More stories

  • in

    A contemporary baseline record of the world’s coral reefs

    A comprehensive description of the methodological aspects used during the field surveys and image analysis have been published in González-Rivero et al.23,25,35. Therefore, here we include a synopsis of how this dataset was generated and made available to the wider community.
    Our approach involved the rapid acquisition of high-resolution imagery over large extent of reefs and efficient image analysis to provide key information about the state of coral reef benthic habitat across multiple spatial scales23. The data generation and processing involved three main components: (1) photographic surveys, (2) post-processing of images and (3) image analysis, which are described and summarised below in Fig. 1.
    Fig. 1

    The workflow for generating the global dataset of coral reef imagery and associated data. The 860 photographic surveys from the Western Atlantic Ocean, Southeast Asia, Central Pacific Ocean, Central Indian Ocean, and Eastern Australia, were conducted between 2012 and 2018. Reef locations are represented by points colour-coded according to the survey region. Surveys images were post-processed in order to transform raw fish-eye images into 1 × 1 m quadrats for manual and automated annotation (inset originally published in González-Rivero et al.23 as Figure S1). For the image analysis, nine networks were trained. For each network, images were divided in two groups: Training and Testing images. Both sets were manually annotated to create a training dataset and verification dataset. The training dataset was used to train and fine-tune the network. The fully trained network was then used to classify the test images, and contrast the outcomes (Machine) against the human annotations (Observer) in the test dataset during the validation process. Finally, the non-annotated images (photo-quadrats) were automatically annotated using the validated network. The automated classifications were processed to originate the benthic covers that constitute this dataset. QGIS software was used to generate the map using the layer “Countries WGS84” downloaded from ArcGIS Hub (http://hub.arcgis.com/datasets/UIA::countries-wgs84).

    Full size image

    Photographic surveys
    An underwater propulsion vehicle customised with a camera system (“SVII”, Supplementary Fig. 1), consisting of three synchronised DSLR (Digital Single-Lens Reflex) cameras (Cannon 5D-MkII cameras and Nikon Fisheye Nikkor lens with 10.5 mm focal length), was used to survey the fore-reef (reef slope) habitats from five major coral reef regions: Central Pacific Ocean, Western Atlantic Ocean, Central Indian Ocean, Southeast Asia and Eastern Australia in 23 countries or territories (Table 1, Supplementary Fig. 2). Within each region, multiple reef locations were surveyed aiming to capture the variability and status of fore-reefs environments across regions and within each region. Sampling design varied according to particular environmental and socioeconomic factors potentially influencing the distribution and structure of coral reef assemblages at each region and/or country. Overall, prior to field expeditions, reef localities were selected considering factors such as wave exposure, reef zones (i.e. fore-reefs), local anthropogenic stressors (e.g. coastal development), fishing pressures, levels of management (e.g. marine park, protected areas), and presence of monitoring sites.
    Table 1 Summary of the photographic surveys conducted between 2012 and 2018.
    Full size table

    Underwater images were collected in each reef location once every three seconds, approximately every 2 m apart, following a transect along the seascape at a standard depth of 10 m (±2 m). Although overlap between consecutive images is possible, the process for extracting standardised photo-quadrats from an image ensures that the photo-quadrats are non-overlapping between and within images (see further details next section). Each transect averaged 1.8 km in length, hereafter referred to as a “survey”. See Supplementary Fig. 3 for an explanation of the hierarchical structure of the photographic surveys. No artificial illumination was used during image capture, but light exposure was manually adjusted by modifying the ISO during the dive, using an on-board tablet computer encased in an underwater housing (Supplementary Fig. 1). This computer enabled the diver to control camera settings (exposure and shutter speed) according to light conditions. Images were geo-referenced using a surface GPS unit tethered to the diver (Supplementary Fig. 1). Altitude and depth of the camera relative to the reef substrate and surface were logged at half-second intervals using a Micron Tritech transponder (altitude, Supplementary Fig. 1) and pressure sensor (depth) in order to select the imagery within a particular depth and to scale and crop the images during the post-processing stage. Further details about the photographic surveys are provided in González-Rivero et al.25,35.
    Post-processing of images for manual and automated annotation
    The post-processing pipeline produced images with features required for manual and automated annotation in terms of size and appearance. The process involved several steps that transformed the raw images from the downward facing camera into photo-quadrats of 1 m2, hereafter referred to as a “quadrat” (Fig. 1). As imagery was collected without artificial light using a fisheye lens, each image was processed prior to annotation in order to balance colour and to correct the non-linear distortion introduced by the fisheye lens23 (Fig. 1). Initially, colour balance and lens distortion correction were manually applied on the raw images using Photoshop (Adobe Systems, California, USA). Later, in order to optimise the manual post-processing time of thousands of images, an automatic batch processing was conducted on compressed images23 (jpeg format) using Photoshop and ImageMagick, the latter an open-source software for image processing (https://imagemagick.org/index.php). In addition, using the geometry of the lens and altitude values, images were cropped to a standardised area of approximately 1 m2 of substrate23,35 (Fig. 1). Thus, the number of nonoverlapping quadrats extracted from one single raw image varied depending on the distance between the camera and the reef surface. Figure 1 illustrates a situation where the altitude of the camera allowed for the extraction of two quadrats from one raw image. Further details about colour balance and lens distortion correction and cropping are provided in González-Rivero et al.23,35.
    Image analysis: manual and automated annotation for estimating covers of benthic categories
    Manual annotation of the benthic components by a human expert took at least 10 minutes per quadrat, creating a bottleneck between image post-processing and the required data-product. To address this issue, we developed an automated image analysis to identify and estimate the relative abundance of benthic components such as particular types of corals, algae, and other organisms as well as non-living components. To do this, automated image annotation based on deep learning methods (Deep Learning Convolutional Neural Networks)23 were applied to automatically identify benthic categories from images based on training using human annotators (manual annotation). The process for implementing a Convolutional Neural Network (hereafter “network”) and classify coral reef images implied three main stages: (i) label-set (benthic categories) definition, (ii) training and fine-tuning of the network, and (iii) automated image annotation and data processing.
    Label-set definition
    As a part of the manual and automated annotation processes to extract benthic cover estimates, label-sets of benthic categories were established based on their functional relevance to coral reef ecosystems and their features to be reliably identified from images by human annotators25. The labels were derived, modified and/or simplified from existing classification schemes40,41, and were grouped according to the main benthic groups of coral reefs including hard coral, soft coral, other invertebrates, algae, and other. Since coral reef assemblages vary in species composition at global and regional scales, and surveys were conducted at different times between 2012 and 2018 across the regions, nine label-sets accounted for such biogeographical and temporal disparity. In general, a label-set was developed after each main survey expedition to a specific region. The label-sets varied in complexity (from 23 to 61 labels), considering the differential capacity to visually recognise (in photographs) corals to the lowest possible taxon between the regions. While label-sets for the Atlantic and Central Pacific (Hawaii) included categories with coral genus and species, for the Indian Ocean (Maldives, Chagos Archipelago), Southeast Asia (Indonesia, Philippines, Timor-Leste, Solomon Islands, and Taiwan), and Eastern Australia, corals comprised labels based on a combination of taxonomy (e.g., family and genus) and colony morphology (e.g., branching, massive, encrusting, foliose, tabular).
    The other main benthic groups were generally characterised by labels reflecting morphology and/or functional groups across the regions. “Soft Corals” were classified into three groups: 1) Alcyoniidae (soft corals), the dominant genera; 2) Sea fans and plumes from the family Gorgoniidae; and 3) Other soft corals. “Algae” groups were categorised according to their functional relevance: 1) Crustose coralline algae; 2) Macroalgae; and 3) Epilithic Algal Matrix. The latter is a multi-specific algal assemblage smothering the reef surface of up to 1 cm in height (dominated by algal turfs). “Other Invertebrates” consisted of labels to classify sessile invertebrates different to soft corals (e.g., Millepora, bryozoans, clams, tunicates, soft hexacorrallia, hydroids) and some mobile invertebrates observed in the images (mostly echinoderms). The remaining group, “Other”, consisted of sand, sediments, and occasional organisms or objects detected in the images such as fish, human debris (e.g., plastic, rope, etc.), and transect hardware. The exception within these main groups were the “Sponges”, which were classified and represented by multiple labels only in the Atlantic (given their abundance and diversity in the Caribbean), including categories with sponge genus and species, and major growth forms (rope, tube, encrusting, massive).
    Training and fine-tuning of the network
    The deep learning approach used relies on a convolutional neural network architecture named VGG-D 1642. Details on the initialisation and utilisation of this network are provided in González-Rivero et al.23. A total of nine networks were used, one for each country within the regions, except for the Western Atlantic Ocean, where the network was trained using data from several countries, and the Philippines and Indonesia, where the network was trained using data from those two countries. (Table 2). The first step in implementing a network was to randomly select a subset of images from the whole regional set to be classified, which were then divided into training and testing sets (Fig. 1). Human experts manually annotated both sets using the corresponding label-set under CoralNet43, an online platform designed for image analysis of coral reef related materials (https://coralnet.ucsd.edu/). The number of images and points manually annotated per network is presented in Table 2 (generally 100 points per image for training sets and 40 or 50 points per image for testing sets).
    Table 2 Summary of the images, manual point annotations, and test transects used during the train and test processes of each network.
    Full size table

    Each training and testing data set were exported from CoralNet43 and used along with the associated quadrats to support an independent training and fine-tuning process aimed to find the network configuration that produced the best outcomes. Initially, each quadrat used from the training and testing sets was converted to a set of patches cropped out around each annotation point location. The patch area to crop around each annotation point was set to 224 × 224 pixels to align with the pre-defined image input size of the VGG-D architecture. The fine-tuning exercise ran in general for 40 K iterations to establish the best combination of model parameters or weights that minimised the cross-entropy loss while the overall accuracy increased. An independent 20% subset from the original set of quadrats was used to assess the performance of the final classification (% of accuracy). In addition, parameters of learning rate and image scale were independently optimised for each network by running an experiment using different values for such parameters in order to select the values that derived the smallest errors per label. Further details of the model parametrisation for each network are provided in González-Rivero et al.23 (see Supplementary Material).
    Automated image annotation and data processing
    Once optimised, a network was used to automatically annotate the corresponding set of non-annotated quadrats. The quadrats were processed through the network, where for each quadrat, 50 points (input patches) were classified using the associated labels. Upon completion of automated image annotation for a specific region/country, the annotation outputs containing locations of 50 pixels (i.e., their x and y coordinates) with their associated labels per quadrat (a csv file per quadrat) were incorporated and collated into a MySQL database along with information about the field surveys. In addition to the manual and automated annotations tables (raw data), we provide two levels of aggregation for the benthic data. First, the relative abundance (cover) for each of the benthic labels per quadrat, which was calculated as the ratio between the numbers of points classified for a given label by the total number of points evaluated in a quadrat. Second, the relative abundance for each of the main benthic groups (hard coral, soft coral, other invertebrates, algae, and other) per survey, which involved three calculations: 1) summarise the quadrat covers by image averaging all the quadrats from one single image per label, 2) summarise image covers by survey averaging all the images across one survey per label, and 3) merge survey data by main benthic groups summing the covers of all labels belonging to the same group across one survey. More

  • in

    Habitat complexity and lifetime predation risk influence mesopredator survival in a multi-predator system

    1.
    Schmitz, O. J., Miller, J. R. B., Trainor, A. M. & Abrahms, B. Toward a community ecology of landscapes: predicting multiple predator–prey interactions across geographic space. Ecology 98, 2281–2292 (2017).
    PubMed  Article  Google Scholar 
    2.
    van Noordwijk, A. J. & de Jong, G. Acquisition and allocation of resources: their influence on variation in life history. Am. Nat. 128, 137–142 (1986).
    Article  Google Scholar 

    3.
    Gaillard, J.-M. et al. Habitat-performance relationships: finding the right metric at a given spatial scale. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365, 2255–2265 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    4.
    Mosser, A., Fryxell, J. M., Eberly, L. & Packer, C. Serengeti real estate: Density vs. fitness-based indicators of lion habitat quality. Ecol. Lett.12, 1050–1060 (2009).

    5.
    Kosterman, M. K., Squires, J. R., Holbrook, J. D., Pletscher, D. H. & Hebblewhite, M. Forest structure provides the income for reproductive success in a southern population of Canada lynx. Ecol. Appl. 28, 1032–1043 (2018).
    PubMed  Article  Google Scholar 

    6.
    DeCesare, N. J. et al. Linking habitat selection and predation risk to spatial variation in survival. J. Anim. Ecol. 83, 343–352 (2014).
    PubMed  Article  Google Scholar 

    7.
    Hebblewhite, M., Merrill, E. H. & McDonald, T. L. Spatial decomposition of predation risk using resource selection functions: An example in a wolf-elk predator-prey system. Oikos 111, 101–111 (2005).
    Article  Google Scholar 

    8.
    McLoughlin, P. D., Dunford, J. S. & Boutin, S. Relating predation mortality to broad-scale habitat selection. J. Anim. Ecol. 74, 701–707 (2005).
    Article  Google Scholar 

    9.
    Ritchie, E. G. & Johnson, C. N. Predator interactions, mesopredator release and biodiversity conservation. Ecol. Lett. 12, 982–998 (2009).
    PubMed  Article  Google Scholar 

    10.
    Vanak, A. T. et al. Moving to stay in place: behavioral mechanisms for coexistence of African large carnivores. Ecology 94, 2619–2631 (2013).
    PubMed  Article  Google Scholar 

    11.
    Torretta, E., Serafini, M., Puopolo, F. & Schenone, L. Spatial and temporal adjustments allowing the coexistence among carnivores in Liguria (N–W Italy). Acta Ethol. 19, 123–132 (2016).
    Article  Google Scholar 

    12.
    Preisser, E. L., Bolnick, D. I. & Benard, M. F. Scared to death? The effects of intimidation and consumption in predator–prey interactions. Ecology 86, 501–509 (2005).
    Article  Google Scholar 

    13.
    Swanson, A. et al. Cheetahs and wild dogs show contrasting patterns of suppression by lions. J. Anim. Ecol. 83, 1418–1427 (2014).
    PubMed  Article  Google Scholar 

    14.
    Levi, T. & Wilmers, C. Wolves—coyotes—foxes: a cascade among carnivores. Ecology 93, 921–929 (2012).
    PubMed  Article  Google Scholar 

    15.
    Henke, S. E. & Bryant, F. C. Effects of coyote removal on the faunal community in western Texas. J. Wildl. Manag. 63, 1066 (1999).
    Article  Google Scholar 

    16.
    Gehrt, S. D. & Prange, S. Interference competition between coyotes and raccoons: a test of the mesopredator release hypothesis. Behav. Ecol. 18, 204–214 (2007).
    Article  Google Scholar 

    17.
    St-Pierre, C., Ouellet, J. P. & Crête, M. Do competitive intraguild interactions affect space and habitat use by small carnivores in a forested landscape?. Ecography (Cop.) 29, 487–496 (2006).
    Article  Google Scholar 

    18.
    Shores, C. R., Dellinger, J. A., Newkirk, E. S., Kachel, S. M. & Wirsing, A. J. Mesopredators change temporal activity in response to a recolonizing apex predator. Behav. Ecol. 30, 1324–1335 (2019).
    Article  Google Scholar 

    19.
    Allen, M. L., Elbroch, L. M., Wilmers, C. C. & Wittmer, H. U. The comparative effects of large carnivores on the acquisition of carrion by scavengers. Am. Nat. 185, 822–833 (2015).
    PubMed  Article  Google Scholar 

    20.
    Janssen, A., Sabelis, M. W., Magalhães, S. & Van, T. Habitat structure affects intraguild predation. Ecology 88, 2713–2719 (2007).
    PubMed  Article  Google Scholar 

    21.
    Finke, D. L. & Denno, R. F. Intraguild predation diminished in complex-structured vegetation: Implication for prey suppression. Ecology 83, 643–652 (2002).
    Article  Google Scholar 

    22.
    Laurenson, M. K. High juvenile mortality in cheetahs (Acinonyx jubatus) and its consequences for maternal care. J. Zool. Soc. Lond. 234, 387–408 (1994).
    Article  Google Scholar 

    23.
    Hunter, J. S., Durant, S. M. & Caro, T. M. To flee or not to flee: predator avoidance by cheetahs at kills. Behav. Ecol. Sociobiol. 61, 1033–1042 (2007).
    Article  Google Scholar 

    24.
    Hilborn, A. et al. Cheetahs modify their prey handling behavior depending on risks from top predators. Behav. Ecol. Sociobiol.72, 74 (2018).

    25.
    Swanson, A., Arnold, T., Kosmala, M., Forester, J. & Packer, C. In the absence of a “landscape of fear”: How lions, hyenas, and cheetahs coexist. Ecol. Evol. 6, 8534–8545 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    26.
    Dröge, E., Creel, S., Becker, M. S. & M’soka, J. Spatial and temporal avoidance of risk within a large carnivore guild. Ecol. Evol.7, 189–199 (2016).

