1.
Chambers, L. E. et al. Observed and predicted effects of climate on Australian seabirds. Emu Austr. Ornithol. 111, 235–251. https://doi.org/10.1071/MU10033 (2011).
Article Google Scholar
2.
Stephens, D. W. & Krebs, J. R. Foraging Theory Vol 1 (Princeton University Press, Princeton, 1986).
Google Scholar
3.
Costa, D. P. The relationship between reproductive and foraging energetics and the evolution of the Pinnipedia. Symp. Zool. Soc. Lond. 66, 293–314 (1993).
Google Scholar
4.
Weimerskirch, H., Le Corre, M., Jaquemet, S. & Marsac, F. Foraging strategy of a tropical seabird, the red-footed booby, in a dynamic marine environment. Mar. Ecol. Prog. Ser. 288, 251–261. https://doi.org/10.3354/meps288251 (2005).
ADS Article Google Scholar
5.
Costa, D. P. A conceptual model of the variation in parental attendance in response to environmental fluctuation: Foraging energetics of lactating sea lions and fur seals. Aquat. Conserv. Mar. Freshw. Ecosyst. 17, S44–S52. https://doi.org/10.1002/aqc.917 (2007).
ADS Article Google Scholar
6.
Villegas-Amtmann, S., McDonald, B. I., Páez-Rosas, D., Aurioles-Gamboa, D. & Costa, D. P. Adapted to change: Low energy requirements in a low and unpredictable productivity environment, the case of the Galapagos sea lion. Deep Sea Res. Part II Top. Stud. Oceanography 140, 94–104 (2017).
ADS Article Google Scholar
7.
Trillmich, F. & Limberger, D. Drastic effects of El Niño on Galapagos pinnipeds. Oecologia 67, 19–22 (1985).
ADS Article Google Scholar
8.
Dunstan, P. K. et al. Global patterns of change and variation in sea surface temperature and chlorophyll a. Sci. Rep. 8, 14624. https://doi.org/10.1038/s41598-018-33057-y (2018).
ADS CAS Article PubMed PubMed Central Google Scholar
9.
IPCC. Summary for Policymakers. (2019).
10.
Cai, W., Shi, G., Cowan, T., Bi, D. & Ribbe, J. The response of the Southern Annular Mode, the East Australian Current, and the southern mid-latitude ocean circulation to global warming. Geophys. Res. Lett. https://doi.org/10.1029/2005GL024701 (2005).
Article Google Scholar
11.
Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111. https://doi.org/10.1038/nclimate2100 (2014).
ADS CAS Article Google Scholar
12.
Cai, W. et al. Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature 510, 254–258. https://doi.org/10.1038/nature13327 (2014).
ADS CAS Article PubMed Google Scholar
13.
Poloczanska, E. S. et al. Climate change and Australian marine life. Oceanogr. Mar. Biol. 45, 407 (2007).
Google Scholar
14.
Beentjes, M. P. & Renwick, J. A. The relationship between red cod, Pseudophycis bachus, recruitment and environmental variables in New Zealand. Environ. Biol. Fishes 61, 315–328. https://doi.org/10.1023/A:1010943906264 (2001).
Article Google Scholar
15.
Hewitt, R. P., Theilacker, G. H. & Lo, N. C. H. Causes of mortality in young jack mackerel. Mar. Ecol. Prog. Ser. 26, 1–10 (1985).
ADS Article Google Scholar
16.
Rindorf, A., Wanless, S. & Harris, M. P. Effects of changes in sandeel availability on the reproductive output of seabirds. Mar. Ecol. Prog. Ser. 202, 241–252. https://doi.org/10.3354/meps202241 (2000).
ADS Article Google Scholar
17.
Wanless, S., Harris, M. P., Redman, P. & Speakman, J. R. Low energy values of fish as a probable cause of a major seabird breeding failure in the North Sea. Mar. Ecol. Prog. Ser. 294, 1–8. https://doi.org/10.3354/meps294001 (2005).
