More stories

  • in

    Improved NDVI based proxy leaf-fall indicator to assess rainfall sensitivity of deciduousness in the central Indian forests through remote sensing

    Comparison between old and new deciduousness metrics
    At first, to check the reliability of the proposed metric, we estimated the deciduousness from the equation proposed by Cuba et al.14 (Eq. 1; referred as ‘old’) and the new metric proposed in this study (Eq. 2; referred as ‘new’) during the extreme and normal rainfall years. The results of dry and moist deciduous samples and 4 pheno-classes revealed an over-estimation and under-estimation of deciduousness with the old-metric, whereas the new metric revealed the accurate relative variability (Fig. 2b,c, Table S1). Table 1 provides the estimated deciduousness values from the old and new metrics for 22 homogeneous sample pixels representing four major vegetation types in the study area (refer Fig. 1 for their spatial locations and Fig. S1 for their annual growth profile). The litter fall information collected from literature revealed a higher litter fall quantity of 10–14.4 Mg Ha−1 year−1 for the moist deciduous forest39,40,41,42 and lower litter fall quantities of 1–8.65 Mg Ha−1 year−1 and 5.63–7.84 Mg Ha−1 year−1 for the dry deciduous forest42,43,44 and the semi-evergreen and evergreen forest44 , respectively. The new metric showed a relatively similar variability in deciduousness to ground observations especially for the moist and dry-deciduous forests than the old metric (Table 1).
    Figure 2

    Graphical illustration of deciduousness estimation: (a) Theoretical phenology curves from high and low deciduous vegetation and the parameters of deciduousness, (b) Actual RS derived annual growth profiles of moist and dry deciduous vegetation and their deciduousness estimation using the old and new metric, and (c) Annual growth profile of four theoretical pheno-classes for depicting the different magnitude of deciduousness.

    Full size image

    Table 1 Performance of old and new deciduous metric in a normal rainfall year (2011) using 22 samples from different vegetation types (spatial locations of these samples can be seen in Fig. 1).
    Full size table

    Further, the difference between the old and new metric was spatially checked and is shown at the center of Fig. 3, and the actual values are presented in the surrounding in eight different sub-set locations. The difference image denotes the under-estimated (70.76% of forest area) and the over-estimated (29.23% of forest area) deciduousness obtained by the old metric (Fig. 3). The under-estimated area observed was mainly in the moist forested regions of states- Chhattisgarh, Odisha, and Jharkhand states, whereas, the over-estimated area observed was mainly in the dry forested region of states—Madhya Pradesh, Maharashtra, Northern Chhattisgarh and some parts of Jharkhand (Fig. 3). The over- and under-estimations are with respect to the new metric, and not with the real in-situ measurements. However, the new metric is in good agreement with annual growth profiles of different vegetation types, and have positive relation with ground litter fall observations39,40,41,42,43,44.
    Figure 3

    Difference in the spatial distribution of deciduousness (central figure) and the actual deciduousness (subset boxes) derived from the new and old metric for the year 2011. (These maps were created using ESRI’s ArcMap 10.3—https://desktop.arcgis.com/en/arcmap/, and MS-Office PowerPoint 2007 software).

    Full size image

    The deciduousness derived from these two metrics were also tested for their statistical significance using ANOVA (Table 2). In this test 800 stratified random samples belonging to different deciduous forests of different density classes for dry (2002), normal (2011) and wet (2013) years were used. It was found that the mean deciduousness values from the old metric were similar in the majority of the cases and different rainfall conditions. Hence, it could not be used for understanding rainfall impact on the deciduousness. On the other hand, the new metric performed better than the old metric in terms of its variability under (a) different rainfall conditions (p  More

  • in

    Riparian and in-channel habitat properties linked to dragonfly emergence

    1.
    Noss, R. F. Indicators for monitoring biodiversity: A hierarchical approach. Conserv. Biol. 4, 355–364 (1990).
    Article  Google Scholar 
    2.
    Lambeck, R. J. Focal species: A multi-species umbrella for nature conservation. Conserv. Biol. 11, 849–856 (1997).
    Article  Google Scholar 

    3.
    Knight, T. M., McCoy, M. W., Chase, J. M., McCoy, K. A. & Holt, R. D. Trophic cascades across ecosystems. Nature 437, 880–883 (2005).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Rudolf, V. H. W. & Rasmussen, N. L. Ontogenetic functional diversity: Size structure of a keystone predator drives functioning of a complex ecosystem. Ecology 94, 1046–1056 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    5.
    Bulánková, E. Dragonflies (Odonata) as bioindicators. Biologia, Bratislava 52, 177–180 (1997).
    Google Scholar 