    27.
    Broekhuis, F., Cozzi, G., Valeix, M., Mcnutt, J. W. & Macdonald, D. W. Risk avoidance in sympatric large carnivores: Reactive or predictive?. J. Anim. Ecol. 82, 1098–1105 (2013).
    PubMed  Article  Google Scholar 

    28.
    Mills, M. G. L. & Mills, M. E. J. Cheetah cub survival revisited: a re-evaluation of the role of predation, especially by lions, and implications for conservation. J. Zool. 292, 136–141 (2014).
    Article  Google Scholar 

    29.
    Broekhuis, F. Natural and anthropogenic drivers of cub recruitment in a large carnivore. Ecol. Evol. 8, 6748–6755 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    30.
    Orrock, J. L., Preisser, E. L., Grabowski, J. H. & Trussell, G. C. The cost of safety: refuges increase the impact of predation risk in aquatic systems. Ecology 94, 573–579 (2013).
    PubMed  Article  Google Scholar 

    31.
    Donelan, S. C., Grabowski, J. H. & Trussell, G. C. Refuge quality impacts the strength of nonconsumptive effects on prey. Ecology 98, 403–411 (2016).
    Article  Google Scholar 

    32.
    Miller, J. R. B., Ament, J. M. & Schmitz, O. J. Fear on the move: predator hunting mode predicts variation in prey mortality and plasticity in prey spatial response. J. Anim. Ecol. 83, 214–222 (2014).
    PubMed  Article  Google Scholar 

    33.
    Michel, M. J. & Adams, M. M. Differential effects of structural complexity on predator foraging behavior. Behav. Ecol. 20, 313–317 (2009).
    Article  Google Scholar 

    34.
    Blake, L. W. & Gese, E. M. Resource selection by cougars: influence of behavioral state and season. J. Wildl. Manag. 80, 1205–1217 (2016).
    Article  Google Scholar 

    35.
    Hopcraft, J. G. C., Sinclair, A. R. E. & Packer, C. Planning for success: Serengeti lions seek prey accessibility rather than abundance. J. Anim. Ecol. 74, 559–566 (2005).
    Article  Google Scholar 

    36.
    Davies, A. B., Tambling, C. J., Kerley, G. I. H. & Asner, G. P. Effects of vegetation structure on the location of lion kill sites in African thicket. PLoS ONE 11, 1–20 (2016).
    Google Scholar 

    37.
    Camp, M. J., Rachlow, J. L., Woods, B. A., Johnson, T. R. & Shipley, L. A. When to run and when to hide: the influence of concealment, visibility, and proximity to refugia on perceptions of risk. Ethology 118, 1010–1017 (2012).
    Article  Google Scholar 

    38.
    Wilson, A. M. et al. Locomotion dynamics of hunting in wild cheetahs. Nature 498, 185–189 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    39.
    Rostro-García, S., Kamler, J. F. & Hunter, L. T. B. To kill, stay or flee: the effects of lions and landscape factors on habitat and kill site selection of cheetahs in South Africa. PLoS ONE 10, e0117743 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    40.
    Mills, M. G. L., Broomhall, L. S., du Toit, J. T. & Toit, J. T. Cheetah Acinonyx jubatus feeding ecology in the Kruger National Park and a comparison across African savanna habitats: is the cheetah only a successful hunter on open grassland plains?. Wildl. Biol. 10, 177–186 (2004).
    Article  Google Scholar 

    41.
    Fuller, T. & Sievert, P. Carnivore demography and the consequences of changes in prey availability. in Carnivore conservation (eds. Gittleman, J. L., Funk, S. M., Macdonald, D. & Wayne, R. K.) 163–179 (Cambridge University Press, Cambridge 2001).

    42.
    Balme, G., Hunter, L. T. B. & Slotow, R. Feeding habitat selection by hunting leopards Panthera pardus in a woodland savanna: prey catchability versus abundance. Anim. Behav. 74, 589–598 (2007).
    Article  Google Scholar 

    43.
    Gosselink, T. E., Van Deelen, T. R., Warner, R. E. & Joselyn, M. G. Temporal habitat partitioning and spatial use of coyotes and red foxes in East-Central Illinois. J. Wildl. Manag. 67, 90–103 (2003).
    Article  Google Scholar 

    44.
    Palomares, F. & Caro, T. M. Interspecific killing among mammalian carnivores. Am. Nat. 153, 492–508 (1999).
    CAS  PubMed  Article  Google Scholar 

    45.
    Brown, J. S. Vigilance, patch use and habitat selection: foraging under predation risk. Evol. Ecol. Res. 1, 49–71 (1999).
    Google Scholar 

    46.
    Creel, S. The control of risk hypothesis: reactive vs. proactive antipredator responses and stress-mediated vs. food-mediated costs of response. Ecol. Lett.21, 947–956 (2018).

    47.
    Dudeck, B. P., Clinchy, M., Allen, M. C. & Zanette, L. Y. Fear affects parental care, which predicts juvenile survival and exacerbates the total cost of fear on demography. Ecology 99, 127–135 (2018).
    PubMed  Article  Google Scholar 

    48.
    Gigliotti, L. C. et al. Context-dependency of top-down, bottom-up, and density-dependent influences on cheetah demography. J. Anim. Ecol. 2, 449–459 (2020).
    Article  Google Scholar 

    49.
    Relyea, R. A. Morphological and behavioral plasticity of larval anurans in response to different predators. Ecology 82, 523–540 (2001).
    Article  Google Scholar 

    50.
    Suraci, J. P., Clinchy, M., Dill, L. M., Roberts, D. & Zanette, L. Y. Fear of large carnivores causes a trophic cascade. Nat. Commun. 7, 1–7 (2016).
    Article  CAS  Google Scholar 

    51.
    Valeix, M. et al. Behavioral adjustments of African herbivores to predation risk by lions: Spatiotemporal variations influence habitat use. Ecology 90, 23–30 (2009).
    CAS  PubMed  Article  Google Scholar 

    52.
    Sheriff, M. J., Krebs, C. J. & Boonstra, R. The sensitive hare: sublethal effects of predator stress on reproduction in snowshoe hares. J. Anim. Ecol. 78, 1249–1258 (2009).
    PubMed  Article  Google Scholar 

    53.
    Clinchy, M. et al. Multiple measures elucidate glucocorticoid responses to environmental variation in predation threat. Oecologia 166, 607–614 (2011).
    ADS  PubMed  Article  Google Scholar 

    54.
    Travers, M., Clinchy, M., Zanette, L., Boonstra, R. & Williams, T. D. Indirect predator effects on clutch size and the cost of egg production. Ecol. Lett. 13, 980–988 (2010).
    PubMed  Google Scholar 

    55.
    LaManna, J. A. & Martin, T. E. Costs of fear: behavioural and life-history responses to risk and their demographic consequences vary across species. Ecol. Lett. 19, 403–413 (2016).
    PubMed  Article  Google Scholar 

    56.
    Roques, K. G., O’Connor, T. G. & Watkinson, A. R. Dynamics of shrub encroachment in an African savanna: Relative influences of fire, herbivory, rainfall and density dependence. J. Appl. Ecol. 38, 268–280 (2001).
    Article  Google Scholar 

    57.
    Tews, J. & Jeltsch, F. Modelling the impact of climate change on woody plant population dynamics in South African savanna. BMC Ecol. 4, 1–12 (2004).
    Article  Google Scholar 

    58.
    Joubert, D. F., Smit, G. N. & Hoffman, M. T. The role of fire in preventing transitions from a grass dominated state to a bush thickened state in arid savannas. J. Arid Environ. 87, 1–7 (2012).
    ADS  Article  Google Scholar 

    59.
    Lohmann, D., Tietjen, B., Blaum, N., Joubert, D. F. & Jeltsch, F. Prescribed fire as a tool for managing shrub encroachment in semi-arid savanna rangelands. J. Arid Environ. 107, 49–56 (2014).
    ADS  Article  Google Scholar 

    60.
    Durant, S. M. et al. The global decline of cheetah Acinonyx jubatus and what it means for conservation. Proc. Natl. Acad. Sci. 114, 528–533 (2017).
    CAS  PubMed  Article  Google Scholar 

    61.
    Weise, F. J. et al. The distribution and numbers of cheetah (Acinonyx jubatus) in southern Africa. PeerJ 5, e4096 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    62.
    Prugh, L. R. et al. Designing studies of predation risk for improved inference in carnivore-ungulate systems. Biol. Conserv. 232, 194–207 (2019).
    Article  Google Scholar 

    63.
    Moll, R. J. et al. The many faces of fear: a synthesis of the methodological variation in characterizing predation risk. J. Anim. Ecol. 86, 749–765 (2017).
    PubMed  Article  Google Scholar 

    64.
    Janse van Rensburg, J., McMillan, M., Giżejewska, A. & Fattebert, J. Rainfall predicts seasonal home range size variation in nyala. Afr. J. Ecol.56, 418–423 (2018).

    65.
    Hunter, L. T. B. The behavioural ecology of reintroduced lions and cheetahs in the Phinda Resource Reserve, Kwazulz-Natal, South Africa. Phd thesis 1–206 (1998).

    66.
    Caro, T. M. Cheetahs of the Serengeti Plains. (The University of Chicago Press, Chicago, 1994).

    67.
    Gitzen, R. A., Millspaugh, J. J. & Kernohan, B. J. Bandwidth selection for fixed-kernel analysis of animal utilization distributions. J. Wildl. Manag. 70, 1334–1344 (2006).
    Article  Google Scholar 

    68.
    Thaker, M. et al. Minimizing predation risk in a landscape of multiple predators: effects on the spatial distribution of African ungulates. Ecology 92, 398–407 (2011).
    PubMed  Article  Google Scholar 

    69.
    Moll, R. J., Killion, A. K., Montgomery, R. A., Tambling, C. J. & Hayward, M. W. Spatial patterns of African ungulate aggregation reveal complex but limited risk effects from reintroduced carnivores. Ecology 97, 1123–1134 (2016).
    PubMed  Google Scholar 

    70.
    Kauffman, M. J. et al. Landscape heterogeneity shapes predation in a newly restored predator-prey system. Ecol. Lett. 10, 690–700 (2007).
    PubMed  Article  Google Scholar 

    71.
    Tsalyuk, M., Kelly, M. & Getz, W. M. Improving the prediction of African savanna vegetation variables using time series of MODIS products. ISPRS J. Photogramm. Remote Sens. 131, 77–91 (2017).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    72.
    Winterstein, S. R. Chi-square tests for intrabrood independence when using the Mayfield method. J. Wildl. Manage. 56, 398–402 (1992).
    Article  Google Scholar 

    73.
    Barker, R. J., White, G. C. & McDougall, M. Movement of Paradise Shelduck between molt sites: a joint multistate-dead recovery mark-recapture model. J. Wildl. Manage. 69, 1194–1201 (2005).
    Article  Google Scholar 

    74.
    Laake, J. L. RMark: An R Interface for Analysis of Capture-Recapture Data with MARK. Version 2.2.4. (2013).

    75.
    Kelly, M. J. et al. Demography of the Serengeti cheetah (Acinonyx jubatus) population: the first 25 years. J. Zool. 224, 473–488 (1998).
    Article  Google Scholar 

    76.
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, Berlin, 2002).
    Google Scholar 

    77.
    Arnold, T. W. Uninformative parameters and model selection using Akaike’s Information Criterion. J. Wildl. Manag. 74, 1175–1178 (2010).
    Article  Google Scholar  More

  • in

    Biochemical and economical effect of application biostimulants containing seaweed extracts and amino acids as an element of agroecological management of bean cultivation

    1.
    Le Mire, G. et al. Implementing plant biostimulants and biocontrol strategies in the agroecological management of cultivated ecosystems. Biotechnol. Agron. Soc. Environ. 20, 299–313. https://doi.org/10.25518/1780-4507.12717 (2016).
    Article  Google Scholar 
    2.
    Altieri, M. Á. Agroecology: A new research and development paradigm for world agriculture. Agric. Ecosyst. Environ. 27, 37–46. https://doi.org/10.1016/0167-8809(89)90070-4 (1989).
    Article  Google Scholar 

    3.
    Posmyk, M. M. & Szafrańska, K. Biostimulators: A new trend towards solving an old problem. Front. Plant Sci. 7, 48. https://doi.org/10.3389/fpls.2016.00748 (2016).
    Article  Google Scholar 

    4.
    Szparaga, A. & Kocira, S. Generalized logistic functions in modelling emergence of Brassica napus L.. PLoS ONE 13, e0201980. https://doi.org/10.1371/journal.pone.0201980 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    5.
    Koo, A. J. Metabolism of the plant hormone jasmonate: A sentinel for tissue damage and master regulator of stress response. Phytochem. Rev. 17, 51–80. https://doi.org/10.1007/s11101-017-9510-8 (2018).
    CAS  Article  Google Scholar 

    6.
    Trevisan, S., Manoli, A., Ravazzolo, L., Franceschi, C. & Quaggiotti, S. mRNA-sequencing analysis reveals transcriptional changes in root of maize seedlings treated with two increasing concentrations of a new biostimulant. J. Agric. Food Chem. 65, 9956–9969. https://doi.org/10.1021/acs.jafc.7b03069 (2017).
    CAS  Article  PubMed  Google Scholar 

    7.
    Szparaga, A. et al. Modification of growth, yield, and the nutraceutical and antioxidative potential of soybean through the use of synthetic biostimulants. Front. Plant Sci. 9, 1401. https://doi.org/10.3389/fpls.2018.01401 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    8.
    Cocetta, G. & Ferrante, A. Nutritional and Nutraceutical Value of Vegetable Crops as Affected by Biostimulants Application. In: eLS. (Wiley, Chichester, 2020). https://doi.org/10.1002/9780470015902.a0028906.

    9.
    Kocira, S. Effect of applying a biostimulant containing seaweed and amino acids on the content of fiber fractions in three soybean cultivars. Legume Res. 42, 341–347. https://doi.org/10.18805/LR-412 (2019).
    Article  Google Scholar 

    10.
    Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019. https://eur-lex.europa.eu/eli/reg/2019/1009/oj (2019).

    11.
    Chehade, A., Chami, A., Angelica, S., Pascali, D. & Paolo, F. Biostimulants from food processing by-products: Agronomic, quality and metabolic impacts on organic tomato (Solanum lycopersicum L.). J. Sci. Food Agric. 98, 1426–1436. https://doi.org/10.1002/jsfa.8610 (2018).
    CAS  Article  PubMed  Google Scholar 

    12.
    Stirk, W. A., Tarkowská, D., Turečová, V., Strnad, M. & van Staden, J. Abscisic acid, gibberellins and brassinosteroids in Kelpak®, a commercial seaweed extract made from Ecklonia maxima. J. Appl. Phycol. 26, 561–567. https://doi.org/10.1007/s10811-013-0062-z (2014).
    CAS  Article  Google Scholar 

    13.
    Szczepanek, M., Siwik-Ziomek, A. & Wilczewski, E. Effect of biostimulant on accumulation of Mg in winter oilseed rape under different mineral fertilization rates. J. Elementol. 22, 1375–1385. https://doi.org/10.5601/jelem.2017.22.1.1317 (2017).
    Article  Google Scholar 

    14.
    Kocira, S. et al. Effect of an amino acids-containing biostimulator on common bean crop. Przem. Chem. 94(10), 1732–1736. https://doi.org/10.15199/62.2015.10.16 (2015).
    CAS  Article  Google Scholar 

    15.
    Calvo, P., Nelson, L. & Kloepper, J. W. Agricultural uses of plant biostimulants. Plant Soil. 383, 3–41. https://doi.org/10.1007/s11104-014-2131-8 (2014).
    CAS  Article  Google Scholar 

    16.
    Colla, G. et al. Protein hydrolysates as biostimulants in horticulture. Sci. Hortic. 196, 28–38. https://doi.org/10.1016/j.scienta.2015.08.037 (2015).
    CAS  Article  Google Scholar 

    17.
    Sharma, H. S. S., Fleming, C., Selby, C., Rao, J. R. & Martin, T. Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J. Appl. Phycol. 26, 465–490. https://doi.org/10.1007/s10811-013-0101-9 (2014).
    CAS  Article  Google Scholar 

    18.
    Ertani, A., Pizzeghello, D., Francioso, O., Tinti, A. & Nardi, S. Biological activity of vegetal extracts containing phenols on plant metabolism. Molecules 21, 205–219. https://doi.org/10.3390/molecules21020205 (2016).
    CAS  Article  PubMed Central  Google Scholar 

    19.
    Michałek, W., Kocira, A., Findura, P., Szparaga, A. & Kocira, S. The influence of biostimulant Asahi SL on the photosynthetic activity of selected cultivars of Phaseolus vulgaris L.. Rocz. Ochr. Sr. 20, 1286–1301 (2018).
    Google Scholar 

    20.
    Hara, P., Szparaga, A. & Czerwińska, E. Ecological methods used to control fungi that cause diseases of the crop plant. Rocz. Ochr. Sr. 20, 1764–1775 (2018).
    Google Scholar 

    21.
    Mejía-Teniente, L. et al. Use of elicitors as an approach for sustainable agriculture. Afr. J. Biotechnol. 9, 9155–9162 (2010).
    Google Scholar 

    22.
    Chandler, D. et al. The development, regulation and use of biopesticides for integrated pest management. Philos. Trans. R. Soc. B. 366, 1987–1998. https://doi.org/10.1098/rstb.2010.0390 (2011).
    Article  Google Scholar 

    23.
    Wezel, A. et al. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 34, 1–20. https://doi.org/10.1007/s13593-013-0180-7 (2014).
    Article  Google Scholar 

    24.
    Brown, P. & Saa, S. Biostimulants in agriculture. Front. Plant Sci. 6, 671. https://doi.org/10.3389/fpls.2015.00671 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    25.
    Van Oosten, M. J., Pepe, O., De Pascale, S., Silletti, S. & Maggio, A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Technol. Agric. 4, 5. https://doi.org/10.1186/s40538-017-0089-5 (2017).
    CAS  Article  Google Scholar 

    26.
    Grabowska, A., Kunicki, E., Sekara, A., Kalisz, A. & Wojciechowska, R. The effect of cultivar and biostimulant treatment on the carrot yield and its quality. Veg. Crops Res. Bull. 77, 37–48. https://doi.org/10.2478/v10032-012-0014-1 (2012).
    Article  Google Scholar 

    27.
    Kolomaznik, K., Pecha, J., Friebrova, V., Janacova, D. & Vasek, V. Diffusion of biostimulators into plant tissues. Heat Mass Transf. 48, 1505–1512. https://doi.org/10.1007/s00231-012-0998-6 (2012).
    ADS  CAS  Article  Google Scholar 

    28.
    Gozzo, F. & Faoro, F. Systemic acquired resistance (50 years after discovery): Moving from the lab to the field. J. Agric. Food Chem. 61, 12473–12491. https://doi.org/10.1021/jf404156x (2013).
    CAS  Article  PubMed  Google Scholar 

    29.
    Bashan, Y., de Bashan, L. E., Prabhu, S. R. & Hernandez, J.-P. Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998–2013). Plant Soil. 378(1–2), 1–33. https://doi.org/10.1007/s11104-013-1956-x (2014).
    CAS  Article  Google Scholar 

    30.
    Cox, M. & Wong, B. Biological crop chemistry primer: Green shoots through green products, Piper Jaffray industry note. Web site 2013 [cited 4 May 2020]. https://files.ctctcdn.com/f569d87b001/8445a3b3-dcf8-4654-8d3b-bd079e55022d.pdf.

    31.
    Arora, N. K., Khare, E. & Maheshwari, D. K. Plant growth promoting rhizobacteria: constraints in bioformulation, commercialization, and future strategies. In Plant Growth and Health Promoting Bacteria (ed Maheshwari, D.K.) 97–116 (Springer, Dordrecht, 2010). https://doi.org/10.1007/978-3-642-13612-2_5.