ADS Article Google Scholar
18.
Carroll, M. J. et al. Kittiwake breeding success in the southern North Sea correlates with prior sandeel fishing mortality. Aquat. Conserv. Mar. Freshw. Ecosys. 27, 1164–1175. https://doi.org/10.1002/aqc.2780 (2017).
Article Google Scholar
19.
Ridgway, K. R. Long-term trend and decadal variability of the southward penetration of the East Australian Current. Geophys. Res. Lett. 34, L13613. https://doi.org/10.1029/2007GL030393 (2007).
ADS Article Google Scholar
20.
Hobday, A. J. & Pecl, G. T. Identification of global marine hotspots: Sentinels for change and vanguards for adaptation action. Rev. Fish Biol. Fish. 24, 415–425. https://doi.org/10.1007/s11160-013-9326-6 (2014).
Article Google Scholar
21.
Hobday, A. J. & Lough, J. M. Projected climate change in Australian marine and freshwater environments. Mar. Freshw. Res. 62, 1000–1014. https://doi.org/10.1071/MF10302 (2011).
Article Google Scholar
22.
Johnson, C. R. et al. Climate change cascades: Shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania. J. Exp. Mar. Biol. Ecol. 400, 17–32. https://doi.org/10.1016/j.jembe.2011.02.032 (2011).
Article Google Scholar
23.
Thompson, P. A., Baird, M. E., Ingleton, T. & Doblin, M. A. Long-term changes in temperate Australian coastal waters: Implications for phytoplankton. Mar. Ecol. Prog. Ser. 394, 1–19. https://doi.org/10.3354/meps08297 (2009).
ADS CAS Article Google Scholar
24.
Last, P. R. et al. Long-term shifts in abundance and distribution of a temperate fish fauna: A response to climate change and fishing practices. Glob. Ecol. Biogeogr. 20, 58–72. https://doi.org/10.1111/j.1466-8238.2010.00575.x (2011).
Article Google Scholar
25.
Robinson, L. M. et al. Rapid assessment of short-term datasets in an ocean warming hotspot reveals “high” confidence in potential range extensions. Glob. Environ. Change 31, 28–37 (2015).
Article Google Scholar
26.
Frederiksen, M., Edwards, M., Richardson, A. J., Halliday, N. C. & Wanless, S. From plankton to top predators: Bottom-up control of a marine food web across four trophic levels. J. Anim. Ecol. 75, 1259–1268. https://doi.org/10.1111/j.1365-2656.2006.01148.x (2006).
Article PubMed Google Scholar
27.
27Warneke, R. M. & Shaughnessy, P. D. in Studies of Sea Mammals in South Latitudes 53–77 (1985).
28.
McIntosh, R. R. et al. Understanding meta-population trends of the Australian fur seal, with insights for adaptive monitoring. PLoS One 13, e0200253. https://doi.org/10.1371/journal.pone.0200253 (2018).
CAS Article PubMed PubMed Central Google Scholar
29.
Gibbens, J. & Arnould, J. P. Y. Interannual variation in pup production and the timing of breeding in benthic foraging Australian fur seals. Mar. Mammal Sci. 25, 573–587. https://doi.org/10.1111/j.1748-7692.2008.00270.x (2009).
Article Google Scholar
30.
Kirkwood, R. et al. Continued population recovery by Australian fur seals. Mar. Freshw. Res. 61, 695–701. https://doi.org/10.1071/MF09213 (2010).
CAS Article Google Scholar
31.
Arnould, J. P. Y. & Warneke, R. M. Growth and condition in Australian fur seals (Arctocephalus pusillus doriferus) (Carnivora: Pinnipedia). Aust. J. Zool. https://doi.org/10.1071/zo01077 (2002).
Article Google Scholar
32.
Boness, D. J. & Bowen, W. D. The evolution of maternal care in pinnipeds. Bioscience 46, 645–654. https://doi.org/10.2307/1312894 (1996).
