More stories

  • in

    Effects of temperature variability and extremes on spring phenology across the contiguous United States from 1982 to 2016

    1.
    Chuine, I. et al. Historical phenology: grape ripening as a past climate indicator. Nature 432, 289 (2004).
    ADS  CAS  Article  Google Scholar 
    2.
    Hufkens, K., Basler, D., Milliman, T., Melaas, E. K. & Richardson, A. D. An integrated phenology modelling framework in r. Methods Ecol. Evol. 9, 1276–1285. https://doi.org/10.1111/2041-210x.12970 (2018).
    Article  Google Scholar 

    3.
    Zhu, K. & Wan, M. A productive science—phenology. In Public Science (1963).

    4.
    Fu, Y. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature526, 104–107, doi:https://doi.org/10.1038/nature15402. https://www.nature.com/nature/journal/v526/n7571/abs/nature15402.html#supplementary-information (2015).

    5.
    Jochner, S., Sparks, T. H., Laube, J. & Menzel, A. Can we detect a nonlinear response to temperature in European plant phenology?. Int. J. Biometeorol. 60, 1551–1561. https://doi.org/10.1007/s00484-016-1146-7 (2016).
    ADS  Article  PubMed  Google Scholar 

    6.
    D’orangeville, L. et al. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought. Glob. Change Biol. (2018).

    7.
    Ganguly, S., Friedl, M. A., Tan, B., Zhang, X. & Verma, M. Land surface phenology from MODIS: characterization of the collection 5 global land cover dynamics product. Remote Sens. Environ. 114, 1805–1816 (2010).
    ADS  Article  Google Scholar 

    8.
    Zhang, X. et al. Generation and evaluation of the VIIRS land surface phenology product. Remote Sens. Environ. 216, 212–229. https://doi.org/10.1016/j.rse.2018.06.047 (2018).
    ADS  Article  Google Scholar 

    9.
    de Beurs, K. M. & Henebry, G. M. Land surface phenology, climatic variation, and institutional change: analyzing agricultural land cover change in Kazakhstan. Remote Sens. Environ. 89, 497–509 (2004).
    ADS  Article  Google Scholar 

    10.
    Liu, L., Zhang, X., Donnelly, A. & Liu, X. Interannual variations in spring phenology and their response to climate change across the Tibetan Plateau from 1982 to 2013. Int. J. Biometeorol. 60, 1563–1575. https://doi.org/10.1007/s00484-016-1147-6 (2016).
    ADS  Article  PubMed  Google Scholar 

    11.
    Adole, T., Dash, J. & Atkinson, P. M. Major trends in the land surface phenology (LSP) of Africa, controlling for land-cover change. Int. J. Remote Sens. https://doi.org/10.1080/01431161.2018.1479797 (2018).
    Article  Google Scholar 

    12.
    Xu, C., Liu, H., Williams, A. P., Yin, Y. & Wu, X. Trends toward an earlier peak of the growing season in Northern Hemisphere mid-latitudes. Glob. Change Biol. 22, 2852–2860 (2016).
    ADS  Article  Google Scholar 

    13.
    Zhang, X., Tarpley, D. & Sullivan, J. T. Diverse responses of vegetation phenology to a warming climate. Geophys. Res. Lett. 34, L19405 (2007).
    ADS  Article  Google Scholar 

    14.
    Jeong, S.-J., Ho, C.-H., Gim, H.-J. & Brown, M. E. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Glob. Change Biol. 17, 2385–2399. https://doi.org/10.1111/j.1365-2486.2011.02397.x (2011).

    15.
    Reed, B. Trend analysis of time-series phenology of North America derived from satellite data. GISci. Remote Sens. 43, 24–38 (2006).
    Article  Google Scholar 

    16.
    White, M. A. et al. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Glob. Chang Biol. 15, 2335–2359. https://doi.org/10.1111/j.1365-2486.2009.01910.x (2009).
    ADS  Article  Google Scholar 

    17.
    Pelletier, J. D. & Turcotte, D. L. In Advances in Geophysics vol 40 (eds Renata Dmowska & Barry Saltzman) 91–166 (Elsevier, Amsterdam, 1999).

    18.
    Zhang, X., Tan, B. & Yu, Y. Interannual variations and trends in global land surface phenology derived from enhanced vegetation index during 1982–2010. Int. J. Biometeorol. 58, 547–564. https://doi.org/10.1007/s00484-014-0802-z (2014).
    ADS  Article  PubMed  Google Scholar 

    19.
    Melaas, E. K., Friedl, M. A. & Zhu, Z. Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM+ data. Remote Sens. Environ. 132, 176–185. https://doi.org/10.1016/j.rse.2013.01.011 (2013).
    ADS  Article  Google Scholar 

    20.
    Friedl, M. A. et al. A tale of two springs: using recent climate anomalies to characterize the sensitivity of temperate forest phenology to climate change. Environ. Res. Lett. 9, 054006 (2014).
    ADS  Article  Google Scholar 

    21.
    Wang, T., Peng, S., Lin, X. & Chang, J. Declining snow cover may affect spring phenological trend on the Tibetan Plateau. Proc. Natl. Acad. Sci. 110, E2854–E2855. https://doi.org/10.1073/pnas.1306157110 (2013).
    ADS  Article  PubMed  Google Scholar 

    22.
    Reed, B., Budde, M., Spencer, P. & Miller, A. Integration of MODIS-derived metrics to assess interannual variability in snowpack, lake ice, and NDVI in southwest Alaska. Remote Sens. Environ. 113, 1443–1452 (2009).
    ADS  Article  Google Scholar 

    23.
    Dong, J., Zhang, G., Zhang, Y. & Xiao, X. Reply to Wang et al.: Snow cover and air temperature affect the rate of changes in spring phenology in the Tibetan Plateau. Proc. Natl. Acad. Sci. 110, E2856-E2857. https://doi.org/10.1073/pnas.1306813110 (2013).

    24.
    Richardson, A. D. et al. Terrestrial biosphere models need better representation of vegetation phenology: results from the North American carbon program site synthesis. Glob. Change Biol. 18, 566–584 (2012).
    ADS  Article  Google Scholar 

    25.
    Keenan, T. et al. Terrestrial biosphere model performance for inter-annual variability of land-atmosphere CO2 exchange. Glob. Change Biol. 18, 1971–1987 (2012).
    ADS  Article  Google Scholar 

    26.
    Liu, F. et al. Influences of agricultural phenology dynamic on land surface biophysical process and climate feedback. J. Geogr. Sci. 27, 1085–1099. https://doi.org/10.1007/s11442-017-1423-3 (2017).
    Article  Google Scholar 

    27.
    Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Bio.l 25, 1922–1940. https://doi.org/10.1111/gcb.14619 (2019).

    28.
    Patz, J. A., Campbell-Lendrum, D., Holloway, T. & Foley, J. A. Impact of regional climate change on human health. Nature 438, 310. https://doi.org/10.1038/nature04188 (2005).
    ADS  CAS  Article  PubMed  Google Scholar 

    29.
    Kharin, V. V. et al. Risks from climate extremes change differently from 1.5 to 2.0°C depending on rarity. Earth’s Future 6, 704–715. https://doi.org/10.1002/2018EF000813 (2018).

    30.
    Upperman, C. R. et al. Exposure to extreme heat events is associated with increased hay fever prevalence among nationally representative sample of US adults: 1997–2013. J. Allergy Clin. Immunol. Pract. 5(435), e432-441.e432 (2017).
    Google Scholar 

    31.
    Stéfanon, M., Drobinski, P., & D’Andrea, F. Noblet-Ducoudré of interactive vegetation phenology on the, 2003 summer heat waves. J. Geophys. Res. Atmos. https://doi.org/10.1029/2012JD018187 (2012).
    Article  Google Scholar 

    32.
    Wolf, S. et al. Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proc. Natl. Acad. Sci. 113, 5880–5885. https://doi.org/10.1073/pnas.1519620113 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    33.
    Fischer, E. M., Seneviratne, S. I., Vidale, P. L., Luthi, D. & Schar, C. Soil moisture—atmosphere interactions during the 2003 European summer heat wave. J. Clim. 20, 5081–5099. https://doi.org/10.1175/Jcli4288.1 (2007).
    ADS  Article  Google Scholar 

    34.
    Zaitchik, B. F., Macalady, A. K., Bonneau, L. R. & Smith, R. B. Europe’s 2003 heat wave: a satellite view of impacts and land-atmosphere feedbacks. Int. J. Climatol. 26, 743–769. https://doi.org/10.1002/joc.1280 (2006).
    Article  Google Scholar 

    35.
    Dunne, J. P., Stouffer, R. J. & John, J. G. Reductions in labour capacity from heat stress under climate warming. Nat. Climate Change3, 563. https://doi.org/10.1038/nclimate1827. https://www.nature.com/articles/nclimate1827#supplementary-information (2013).

    36.
    Mazdiyasni, O. et al. Increasing probability of mortality during Indian heat waves. Sci. Adv. https://doi.org/10.1126/sciadv.1700066 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    37.
    Alexandrov, V. A. & Hoogenboom, G. The impact of climate variability and change on crop yield in Bulgaria. Agric. For. Meteorol. 104, 315–327. https://doi.org/10.1016/S0168-1923(00)00166-0 (2000).
    ADS  Article  Google Scholar 

    38.
    Siegmund, J. F., Wiedermann, M., Donges, J. F. & Donner, R. V. Impact of temperature and precipitation extremes on the flowering dates of four German wildlife shrub species. Biogeosciences 13, 5541–5555 (2016).
    ADS  Article  Google Scholar 

    39.
    Ummenhofer, C. C. & Meehl, G. A. Extreme weather and climate events with ecological relevance: a review. Philos. Trans. R. Soc. B Biol. Sci. https://doi.org/10.1098/rstb.2016.0135 (2017).

    40.
    Pedelty, J. et al. In 2007 IEEE International Geoscience and Remote Sensing Symposium 1021–1025.

    41.
    Rocha, A. V. & Shaver, G. R. Advantages of a two band EVI calculated from solar and photosynthetically active radiation fluxes. Agric. For. Meteorol. 149, 1560–1563. https://doi.org/10.1016/j.agrformet.2009.03.016 (2009).
    ADS  Article  Google Scholar 

    42.
    Huete, A. R. et al. Amazon rainforests green-up with sunlight in dry season. Geophys. Res. Lett. 33, L06405. https://doi.org/10.1029/2005gl025583 (2006).
    ADS  Article  Google Scholar 

    43.
    Huete, A., Miura, T., Yoshioka, H., Ratana, P. & Broich, M. in Biophysical Applications of Satellite Remote Sensing (ed Jonathan M. Hanes) 1–41 (Spring, 2013).

    44.
    Zhang, Q. Y. et al. Estimating light absorption by chlorophyll, leaf and canopy in a deciduous broadleaf forest using MODIS data and a radiative transfer model. Remote Sens. Environ. 99, 357–371 (2005).
    ADS  Article  Google Scholar 

    45.
    Zhang, Q. Y. et al. Can a satellite-derived estimate of the fraction of PAR absorbed by chlorophyll (FAPAR(chl)) improve predictions of light-use efficiency and ecosystem photosynthesis for a boreal aspen forest?. Remote Sens. Environ. 113, 880–888 (2009).
    ADS  Article  Google Scholar 

    46.
    White, K., Pontius, J. & Schaberg, P. Remote sensing of spring phenology in northeastern forests: a comparison of methods, field metrics and sources of uncertainty. Remote Sens. Environ. 148, 97–107. https://doi.org/10.1016/j.rse.2014.03.017 (2014).
    ADS  Article  Google Scholar 

    47.
    Peng, D. et al. Spring green-up phenology products derived from MODIS NDVI and EVI: intercomparison, interpretation and validation using national phenology network and AmeriFlux observations. Ecol. Indic. 77, 323–336 (2017).
    Article  Google Scholar 

    48.
    Karkauskaite, P., Tagesson, T. & Fensholt, R. Evaluation of the Plant Phenology Index (PPI), NDVI and EVI for start-of-season trend analysis of the northern hemisphere boreal zone. Remote Sens. Basel. https://doi.org/10.3390/rs9050485 (2017).
    Article  Google Scholar 

    49.
    Klosterman, S. T. et al. Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery. Biogeosciences 11, 4305–4320. https://doi.org/10.5194/bg-11-4305-2014 (2014).
    ADS  Article  Google Scholar 

    50.
    Zhang, X. Y. et al. Evaluation of land surface phenology from VIIRS data using time series of phenocam imagery. Agric. For. Meteorol. 256–257, 137–149 (2018).
    ADS  Article  Google Scholar 

    51.
    Zhang, X. Reconstruction of a complete global time series of daily vegetation index trajectory from long-term AVHRR data. Remote Sens. Environ 156, 457–472. https://doi.org/10.1016/j.rse.2014.10.012 (2015).
    ADS  Article  Google Scholar 

    52.
    Kogan, F., Gitelson, A., Zakarin, E., Spivak, L. & Lebed, L. AVHRR-based spectral vegetation index for quantitative assessment of vegetation state and productivity. Photogram. Eng. Remote Sens. 69, 899–906 (2003).
    Article  Google Scholar 

    53.
    Zhang, X. Y. et al. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 84, 471–475 (2003).
    ADS  Article  Google Scholar 

    54.
    Zhang, X., Friedl, M. A. & Schaaf, C. B. Global vegetation phenology from moderate resolution imaging spectroradiometer (MODIS): evaluation of global patterns and comparison with in situ measurements. J. Geophys. Res. 111, G04017 (2006).
    ADS  Google Scholar 

    55.
    Richardson, A. D. et al. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. Tree Physiol. 29, 321–331. https://doi.org/10.1093/treephys/tpn040 (2009).
    CAS  Article  PubMed  Google Scholar 

    56.
    Donnelly, A., Liu, L., Zhang, X. & Wingler, A. Autumn leaf phenology: discrepancies between in situ observations and satellite data at urban and rural sites. Int. J. Remote Sens. 39, 8129–8150. https://doi.org/10.1080/01431161.2018.1482021 (2018).
    ADS  Article  Google Scholar 

    57.
    Badeck, F. et al. Responses of spring phenology to climate change. New Phytol. 162, 295–309. https://doi.org/10.1111/j.1469-8137.2004.01059.x (2004).
    Article  Google Scholar 

    58.
    Mesinger, F. et al. North American regional reanalysis. Bull. Am. Meteorol. Soc. 87, 343–360 (2006).
    ADS  Article  Google Scholar 

    59.
    Luo, Y., Berbery, E. H., Mitchell, K. E. & Betts, A. K. Relationships between land surface and near-surface atmospheric variables in the NCEP North American Regional Reanalysis. J. Hydrometeorol. 8, 1184–1203 (2007).
    ADS  Article  Google Scholar 

    60.
    Reidmiller, D. R. et al. (eds) US Global Change Research Program (USGCRP Washington, DC, 2018).
    Google Scholar 

    61.
    Los, S. O., Collatz, G. J., Bounoua, L., Sellers, P. J. & Tucker, C. J. Global interannual variations in sea surface temperature and land surface vegetation, air temperature, and precipitation. J. Climate 14, 1535–1549. https://doi.org/10.1175/1520-0442(2001)014%3c1535:giviss%3e2.0.co;2 (2001).
    ADS  Article  Google Scholar 

    62.
    Myneni, R. B., Tucker, C. J., Asrar, G. & Keeling, C. D. Interannual variations in satellite-sensed vegetation index data from 1981 to 1991. J. Geophys. Res. 103, 6145–6160 (1998).
    ADS  Article  Google Scholar 

    63.
    Chen, X. Q. & Xu, L. Phenological responses of Ulmus pumila (Siberian Elm) to climate change in the temperate zone of China. Int. J. Biometeorol. 56, 695–706 (2012).
    ADS  Article  Google Scholar 

    64.
    Matsumoto, K., Ohta, T., Irasawa, M. & Nakamura, T. Climate change and extension of the Ginkgo biloba L. growing season in Japan. Glob. Change Biol. 9, 1634–1642 (2003).