    32.
    Walters, D. R., Ratsep, J. & Havis, N. D. Controlling crop diseases using induced resistance: Challenges for the future. J. Exp. Bot. 64(5), 1263–1280. https://doi.org/10.1093/jxb/ert026 (2013).
    CAS  Article  PubMed  Google Scholar 

    33.
    Rodriguez-Saona, C., Kaplan, I., Braasch, J., Chinnasamy, D. & Williams, L. Field responses of predaceous arthropods to methyl salicylate: A meta-analysis and case study in cranberries. Biol. Control. 59(2), 294–303. https://doi.org/10.1016/j.biocontrol.2011.06.017 (2011).
    CAS  Article  Google Scholar 

    34.
    Łączyński, A. et al. Wyniki produkcji roślinnej w 2017 r. (Główny Urząd Statystyczny Warszawa, 2018).

    35.
    Szparaga, A. et al. Towards sustainable agriculture—agronomic and economic effects of biostimulant use in common bean cultivation. Sustainability. 11, 4575. https://doi.org/10.3390/su11174575 (2019).
    CAS  Article  Google Scholar 

    36.
    Kocira, S. et al. Effects of seaweed extract on yield and protein content of two common bean (Phaseolus vulgaris L.) cultivars. Legume Res. 41, 589–593 (2018).
    Google Scholar 

    37.
    Kocira, A., Świeca, M., Kocira, S., Złotek, U. & Jakubczyk, A. Enhancement of yield, nutritional and nutraceutical properties of two common bean cultivars following the application of seaweed extract (Ecklonia maxima). Saudi J. Biol. Sci. 25, 563–571. https://doi.org/10.1016/j.sjbs.2016.01.039 (2018).
    CAS  Article  PubMed  Google Scholar 

    38.
    Kocira, S. Effect of amino acid biostimulant on the yield and nutraceutical potential of soybean. Chil. J. Agric. Res. 79, 17–25. https://doi.org/10.4067/S0718-58392019000100017 (2019).
    Article  Google Scholar 

    39.
    Kocira, A. et al. Changes in biochemistry and yield in response to biostimulants applied in bean (Phaseolus vulgaris L.). Agronomy 10, 189. https://doi.org/10.3390/agronomy10020189 (2020).
    CAS  Article  Google Scholar 

    40.
    Rouphael, Y., Cardarelli, M., Bonini, P. & Colla, G. Synergistic action of a microbial-based biostimulant and a plant derived-protein hydrolysate enhances lettuce tolerance to alkalinity and salinity. Front. Plant Sci. 8, 131. https://doi.org/10.3389/fpls.2017.00131 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    41.
    Shahabivand, S., Padash, A., Aghaee, A., Nasiri, Y. & Rezaei, P. F. Plant biostimulants (Funneliformis mosseae and humic substances) rather than chemical fertilizer improved biochemical responses in peppermint. Iran. J. Plant Physiol. 8, 2333–2344. https://doi.org/10.22034/ijpp.2018.539109 (2018).
    Article  Google Scholar 

    42.
    Fujita, Y., Fujita, M., Shinozaki, K. & Yamaguchi-Shinozaki, K. ABA-mediated transcriptional regulation in response to osmotic stress in plants. J. Plant Res. 124, 509–525. https://doi.org/10.1007/s10265-011-0412-3 (2011).
    CAS  Article  PubMed  Google Scholar 

    43.
    Xiong, H. et al. Overexpression of OsMYB48–1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS ONE 9, e92913. https://doi.org/10.1371/journal.pone0092913 (2014).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    44.
    Trivellini, A. et al. Survive or die? A molecular insight into salt-dependant signaling network. Environ. Exp. Bot. 132, 140–153. https://doi.org/10.1016/j.envexpbot.2016.07.007 (2016).
    CAS  Article  Google Scholar 

    45.
    Hare, P. D. & Cress, W. A. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul. 21, 79–102. https://doi.org/10.1023/A:1005703923347 (1997).
    CAS  Article  Google Scholar 

    46.
    Mattioli, R., Costantino, P. & Trovato, M. Proline accumulation in plants. Plant Signal. Behav. 4, 1016–1018. https://doi.org/10.4161/psb.4.11.9797 (2009).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    47.
    Cheynier, V., Comte, G., Davies, K. M. & Lattanzio, V. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol. Biochem. 72, 1–20. https://doi.org/10.1016/j.plaphy.2013.05.009 (2013).
    CAS  Article  PubMed  Google Scholar 

    48.
    Bulgari, R., Trivellini, A. & Ferrante, A. Effects of two doses of organic extract-based biostimulant on greenhouse lettuce grown under increasing NaCl concentrations. Front. Plant Sci. 9, 1870. https://doi.org/10.3389/fpls.2018.01870 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    49.
    Rouphael, Y. et al. Effect of Ecklonia maxima seaweed extract on yield, mineral composition, gas exchange and leaf anatomy of zucchini squash grown under saline conditions. J. Appl. Phychol. 29, 459–470. https://doi.org/10.1007/s10811-016-0937-x (2017).
    CAS  Article  Google Scholar 

    50.
    Vanacker, H., Carver, T. L. W. & Foyer, C. H. Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves. Plant Physiol. 117, 1103–1114. https://doi.org/10.1104/pp.117.3.1103 (1998).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    51.
    Lawlor, D. W. & Tezara, W. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: A critical evaluation of mechanisms and integration of processes. Ann. Bot. 103, 561–579. https://doi.org/10.1093/aob/mcn244 (2009).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    52.
    Ertani, A., Schiavon, M., Altissimo, A., Franceschi, A. & Nardi, S. Phenol-containing organic substances stimulate phenylpropanoid metabolism in Zea mays. J. Plant Nutr. Soil Sci. 174, 496–503. https://doi.org/10.1002/jpln.201000075 (2011).
    CAS  Article  Google Scholar 

    53.
    Bettoni, M. M. et al. Nutritional quality and yield of onion as affected by different application methods and doses of humic substances. J. Food Comp. Anal. 51, 37–44. https://doi.org/10.1016/j.jfca.2016.06.008 (2016).
    CAS  Article  Google Scholar 

    54.
    Ertani, A., Schiavon, M., Muscolo, A. & Nardi, S. Alfalfa plant-derived biostimulant stimulates short-term growth of salt stressed Zea mays L. plants. Plant Soil. 364, 145–158. https://doi.org/10.1007/s11104-012-1335-z (2013).
    CAS  Article  Google Scholar 

    55.
    Ertani, A. et al. The use of organic biostimulants in hot pepper plants to help low input sustainable agriculture. Chem. Biol. Technol. Agric. 2, 11. https://doi.org/10.1186/s40538-015-0039-z (2015).
    CAS  Article  Google Scholar 

    56.
    Oboh, G. & Ademosun, A. O. Characterization of the antioxidant properties of phenolic extracts from some citrus peels. J. Food Sci. Technol. 49, 729–736. https://doi.org/10.1007/s13197-010-0222-y (2012).
    CAS  Article  PubMed  Google Scholar 

    57.
    Serrano, M. et al. Antioxidant and nutritive constituents during sweet pepper development and ripening are enhanced by nitrophenolate treatments. Food Chem. 118, 497–503. https://doi.org/10.1016/j.foodchem.2009.05.006 (2010).
    CAS  Article  Google Scholar 

    58.
    Krasensky, J., Carmody, M., Sierla, M. & Kangasjärvi, J. Ozone and reactive oxygen species. Wiley Online Library Web side. 2017 March 20 [cited 4 May 2020]. https://doi.org/10.1002/9780470015902.a0001299.pub3.

    59.
    Ciarmiello, L. F., Woodrow, P., Fuggi, A., Pontecorvo, G. & Carillo, P. Plant genes for abiotic stress. In Abiotic Stress in Plants—Mechanisms and Adaptations (eds Shanker, A. & Venkateswarlu, B.) 283–308 (InTech, Croatia, 2011).
    Google Scholar 

    60.
    Woziak, E., Blaszczak, A., Wiatrak, P. & Canady, M. Biostimulant mode of action: Impact of biostimulant on whole-plant. In The Chemical Biology of Plant Biostimulants (eds Geelen, D. & Xu, L.) 207–227 (Wiley, Hoboken, 2020).
    Google Scholar 

    61.
    Woziak, E., Blaszczak A., Wiatrak, P. & Canady M. Biostimulant mode of action: Impact of biostimulant on cellular level. In The Chemical Biology of Plant Biostimulants (eds. Geelen, D. & Xu, L.) 229–243 (Wiley, Hoboken, 2020).

    62.
    Upadhyay, S. & Dixit, M. Role of polyphenols and other phytochemicals on molecular signaling. Oxid. Med. Cell. Longev. https://doi.org/10.1155/2015/504253 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    63.
    Martindale, J. L. & Holbrook, N. J. Cellular response to oxidative stress: Signaling for suicide and survival. J. Cell. Physiol. 192, 1–15. https://doi.org/10.1002/jcp.10119 (2002).
    CAS  Article  PubMed  Google Scholar 

    64.
    Los, F. G. B., Zielinski, A. A. F., Wojeicchowski, J. P., Nogueira, A. & Demiate, I. M. Beans (Phaseolus vulgaris L.): Whole seeds with complex chemical composition. Curr. Opin. Food Sci. 19, 63–71. https://doi.org/10.1016/j.cofs.2018.01.010 (2018).
    Article  Google Scholar 

    65.
    Abbas, S. M. The influence of biostimulants on the growth and on the biochemical composition of viciafaba CV. Giza 3 beans. Rom. Biotechnol. Lett. 18, 8061–8068 (2013).
    ADS  CAS  Google Scholar 

    66.
    Aloni, R., Langhans, M., Aloni, E. & Ullrich, C. I. Role of cytokinin in the regulation of root gravitropism. Planta 220, 177–182. https://doi.org/10.1007/s00425-004-1381-8 (2004).
    CAS  Article  PubMed  Google Scholar 

    67.
    Aloni, R., Aloni, E., Langhans, M. & Ullrich, C. I. Role of cytokinin and auxin in shaping root architecture: Regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann. Bot. 97, 883–893. https://doi.org/10.1093/aob/mcl027 (2006).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    68.
    Aloni, R., Tollier, M. T. & Monties, B. The role of auxin and gibberellin in controlling lignin formation in primary phloem fibers and in xylem of Coleus-blumei stems. Plant Physiol. 94, 1743–1747. https://doi.org/10.1104/pp.94.4.1743 (1990).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    69.
    Mauriat, M. & Moritz, T. Analyses of GA20ox- and GID1-over-expressing aspen suggest that gibberellins play two distinct roles in wood formation. Plant J. 58, 989–1003. https://doi.org/10.1111/j.1365-313X.2009.03836.x (2009).
    CAS  Article  PubMed  Google Scholar 

    70.
    Dayan, J., Schwarzkopf, M., Avni, A. & Aloni, R. Enhancing plant growth and fiber production by silencing GA 2-oxidase. Plant Biotechnol. J. 8, 425–435. https://doi.org/10.1111/j.1467-7652.2009.00480.x (2010).
    CAS  Article  PubMed  Google Scholar 

    71.
    Dombrowski, J. E. & Martin, R. C. Evaluation of reference genes for quantitative RT-PCR in Lolium temulentum under abiotic stress. Plant Sci. 176, 390–396. https://doi.org/10.1016/j.plantsci.2008.12.005 (2009).
    CAS  Article  Google Scholar 

    72.
    Gómez-Merino, F. C. & Trejo-Téllez, L. I. The role of beneficial elements in triggering adaptive responses to environmental stressors and improving plant performance. In Biotic and Abiotic Stress Tolerance in Plants (ed Vats, S) 137–172 (Springer, Singapore, 2018). https://doi.org/10.1007/978-981-10-9029-5_6.

    73.
    Nemes, N. Comparatice analysis of organic and non-organic farming systems: A critical assessment of farm profitability. FAO Web side. [cited 4 May 2020]. https://www.fao.org/tempref/docrep/fao/011/ak355e/ak355e00.pdf (2017).

    74.
    Mariano, R. A. Profitability analysis of irradiated carrageenan as a biostimulant in small-scale rice farming in selected provinces in the Philippines. J. Glob. Bus. Trade. 14, 15–30 (2018).
    Article  Google Scholar 

    75.
    Abad, L. V., Aranilla, C. T., Relleve, L. S. & Dela Rosa, A. M. Emerging applications of radiation-modified carrageenans. Nucl. Instrum. Methods B. 336, 167–172. https://doi.org/10.1016/j.nimb.2014.07.005 (2014).
    ADS  CAS  Article  Google Scholar 

    76.
    Khan, W. et al. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 28, 386–399. https://doi.org/10.1007/s00344-009-9103-x (2009).
    CAS  Article  Google Scholar 

    77.
    Jesus, A. A., Lima, S. F., Vendruscolo, E. P., Alvarez, R. C. F. & Contardi, L. M. Agroeconomic analysis of sweet corn grown with biostimulant applied on seed. Rev. Fac. Agron. 115, 119–127 (2016).
    Google Scholar 

    78.
    Zhang, X. & Schmidt, R. E. Hormone-containing products’ impact on antioxidant status of tall fescue and creeping bentgrass subjected to drought. Crop Sci. 40, 1344–1249. https://doi.org/10.2135/cropsci2000.4051344x (2000).
    CAS  Article  Google Scholar 

    79.
    Crepaldi, S. A. Contabilidade Rural: Uma Abordagem Decisorial 2nd edn. (São Paulo, Atlas, 1998).
    Google Scholar 

    80.
    Kocira, S., Szparaga, A., Kuboń, M., Czerwińska, E. & Piskier, T. Morphological and biochemical responses of Glycine max (L.) Merr. to the use of seaweed extract. Agronomy 9, 93. https://doi.org/10.3390/agronomy9020093 (2019).
    CAS  Article  Google Scholar 

    81.
    Świeca, M., Gawlik-Dziki, U., Kowalczyk, D. & Złotek, U. Impact of germination time and type of illumination on the antioxidant compounds and antioxidant capacity of Lens culinaris sprouts. Sci. Hortic. 140, 87–95. https://doi.org/10.1016/j.scienta.2012.04.005 (2012).
    CAS  Article  Google Scholar 

    82.
    Singleton, V. & Rossi, J. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144–158 (1965).
    CAS  Google Scholar 

    83.
    Lamaison, J. L. C. & Carnet, A. Teneurs en principaux flavonoids des fleurs de Crataegeus monogyna Jacq et de Crataegeus laevigata (Poiret D. C) en fonction de la vegetation. Pharm. Acta Helv. 65, 315–320. https://doi.org/10.1016/j.nfs.2018.10.001 (1990).
    CAS  Article  Google Scholar 

    84.
    Fuleki, T. & Francis, F. J. Quantitative methods for anthocyanins. 1. Extraction and determination of total anthocyanin in cranberries. J. Food Sci. 33, 72–77. https://doi.org/10.1111/j.1365-2621.1968.tb00887.x (1968).
    CAS  Article  Google Scholar 

    85.
    Pulido, R., Bravo, L. & Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 48, 3396–3402. https://doi.org/10.1021/jf9913458 (2000).
    CAS  Article  PubMed  Google Scholar 

    86.
    Jimenez-Alvarez, D. et al. High-throughput methods to assess lipophilic and hydrophilic antioxidant capacity of food extracts in vitro. J. Agric. Food Chem. 56(10), 3470–3477. https://doi.org/10.1021/jf703723ss (2008).
    CAS  Article  PubMed  Google Scholar 

    87.
    Sancho, R. A. S., Pavan, V. & Pastore, G. M. Effect of in vitro digestion on bioactive compounds and antioxidant activity of common bean seed coats. Food Res. Int. 76, 74–78. https://doi.org/10.1016/j.foodres.2014.11.042 (2015).
    CAS  Article  Google Scholar 

    88.
    Carillo, P. & Gibon, Y. Protocol: extraction and determination of proline. [cited 4 January 2020]. https://prometheuswiki.publish.csiro.au/tiki.

    89.
    Redmile-Gordon, M. A., Armenise, E., White, R. P., Hirsch, P. R. & Goulding, K. W. T. A comparison of two colorimetric assays, based upon Lowry and Bradford techniques, to estimate total protein in soil extracts. Soil Biol. Biochem. 67, 166–173. https://doi.org/10.1016/j.soilbio.2013.08.017 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    90.
    Goñi, I., Garcia-Alonso, A. & Saura-Calixto, F. A starch hydrolysis procedure to estimate glycemic index. Nutr. Res. 17(3), 427–437. https://doi.org/10.1016/S0271-5317(97)00010-9 (1997).
    Article  Google Scholar 

    91.
    AOCS Approved Procedure Ba 6a-05. [cited 2 September 2020]. https://www.ssco.com.tw/Ankom/PDF_file/Crude%20Fiber%20Method%20A200.pdf.

    92.
    Szparaga, A. Wybrane Właściwości Fizyczne, Mechaniczne, Chemiczne i Plon Nasion Fasoli Zwykłej (Phaseolus Vulgaris L.) w Zależności od Metody Aplikacji Biostymulatorów. (Polskie Towarzystwo Inżynierii Rolniczej, 2019).