    6.
    Catling, P. M. A potential for the use of dragonfly (Odonata) diversity as a bioindicator of the efficiency of sewage lagoons. Can. Field Nat. 119, 233 (2005).
    Article  Google Scholar 

    7.
    Vorster, C. et al. Development of a new continental-scale index for freshwater assessment based on dragonfly assemblages. Ecol. Indic. 109, 105819 (2020).
    Article  Google Scholar 

    8.
    Jeremiason, J. D., Reiser, T. K., Weitz, R. A., Berndt, M. E. & Aiken, G. R. Aeshnid dragonfly larvae as bioindicators of methylmercury contamination in aquatic systems impacted by elevated sulfate loading. Ecotoxicology 25, 456–468 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Chovanec, A. & Raab, R. Dragonflies (Insecta, Odonata) and the ecological status of newly created wetlands—examples for long-term bioindication programmes. Limnologica 27, 381–392 (1997).
    Google Scholar 

    10.
    Chovanec, A. & Waringer, J. Ecological integrity of river–floodplain systems—assessment by dragonfly surveys (Insecta: Odonata). Regul. Rivers Res. Manag. 17, 493–507 (2001).
    Article  Google Scholar 

    11.
    Rocha-Ortega, M., Rodríguez, P. & Córdoba-Aguilar, A. Can dragonfly and damselfly communities be used as bioindicators of land use intensification?. Ecol. Indic. 107, 105553 (2019).
    Article  Google Scholar 

    12.
    Kalkman, V. J. et al. Diversity and conservation of European dragonflies and damselflies (Odonata). Hydrobiologia 811, 269–282 (2018).
    Article  Google Scholar 

    13.
    Harvey, J. A. et al. International scientists formulate a roadmap for insect conservation and recovery. Nat. Ecol. Evol. 4, 174–176 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    14.
    Falck, J. & Johansson, F. Patterns in size, sex ratio and time at emergence in a South Swedish population of Sympetrum sanguineum (Odonata). Aquat. Insects 22, 311–317 (2000).
    Article  Google Scholar 

    15.
    Farkas, A. et al. Sex ratio in Gomphidae (Odonata) at emergence: Is there a relationship with water temperature?. Int. J. Odonatol. 16, 279–287 (2013).
    Article  Google Scholar 

    16.
    Cardoso, P., Erwin, T. L., Borges, P. A. V. & New, T. R. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 144, 2647–2655 (2011).
    Article  Google Scholar 

    17.
    Daigle, R. J. Sea-level rise estimates for New Brunswick municipalities: Saint John, Sackville, Richibucto, Shippagan, Caraquet, Le Goulet. Report for the Atlantic Climate Adaptation Solutions Association (2011).

    18.
    Tockner, K., Pusch, M., Borchardt, D. & Lorang, M. S. Multiple stressors in coupled river–floodplain ecosystems. Freshw. Biol. 55, 135–151 (2010).
    Article  Google Scholar 

    19.
    Nakano, S. & Murakami, M. Reciprocal subsidies: Dynamic interdependence between terrestrial and aquatic food webs. Proc. Natl. Acad. Sci. 98, 166–170 (2001).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Rantala, M. J., Ilmonen, J., Koskimäki, J., Suhonen, J. & Tynkkynen, K. The macrophyte, Stratiotes aloides, protects larvae of dragonfly Aeshna viridis against fish predation. Aquat. Ecol. 38, 77–82 (2004).
    Google Scholar 

    21.
    Suhonen, J., Suutari, E., Kaunisto, K. M. & Krams, I. Patch area of macrophyte Stratioites aloides as a critical resource for declining dragonfly Aeshna viridis. J. Insect Conserv. 17, 393–398 (2013).
    Google Scholar 

    22.
    Bell, H. L. Effect of low pH on the survival and emergence of aquatic insects. Water Res. 5, 313–319 (1971).
    Google Scholar 

    23.
    Farkas, A., Jakab, T., Tóth, A., Kalmár, A. F. & Dévai, G. Emergence patterns of riverine dragonflies (Odonata: Gomphidae) in Hungary: Variations between habitats and years. Aquat. Insects 34, 77–89 (2012).
    Google Scholar 