Article Google Scholar
33.
Arnould, J. P. Y. & Hindell, M. A. Dive behaviour, foraging locations, and maternal-attendance patterns of Australian fur seals (Arctocephalus pusillus doriferus). Can. J. Zool. 79, 35–48. https://doi.org/10.1139/cjz-79-1-35 (2001).
Article Google Scholar
34.
Arnould, J. P. Y. & Kirkwood, R. Habitat selection by female Australian fur seals (Arctocephalus pusillus doriferus). Aquat. Conserv. Mar. Freshw. Ecosyst. 17, S53–S67. https://doi.org/10.1002/aqc.908 (2008).
Article Google Scholar
35.
Kirkwood, R., Hume, F. & Hindell, M. Sea temperature variations mediate annual changes in the diet of Australian fur seals in Bass Strait. Mar. Ecol. Prog. Ser. 369, 297–309. https://doi.org/10.3354/meps07633 (2008).
ADS Article Google Scholar
36.
Deagle, B. E., Kirkwood, R. & Jarman, S. N. Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces. Mol. Ecol. 18, 2022–2038. https://doi.org/10.1111/j.1365-294X.2009.04158.x (2009).
CAS Article PubMed Google Scholar
37.
Gales, R., Pemberton, D., Lu, C. C. & Clarke, M. R. Cephalopod diet of the Australian fur seal: Variation due to location, season and sample type. Mar. Freshw. Res. 44, 657–671. https://doi.org/10.1071/MF9930657 (1993).
Article Google Scholar
38.
Gibbs, C. F., Tomczak, M. Jr. & Longmore, A. R. Nutrient regime of Bass Strait. Aust. J. Mar. Freshw. Res. 37, 451–466 (1986).
CAS Article Google Scholar
39.
Sandery, P. A. & Kämpf, J. Transport timescales for identifying seasonal variation in Bass Strait, south-eastern Australia. Estuar. Coast. Shelf Sci. 74, 684–696. https://doi.org/10.1016/j.ecss.2007.05.011 (2007).
ADS Article Google Scholar
40.
Sandery, P. A. & Kämpf, J. Winter-Spring flushing of Bass Strait, South-Eastern Australia: A numerical modelling study. Estuar. Coast. Shelf Sci. 63, 23–31. https://doi.org/10.1016/j.ecss.2004.10.009 (2005).
ADS Article Google Scholar
41.
Costa, D. P. & Gales, N. J. Energetics of a benthic diver: Seasonal foraging ecology of the Australian sea lion, Neophoca cinerea. Ecol. Monogr. 73, 27–43 (2003).
Article Google Scholar
42.
Costa, D. P., Kuhn, C. E., Weise, M. J., Shaffer, S. A. & Arnould, J. P. Y. When does physiology limit the foraging behaviour of freely diving mammals?. Int. Congr. Ser. 1275, 359–366. https://doi.org/10.1016/j.ics.2004.08.058 (2004).
Article Google Scholar
43.
Arnould, J. P. Y. & Costa, D. Sea Lions of the World: Conservation and Research in the 21st Century 309–323 (Fairbanks, Alaska, 2006).
Google Scholar
44.
Welsford, D. C. & Lyle, J. M. Redbait (Emmelichthys nitidus): A Synopsis of Fishery and Biological Data (Tasmanian Aquaculture and Fisheries Institute, Marine Research Laboratories, Hobart, 2003).
Google Scholar
45.
Smith-Vaniz, W. F. et al. Trachurus declivis. Report No. e.T20437665A67871520 (2018).
46.
Gaughan, D., Di Dario, F. & Hata, H. Sardinops sagax. Report No. e.T183347A143831586 (2018).
47.
Hume, F., Hindell, M. A., Pemberton, D. & Gales, R. Spatial and temporal variation in the diet of a high trophic level predator, the Australian fur seal (Arctocephalus pusillus doriferus). Mar. Biol. 144, 407–415. https://doi.org/10.1007/s00227-003-1219-0 (2004).