    93.
    Szparaga, A. et al. Survivability of probiotic bacteria in model systems of non-fermented and fermented coconut and hemp milks. Sustainability. 11, 6093. https://doi.org/10.3390/su11216093 (2019).
    CAS  Article  Google Scholar  More

  • in

    Deep learning-assisted comparative analysis of animal trajectories with DeepHL

    DeepHL system architecture
    The DeepHL system consists of three server computers. The first one is a web server that receives a trajectory data file from a user and provides analysis results to the user (Intel Xeon E5-2620 v4, 16 cores, 32 GB RAM, Ubuntu 14.04). The second one is a storage server that stores data files and analysis results. The third one is a GPU server that analyzes data provided by the user (Intel Xeon E5-2620 v4, 32 cores, 512 GB RAM, four NVIDIA Quadro P6000, Ubuntu 14.04). Supplementary Information, Algorithm, provides a complete description of the DeepHL method. DeepHL is accessible on the Internet through http://www-mmde.ist.osaka-u.ac.jp/maekawa/deephl/. Supplementary Information, User guide to DeepHL, provides a user guide to DeepHL. In addition, Supplementary Information, Usage of Python-based Software, and Supplementary Software 1 present the Python code of DeepHL.
    Preprocessing
    An input trajectory is a series of timestamps and X/Y coordinates associated with a class label. To perform position- and rotation-independent analysis, we convert the series into time series of speed and relative angular speed and then standardize them (Supplementary Information, Algorithm). Note that the absolute coordinates of wild animals, which can relate to the distance from a nest or feeding location, for example, are important in understanding behavior of the animals. Hence, DeepHL allows the original coordinates to be input to DeepHL-Net along with the speed and relative angular speed. In addition, other biological time-series sensor data measured by the user can be fed into DeepHL-Net when these time-series data are included in a data file uploaded by the user. For example, a time series of the heading direction of animals obtained from digital compasses can be useful for behavior understanding. Moreover, primitive features usually used in trajectory analysis can be easily fed into DeepHL-Net. DeepHL automatically computes the travel distance from the initial position, the straight-line distance from the initial position, and the angle from the initial position (Supplementary Table 1) as primitive features. Using the web interface of DeepHL, the user can easily select primitive features and other sensor data to be fed into DeepHL-Net (Supplementary Information, User guide to DeepHL). See Supplementary Information, Effect of input features, for effects of input features on classification accuracy. Normally, the inputs of DeepHL-Net are two-dimensional time series, that is, speed and relative angular speed. When we input an additional time series (such as the original coordinates) into DeepHL-Net, the additional time series are added as additional dimensions of the inputs.
    Multi-scale layer-wise attention model (DeepHL-Net)
    Here, we explain DeepHL-Net shown in Fig. 2f in detail. The input of the model is a time series of primitive features, that is, an lMAX × Nf matrix, where lMAX is the maximum length of the input trajectories and Nf is the dimensionality of the time series, that is, the number of the primitive features. Because the lengths of observed trajectories are not identical to each other in many cases, we fill in missing elements in the matrix with  −1.0 and mask them when we train DeepHL-Net. In each 1D convolutional layer of the convolutional stacks, we extract features by convolving input features through the time dimension using a filter with a width (kernel size) of Ft. We use different filter widths in the four convolutional stacks (3%, 6%, 9%, and 12% of lMAX) to extract features at different levels of scale. We use a stride (step size) of one sample in terms of the time axis. We also use padding to allow the outputs of a layer to have the same length as the layer inputs. In addition, to reduce an overfitting, we employ a dropout, which is a simple regularization technique in which randomly selected neurons are dropped during training44. The dropout rate used in this study is 0.5.
    In each LSTM layer of the LSTM stacks, we extract features considering the long-term dependencies of the input features. LSTM is a recurrent neural network architecture with memory cells, and it permits us to learn temporal relationships over a long time scale. LSTM learns long-term dependencies by employing memory cells that hold past information, updating the cell state using write, read, and reset operations with input, output, and forget gates (see Supplementary Information, Algorithm). In addition, we employ dropout to reduce overfitting. The attention information of each layer is computed by using Eq. (1), and then it is multiplied by the layer output. Here, the softmax and tanh functions in Eq. (1) are defined as follows:

    $$,{text{softmax}},({x}_{j})=frac{exp ({x}_{j})}{{sum }_{i}exp ({x}_{i})},$$
    (2)

    $$tanh ({x}_{j})=frac{exp ({x}_{j})-exp (-{x}_{j})}{exp ({x}_{j})+exp (-{x}_{j})}.$$
    (3)

    Note that parameters in Eq. (1) for each layer, that is, Wa and ba, as well as parameters in the convolutional and LSTM layers are estimated during the network training phase. Here, we introduced the tanh activation function into Eq. (1) to smooth out the output attention values. When an outlying large value is included in WaZT + ba at time t, attention values other than time t become extremely small without using the tanh function. When we visualize a trajectory using such attention values, only a single data point is colored in red, making it difficult for a user to identify important segments.
    Training and testing of DeepHL-Net
    The DeepHL user can select the parameters of DeepHL-Net used in the analysis, that is, the number of convolutional/LSTM layers and the number of neurons in each layer (default: four layers with 16 neurons). Then, DeepHL-Net is trained on 80% of randomly selected trajectories to minimize the binary classification error of the training data, employing backpropagation based on Adam45 (Supplementary Information, Algorithm). (Note that each trajectory has a class label for binary classification.) Then, the trained DeepHL-Net is tested using the remaining 20% of trajectories to compute the classification accuracy, providing an indication of the degree of difference between the two classes.
    Computing the score of each layer
    To screen the layers in DeepHL-Net, we compute a score for each layer according to Eq. (4)

    $$s({A}_{i,{C}_{mathrm{A}}},{A}_{i,{C}_{mathrm{B}}})={s}_{mathrm{fc}}({A}_{i,{C}_{mathrm{A}}},{A}_{i,{C}_{mathrm{B}}})+{s}_{mathrm{it}}({A}_{i,{C}_{mathrm{A}}},{A}_{i,{C}_{mathrm{B}}}).$$
    (4)

    Here, ({A}_{i,{C}_{mathrm{A}}}) is a set of attention vectors calculated from trajectories belonging to class A using the ith layer. In addition, ({A}_{i,{C}_{mathrm{B}}}) is a set of attention vectors calculated from trajectories belonging to class B using the ith layer. As mentioned in the main text, an attention vector from a discriminator layer should have large values within limited segments. Therefore, ({s}_{mathrm{fc}}({A}_{i,{C}_{mathrm{A}}},{A}_{i,{C}_{mathrm{B}}})) in Eq. (4) calculates the averaged variance of the attention values normalized by the average length of the trajectories, as described in Eq. (5). When the layer focuses on a part of a trajectory, the variance increases

    $${s}_{mathrm{fc}}({A}_{i,{C}_{mathrm{A}}},{A}_{i,{C}_{mathrm{B}}})=sqrt{frac{1}{| {A}_{i,{C}_{mathrm{A}}}cup {A}_{i,{C}_{mathrm{B}}}| cdot l({A}_{i,{C}_{mathrm{A}}}cup {A}_{i,{C}_{mathrm{B}}})}sum _{{bf{a}}in {A}_{i,{C}_{mathrm{A}}}cup {A}_{i,{C}_{mathrm{B}}}}V({bf{a}})}.$$
    (5)

    Note that V(⋅) calculates the variance and l(⋅) calculates the average length of the trajectories. We take the square root of the average variance to derive the average standard deviation. Using (l({A}_{i,{C}_{mathrm{A}}}cup {A}_{i,{C}_{mathrm{B}}})), which calculates the average length of ({A}_{i,{C}_{mathrm{A}}}cup {A}_{i,{C}_{mathrm{B}}}), we normalize the computed variance. Because the softmax function in Eq. (1) ensures that all values sum to 1, resulting in a larger variance for longer trajectories, we normalize the average variance using the average length.
    In addition, as mentioned in the main text, the distribution of attention values by the layer for one class should be different from that for another class. Therefore, ({s}_{mathrm{it}}({A}_{i,{C}_{mathrm{A}}},{A}_{i,{C}_{mathrm{B}}})) calculates the difference between the distributions of the attention values of classes A and B as follows:

    $${s}_{mathrm{it}}({A}_{i,{C}_{mathrm{A}}},{A}_{i,{C}_{mathrm{B}}})=(1-,{mathrm{Intersect}},(h(A_{{i,{C}}_{mathrm{A}}}),h({{A}}_{{i,{C}}_{mathrm{B}}}))).$$
    (6)

    Here, h(⋅) calculates a normalized histogram of attention with 200 bins, and Intersect(⋅ , ⋅) calculates the area overlap between two histograms, and is described as follows:

    $${mathrm{Intersect}},(H_{1},H_{2})=mathop{sum}limits_{i}min (H_{1}(i),H_{2}(i)),$$
    (7)

    where H1(i) shows the normalized frequency of the ith bin of histogram H1. As described in Eq. (4), the final score is calculated as the sum of the two scores of ({s}_{mathrm{fc}}({A}_{i,{C}_{mathrm{A}}},{A}_{i,{C}_{mathrm{B}}})) and ({s}_{mathrm{it}}({A}_{i,{C}_{mathrm{A}}},{A}_{i,{C}_{mathrm{B}}})).
    Here, ({s}_{mathrm{fc}}({A}_{i,{C}_{mathrm{A}}},{A}_{i,{C}_{mathrm{B}}})) in Eq. (4) is used to find a layer that focuses only on a portion of a trajectory. Owing to the term, only a small important portion of trajectories is highlighted in many cases, as shown in Figs. 3, 5, and 6, especially for the trajectories of beetles. However, substantial portions of several trajectories of the normal mice are highlighted, as shown in Fig. 4d. Because the characteristics of the normal mouse trajectories are the distance from the initial position, the segments in the trajectories far from the initial position are highlighted.
    Computing the correlation between attention values and handcrafted features
    To help the user understand the meaning of the highlights, DeepHL automatically computes the Pearson correlation coefficients between the attention values of each layer and handcrafted features computed by DeepHL, as shown in Supplementary Table 1. In addition, the correlation coefficients with sensor data and handcrafted features included in a trajectory data file are automatically computed. Computing the correlation with environmental sensor data can reveal the relationship between a behavior and environmental conditions. If a specific behavior is exhibited only when the temperature is high, for example, we can infer that the behavior relates to the high temperature condition. Furthermore, DeepHL automatically computes the moving average, moving variance, and derivative of each of the above features/sensor data, and then computes the correlation coefficients with the attention values, which are presented to the user (Supplementary Fig. 1).
    Computing the difference between distributions of each handcrafted feature for the two classes within highlighted segments
    To help the user understand the meaning of the highlights, DeepHL automatically computes the difference between distributions of each handcrafted feature for two classes within highlighted segments. The difference is computed as follows:

    $${mathrm{diff}}({A}_{i,{C}_{mathrm{A}}},{F}_{j,{C}_{mathrm{A}}},{A}_{i,{C}_{mathrm{B}}},{F}_{j,{C}_{mathrm{B}}})=1-,{mathrm{Intersect}},(h(m({{A}}_{{i,{C}}_{mathrm{A}}},{{F}}_{{j,{C}}_{mathrm{A}}})),h(m({{A}}_{{i,{C}}_{mathrm{B}}},{{F}}_{{j,{C}}_{mathrm{B}}}))).$$
    (8)

    Here, ({F}_{j,{C}_{mathrm{A}}}) is a set of time series of the jth handcrafted feature calculated from trajectories belonging to class A. In addition, m(⋅ , ⋅) is a masking function that extracts feature values within highlighted segments. Because the softmax function in each attention layer ensures that all attention values in a sum of 1, we consider an attention value larger than c/(# time slices) as a potential attended value (c = 1.2 in our implementation).
    Data acquisition of worms
    Data acquisition was performed according to Yamazoe-Umemoto et al.22. In brief, several worms were placed in the center of an agar plate in a 9-cm Petri dish, 30% 2-nonanone (v/v, EtOH) was spotted on the left side of the plate, which was covered by a lid and placed on the bench upside down. Then, the images of the plate were captured with a high-resolution USB camera for 12 min at 1 Hz. Because the worms do not exhibit odor avoidance behavior during the first 2 min because of the rapid increase in odor concentration46, the data for the following 10 min (i.e., 600 s) was used. From the images, individual worms were identified and the position of the centroid was recorded by an image processing software Move-tr/2D (v. 8.31; Library Inc., Japan). The number of recorded trajectories is 325 (Supplementary Table 2). The comparison was between the naive worms (control class) and the worms after preexposure to the odor (preexposed class).
    DeepHL analysis of worms
    A multivariate time series of movement speed, relative angular speed, distances from the initial position, and angle from the initial position extracted from the time series of trajectories was fed into DeepHL-Net, yielding a binary classification accuracy of 93.9%, where 20% of the data are used as test data. The discriminator layer used in this investigation has the highest score of all layers. As shown in Fig. 3d, which was calculated from the moving variance of the speed within highlighted segments, we can state that the changes in the speed of preexposed worms is larger than those of control worms. Figure 3e shows spectrograms of the speed calculated from entire trajectories (Fig. 3c) with a 128-s wide sliding window shifted in 1-sample intervals. In addition, Fig. 3f shows histograms of the dominant frequency of speed calculated from entire trajectories using the 128-s wide sliding window shifted in 1-sample intervals. These results also indicate the difference in the frequency of speed between the preexposed and control worms. Our investigation revealed that the dominant frequency of speed significantly differs between the preexposed and control worms using GLMM with Gaussian distributions (t = −6.60; d.f. = 322.8; p = 1.68 × 10−10, effect size(r2) = 0.232). The p value is two sided. Individual factors were treated as random effects. The number of data points for the control class is n = 76, 784 and that for the preexposed class is n = 75, 750. We used GLMM with Gaussian distributions because the objective variable has a continuous value and we used the lmerTest package (v. 2.0–36) of R (v. 3.4.3) for the analysis.
    Data acquisition of mice
    We collected 52 trajectories of normal mice and unilateral 6-hydroxydopamine (OHDA) lesion mouse models of PD while they freely moved for 10 min in an open field (60 × 55 cm2, wall height = 20 cm; normal: 22, PD: 30). The trajectories were detected by the animal’s head position, which was captured by an overhead digital video camera (60 fps). Two sets of small red and green light-emitting diodes were mounted above the animal’s head so that it could be located in each frame. Custom softwares based on Matlab (R2018b, Mathworks, MA, USA) and LabVIEW (Labview 2018, National Instruments, TX, USA) were used for tracking. We then created 30-s segments by splitting each trajectory because training a DNN requires a number of trajectories. We used 966 segments in total (normal: 374, PD: 592) collected from nine C57BL/6J mice (normal: 5, PD: 4). Note that we excluded 30-s segments that contain no movements of a mouse.
    DeepHL analysis of mice
    Movement speed, relative angular speed, travel distances, straight-line and travel distances from the initial position, and angle from the initial position were fed into our model. The accuracy for the binary classification of normal and 6-OHDA model mice was 74.7%, where 20% of the data are used as test data. The score of the discriminator layer was the highest of all LSTM layers and the sixth highest of all layers. Our investigation revealed that the behavior of visiting locations far away from the initial position can be characteristic of normal mice.
    To evaluate PD symptoms from animal behaviors, previous studies have exclusively focused on the movement speed of animals in the open-field tests (frequency and bout duration of ambulation as well as immobility or fine movement) because typical symptoms in the animal model of PD are thought to be slowness of movement and a paucity of spontaneous movements. As shown in Fig. 4e–g, we found significant differences in average movement speed during ambulation periods, average movement speed during fine movement periods, and average maximum distance within a ±60-s window in a session. These differences were derived from the findings of DeepHL using the two-sided Wilcoxon rank-sum test (W = 544, p = 3.486 × 10−5, effect size (Cliff’s delta) = −0.648; W = 511, p = 5.869 × 10−4, effect size (Cliff’s delta) = −0.548; W = 521, p = 2.666 × 10−4, effect size (Cliff’s delta) = −0.579). The 95% confidence intervals are [1.222, 3.481], [0.139, 0.468], and [13.726, 43.175], respectively. We used the exactRankTests package (v. 0.8–29) of R (v. 3.2.3). Note that these behavioral features are extracted from original 10-min trajectories.
    The maximum distance, which was derived from a finding of DeepHL, is more useful for evaluating the PD symptoms than conventional measures based on the movement speed. Note that the new feature is designed based on an insight drawn from an analysis by deep learning. These results suggest that DeepHL helps find a novel measure not directly linked to the movement speed, that is, a straight-line distance within a certain time window. When the aim of an animal is to visit all locations in an area, the travel distance over a short duration commonly becomes longer. Besides, it is well known that rodents, including mice and rats, spontaneously prefer to explore an environment, particularly in novel places. Thus, DeepHL may capture the fact that the abnormal behavior of the 6-OHDA lesion model of PD hinders such spontaneous behavioral traits of normal mice. Indeed, the 6-OHDA lesion mouse model appears to remain in the same place. Although this hypothesis should be verified based on the causality between behavioral traits and neural activity patterns underlying PD symptoms using neuronal recording together with its optogenetic manipulation in the basal ganglia and motor cortex23, it is beyond the scope of this study.
    Behavioral features of mice
    According to Kravitz et al.23, ambulation was defined as periods when the velocity of the animal’s center point averaged >2 cm/s for at least 0.5 s. Immobility was defined as continuous periods of time during which the average change of the trajectory was More

  • in

    Asynchronous multi-decadal time-scale series of biotic and abiotic responses to precipitation during the last 1300 years

    1.
    Ljungqvist, F. C. A new reconstruction of temperature variability in the extra‐tropical northern hemisphere during the last two millennia. Geogr. Ann. Ser. A, Phys. Geogr. 92, 339–351 (2010).
    2.
    Wang, Y. et al. The holocene asian monsoon: links to solar changes and north atlantic climate. Science 80(308), 854–857 (2005).
    ADS  Article  CAS  Google Scholar 

    3.
    Zhang, P. et al. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science 80(322), 940–942 (2008).
    ADS  Article  CAS  Google Scholar 

    4.
    Wang, X. et al. Climate, desertification, and the rise and collapse of China’s historical dynasties. Hum. Ecol. 38, 157–172 (2010).
    Article  Google Scholar 

    5.
    Paulsen, D. E., Li, H.-C. & Ku, T.-L. Climate variability in central China over the last 1270 years revealed by high-resolution stalagmite records. Quat. Sci. Rev. 22, 691–701 (2003).
    ADS  Article  Google Scholar 

    6.
    Lee, H. & Zhang, D. Space-time integration in geography and GIScience. Space-time integration in geography and giscience: research frontiers in the US and China (Springer Netherlands, 2015). https://doi.org/10.1007/978-94-017-9205-9.