    65.
    Liu, L., Zhang, X., Yu, Y. & Donnelly, A. Detecting spatiotemporal changes of peak foliage coloration in deciduous and mixedforests across the Central and Eastern United States. Environ. Res. Lett. 12, 024013 (2017).
    ADS  Article  Google Scholar 

    66.
    Beniston, M. et al. Future extreme events in European climate: an exploration of regional climate model projections. Clim. Change 81, 71–95. https://doi.org/10.1007/s10584-006-9226-z (2007).
    Article  Google Scholar 

    67.
    Rummukainen, M. Changes in climate and weather extremes in the 21st century. Wiley Interdiscip. Rev. Climate Change 3, 115–129. https://doi.org/10.1002/wcc.160 (2012).
    Article  Google Scholar 

    68.
    Melaas, E. K., Sulla-Menashe, D. & Friedl, M. A. Multi-decadal changes and interannual variation in springtime phenology of North American temperate and boreal deciduous forests (Geophys. Res, Lett, 2018).
    Google Scholar 

    69.
    Papineau, J. M. Wintertime temperature anomalies in Alaska correlated with ENSO and PDO. Int. J. Climatol. 21, 1577–1592. https://doi.org/10.1002/joc.686 (2001).
    Article  Google Scholar 

    70.
    Willis, J. K., Roemmich, D. & Cornuelle, B. Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales. J. Geophys. Res. Oceans. https://doi.org/10.1029/2003jc002260 (2004).
    Article  Google Scholar 

    71.
    Knapp, A. K. & Smith, M. D. Variation among biomes in temporal dynamics of aboveground primary production. Science 291, 481–484. https://doi.org/10.1126/science.291.5503.481 (2001).
    ADS  CAS  Article  PubMed  Google Scholar 

    72.
    Fang, J., Piao, S., Tang, Z., Peng, C. & Ji, W. Interannual variability in net primary production and precipitation. Science 293, 1723–1723. https://doi.org/10.1126/science.293.5536.1723a (2001).
    CAS  Article  PubMed  Google Scholar 

    73.
    Peaucelle, M. et al. Spatial variance of spring phenology in temperate deciduous forests is constrained by background climatic conditions. Nat. Commun. 10, 5388. https://doi.org/10.1038/s41467-019-13365-1 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    74.
    Marchand, L. J. et al. Inter-individual variability in spring phenology of temperate deciduous trees depends on species, tree size and previous year autumn phenology. Agric. For. Meteorol. 290, 108031. https://doi.org/10.1016/j.agrformet.2020.108031 (2020).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    75.
    Zhang, J., Zheng, H., Zhang, X. & VanLooy, J. Changes in regional snowfall in Central North America (1961–2017): mountain versus plains. Geosciences 10, 157 (2020).
    ADS  CAS  Article  Google Scholar 

    76.
    Sacks, W. J., Deryng, D., Foley, J. A. & Ramankutty, N. Crop planting dates: an analysis of global patterns. Global Ecol. Biogeogr. 19, 607–620 (2010).
    Google Scholar 

    77.
    Lobell, D. B. et al. Prioritizing climate change adaptation needs for food security in 2030. Science 319, 607 (2008).
    CAS  Article  Google Scholar 

    78.
    Howden, S. M. et al. Adapting agriculture to climate change. Proc. Natl. Acad. Sci. 104, 19691 (2007).
    ADS  CAS  Article  Google Scholar 

    79.
    Olesen, J. E. et al. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 34, 96–112. https://doi.org/10.1016/j.eja.2010.11.003 (2011).
    Article  Google Scholar 

    80.
    Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Climate Change 4, 287. https://doi.org/10.1038/nclimate2153. https://www.nature.com/articles/nclimate2153#supplementary-information (2014).

    81.
    Myneni, R., Keeling, C., Tucker, C., Asrar, G. & Nemani, R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702 (1997).
    ADS  CAS  Article  Google Scholar 

    82.
    Peñuelas, J. & Filella, I. Responses to a warming world. Science 294, 793–795 (2001).
    Article  Google Scholar 

    83.
    Cayan, D. R., Kammerdiener, S. A., Dettinger, M. D., Caprio, J. M. & Peterson, D. H. Changes in the onset of spring in the Western United States. Bull. Am. Meteorol. Soc. 82, 399–416. https://doi.org/10.1175/1520-0477(2001)082%3c0399:CITOOS%3e2.3.CO;2 (2001).
    ADS  Article  Google Scholar 

    84.
    Zheng, C. et al. Climatic anomaly and its impact on vegetation phenology, carbon sequestration and water-use efficiency at a humid temperate forest. J. Hydrol. 565, 150–159. https://doi.org/10.1016/j.jhydrol.2018.08.012 (2018).
    ADS  CAS  Article  Google Scholar 

    85.
    CaraDonna, P. J., Iler, A. M. & Inouye, D. W. Shifts in flowering phenology reshape a subalpine plant community. Proc. Natl. Acad. Sci. 111, 4916 (2014).
    ADS  CAS  Article  Google Scholar 

    86.
    Allen, M. R. et al. IPCC fifth assessment synthesis report-climate change 2014 synthesis report (2014).

    87.
    Friedlingstein, P. et al. Global carbon budget 2019(11), 1783–1838 (2019).
    Google Scholar 

    88.
    Ogunbode, C. A., Doran, R. & Böhm, G. Exposure to the IPCC special report on 1.5 °C global warming is linked to perceived threat and increased concern about climate change. Climate Change 158, 361–375.https://doi.org/10.1007/s10584-019-02609-0 (2020).

    89.
    Diffenbaugh, N. S. et al. Quantifying the influence of global warming on unprecedented extreme climate events. Proc. Natl. Acad. Sci. 114, 4881 (2017).
    ADS  CAS  Article  Google Scholar 

    90.
    Teshome, A. & Zhang, J. Increase of extreme drought over ethiopia under climate warming. Adv. Meteorol. https://doi.org/10.1155/2019/5235429 (2019).
    Article  Google Scholar 

    91.
    Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H. & Liu, Z. Monitoring the response of vegetation phenology to precipitation in Africa by coupling MODIS and TRMM instruments. J. Geophys. Res. Atmos. https://doi.org/10.1029/2004JD005263 (2005).
    Article  Google Scholar 

    92.
    Wang, J. & Zhang, X. Impacts of wildfires on interannual trends in land surface phenology: an investigation of the Hayman Fire. Environ. Res. Lett. 12, 054008 (2017).
    ADS  Article  Google Scholar 

    93.
    Morton, D. C. et al. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proc. Natl. Acad. Sci. 103, 14637 (2006).
    ADS  CAS  Article  Google Scholar 

    94.
    Xin, Q., Broich, M., Zhu, P. & Gong, P. Modeling grassland spring onset across the Western United States using climate variables and MODIS-derived phenology metrics. Remote Sens. Environ. 161, 63–77. https://doi.org/10.1016/j.rse.2015.02.003 (2015).
    ADS  Article  Google Scholar 

    95.
    Peng, D. et al. Scaling effects on spring phenology detections from MODIS data at multiple spatial resolutions over the contiguous United States. ISPRS J. Photogram. Remote Sens. 132, 185–198. https://doi.org/10.1016/j.isprsjprs.2017.09.002 (2017).
    ADS  Article  Google Scholar 

    96.
    Jentsch, A., Kreyling, J., Boettcher-Treschkow, J. & Beierkuhnlein, C. Beyond gradual warming: extreme weather events alter flower phenology of European grassland and heath species. Glob. Change Biol. 15, 837–849. https://doi.org/10.1111/j.1365-2486.2008.01690.x (2009).
    ADS  Article  Google Scholar 

    97.
    Nagy, L., Kreyling, J., Gellesch, E., Beierkuhnlein, C. & Jentsch, A. Recurring weather extremes alter the flowering phenology of two common temperate shrubs. Int. J. Biometeorol. 57, 579–588. https://doi.org/10.1007/s00484-012-0585-z (2013).
    ADS  CAS  Article  PubMed  Google Scholar  More

  • in

    Methods matter in repeating ocean acidification studies

    1.
    Clark, T. D. et al. Ocean acidification does not impair the behaviour of coral reef fishes. Nature 577, 370–375 (2020).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 
    2.
    Munday, P. L., Jarrold, M. D. & Nagelkerken, I. in Fish Physiology: Carbon Dioxide Vol. 37 (eds Grosell, M. et al.) 323–368 (Elsevier, 2019).

    3.
    Munday, P. L. et al. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc. Natl Acad. Sci. USA 106, 1848–1852 (2009).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    4.
    Munday, P. L. et al. Replenishment of fish populations is threatened by ocean acidification. Proc. Natl Acad. Sci. USA 107, 12930–12934 (2010).
    ADS  CAS  Google Scholar 

    5.
    Dixson, D. L., Munday, P. L. & Jones, G. P. Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecol. Lett. 13, 68–75 (2010).
    PubMed  PubMed Central  Google Scholar 

    6.
    Munday, P. L. et al. Effects of elevated CO2 on predator avoidance behaviour by reef fishes is not altered by experimental test water. PeerJ 4, e2501 (2016).
    PubMed  PubMed Central  Google Scholar 

    7.
    Jarrold, M. D., Humphrey, C., McCormick, M. I. & Munday, P. L. Diel CO2 cycles reduce severity of behavioural abnormalities in coral reef fish under ocean acidification. Sci. Rep. 7, 10153 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    8.
    McMahon, S. J., Donelson, J. M. & Munday, P. L. Food ration does not influence the effect of elevated CO2 on antipredator behaviour of a reef fish. Mar. Ecol. Prog. Ser. 586, 155–165 (2018).
    ADS  CAS  Google Scholar 

    9.
    Munday, P. L., Cheal, A. J., Dixson, D. L., Rummer, J. L. & Fabricius, K. E. Behavioural impairment in reef fishes caused by ocean acidification at CO2 seeps. Nat. Clim. Change 4, 487–492 (2014).
    ADS  CAS  Article  Google Scholar 

    10.
    Ferrari, M. C. O. et al. Predation in high CO2 waters: prey fish from high-risk environments are less susceptible to ocean acidification. Integr. Comp. Biol. 57, 55–62 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    11.
    Ferrari, M. C. O. et al. Intrageneric variation in antipredator responses of coral reef fishes affected by ocean acidification: implications for climate change projections on marine communities. Glob. Change Biol. 17, 2980–2986 (2011).
    ADS  Google Scholar 

    12.
    Welch, M. J., Watson, S.-A., Welsh, J. Q., McCormick, M. I. & Munday, P. L. Effects of elevated CO2 on fish behaviour undiminished by transgenerational acclimation. Nat. Clim. Change 4, 1086–1089 (2014).
    ADS  CAS  Google Scholar 

    13.
    Ferrari, M. C. O., Wisenden, B. D. & Chivers, D. P. Chemical ecology of predator–prey interactions in aquatic ecosystems: a review and prospectus. Can. J. Zool. 88, 698–724 (2010).
    Google Scholar 

    14.
    Ferrari, M. C. O. et al. Interactive effects of ocean acidification and rising sea temperatures alter predation rate and predator selectivity in reef fish communities. Glob. Change Biol. 21, 1848–1855 (2015).
    ADS  Google Scholar 

    15.
    Kats, L. B. & Dill, L. M. The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience 5, 361–394 (1998).
    Google Scholar 

    16.
    Roggatz, C. C., Lorch, M., Hardege, J. D. & Benoit, D. M. Ocean acidification affects marine chemical communication by changing structure and function of peptide signalling molecules. Glob. Change Biol. 22, 3914–3926 (2016).
    ADS  Google Scholar 

    17.
    Jutfelt, F., Sundin, J., Raby, G. D., Krång, A.-S. & Clark, T. D. Two-current choice flumes for testing avoidance and preference in aquatic animals. Methods Ecol. Evol. 8, 379–390 (2017).
    Google Scholar 

    18.
    Domenici, P., Allan, B., McCormick, M. I. & Munday, P. L. Elevated carbon dioxide affects behavioural lateralization in a coral reef fish. Biol. Lett. 8, 78–81 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    19.
    Domenici, P., Allan, B. J. M., Watson, S.-A., McCormick, M. I. & Munday, P. L. Shifting from right to left: the combined effect of elevated CO2 and temperature on behavioural lateralization in a coral reef fish. PLoS ONE 9, e87969 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    20.
    Nilsson, G. E. et al. Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nat. Clim. Change 2, 201–204 (2012).
    ADS  CAS  Google Scholar 

    21.
    Ferrari, M. C. O. et al. Effects of ocean acidification on visual risk assessment in coral reef fishes. Funct. Ecol. 26, 553–558 (2012).
    Google Scholar 

    22.
    Chung, W. S., Marshall, N. J., Watson, S.-A., Munday, P. L. & Nilsson, G. E. Ocean acidification slows retinal function in a damselfish through interference with GABAA receptors. J. Exp. Biol. 217, 323–326 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Welch, M. & Munday, P. L Raw Data for Olfactory Response of Acanthochromis polyacanthus in a Y-maze Flume (dataset). https://doi.org/10.4225/28/5add60af3a267 (James Cook University, 2018).

    24.
    Schunter, C. et al. Molecular signatures of transgenerational response to ocean acidification in a species of reef fish. Nat. Clim. Change 6, 1014–1018 (2016).
    ADS  CAS  Google Scholar 

    25.
    Allan, B. J. M., Miller, G. M., McCormick, M. I., Domenici, P. & Munday, P. L. Parental effects improve escape performance of juvenile reef fish in a high-CO2 world. Proc. R. Soc. Lond. B 281, 20132179 (2014).
    Google Scholar 

    26.
    Welch, M. J. & Munday, P. L. Heritability of behavioural tolerance to high CO2 in a coral reef fish is masked by nonadaptive phenotypic plasticity. Evol. Appl. 10, 682–693 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    27.
    Stiasny, M. H. et al. Ocean acidification effects on Atlantic cod larval survival and recruitment to the fished population. PLoS ONE 11, e0155448 (2016).
    PubMed  PubMed Central  Google Scholar 

    28.
    Murray, C. S., Wiley, D. & Baumann, H. High sensitivity of a keystone forage fish to elevated CO2 and temperature. Conserv. Physiol. 7, coz084 (2019).
    PubMed  PubMed Central  Google Scholar 

    29.
    Munday, P. L. et al. Elevated CO2 affects the behavior of an ecologically and economically important coral reef fish. Mar. Biol. 160, 2137–2144 (2013).
    CAS  Google Scholar 

    30.
    Allan, B. J. M., Domenici, P., McCormick, M. I., Watson, S.-A. & Munday, P. L. Elevated CO2 affects predator–prey interactions through altered performance. PLoS ONE 8, e58520 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Benítez, S. et al. Intertidal pool fish Girella laevifrons (Kyphosidae) shown strong physiological homeostasis but shy personality: the cost of living in hypercapnic habitats. Mar. Pollut. Bull. 118, 57–63 (2017).
    PubMed  PubMed Central  Google Scholar 

    32.
    Borges, F. O. et al. Ocean warming and acidification may challenge the riverward migration of glass eels. Biol. Lett. 15, 20180627 (2019).
    PubMed  PubMed Central  Google Scholar 

    33.
    Castro, J. M. et al. Painted goby larvae under high-CO2 fail to recognize reef sounds. PLoS ONE 12, e0170838 (2017).
    PubMed  PubMed Central  Google Scholar 

    34.
    Chivers, D. P. et al. Impaired learning of predators and lower prey survival under elevated CO2: a consequence of neurotransmitter interference. Glob. Change Biol. 20, 515–522 (2014).
    ADS  Google Scholar 

    35.
    Ferrari, M. C. O. et al. Putting prey and predator into the CO2 equation—qualitative and quantitative effects of ocean acidification on predator–prey interactions. Ecol. Lett. 14, 1143–1148 (2011).
    PubMed  PubMed Central  Google Scholar 

    36.
    Forsgren, E., Dupont, S., Jutfelt, F. & Amundsen, T. Elevated CO2 affects embryonic development and larval phototaxis in a temperate marine fish. Ecol. Evol. 3, 3637–3646 (2013).
    PubMed  PubMed Central  Google Scholar 

    37.
    Goldenberg, S. U. et al. Ecological complexity buffers the impacts of future climate on marine consumers. Nat. Clim. Change 8, 229–233 (2018).
    ADS  Google Scholar 

    38.
    Green, L. & Jutfelt, F. Elevated carbon dioxide alters the plasma composition and behaviour of a shark. Biol. Lett. 10, 20140538 (2014).
    PubMed  PubMed Central  Google Scholar 

    39.
    Hamilton, T. J., Holcombe, A. & Tresguerres, M. CO2-induced ocean acidification increases anxiety in rockfish via alteration of GABAA receptor functioning. Proc. R. Soc. B 281, 20132509 (2014).
    PubMed  PubMed Central  Google Scholar 

    40.
    Heuer, R. M., Welch, M. J., Rummer, J. L., Munday, P. L. & Grosell, M. Altered brain ion gradients following compensation for elevated CO2 are linked to behavioural alterations in a coral reef fish. Sci. Rep. 6, 33216 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Hurst, T. P. et al. Elevated CO2 alters behavior, growth, and lipid composition of Pacific cod larvae. Mar. Environ. Res. 145, 52–65 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    42.
    Jiahuan, R. et al. Ocean acidification impairs foraging behavior by interfering with olfactory neural signal transduction in black sea bream, Acanthopagrus schlegelii. Front. Physiol. 9, 1592 (2018).
    PubMed  PubMed Central  Google Scholar 

