Riparian and in-channel habitat properties linked to dragonfly emergence
1.
Noss, R. F. Indicators for monitoring biodiversity: A hierarchical approach. Conserv. Biol. 4, 355–364 (1990).
Article Google Scholar
2.
Lambeck, R. J. Focal species: A multi-species umbrella for nature conservation. Conserv. Biol. 11, 849–856 (1997).
Article Google Scholar
3.
Knight, T. M., McCoy, M. W., Chase, J. M., McCoy, K. A. & Holt, R. D. Trophic cascades across ecosystems. Nature 437, 880–883 (2005).
ADS CAS PubMed Article PubMed Central Google Scholar
4.
Rudolf, V. H. W. & Rasmussen, N. L. Ontogenetic functional diversity: Size structure of a keystone predator drives functioning of a complex ecosystem. Ecology 94, 1046–1056 (2013).
PubMed Article PubMed Central Google Scholar
5.
Bulánková, E. Dragonflies (Odonata) as bioindicators. Biologia, Bratislava 52, 177–180 (1997).
Google Scholar
6.
Catling, P. M. A potential for the use of dragonfly (Odonata) diversity as a bioindicator of the efficiency of sewage lagoons. Can. Field Nat. 119, 233 (2005).
Article Google Scholar
7.
Vorster, C. et al. Development of a new continental-scale index for freshwater assessment based on dragonfly assemblages. Ecol. Indic. 109, 105819 (2020).
Article Google Scholar
8.
Jeremiason, J. D., Reiser, T. K., Weitz, R. A., Berndt, M. E. & Aiken, G. R. Aeshnid dragonfly larvae as bioindicators of methylmercury contamination in aquatic systems impacted by elevated sulfate loading. Ecotoxicology 25, 456–468 (2016).
CAS PubMed Article PubMed Central Google Scholar
9.
Chovanec, A. & Raab, R. Dragonflies (Insecta, Odonata) and the ecological status of newly created wetlands—examples for long-term bioindication programmes. Limnologica 27, 381–392 (1997).
Google Scholar
10.
Chovanec, A. & Waringer, J. Ecological integrity of river–floodplain systems—assessment by dragonfly surveys (Insecta: Odonata). Regul. Rivers Res. Manag. 17, 493–507 (2001).
Article Google Scholar
11.
Rocha-Ortega, M., Rodríguez, P. & Córdoba-Aguilar, A. Can dragonfly and damselfly communities be used as bioindicators of land use intensification?. Ecol. Indic. 107, 105553 (2019).
Article Google Scholar
12.
Kalkman, V. J. et al. Diversity and conservation of European dragonflies and damselflies (Odonata). Hydrobiologia 811, 269–282 (2018).
Article Google Scholar
13.
Harvey, J. A. et al. International scientists formulate a roadmap for insect conservation and recovery. Nat. Ecol. Evol. 4, 174–176 (2020).
PubMed Article PubMed Central Google Scholar
14.
Falck, J. & Johansson, F. Patterns in size, sex ratio and time at emergence in a South Swedish population of Sympetrum sanguineum (Odonata). Aquat. Insects 22, 311–317 (2000).
Article Google Scholar
15.
Farkas, A. et al. Sex ratio in Gomphidae (Odonata) at emergence: Is there a relationship with water temperature?. Int. J. Odonatol. 16, 279–287 (2013).
Article Google Scholar
16.
Cardoso, P., Erwin, T. L., Borges, P. A. V. & New, T. R. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 144, 2647–2655 (2011).
Article Google Scholar
17.
Daigle, R. J. Sea-level rise estimates for New Brunswick municipalities: Saint John, Sackville, Richibucto, Shippagan, Caraquet, Le Goulet. Report for the Atlantic Climate Adaptation Solutions Association (2011).
18.
Tockner, K., Pusch, M., Borchardt, D. & Lorang, M. S. Multiple stressors in coupled river–floodplain ecosystems. Freshw. Biol. 55, 135–151 (2010).
Article Google Scholar
19.
Nakano, S. & Murakami, M. Reciprocal subsidies: Dynamic interdependence between terrestrial and aquatic food webs. Proc. Natl. Acad. Sci. 98, 166–170 (2001).
ADS CAS PubMed Article PubMed Central Google Scholar
20.
Rantala, M. J., Ilmonen, J., Koskimäki, J., Suhonen, J. & Tynkkynen, K. The macrophyte, Stratiotes aloides, protects larvae of dragonfly Aeshna viridis against fish predation. Aquat. Ecol. 38, 77–82 (2004).