    24.
    Boda, R. et al. Emergence behaviour of the red listed Balkan Goldenring (Cordulegaster heros Theischinger, 1979) in Hungarian upstreams: Vegetation structure affects the last steps of the larvae. J. Insect Conserv. 19, 547–557 (2015).
    Google Scholar 

    25.
    Remsburg, A. J. & Turner, M. G. Aquatic and terrestrial drivers of dragonfly (Odonata) assemblages within and among north-temperate lakes. J. N. Am. Benthol. Soc. 28, 44–56 (2009).
    Google Scholar 

    26.
    Remsburg, A. Relative influence of prior life stages and habitat variables on dragonfly (Odonata: Gomphidae) densities among lake sites. Diversity 3, 200–216 (2011).
    Google Scholar 

    27.
    Aoki, T. Larval development, emergence and seasonal regulation in Asiagomphus pryeri (Selys) (Odonata: Gomphidae). Hydrobiologia 394, 179–192 (1999).
    Google Scholar 

    28.
    Paulson, D. Dragonflies and Damselflies of the East (Princeton University Press, Princeton, 2011).
    Google Scholar 

    29.
    Foster, S. E. & Soluk, D. A. Evaluating exuvia collection as a management tool for the federally endangered Hine’s emerald dragonfly, Somatochlora hineana Williamson (Odonata: Cordulidae). Biol. Conserv. 118, 15–20 (2004).
    Google Scholar 

    30.
    Raebel, E. M., Merckx, T., Riordan, P., Macdonald, D. W. & Thompson, D. J. The dragonfly delusion: Why it is essential to sample exuviae to avoid biased surveys. J. Insect Conserv. 14, 523–533 (2010).
    Article  Google Scholar 

    31.
    Needham, J. G., Westfall, M. J. & May, M. L. Dragonflies of North America: The Odonata (Anisoptera) Fauna of Canada, the Continental United States, Northern Mexico and the Greater Antilles (Scientific Publishers, Jodhpur, 2014).
    Google Scholar 

    32.
    Aliberti Lubertazzi, M. A. & Ginsberg, H. S. Persistence of dragonfly exuviae on vegetation and rock substrates. Northeast. Nat. 16, 141–147 (2009).
    Article  Google Scholar 

    33.
    Brodin, T. & Johansson, F. Effects of predator-induced thinning and activity changes on life history in a damselfly. Oecologia 132, 316–322 (2002).
    ADS  PubMed  Article  Google Scholar 

    34.
    Johansson, F., Crowley, P. H. & Brodin, T. Sexual size dimorphism and sex ratios in dragonflies (Odonata). Biol. J. Linn. Soc. 86, 507–513 (2005).
    Article  Google Scholar 

    35.
    Lamit, L. J. et al. Genotype variation in bark texture drives lichen community assembly across multiple environments. Ecology 96, 960–971 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Wolman, M. G. A method of sampling coarse river-bed material. EOS Trans. Am. Geophys. Union 35, 951–956 (1954).
    Article  Google Scholar 

    37.
    Richter, B. D., Baumgartner, J. V., Powell, J. & Braun, D. P. A method for assessing hydrologic alteration within ecosystems. Conserv. Biol. 10, 1163–1174 (1996).
    Article  Google Scholar 

    38.
    Sabo, J. L., Bastow, J. L. & Power, M. E. Length–mass relationships for adult aquatic and terrestrial invertebrates in a California watershed. J. N. Am. Benthol. Soc. 21, 336–343 (2002).
    Article  Google Scholar 

    39.
    Sample, B. E., Cooper, R. J., Greer, R. D. & Whitmore, R. C. Estimation of insect biomass by length and width. Am. Midl. Nat. 129, 234 (1993).
    Article  Google Scholar 

    40.
    McCune, B. & Mefford, M. J. PC-ORD. Multivariate Analysis of Ecological Data, Version 5.0 for Windows. MjM Software, Gleneden Beach, Oregon, U.S.A. (2006).

    41.
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-2. https://CRAN.R-project.org/package=vegan (2018).