    43.
    Jutfelt, F., Bresolin de Souza, K., Vuylsteke, A. & Sturve, J. Behavioural disturbances in a temperate fish exposed to sustained high-CO2 levels. PLoS ONE 8, e65825 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    44.
    Lai, F., Jutfelt, F. & Nilsson, G. E. Altered neurotransmitter function in CO2-exposed stickleback (Gasterosteus aculeatus): a temperate model species for ocean acidification research. Conserv. Physiol. 3, cov018 (2015).
    PubMed  PubMed Central  Google Scholar 

    45.
    Laubenstein, T. D., Rummer, J. L., McCormick, M. I. & Munday, P. L. A negative correlation between behavioural and physiological performance under ocean acidification and warming. Sci. Rep. 9, 4265 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    46.
    Lopes, A. F. et al. Behavioural lateralization and shoaling cohesion of fish larvae altered under ocean acidification. Mar. Biol. 163, 243 (2016).
    Google Scholar 

    47.
    Maulvault, A. L. et al. Differential behavioural responses to venlafaxine exposure route, warming and acidification in juvenile fish (Argyrosomus regius). Sci. Total Environ. 634, 1136–1147 (2018).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    48.
    McCormick, M. I., Watson, S.-A. & Munday, P. L. Ocean acidification reverses competition for space as habitats degrade. Sci. Rep. 3, 3280 (2013).
    PubMed  PubMed Central  Google Scholar 

    49.
    Munday, P. L. et al. Selective mortality associated with variation in CO2 tolerance in a marine fish. Ocean Acidif. 1, 1–5 (2012).
    Google Scholar 

    50.
    Nadler, L. E., Killen, S. S., McCormick, M. I., Watson, S.-A. & Munday, P. L. Effect of elevated carbon dioxide on shoal familiarity and metabolism in a coral reef fish. Conserv. Physiol. 4, cow052 (2016).
    PubMed  PubMed Central  Google Scholar 

    51.
    Näslund, J., Lindstrom, E., Lai, F. & Jutfelt, F. Behavioural responses to simulated bird attacks in marine three-spined sticklebacks after exposure to high CO2 levels. Mar. Freshw. Res. 66, 877–885 (2015).
    Google Scholar 

    52.
    Ou, M. et al. Responses of pink salmon to CO2-induced aquatic acidification. Nat. Clim. Change 5, 950–955 (2015).
    ADS  CAS  Google Scholar 

    53.
    Paula, J. R. et al. Neurobiological and behavioural responses of cleaning mutualisms to ocean warming and acidification. Sci. Rep. 9, 12728 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    54.
    Paula, J. R. et al. The past, present and future of cleaner fish cognitive performance as a function of CO2 levels. Biol. Lett. 15, 20190618 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    55.
    Porteus, C. S. et al. Near-future CO2 levels impair the olfactory system of a marine fish. Nat. Clim. Change 8, 737–743 (2018).
    ADS  CAS  Google Scholar 

    56.
    Pistevos, J. C. A., Nagelkerken, I., Rossi, T., Olmos, M. & Connell, S. D. Ocean acidification and global warming impair shark hunting behaviour and growth. Sci. Rep. 5, 16293 (2015).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    57.
    Regan, M. D. et al. Ambient CO2, fish behaviour and altered GABAergic neurotransmission: exploring the mechanism of CO2-altered behaviour by taking a hypercapnia dweller down to low CO2 levels. J. Exp. Biol. 219, 109–118 (2016).
    PubMed  PubMed Central  Google Scholar 

    58.
    Rossi, T., Nagelkerken, I., Pistevos, J. C. A. & Connell, S. D. Lost at sea: ocean acidification undermines larval fish orientation via altered hearing and marine soundscape modification. Biol. Lett. 12, 20150937 (2016).
    PubMed  PubMed Central  Google Scholar 

    59.
    Rossi, T., Pistevos, J. C. A., Connell, S. D. & Nagelkerken, I. On the wrong track: ocean acidification attracts larval fish to irrelevant environmental cues. Sci. Rep. 8, 5840 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    60.
    Schmidt, M. et al. Impact of ocean warming and acidification on the behaviour of two co-occurring gadid species, Boreogadus saida and Gadus morhua, from Svalbard. Mar. Ecol. Prog. Ser. 571, 183–191 (2017).
    ADS  CAS  Google Scholar 

    61.
    Schunter, C. et al. An interplay between plasticity and parental phenotype determines impacts of ocean acidification on a reef fish. Nat. Ecol. Evol. 2, 334–342 (2018).
    PubMed  PubMed Central  Google Scholar 

    62.
    Simpson, S. D. et al. Ocean acidification erodes crucial auditory behaviour in a marine fish. Biol. Lett. 7, 917–920 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    63.
    Sundin, J. & Jutfelt, F. 9–28 d of exposure to elevated pCO2 reduces avoidance of predator odour but had no effect on behavioural lateralization or swimming activity in a temperate wrasse (Ctenolabrus rupestris). ICES J. Mar. Sci. 73, 620–632 (2016).
    Google Scholar 

    64.
    Sundin, J. & Jutfelt, F. Effects of elevated carbon dioxide on male and female behavioural lateralization in a temperate goby. R. Soc. Open Sci. 5, 171550 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    65.
    Devine, B. M. & Munday, P. L. Habitat preferences of coral-associated fishes are altered by short-term exposure to elevated CO2. Mar. Biol. 160, 1955–1962 (2013).
    CAS  Google Scholar 

    66.
    Velez, Z., Roggatz, C. C., Benoit, D. M., Hardege, J. D. & Hubbard, P. C. Short- and medium-term exposure to ocean acidification reduces olfactory sensitivity in gilthead seabream. Front. Physiol. 10, 731 (2019).
    PubMed  PubMed Central  Google Scholar 

    67.
    Williams, C. R. et al. Elevated CO2 impairs olfactory-mediated neural and behavioral responses and gene expression in ocean-phase coho salmon (Oncorhynchus kisutch). Glob. Change Biol. 25, 963–977 (2019).
    ADS  Google Scholar  More

  • in

    Reply to: Methods matter in repeating ocean acidification studies

    1.
    Dixson, D. L., Munday, P. L. & Jones, G. P. Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecol. Lett. 13, 68–75 (2010).
    Article  Google Scholar 
    2.
    Munday, P. L. et al. Replenishment of fish populations is threatened by ocean acidification. Proc. Natl Acad. Sci. USA 107, 12930–12934 (2010).
    ADS  CAS  Article  Google Scholar 

    3.
    Clements, J. C. & Hunt, H. L. Marine animal behaviour in a high CO2 ocean. Mar. Ecol. Prog. Ser. 536, 259–279 (2015).
    ADS  CAS  Article  Google Scholar 

    4.
    Watson, S.-A. et al. Marine mollusc predator-escape behaviour altered by near-future carbon dioxide levels. Proc. R. Soc. B 281, 20132377 (2014).
    Article  Google Scholar 

    5.
    Clark, T. D. et al. Ocean acidification does not impair the behaviour of coral reef fishes. Nature 577, 370–375 (2020).
    ADS  CAS  Article  Google Scholar 

    6.
    Munday, P. L. et al. Methods matter in repeating ocean acidification studies. Nature https://doi.org/10.1038/s41586-020-2803-x (2020).
    Article  Google Scholar 

    7.
    Nosek, B. A. & Errington, T. M. What is replication? PLoS Biol. 18, e3000691 (2020).
    CAS  Article  Google Scholar 

    8.
    Munday, P. L. et al. Elevated CO2 affects the behavior of an ecologically and economically important coral reef fish. Mar. Biol. 160, 2137–2144 (2013).
    CAS  Article  Google Scholar 

    9.
    Munday, P. L., Cheal, A. J., Dixson, D. L., Rummer, J. L. & Fabricius, K. E. Behavioural impairment in reef fishes caused by ocean acidification at CO2 seeps. Nat. Clim. Change 4, 487–492 (2014).
    ADS  CAS  Article  Google Scholar 

    10.
    Munday, P. L. et al. Effects of elevated CO2 on predator avoidance behaviour by reef fishes is not altered by experimental test water. PeerJ 4, e2501 (2016).
    Article  Google Scholar 

    11.
    Ioannidis, J. P. A. Why science is not necessarily self-correcting. Perspect. Psychol. Sci. 7, 645–654 (2012).
    Article  Google Scholar 

    12.
    Browman, H. I. Applying organized scepticism to ocean acidification research. ICES J. Mar. Sci. 73, 529–536 (2016).
    Article  Google Scholar 

    13.
    Nissen, S. B., Magidson, T., Gross, K. & Bergstrom, C. T. Publication bias and the canonization of false facts. eLife 5, e21451 (2016).
    Article  Google Scholar  More

  • in

    Bacteria incorporated with calcium lactate pentahydrate to improve the mortar properties and self-healing occurrence

    1.
    Monteiro, P. J. M., Miller, S. A. & Horvath, A. Towards sustainable concrete. Nat. Mater. 16, 698–699 (2017).
    ADS  CAS  Article  Google Scholar 
    2.
    Schneider, M., Romer, M., Tschudin, M. & Bolio, H. Sustainable cement production—Present and future. Cem. Concr. Res. 41, 642–650 (2011).
    CAS  Article  Google Scholar 

    3.
    Worrell, E., Price, L., Martin, N., Hendriks, C. & Meida, L. O. Carbon dioxide emissions from the global cement industry. Annu. Rev. Energy Environ. 26, 303–329 (2001).
    Article  Google Scholar 

    4.
    Mehta, P. K. & Monteiro, P. J. M. Concrete: Microstructure, Properties, and Materials (McGraw-Hill, New York, 2005).
    Google Scholar 

    5.
    Chen, C., Habert, G., Bouzidi, Y. & Jullien, A. Environmental impact of cement production: Detail of the different processes and cement plant variability evaluation. J. Clean. Prod. 18, 478–485 (2010).
    CAS  Article  Google Scholar 

    6.
    Bu, J., Tian, Z., Zheng, S. & Tang, Z. Effect of sand content on strength and pore structure of cement mortar. J. Wuhan Univ. Technol. Mater. Sci. Ed. 32, 382–390 (2017).
    CAS  Article  Google Scholar 

    7.
    Khaliq, W. & Ehsan, M. B. Crack healing in concrete using various bio influenced self-healing techniques. Constr. Build. Mater. 102, 349–357 (2016).
    CAS  Article  Google Scholar 

    8.
    Vijay, K. & Murmu, M. Effect of calcium lactate on compressive strength and self-healing of cracks in microbial concrete. Front. Struct. Civ. Eng. https://doi.org/10.1007/s11709-018-0494-2 (2018).
    Article  Google Scholar 

    9.
    Vahabi, A., Ramezanianpour, A. A. & Noghabi, K. A. A preliminary insight into the revolutionary new line in improving concrete properties using an indigenous bacterial strain Bacillus licheniformis AK01, as a healing agent. Eur. J. Environ. Civ. Eng. 19, 614–627 (2015).
    Article  Google Scholar 

    10.
    Schlangen, E. & Joseph, C. Self-Healing Processes in Concrete. Self-Healing Materials: Fundamentals, Design Strategies, and Applications (WILEY-VCH Verlag Gmbh & Co. KGaA, New York, 2009). https://doi.org/10.1002/9783527625376.ch5.
    Google Scholar 

    11.
    Mehta, P. K. High-performance, high-volume fly ash concrete for sustainable development. Int. Work. Sustain. Dev. Concr. Technol. 31, 3–14 (2008).
    Google Scholar 

    12.
    Achal, V. & Mukherjee, A. A review of microbial precipitation for sustainable construction. Constr. Build. Mater. 93, 1224–1235 (2015).
    Article  Google Scholar 

    13.
    Burne, R. A. & Chen, Y. Y. M. Bacterial ureases in infectious diseases. Microbes Infect. 2, 533–542 (2000).
    CAS  Article  Google Scholar 

    14.
    Dick, J. et al. Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species. Biodegradation 17, 357–367 (2006).
    CAS  Article  Google Scholar 

    15.
    De Muynck, W., De Belie, N. & Verstraete, W. Microbial carbonate precipitation in construction materials: A review. Ecol. Eng. 36, 118–136 (2010).
    Article  Google Scholar 

    16.
    Van Tittelboom, K., De Belie, N., De Muynck, W. & Verstraete, W. Use of bacteria to repair cracks in concrete. Cem. Concr. Res. 40, 157–166 (2010).
    Article  Google Scholar 

    17.
    Dhami, N. K., Reddy, M. S. & Mukherjee, M. S. Biomineralization of calcium carbonates and their engineered applications: A review. Front. Microbiol. 4, 1–13 (2013).
    Article  Google Scholar 

    18.
    Ramachandran, S. K., Ramakrishnan, V. & Bang, S. S. Remediation of concrete using micro-organism. Aci Mater. J. 1, 1. https://doi.org/10.14359/10154 (2001).
    Article  Google Scholar 

    19.
    Dhami, N. K., Reddy, M. S. & Mukherjee, A. Bacillus megaterium mediated mineralization of calcium carbonate as biogenic surface treatment of green building materials. World J. Microbiol. Biotechnol. 29, 2397–2406 (2013).
    CAS  Article  Google Scholar 

    20.
    De Muynck, W., Cox, K., De Belie, N. & Verstraete, W. Bacterial carbonate precipitation as an alternative surface treatment for concrete. Constr. Build. Mater. 22, 875–885 (2008).
    Article  Google Scholar 

    21.
    Achal, V., Mukerjee, A. & Reddy, M. S. Biogenic treatment improves the durability and remediates the cracks of concrete structures. Constr. Build. Mater. 48, 1–5 (2013).
    Article  Google Scholar 

    22.
    Chahal, N., Siddique, R. & Rajor, A. Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of concrete incorporating silica fume. Constr. Build. Mater. 37, 645–651 (2012).
    Article  Google Scholar 

    23.
    van Paassen, L. A. et al. Potential soil reinforcement by biological denitrification. Ecol. Eng. 36, 168–175 (2010).
    Article  Google Scholar 

    24.
    Erşan, Y. Ç, Hernandez-Sanabria, E., Boon, N. & De Belie, N. Enhanced crack closure performance of microbial mortar through nitrate reduction. Cem. Concr. Compos. 70, 159–170 (2016).
    Article  Google Scholar 

    25.
    Glass, C. & Silverstein, J. Denitrification kinetics of high nitrate concentration water: pH effect on inhibition and nitrite accumulation. Water Res. 32, 831–839 (1998).
    CAS  Article  Google Scholar 

    26.
    van Paassen, L. Biogrout: Ground Improvement by Microbially Induced Carbonate Precipitation (Delft University of Technology, Delft, 2009).
    Google Scholar 

    27.
    Li, M., Fu, Q. L., Zhang, Q., Achal, V. & Kawasaki, S. Bio-grout based on microbially induced sand solidification by means of asparaginase activity. Sci. Rep. 5, 1–9 (2015).
    Google Scholar 

    28.
    Jonkers, H. M. & Schlangen, E. A two component bacteria-based self-healing concrete. In Concrete Repair, Rehabilitation and Retroftting II (eds Alexander, M. G. et al.) (CRC Press, Taylor and Francis Group, Boca Raton, 2009).
    Google Scholar 

    29.
    Jonkers, H. M., Thijssen, A., Muyzer, G., Copuroglu, O. & Schlangen, E. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol. Eng. 36, 230–235 (2010).
    Article  Google Scholar 

    30.
    Jonkers, H. M. Bacteria-based self-healing concrete. Heron 56, 1–12 (2011).
    Google Scholar 

    31.
    Chaurasia, L., Bisht, V., Singh, L. P. & Gupta, S. A novel approach of biomineralization for improving micro and macro-properties of concrete. Constr. Build. Mater. 195, 340–351 (2019).
    CAS  Article  Google Scholar 

    32.
    Seifan, M., Samani, A. K. & Berenjian, A. Induced calcium carbonate precipitation using Bacillus species. Appl. Microbiol. Biotechnol. 100, 9895–9906 (2016).
    CAS  Article  Google Scholar 

    33.
    Wang, J., Ersan, Y. C., Boon, N. & De Belie, N. Application of microorganisms in concrete: A promising sustainable strategy to improve concrete durability. Appl. Microbiol. Biotechnol. 100, 2993–3007 (2016).
    CAS  Article  Google Scholar 

    34.
    Mondal, S. & Ghosh, A. Investigation into the optimal bacterial concentration for compressive strength enhancement of microbial concrete. Constr. Build. Mater. 183, 202–214 (2018).
    Article  Google Scholar 

    35.
    Andalib, R. et al. Optimum concentration of Bacillus megaterium for strengthening structural concrete. Constr. Build. Mater. 118, 180–193 (2016).
    CAS  Article  Google Scholar 

    36.
    Achal, V. & Pan, X. Characterization of urease and carbonic anhydrase producing bacteria and their role in calcite precipitation. Curr. Microbiol. 62, 894–902 (2011).
    CAS  Article  Google Scholar 