    7.
    Jia, D., Li, Y. & Fang, X. Complexity of factors influencing the spatiotemporal distribution of archaeological settlements in northeast China over the past millennium. Quat. Res. 89, 413–424 (2018).
    Article  Google Scholar 

    8.
    Lee, U. The comparative historical study on the weather characteristics in the second half of the 15th century. Korean Stud. 21, 389–415 (2012).
    Google Scholar 

    9.
    Jo, K. et al. 1000-Year quasi-periodicity of weak monsoon events in temperate northeast Asia since the mid-Holocene. Sci. Rep. 7, 15196 (2017).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    10.
    Jo, K. et al. Mid-latitude interhemispheric hydrologic seesaw over the past 550,000 years. Nature 508, 378–382 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    11.
    Lee, E. et al. Multi-proxy records of Holocene hydroclimatic and environmental changes on the southern coast of South Korea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 545, 109642 (2020).
    Article  Google Scholar 

    12.
    Park, J. Solar and tropical ocean forcing of late-Holocene climate change in coastal East Asia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 469, 74–83 (2017).
    Article  Google Scholar 

    13.
    Constantine, M., Kim, M. & Park, J. Mid- to late Holocene cooling events in the Korean Peninsula and their possible impact on ancient societies. Quat. Res. 92, 98–108 (2019).
    CAS  Article  Google Scholar 

    14.
    Lim, J. et al. Holocene coastal environmental change and ENSO-driven hydroclimatic variability in East Asia. Quat. Sci. Rev. 220, 75–86 (2019).
    ADS  Article  Google Scholar 

    15.
    Yum, J. G., Takemura, K., Tokuoka, T. & Yu, K. M. Holocene environmental changes of the Hwajinpo Lagoon on the eastern coast of Korea. J. Paleolimnol. 29, 155–166 (2003).
    Article  Google Scholar 

    16.
    Cheung, R. C. W. et al. Decadal- to centennial-scale East Asian summer monsoon variability over the past millennium: An oceanic perspective. Geophys. Res. Lett. 45, 7711–7718 (2018).
    ADS  Article  Google Scholar 

    17.
    Fujiki, T. & Yasuda, Y. Vegetation history during the Holocene from Lake Hyangho, northeastern Korea. Quat. Int. 123–125, 63–69 (2004).
    Article  Google Scholar 

    18.
    Song, B. et al. Pollen record of the mid- to late-Holocene centennial climate change on the East coast of South Korea and its influential factors. J. Asian Earth Sci. 151, 240–249 (2018).
    ADS  Article  Google Scholar 

    19.
    Hwang, S., Kim, J.-Y. & Kim, S. Environmental changes and embankment addition of Reservoir Gonggeomji, Sangju City between Late Silla- and Early Goryeo dynasty. J. Korean Geomorphol. Assoc. 21, 165–180 (2014).
    Google Scholar 

    20.
    Jhun, J. & Moon, B. Restorations and analyses of rainfall amount observed by Chukwookee. Asia-Pacific J. Atmos. Sci. 33, 691–707 (1997).
    Google Scholar 

    21.
    Yoo, C., Park, M., Kim, H. J. & Jun, C. Comparison of annual maximum rainfall events of modern rain gauge data (1961–2010) and Chukwooki data (1777–1910) in Seoul Korea. J. Water Clim. Chang. 9, 58–73 (2018).
    Article  Google Scholar 

    22.
    Lim, J., Lee, J.-Y., Hong, S.-S. & Kim, J.-Y. Late Holocene flooding records from the floodplain deposits of the Yugu River South Korea. Geomorphology 180–181, 109–119 (2013).
    ADS  Article  Google Scholar 

    23.
    Li, J. et al. Quantitative Holocene climatic reconstructions for the lower Yangtze region of China. Clim. Dyn. 50, 1101–1113 (2018).
    Article  Google Scholar 

    24.
    Sun, J. et al. Quantitative precipitation reconstruction in the east-central monsoonal China since the late glacial period. Quat. Int. 521, 175–184 (2019).
    Article  Google Scholar 

    25.
    Stebich, M. et al. Holocene vegetation and climate dynamics of NE China based on the pollen record from Sihailongwan Maar Lake. Quat. Sci. Rev. 124, 275–289 (2015).
    ADS  Article  Google Scholar 

    26.
    Li, J. et al. East Asian summer monsoon precipitation variations in China over the last 9500 years: A comparison of pollen-based reconstructions and model simulations. The Holocene 26, 592–602 (2016).
    ADS  Article  Google Scholar 

    27.
    Cao, X. et al. Impacts of the spatial extent of pollen-climate calibration-set on the absolute values, range and trends of reconstructed Holocene precipitation. Quat. Sci. Rev. 178, 37–53 (2017).
    ADS  Article  Google Scholar 

    28.
    Wu, D. et al. Decoupled early Holocene summer temperature and monsoon precipitation in southwest China. Quat. Sci. Rev. 193, 54–67 (2018).
    ADS  Article  Google Scholar 

    29.
    Park, J. A modern pollen–temperature calibration data set from Korea and quantitative temperature reconstructions for the Holocene. The Holocene 21, 1125–1135 (2011).
    ADS  Article  Google Scholar 

    30.
    Tian, F. et al. Pollen-climate relationships in time (9 ka, 6 ka, 0 ka) and space (upland vs. lowland) in eastern continental Asia. Quat. Sci. Rev. 156, 1–11 (2017).
    ADS  Article  Google Scholar 

    31.
    Herzschuh, U. et al. Position and orientation of the westerly jet determined Holocene rainfall patterns in China. Nat. Commun. 10, 2376 (2019).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    32.
    Li, C., Wu, Y. & Hou, X. Holocene vegetation and climate in Northeast China revealed from Jingbo Lake sediment. Quat. Int. 229, 67–73 (2011).
    Article  Google Scholar 

    33.
    Hu, C. et al. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records. Earth Planet. Sci. Lett. 266, 221–232 (2008).
    ADS  CAS  Article  Google Scholar 

    34.
    Wen, R. et al. Holocene precipitation and temperature variations in the East Asian monsoonal margin from pollen data from Hulun Lake in northeastern Inner Mongolia China. Boreas 39, 262–272 (2010).
    Article  Google Scholar 

    35.
    Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991).
    ADS  Article  Google Scholar 

    36.
    Zhao, K. et al. Contribution of ENSO variability to the East Asian summer monsoon in the late Holocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 449, 510–519 (2016).
    Article  Google Scholar 

    37.
    Giry, C. et al. Mid- to late Holocene changes in tropical Atlantic temperature seasonality and interannual to multidecadal variability documented in southern Caribbean corals. Earth Planet. Sci. Lett. 331–332, 187–200 (2012).
    ADS  Article  CAS  Google Scholar 

    38.
    Viles, H. Interannual, decadal and multidecadal scale climatic variability and geomorphology. Earth-Science Rev. 61, 105–131 (2003).
    ADS  Article  Google Scholar 

    39.
    Lim, J. & Fujiki, T. Vegetation and climate variability in East Asia driven by low-latitude oceanic forcing during the middle to late Holocene. Quat. Sci. Rev. 30, 2487–2497 (2011).
    ADS  Article  Google Scholar 

    40.
    Williams, J. W., Post*, D. M., Cwynar, L. C., Lotter, A. F. & Levesque, A. J. Rapid and widespread vegetation responses to past climate change in the North Atlantic region. Geology 30, 971 (2002).
    ADS  CAS  Article  Google Scholar 

    41.
    Yu, Z. Late quaternary dynamics of tundra and forest vegetation in the southern niagara escarpment Canada. New Phytol. 157, 365–390 (2003).
    Article  Google Scholar 

    42.
    Yu, Z. Rapid response of forested vegetation to multiple climatic oscillations during the last deglaciation in the northeastern United States. Quat. Res. 67, 297–303 (2007).
    Article  Google Scholar 

    43.
    Richter, H. & Kituta, S. Ecophysiology of long-distance water transport in trees. in Trees in a Changing Environment- Ecophysiology, Adaptation, and Future Survival (eds. Tausz, M. & Grulke, N.) (Springer Nature, 2014).

    44.
    Johnson, M. T. & Agrawal, A. A. The ecological play of predator–prey dynamics in an evolutionary theatre. Trends Ecol. Evol. 18, 549–551 (2003).
    Article  Google Scholar 

    45.
    Tobolski, K. & Ammann, B. Macrofossils as records of plant responses to rapid Late Glacial climatic changes at three sites in the Swiss Alps. Palaeogeogr. Palaeoclimatol. Palaeoecol. 159, 251–259 (2000).
    Article  Google Scholar 

    46.
    Ammann, B. Biotic responses to rapid climatic changes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 159, 191–201 (2000).
    Article  Google Scholar 

    47.
    Walther, G. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).
    ADS  CAS  Article  PubMed  Google Scholar 

    48.
    Lischke, H., Lotter, A. F. & Fischlin, A. Untangling a Holocene pollen record with forest model simulations and independent climate data. Ecol. Modell. 150, 1–21 (2002).
    Article  Google Scholar 

    49.
    Steinhilber, F., Beer, J. & Fröhlich, C. Total solar irradiance during the Holocene. Geophys. Res. Lett. 36, L19704 (2009).
    ADS  Article  Google Scholar 

    50.
    Solanki, S. K., Usoskin, I. G., Kromer, B., Schüssler, M. & Beer, J. Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature 431, 1084–1087 (2004).
    ADS  CAS  Article  PubMed  Google Scholar 

    51.
    Yi, S. & Kim, J.-Y. Pollen analysis at Paju Unjeong, South Korea: Implications of land-use changes since the late Neolithic. The Holocene 22, 227–234 (2012).
    ADS  Article  Google Scholar 

    52.
    Yi, S., Yang, D.-Y. & Jia, H. Pollen record of agricultural cultivation in the west–central Korean Peninsula since the Neolithic Age. Quat. Int. 254, 49–57 (2012).
    Article  Google Scholar 

    53.
    Yi, S., Saito, Y., Zhao, Q. & Wang, P. Vegetation and climate changes in the Changjiang (Yangtze River) Delta, China, during the past 13,000 years inferred from pollen records. Quat. Sci. Rev. 22, 1501–1519 (2003).
    ADS  Article  Google Scholar 

    54.
    Kim, C. & Cheong, K. Research Report of Antiquities Vol. 204: Gonggeomji. Gyeongsangbukdo Institute of Cultural Properties, 230 p (2013) (in Korean).

    55.
    Ammann, B. et al. Quantification of biotic responses to rapid climatic changes around the Younger Dryas- a synthesis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 159, 313–347 (2000).
    Article  Google Scholar 

    56.
    Jo, K., Woo, K. S., Hong, G. H., Kim, S. H. & Suk, B. C. Rainfall and hydrological controls on speleothem geochemistry during climatic events (droughts and typhoons): an example from Seopdong Cave, Republic of Korea. Earth Planet. Sci. Lett. 295, 441–450 (2010).
    ADS  CAS  Article  Google Scholar 

    57.
    Danzeglocke, U., Joris, O. & Weninger, B. CalPal-2007online. Available at: https://www.calpal-online.de.

    58.
    Blaauw, M. Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat. Geochronol. 5, 512–518 (2010).
    Article  Google Scholar 

    59.
    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).
    CAS  Article  Google Scholar 

    60.
    Moore, P. D., Webb, J. A. & Collison, M. E. Pollen Analysis 2nd edn. (Blackwell Scientific Publications, Oxford, 1991).
    Google Scholar 

    61.
    Stockmarr, J. Tablets with spores used in absolute pollen analysis. Pollen Spores 13, 615–621 (1971).
    Google Scholar 

    62.
    Grimm, E. Tilia 1.7.16 Software. Illinois State Museum, Research and Collection Center, Springfield, II. (2011).

    63.
    Chevalier, M., Cheddadi, R. & Chase, B. M. CREST (Climate REconstruction SofTware): a probability density function (PDF)-based quantitative climate reconstruction method. Clim. Past 10, 2081–2098 (2014).
    Article  Google Scholar 

    64.
    Chevalier, M. Enabling possibilities to quantify past climate from fossil assemblages at a global scale. Glob. Planet. Change 175, 27–35 (2019).
    ADS  Article  Google Scholar 

    65.
    Lim, J., Yi, S., Nahm, W.-H. & Kim, J.-Y. Holocene millennial-scale vegetation changes in the Yugu floodplain, Kongju area, central South Korea. Quat. Int. 254, 92–98 (2012).
    Article  Google Scholar 

    66.
    Jung, S.-K. & McDonald, K. Visual gene developer: a fully programmable bioinformatics software for synthetic gene optimization. BMC Bioinformatics 12, 340 (2011).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    67.
    Singal developer. Signal: Signal processing. (2013).

    68.
    Polanco-Martinez, Josue, M., Medina-Elizalde, Martin, A., Goni, Maria, Fernanda, S. & Mudelsee, M. BINCOR: An R package for Estimating the Correlation between Two Unevenly Spaced Time Series. R J. 11, 170 (2019).

    69.
    Yim, T. & Kira, T. Distribution forest vegetation and climate in the Korea Peninsula. I. Distribution of some indices of thermal climate. Japanese J. Ecol. 25, 77–88 (1975).

    70.
    Steinhilber, F. et al. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. Proc. Natl. Acad. Sci. 109, 5967–5971 (2012).
    ADS  CAS  Article  PubMed  Google Scholar 

    71.
    Stott, L. et al. Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch. Nature 431, 56–59 (2004).
    ADS  CAS  Article  PubMed  Google Scholar 

    72.
    Moy, C. M., Seltzer, G. O., Rodbell, D. T. & Anderson, D. M. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, 162–165 (2002).
    ADS  CAS  Article  PubMed  Google Scholar  More

  • in

    Multiscale consensus habitat modeling for landscape level conservation prioritization

    1.
    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).
    CAS  Article  Google Scholar 
    2.
    Smeraldo, S. et al. Modelling risks posed by wind turbines and power lines to soaring birds: the black stork (Ciconia nigra) in Italy as a case study. Biodivers. Conserv. 29, 1959–1976 (2020).
    Article  Google Scholar 

    3.
    Gutierrez, B. L. et al. An island of wildlife in a human-dominated landscape: the last fragment of primary forest on the Osa Peninsula’s Golfo Dulce coastline Costa Rica. PLoS ONE 14, e0214390 (2019).
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    4.
    Padalia, H. et al. Assessment of historical forest cover loss and fragmentation in Asian elephant ranges in India. Environ. Monit. Assess. 191, 802 (2019).
    Article  Google Scholar 

    5.
    Sodhi, N. S., Lee, T. M., Koh, L. P. & Brook, B. W. A meta-analysis of the impact of anthropogenic forest disturbance on Southeast Asia’s biotas. Biotropica 41, 103–109 (2009).
    Article  Google Scholar 

    6.
    Beier, P. Determining minimum habitat areas and habitat corridors for cougars. Conserv. Biol. 7, 94–108 (1993).
    Article  Google Scholar 

    7.
    MacNally, R. & Bennett, A. F. Species-specific prediction of the impact of habitat fragmentation: local extinction of birds in the box-ironbark forests of central Victoria Australia. Biol. Conserv. 82, 147–155 (1997).
    Article  Google Scholar 

    8.
    Hanski, I. Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos 8, 209–219 (1999).
    Article  Google Scholar 

    9.
    Weaver, J. L., Paquet, P. C. & Ruggerio, L. F. Resilience and conservation of large carnivores in the Rocky Mountains. Conserv. Biol. 10, 964–976 (1996).
    Article  Google Scholar 

    10.
    Smith, J. B., Nielsen, C. K. & Hellgren, E. C. Suitable habitat for recolonizing large carnivores in the midwestern USA. Oryx 50, 555–564 (2016).
    Article  Google Scholar 

    11.
    Morehouse, A. T., Hughes, C., Manners, N., Bectell, J. & Bruder, T. Carnivores and communities: a case study of human-carnivore conflict mitigation in southwestern Alberta. Front. Ecol. Evol. 8, 2 (2020).
    Article  Google Scholar 

    12.
    Pelton, M. R. et al. American black bear conservation action plan in Bears (ed. Servheen, C., Herrero, S., & Peyton, B.) 144–146. Status survey and conservation action plan. (IUCN/SSC Bear and Polar Bear Specialist Groups, 1999).

    13.
    Williamson, D. F. In the Black: Status, Management, and Trade of the American Black Bear (Ursus americanus) in North America (TRAFFIC North America. World Wildlife Fund, Washington, DC, 2002).
    Google Scholar 

    14.
    Hristienko, H. & McDonald, J. E. Jr. Going into the 21st century: a perspective on trends and controversies in the management of the American black bear. Ursus 18, 72–88 (2007).
    Article  Google Scholar 

    15.
    Scheick, B. K. & McCown, W. Geographic distribution of American black bears in North America. Ursus 25, 24–33 (2014).
    Article  Google Scholar 

    16.
    Wright, S. Evolution and the genetics of populations (The University of Chicago Press, Chicago, 1984).
    Google Scholar 

    17.
    Wooding, J. B. & Hardisky, T. S. Home range, habitat use, and mortality of black bears in north-central Florida. Int. Conf. Bear Res. Manag. 9, 349–356 (1994).
    Google Scholar 

    18.
    Florida Game and Fresh Water Fish Commission. Management of the Black Bear in Florida: A Staff Report to the Commissioners (Florida Game and Fresh Water Fish Commission, Tallahassee, 1993).
    Google Scholar 

    19.
    Florida Fish and Wildlife Conservation Commission. Florida Black Bear Management Plan (Florida Game and Fresh Water Fish Commission, Tallahassee, 2019).
    Google Scholar 

    20.
    Dixon, J. D. Genetic consequences of habitat fragmentation and loss: the case of the Florida black bear (Ursus americanus floridanus). Conserv. Genet. 8, 455–464 (2007).
    Article  Google Scholar 

    21.
    Brown, J. H. Challenges in Estimating Size and Conservation of Black Bear in West-Central Florida. Thesis, University of Kentucky (2004)

    22.
    Humm, J. M., McCown, J. W., Scheick, B. K. & Clark, J. D. Spatially explicit population estimates for black bears based on cluster sampling. J. Wildl. Manag. 81, 1187–1201 (2017).
    Article  Google Scholar 

    23.
    Florida Fish and Wildlife Conservation Commission. Florida Black Bear Management Plan (Florida Game and Fresh Water Fish Commission, Tallahassee, 2012).
    Google Scholar 

    24.
    Carr, M. H. & Zwick, P. D. Technical Report Florida 2070: Mapping Florida’s Future—Alternative Patterns of Development in 2070 (Geoplan Center at the University of Florida, Gainesville, 2016).
    Google Scholar 

    25.
    Noss, R. E., Quiqley, H. B., Hornocker, M. G., Merrill, T. & Paquet, P. C. Conservation biology and carnivore conservation in the Rocky Mountains. Conserv. Biol. 10, 94–96 (1996).
    Google Scholar 

    26.
    Breitenmoser, U. Large predators in the Alps: the fall and rise of man’s competitors. Biol. Conserv. 83, 279–289 (1998).
    Article  Google Scholar 

    27.
    Waser, P. M. Patterns and consequences of dispersal in gregarious carnivores. In Carnivore Behavior, Ecology, and Evolution (ed. Gittleman, J. L.) 267–295 (Cornell University Press, Ithaca, 1996).
    Google Scholar 

    28.
    Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).
    Article  Google Scholar 

    29.
    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
    Article  Google Scholar 

    30.
    Yackulic, C. B. et al. Presence-only modelling using MAXENT: When can we trust the inferences?. Methods Ecol. Evol. 4, 236–243 (2013).
    Article  Google Scholar 

    31.
    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).
    Article  Google Scholar 

    32.
    De Oliveira Moreira, D. et al. The distributional ecology of the maned sloth: Environmental influences on its distribution and gaps in knowledge. PLoS ONE. 9, 1–12 (2014).
    Google Scholar 

    33.
    Martin, J. et al. Brown bear habitat suitability in the Pyrenees: transferability across sites and linking scales to make the most of scarce data. J. Appl. Ecol. 49, 621–631 (2012).
    Article  Google Scholar 