Google Scholar
21.
Suhonen, J., Suutari, E., Kaunisto, K. M. & Krams, I. Patch area of macrophyte Stratioites aloides as a critical resource for declining dragonfly Aeshna viridis. J. Insect Conserv. 17, 393–398 (2013).
Google Scholar
22.
Bell, H. L. Effect of low pH on the survival and emergence of aquatic insects. Water Res. 5, 313–319 (1971).
Google Scholar
23.
Farkas, A., Jakab, T., Tóth, A., Kalmár, A. F. & Dévai, G. Emergence patterns of riverine dragonflies (Odonata: Gomphidae) in Hungary: Variations between habitats and years. Aquat. Insects 34, 77–89 (2012).
Google Scholar
24.
Boda, R. et al. Emergence behaviour of the red listed Balkan Goldenring (Cordulegaster heros Theischinger, 1979) in Hungarian upstreams: Vegetation structure affects the last steps of the larvae. J. Insect Conserv. 19, 547–557 (2015).
Google Scholar
25.
Remsburg, A. J. & Turner, M. G. Aquatic and terrestrial drivers of dragonfly (Odonata) assemblages within and among north-temperate lakes. J. N. Am. Benthol. Soc. 28, 44–56 (2009).
Google Scholar
26.
Remsburg, A. Relative influence of prior life stages and habitat variables on dragonfly (Odonata: Gomphidae) densities among lake sites. Diversity 3, 200–216 (2011).
Google Scholar
27.
Aoki, T. Larval development, emergence and seasonal regulation in Asiagomphus pryeri (Selys) (Odonata: Gomphidae). Hydrobiologia 394, 179–192 (1999).
Google Scholar
28.
Paulson, D. Dragonflies and Damselflies of the East (Princeton University Press, Princeton, 2011).
Google Scholar
29.
Foster, S. E. & Soluk, D. A. Evaluating exuvia collection as a management tool for the federally endangered Hine’s emerald dragonfly, Somatochlora hineana Williamson (Odonata: Cordulidae). Biol. Conserv. 118, 15–20 (2004).
Google Scholar
30.
Raebel, E. M., Merckx, T., Riordan, P., Macdonald, D. W. & Thompson, D. J. The dragonfly delusion: Why it is essential to sample exuviae to avoid biased surveys. J. Insect Conserv. 14, 523–533 (2010).
Article Google Scholar
31.
Needham, J. G., Westfall, M. J. & May, M. L. Dragonflies of North America: The Odonata (Anisoptera) Fauna of Canada, the Continental United States, Northern Mexico and the Greater Antilles (Scientific Publishers, Jodhpur, 2014).
Google Scholar
32.
Aliberti Lubertazzi, M. A. & Ginsberg, H. S. Persistence of dragonfly exuviae on vegetation and rock substrates. Northeast. Nat. 16, 141–147 (2009).
Article Google Scholar
33.
Brodin, T. & Johansson, F. Effects of predator-induced thinning and activity changes on life history in a damselfly. Oecologia 132, 316–322 (2002).
ADS PubMed Article Google Scholar
34.
Johansson, F., Crowley, P. H. & Brodin, T. Sexual size dimorphism and sex ratios in dragonflies (Odonata). Biol. J. Linn. Soc. 86, 507–513 (2005).
Article Google Scholar
35.
Lamit, L. J. et al. Genotype variation in bark texture drives lichen community assembly across multiple environments. Ecology 96, 960–971 (2015).
CAS PubMed Article PubMed Central Google Scholar
36.
Wolman, M. G. A method of sampling coarse river-bed material. EOS Trans. Am. Geophys. Union 35, 951–956 (1954).
Article Google Scholar
37.
Richter, B. D., Baumgartner, J. V., Powell, J. & Braun, D. P. A method for assessing hydrologic alteration within ecosystems. Conserv. Biol. 10, 1163–1174 (1996).
Article Google Scholar
38.
Sabo, J. L., Bastow, J. L. & Power, M. E. Length–mass relationships for adult aquatic and terrestrial invertebrates in a California watershed. J. N. Am. Benthol. Soc. 21, 336–343 (2002).
Article Google Scholar
39.
Sample, B. E., Cooper, R. J., Greer, R. D. & Whitmore, R. C. Estimation of insect biomass by length and width. Am. Midl. Nat. 129, 234 (1993).
Article Google Scholar
40.