    37.
    Sharma, A. & Bhattacharya, A. Enhanced biomimetic sequestration of CO2 into CaCO3 using purified carbonic anhydrase from indigenous bacterial strains. J. Mol. Catal. B Enzym. 67, 122–128 (2010).
    CAS  Article  Google Scholar 

    38.
    Morandeau, A., Thiéry, M. & Dangla, P. Investigation of the carbonation mechanism of CH and C–S–H in terms of kinetics, microstructure changes and moisture properties. Cem. Concr. Res. 56, 153–170 (2014).
    CAS  Article  Google Scholar 

    39.
    Ameri, F., Shoaei, P., Bahrami, N., Vaezi, M. & Ozbakkaloglu, T. Optimum rice husk ash content and bacterial concentration in self-compacting concrete. Constr. Build. Mater. 222, 796–813 (2019).
    CAS  Article  Google Scholar 

    40.
    Syarif, R., Rizki, I. N., Wattimena, R. K. & Chaerun, S. K. Selection of bacteria inducing calcium carbonate precipitation for self-healing concrete application. Curr. Res. Biosci. Biotechnol. 1, 26–30 (2019).
    Google Scholar 

    41.
    SNI 15-2049-2004. Semen Portland. BSN – National Standardization Agency of Indonesia (2004).

    42.
    Stephen, H. & Stephen, T. Solubilities of Inorganic and Organic Compounds. Binary Systems Part 1 Vol. 1 (Pergamon Press, Oxford, 1979).
    Google Scholar 

    43.
    ASTM C642-13. Standard test method for density, absorption, and voids in hardened concrete. Am. Society Testing Mater. https://doi.org/10.1520/C0642-13.5 (2013).
    Article  Google Scholar 

    44.
    ISRM. Suggested methods for determining the uniaxial compressive strength and deformability of rock materials. Int. J. Rock Mech. Min. Sci. Geomech. 16, 137–140 (1979).
    Google Scholar 

    45.
    ISRM. Suggested methods for determining tensile strength of rock materials. Int. J. Rock Mech. Min. Sci. Geomech. 15, 99–103 (1978).
    Article  Google Scholar  More

  • in

    The transboundary nature of the world’s exploited marine species

    1.
    Hutchinson, G. E. Concluding remarks. Cold Spring Harbor Symp. Quant. Biol. 22, 415–427 (1957).
    Article  Google Scholar 
    2.
    Nelson, J. S., Grande, T. C. & Wilson, M. V. H. Fishes of the World (Wiley, Hoboken, 2016).
    Google Scholar 

    3.
    Song, A. M., Scholtens, J., Stephen, J., Bavinck, M. & Chuenpagdee, R. Transboundary research in fisheries. Mar. Policy 76, 8–18 (2017).
    Article  Google Scholar 

    4.
    Fredston-Hermann, A., Gaines, S. D. & Halpern, B. S. Biogeographic constraints to marine conservation in a changing climate. Ann. N. Y. Acad. Sci. 367, 49–13 (2018).
    Google Scholar 

    5.
    Østhagen, A. Maritime boundary disputes: what are they and why do they matter?. Mar. Policy 120, 104118 (2020).
    Article  Google Scholar 

    6.
    United Nations. United Nations Convention on the Law of the Sea (UNCLOS)—Part V. (1986).

    7.
    Munro, G., Van Houtte, A. & Willmann, R. The Conservation and Management of Shared Fish Stocks: Legal and Economic Aspects. FAO Fisheries Technical Paper No. 456. Food and Agriculture Organization of the United Nations, Rome (2004).

    8.
    Miller, K. & Munro, G. Cooperation and Conflicts in the Management of Transboundary Fishery Resources. (Proceeding of the Second World Conference of the Second World Congress of the American; European Associations of Environmental; Resource Economics, 2002).

    9.
    Englander, G. Property rights and the protection of global marine resources. Nature Sustainability 2, 981–987 (2019).
    Article  Google Scholar 

    10.
    Spijkers, J. & Boonstra, W. J. Environmental change and social conflict: the northeast Atlantic mackerel dispute. Reg. Environ. Change 17, 1835–1851 (2017).
    Article  Google Scholar 

    11.
    Pinsky, M. L. et al. Preparing ocean governance for species on the move. Science 360, 1189–1191 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Miller, K. A., Munro, G. R., Sumaila, U. R. & Cheung, W. W. L. Governing marine fisheries in a changing climate: a game-theoretic perspective. Can J Agric Econ 61, 309–334 (2013).
    Article  Google Scholar 

    13.
    United Nations. Agreement for the Implementation of the Provisions of the United Nations Convention on the Law of the Sea of 10 December 1982 Relating to the Conservation and Management of Straddling Fish Stocks and Highly Migratory Fish Stocks. (1995).

    14.
    Caddy, J. Establishing a consultative mechanism or arrangement for managing shared stocks within the jurisdiction of contiguous states. In Taking stock Defining and Managing Shared Resources (ed. Hancock, D. A.) 80–123 (Australian Society for Fish Biology, Adelaide, 1997).
    Google Scholar 

    15.
    Teh, L. S. L. & Sumaila, U. R. Trends in global shared fisheries. Mar. Ecol. Prog. Ser. 530, 243–254 (2015).
    ADS  Article  Google Scholar 

    16.
    Diario Oficial de la Federación (DOF). Carta Nacional Pesquera. Poder Ejecutivo—Secreataría de Agricultura, Ganadería, Desarrollo Rural, Pesca (SAGARPA). Diario Oficial de la Federación DOF, 1–268 (2018).

    17.
    MAP. Dictamen de Extracción No Perjudicial (DENP) de la población de “tiburón martillo” Sphyrna zygaena. Oficio N. 1038–2017-PRODUCE/DGPCHDI (Tra. N. 18254–2017). Ministerio del Ambiente, Viceministerio de Desarrollo Estratégico de los Recursos Naturales, Peru (2017).

    18.
    Ramesh, N., Rising, J. A. & Oremus, K. L. The small world of global marine fisheries: The cross-boundary consequences of larval dispersal. Science 364, 1192–1196 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Levin, N., Beger, M., Maina, J., McClanahan, T. & Kark, S. Evaluating the potential for transboundary management of marine biodiversity in the Western Indian Ocean. Australas. J. Environ.Manag. 25, 62–85 (2018).
    Article  Google Scholar 

    20.
    Popova, E. et al. Ecological connectivity between the areas beyond national jurisdiction and coastal waters: safeguarding interests of coastal communities in developing countries. Mar. Policy 104, 90–102 (2019).
    Article  Google Scholar 

    21.
    Dunn, D. C. et al. The importance of migratory connectivity for global ocean policy. Proc. R. Soc. B: Biol. Sci. 286, 20191472 (2019).
    Article  Google Scholar 

    22.
    Kaplan, D. M. et al. Uncertainty in empirical estimates of marine larval connectivity. ICES J. Mar. Sci. 74, 1723–1734 (2016).
    Article  Google Scholar 

    23.
    Archambault, B. et al. Adult-mediated connectivity affects inferences on population dynamics and stock assessment of nursery-dependent fish populations. Global Environ. Change 181, 198–213 (2016).
    Google Scholar 

    24.
    Cashion, T. et al. Establishing company level fishing revenue and profit losses from fisheries: A bottom-up approach. Journals Plos.Org 13, e0207768 (2018).
    Google Scholar 

    25.
    FAO. The State of World Fisheries and Aquaculture: Meeting the Sustainable Development Goals. 1–227 (2018).

    26.
    UNDP. Chile and Peru sign Landmark Agreement to Sustain world’s Largest Single Species Fishery (2016).

    27.
    NOAA FIsheries. Bilateral Agreement Between the United States and Russia (2019).

    28.
    Kleisner, K. & Pauly, D. Stock-Status Plots of Fisheries for Regional Seas. in The State of Biodiversity and Fisheries in Regional Seas (eds. Christensen, V., Lai, S., Palomares, M. L. D., Zeller, D. & Pauly, D.) 37–40 (The Fisheries Center, University of British Columbia; Fisheries Centre Research Reports, 2011).

    29.
    Jensen, F., Frost, H., Thogersen, T., Andersen, P. & Andersen, J. L. Game theory and fish wars: the case of the Northeast Atlantic mackerel fishery. Fisheries 172, 7–16 (2015).
    Google Scholar 

    30.
    Munro, G. R. The management of shared fishery resources under extended jurisdiction. Mar. Resour. Econ. 3, 271–296 (2015).
    Article  Google Scholar 

    31.
    Eide, A., Heen, K., Armstrong, C., Flaaten, O. & Vasiliev, A. Challenges and successes in the management of a shared fish stock—the case of the Russian-Norwegian barents sea cod fishery. Acta Borealia 30, 1–20 (2013).
    Article  Google Scholar 

    32.
    Sumaila, U. R., Ninnes, C. & Oelofsen, B. Management of Shared Hake Stocks in the Benguela Marine Ecosystem. In Papers presented at the norway-fao expert consultation on the management of shared fish stocks, 143–159 (2003).

    33.
    Clark, C. W. Restricted Access to Common-Property Fishery Resources: A Game-Theoretic Analysis. In Dynamic optimization and mathematical economics, 117–132 (Springer, Boston, MA, 1980).

    34.
    Spijkers, J. et al. Global patterns of fisheries conflict: forty years of data. Global Environ. Change 57, 101921 (2019).
    Article  Google Scholar 

    35.
    Oremus, K. L. et al. Governance challenges for tropical nations losing fish species due to climate change. Nat. Sustain. 6, 1–4 (2020).
    Google Scholar 

    36.
    Palacios-Abrantes, J., Rashid Sumaila, U. & Cheung, W. W. L. Challenges to transboundary fisheries management in North America under climate change. Ecol. Soc. (in press).

    37.
    Sumaila, U. R., Palacios-Abrantes, J. & Cheung, W. W. L. Climate change, shifting threat points and the management of transboundary fish stocks. Ecol. Soc. (in press).

    38.
    Reygondeau, G. Current and future biogeography of marine exploited groups under climate change. In Predicting Future Oceans Sustainability of Ocean and Human Systems Amidst Global Environmental Change (eds. Cheung, W. W. L., Ota, Y. & Cisneros-Montemayor, A. M.) 87–99 (2019).

    39.
    Schill, S. R. et al. No reef is an island: integrating coral reef connectivity data into the design of regional-scale marine protected area networks. PLoS ONE 10, e0144199 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    40.
    Perez, A. U., Schmitter-Soto, J. J., Adams, A. J. & Heyman, W. D. Connectivity mediated by seasonal bonefish (Albula vulpes) migration between the Caribbean Sea and a tropical estuary of Belize and Mexico. Environ. Biol. Fishes 102, 197–207 (2019).
    Article  Google Scholar 

    41.
    Cisneros-Montemayor, A. M., Pauly, D., Weatherdon, L. V. & Ota, Y. A Global estimate of seafood consumption by coastal indigenous peoples. PLoS ONE 11, e0166681 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    42.
    Hanich, Q. et al. Small-scale fisheries under climate change in the Pacific Islands region. Mar. Policy 88, 279–284 (2018).
    Article  Google Scholar 

    43.
    Cabral, R. B. & Geronimo, R. C. How important are coral reefs to food security in the Philippines? Diving deeper than national aggregates and averages. Mar. Policy 91, 136–141 (2018).
    Article  Google Scholar 

    44.
    Zeller, D. et al. Still catching attention: Sea Around Us reconstructed global catch data, their spatial expression and public accessibility. Mar. Policy 70, 145–152 (2016).
    Article  Google Scholar 

    45.
    Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).
    Article  Google Scholar 

    46.
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
    Article  Google Scholar 

    47.
    Beaugrand, G., Lenoir, S., Ibanez, F. & Manté, C. A new model to assess the probability of occurrence of a species, based on presence-only data. Mar. Ecol. Prog. Ser. 424, 175–190 (2011).
    ADS  Article  Google Scholar 

    48.
    Asch, R. G., Cheung, W. W. L. & Reygondeau, G. Future marine ecosystem drivers, biodiversity, and fisheries maximum catch potential in Pacific Island countries and territories under climate change. Mar. Policy 88, 285–294 (2018).
    Article  Google Scholar 

    49.
    Close, C. et al. Distribution ranges of commercial fishes and invertebrates. In Fisheries Centre Research Reports. Fishes in Databases and Ecosystems (eds. Palomares, M. D., Stergiou, K. I. & Pauly, D.) 27–37 (2006).

    50.
    Pauly, D. & Zeller, D. Global Atlas of Marine Fisheries 1–520 (Island Press, Washington, D.C., 2016).
    Google Scholar 

    51.
    Kaschner, K. et al. AquaMaps: Predicted range maps for aquatic species www.aquamaps.org (2016).

    52.
    Pauly, D. & Zeller, D. Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nat. Commun. 7:10244,1–9 (2019).

    53.
    Pebesma, E. et al. Package sf; Simple Features for R. R ( >= 3.3.0), (2018).

    54.
    Tai, T. C., Cashion, T., Lam, V. W. Y. & Sumaila, U. R. Ex-vessel fish price database: disaggregating prices for low-priced species from reduction fisheries. Front. Mar. Sci. 4, 1–10 (2017).
    Article  Google Scholar 

    55.
    Sumaila, U. R., Teh, L., Zeller, D. & Pauly, D. The global ex-vessel fish price database. In Catch Reconstructions: Concepts, Methods and Data Sources (eds. Pauly D., & Zeller, S.) www.searoundus.org (2015).

    56.
    Grainger, R. J. R. & Garcia, S. M. Chronicles of Marine Fishery Landings (1950 1994) Trend Analysis and Fisheries Potential (1996).

    57.
    Pauly, D., Hilborn, R. & Branch, T. A. Fisheries: does catch reflect abundance?. Nature 494, 303–306 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Branch, T. A. Not all fisheries will be collapsed in 2048. Mar. Policy 32, 38–39 (2008).
    Article  Google Scholar 

    59.
    Dowle, M. et al. Package data.table; Extension of ‘data.frame‘. R ( >= 3.1.0), MPL–2.0 | file LICENSE (2019).

    60.
    Firke, S., Haid, C., Knight, R. & Denney, B. Package janitor; Simple tools for examining and cleaning dirty data. R ( >= 3.1.2), (2018).

    61.
    Ram, K., Wickham, H., Richards, C. & Baggett, A. Package wesanderson; A Wes Anderson Palette Generator. R ( >= 3.0), MIT + file LICENSE (2018).

    62.
    Boettiger, C., Chamberlain, S., Lang, D. T. & Wainwright, P. Package rfishbase; R Interface to ’FishBase’. R ( >= 3.0), (2019).

    63.
    Bengtsson, H., Jacobson, A. & Riedy, J. Package R.matlab: Read and Write MAT Files and Call MATLAB from Within R. R ( 2.14.0), LGPL–2.1 | LGPL–3 (2018).

    64.
    Pebesma, E. et al. Package sp; Classes and methods for Spatial Data. R ( 3.0.0), GPL–2 | GPL–3 (2019).

    65.
    Wickham, H. Package tidyverse; Easily Install and Load the ’Tidyverse’. R (3.5.0), MIT + file LICENSE (2017).

    66.
    De Queiroz, G. et al. Package tidytext; Text Mining using ’dplyr’, ’ggplot2’, and Other Tidy Tools. R ( 2.10), MIT (2019).

    67.
    Zeileis, A., Grothendieck, G., Ryan, J. A., Ulrich, J. M. & Andrews, F. Package zoo; S3 Infrastructure for Regular and Irregular Time Series (Z’s Ordered Observations). R ( >= 3.1.0), GPL–2 | GPL–3 (2019).

    68.
    Chambers, J. M., Freeny, A. E. & Heiberger, R. M. Analysis of Variance; Designed Experiments. In Statistical models in s (eds Chambers, J. M. & Hastie, T. J.) 145–193 (Routledge, London, 1992).
    Google Scholar 

    69.
    Krzanowski, W. J. Principles of Multivariate Analysis (Oxford University Press, Oxford, 1990).
    Google Scholar 

    70.
    Hollander, M. & Wolfe, D. A. Nonparametric Statistical Methods (Wiley, Hoboken, 2013).
    Google Scholar 

    71.
    Moore, B. R. et al. Defining the stock structures of key commercial tunas in the Pacific Ocean I: current knowledge and main uncertainties. Global Environ. Change 230, 105525 (2020).
    Google Scholar 

    72.
    Sepulveda, C. A., Wang, M., Aalbers, S. A. & Alvarado-Bremer, J. R. Insights into the horizontal movements, migration patterns, and stock affiliation of California swordfish. Fish. Oceanogr. 29, 152–168 (2019).
    Article  Google Scholar 

    73.
    Vandeperre, F. et al. Movements of Blue Sharks (Prionace glauca) across Their Life History. PLoS ONE 9, e103538–e103614 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    74.
    Chavez, F. P., Ryan, J., Lluch-Cota, S. E. & Niquen, C. M. From anchovies to sardines and back: multidecadal change in the Pacific Ocean. Science 299, 217–221 (2003).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Linking structural and compositional changes in archaeological human bone collagen: an FTIR-ATR approach

    1.
    Boskey, A. L., Wright, T. M. & Blank, R. D. Collagen and bone strength. J. Bone Miner. Res. 14, 330–335. https://doi.org/10.1359/jbmr.1999.14.3.330 (1999).
    CAS  Article  PubMed  Google Scholar 
    2.
    Fratzl, P. In Collagen (ed Fratzl, P.) 1–13 (Springer, Berlin, 2008).