Article Google Scholar
48.
Gibbens, J. & Arnould, J. P. Y. Age-specific growth, survival, and population dynamics of female Australian fur seals. Can. J. Zool. 87, 902–911 (2009).
Article Google Scholar
49.
Hoskins, A. J. & Arnould, J. P. Y. Relationship between long-term environmental fluctuations and diving effort of female Australian fur seals. Mar. Ecol. Prog. Ser. 511, 285–295. https://doi.org/10.3354/meps10935 (2014).
ADS Article Google Scholar
50.
diveMove. R package version 1.4.5 (2019).
51.
R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2019).
52.
Hoskins, A. J., Costa, D. P., Wheatley, K. E., Gibbens, J. R. & Arnould, J. P. Y. Influence of intrinsic variation on foraging behaviour of adult female Australian fur seals. Mar. Ecol. Prog. Ser. 526, 227–239 (2015).
ADS Article Google Scholar
53.
Hoskins, A. J. & Arnould, J. P. Y. Temporal allocation of foraging effort in female Australian fur seals (Arctocephalus pusillus doriferus). PLoS One 8, e79484. https://doi.org/10.1371/journal.pone.0079484 (2013).
ADS CAS Article PubMed PubMed Central Google Scholar
54.
Costa, D. P. & Gales, N. J. Foraging energetics and diving behavior of lactating New Zealand sea lions, Phocarctos hookeri. J. Exp. Biol. 203, 3655–3665 (2000).
CAS PubMed Google Scholar
55.
Volpov, B. L. et al. Dive characteristics can predict foraging success in Australian fur seals (Arctocephalus pusillus doriferus) as validated by animal-borne video. Biol. Open 5, 262–271. https://doi.org/10.1242/bio.016659 (2016).
Article PubMed PubMed Central Google Scholar
56.
Nel, D. C. et al. Exploitation of mesoscale oceanographic features by grey-headed albatross Thalassarche chrysostoma in the southern Indian Ocean. Mar. Ecol. Prog. Ser. 217, 15–26. https://doi.org/10.3354/meps217015 (2001).
ADS Article Google Scholar
57.
Gibbs, C. F. Oceanography of Bass Strait: Implications for the food supply of little penguins Eudyptula minor. Emu Aust. Ornithol. 91, 395–401. https://doi.org/10.1071/MU9910395 (1991).
Article Google Scholar
58.
Nieblas, A. E., Sloyan, B. M., Hobday, A. J., Coleman, R. & Richardsone, A. J. Variability of biological production in low wind-forced regional upwelling systems: A case study off southeastern Australia. Limnol. Oceanogr. 54, 1548–1558. https://doi.org/10.4319/lo.2009.54.5.1548 (2009).
ADS Article Google Scholar
59.
Hoskins, A. J., Costa, D. P. & Arnould, J. P. Y. Utilisation of intensive foraging zones by female Australian fur seals. PLoS One 10, 1–19. https://doi.org/10.1371/journal.pone.0117997 (2015).
CAS Article Google Scholar
60.
Beggs, H. et al. RAMSSA—an operational, high-resolution, Regional Australian Multi-Sensor Sea surface temperature analysis over the Australian region. Aust. Meteorol. Oceanogr. J. 61, 1–22. https://doi.org/10.22499/2.6101.001 (2011).
Article Google Scholar
61.
NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Chlorophyll Data (NASA OB.DAAC, Greenbelt, MD, USA, 2018 Reprocessing). https://doi.org/10.5067/ORBVIEW-2/SEAWIFS/L3M/CHL/2018.
62.
NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Chlorophyll Data (NASA OB.DAAC, Greenbelt, MD, USA, 2018 Reprocessing). https://doi.org/10.5067/AQUA/MODIS/L3M/CHL/2018.
63.
Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238. https://doi.org/10.1016/j.pocean.2015.12.014 (2016).
ADS Article Google Scholar
64.
Saji, N. H., Goswami, B. N., Vinayachandran, P. N. & Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 401, 360–363. https://doi.org/10.1038/43854 (1999).
ADS CAS Article PubMed Google Scholar
65.
Saji, N. H. & Yamagata, T. Possible impacts of Indian Ocean dipole mode events on global climate. Clim. Res. 25, 151–169. https://doi.org/10.3354/cr025151 (2003).
Article Google Scholar
66.
Neira, F. J., Lyle, J. M., Ewing, G. P., Keane, J. P. & Tracey, S. R. Evaluation of Egg Production as a Method of Estimating Spawning Biomass of Redbait off the East Coast of Tasmania (Institute for Marine, Tasmania, 2008).
Google Scholar
67.
Kemp, J., Jenkins, G. P. & Swearer, S. E. The reproductive strategy of red cod, Pseudophycis bachus, a key prey species for high trophic-level predators. Fish. Res. 125, 161–172. https://doi.org/10.1016/j.fishres.2012.02.021 (2012).
Article Google Scholar
68.
Zuur, A., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x (2010).
Article Google Scholar
69.
Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, Berlin, 2009).
Google Scholar
70.
nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–140 (2019).
71.
Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall, London, 2017).
Google Scholar
72.
Wood, S. N. Thin-plate regression splines. J. R. Stat. Soc. (B) 65, 95–114 (2003).
MathSciNet Article Google Scholar
73.
Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. (B) 73, 3–36 (2011).
MathSciNet Article Google Scholar
74.
MuMIn: Multi-Model Inference. R package version 1.43.6 (2019).
75.
Burnham, K. & Anderson, D. Model Selection and Multi-model Inference. 2nd (2002).
76.
Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312. https://doi.org/10.1038/s41558-019-0412-1 (2019).
ADS Article Google Scholar
77.
Babcock, R. C. et al. Severe continental-scale impacts of climate change are happening now: Extreme climate events impact marine habitat forming communities along 45% of Australia’s coast. Front. Mar. Sci. 6, 411. https://doi.org/10.3389/fmars.2019.00411 (2019).
Article Google Scholar
78.
Jones, T. et al. Massive mortality of a planktivorous seabird in response to a marine heatwave. Geophys. Res. Lett. 45, 3193–3202. https://doi.org/10.1002/2017GL076164 (2018).
ADS Article Google Scholar
79.
Willis-Norton, E. et al. Climate change impacts on leatherback turtle pelagic habitat in the Southeast Pacific. Deep Sea Res. Part II Top. Stud. Oceanography 113, 260–267. https://doi.org/10.1016/j.dsr2.2013.12.019 (2015).
ADS Article Google Scholar
80.
Merrifield, M. A., Thompson, P. R. & Lander, M. Multidecadal sea level anomalies and trends in the western tropical Pacific. Geophys. Res. Lett. https://doi.org/10.1029/2012GL052032 (2012).
Article Google Scholar
81.
Kliska, K. Environmental Correlates of Temporal Variation in the Diet of Australian fur Seals. Master of Research thesis, Macquarie University (2015).
82.
Tosh, C. A. et al. The importance of seasonal sea surface height anomalies for foraging juvenile southern elephant seals. Mar. Biol. 162, 2131–2140. https://doi.org/10.1007/s00227-015-2743-4 (2015).
CAS Article Google Scholar
83.
Foo, D., Hindell, M., McMahon, C. R. & Goldsworthy, S. D. Identifying foraging habitats of adult female long-nosed fur seal Arctocephalus forsteri based on vibrissa stable isotopes. Mar. Ecol. Prog. Ser. 628, 223–234. https://doi.org/10.3354/meps13113 (2019).
ADS CAS Article Google Scholar
84.
Lovenduski, N. S. Impact of the southern annular mode on Southern Ocean circulation and biology. Geophys. Res. Lett. https://doi.org/10.1029/2005gl022727 (2005).