    42.
    R Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna Austria (2018).

    43.
    Anderson, M. J. Permutational Multivariate Analysis of Variance (Department of Statistics, University of Auckland, Auckland, 2005).
    Google Scholar 

    44.
    Manly, B. F. J. Randomization, Bootstrap and Monte Carlo Methods in Biology 3rd edn. (CRC Press, Boca Raton, 2006).
    Google Scholar 

    45.
    Goslee, S. C. & Urban, D. L. The ecodist Package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22, 1–19 (2007).
    Article  Google Scholar 

    46.
    Crabot, J., Clappe, S., Dray, S. & Datry, T. Testing the Mantel statistic with a spatially-constrained permutation procedure. Methods Ecol. Evol. 10, 532–540 (2019).
    Article  Google Scholar 

    47.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).
    MathSciNet  MATH  Google Scholar 

    48.
    Clarke, K. R. & Gorley, R. N. PRIMER v7: User Manual/Tutorial 3rd edn. (Plymouth U. K. Primer-E Ltd, Wellington, 2015).
    Google Scholar 

    49.
    Baird, I. R. C. & Burgin, S. An emergence study of Petalura gigantea (Odonata: Petaluridae). Int. J. Odonatol. 16, 193–211 (2013).
    Article  Google Scholar 

    50.
    Richter, O., Suhling, F., Müller, O. & Kern, D. A model for predicting the emergence of dragonflies in a changing climate. Freshw. Biol. 53, 1868–1880 (2008).
    Google Scholar 

    51.
    Kennedy, T. A. et al. Flow management for hydropower extirpates aquatic insects, undermining river food webs. Bioscience 66, 561–575 (2016).
    Google Scholar 

    52.
    Worthen, W. B. & Horacek, H. J. The distribution of dragonfly larvae in a South Carolina stream: Relationships with sediment type, body size, and the presence of other larvae. J. Insect Sci. 15, 31–31 (2015).
    PubMed  PubMed Central  Google Scholar 

    53.
    Corbet, P. A Biology of Dragonflies. HF & G. Witherby LTD (Northumberland Press Limited, Newcastle-upon-Tyne, 1962).
    Google Scholar 

    54.
    Corbet, P. S. Dragonflies: Behavior and Ecology of Odonata (Cornell University Press, New York, 1999).
    Google Scholar 

    55.
    Baxter, C. V., Fausch, K. D. & Saunders, W. C. Tangled webs: Reciprocal flows of invertebrate prey link streams and riparian zones. Freshw. Biol. 50, 201–220 (2005).
    Article  Google Scholar 

    56.
    Burdon, F. J. & Harding, J. S. The linkage between riparian predators and aquatic insects across a stream-resource spectrum. Freshw. Biol. 53, 330–346 (2008).
    Google Scholar 

    57.
    Grof-Tisza, P., LoPresti, E., Heath, S. K. & Karban, R. Plant structural complexity and mechanical defenses mediate predator–prey interactions in an odonate–bird system. Ecol. Evol. 7, 1650–1659 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    58.
    Iwata, T. Linking stream habitats and spider distribution: Spatial variations in trophic transfer across a forest–stream boundary. Ecol. Res. 22, 619–628 (2007).
    Article  Google Scholar 

    59.
    Jakob, C. & Suhling, F. Risky times? Mortality during emergence in two species of dragonflies (Odonata: Gomphidae, Libellulidae). Aquat. Insects 21, 1–10 (1999).
    Article  Google Scholar 

    60.
    Kurata, M. Life history of Gomphys melaenops (Gomphidae). Tombo 14, 6–11 (1971).
    Google Scholar 

    61.
    Corbet, P. S. The life-history of the emperor dragonfly anax imperator leach (Odonata: Aeshnidae). J. Anim. Ecol. 26, 1–69 (1957).
    Google Scholar 

    62.
    Suhling, F. Temporal patterns of emergence of the riverine dragonfly Onychogomphus uncatus (Odonata: Gomphidae). Hydrobiologia 302, 113–118 (1995).
    Google Scholar 

    63.
    Wissmar, R. C. & Beschta, R. L. Restoration and management of riparian ecosystems: A catchment perspective. Freshw. Biol. 40, 571–585 (1998).
    Google Scholar 

    64.
    Evans, B. F., Townsend, C. R. & Crowl, T. A. Distribution and abundance of coarse woody debris in some southern New Zealand streams from contrasting forest catchments. N. Z. J. Mar. Freshw. Res. 27, 227–239 (1993).
    Google Scholar 

    65.
    Studinski, J. M., Hartman, K. J., Niles, J. M. & Keyser, P. The effects of riparian forest disturbance on stream temperature, sedimentation, and morphology. Hydrobiologia 686, 107–117 (2012).
    Google Scholar 