    3.
    Dehring, K. A., Smukler, A. R., Roessler, B. J. & Morris, M. D. correlating changes in collagen secondary structure with aging and defective type II collagen by Raman spectroscopy. Appl. Spectrosc. 60, 366–372 (2006).
    ADS  CAS  Article  Google Scholar 

    4.
    Shoulders, M. D. & Raines, R. T. Collagen structure and stability. Annu. Rev. Biochem. 78, 929–958. https://doi.org/10.1146/annurev.biochem.77.032207.120833 (2009).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    5.
    Mostaço-Guidolin, L. B. et al. Collagen morphology and texture analysis: From statistics to classification. Sci. Rep. 3, 2190. https://doi.org/10.1038/srep02190 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    6.
    Schrof, S., Varga, P., Galvis, L., Raum, K. & Masic, A. 3D Raman mapping of the collagen fibril orientation in human osteonal lamellae. J. Struct. Biol. 187, 266–275. https://doi.org/10.1016/j.jsb.2014.07.001 (2014).
    CAS  Article  PubMed  Google Scholar 

    7.
    Viguet-Carrin, S., Garnero, P. & Delmas, P. D. The role of collagen in bone strength. Osteoporos. Int. 17, 319–336. https://doi.org/10.1007/s00198-005-2035-9 (2006).
    CAS  Article  PubMed  Google Scholar 

    8.
    West, P., Torzilli, P., Chen, C., Lin, P. & Camacho, N. Fourier transform infrared imaging spectroscopy analysis of collagenase-induced cartilage degradation. J. Biomed. Opt. 10, 014015 (2005).
    ADS  CAS  Article  Google Scholar 

    9.
    Wang, X., Zhai, M., Zhao, Y. & Yin, J. A review of articular cartilage and osteoarthritis studies by Fourier transform infrared spectroscopic imaging. Ann. Joint 3, 1–9 (2018).
    Article  Google Scholar 

    10.
    Lee, Y.-C. et al. Evidence of preserved collagen in an Early Jurassic sauropodomorph dinosaur revealed by synchrotron FTIR microspectroscopy. Nat. Commun. 8, 14220. https://doi.org/10.1038/ncomms14220 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    11.
    Longin, R. New method of collagen extraction for radiocarbon dating. Nature 230, 241–242 (1971).
    ADS  CAS  Article  Google Scholar 

    12.
    Ambrose, S. H. & Krigbaum, J. Bone chemistry and bioarchaeology. J. Anthropol. Archaeol. 22, 193–199. https://doi.org/10.1016/S0278-4165(03)00033-3 (2003).
    Article  Google Scholar 

    13.
    13Katzenberg, M. A. In Biological Anthropology of the Human Skeleton (eds M. Katzenberg, A. & Saunders, S. R.) 413–441 (Wiley-Liss, Hoboken, 2000).

    14.
    Fewlass, H. et al. Pretreatment and gaseous radiocarbon dating of 40–100 mg archaeological bone. Sci. Rep. 9, 5342. https://doi.org/10.1038/s41598-019-41557-8 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    15.
    Pothier Bouchard, G. et al. Portable FTIR for on-site screening of archaeological bone intended for ZooMS collagen fingerprint analysis. J. Archaeol. Sci. Rep. 26, 101862. https://doi.org/10.1016/j.jasrep.2019.05.027 (2019).
    Article  Google Scholar 

    16.
    Kaal, J., López-Costas, O. & Martínez, A. Diagenetic effects on pyrolysis fingerprints of extracted collagen in archaeological human bones from NW Spain, as determined by pyrolysis-GC-MS. J. Archaeol. Sci. 65, 1–10. https://doi.org/10.1016/j.jas.2015.11.001 (2016).
    CAS  Article  Google Scholar 

    17.
    Van Klinken, G. J. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. J. Archaeol. Sci. 26, 687–695 (1999).
    Article  Google Scholar 

    18.
    Dobberstein, R. C. et al. Archaeological collagen: Why worry about collagen diagenesis?. Archaeol. Anthropol. Sci. 1, 31–42. https://doi.org/10.1007/s12520-009-0002-7 (2009).
    Article  Google Scholar 

    19.
    Harbeck, M. & Grupe, G. Experimental chemical degradation compared to natural diagenetic alteration of collagen: Implications for collagen quality indicators for stable isotope analysis. Archaeol. Anthropol. Sci. 1, 43–57. https://doi.org/10.1007/s12520-009-0004-5 (2009).
    Article  Google Scholar 

    20.
    Collins, M. J., Riley, M. S., Child, A. M. & Turner-Walker, G. A basic mathematical simulation of the chemical degradation of ancient collagen. J. Archaeol. Sci. 22, 175–183. https://doi.org/10.1006/jasc.1995.0019 (1995).
    Article  Google Scholar 

    21.
    France, C. A. M., Thomas, D. B., Doney, C. R. & Madden, O. FT-Raman spectroscopy as a method for screening collagen diagenesis in bone. J. Archaeol. Sci. 42, 346–355. https://doi.org/10.1016/j.jas.2013.11.020 (2014).
    CAS  Article  Google Scholar 

    22.
    Chadefaux, C., Le Hô, A.-S., Bellot-Gurlet, L. & Reiche, I. Curve-fitting Micro-ATR-FTIR studies of the amide I and II bands of type I collagen in archaeological bone materials. E-Preserv. Sci. Morana RTD 6, 129–137 (2009).
    CAS  Google Scholar 

    23.
    Sponheimer, M. et al. Saving old bones: A non-destructive method for bone collagen prescreening. Sci. Rep. 9, 13928. https://doi.org/10.1038/s41598-019-50443-2 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    24.
    Goldenberg, L., Regev, L., Mintz, E. & Boaretto, E. Dating reassembled collagen from fossil bones. Radiocarbon 59, 1487–1496. https://doi.org/10.1017/rdc.2017.69 (2017).
    CAS  Article  Google Scholar 

    25.
    Yizhaq, M. et al. Quality controlled radiocarbon dating of bones and charcoal from the early pre-pottery neolithic B (PPNB) of Motza (Israel). Radiocarbon 47, 193–206. https://doi.org/10.1017/s003382220001969x (2005).
    CAS  Article  Google Scholar 

    26.
    Baker, M. J. et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat. Protoc. 9, 1771–1791. https://doi.org/10.1038/nprot.2014.110 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    27.
    Belbachir, K., Noreen, R., Gouspillou, G. & Petibois, C. Collagen types analysis and differentiation by FTIR spectroscopy. Anal. Bioanal. Chem. 395, 829–837. https://doi.org/10.1007/s00216-009-3019-y (2009).
    CAS  Article  PubMed  Google Scholar 

    28.
    de Campos Vidal, B. & Mello, M. L. S. Collagen type I amide I band infrared spectroscopy. Micron 42, 283–289. https://doi.org/10.1016/j.micron.2010.09.010 (2011).
    CAS  Article  Google Scholar 

    29.
    Figueiredo, M., Gamelas, J. & Martins, A. In Infrared Spectroscopy-Life and Biomedical Sciences (ed Theophile, T.) (InTech, 2012).

    30.
    Hanifi, A., McCarthy, H., Roberts, S. & Pleshko, N. Fourier transform infrared imaging and infrared fiber optic probe spectroscopy identify collagen type in connective tissues. PLoS ONE 8, e64822. https://doi.org/10.1371/journal.pone.0064822 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    31.
    Kong, J. & Yu, S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim. Biophys. Sin. 39, 549–559. https://doi.org/10.1111/j.1745-7270.2007.00320.x (2007).
    CAS  Article  PubMed  Google Scholar 

    32.
    Stani, C., Vaccari, L., Mitri, E. & Birarda, G. FTIR investigation of the secondary structure of type I collagen: New insight into the amide III band. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 229, 118006. https://doi.org/10.1016/j.saa.2019.118006 (2020).
    CAS  Article  Google Scholar 

    33.
    Ramachandran, G. & Kartha, G. Structure of collagen. Nature 174, 269–270 (1954).
    ADS  CAS  Article  Google Scholar 

    34.
    Ramachandran, G. & Kartha, G. Structure of collagen. Nature 176, 593–595 (1955).
    ADS  CAS  Article  Google Scholar 

    35.
    Rich, A. & Crick, F. The molecular structure of collagen. J. Mol. Biol. 3, 483–484 (1961).
    CAS  Article  Google Scholar 

    36.
    Egli, J., Schnitzer, T., Dietschreit, J. C., Ochsenfeld, C. & Wennemers, H. Why proline? Influence of ring-size on the collagen triple helix. Org. Lett. 22, 348–351 (2019).
    Article  Google Scholar 

    37.
    Barth, A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta Bioenergetics 1767, 1073–1101. https://doi.org/10.1016/j.bbabio.2007.06.004 (2007).
    CAS  Article  Google Scholar 

    38.
    Surovell, T. A. & Stiner, M. C. Standardizing infra-red measures of bone mineral crystallinity: An experimental approach. J. Archaeol. Sci. 28, 633–642. https://doi.org/10.1006/jasc.2000.0633 (2001).
    Article  Google Scholar 

    39.
    Garvie-Lok, S. J., Varney, T. L. & Katzenberg, M. A. Preparation of bone carbonate for stable isotope analysis: The effects of treatment time and acid concentration. J. Archaeol. Sci. 31, 763–776. https://doi.org/10.1016/j.jas.2003.10.014 (2004).
    Article  Google Scholar 

    40.
    Hollund, H. I., Ariese, F., Fernandes, R., Jans, M. M. E. & Kars, H. Testing an alternative high-throughput tool for investigating bone diagenesis: FTIR in attenuated total reflection (ATR) mode. Archaeometry 55, 507–532. https://doi.org/10.1111/j.1475-4754.2012.00695.x (2013).
    CAS  Article  Google Scholar 

    41.
    Berna, F., Matthews, A. & Weiner, S. Solubilities of bone mineral from archaeological sites: The recrystallization window. J. Archaeol. Sci. 31, 867–882. https://doi.org/10.1016/j.jas.2003.12.003 (2004).
    Article  Google Scholar 

    42.
    Lebon, M., Reiche, I., Frohlich, F., Bahain, J. J. & Falgueres, C. Characterization of archaeological burnt bones: Contribution of a new analytical protocol based on derivative FTIR spectroscopy and curve fitting of the nu1nu3 PO4 domain. Anal. Bioanal. Chem. 392, 1479–1488 (2008).
    CAS  Article  Google Scholar 

    43.
    Thompson, T. J. U., Gauthier, M. & Islam, M. The application of a new method of Fourier Transform Infrared Spectroscopy to the analysis of burned bone. J. Archaeol. Sci. 36, 910–914. https://doi.org/10.1016/j.jas.2008.11.013 (2009).
    Article  Google Scholar 

    44.
    Lebon, M. et al. New parameters for the characterization of diagenetic alterations and heat-induced changes of fossil bone mineral using Fourier transform infrared spectrometry. J. Archaeol. Sci. 37, 2265–2276. https://doi.org/10.1016/j.jas.2010.03.024 (2010).
    Article  Google Scholar 

    45.
    Dal Sasso, G. et al. Bone diagenesis variability among multiple burial phases at Al Khiday (Sudan) investigated by ATR-FTIR spectroscopy. Palaeogeogr. Palaeoclimatol. Palaeoecol. 463, 168–179. https://doi.org/10.1016/j.palaeo.2016.10.005 (2016).
    Article  Google Scholar 

    46.
    Toffolo, M. B., Brink, J. S. & Berna, F. Bone diagenesis at the Florisbad spring site, Free State Province (South Africa): Implications for the taphonomy of the Middle and Late Pleistocene faunal assemblages. J. Archaeol. Sci. Rep. 4, 152–163. https://doi.org/10.1016/j.jasrep.2015.09.001 (2015).
    Article  Google Scholar 

    47.
    Lebon, M., Reiche, I., Gallet, X., Bellot-Gurlet, L. & Zazzo, A. Rapid quantification of bone collagen content by ATR-FTIR spectroscopy. Radiocarbon 58, 131–145. https://doi.org/10.1017/rdc.2015.11 (2016).
    CAS  Article  Google Scholar 

    48.
    Pestle, W. J. et al. Hand-held Raman spectroscopy as a pre-screening tool for archaeological bone. J. Archaeol. Sci. 58, 113–120. https://doi.org/10.1016/j.jas.2015.03.027 (2015).
    CAS  Article  Google Scholar 

    49.
    Madden, O., Chan, D. M. W., Dundon, M. & France, C. A. M. Quantifying collagen quality in archaeological bone: Improving data accuracy with benchtop and handheld Raman spectrometers. J. Archaeol. Sci. Rep. 18, 596–605. https://doi.org/10.1016/j.jasrep.2017.11.034 (2018).
    Article  Google Scholar 

    50.
    Dal Sasso, G., Angelini, I., Maritan, L. & Artioli, G. Raman hyperspectral imaging as an effective and highly informative tool to study the diagenetic alteration of fossil bones. Talanta 179, 167–176. https://doi.org/10.1016/j.talanta.2017.10.059 (2018).
    CAS  Article  Google Scholar 

    51.
    López-Costas, O. & Müldner, G. Fringes of the empire: Diet and cultural change at the Roman to post-Roman transition in NW Iberia. Am. J. Phys. Anthropol. 161, 141–154. https://doi.org/10.1002/ajpa.23016 (2016).
    Article  PubMed  Google Scholar 

    52.
    López-Costas, O. Antropología de los restos óseos humanos de Galicia: estudio de la población romano y medieval gallega. Doctoral thesis, University of Granada, (2012).