    34.
    Khosravi, R., Hemami, R. K. M. & Cushman, S. A. Multi-scale niche modeling of three sympatric felids of conservation importance in central Iran. Landsc. Ecol. 34, 2451–2467 (2019).
    Article  Google Scholar 

    35.
    Maehr, D. S., McCown, J. W., Land, E. D. & Roof, J. C. Southwest Florida Black Bear Habitat Use, Distribution, Movements, and Conservation Strategy (Florida Game and Fresh Water Fish Commission, Gainesville, 1992).
    Google Scholar 

    36.
    McCown, W., Kublis, P., Eason, T. & Scheick, B. Black Bear Movements and Habitat Use Relative to Roads in Ocala National Forest (Florida Fish and Wildlife Commission, Gainesville, 2004).
    Google Scholar 

    37.
    Dobey, S. Ecology of Florida black bears in the Okefenokee-Osceola ecosystem. Wildl. Monogr. 158, 1–41 (2005).
    Google Scholar 

    38.
    Ulrey, W. A. Home Range, Habitat Use, and Food Habits of the Black Bear in South-Central Florida. Thesis, University of Kentucky (2008)

    39.
    Karelus, D. L., McCown, J. W., Scheick, B. K., van de Kerk, M. & Oli, M. K. Home ranges and habitat selection by black bears in a newly colonized population in Florida. Southeast Nat. 15, 346–364 (2016).
    Article  Google Scholar 

    40.
    Karelus, D. L., McCown, J. W., Scheick, B. K. & Oli, M. K. Microhabitat features influencing habitat use by Florida black bears. Glob. Ecol. Conserv. 13, e00367 (2018).
    Article  Google Scholar 

    41.
    Olson, D. M. & Dinerstein, E. The Global 200: Priority ecoregions for global conservation. Ann. MO Bot. Gard. 89, 125–126 (2002).
    Article  Google Scholar 

    42.
    U.S. Census Bureau. Population and housing unite estimates vintage 2018. Washington, DC (2018).

    43.
    Burby, R. & May, P. Making Governments Plan (John Hopkins University Press, Baltimore, 1997).
    Google Scholar 

    44.
    Boarnet, M. G., McLaughlin, R. B. & Carruthers, J. I. Does state growth management change the pattern of urban growth? Evidence from Florida. Reg. Sci. Urban Econ. 41, 236–252 (2011).
    Article  Google Scholar 

    45.
    Seibert, S. G. Status and Management of Black Bears in Apalachicola National Forest (Florida Game and Fresh Water Fish Commission, Gainesville, 2013).
    Google Scholar 

    46.
    Land, E. D. Southwest Florida Black Bear Habitat Use, Distribution, Movements, and Conservation Strategy (Florida Game and Fresh Water Fish Commission, Tallahassee, 1994).
    Google Scholar 

    47.
    McCown, W., Eason, T. H. & Cunningham, M. W. Black Bear Movements and Habitat Use Relative to Roads in Ocala National Forest (Florida Fish and Wildlife Conservation Commission, Gainesville, 2001).
    Google Scholar 

    48.
    Stratman, M. R., Alden, C. D., Pelton, M. R. & Sunquist, M. E. Habitat use by American black bears in the sandhills of Florida. Ursus 12, 109–114 (2001).
    Google Scholar 

    49.
    Maehr, D. W. et al. Spatial characteristics of an isolated Florida black bear population. Southeast Nat. 2, 433–446 (2003).
    Article  Google Scholar 

    50.
    Orlando, M. A. The Ecology and Behavior of an Isolated Black Bear Population in West Central Florida. Thesis, University of Kentucky (2003)

    51.
    Annis, K. M. The Impact of Translocation on Nuisance Florida Black Bears. Thesis, University of Florida (2007).

    52.
    Neils, A. M. Florida Black Bear (Ursus americanus floridanus) at the Urban-Wildlife Interface: Are They Different? Thesis, University of Florida (2011).

    53.
    Guthrie, J. M. Modeling Movement Behavior and Road Crossing the Black Bear of South Central Florida. Thesis, University of Kentucky (2012).

    54.
    Baruch-Mordo, S. et al. Stochasticity in natural forage production affects use of urban areas by black bears: implications to management of human-bear conflicts. PLoS ONE 9, e85122 (2014).
    ADS  PubMed Central  Article  CAS  PubMed  Google Scholar 

    55.
    Lewis, J. S., Rachlow, J. L., Garton, E. O. & Vierling, L. A. Effects of habitat on GPS collar performance: using data screening to reduce location error. J. Appl. Ecol. 44, 663–671 (2007).
    Article  Google Scholar 

    56.
    Clark, J. D., Laufenberg, J. S., Davidson, M. & Murrow, J. L. Connectivity among subpopulations of Louisiana black bears as estimated by a step selection function. J. Wildl. Manage. 79, 1347–1360 (2015).
    Article  Google Scholar 

    57.
    Beumer, L. T., van Beest, F. M., Stelvig, M. & Schmidt, N. M. Spatiotemproal dynamics in habitat suitability of a large Arctic herbivore: environmental heterogeneity is key to a sedentary lifestyle. Glob. Ecol. Conserv. 18, e00647 (2019).
    Article  Google Scholar 

    58.
    Hinton, J. W. et al. Space use and habitat selection by resident and transient red wolves (Canis rufus). PLoS ONE 11, e0167603 (2016).
    PubMed Central  Article  CAS  PubMed  Google Scholar 

    59.
    Fourcade, Y., Engler, J. O., Rodder, D. & Secondi, J. Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS ONE 9, e97122 (2014).
    ADS  PubMed Central  Article  CAS  PubMed  Google Scholar 

    60.
    Pellerin, M., Said, S. & Gaillard, J.-M. Roe deer Capreolus capreolus home-range sizes estimated from VHF and GPS data. Wildl. Biol. 14, 101–110 (2009).
    Article  Google Scholar 

    61.
    Signer, J., Fieberg, J. & Avgar, T. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol. 9, 880–890 (2019).
    PubMed Central  Article  PubMed  Google Scholar 

    62.
    Maehr, D. S. & Brady, J. R. Food habits of Florida black bears. J. Wildl. Manag. 48, 230–235 (1984).
    Article  Google Scholar 

    63.
    Hellgren, E. C., Vaughan, M. R. & Stauffer, D. F. Macrohabitat use by black bears in a southeastern wetland. J Wildl. Manag. 55, 442–448 (1991).
    Article  Google Scholar 

    64.
    Karelus, D. L. et al. Effects of environmental factors and landscape features on movement patterns of Florida black bears. J. Mammal. 98, 1463–1478 (2017).
    Article  Google Scholar 

    65.
    Florida Natural Areas Inventory. Florida Forever Board of Trustees Projects (2018).

    66.
    McGarigal, K., Cushman, S. A. & Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. University of Massachusetts, Amherst, MA. https://www.umass.edu/landeco/research/fragstats/fragstats.html. (2012).

    67.
    Riley, S. J., DeGloria, S. D. & Elliot, R. A terrain ruggedness index that quantifies topographic heterogeneity. Intermt. J. Sci. 5, 1–4 (1999).
    Google Scholar 

    68.
    Clark, J. D., Dunn, J. E. & Smith, K. G. A multivariate model of female black bear habitat use for a geographic information system. J. Wildl. Manag. 57, 519–526 (1993).
    Article  Google Scholar 

    69.
    U.S. Geological Survey. National Elevation Dataset. Washington, DC (2016).

    70.
    Ditmer, M. A., Noyce, K. V., Fieberg, J. R. & Garshelisa, D. L Delineating the ecological and geographic edge of an opportunist: The American black bear exploiting an agricultural landscape. Ecol. Model. 387, 205–219 (2018).
    Article  Google Scholar 

    71.
    U.S. Department of Agriculture National Agriculture Statistics Service. Census of Agriculture, Ag Census Web Maps. Washington, DC (2016).

    72.
    Hostetler, J. A. et al. Demographic consequences of anthropogenic influences: Florida black bears in north-central Florida. Biol. Conserv. 142, 2456–2463 (2009).
    Article  Google Scholar 

    73.
    Center for International Earth Science Information Network – CIESIN – Columbia University. Gridded Population of the World, Version 4 (GPWv4): Population Density. Palisades, NY (2016).

    74.
    Brody, A. J. & Pelton, M. R. Effects of roads on black bears in western North Carolina. Wildl. Soc. B 17, 5–10 (1989).
    Google Scholar 

    75.
    U.S. Census Bureau. TIGER/Line Shapefiles (machine readable data files). Washington DC (2016).

    76.
    U.S. Geological Survey. National Hydrology Dataset. Washington, DC (2018).

    77.
    U.S. Fish & Wildlife Service. National Wetlands Inventory Data. St Petersburg, FL (2018).

    78.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2019).

    79.
    Esri. ArcGIS Desktop: Release 10.4. Redlands, CA: Environmental Systems Research Institute (2015).

    80.
    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).
    Article  Google Scholar 

    81.
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
    Article  Google Scholar 

    82.
    Calenge, C. The package adehabitat for the R software: a tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 516–519 (2016).
    Article  Google Scholar 

    83.
    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).
    Article  Google Scholar 

    84.
    Phillips, S. J., Dudik, M., & Schapire, R. E. A maximum entropy approach to species distribution modeling in Proceedings of the twenty-first international conference on machine learning (technical coordinators Greiner, R. & Schuurmans, D.) 655–662 (ACM Press, 2004).

    85.
    Hernandez, P. A. et al. Predicting species distributions in poorly-studied landscapes. Biodivers. Conserv. 17, 1353–1366 (2008).
    Article  Google Scholar 

    86.
    Poor, E. E., Loucks, C., Jakes, A. & Urban, D. L. Comparing habitat suitability and connectivity modeling methods for conserving pronghorn migrations. PLoS ONE 7, e49390 (2012).
    ADS  CAS  PubMed Central  Article  PubMed  Google Scholar 

    87.
    Duan, R.-Y., Kong, X.-Q., Huang, M.-Y., Fan, W.-Y. & Wang, Z.-G. The predictive performance and stability of six species distribution models. PLoS ONE 9, e112764 (2014).
    ADS  PubMed Central  Article  CAS  PubMed  Google Scholar 

    88.
    Zhang, J. et al. MaxEnt modeling for predicting the spatial distribution of three raptors in the Sanjiangyuan National Park China. Ecol. Evol. 9, 6643–6654 (2019).
    PubMed Central  Article  PubMed  Google Scholar 

    89.
    Bertolino, S. et al. Spatially-explicit models as tools for implementing effective management strategies for invasive alien mammals. Mammal. Rev. 50, 87–199 (2020).
    Google Scholar 

    90.
    Alsamadisi, A. G., Tran, L. T. & Papes, M. Employing inferences across scales: integrating spatial data with different resolutions to enhance Maxent models. Ecol. Model. 415, 108857 (2020).
    Article  Google Scholar 

    91.
    Peralvo, M. F., Cuesta, F. & van Manen, F. Delineating priority habitat areas for the conservation of Andean bears in northern Ecuador. Ursus 16, 222–233 (2005).
    Article  Google Scholar 

    92.
    Mahalanobis, P. C. On the generalized distance in statistics. Proc. Natl. Aacd. Sci. India 2, 49–55 (1936).
    MATH  Google Scholar 

    93.
    Browning, D. M., Beaupre, S. J. & Duncan, L. Using partitioned Mahalanobis D2 (K) to formulate a GIS-based model of timber rattlesnake hibernacula. J. Wildl. Manag. 69, 33–44 (2005).
    Article  Google Scholar 

    94.
    Griffin, S. C., Taper, M. L., Hoffman, R. & Mills, L. S. Ranking Mahalanobis Distance models for predictions of occupancy from presence-only data. J. Wildl. Manag. 74, 1112–1121 (2010).
    Article  Google Scholar 

    95.
    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).
    Article  Google Scholar 

    96.
    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).
    Article  Google Scholar 

    97.
    Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300 (2002).
    Article  Google Scholar 

    98.
    Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).
    Article  Google Scholar 

    99.
    Murrow, J. L. & Clark, J. D. Effects of hurricanes Katrina and Rita on Louisiana black bear habitat. Ursus 23, 192–205 (2012).
    Article  Google Scholar 

    100.
    Sing, T., Sander, O., Beerenwinkel, N. & Lengauer, T. ROCR: visualizing classifier performance in R. Bioinformatics 21, 7881 (2005).
    Article  CAS  Google Scholar 

    101.
    Broennimann, B. & Di Cola, V. A. ecospat: Spatial Ecology Miscellaneous Methods. R package version 3.0 (2018).

    102.
    Liu, C., White, M. & Newell, G. Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 40, 778–789 (2013).
    Article  Google Scholar 

    103.
    Hellgren, E. C., Bales, S. L., Gregory, M. S., Leslie, D. M. Jr. & Clark, J. D. Testing a Mahalanobis Distance model of black bear habitat use in the Ouichita Mountains of Oklahoma. J. Wildl. Manag. 71, 924–928 (2007).
    Article  Google Scholar 

    104.
    Murrow, J. L., Thatcher, C. A., van Manen, F. T. & Clark, J. A data-based conservation planning tool for Florida Panthers. Environ. Model. Assess. 18, 159–170 (2013).
    Article  Google Scholar 

    105.
    NOAA Office for Coastal Management. Detailed method for mapping sea level rise inundation. (NOAA, 2017).

    106.
    Pelton, M. R. 2003. Black bear. In Wild Mammals of North America: Biology, Management, and Conservation (eds Feldhamer, J. A. et al.) 547–555 (Johns Hopkins University, Baltimore, 2003).
    Google Scholar 

    107.
    Thuiller, W., Brotons, L., Araujo, M. B. & Lavorel, S. Effects of restricting environmental range of data to project current and future species distributions. Ecography 27, 165–172 (2004).
    Article  Google Scholar 

    108.
    Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28, 385–393 (2005).
    Article  Google Scholar 

    109.
    Kopp, R. E. et al. Probalistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth’s Future 2, 383–406 (2014).
    ADS  Article  Google Scholar 

    110.
    Xiao, H. & Tang, Y. Assess the “superposed” effects of storm surge from a Category 3 hurricane. and continuous sea-level rise on saltwater intrusion into the surficial aquifer in coastal east-central Florida (USA). Environ. Sci. Pollut Res. 26, 21882–21889 (2019).
    CAS  Article  Google Scholar 

    111.
    Laurance, W. F. et al. A global strategy for road building. Nature 513, 229–234 (2014).
    ADS  CAS  Article  Google Scholar 

    112.
    Mukul, S. A. et al. Combined effects of climate change and sea-level rise project dramatic habitat loss of the globally endangered Bengal tiger in the Bangladesh Sundarbans. Sci. Total Environ. 663, 830–840 (2019).
    ADS  CAS  Article  Google Scholar 

    113.
    Poor, E. E., Shao, Y. & Kelly, M. J. Mapping and predicting forest loss in a Sumatran tiger landscape from 2002 to 2050. J. Environ. Manag. 231, 397–404 (2019).
    Article  Google Scholar 

    114.
    Durner, G. M. et al. Predicting 21st-century polar bear habitat distribution from global climate models. Ecol. Monogr. 79, 25–58 (2009).

    115.
    Yovovich, V., Allen, M. L., Macaulay, L. T. & Wilmers, C. C. Using spatial characteristics of apex carnivore communication and reproductive behaviors to predict responses to future human development. Biodivers. Conserv. 29, 2589–2603 (2020).
    Article  Google Scholar 

    116.
    Muhly, T. B. et al. Functional response of wolves to human development across boreal North America. Ecol. Evol. 9, 10801–10815 (2019).
    PubMed Central  Article  PubMed  Google Scholar 

    117.
    Zeller, K. A., Wattles, D. W., Conlee, L. & Destefano, S. Response of female black bears to a high-density road network and identification of long-term road mitigation sites. Anim. Conserv. https://doi.org/10.1111/acv.12621 (2020).
    Article  Google Scholar 

    118.
    Morales-González, A., Ruiz-Villar, H., Ordiz, A. & Penteriani, V. Large carnivores living alongside humans: Brown bears in human-modified landscapes. Glob. Ecol. Conserv. 22, 1–13 (2020).
    Google Scholar 

    119.
    Maletzke, B. et al. Cougar response to a gradient of human development. Ecosphere 8, 1–14 (2017).
    Article  Google Scholar 

    120.
    Barrington-Leigh, C. & Millard-Ball, A. A century of sprawl in the United States. PNAS https://doi.org/10.1073/pnas.1504033112 (2015).
    Article  Google Scholar  More

  • in

    Conspecific recognition of pedal scent in domestic dogs

    1.
    Owen, M. A. et al. An experimental investigation of chemical communication in the polar bear. J. Zool. 295, 36–43. https://doi.org/10.1111/jzo.12181 (2015).
    Article  Google Scholar 
    2.
    Yasui, T., Tsukise, A. & Meyer, W. Histochemical analysis of glycoconjugates in the eccrine glands of the raccoon digital pads. Eur. J. Histochem. 48, 393–402 (2009).
    Google Scholar 

    3.
    Meyer, W. & Bartels, T. Histochemical study on the eccrine glands in the foot pad of the cat. Basic Appl. Histochem. 33, 219–238 (1989).
    CAS  PubMed  Google Scholar 

    4.
    Meyer, W. & Tsukise, A. Lectin histochemistry of snout skin and foot pads in the wolf and the domesticated dog (Mammalia: Canidae). Ann. Anat. Anatomischer Anzeiger 177, 39–49. https://doi.org/10.1016/S0940-9602(11)80129-9 (1995).
    CAS  Article  PubMed  Google Scholar 

    5.
    Parillo, F. & Diverio, S. Glycocomposition of the apocrine interdigital gland secretions in the fallow deer (Dama dama). Res. Vet. Sci. 86, 194–199. https://doi.org/10.1016/j.rvsc.2008.08.004 (2009).
    CAS  Article  PubMed  Google Scholar 

    6.
    Müller-Schwarze, D., Källquist, L., Mossing, T., Brundin, A. & Andersson, G. Responses of reindeer to interdigital secretions of conspecifics. J. Chem. Ecol. 4, 325–335. https://doi.org/10.1007/bf00989341 (1978).
    Article  Google Scholar 

    7.
    Sergiel, A. et al. Histological, chemical and behavioural evidence of pedal communication in brown bears. Sci. Rep. 7, 1052. https://doi.org/10.1038/s41598-017-01136-1 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    8.
    Kruuk, H. Otters: Ecology, Behaviour and Conservation (Oxford University Press, Oxford, 2006).
    Google Scholar 

    9.
    Gorman, M. L. & Trowbridge, B. J. in Carnivore Behavior, Ecology, and Evolution (ed John L. Gittleman) 57–88 (Springer, New York, 1989).