    66.
    Wang, L., Lyons, J., Kanehl, P. & Gatti, R. Influences of watershed land use on habitat quality and biotic integrity in wisconsin streams. Fisheries 22, 6–12 (1997).
    Google Scholar 

    67.
    Martin, T. G. & Mcintyre, S. Impacts of livestock grazing and tree clearing on birds of woodland and riparian habitats. Conserv. Biol. 21, 504–514 (2007).
    PubMed  PubMed Central  Google Scholar 

    68.
    Ormerod, S. J., Rundle, S. D., Lloyd, E. C. & Douglas, A. A. The influence of riparian management on the habitat structure and macroinvertebrate communities of upland streams draining plantation forests. J. Appl. Ecol. 30, 13–24 (1993).
    Google Scholar 

    69.
    Cordero, A. Vertical stratification during emergence in odonates. Not. Odonatol. 4, 103–105 (1995).
    Google Scholar 

    70.
    Coppa, G. Notes sur l’émergence d’Epitheca bimaculata (Charpentier)(Odonata: Corduliidae). Martinia 7, 7–16 (1991).
    Google Scholar 

    71.
    Miller, P. L. Notes on Ictinogomphus ferox Rambur (Odonata: Gomphidae). Entomologist 97, 2–66 (1964).
    Google Scholar 

    72.
    Worthen, W. B. Emergence-site selection by the dragonfly Epitheca spinosa (Hagen). Southeast. Nat. 9, 251–258 (2010).
    Article  Google Scholar 

    73.
    Magoba, R. N. & Samways, M. J. Recovery of benthic macroinvertebrate and adult dragonfly assemblages in response to large scale removal of riparian invasive alien trees. J. Insect Conserv. 14, 627–636 (2010).
    Article  Google Scholar 

    74.
    Cothran, M. L. & Thorp, J. H. Emergence patterns and size variation of Odonata in a thermal reservoir. Freshw. Invertebr. Biol. 1, 30–39 (1982).
    Article  Google Scholar 

    75.
    Mccauley, S. J., Hammond, J. I., Frances, D. N. & Mabry, K. E. Effects of experimental warming on survival, phenology, and morphology of an aquatic insect (Odonata). Ecol. Entomol. 40, 211–220 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    76.
    McCauley, S. J., Hammond, J. I. & Mabry, K. E. Simulated climate change increases larval mortality, alters phenology, and affects flight morphology of a dragonfly. Ecosphere 9, e02151 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    77.
    de Nadaï-Monoury, E., Gilbert, F. & Lecerf, A. Forest canopy cover determines invertebrate diversity and ecosystem process rates in depositional zones of headwater streams. Freshw. Biol. 59, 1532–1545 (2014).
    Article  Google Scholar 

    78.
    Flenner, I. & Sahlén, G. Dragonfly community re-organisation in boreal forest lakes: Rapid species turnover driven by climate change?. Insect Conserv. Divers. 1, 169–179 (2008).
    Article  Google Scholar 

    79.
    Harper, M. P. & Peckarsky, B. L. Emergence cues of a mayfly in a high-altitude stream ecosystem: Potential response to climate change. Ecol. Appl. 16, 612–621 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    80.
    Jonsson, M. et al. Climate change modifies the size structure of assemblages of emerging aquatic insects. Freshw. Biol. 60, 78–88 (2015).
    Article  Google Scholar 

    81.
    Dudgeon, D. et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    82.
    Sala, O. E. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).
    CAS  Article  Google Scholar 

    83.
    Likens, G. E. & Bormann, F. H. Linkages between terrestrial and aquatic ecosystems. Bioscience 24, 447–456 (1974).
    Article  Google Scholar 

    84.
    England, L. E. & Rosemond, A. D. Small reductions in forest cover weaken terrestrial-aquatic linkages in headwater streams. Freshw. Biol. 49, 721–734 (2004).
    Article  Google Scholar 

    85.
    Lafage, D. et al. Local and landscape drivers of aquatic-to-terrestrial subsidies in riparian ecosystems: A worldwide meta-analysis. Ecosphere 10, e02697 (2019).
    Article  Google Scholar  More

  • in

    Environmental influences on foraging effort, success and efficiency in female Australian fur seals

    1.
    Chambers, L. E. et al. Observed and predicted effects of climate on Australian seabirds. Emu Austr. Ornithol. 111, 235–251. https://doi.org/10.1071/MU10033 (2011).
    Article  Google Scholar 
    2.
    Stephens, D. W. & Krebs, J. R. Foraging Theory Vol 1 (Princeton University Press, Princeton, 1986).
    Google Scholar 