    53.
    Petibois, C., Gouspillou, G., Wehbe, K., Delage, J.-P. & Déléris, G. Analysis of type I and IV collagens by FT-IR spectroscopy and imaging for a molecular investigation of skeletal muscle connective tissue. Anal. Bioanal. Chem. 386, 1961–1966. https://doi.org/10.1007/s00216-006-0828-0 (2006).
    CAS  Article  PubMed  Google Scholar 

    54.
    Haris, P. I. & Severcan, F. FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media. J. Mol. Catal. B Enzym. 7, 207–221. https://doi.org/10.1016/S1381-1177(99)00030-2 (1999).
    CAS  Article  Google Scholar 

    55.
    Goormaghtigh, E., Ruysschaert, J.-M. & Raussens, V. Evaluation of the information content in infrared spectra for protein secondary structure determination. Biophys. J . 90, 2946–2957. https://doi.org/10.1529/biophysj.105.072017 (2006).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    56.
    Paschalis, E. P. et al. Spectroscopic characterization of collagen cross-links in bone. J. Bone Miner. Res. 16, 1821–1828. https://doi.org/10.1359/jbmr.2001.16.10.1821 (2001).
    CAS  Article  PubMed  Google Scholar 

    57.
    D’Elia, M. et al. Evaluation of possible contamination sources in the 14C analysis of bone samples by FTIR spectroscopy. Radiocarbon 49, 201–210. https://doi.org/10.1017/s0033822200042120 (2007).
    CAS  Article  Google Scholar 

    58.
    Karkanas, P., Bar-Yosef, O., Goldberg, P. & Weiner, S. Diagenesis in prehistoric caves: The use of minerals that form in situ to assess the completeness of the archaeological record. J. Archaeol. Sci. 27, 915–929. https://doi.org/10.1006/jasc.1999.0506 (2000).
    Article  Google Scholar 

    59.
    López-Costas, O., Lantes-Suárez, Ó. & Martínez Cortizas, A. Chemical compositional changes in archaeological human bones due to diagenesis: Type of bone vs soil environment. J. Archaeol. Sci. 67, 43–51. https://doi.org/10.1016/j.jas.2016.02.001 (2016).
    CAS  Article  Google Scholar 

    60.
    Trueman, C. N., Privat, K. & Field, J. Why do crystallinity values fail to predict the extent of diagenetic alteration of bone mineral?. Palaeogeogr. Palaeoclimatol. Palaeoecol. 266, 160–167. https://doi.org/10.1016/j.palaeo.2008.03.038 (2008).
    Article  Google Scholar 

    61.
    Trueman, C. N. G., Behrensmeyer, A. K., Tuross, N. & Weiner, S. Mineralogical and compositional changes in bones exposed on soil surfaces in Amboseli National Park, Kenya: Diagenetic mechanisms and the role of sediment pore fluids. J. Archaeol. Sci. 31, 721–739. https://doi.org/10.1016/j.jas.2003.11.003 (2004).
    Article  Google Scholar 

    62.
    Salesse, K. et al. Variability of bone preservation in a confined environment: The case of the catacomb of Sts Peter and Marcellinus (Rome, Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol. 416, 43–54. https://doi.org/10.1016/j.palaeo.2014.07.021 (2014).
    Article  Google Scholar 

    63.
    Weiner, S. Microarchaeology: Beyond the Visible Archaeological Record (Cambridge University Press, Cambridge, 2010).
    Google Scholar 

    64.
    Pate, F. D., Hutton, J. T. & Norrish, K. Ionic exchange between soil solution and bone: Toward a predictive model. Appl. Geochem. 4, 303–316. https://doi.org/10.1016/0883-2927(89)90034-6 (1989).
    CAS  Article  Google Scholar 

    65.
    Nielsen-Marsh, C. M. & Hedges, R. E. M. Patterns of diagenesis in bone I: The effects of site environments. J. Archaeol. Sci. 27, 1139–1150. https://doi.org/10.1006/jasc.1999.0537 (2000).
    Article  Google Scholar 

    66.
    Weiner, S. & Bar-Yosef, O. States of preservation of bones from prehistoric sites in the Near East: A survey. J. Archaeol. Sci. 17, 187–196. https://doi.org/10.1016/0305-4403(90)90058-D (1990).
    Article  Google Scholar 

    67.
    Weiner, S., Goldberg, P. & Bar-Yosef, O. Bone preservation in Kebara cave, Israel using on-site Fourier transform infrared spectrometry. J. Archaeol. Sci. 20, 613–627. https://doi.org/10.1006/jasc.1993.1037 (1993).
    Article  Google Scholar 

    68.
    Weiner, S., Goldberg, P. & Bar-Yosef, O. Three-dimensional distribution of minerals in the sediments of Hayonim Cave, Israel: Diagenetic processes and archaeological implications. J. Archaeol. Sci. 29, 1289–1308. https://doi.org/10.1006/jasc.2001.0790 (2002).
    Article  Google Scholar 

    69.
    Jans, M. M. E., Nielsen-Marsh, C. M., Smith, C. I., Collins, M. J. & Kars, H. Characterisation of microbial attack on archaeological bone. J. Archaeol. Sci. 31, 87–95. https://doi.org/10.1016/j.jas.2003.07.007 (2004).
    Article  Google Scholar 

    70.
    Ambrose, S. H. Preparation and characterization of bone and tooth collagen for isotopic analysis. J. Archaeol. Sci. 17, 431–451. https://doi.org/10.1016/0305-4403(90)90007-r (1990).
    Article  Google Scholar 

    71.
    López-Costas, O., Müldner, G. & Martínez Cortizas, A. Diet and lifestyle in Bronze Age Northwest Spain: The collective burial of Cova do Santo. J. Archaeol. Sci. 55, 209–218. https://doi.org/10.1016/j.jas.2015.01.009 (2015).
    Article  Google Scholar 

    72.
    Lopez-Costas, O. Taphonomy and burial context of the Roman/post-Roman funerary areas (2nd to 6th centuries AD) of A Lanzada, NW Spain. Estudos do Quaternário, APEQ 12, 55–67 (2015).
    Article  Google Scholar 

    73.
    Collins, M. J. & Galley, P. Towards an optimal method of archaeological collagen extraction: The influence of pH and grinding. Ancient Biomolecules 2, 209–222 (1998).
    CAS  Google Scholar 

    74.
    Boskey, A. & Camacho, N. P. FT-IR imaging of native and tissue-engineered bone and cartilage. Biomaterials 28, 2465–2478. https://doi.org/10.1016/j.biomaterials.2006.11.043 (2007).
    CAS  Article  PubMed  Google Scholar 

    75.
    Kim, M., Bi, X., Horton, W., Spencer, R. & Camacho, N. Fourier transform infrared imaging spectroscopic analysis of tissue engineered cartilage: Histologic and biochemical correlations. J. Biomed. Opt. 10, 031105 (2005).
    ADS  Article  Google Scholar 

    76.
    Heinly, J. H., Guerin, H. L., Auerbach, J. D., Siskey, R. L. & Villarraga, M. L. In 56th Annual Meeting of the Orthopaedic Research Society Poster No. 1466 (2010.).

    77.
    Mark, H. & Workman, J. Jr. Chemometrics: Derivatives in spectroscopy, Part I-the behavior of the derivative. Spectrosc. Eugene 18, 32–37 (2003).
    CAS  Google Scholar 

    78.
    Rieppo, L. et al. Application of second derivative spectroscopy for increasing molecular specificity of fourier transform infrared spectroscopic imaging of articular cartilage. Osteoarthr. Cartil. 20, 451–459. https://doi.org/10.1016/j.joca.2012.01.010 (2012).
    CAS  Article  Google Scholar 

    79.
    Ami, D., Mereghetti, P. & Doglia, S. M. In Multivariate Analysis in Management, Engineering and the Sciences (eds de Freitas, L. V. & de Freitas, A. P. B. R.) https://www.intechopen.com/books/multivariate-analysis-in-management-engineering-and-the-sciences/multivariate-analysis-for-fourier-transform-infrared-spectra-of-complex-biological-systems-and-proce (Intech Open, 2013).

    80.
    Saarakkala, S., Rieppo, L., Rieppo, J. & Jurvelin, J. In Microscopy: Science, Technology, Applications and Education Vol. 1 (eds Méndez-Vilas, A. & Díaz, J.) 403–414 (Formatex, 2010).

    81.
    Smith, B. C. (CRC Press, Boca Raton, 2011).

    82.
    Eriksson, L., Johansson, E., Kettaneh-Wold, N. & Wold, S. Introduction to Multi- and Megavariate Data Analysis using Projection Methods (PCA & PLS) (Umetrics AB, Umeå, 1999).
    Google Scholar 

    83.
    Garson, G. D. In Blue Book Series (Statistical Associates Publishers, Asheboro, 2016).

    84.
    SmartPLS 3 (SmartPLS GmbH, Boenningstedt, 2015). More

  • in

    Behaviours indicating cannibalistic necrophagy in ants are modulated by the perception of pathogen infection level

    1.
    Fox, L. R. Cannibalism in natural populations. Annu. Rev. Ecol. Syst. 6, 87–106 (1975).
    Article  Google Scholar 
    2.
    Polis, G. A. The evolution and dynamics of intraspecific predation. Annu. Rev. Ecol. Evol. Syst. 12, 225–251 (1981).
    Article  Google Scholar 

    3.
    Elgar, M. A. & Crespi, B. J. Ecology and evolution of cannibalism. In Cannibalism: ecology and evolution among diverse taxa (eds Elgar, M. A. & Crespi, B. J.) 1–12 (Oxford University Press, Oxford, 1992).
    Google Scholar 

    4.
    Richardson, M. L., Mitchell, R. F., Reagel, P. F. & Hanks, L. M. Causes and consequences of cannibalism in noncarnivorous insects. Annu. Rev. Entomol. 55, 39–53 (2010).
    CAS  PubMed  Article  Google Scholar 

    5.
    Vilaça, A. Relations between funerary cannibalism and warfare cannibalism: The question of predation. Ethnos 65, 83–106 (2000).
    Article  Google Scholar 

    6.
    Lopez-Riquelme, G. O. & Fanjul-Moles, M. L. The funeral ways of social insects. Social strategies for corpse disposal. Trends Entomol. 9, 71–129 (2013).
    Google Scholar 

    7.
    Walls, S. C. & Roudebush, R. E. Reduced aggression toward siblings as evidence of kin recognition in cannibalistic salamanders. Am. Nat 138, 1027–1038 (1991).
    Article  Google Scholar 

    8.
    Pfennig, D. W. Cannibalistic tadpoles that pose the greatest threat to kin are most likely to discriminate kin. Proc. R. Soc. Lond. B 266, 57–61 (1999).
    Article  Google Scholar 

    9.
    Bilde, T. & Lubin, Y. Kin recognition and cannibalism in a subsocial spider. J. Evolut. Biol. 14, 959–966 (2001).
    Article  Google Scholar 

    10.
    Santana, A. F. K., Roselino, A. C., Cappelari, F. A. & Zucoloto, F. S. Cannibalism in insects. In Insect bioecology and nutrition for integrated pest management (eds Panizzi, A. R. & Parra, J. R. P.) 177–190 (CRC Press, Boca Raton, 2012).
    Google Scholar 

    11.
    Hölldobler, B. & Wilson, E. O. The ants (The Belknap Press of Harvard University, London, 1990).
    Google Scholar 

    12.
    Schmickl, T. & Crailsheim, K. Cannibalism and early capping: strategy of honeybee colonies in times of experimental pollen shortage. J. Comput. Physiol. A 187, 541–547 (2001).
    CAS  Article  Google Scholar 

    13.
    Sun, Q. & Zhou, X. Corpse management in social insects. Int. J. Biol. Sci. 9, 313–321 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    14.
    Davis, H. E., Meconcelli, S., Rudek, R. & McMahon, D. P. Termites shape their collective behavioural response based on stage of infection. Sci. Rep. 8, 14433. https://doi.org/10.1038/s41598-018-32721-7 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    15.
    Mabelis, A. A. Wood ant wars: the relationship between aggression and predation in the red wood ant (Formica polyctena Först.). Neth. J. Zool. 29, 451–620 (1979).
    Article  Google Scholar 

    16.
    Driessen, G. J. J., Van Raalte, ATh. & De Bruyn, G. Cannibalism in the red wood ant, Formica polyctena (Hymenoptera: Formicidae). Oecologia 63, 13–22 (1984).
    ADS  PubMed  Article  Google Scholar 

    17.
    Yao, M. et al. The ancient chemistry of avoiding risks of predation and disease. Evol. Biol. 36, 267–281 (2009).
    Article  Google Scholar 

    18.
    Visscher, P. K. The honey bee way of death: Necrophoric behaviour in Apis mellifera colonies. Anim. Behav. 31, 1070–1076 (1983).
    Article  Google Scholar 

    19.
    Oi, D. H. & Pereira, R. M. Ant behavior and microbial pathogens (Hymenoptera: Formicidae). Florida Entomol. 76, 63–74 (1993).
    Article  Google Scholar 

    20.
    Nazzi, F., Della Vedova, G. & D’Agaro, M. A semiochemical from brood cells infested by Varroa destructor triggers hygienic behaviour in Apis mellifera. Apidologie 35, 65–70 (2004).
    CAS  Article  Google Scholar 

    21.
    Renucci, M., Tirrard, A. & Provost, E. Complex undertaking behavior in Temnothorax lichtensteini ant colonies: From corpse-burying behavior to necrophoric behavior. Insect. Soc. 58, 9–16 (2011).
    Article  Google Scholar 

    22.
    Diez, L., Le Borgne, H., Lejeune, P. & Detrain, C. Who brings out the dead? Necrophoresis in the red ant Myrmica rubra. Anim. Behav. 6, 1259–1264 (2013).
    Article  Google Scholar 

    23.
    Baracchi, D., Fadda, A. & Turillazzi, S. Evidence for antiseptic behaviour towards sick adult bees in honey bee colonies. J. Insect. Physiol. 58, 1589–1596 (2012).
    CAS  PubMed  Article  Google Scholar 

    24.
    Pull, Ch. D. et al. Destructive disinfection of infected brood prevents systemic disease spread in ant colonies. eLife 7, e32073. https://doi.org/10.7554/eLife.32073 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    25.
    Leclerc, J.-B. & Detrain, C. Ants detect but do not discriminate diseased workers within their nest. Sci. Nat. 103, 70. https://doi.org/10.1007/s00114-016-1394-8 (2016).
    CAS  Article  Google Scholar 

    26.
    Williams, T. & Hernandez, O. Costs of cannibalism in the presence of an iridovirus pathogen of Spodoptera frugiperda. Ecol. Entomol. 31, 106–113 (2006).
    Article  Google Scholar 

    27.
    Rudolf, V. H. W. & Antonovics, J. Disease transmission by cannibalism: rare event or common occurrence?. Proc. R. Soc. Lond. B 274, 1205–1210 (2007).
    Google Scholar 

    28.
    Sadeh, A. & Rosenheim, J. A. Cannibalism amplifies the spread of vertically transmitted pathogens. Ecology 97, 1994–2002 (2016).
    PubMed  Article  Google Scholar 

    29.
    Claessen, D., de Roos, A. M. & Persson, L. Population dynamic theory of size-dependent cannibalism. Proc. R. Soc. Lond. B 271, 333–340 (2004).
    Article  Google Scholar 

    30.
    Pfennig, D. W., Ho, S. G. & Hoffman, E. A. Pathogen transmission as a selective force against cannibalism. Anim. Behav. 55, 1255–1261 (1998).
    CAS  PubMed  Article  Google Scholar 

    31.
    Loreto, R. G. & Hughes, D. P. Disease in the society: infectious cadavers result in collapse of ant sub-colonies. PLoS ONE 11, e0160820 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    32.
    Hughes, W. H., Eilenberg, J. & Boomsmal, J. J. Trade-offs in group living: Transmission and disease resistance in leaf-cutting ants. Proc. R. Soc. Lond. B 269, 1811–1819 (2002).
    Article  Google Scholar 

    33.
    Cremer, S. & Sixt, M. Analogies in the evolution of individual and social immunity. Proc. R. Soc. Lond. B 364, 129–142 (2009).
    Google Scholar 

    34.
    Konrad, M. et al. Social transfer of pathogenic fungus promotes active immunisation in ant colonies. PLoS ONE 10, 1–15 (2012).
    Google Scholar 

    35.
    Liu, L., Ganghua, L., Pengdong, S., Chaoliang, L. & Quiying, H. Experimental verification and molecular basis of active immunization against fungal pathogens in termites. Sci. Rep. 5, 15106. https://doi.org/10.1038/srep15106 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    36.
    Marikovsky, P. I. On some features of behaviour of the ants Formica rufa L. infected with fungus disease. Insect. Soc. 2, 173–179 (1962).
    Article  Google Scholar 

    37.
    Rutkowski, T. et al. Ants trapped for years in an old bunker; survival by cannibalism and eventual escape. J. Hymenopt. Res. 72, 177–184 (2019).
    Article  Google Scholar 

    38.
    Seifert, B. Die Ameisen Mittel- und Nordeuropas (Lutra-Verlags-und Vertriebsgesellschaft, Görlitz, 2007).
    Google Scholar 

    39.
    Czechowski, W., Radchenko, A., Czechowska, W. & Vepsäläinen, K. The ants of Poland with reference to the myrmecofauna of Europe. Fauna Poloniae (n.s.) 4. (Natura Optima Dux Foundation, 2012).