    10.
    Spotte, S. Societies of Wolves and Free-Ranging Dogs (Cambridge University Press, Cambridge, 2012).
    Google Scholar 

    11.
    Sillero-Zubiri, C. & Macdonald, D. W. Scent-marking and territorial behaviour of Ethiopian wolves Canis simensis. J. Zool. 245, 351–361. https://doi.org/10.1111/j.1469-7998.1998.tb00110.x (1998).
    Article  Google Scholar 

    12.
    Cassidy, K. A., Mech, L. D., MacNulty, D. R., Stahler, D. R. & Smith, D. W. Sexually dimorphic aggression indicates male gray wolves specialize in pack defense against conspecific groups. Behav. Proc. 136, 64–72. https://doi.org/10.1016/j.beproc.2017.01.011 (2017).
    Article  Google Scholar 

    13.
    Rothman, R. J. & Mech, L. D. Scent-marking in lone wolves and newly formed pairs. Anim. Behav. 27, 750–760. https://doi.org/10.1016/0003-3472(79)90010-1 (1979).
    Article  Google Scholar 

    14.
    Udell, M. A. R., Dorey, N. R. & Wynne, C. D. L. What did domestication do to dogs? A new account of dogs’ sensitivity to human actions. Biol. Rev. 85, 327–345. https://doi.org/10.1111/j.1469-185X.2009.00104.x (2010).
    Article  PubMed  Google Scholar 

    15.
    Miklósi, Á. Dog Behaviour, Evolution, and Cognition 2nd edn. (Oxford University Press, Oxford, 2015).
    Google Scholar 

    16.
    Rosell, F. Secrets of the Snout: The Dog’s Incredible Nose (University of Chicago Press, Chicago, 2018).
    Google Scholar 

    17.
    Dunbar, I. F. Olfactory preferences in dogs: the response of male and female beagles to conspecific odors. Behav. Biol. 20, 471–481 (1977).
    CAS  Article  PubMed  Google Scholar 

    18.
    Lisberg, A. E. & Snowdon, C. T. Effects of sex, social status and gonadectomy on countermarking by domestic dogs, Canis familiaris. Anim. Behav. 81, 757–764. https://doi.org/10.1016/j.anbehav.2011.01.006 (2011).
    Article  Google Scholar 

    19.
    Ranson, E. & Beach, F. A. Effects of testosterone on ontogeny of urinary behavior in male and female dogs. Horm. Behav. 19, 36–51. https://doi.org/10.1016/0018-506X(85)90004-2 (1985).
    CAS  Article  PubMed  Google Scholar 

    20.
    Natynczuk, S., Bradshaw, J. W. S. & McDonald, D. W. Chemical constituents of the anal sacs of domestic dogs. Biochem. Syst. Ecol. 17, 83–87. https://doi.org/10.1016/0305-1978(89)90047-1 (1989).
    CAS  Article  Google Scholar 

    21.
    Sherman, C. K., Reisner, I. R., Taliaferro, L. A. & Houpt, K. A. Characteristics, treatment, and outcome of 99 cases of aggression between dogs. Appl. Anim. Behav. Sci. 47, 91–108. https://doi.org/10.1016/0168-1591(95)01013-0 (1996).
    Article  Google Scholar 

    22.
    Pal, S. K., Ghosh, B. & Roy, S. Agonistic behaviour of free-ranging dogs (Canis familiaris) in relation to season, sex and age. Appl. Anim. Behav. Sci. 59, 331–348. https://doi.org/10.1016/S0168-1591(98)00108-7 (1998).
    Article  Google Scholar 

    23.
    Trisko, R. K., Sandel, A. A. & Smuts, B. Affiliation, dominance and friendship among companion dogs. Behaviour 153, 693–725. https://doi.org/10.1163/1568539X-00003352 (2016).
    Article  Google Scholar 

    24.
    Rosvall, K. A. Intrasexual competition in females: evidence for sexual selection?. Behav. Ecol. 22, 1131–1140. https://doi.org/10.1093/beheco/arr106 (2011).
    Article  PubMed  PubMed Central  Google Scholar 

    25.
    Beach, F. A. Coital behaviour in dogs. VIII. Social affinity, dominance and sexual preference in the bitch. Behaviour 36, 131. https://doi.org/10.1163/156853970X00088 (1970).
    Article  Google Scholar 

    26.
    Pageat, P. & Gaultier, E. Current research in canine and feline pheromones. Vet. Clin. Small Anim. Pract. 33, 187–211. https://doi.org/10.1016/s0195-5616(02)00128-6 (2003).
    Article  Google Scholar 

    27.
    Bekoff, M. Ground scratching by male domestic dogs: a composite signal. J. Mammal. 60, 847–848. https://doi.org/10.2307/1380206 (1979).
    Article  Google Scholar 

    28.
    Hepper, P. & Wells, D. in Handbook of Olfaction and Gustation (ed Richard Doty) 591–604 (Wiley-Blackwell, 2015).

    29.
    Nicolaides, N. Skin lipids: their biochemical uniqueness. Science 186, 19–26 (1974).
    ADS  CAS  Article  PubMed  Google Scholar 

    30.
    Fierer, N., Hamady, M., Lauber, C. L. & Knight, R. The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc. Natl. Acad. Sci. 105, 17994–17999. https://doi.org/10.1073/pnas.0807920105 (2008).
    ADS  Article  PubMed  Google Scholar 

    31.
    Craig, A. Forebrain emotional asymmetry: a neuroanatomical basis?. Trends Cognit. Sci. 9, 566–571. https://doi.org/10.1016/j.tics.2005.10.005 (2005).
    Article  Google Scholar 

    32.
    Royet, J.-P. & Plailly, J. Lateralization of olfactory processes. Chem. Senses 29, 731–745. https://doi.org/10.1093/chemse/bjh067 (2004).
    Article  PubMed  Google Scholar 

    33.
    Siniscalchi, M. et al. Sniffing with the right nostril: lateralization of response to odour stimuli by dogs. Anim. Behav. 82, 399–404. https://doi.org/10.1016/j.anbehav.2011.05.020 (2011).
    Article  Google Scholar 

    34.
    Lisberg, A. E. & Snowdon, C. T. The effects of sex, gonadectomy and status on investigation patterns of unfamiliar conspecific urine in domestic dogs, Canis familiaris. Anim. Behav. 77, 1147–1154. https://doi.org/10.1016/j.anbehav.2008.12.033 (2009).
    Article  Google Scholar 

    35.
    Fanjul, M. S., Zenuto, R. R. & Busch, C. Use of olfaction for sexual recognition in the subterranean rodent Ctenomys talarum. Acta theriologica 48, 35–46 (2003).
    Article  Google Scholar 

    36.
    Hart, B. L. Environmental and hormonal influences on urine marking behavior in the adult male dog. Behav. Biol. 11, 167–176. https://doi.org/10.1016/S0091-6773(74)90321-6 (1974).
    CAS  Article  PubMed  Google Scholar 

    37.
    Johnston, R. E., Derzie, A., Chiang, G., Jernigan, P. & Lee, H.-C. Individual scent signatures in golden hamsters: evidence for specialization of function. Anim. Behav. 45, 1061–1070. https://doi.org/10.1006/anbe.1993.1132 (1993).
    Article  Google Scholar 

    38.
    Gilfillan, G. D., Vitale, J. D., McNutt, J. W. & McComb, K. Spontaneous discrimination of urine odours in wild African lions, Panthera leo. Anim. Behav. 126, 177–185. https://doi.org/10.1016/j.anbehav.2017.02.003 (2017).
    Article  Google Scholar 

    39.
    Rostain, R. R., Ben-David, M., Groves, P. & Randall, J. A. Why do river otters scent-mark? An experimental test of several hypotheses. Anim. Behav. 68, 703–711. https://doi.org/10.1016/j.anbehav.2003.10.027 (2004).
    Article  Google Scholar 

    40.
    Blundell, G. M., Ben-David, M. & Bowyer, R. T. Sociality in river otters: cooperative foraging or reproductive strategies?. Behav. Ecol. 13, 134–141. https://doi.org/10.1093/beheco/13.1.134 (2002).
    Article  Google Scholar 

    41.
    Mills, M. Behavioural mechanisms in territory and group maintenance of the brown hyaena, Hyaena brunnea, in the southern Kalahari. Anim. Behav. 31, 503–510. https://doi.org/10.1016/s0003-3472(83)80072-4 (1983).
    Article  Google Scholar 

    42.
    Boydston, E. E., Morelli, T. L. & Holekamp, K. E. Sex differences in territorial behavior exhibited by the spotted hyena (Hyaenidae, Crocuta crocuta). Ethology 107, 369–385. https://doi.org/10.1046/j.1439-0310.2001.00672.x (2001).
    Article  Google Scholar 

    43.
    Bamberger, M. & Houpt, K. A. Signalment factors, comorbidity, and trends in behavior diagnoses in dogs: 1,644 cases (1991–2001). J. Am. Vet. Med. Assoc. 229, 1591–1601. https://doi.org/10.2460/javma.229.10.1591 (2006).
    Article  PubMed  Google Scholar 

    44.
    Starling, M. J., Branson, N., Thomson, P. C. & McGreevy, P. D. Age, sex and reproductive status affect boldness in dogs. Vet. J. 197, 868–872. https://doi.org/10.1016/j.tvjl.2013.05.019 (2013).
    Article  PubMed  Google Scholar 

    45.
    Bodnariu, A. L. I. N. A. Indicators of stress and stress assessment in dogs. Lucr. Stiint. Med. Vet. 41, 20–26 (2008).
    Google Scholar 

    46.
    Pal, S. K. Factors influencing intergroup agonistic behaviour in free-ranging domestic dogs (Canis familiaris). Acta Ethol. 18, 209–220. https://doi.org/10.1007/s10211-014-0208-2 (2015).
    Article  Google Scholar 

    47.
    Derix, R. et al. Male and female mating competition in wolves: female suppression vs. male intervention. Behaviour 127(1–2), 141–174 (1993).
    Article  Google Scholar 

    48.
    Udell, M. A. R. & Wynne, C. D. L. A review of domestic dogs’ (Canis familiaris) human-like behaviors: or why behavior analysts should stop worrying and love their dogs. J. Exp. Anal. Behav. 89, 247–261. https://doi.org/10.1901/jeab.2008.89-247 (2008).
    Article  PubMed  PubMed Central  Google Scholar 

    49.
    Kubinyi, E., Turcsán, B. & Miklósi, Á. Dog and owner demographic characteristics and dog personality trait associations. Behav. Proc. 81, 392–401. https://doi.org/10.1016/j.beproc.2009.04.004 (2009).
    Article  Google Scholar 

    50.
    Siniscalchi, M., d’Ingeo, S. & Quaranta, A. The dog nose “KNOWS” fear: asymmetric nostril use during sniffing at canine and human emotional stimuli. Behav. Brain Res. 304, 34–41. https://doi.org/10.1016/j.bbr.2016.02.011 (2016).
    Article  PubMed  Google Scholar 

    51.
    Peters, R. & Mech, L. D. in Wolf and Man (eds Roberta L. Hall & Henry S. Sharp) 133–147 (Academic Press, 1978).

    52.
    Thoß, M. et al. Regulation of volatile and non-volatile pheromone attractants depends upon male social status. Sci. Rep. 9, 489. https://doi.org/10.1038/s41598-018-36887-y (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    53.
    Samuel, L. et al. Fears from the past? The innate ability of dogs to detect predator scents. Anim. Cognit. 23, 1–9 (2020).
    Article  Google Scholar 

    54.
    Thomsett, L. R. Structure of canine skin. Br. Vet. J. 142(2), 116–123 (1986).
    CAS  Article  PubMed  Google Scholar 

    55.
    Traniello, J. F. & Bakker, T. C. Minimizing observer bias in behavioral research: blinded methods reporting requirements for behavioral ecology and sociobiology. Behav. Ecol. 69, 1573–1574. https://doi.org/10.1007/s00265-015-2001-2 (2015).
    Article  Google Scholar 

    56.
    Fugazza, C. & Miklósi, Á. Domestic dog cognition and behavior 177–200 (Springer, Berlin, 2014).
    Google Scholar 

    57.
    Siniscalchi, M., Bertino, D. & Quaranta, A. Laterality and performance of agility-trained dogs. Later. Asymmetries Body Br. Cognit. 19, 219–234. https://doi.org/10.1080/1357650X.2013.794815 (2014).
    Article  Google Scholar 

    58.
    McKinley, J. & Sambrook, T. D. Use of human-given cues by domestic dogs (Canis familiaris) and horses (Equus caballus). Anim. Cogn. 3, 13–22. https://doi.org/10.1007/s100710050046 (2000).
    Article  Google Scholar 

    59.
    Johnen, D., Heuwieser, W. & Fischer-Tenhagen, C. An approach to identify bias in scent detection dog testing. Appl. Anim. Behav. Sci. 189, 1–12 (2017).
    Article  Google Scholar 

    60.
    Mulholland, M. M., Olivas, V. & Caine, N. G. The nose may not know: dogs’ reactions to rattlesnake odours. Appl. Anim. Behav. Sci. 204, 108–112. https://doi.org/10.1016/j.applanim.2018.04.001 (2018).
    Article  Google Scholar 

    61.
    Greer, K. A., Canterberry, S. C. & Murphy, K. E. Statistical analysis regarding the effects of height and weight on life span of the domestic dog. Res. Vet. Sci. 82, 208–214. https://doi.org/10.1016/j.rvsc.2006.06.005 (2007).
    Article  PubMed  Google Scholar 

    62.
    Gardner, M. & McVety, D. Treatment and Care of the Geriatric Veterinary Patient (Wiley, Hoboken, 2017).
    Google Scholar 

    63.
    Crowley, J. & Adelman, B. The Complete Dog Book: Official Publication of the American Kennel Club (Howell House, New York, 1998).
    Google Scholar 

    64.
    Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794. https://doi.org/10.7717/peerj.4794 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    65.
    MuMIn: Multi-Model Inference (2018).

    66.
    Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35. https://doi.org/10.1007/s00265-010-1029-6 (2011).
    Article  Google Scholar 

    67.
    Anderson, D. R. Model Based Inference in the Life Sciences: A Primer on Evidence (Springer, Berlin, 2007).
    Google Scholar 

    68.
    Cumming, G. Understanding the New Statistics: Effect Sizes, Confidence Intervals, and Meta-Analysis (Routledge, London, 2013).
    Google Scholar 

    69.
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biomet. J. 50, 346–363. https://doi.org/10.1002/bimj.200810425 (2008).
    MathSciNet  Article  MATH  Google Scholar  More

  • in

    Reference transcriptomes and comparative analyses of six species in the threatened rosewood genus Dalbergia

    1.
    Vatanparast, M. et al. First molecular phylogeny of the pantropical genus Dalbergia: implications for infrageneric circumscription and biogeography. S. Afr. J. Bot. 89, 143–149 (2013).
    CAS  Article  Google Scholar 
    2.
    Saha, S. et al. Ethnomedicinal, phytochemical, and pharmacological profile of the genus Dalbergia L. (Fabaceae). Phytopharmacology 4, 291–346 (2013).
    Google Scholar 

    3.
    Sprent, J. I. Legume Nodulation: A Global Perspective (Wiley, Hoboken, 2009).
    Google Scholar 

    4.
    Bhagwat, R. M., Dholakia, B. B., Kadoo, N. Y., Balasundaran, M. & Gupta, V. S. Two new potential barcodes to discriminate Dalbergia species. PLoS ONE 10, 1–18 (2015).
    Article  CAS  Google Scholar 

    5.
    EIA. Routes of Extinction: The Corruption and Violence Destroying SIAMESE Rosewood in the Mekong (Environmental Investigation Agency, London, 2014).
    Google Scholar 

    6.
    EIA. The Hongmu Challenge: A Briefing for the 66th Meeting of the CITES Standing Committee, January 2016 (2016).

    7.
    Winfield, K., Scott, M. & Graysn, C. Global status of Dalbergia and Pterocarpus rosewood producing species in trade. in Convention on International Trade in Endangered Species 17th Conference of Parties – Johannesburg (2016).