    3.
    Costa, D. P. The relationship between reproductive and foraging energetics and the evolution of the Pinnipedia. Symp. Zool. Soc. Lond. 66, 293–314 (1993).
    Google Scholar 

    4.
    Weimerskirch, H., Le Corre, M., Jaquemet, S. & Marsac, F. Foraging strategy of a tropical seabird, the red-footed booby, in a dynamic marine environment. Mar. Ecol. Prog. Ser. 288, 251–261. https://doi.org/10.3354/meps288251 (2005).
    ADS  Article  Google Scholar 

    5.
    Costa, D. P. A conceptual model of the variation in parental attendance in response to environmental fluctuation: Foraging energetics of lactating sea lions and fur seals. Aquat. Conserv. Mar. Freshw. Ecosyst. 17, S44–S52. https://doi.org/10.1002/aqc.917 (2007).
    ADS  Article  Google Scholar 

    6.
    Villegas-Amtmann, S., McDonald, B. I., Páez-Rosas, D., Aurioles-Gamboa, D. & Costa, D. P. Adapted to change: Low energy requirements in a low and unpredictable productivity environment, the case of the Galapagos sea lion. Deep Sea Res. Part II Top. Stud. Oceanography 140, 94–104 (2017).
    ADS  Article  Google Scholar 

    7.
    Trillmich, F. & Limberger, D. Drastic effects of El Niño on Galapagos pinnipeds. Oecologia 67, 19–22 (1985).
    ADS  Article  Google Scholar 

    8.
    Dunstan, P. K. et al. Global patterns of change and variation in sea surface temperature and chlorophyll a. Sci. Rep. 8, 14624. https://doi.org/10.1038/s41598-018-33057-y (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    9.
    IPCC. Summary for Policymakers. (2019).

    10.
    Cai, W., Shi, G., Cowan, T., Bi, D. & Ribbe, J. The response of the Southern Annular Mode, the East Australian Current, and the southern mid-latitude ocean circulation to global warming. Geophys. Res. Lett. https://doi.org/10.1029/2005GL024701 (2005).
    Article  Google Scholar 

    11.
    Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111. https://doi.org/10.1038/nclimate2100 (2014).
    ADS  CAS  Article  Google Scholar 

    12.
    Cai, W. et al. Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature 510, 254–258. https://doi.org/10.1038/nature13327 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    13.
    Poloczanska, E. S. et al. Climate change and Australian marine life. Oceanogr. Mar. Biol. 45, 407 (2007).
    Google Scholar 

    14.
    Beentjes, M. P. & Renwick, J. A. The relationship between red cod, Pseudophycis bachus, recruitment and environmental variables in New Zealand. Environ. Biol. Fishes 61, 315–328. https://doi.org/10.1023/A:1010943906264 (2001).
    Article  Google Scholar 

    15.
    Hewitt, R. P., Theilacker, G. H. & Lo, N. C. H. Causes of mortality in young jack mackerel. Mar. Ecol. Prog. Ser. 26, 1–10 (1985).
    ADS  Article  Google Scholar 

    16.
    Rindorf, A., Wanless, S. & Harris, M. P. Effects of changes in sandeel availability on the reproductive output of seabirds. Mar. Ecol. Prog. Ser. 202, 241–252. https://doi.org/10.3354/meps202241 (2000).
    ADS  Article  Google Scholar 

    17.
    Wanless, S., Harris, M. P., Redman, P. & Speakman, J. R. Low energy values of fish as a probable cause of a major seabird breeding failure in the North Sea. Mar. Ecol. Prog. Ser. 294, 1–8. https://doi.org/10.3354/meps294001 (2005).
    ADS  Article  Google Scholar 

    18.
    Carroll, M. J. et al. Kittiwake breeding success in the southern North Sea correlates with prior sandeel fishing mortality. Aquat. Conserv. Mar. Freshw. Ecosys. 27, 1164–1175. https://doi.org/10.1002/aqc.2780 (2017).
    Article  Google Scholar 

    19.
    Ridgway, K. R. Long-term trend and decadal variability of the southward penetration of the East Australian Current. Geophys. Res. Lett. 34, L13613. https://doi.org/10.1029/2007GL030393 (2007).
    ADS  Article  Google Scholar 