McCune, B. & Mefford, M. J. PC-ORD. Multivariate Analysis of Ecological Data, Version 5.0 for Windows. MjM Software, Gleneden Beach, Oregon, U.S.A. (2006).
41.
Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-2. https://CRAN.R-project.org/package=vegan (2018).
42.
R Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna Austria (2018).
43.
Anderson, M. J. Permutational Multivariate Analysis of Variance (Department of Statistics, University of Auckland, Auckland, 2005).
Google Scholar
44.
Manly, B. F. J. Randomization, Bootstrap and Monte Carlo Methods in Biology 3rd edn. (CRC Press, Boca Raton, 2006).
Google Scholar
45.
Goslee, S. C. & Urban, D. L. The ecodist Package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22, 1–19 (2007).
Article Google Scholar
46.
Crabot, J., Clappe, S., Dray, S. & Datry, T. Testing the Mantel statistic with a spatially-constrained permutation procedure. Methods Ecol. Evol. 10, 532–540 (2019).
Article Google Scholar
47.
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).
MathSciNet MATH Google Scholar
48.
Clarke, K. R. & Gorley, R. N. PRIMER v7: User Manual/Tutorial 3rd edn. (Plymouth U. K. Primer-E Ltd, Wellington, 2015).
Google Scholar
49.
Baird, I. R. C. & Burgin, S. An emergence study of Petalura gigantea (Odonata: Petaluridae). Int. J. Odonatol. 16, 193–211 (2013).
Article Google Scholar
50.
Richter, O., Suhling, F., Müller, O. & Kern, D. A model for predicting the emergence of dragonflies in a changing climate. Freshw. Biol. 53, 1868–1880 (2008).
Google Scholar
51.
Kennedy, T. A. et al. Flow management for hydropower extirpates aquatic insects, undermining river food webs. Bioscience 66, 561–575 (2016).
Google Scholar
52.
Worthen, W. B. & Horacek, H. J. The distribution of dragonfly larvae in a South Carolina stream: Relationships with sediment type, body size, and the presence of other larvae. J. Insect Sci. 15, 31–31 (2015).
PubMed PubMed Central Google Scholar
53.
Corbet, P. A Biology of Dragonflies. HF & G. Witherby LTD (Northumberland Press Limited, Newcastle-upon-Tyne, 1962).
Google Scholar
54.
Corbet, P. S. Dragonflies: Behavior and Ecology of Odonata (Cornell University Press, New York, 1999).
Google Scholar
55.
Baxter, C. V., Fausch, K. D. & Saunders, W. C. Tangled webs: Reciprocal flows of invertebrate prey link streams and riparian zones. Freshw. Biol. 50, 201–220 (2005).
Article Google Scholar
56.
Burdon, F. J. & Harding, J. S. The linkage between riparian predators and aquatic insects across a stream-resource spectrum. Freshw. Biol. 53, 330–346 (2008).
Google Scholar
57.
Grof-Tisza, P., LoPresti, E., Heath, S. K. & Karban, R. Plant structural complexity and mechanical defenses mediate predator–prey interactions in an odonate–bird system. Ecol. Evol. 7, 1650–1659 (2017).
PubMed PubMed Central Article Google Scholar
58.
Iwata, T. Linking stream habitats and spider distribution: Spatial variations in trophic transfer across a forest–stream boundary. Ecol. Res. 22, 619–628 (2007).
Article Google Scholar
59.
Jakob, C. & Suhling, F. Risky times? Mortality during emergence in two species of dragonflies (Odonata: Gomphidae, Libellulidae). Aquat. Insects 21, 1–10 (1999).
Article Google Scholar
60.
Kurata, M. Life history of Gomphys melaenops (Gomphidae). Tombo 14, 6–11 (1971).
Google Scholar
61.
Corbet, P. S. The life-history of the emperor dragonfly anax imperator leach (Odonata: Aeshnidae). J. Anim. Ecol. 26, 1–69 (1957).
Google Scholar
62.
Suhling, F. Temporal patterns of emergence of the riverine dragonfly Onychogomphus uncatus (Odonata: Gomphidae). Hydrobiologia 302, 113–118 (1995).
Google Scholar
63.
Wissmar, R. C. & Beschta, R. L. Restoration and management of riparian ecosystems: A catchment perspective. Freshw. Biol. 40, 571–585 (1998).
Google Scholar
64.
Evans, B. F., Townsend, C. R. & Crowl, T. A. Distribution and abundance of coarse woody debris in some southern New Zealand streams from contrasting forest catchments. N. Z. J. Mar. Freshw. Res. 27, 227–239 (1993).