    40.
    Meyling, N. V. & Eilenberg, J. Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: Potential for conservation biological control. Biol. Control 43, 145–155 (2007).
    Article  Google Scholar 

    41.
    Reber, A. & Chapuisat, M. Diversity, prevalence and virulence of fungal entomopathogens in colonies of the ant Formica selysi. Insect. Soc. 59, 231–239 (2012).
    Article  Google Scholar 

    42.
    Hajek, A. E. & St. Leger, R. J. Interactions between fungal pathogens and insect hosts. Annu. Rev. Entomol. 39, 293–322 (1994).
    Article  Google Scholar 

    43.
    Maák, I. et al. Cues or meaningless objects? Differential responses of the ant Formica cinerea to corpses of competitors and enslavers. Anim. Behav. 91, 53–59 (2014).
    Article  Google Scholar 

    44.
    Csata, E. & Dussutour, A. Nutrient regulation in ants (Hymenoptera: Formicidae): A review. Myrmecol. News 29, 111–124 (2019).
    Google Scholar 

    45.
    Nonacs, P. Death in the distance: Mortality risk as information for foraging ants. Behaviour 112, 23–35 (1990).
    Article  Google Scholar 

    46.
    Roces, F. & Núṅez, J. A. Information about food quality influences load-size selection in recruited leaf-cutting ants. Anim. Behav. 45, 135–143 (1993).
    Article  Google Scholar 

    47.
    Song, D., Hu, X. P. & Su, N.-Y. Survivorship, cannibalism, body weight loss, necrophagy, and entombement in laboratory groups of the Formosan subterranean termite, Coptotermes formosanus under starvation (Isoptera: Rhinotermitidae). Sociobiology 47, 27–39 (2006).
    Google Scholar 

    48.
    Heifig, I., Lima, J. T., Janei, V. & Costa-Leonardo, A. M. Effects of group size and starvation on survival of the Asian subterranean termite Coptotermes gestroi (Isoptera: Rhinotermitidae). Austral Entomol. 57, 279–284 (2017).
    Article  Google Scholar 

    49.
    Pompilio, L., Kacelnik, A. & Behmer, S. T. State-dependent learned valuation drives choice in an invertebrate. Science 311, 1613–1615 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    50.
    Akino, T. & Yamaoka, R. Origin of oleic acid: Corpse recognition signal in the ant Formica japonica Motschlsky (Hymenoptera: Formicidae). Jpn. J. Appl. Entomol. Z. 40, 265–271 (1996).
    CAS  Article  Google Scholar 

    51.
    Chouvenc, T., Robert, A., Sémon, E. & Bordereau, C. Burial behaviour by dealates of the termite Pseudacanthotermes spiniger (Termitidae, Macrotermitinae) induced by chemical signals from termite corpses. Insect. Soc. 59, 119–125 (2012).
    Article  Google Scholar 

    52.
    Kok-Boon, N., Beng-Keok, Y., Kunio, T., Tsuyoshi, Y. & Chow-Yang, L. Do termites avoid carcasses? Behavioral responses depend on the nature of the carcasses. PLoS ONE 7, 1–11 (2012).
    Google Scholar 

    53.
    Diez, L., Moquet, L. & Detrain, C. Post-mortem changes in chemical profile and their influence on corpse removal in ants. J. Chem. Ecol. 39, 1424–1432 (2013).
    CAS  PubMed  Article  Google Scholar 

    54.
    Bignell, D. E., Roisin, Y. & Lo, N. Biology of Termites: A modern synthesis (Springer, Berlin, 2010).
    Google Scholar 

    55.
    Dlusskij, G. M. Ants of the genus Formica (Hymenoptera, Formicidae, g. Formica) (Nauka, Moscow, 1967) (in Russian).
    Google Scholar 

    56.
    Czechowski, W. Ants cemeteries. Przegląd Zoologiczny 20, 417–427 (1976) (in Polish with English summary).
    Google Scholar 

    57.
    Czechowski, W. Around nest cemeteries of Myrmica schencki Em. (Hymenoptera: Formicidae): their origin and a possible significance. Pol. J. Ecol. 56, 359–363 (2008).
    Google Scholar 

    58.
    Gibb, H. Experimental evidence for mediation of competition by habitat succession. Ecology 92, 1871–1878 (2011).
    CAS  PubMed  Article  Google Scholar 

    59.
    Chouvenc, T., Su, N.-Y. & Elliott, M. L. Interaction between the subterranean termite Reticulitermes flavipes (Isoptera: Rhinotermitidae) and the entomopathogenic fungus Metarhizium anisopliae in foraging arenas. J. Econ. Entomol. 101, 885–893 (2008).
    CAS  PubMed  Article  Google Scholar 

    60.
    Yanagawa, A., Yokohari, F. & Shimizu, S. The role of antennae in removing entomopathogenic fungi from cuticle of the termite Coptotermes formosanus. . J. Insect Sci. 9, 1–9 (2009).
    Article  Google Scholar 

    61.
    Tranter, Ch., LeFevre, L., Evison, S. E. F. & Hughes, W. O. H. Threat detection: Contextual recognition and response to parasites by ants. Behav. Ecol. 26, 396–405 (2015).
    Article  Google Scholar 

    62.
    Bonadies, E., Wcislo, W. T., Gálvez, D., Hughes, W. O. H. & Fernández-Marin, H. Hygiene defense behaviors used by a fungus-growing ant depend on the fungal pathogen stages. Insects 10, 130 (2019).
    PubMed Central  Article  PubMed  Google Scholar 

    63.
    Simone-Finstrom, M. D. & Spivak, M. Increased resin collection after parasite challenge: A case of self-medication in honey bees?. PLoS ONE 7, e34601. https://doi.org/10.1371/journal.pone.0034601 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    64.
    Brütsch, T. & Chapuisat, M. Wood ants protect their brood with tree resin. Anim. Behav. 93, 157–161 (2014).
    Article  Google Scholar 

    65.
    Ormond, E. L., Thomas, A. P. M., Pell, J. K., Freeman, S. N. & Roy, H. E. Avoidance of a generalist entomopathogenic fungus by the ladybird Coccinella septempunctata. FEMS Microbiol. Ecol. 77, 229–237 (2011).
    CAS  PubMed  Article  Google Scholar 

    66.
    Fernández-Marín, H., Zimmerman, J. K., Rehner, S. A. & Wcislo, W. T. Active use of the metapleural glands by ants in controlling fungal infection. Proc. R. Soc. Lond. B 273, 1689–1695 (2006).
    Google Scholar 

    67.
    Tragust, S. et al. Ants disinfect fungus-exposed brood by oral uptake and spread of their poison. Curr. Biol. 23, 1–7 (2013).
    Article  CAS  Google Scholar 

    68.
    Tragust, S., Herrmann, C., Häfner, J., Braasch, R., Tilgen, Ch., Hoock, M., Milidakis, M. A., Gross, R. & Feldhaar, H. Formicine ants swallow their highly acidic poison for gut microbial selection and control. bioRxiv preprint https://doi.org/10.1101/2020.02.13.947432 (2020).

    69.
    Cremer, S., Pull, Ch. D. & Fürst, M. A. Social immunity: emergence and evolution of colony-level disease protection. Annu. Rev. Entomol. 63, 105–123 (2018).
    CAS  PubMed  Article  Google Scholar 

    70.
    Rosengaus, R. B., Jordan, C., Lefebvre, M. L. & Traniello, J. F. A. Pathogen alarm behavior in a termite: A new form of communication in social insects. Naturwissenschaften 86, 544–548 (1999).
    ADS  CAS  PubMed  Article  Google Scholar 

    71.
    Hernandez-Lopez, J., Reissberger-Gallé, U., Crailsheim, K. & Schuehly, W. Cuticular hydrocarbon cues of immune-challenged workers elicit immune activation in honeybee queens. Mol. Ecol. 26, 3062–3073 (2017).
    CAS  PubMed  Article  Google Scholar 

    72.
    Chouvenc, T. & Su, N.-Y. When subterranean termites challenge the rules of fungal epizootics. PLoS ONE 7, 84. https://doi.org/10.1371/journal.pone.0034484 (2012).
    CAS  Article  Google Scholar 

    73.
    Csata, E., Erős, K. & Markó, B. Effects of the ectoparasitic fungus Rickia wasmannii on its ant host Myrmica scabrinodis: changes in host mortality and behavior. Insect. Soc. 61, 247–252 (2014).
    Article  Google Scholar 

    74.
    Diez, L., Urbain, L., Lejeune, Ph. & Detrain, C. Emergency measures: adaptive response to pathogen intrusion in the ant nest. Behav. Process. 116, 80–86 (2015).
    Article  Google Scholar 

    75.
    Qui, H.-L. et al. Differential necrophoric behaviour of the ant Solenopsis invicta towards fungal infected corpses of workers and pupae. Bull. Entomol. Res. 105, 607–614 (2015).
    Article  CAS  Google Scholar 

    76.
    Pereira, H. & Detrain, C. Pathogen avoidance and prey discrimination in ants. R. Soc. Open Sci. 7, 191705 (2020).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    77.
    Cremer, S., Armitage, S. A. O. & Schmid-Hempel, P. Social immunity. Curr. Biol. 17, 693–702 (2007).
    Article  CAS  Google Scholar 

    78.
    Pull, Ch. D. & Cremer, S. Co-founding ant queens prevent disease by performing prophylactic undertaking behaviour. BMC Evol. Biol. 219, 17. https://doi.org/10.1186/s12862-017-1062-4 (2017).
    Article  Google Scholar 

    79.
    Kramm, K. R., West, D. F. & Rockenbach, P. G. Pathogens of termites: transfer of the entomopathogen Metarhizium anisopliae between the termites of Reticulitermes sp.. J. Invertebr. Pathol. 40, 1–6 (1982).
    Article  Google Scholar 

    80.
    Kesäniemi, J., Koskimäki, J. J. & Jurvansuu, J. Corpse management of the invasive Argentine ant inhibits growth of pathogenic fungi. Sci. Rep. 9, 7593. https://doi.org/10.1038/s41598-019-44144-z (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    81.
    Greenwald, E. E., Baltiansky, L. & Feinerman, O. Individual crop loads provide local control for collective food intake in ant colonies. eLife 7, e31730 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    82.
    Horstmann, K. Untersuchungen über den Nahrungserwerb der Waldameisen (Formica polyctena Foerster) im Eichenwald. Oecologia 5, 138–157 (1970).
    ADS  PubMed  Article  Google Scholar 

    83.
    Bhatkar, A. & Whitcomb, W. H. Artificial diet for rearing various species of ants. Florida Entomol. 53, 229–232 (1970).
    Article  Google Scholar 

    84.
    Choe, D. H. & Rust, M. K. Horizontal transfer of insecticides in laboratory colonies of the argentine ant (Hymenoptera: Formicidae). J. Econ. Entomol. 101, 1397–1405 (2008).
    CAS  PubMed  Article  Google Scholar 

    85.
    Pereira, R. M. & Stimac, J. L. Transmission of Beauveria bassiana within nests of Solenopsis invicta (Hymenoptera: Formicidae) in the laboratory. Environ. Entomol. 21, 1427–1432 (1992).
    Article  Google Scholar 

    86.
    Liu, H., Skinner, M., Parker, B. L. & Brownbridge, M. Pathogenicity of Beauveria bassiana, Metarhizium anisopliae (Deuteromycotina: Hyphomycetes), and other entomopathogenic fungi against Lygus lineolaris (Hemiptera: Miridae). J. Econ. Entomol. 95, 675–681 (2002).
    PubMed  Article  Google Scholar 

    87.
    Loreto, R. G. & Hughes, D. P. Disease dynamics in ants. Adv. Genet. 94, 287–306. https://doi.org/10.1016/bs.adgen.2015.12.005 (2016).
    CAS  Article  PubMed  Google Scholar 

    88.
    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2017). https://www.R-project.org/.

    89.
    Therneau, T. coxme: Mixed Effects Cox Models. R package version 2.2-5. https://CRAN.R-project.org/package=coxme (2015).

    90.
    Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear mixed-effects models using Eigen and S4. R package version 1.0-5. https://CRAN.R-project.org/package=lme4 (2013).

    91.
    Bartoń, K. MuMIn: Multi-model inference. R package version 1.9.13. https://CRAN.R-project.org/package=MuMIn (2013).

    92.
    Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodel inference in ecology and evolution: Challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).
    CAS  PubMed  Article  Google Scholar  More

  • in

    Multiscale consensus habitat modeling for landscape level conservation prioritization

    1.
    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).
    CAS  Article  Google Scholar 
    2.
    Smeraldo, S. et al. Modelling risks posed by wind turbines and power lines to soaring birds: the black stork (Ciconia nigra) in Italy as a case study. Biodivers. Conserv. 29, 1959–1976 (2020).
    Article  Google Scholar 

    3.
    Gutierrez, B. L. et al. An island of wildlife in a human-dominated landscape: the last fragment of primary forest on the Osa Peninsula’s Golfo Dulce coastline Costa Rica. PLoS ONE 14, e0214390 (2019).
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    4.
    Padalia, H. et al. Assessment of historical forest cover loss and fragmentation in Asian elephant ranges in India. Environ. Monit. Assess. 191, 802 (2019).
    Article  Google Scholar 

    5.
    Sodhi, N. S., Lee, T. M., Koh, L. P. & Brook, B. W. A meta-analysis of the impact of anthropogenic forest disturbance on Southeast Asia’s biotas. Biotropica 41, 103–109 (2009).
    Article  Google Scholar 

    6.
    Beier, P. Determining minimum habitat areas and habitat corridors for cougars. Conserv. Biol. 7, 94–108 (1993).
    Article  Google Scholar 

    7.
    MacNally, R. & Bennett, A. F. Species-specific prediction of the impact of habitat fragmentation: local extinction of birds in the box-ironbark forests of central Victoria Australia. Biol. Conserv. 82, 147–155 (1997).
    Article  Google Scholar 

    8.
    Hanski, I. Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos 8, 209–219 (1999).
    Article  Google Scholar 

    9.
    Weaver, J. L., Paquet, P. C. & Ruggerio, L. F. Resilience and conservation of large carnivores in the Rocky Mountains. Conserv. Biol. 10, 964–976 (1996).
    Article  Google Scholar 

    10.
    Smith, J. B., Nielsen, C. K. & Hellgren, E. C. Suitable habitat for recolonizing large carnivores in the midwestern USA. Oryx 50, 555–564 (2016).
    Article  Google Scholar 

    11.
    Morehouse, A. T., Hughes, C., Manners, N., Bectell, J. & Bruder, T. Carnivores and communities: a case study of human-carnivore conflict mitigation in southwestern Alberta. Front. Ecol. Evol. 8, 2 (2020).
    Article  Google Scholar 

    12.
    Pelton, M. R. et al. American black bear conservation action plan in Bears (ed. Servheen, C., Herrero, S., & Peyton, B.) 144–146. Status survey and conservation action plan. (IUCN/SSC Bear and Polar Bear Specialist Groups, 1999).

    13.
    Williamson, D. F. In the Black: Status, Management, and Trade of the American Black Bear (Ursus americanus) in North America (TRAFFIC North America. World Wildlife Fund, Washington, DC, 2002).
    Google Scholar 

    14.
    Hristienko, H. & McDonald, J. E. Jr. Going into the 21st century: a perspective on trends and controversies in the management of the American black bear. Ursus 18, 72–88 (2007).
    Article  Google Scholar 

    15.
    Scheick, B. K. & McCown, W. Geographic distribution of American black bears in North America. Ursus 25, 24–33 (2014).
    Article  Google Scholar 

    16.
    Wright, S. Evolution and the genetics of populations (The University of Chicago Press, Chicago, 1984).
    Google Scholar 

    17.
    Wooding, J. B. & Hardisky, T. S. Home range, habitat use, and mortality of black bears in north-central Florida. Int. Conf. Bear Res. Manag. 9, 349–356 (1994).
    Google Scholar 

    18.
    Florida Game and Fresh Water Fish Commission. Management of the Black Bear in Florida: A Staff Report to the Commissioners (Florida Game and Fresh Water Fish Commission, Tallahassee, 1993).
    Google Scholar 

    19.
    Florida Fish and Wildlife Conservation Commission. Florida Black Bear Management Plan (Florida Game and Fresh Water Fish Commission, Tallahassee, 2019).
    Google Scholar 

    20.
    Dixon, J. D. Genetic consequences of habitat fragmentation and loss: the case of the Florida black bear (Ursus americanus floridanus). Conserv. Genet. 8, 455–464 (2007).
    Article  Google Scholar 

    21.
    Brown, J. H. Challenges in Estimating Size and Conservation of Black Bear in West-Central Florida. Thesis, University of Kentucky (2004)

    22.
    Humm, J. M., McCown, J. W., Scheick, B. K. & Clark, J. D. Spatially explicit population estimates for black bears based on cluster sampling. J. Wildl. Manag. 81, 1187–1201 (2017).
    Article  Google Scholar 

    23.
    Florida Fish and Wildlife Conservation Commission. Florida Black Bear Management Plan (Florida Game and Fresh Water Fish Commission, Tallahassee, 2012).
    Google Scholar 

    24.
    Carr, M. H. & Zwick, P. D. Technical Report Florida 2070: Mapping Florida’s Future—Alternative Patterns of Development in 2070 (Geoplan Center at the University of Florida, Gainesville, 2016).
    Google Scholar 

    25.
    Noss, R. E., Quiqley, H. B., Hornocker, M. G., Merrill, T. & Paquet, P. C. Conservation biology and carnivore conservation in the Rocky Mountains. Conserv. Biol. 10, 94–96 (1996).
    Google Scholar 

    26.
    Breitenmoser, U. Large predators in the Alps: the fall and rise of man’s competitors. Biol. Conserv. 83, 279–289 (1998).
    Article  Google Scholar 

    27.
    Waser, P. M. Patterns and consequences of dispersal in gregarious carnivores. In Carnivore Behavior, Ecology, and Evolution (ed. Gittleman, J. L.) 267–295 (Cornell University Press, Ithaca, 1996).
    Google Scholar 

    28.
    Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).
    Article  Google Scholar 

    29.
    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
    Article  Google Scholar 

    30.
    Yackulic, C. B. et al. Presence-only modelling using MAXENT: When can we trust the inferences?. Methods Ecol. Evol. 4, 236–243 (2013).
    Article  Google Scholar 

    31.
    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).
    Article  Google Scholar 

    32.
    De Oliveira Moreira, D. et al. The distributional ecology of the maned sloth: Environmental influences on its distribution and gaps in knowledge. PLoS ONE. 9, 1–12 (2014).
    Google Scholar 