    20.
    Hobday, A. J. & Pecl, G. T. Identification of global marine hotspots: Sentinels for change and vanguards for adaptation action. Rev. Fish Biol. Fish. 24, 415–425. https://doi.org/10.1007/s11160-013-9326-6 (2014).
    Article  Google Scholar 

    21.
    Hobday, A. J. & Lough, J. M. Projected climate change in Australian marine and freshwater environments. Mar. Freshw. Res. 62, 1000–1014. https://doi.org/10.1071/MF10302 (2011).
    Article  Google Scholar 

    22.
    Johnson, C. R. et al. Climate change cascades: Shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania. J. Exp. Mar. Biol. Ecol. 400, 17–32. https://doi.org/10.1016/j.jembe.2011.02.032 (2011).
    Article  Google Scholar 

    23.
    Thompson, P. A., Baird, M. E., Ingleton, T. & Doblin, M. A. Long-term changes in temperate Australian coastal waters: Implications for phytoplankton. Mar. Ecol. Prog. Ser. 394, 1–19. https://doi.org/10.3354/meps08297 (2009).
    ADS  CAS  Article  Google Scholar 

    24.
    Last, P. R. et al. Long-term shifts in abundance and distribution of a temperate fish fauna: A response to climate change and fishing practices. Glob. Ecol. Biogeogr. 20, 58–72. https://doi.org/10.1111/j.1466-8238.2010.00575.x (2011).
    Article  Google Scholar 

    25.
    Robinson, L. M. et al. Rapid assessment of short-term datasets in an ocean warming hotspot reveals “high” confidence in potential range extensions. Glob. Environ. Change 31, 28–37 (2015).
    Article  Google Scholar 

    26.
    Frederiksen, M., Edwards, M., Richardson, A. J., Halliday, N. C. & Wanless, S. From plankton to top predators: Bottom-up control of a marine food web across four trophic levels. J. Anim. Ecol. 75, 1259–1268. https://doi.org/10.1111/j.1365-2656.2006.01148.x (2006).
    Article  PubMed  Google Scholar 

    27.
    27Warneke, R. M. & Shaughnessy, P. D. in Studies of Sea Mammals in South Latitudes 53–77 (1985).

    28.
    McIntosh, R. R. et al. Understanding meta-population trends of the Australian fur seal, with insights for adaptive monitoring. PLoS One 13, e0200253. https://doi.org/10.1371/journal.pone.0200253 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    29.
    Gibbens, J. & Arnould, J. P. Y. Interannual variation in pup production and the timing of breeding in benthic foraging Australian fur seals. Mar. Mammal Sci. 25, 573–587. https://doi.org/10.1111/j.1748-7692.2008.00270.x (2009).
    Article  Google Scholar 

    30.
    Kirkwood, R. et al. Continued population recovery by Australian fur seals. Mar. Freshw. Res. 61, 695–701. https://doi.org/10.1071/MF09213 (2010).
    CAS  Article  Google Scholar 

    31.
    Arnould, J. P. Y. & Warneke, R. M. Growth and condition in Australian fur seals (Arctocephalus pusillus doriferus) (Carnivora: Pinnipedia). Aust. J. Zool. https://doi.org/10.1071/zo01077 (2002).
    Article  Google Scholar 

    32.
    Boness, D. J. & Bowen, W. D. The evolution of maternal care in pinnipeds. Bioscience 46, 645–654. https://doi.org/10.2307/1312894 (1996).
    Article  Google Scholar 

    33.
    Arnould, J. P. Y. & Hindell, M. A. Dive behaviour, foraging locations, and maternal-attendance patterns of Australian fur seals (Arctocephalus pusillus doriferus). Can. J. Zool. 79, 35–48. https://doi.org/10.1139/cjz-79-1-35 (2001).
    Article  Google Scholar 

    34.
    Arnould, J. P. Y. & Kirkwood, R. Habitat selection by female Australian fur seals (Arctocephalus pusillus doriferus). Aquat. Conserv. Mar. Freshw. Ecosyst. 17, S53–S67. https://doi.org/10.1002/aqc.908 (2008).
    Article  Google Scholar 

    35.
    Kirkwood, R., Hume, F. & Hindell, M. Sea temperature variations mediate annual changes in the diet of Australian fur seals in Bass Strait. Mar. Ecol. Prog. Ser. 369, 297–309. https://doi.org/10.3354/meps07633 (2008).
    ADS  Article  Google Scholar 