Article Google Scholar
85.
Middleton, J. F. et al. El Niño effects and upwelling off South Australia. J. Phys. Oceanogr. 37, 2458–2477. https://doi.org/10.1175/jpo3119.1 (2007).
ADS Article Google Scholar
86.
Armbrecht, L. H. et al. Phytoplankton composition under contrasting oceanographic conditions: Upwelling and downwelling (Eastern Australia). Cont. Shelf Res. 75, 54–67. https://doi.org/10.1016/j.csr.2013.11.024 (2014).
ADS Article Google Scholar
87.
Falkowski, P. & Kiefer, D. A. Chlorophyll a fluorescence in phytoplankton: Relationship to photosynthesis and biomass. J. Plankton Res. 7, 715–731. https://doi.org/10.1093/plankt/7.5.715 (1985).
CAS Article Google Scholar
88.
Lanz, E., Nevarez-Martinez, M., López-Martínez, J. & Dworak, J. A. Small pelagic fish catches in the Gulf of California associated with sea surface temperature and chlorophyll. CalCOFI Rep. 20, 134–146 (2009).
Google Scholar
89.
Ronconi, R. A. & Burger, A. E. Limited foraging flexibility: Increased foraging effort by a marine predator does not buffer against scarce prey. Mar. Ecol. Prog. Ser. 366, 245–258. https://doi.org/10.3354/meps07529 (2008).
ADS Article Google Scholar
90.
Kernaleguen, L. et al. From video recordings to whisker stable isotopes: A critical evaluation of timescale in assessing individual foraging specialisation in Australian fur seals. Oecologia 180, 657–670. https://doi.org/10.1007/s00442-015-3407-2 (2016).
ADS Article PubMed Google Scholar
91.
Meyers, N. The Cost of a Meal: Foraging Ecology of Female Australian fur Seals. Master of Science in Marine Biological Resources (IMBRSea) thesis, Deakin University (2019).
92.
Cai, W., Cowan, T. & Sullivan, A. Recent unprecedented skewness towards positive Indian Ocean Dipole occurrences and its impact on Australian rainfall. Geophys. Res. Lett. https://doi.org/10.1029/2009gl037604 (2009).
Article Google Scholar
93.
Sparling, C. E., Georges, J. Y., Gallon, S. L., Fedak, M. A. & Thompson, D. How long does a dive last? Foraging decisions by breath-hold divers in a patchy environment: A test of a simple model. Anim. Behav. 74, 207–218. https://doi.org/10.1016/j.anbehav.2006.06.022 (2007).
Article Google Scholar
94.
Gutiérrez, M., Castillo, R., Segura, M., Peraltilla, S. & Flores, M. Trends in spatio-temporal distribution of Peruvian anchovy and other small pelagic fish biomass from 1966–2009. Latin Am. J. Aquat. Res. 40, 633–648. https://doi.org/10.3856/vol40-issue3-fulltext-12 (2012).
Article Google Scholar
95.
Crocker, D., Costa, D. P., Le Boeuf, B. J., Webb, P. M. & Houser, D. S. Impact of El Niño on the foraging behavior of female northern elephant seals. Mar. Ecol. Prog. Ser. 309, 1–10. https://doi.org/10.3354/meps309001 (2006).
ADS Article Google Scholar
96.
Gillett, N. P., Kell, T. D. & Jones, P. D. Regional climate impacts of the Southern Annular Mode. Geophys. Res. Lett. https://doi.org/10.1029/2006gl027721 (2006).
Article Google Scholar
97.
Costa, D. P. et al. Approaches to studying climatic change and its role on the habitat selection of antarctic pinnipeds. Integr. Comp. Biol. 50, 1018–1030. https://doi.org/10.1093/icb/icq054 (2010).
Article PubMed Google Scholar
98.