Google Scholar
65.
Studinski, J. M., Hartman, K. J., Niles, J. M. & Keyser, P. The effects of riparian forest disturbance on stream temperature, sedimentation, and morphology. Hydrobiologia 686, 107–117 (2012).
Google Scholar
66.
Wang, L., Lyons, J., Kanehl, P. & Gatti, R. Influences of watershed land use on habitat quality and biotic integrity in wisconsin streams. Fisheries 22, 6–12 (1997).
Google Scholar
67.
Martin, T. G. & Mcintyre, S. Impacts of livestock grazing and tree clearing on birds of woodland and riparian habitats. Conserv. Biol. 21, 504–514 (2007).
PubMed PubMed Central Google Scholar
68.
Ormerod, S. J., Rundle, S. D., Lloyd, E. C. & Douglas, A. A. The influence of riparian management on the habitat structure and macroinvertebrate communities of upland streams draining plantation forests. J. Appl. Ecol. 30, 13–24 (1993).
Google Scholar
69.
Cordero, A. Vertical stratification during emergence in odonates. Not. Odonatol. 4, 103–105 (1995).
Google Scholar
70.
Coppa, G. Notes sur l’émergence d’Epitheca bimaculata (Charpentier)(Odonata: Corduliidae). Martinia 7, 7–16 (1991).
Google Scholar
71.
Miller, P. L. Notes on Ictinogomphus ferox Rambur (Odonata: Gomphidae). Entomologist 97, 2–66 (1964).
Google Scholar
72.
Worthen, W. B. Emergence-site selection by the dragonfly Epitheca spinosa (Hagen). Southeast. Nat. 9, 251–258 (2010).
Article Google Scholar
73.
Magoba, R. N. & Samways, M. J. Recovery of benthic macroinvertebrate and adult dragonfly assemblages in response to large scale removal of riparian invasive alien trees. J. Insect Conserv. 14, 627–636 (2010).
Article Google Scholar
74.
Cothran, M. L. & Thorp, J. H. Emergence patterns and size variation of Odonata in a thermal reservoir. Freshw. Invertebr. Biol. 1, 30–39 (1982).
Article Google Scholar
75.
Mccauley, S. J., Hammond, J. I., Frances, D. N. & Mabry, K. E. Effects of experimental warming on survival, phenology, and morphology of an aquatic insect (Odonata). Ecol. Entomol. 40, 211–220 (2015).
PubMed Article PubMed Central Google Scholar
76.
McCauley, S. J., Hammond, J. I. & Mabry, K. E. Simulated climate change increases larval mortality, alters phenology, and affects flight morphology of a dragonfly. Ecosphere 9, e02151 (2018).
PubMed PubMed Central Article Google Scholar
77.
de Nadaï-Monoury, E., Gilbert, F. & Lecerf, A. Forest canopy cover determines invertebrate diversity and ecosystem process rates in depositional zones of headwater streams. Freshw. Biol. 59, 1532–1545 (2014).
Article Google Scholar
78.
Flenner, I. & Sahlén, G. Dragonfly community re-organisation in boreal forest lakes: Rapid species turnover driven by climate change?. Insect Conserv. Divers. 1, 169–179 (2008).
Article Google Scholar
79.
Harper, M. P. & Peckarsky, B. L. Emergence cues of a mayfly in a high-altitude stream ecosystem: Potential response to climate change. Ecol. Appl. 16, 612–621 (2006).
PubMed Article PubMed Central Google Scholar
80.
Jonsson, M. et al. Climate change modifies the size structure of assemblages of emerging aquatic insects. Freshw. Biol. 60, 78–88 (2015).
Article Google Scholar
81.
Dudgeon, D. et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182 (2006).
PubMed Article PubMed Central Google Scholar
82.
Sala, O. E. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).
CAS Article Google Scholar
83.
Likens, G. E. & Bormann, F. H. Linkages between terrestrial and aquatic ecosystems. Bioscience 24, 447–456 (1974).
Article Google Scholar
84.
England, L. E. & Rosemond, A. D. Small reductions in forest cover weaken terrestrial-aquatic linkages in headwater streams. Freshw. Biol. 49, 721–734 (2004).
Article Google Scholar
85.
Lafage, D. et al. Local and landscape drivers of aquatic-to-terrestrial subsidies in riparian ecosystems: A worldwide meta-analysis. Ecosphere 10, e02697 (2019).
Article Google Scholar More