    8.
    Bentham, G. Synopsis of Dalbergieae, a Tribe of Leguminosae. J. Proc. Linn. Soc. Lond. Bot. 4, 1–128 (1860).
    MathSciNet  Article  Google Scholar 

    9.
    Lavin, M. et al. The dalbergioid legumes (Fabaceae): delimitation of a pantropical monophyletic clade. Am. J. Bot. 88, 503 (2001).
    CAS  Article  PubMed  Google Scholar 

    10.
    Hartvig, I. et al. Population genetic structure of the endemic rosewoods Dalbergia cochinchinensis and D. oliveri at a regional scale reflects the Indochinese landscape and life-history traits. Ecol. Evol. 8, 530–545 (2018).
    Article  PubMed  Google Scholar 

    11.
    Hartvig, I., Czako, M., Kjær, E. D., Nielsen, L. R. & Theilade, I. The use of DNA barcoding in identification and conservation of rosewood (Dalbergia spp.). PLoS ONE 10, e0138231 (2015).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    12.
    Wattoo, J. I., Saleem, M. Z., Shahzad, M. S., Arif, A. & Hameed, A. DNA barcoding: amplification and sequence analysis of rbcl and matK genome regions in three divergent plant species. Adv. Life Sci. 4, 03–07 (2016).
    CAS  Google Scholar 

    13.
    Phong, D. T., Tang, D. V., Hien, V. T. T., Ton, N. D. & Van, H. N. Nucleotide diversity of a nuclear and four chloroplast DNA regions in rare tropical wood species of dalbergia in Vietnam: a DNA barcode identifying utility. Asian J. Appl. Sci. 02, 116–125 (2014).
    Google Scholar 

    14.
    Resende, L. C., Ribeiro, R. A. & Lovato, M. B. Diversity and genetic connectivity among populations of a threatened tree (Dalbergia nigra) in a recently fragmented landscape of the Brazilian Atlantic Forest. Genetica 139, 1159–1168 (2011).
    Article  PubMed  Google Scholar 

    15.
    Buzatti, R. S. O., Ribeiro, R. A., Filho, J. P. L. & Lovato, M. B. Fine-scale spatial genetic structure of Dalbergia nigra (Fabaceae), a threatened and endemic tree of the Brazilian Atlantic Forest. Genet. Mol. Biol. 35, 838–846 (2012).
    Article  Google Scholar 

    16.
    Liu, F.-M. et al. De novo transcriptome analysis of Dalbergia odorifera and transferability of SSR markers developed from the transcriptome. Forests 10, 98 (2019).
    Article  Google Scholar 

    17.
    Xu, D.-P., Xu, S.-S., Zhang, N.-N., Yang, Z.-J. & Hong, Z. Chloroplast genome of Dalbergia cochinchinensis (Fabaceae), a rare and Endangered rosewood species in Southeast Asia. Mitochondrial DNA B 4, 1144–1145 (2019).
    Article  Google Scholar 

    18.
    Wariss, H. M., Yi, T.-S., Wang, H. & Zhang, R. Characterization of the complete chloroplast genome of Dalbergia odorifera (Leguminosae), a rare and critically endangered legume endemic to China. Conserv. Genet. Resour. https://doi.org/10.1007/s12686-017-0866-2 (2017).
    Article  Google Scholar 

    19.
    Liu, Y., Huang, P., Li, C.-H., Zang, F.-Q. & Zheng, Y.-Q. Characterization of the complete chloroplast genome of Dalbergia cultrata (Leguminosae). Mitochondrial DNA B 4, 2369–2370 (2019).
    Article  Google Scholar 

    20.
    Deng, C., Xin, G., Zhang, J. & Zhao, D. Characterization of the complete chloroplast genome of Dalbergia hainanensis (Leguminosae), a vulnerably endangered legume endemic to China. Conserv. Genet. Resour. 1, 105–108 (2018).
    Google Scholar 

    21.
    Song, Y., Zhang, Y., Xu, J., Li, W. & Li, M. F. Characterization of the complete chloroplast genome sequence of Dalbergia species and its phylogenetic implications. Sci. Rep. 9, 1–10 (2019).
    ADS  Article  CAS  Google Scholar 

    22.
    Lateef, A., Prabhudas, S. K. & Natarajan, P. RNA sequencing and de novo assembly of Solanum trilobatum leaf transcriptome to identify putative transcripts for major metabolic pathways. Sci. Rep. 8, 15375 (2018).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Keilwagen, J., Hartung, F., Paulini, M., Twardziok, S. O. & Grau, J. Combining RNA-seq data and homology-based gene prediction for plants, animals and fungi. BMC Bioinform. 19, 189 (2018).
    Article  CAS  Google Scholar 

    24.
    Wang, B., Kumar, V., Olson, A. & Ware, D. Reviving the transcriptome studies: an insight into the emergence of single-molecule transcriptome sequencing. Front. Genet. 10, 384 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    25.
    Lamble, S. et al. Improved workflows for high throughput library preparation using the transposome-based nextera system. BMC Biotechnol. 13, 104 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    26.
    Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    27.
    Buffalo, V. Scythe—a Bayesian adapter trimmer (version 0.994 BETA) [Software] (2011). https://github.com/vsbuffalo/scythe.

    28.
    Joshi, N. A. & Fass, J. N. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software] (2011). https://github.com/najoshi/sickle.

    29.
    Carruthers, M. et al. De novo transcriptome assembly, annotation and comparison of four ecological and evolutionary model salmonid fish species. BMC Genomics 19, 32 (2018).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    30.
    Haas, B. J. et al. De novo transcript sequence reconstruction from RNA seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    31.
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    32.
    Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).
    CAS  Article  Google Scholar 

    33.
    Haas, B. J. TransDecoder (2018). https://github.com/TransDecoder/TransDecoder.

    34.
    Kriventseva, E. V. et al. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucl. Acids Res. 47, D807–D811 (2019).
    CAS  Article  PubMed  Google Scholar 

    35.
    Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543 (2017).
    Article  CAS  PubMed Central  Google Scholar 

    36.
    Bertioli, D. J. et al. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat. Genet. 48, 438–446 (2016).
    CAS  Article  Google Scholar 

    37.
    Smith-Unna, R., Boursnell, C., Patro, R., Hibberd, J. M. & Kelly, S. TransRate: reference-free quality assessment of de novo transcriptome assemblies. Genome Res. 26, 1134–1144 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    38.
    UniProt: a worldwide hub of protein knowledge. Nucl. Acids Res.47, D506–D515 (2019).

    39.
    Cheng, C.-Y. et al. Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 89, 789–804 (2017).
    CAS  Article  PubMed  Google Scholar 

    40.
    El-Gebali, S. et al. The Pfam protein families database in 2019. Nucl. Acids Res. 47, D427–D432 (2019).
    CAS  Article  PubMed  Google Scholar 

    41.
    Almagro Armenteros, J. J. et al. SignalP 50 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423 (2019).
    CAS  Article  PubMed  Google Scholar 

    42.
    Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).
    CAS  Article  PubMed  Google Scholar 

    43.
    Emms, D. M. & Kelly, S. OrthoFinder2: fast and accurate phylogenomic orthology analysis from gene sequences. BioRxiv https://doi.org/10.1101/466201 (2018).
    Article  Google Scholar 

    44.
    Guo, L. et al. The opium poppy genome and morphinan production. Science 362, 343–347 (2018).
    ADS  CAS  Article  PubMed  Google Scholar 

    45.
    Nakamura, T., Yamada, K. D., Tomii, K. & Katoh, K. Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics 34, 2490–2492 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    46.
    Suyama, M., Torrents, D. & Bork, P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucl. Acids Res. 34, W609–W612 (2006).
    CAS  Article  PubMed  Google Scholar 

    47.
    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and high-performance computing. Nat. Methods 9, 772 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    48.
    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    49.
    Bouckaert, R. et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    50.
    Brea, M., Zamuner, A. B., Matheos, S. D., Iglesias, A. & Zucol, A. F. Fossil wood of the Mimosoideae from the early Paleocene of Patagonia, Argentina. Alcheringa An Australas. J. Palaeontol. 32, 427–441 (2008).
    Article  Google Scholar 

    51.
    Hane, J. K. et al. A comprehensive draft genome sequence for lupin (Lupinus angustifolius), an emerging health food: insights into plant-microbe interactions and legume evolution. Plant Biotechnol. J. 15, 318–330 (2017).
    CAS  Article  PubMed  Google Scholar 

    52.
    Lavin, M., Herendeen, P. S. & Wojciechowski, M. F. Evolutionary rates analysis of leguminosae implicates a rapid diversification of lineages during the tertiary. Syst. Biol. 54, 575–594 (2005).
    Article  PubMed  Google Scholar 

    53.
    Moretzsohn, M. C. et al. A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers. Ann. Bot. 111, 113–126 (2013).
    CAS  Article  PubMed  Google Scholar 

    54.
    Ye, J. et al. WEGO 2.0: a web tool for analyzing and plotting GO annotations, 2018 update. Nucl. Acids Res. 46, W71 (2018).
    CAS  Article  PubMed  Google Scholar 

    55.
    De Bie, T., Cristianini, N., Demuth, J. P. & Hahn, M. W. CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22, 1269–1271 (2006).
    Article  CAS  PubMed  Google Scholar 

    56.
    Mi, H., Muruganujan, A. & Thomas, P. D. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucl. Acids Res. 41, D377–D386 (2013).
    CAS  Article  PubMed  Google Scholar 

    57.
    Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).
    CAS  Article  PubMed  Google Scholar 

    58.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodological) 57(1), 289–300 (1995).
    MathSciNet  MATH  Google Scholar 

    59.
    Sun, J. et al. Adaptation to deep-sea chemosynthetic environments as revealed by mussel genomes. Nat. Ecol. Evol. 1, 0121 (2017).
    Article  Google Scholar 

    60.
    Yu, G., Wang, L. G., Han, Y. & He, Q. Y. ClusterProfiler: an R package for comparing biological themes among gene clusters. Omi. A J. Integr. Biol. 16, 284–287 (2012).
    CAS  Article  Google Scholar 

    61.
    Soltis, D. E., Soltis, P. S., Bennett, M. D. & Leitch, I. J. Evolution of genome size in the angiosperms. Am. J. Bot. 90, 1596–1603 (2003).
    Article  PubMed  Google Scholar 

    62.
    Hiremath, S. C. & Nagasampige, M. H. Genome size variation and evolution in some species of Dalbergia Linn.f. (Fabaceae). Caryologia 57, 367–372 (2004).
    Article  Google Scholar 

    63.
    Lawrence, G. H. M. Taxonomy of Vascular Plants (IBH Publishing Co., Oxford, 1973).
    Google Scholar 

    64.
    Lombello, R. A. & Forni-Martins, E. R. Chromosome studies and evolution in Sapindaceae. Caryologia 51, 89–93 (1998).
    Article  Google Scholar 

    65.
    Sheremet’ev, S. N. & Gamalei, Y. V. Towards angiosperms genome evolution in time. arXiv (2013).

    66.
    Carlquist, S. Anatomy of vine and liana stems: a review and synthesis. In The Biology of Vines (eds Putz, F. E. & Mooney, H. A.) 53–72 (University of Cambridge Press, Cambridge, 1991).
    Google Scholar 

    67.
    Li, Q. et al. The phylogenetic analysis of Dalbergia (Fabaceae: Papilionaceae) based on different DNA barcodes. Holzforschung 71, 939–949 (2017).
    CAS  Article  Google Scholar 

    68.
    Lavin, M. et al. Metacommunity process rather than continental tectonic history better explains geographically structured phylogenies in legumes. Philos. Trans. R. Soc. B Biol. Sci. 359, 1509–1522 (2004).
    CAS  Article  Google Scholar 

    69.
    Kučerová, J. Miocénna flóra z lokalít Kalonda a Mučín. Acta Geol. Slovaca 1, 65–70 (2009).
    Google Scholar 

    70.
    Gao, S.-X. & Zhou, Z.-K. The megafossil legumes from China. In Advances in Legume Systematics (eds Herendeen, P. S. & Dilcher, D. L.) (The Royal Botanic Gardens, Kew, 1992).
    Google Scholar 

    71.
    de Saporta, G. Dalbergia phleboptera Saporta. Muséum national d’Histoire naturelle (2015). https://science.mnhn.fr/institution/mnhn/collection/f/item/14084.?lang=en_US.

    72.
    De Bruyn, M. et al. Borneo and Indochina are major evolutionary hotspots for southeast Asian biodiversity. Syst. Biol. 63, 879–901 (2014).
    Article  PubMed  Google Scholar 

    73.
    Koenen, E. J. M. et al. The origin and early evolution of the legumes are a complex paleopolyploid phylogenomic tangle closely associated with the cretaceous-paleogene (K-Pg) boundary. biorxiv https://doi.org/10.1101/577957 (2019).
    Article  Google Scholar 

    74.
    Lespinet, O., Wolf, Y. I., Koonin, E. V. & Aravind, L. The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res. 12, 1048–1059 (2002).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    75.
    Ming, Y. et al. Molecular footprints of inshore aquatic adaptation in Indo-Pacific humpback dolphin (Sousa chinensis). Genomics https://doi.org/10.1016/j.ygeno.2018.07.015 (2018).
    Article  PubMed  Google Scholar 

    76.
    Force, A. et al. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531–1545 (1999).
    CAS  PubMed  PubMed Central  Google Scholar 

    77.
    Luengo, T. M., Mayer, M. P. & Rüdiger, S. G. The Hsp70–Hsp90 chaperone cascade in protein folding. Trends Cell Biol. 29(2), 164–177. https://doi.org/10.1016/j.tcb.2018.10.004 (2019).
    CAS  Article  Google Scholar 

    78.
    Jacob, P., Hirt, H. & Bendahmane, A. The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnol. J. 15, 405–414 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    79.
    Yamada, K. et al. Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana. J. Biol. Chem. 282, 37794–37804 (2007).
    CAS  Article  PubMed  Google Scholar 

    80.
    Clément, M. et al. The cytosolic/nuclear HSC70 and HSP90 molecular chaperones are important for stomatal closure and modulate abscisic acid-dependent physiological responses in arabidopsis. Plant Physiol. 156, 1481–1492 (2011).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    81.
    Hou, Q. & Bartels, D. Comparative study of the aldehyde dehydrogenase (ALDH) gene superfamily in the glycophyte Arabidopsis thaliana and Eutrema halophytes. Ann. Bot. 115, 465–479 (2015).
    CAS  Article  PubMed  Google Scholar 

    82.
    Missihoun, T. D. & Kotchoni, S. O. Aldehyde dehydrogenases and the hypothesis of a glycolaldehyde shunt pathway of photorespiration. Plant Signal. Behav. 13, e1449544 (2018).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    83.
    Estioko, L. P. et al. Differences in responses to flooding by germinating seeds of two contrasting rice cultivars and two species of economically important grass weeds. AoB Plants 6, plu064 (2014).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    84.
    Brocker, C. et al. Aldehyde dehydrogenase (ALDH) superfamily in plants: Gene nomenclature and comparative genomics. Planta 237, 189–210 (2013).
    CAS  Article  PubMed  Google Scholar 

    85.
    Sharma, B., Joshi, D., Yadav, P. K., Gupta, A. K. & Bhatt, T. K. Role of ubiquitin-mediated degradation system in plant biology. Front. Plant Sci. 7, 806 (2016).
    PubMed  PubMed Central  Google Scholar 

    86.
    Walters, K. J., Goh, A. M., Wang, Q., Wagner, G. & Howley, P. M. Ubiquitin family proteins and their relationship to the proteasome: a structural perspective. Biochimica et Biophysica Acta Mol. Cell Res. 1695, 73–87 (2004).
    CAS  Article  Google Scholar 

    87.
    Liu, Z.-B. et al. A novel membrane-bound E3 ubiquitin ligase enhances the thermal resistance in plants. Plant Biotechnol. J. 12, 93–104 (2014).
    Article  CAS  PubMed  Google Scholar 

    88.
    Macho, A. P. & Zipfel, C. Plant PRRs and the activation of innate immune signaling. Mol. Cell 54, 263–272 (2014).
    CAS  Article  PubMed  Google Scholar 

    89.
    Martin, G. B., Bogdanove, A. J. & Sessa, G. Understanding the functions of plant disease resistance proteins. Annu. Rev. Plant Biol. 54, 23–61 (2003).
    CAS  Article  PubMed  Google Scholar 

    90.
    Cohn, J., Sessa, G. & Martin, G. B. Innate immunity in plants. Curr. Opin. Immunol. 13, 55–62 (2001).
    CAS  Article  PubMed  Google Scholar 

    91.
    Lehmann, P. Structure and evolution of plant disease resistance genes. J. Appl. Genet. 43, 403–414 (2002).
    ADS  PubMed  Google Scholar 

    92.
    Jeffares, D. C., Tomiczek, B., Sojo, V. & dos Reis, M. A beginners guide to estimating the non-synonymous to synonymous rate ratio of all protein-coding genes in a genome. in Parasite Genomics Protocols: Second Edition 65–90 (Springer Fachmedien, 2014). https://doi.org/10.1007/978-1-4939-1438-8_4.

    93.
    Andersen, E. J., Ali, S., Byamukama, E., Yen, Y. & Nepal, M. P. Disease resistance mechanisms in plants. Genes 9(7), 339 (2018).
    Article  CAS  PubMed Central  Google Scholar 

    94.
    IUCN. The IUCN Red List of Threatened Species. Veresion 2019–2 (2019). https://www.iucnredlist.org.

    95.
    Federhen, S. The NCBI taxonomy database. Nucl. Acids Res. 40(D1), D136–D143 (2012).
    CAS  Article  PubMed  Google Scholar 

    96.
    Brandies, P., Peel, E., Hogg, C. J. & Belov, K. The value of reference genomes in the conservation of threatened species. Genes 10, 846 (2019).
    CAS  Article  PubMed Central  Google Scholar 

    97.
    Supple, M. A. & Shapiro, B. Conservation of biodiversity in the genomics era. Genome Biol. 19(1), 1–12 (2018).
    Article  Google Scholar 

    98.
    Fuentes-Pardo, A. P. & Ruzzante, D. E. Whole-genome sequencing approaches for conservation biology: advantages, limitations and practical recommendations. Mol. Ecol. 26, 5369–5406 (2017).
    CAS  Article  PubMed  Google Scholar 

    99.
    Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    100.
    Bragg, J. G., Potter, S., Bi, K. & Moritz, C. Exon capture phylogenomics: efficacy across scales of divergence. Mol. Ecol. Resour. 16, 1059–1068 (2016).
    CAS  Article  PubMed  Google Scholar 

    101.
    İpek, A., İpek, M., Ercişli, S. & Tangu, N. A. Transcriptome-based SNP discovery by GBS and the construction of a genetic map for olive. Funct. Integr. Genomics 17, 493–501 (2017).
    Article  CAS  PubMed  Google Scholar 

    102.
    Vatanparast, M., Powell, A., Doyle, J. J. & Egan, A. N. Targeting legume loci: a comparison of three methods for target enrichment bait design in Leguminosae phylogenomics. Appl. Plant Sci. 6, e1036 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    103.
    Ouborg, N. J. Integrating population genetics and conservation biology in the era of genomics. Biol. Lett. 6, 3–6 (2010).
    Article  PubMed  Google Scholar 

    104.
    CITES. Consideration of Proposals for Amendment of Appendices I and II. Convention on International Trade in Endangered Species of Wild Fauna and Flora. (Convention on International Trade in Endangered Species of Wild Fauna and Flora, 2017).

    105.
    Asian Regional Workshop (Conservation & Sustainable Management of Trees Viet Nam). Dalbergia cochinchinensis. The IUCN Red List of Threatened Species. e.T32625A9719096 (1998). https://doi.org/10.2305/IUCN.UK.1998.RLTS.T32625A9719096.en.

    106.
    Bernal, R., Gradstein, S. & Celis, M. Catálogo de plantas y líquenes de Colombia (Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, 2015).
    Google Scholar 

    107.
    World Conservation Monitoring Centre. Dalbergia melanoxylon. The IUCN Red List of Threatened Species 1998. e.T32504A9710439 (1998). https://doi.org/10.2305/IUCN.UK.1998.RLTS.T32504A9710439.en.

    108.
    ILDIS. International Legume Database and Information Service V10.39 (2011).

    109.
    Nghia, N. H. Dalbergia oliveri. The IUCN Red List of Threatened Species 1998. e.T32306A9693932 (1998). https://doi.org/10.2305/IUCN.UK.1998.RLTS.T32306A9693932.en.

    110.
    Orwa, C., Mutua, A., Kindt, R., Jamnadass, R. & Anthony, S. Agroforestree Database: A Tree Reference and Selection Guide Version 4.0. (2009). https://www.worldagroforestry.org/sites/treedbs/treedatabases.asp. More