Tommasi, D. et al. Managing living marine resources in a dynamic environment: The role of seasonal to decadal climate forecasts. Prog. Oceanogr. 152, 15–49. https://doi.org/10.1016/j.pocean.2016.12.011 (2017).
ADS Article Google Scholar
99.
Schumann, N., Gales, N. J., Harcourt, R. G. & Arnould, J. P. Y. Impacts of climate change on Australian marine mammals. Aust. J. Zool. https://doi.org/10.1071/zo12131 (2013).
Article Google Scholar
100.
Evans, P. G. & Bjørge, A. Impacts of climate change on marine mammals. MCCIP Sci. Rev. https://doi.org/10.14465/2013.arc15.134-148 (2013).
Article Google Scholar
101.
Cansse, T., Fauchet, L., Wells, M. R. & Arnould, J. P. Y. Factors influencing prey capture success and profitability in Australasian gannets (Morus serrator). Biol. Open. https://doi.org/10.1242/bio.047514 (2020).
Article PubMed PubMed Central Google Scholar
102.
Kowalczyk, N. D., Reina, R. D., Preston, T. J. & Chiaradia, A. Environmental variability drives shifts in the foraging behaviour and reproductive success of an inshore seabird. Oecologia 178, 967–979. https://doi.org/10.1007/s00442-015-3294-6 (2015).
ADS Article PubMed Google Scholar
103.
Hindell, M. A. et al. Circumpolar habitat use in the southern elephant seal: Implications for foraging success and population trajectories. Ecosphere 7, e01213 (2016).
Article Google Scholar
104.
Gong, T., Feldstein, S. B. & Luo, D. The impact of ENSO on wave breaking and southern annular mode events. J. Atmos. Sci. 67, 2854–2870. https://doi.org/10.1175/2010jas3311.1 (2010).
ADS Article Google Scholar
105.
Luo, J. et al. Interaction between El Niño and extreme Indian Ocean Dipole. J. Clim. 23, 726–742. https://doi.org/10.1175/2009JCLI3104.1 (2010).
ADS Article Google Scholar
106.
Chambers, L. E. et al. Determining trends and environmental drivers from long-term marine mammal and seabird data: Examples from Southern Australia. Reg. Environ. Change 15, 197–209. https://doi.org/10.1007/s10113-014-0634-8 (2014).
Article Google Scholar
107.
Goldsworthy, S. D. et al. Trophodynamics of the eastern Great Australian Bight ecosystem: Ecological change associated with the growth of Australia’s largest fishery. Ecol. Model. 255, 38–57. https://doi.org/10.1016/j.ecolmodel.2013.01.006 (2013).
Article Google Scholar
108.
Watson, R. A. et al. Ecosystem model of Tasmanian waters explores impacts of climate-change induced changes in primary productivity. Ecol. Model. 264, 115–129. https://doi.org/10.1016/j.ecolmodel.2012.05.008 (2013).
Article Google Scholar
109.
Grose, M., Timbal, B., Wilson, L., Bathols, J. & Kent, D. The subtropical ridge in CMIP5 models, and implications for projections of rainfall in southeast Australia. Aust. Meteorol. Oceanogr. J. 65, 90–106 (2015).
Article Google Scholar
110.
Pante, E. & Simon-Bouhet, B. marmap: A Package for importing, plotting and analyzing bathymetric and topographic data in R. PLoS One 8(9), e73051. https://doi.org/10.1371/journal.pone.0073051 (2013).
ADS CAS Article PubMed PubMed Central Google Scholar
111.
Kelley, D. & Richards, C. oce: Analysis of Oceanographic Data. R package version 1.1-1. https://CRAN.R-project.org/package=oce (2019).
112.
Kelley, D. ocedata: Oceanographic Data Sets for ‘oce’ Package. R package version 0.1.5. https://CRAN.R-project.org/package=ocedata (2018).
113.
Adobe Inc. Adobe Illustrator. https://adobe.com/products/illustrator. (2019). More