    33.
    Martin, J. et al. Brown bear habitat suitability in the Pyrenees: transferability across sites and linking scales to make the most of scarce data. J. Appl. Ecol. 49, 621–631 (2012).
    Article  Google Scholar 

    34.
    Khosravi, R., Hemami, R. K. M. & Cushman, S. A. Multi-scale niche modeling of three sympatric felids of conservation importance in central Iran. Landsc. Ecol. 34, 2451–2467 (2019).
    Article  Google Scholar 

    35.
    Maehr, D. S., McCown, J. W., Land, E. D. & Roof, J. C. Southwest Florida Black Bear Habitat Use, Distribution, Movements, and Conservation Strategy (Florida Game and Fresh Water Fish Commission, Gainesville, 1992).
    Google Scholar 

    36.
    McCown, W., Kublis, P., Eason, T. & Scheick, B. Black Bear Movements and Habitat Use Relative to Roads in Ocala National Forest (Florida Fish and Wildlife Commission, Gainesville, 2004).
    Google Scholar 

    37.
    Dobey, S. Ecology of Florida black bears in the Okefenokee-Osceola ecosystem. Wildl. Monogr. 158, 1–41 (2005).
    Google Scholar 

    38.
    Ulrey, W. A. Home Range, Habitat Use, and Food Habits of the Black Bear in South-Central Florida. Thesis, University of Kentucky (2008)

    39.
    Karelus, D. L., McCown, J. W., Scheick, B. K., van de Kerk, M. & Oli, M. K. Home ranges and habitat selection by black bears in a newly colonized population in Florida. Southeast Nat. 15, 346–364 (2016).
    Article  Google Scholar 

    40.
    Karelus, D. L., McCown, J. W., Scheick, B. K. & Oli, M. K. Microhabitat features influencing habitat use by Florida black bears. Glob. Ecol. Conserv. 13, e00367 (2018).
    Article  Google Scholar 

    41.
    Olson, D. M. & Dinerstein, E. The Global 200: Priority ecoregions for global conservation. Ann. MO Bot. Gard. 89, 125–126 (2002).
    Article  Google Scholar 

    42.
    U.S. Census Bureau. Population and housing unite estimates vintage 2018. Washington, DC (2018).

    43.
    Burby, R. & May, P. Making Governments Plan (John Hopkins University Press, Baltimore, 1997).
    Google Scholar 

    44.
    Boarnet, M. G., McLaughlin, R. B. & Carruthers, J. I. Does state growth management change the pattern of urban growth? Evidence from Florida. Reg. Sci. Urban Econ. 41, 236–252 (2011).
    Article  Google Scholar 

    45.
    Seibert, S. G. Status and Management of Black Bears in Apalachicola National Forest (Florida Game and Fresh Water Fish Commission, Gainesville, 2013).
    Google Scholar 

    46.
    Land, E. D. Southwest Florida Black Bear Habitat Use, Distribution, Movements, and Conservation Strategy (Florida Game and Fresh Water Fish Commission, Tallahassee, 1994).
    Google Scholar 

    47.
    McCown, W., Eason, T. H. & Cunningham, M. W. Black Bear Movements and Habitat Use Relative to Roads in Ocala National Forest (Florida Fish and Wildlife Conservation Commission, Gainesville, 2001).
    Google Scholar 

    48.
    Stratman, M. R., Alden, C. D., Pelton, M. R. & Sunquist, M. E. Habitat use by American black bears in the sandhills of Florida. Ursus 12, 109–114 (2001).
    Google Scholar 

    49.
    Maehr, D. W. et al. Spatial characteristics of an isolated Florida black bear population. Southeast Nat. 2, 433–446 (2003).
    Article  Google Scholar 

    50.
    Orlando, M. A. The Ecology and Behavior of an Isolated Black Bear Population in West Central Florida. Thesis, University of Kentucky (2003)

    51.
    Annis, K. M. The Impact of Translocation on Nuisance Florida Black Bears. Thesis, University of Florida (2007).

    52.
    Neils, A. M. Florida Black Bear (Ursus americanus floridanus) at the Urban-Wildlife Interface: Are They Different? Thesis, University of Florida (2011).

    53.
    Guthrie, J. M. Modeling Movement Behavior and Road Crossing the Black Bear of South Central Florida. Thesis, University of Kentucky (2012).

    54.
    Baruch-Mordo, S. et al. Stochasticity in natural forage production affects use of urban areas by black bears: implications to management of human-bear conflicts. PLoS ONE 9, e85122 (2014).
    ADS  PubMed Central  Article  CAS  PubMed  Google Scholar 

    55.
    Lewis, J. S., Rachlow, J. L., Garton, E. O. & Vierling, L. A. Effects of habitat on GPS collar performance: using data screening to reduce location error. J. Appl. Ecol. 44, 663–671 (2007).
    Article  Google Scholar 

    56.
    Clark, J. D., Laufenberg, J. S., Davidson, M. & Murrow, J. L. Connectivity among subpopulations of Louisiana black bears as estimated by a step selection function. J. Wildl. Manage. 79, 1347–1360 (2015).
    Article  Google Scholar 

    57.
    Beumer, L. T., van Beest, F. M., Stelvig, M. & Schmidt, N. M. Spatiotemproal dynamics in habitat suitability of a large Arctic herbivore: environmental heterogeneity is key to a sedentary lifestyle. Glob. Ecol. Conserv. 18, e00647 (2019).
    Article  Google Scholar 

    58.
    Hinton, J. W. et al. Space use and habitat selection by resident and transient red wolves (Canis rufus). PLoS ONE 11, e0167603 (2016).
    PubMed Central  Article  CAS  PubMed  Google Scholar 

    59.
    Fourcade, Y., Engler, J. O., Rodder, D. & Secondi, J. Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS ONE 9, e97122 (2014).
    ADS  PubMed Central  Article  CAS  PubMed  Google Scholar 

    60.
    Pellerin, M., Said, S. & Gaillard, J.-M. Roe deer Capreolus capreolus home-range sizes estimated from VHF and GPS data. Wildl. Biol. 14, 101–110 (2009).
    Article  Google Scholar 

    61.
    Signer, J., Fieberg, J. & Avgar, T. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol. 9, 880–890 (2019).
    PubMed Central  Article  PubMed  Google Scholar 

    62.
    Maehr, D. S. & Brady, J. R. Food habits of Florida black bears. J. Wildl. Manag. 48, 230–235 (1984).
    Article  Google Scholar 

    63.
    Hellgren, E. C., Vaughan, M. R. & Stauffer, D. F. Macrohabitat use by black bears in a southeastern wetland. J Wildl. Manag. 55, 442–448 (1991).
    Article  Google Scholar 

    64.
    Karelus, D. L. et al. Effects of environmental factors and landscape features on movement patterns of Florida black bears. J. Mammal. 98, 1463–1478 (2017).
    Article  Google Scholar 

    65.
    Florida Natural Areas Inventory. Florida Forever Board of Trustees Projects (2018).

    66.
    McGarigal, K., Cushman, S. A. & Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. University of Massachusetts, Amherst, MA. https://www.umass.edu/landeco/research/fragstats/fragstats.html. (2012).

    67.
    Riley, S. J., DeGloria, S. D. & Elliot, R. A terrain ruggedness index that quantifies topographic heterogeneity. Intermt. J. Sci. 5, 1–4 (1999).
    Google Scholar 

    68.
    Clark, J. D., Dunn, J. E. & Smith, K. G. A multivariate model of female black bear habitat use for a geographic information system. J. Wildl. Manag. 57, 519–526 (1993).
    Article  Google Scholar 

    69.
    U.S. Geological Survey. National Elevation Dataset. Washington, DC (2016).

    70.
    Ditmer, M. A., Noyce, K. V., Fieberg, J. R. & Garshelisa, D. L Delineating the ecological and geographic edge of an opportunist: The American black bear exploiting an agricultural landscape. Ecol. Model. 387, 205–219 (2018).
    Article  Google Scholar 

    71.
    U.S. Department of Agriculture National Agriculture Statistics Service. Census of Agriculture, Ag Census Web Maps. Washington, DC (2016).

    72.
    Hostetler, J. A. et al. Demographic consequences of anthropogenic influences: Florida black bears in north-central Florida. Biol. Conserv. 142, 2456–2463 (2009).
    Article  Google Scholar 

    73.
    Center for International Earth Science Information Network – CIESIN – Columbia University. Gridded Population of the World, Version 4 (GPWv4): Population Density. Palisades, NY (2016).

    74.
    Brody, A. J. & Pelton, M. R. Effects of roads on black bears in western North Carolina. Wildl. Soc. B 17, 5–10 (1989).
    Google Scholar 

    75.
    U.S. Census Bureau. TIGER/Line Shapefiles (machine readable data files). Washington DC (2016).

    76.
    U.S. Geological Survey. National Hydrology Dataset. Washington, DC (2018).

    77.
    U.S. Fish & Wildlife Service. National Wetlands Inventory Data. St Petersburg, FL (2018).

    78.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2019).

    79.
    Esri. ArcGIS Desktop: Release 10.4. Redlands, CA: Environmental Systems Research Institute (2015).

    80.
    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).
    Article  Google Scholar 

    81.
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
    Article  Google Scholar 

    82.
    Calenge, C. The package adehabitat for the R software: a tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 516–519 (2016).
    Article  Google Scholar 

    83.
    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).
    Article  Google Scholar 

    84.
    Phillips, S. J., Dudik, M., & Schapire, R. E. A maximum entropy approach to species distribution modeling in Proceedings of the twenty-first international conference on machine learning (technical coordinators Greiner, R. & Schuurmans, D.) 655–662 (ACM Press, 2004).

    85.
    Hernandez, P. A. et al. Predicting species distributions in poorly-studied landscapes. Biodivers. Conserv. 17, 1353–1366 (2008).
    Article  Google Scholar 

    86.
    Poor, E. E., Loucks, C., Jakes, A. & Urban, D. L. Comparing habitat suitability and connectivity modeling methods for conserving pronghorn migrations. PLoS ONE 7, e49390 (2012).
    ADS  CAS  PubMed Central  Article  PubMed  Google Scholar 

    87.
    Duan, R.-Y., Kong, X.-Q., Huang, M.-Y., Fan, W.-Y. & Wang, Z.-G. The predictive performance and stability of six species distribution models. PLoS ONE 9, e112764 (2014).
    ADS  PubMed Central  Article  CAS  PubMed  Google Scholar 

    88.
    Zhang, J. et al. MaxEnt modeling for predicting the spatial distribution of three raptors in the Sanjiangyuan National Park China. Ecol. Evol. 9, 6643–6654 (2019).
    PubMed Central  Article  PubMed  Google Scholar 

    89.
    Bertolino, S. et al. Spatially-explicit models as tools for implementing effective management strategies for invasive alien mammals. Mammal. Rev. 50, 87–199 (2020).
    Google Scholar 

    90.
    Alsamadisi, A. G., Tran, L. T. & Papes, M. Employing inferences across scales: integrating spatial data with different resolutions to enhance Maxent models. Ecol. Model. 415, 108857 (2020).
    Article  Google Scholar 

    91.
    Peralvo, M. F., Cuesta, F. & van Manen, F. Delineating priority habitat areas for the conservation of Andean bears in northern Ecuador. Ursus 16, 222–233 (2005).
    Article  Google Scholar 

    92.
    Mahalanobis, P. C. On the generalized distance in statistics. Proc. Natl. Aacd. Sci. India 2, 49–55 (1936).
    MATH  Google Scholar 

    93.
    Browning, D. M., Beaupre, S. J. & Duncan, L. Using partitioned Mahalanobis D2 (K) to formulate a GIS-based model of timber rattlesnake hibernacula. J. Wildl. Manag. 69, 33–44 (2005).
    Article  Google Scholar 

    94.
    Griffin, S. C., Taper, M. L., Hoffman, R. & Mills, L. S. Ranking Mahalanobis Distance models for predictions of occupancy from presence-only data. J. Wildl. Manag. 74, 1112–1121 (2010).
    Article  Google Scholar 

    95.
    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).
    Article  Google Scholar 

    96.
    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).
    Article  Google Scholar 

    97.
    Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300 (2002).
    Article  Google Scholar 

    98.
    Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).
    Article  Google Scholar 

    99.
    Murrow, J. L. & Clark, J. D. Effects of hurricanes Katrina and Rita on Louisiana black bear habitat. Ursus 23, 192–205 (2012).
    Article  Google Scholar 

    100.
    Sing, T., Sander, O., Beerenwinkel, N. & Lengauer, T. ROCR: visualizing classifier performance in R. Bioinformatics 21, 7881 (2005).
    Article  CAS  Google Scholar 

    101.
    Broennimann, B. & Di Cola, V. A. ecospat: Spatial Ecology Miscellaneous Methods. R package version 3.0 (2018).

    102.
    Liu, C., White, M. & Newell, G. Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 40, 778–789 (2013).
    Article  Google Scholar 

    103.
    Hellgren, E. C., Bales, S. L., Gregory, M. S., Leslie, D. M. Jr. & Clark, J. D. Testing a Mahalanobis Distance model of black bear habitat use in the Ouichita Mountains of Oklahoma. J. Wildl. Manag. 71, 924–928 (2007).
    Article  Google Scholar 

    104.
    Murrow, J. L., Thatcher, C. A., van Manen, F. T. & Clark, J. A data-based conservation planning tool for Florida Panthers. Environ. Model. Assess. 18, 159–170 (2013).
    Article  Google Scholar 

    105.
    NOAA Office for Coastal Management. Detailed method for mapping sea level rise inundation. (NOAA, 2017).

    106.
    Pelton, M. R. 2003. Black bear. In Wild Mammals of North America: Biology, Management, and Conservation (eds Feldhamer, J. A. et al.) 547–555 (Johns Hopkins University, Baltimore, 2003).
    Google Scholar 

    107.
    Thuiller, W., Brotons, L., Araujo, M. B. & Lavorel, S. Effects of restricting environmental range of data to project current and future species distributions. Ecography 27, 165–172 (2004).
    Article  Google Scholar 

    108.
    Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28, 385–393 (2005).
    Article  Google Scholar 

    109.
    Kopp, R. E. et al. Probalistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth’s Future 2, 383–406 (2014).
    ADS  Article  Google Scholar 

    110.
    Xiao, H. & Tang, Y. Assess the “superposed” effects of storm surge from a Category 3 hurricane. and continuous sea-level rise on saltwater intrusion into the surficial aquifer in coastal east-central Florida (USA). Environ. Sci. Pollut Res. 26, 21882–21889 (2019).
    CAS  Article  Google Scholar 

    111.
    Laurance, W. F. et al. A global strategy for road building. Nature 513, 229–234 (2014).
    ADS  CAS  Article  Google Scholar 

    112.
    Mukul, S. A. et al. Combined effects of climate change and sea-level rise project dramatic habitat loss of the globally endangered Bengal tiger in the Bangladesh Sundarbans. Sci. Total Environ. 663, 830–840 (2019).
    ADS  CAS  Article  Google Scholar 

    113.
    Poor, E. E., Shao, Y. & Kelly, M. J. Mapping and predicting forest loss in a Sumatran tiger landscape from 2002 to 2050. J. Environ. Manag. 231, 397–404 (2019).
    Article  Google Scholar 

    114.
    Durner, G. M. et al. Predicting 21st-century polar bear habitat distribution from global climate models. Ecol. Monogr. 79, 25–58 (2009).

    115.
    Yovovich, V., Allen, M. L., Macaulay, L. T. & Wilmers, C. C. Using spatial characteristics of apex carnivore communication and reproductive behaviors to predict responses to future human development. Biodivers. Conserv. 29, 2589–2603 (2020).
    Article  Google Scholar 

    116.
    Muhly, T. B. et al. Functional response of wolves to human development across boreal North America. Ecol. Evol. 9, 10801–10815 (2019).
    PubMed Central  Article  PubMed  Google Scholar 

    117.
    Zeller, K. A., Wattles, D. W., Conlee, L. & Destefano, S. Response of female black bears to a high-density road network and identification of long-term road mitigation sites. Anim. Conserv. https://doi.org/10.1111/acv.12621 (2020).
    Article  Google Scholar 

    118.
    Morales-González, A., Ruiz-Villar, H., Ordiz, A. & Penteriani, V. Large carnivores living alongside humans: Brown bears in human-modified landscapes. Glob. Ecol. Conserv. 22, 1–13 (2020).
    Google Scholar 

    119.
    Maletzke, B. et al. Cougar response to a gradient of human development. Ecosphere 8, 1–14 (2017).
    Article  Google Scholar 

    120.
    Barrington-Leigh, C. & Millard-Ball, A. A century of sprawl in the United States. PNAS https://doi.org/10.1073/pnas.1504033112 (2015).
    Article  Google Scholar  More