36.
Zhao, K. et al. Contribution of ENSO variability to the East Asian summer monsoon in the late Holocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 449, 510–519 (2016).
Article Google Scholar
37.
Giry, C. et al. Mid- to late Holocene changes in tropical Atlantic temperature seasonality and interannual to multidecadal variability documented in southern Caribbean corals. Earth Planet. Sci. Lett. 331–332, 187–200 (2012).
ADS Article CAS Google Scholar
38.
Viles, H. Interannual, decadal and multidecadal scale climatic variability and geomorphology. Earth-Science Rev. 61, 105–131 (2003).
ADS Article Google Scholar
39.
Lim, J. & Fujiki, T. Vegetation and climate variability in East Asia driven by low-latitude oceanic forcing during the middle to late Holocene. Quat. Sci. Rev. 30, 2487–2497 (2011).
ADS Article Google Scholar
40.
Williams, J. W., Post*, D. M., Cwynar, L. C., Lotter, A. F. & Levesque, A. J. Rapid and widespread vegetation responses to past climate change in the North Atlantic region. Geology 30, 971 (2002).
ADS CAS Article Google Scholar
41.
Yu, Z. Late quaternary dynamics of tundra and forest vegetation in the southern niagara escarpment Canada. New Phytol. 157, 365–390 (2003).
Article Google Scholar
42.
Yu, Z. Rapid response of forested vegetation to multiple climatic oscillations during the last deglaciation in the northeastern United States. Quat. Res. 67, 297–303 (2007).
Article Google Scholar
43.
Richter, H. & Kituta, S. Ecophysiology of long-distance water transport in trees. in Trees in a Changing Environment- Ecophysiology, Adaptation, and Future Survival (eds. Tausz, M. & Grulke, N.) (Springer Nature, 2014).
44.
Johnson, M. T. & Agrawal, A. A. The ecological play of predator–prey dynamics in an evolutionary theatre. Trends Ecol. Evol. 18, 549–551 (2003).
Article Google Scholar
45.
Tobolski, K. & Ammann, B. Macrofossils as records of plant responses to rapid Late Glacial climatic changes at three sites in the Swiss Alps. Palaeogeogr. Palaeoclimatol. Palaeoecol. 159, 251–259 (2000).
Article Google Scholar
46.
Ammann, B. Biotic responses to rapid climatic changes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 159, 191–201 (2000).
Article Google Scholar
47.
Walther, G. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).
ADS CAS Article PubMed Google Scholar
48.
Lischke, H., Lotter, A. F. & Fischlin, A. Untangling a Holocene pollen record with forest model simulations and independent climate data. Ecol. Modell. 150, 1–21 (2002).
Article Google Scholar
49.
Steinhilber, F., Beer, J. & Fröhlich, C. Total solar irradiance during the Holocene. Geophys. Res. Lett. 36, L19704 (2009).
ADS Article Google Scholar
50.
Solanki, S. K., Usoskin, I. G., Kromer, B., Schüssler, M. & Beer, J. Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature 431, 1084–1087 (2004).
ADS CAS Article PubMed Google Scholar
51.
Yi, S. & Kim, J.-Y. Pollen analysis at Paju Unjeong, South Korea: Implications of land-use changes since the late Neolithic. The Holocene 22, 227–234 (2012).
ADS Article Google Scholar
52.
Yi, S., Yang, D.-Y. & Jia, H. Pollen record of agricultural cultivation in the west–central Korean Peninsula since the Neolithic Age. Quat. Int. 254, 49–57 (2012).
Article Google Scholar
53.
Yi, S., Saito, Y., Zhao, Q. & Wang, P. Vegetation and climate changes in the Changjiang (Yangtze River) Delta, China, during the past 13,000 years inferred from pollen records. Quat. Sci. Rev. 22, 1501–1519 (2003).
ADS Article Google Scholar
54.
Kim, C. & Cheong, K. Research Report of Antiquities Vol. 204: Gonggeomji. Gyeongsangbukdo Institute of Cultural Properties, 230 p (2013) (in Korean).
55.
Ammann, B. et al. Quantification of biotic responses to rapid climatic changes around the Younger Dryas- a synthesis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 159, 313–347 (2000).
Article Google Scholar
56.
Jo, K., Woo, K. S., Hong, G. H., Kim, S. H. & Suk, B. C. Rainfall and hydrological controls on speleothem geochemistry during climatic events (droughts and typhoons): an example from Seopdong Cave, Republic of Korea. Earth Planet. Sci. Lett. 295, 441–450 (2010).
ADS CAS Article Google Scholar
57.
Danzeglocke, U., Joris, O. & Weninger, B. CalPal-2007online. Available at: https://www.calpal-online.de.
58.
Blaauw, M. Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat. Geochronol. 5, 512–518 (2010).
Article Google Scholar
59.
Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).
CAS Article Google Scholar
60.
Moore, P. D., Webb, J. A. & Collison, M. E. Pollen Analysis 2nd edn. (Blackwell Scientific Publications, Oxford, 1991).
Google Scholar
61.
Stockmarr, J. Tablets with spores used in absolute pollen analysis. Pollen Spores 13, 615–621 (1971).
Google Scholar
62.
Grimm, E. Tilia 1.7.16 Software. Illinois State Museum, Research and Collection Center, Springfield, II. (2011).
63.
Chevalier, M., Cheddadi, R. & Chase, B. M. CREST (Climate REconstruction SofTware): a probability density function (PDF)-based quantitative climate reconstruction method. Clim. Past 10, 2081–2098 (2014).
Article Google Scholar
64.
Chevalier, M. Enabling possibilities to quantify past climate from fossil assemblages at a global scale. Glob. Planet. Change 175, 27–35 (2019).
ADS Article Google Scholar
65.
Lim, J., Yi, S., Nahm, W.-H. & Kim, J.-Y. Holocene millennial-scale vegetation changes in the Yugu floodplain, Kongju area, central South Korea. Quat. Int. 254, 92–98 (2012).
Article Google Scholar
66.
Jung, S.-K. & McDonald, K. Visual gene developer: a fully programmable bioinformatics software for synthetic gene optimization. BMC Bioinformatics 12, 340 (2011).
CAS Article PubMed PubMed Central Google Scholar
67.
Singal developer. Signal: Signal processing. (2013).
68.
Polanco-Martinez, Josue, M., Medina-Elizalde, Martin, A., Goni, Maria, Fernanda, S. & Mudelsee, M. BINCOR: An R package for Estimating the Correlation between Two Unevenly Spaced Time Series. R J. 11, 170 (2019).
69.
Yim, T. & Kira, T. Distribution forest vegetation and climate in the Korea Peninsula. I. Distribution of some indices of thermal climate. Japanese J. Ecol. 25, 77–88 (1975).
70.
Steinhilber, F. et al. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. Proc. Natl. Acad. Sci. 109, 5967–5971 (2012).
ADS CAS Article PubMed Google Scholar
71.
Stott, L. et al. Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch. Nature 431, 56–59 (2004).
ADS CAS Article PubMed Google Scholar
72.
Moy, C. M., Seltzer, G. O., Rodbell, D. T. & Anderson, D. M. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, 162–165 (2002).
ADS CAS Article PubMed Google Scholar More