    36.
    Deagle, B. E., Kirkwood, R. & Jarman, S. N. Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces. Mol. Ecol. 18, 2022–2038. https://doi.org/10.1111/j.1365-294X.2009.04158.x (2009).
    CAS  Article  PubMed  Google Scholar 

    37.
    Gales, R., Pemberton, D., Lu, C. C. & Clarke, M. R. Cephalopod diet of the Australian fur seal: Variation due to location, season and sample type. Mar. Freshw. Res. 44, 657–671. https://doi.org/10.1071/MF9930657 (1993).
    Article  Google Scholar 

    38.
    Gibbs, C. F., Tomczak, M. Jr. & Longmore, A. R. Nutrient regime of Bass Strait. Aust. J. Mar. Freshw. Res. 37, 451–466 (1986).
    CAS  Article  Google Scholar 

    39.
    Sandery, P. A. & Kämpf, J. Transport timescales for identifying seasonal variation in Bass Strait, south-eastern Australia. Estuar. Coast. Shelf Sci. 74, 684–696. https://doi.org/10.1016/j.ecss.2007.05.011 (2007).
    ADS  Article  Google Scholar 

    40.
    Sandery, P. A. & Kämpf, J. Winter-Spring flushing of Bass Strait, South-Eastern Australia: A numerical modelling study. Estuar. Coast. Shelf Sci. 63, 23–31. https://doi.org/10.1016/j.ecss.2004.10.009 (2005).
    ADS  Article  Google Scholar 

    41.
    Costa, D. P. & Gales, N. J. Energetics of a benthic diver: Seasonal foraging ecology of the Australian sea lion, Neophoca cinerea. Ecol. Monogr. 73, 27–43 (2003).
    Article  Google Scholar 

    42.
    Costa, D. P., Kuhn, C. E., Weise, M. J., Shaffer, S. A. & Arnould, J. P. Y. When does physiology limit the foraging behaviour of freely diving mammals?. Int. Congr. Ser. 1275, 359–366. https://doi.org/10.1016/j.ics.2004.08.058 (2004).
    Article  Google Scholar 

    43.
    Arnould, J. P. Y. & Costa, D. Sea Lions of the World: Conservation and Research in the 21st Century 309–323 (Fairbanks, Alaska, 2006).
    Google Scholar 

    44.
    Welsford, D. C. & Lyle, J. M. Redbait (Emmelichthys nitidus): A Synopsis of Fishery and Biological Data (Tasmanian Aquaculture and Fisheries Institute, Marine Research Laboratories, Hobart, 2003).
    Google Scholar 

    45.
    Smith-Vaniz, W. F. et al. Trachurus declivis. Report No. e.T20437665A67871520 (2018).

    46.
    Gaughan, D., Di Dario, F. & Hata, H. Sardinops sagax. Report No. e.T183347A143831586 (2018).

    47.
    Hume, F., Hindell, M. A., Pemberton, D. & Gales, R. Spatial and temporal variation in the diet of a high trophic level predator, the Australian fur seal (Arctocephalus pusillus doriferus). Mar. Biol. 144, 407–415. https://doi.org/10.1007/s00227-003-1219-0 (2004).
    Article  Google Scholar 

    48.
    Gibbens, J. & Arnould, J. P. Y. Age-specific growth, survival, and population dynamics of female Australian fur seals. Can. J. Zool. 87, 902–911 (2009).
    Article  Google Scholar 

    49.
    Hoskins, A. J. & Arnould, J. P. Y. Relationship between long-term environmental fluctuations and diving effort of female Australian fur seals. Mar. Ecol. Prog. Ser. 511, 285–295. https://doi.org/10.3354/meps10935 (2014).
    ADS  Article  Google Scholar 

    50.
    diveMove. R package version 1.4.5 (2019).

    51.
    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2019).

    52.
    Hoskins, A. J., Costa, D. P., Wheatley, K. E., Gibbens, J. R. & Arnould, J. P. Y. Influence of intrinsic variation on foraging behaviour of adult female Australian fur seals. Mar. Ecol. Prog. Ser. 526, 227–239 (2015).
    ADS  Article  Google Scholar 

    53.
    Hoskins, A. J. & Arnould, J. P. Y. Temporal allocation of foraging effort in female Australian fur seals (Arctocephalus pusillus doriferus). PLoS One 8, e79484. https://doi.org/10.1371/journal.pone.0079484 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    54.
    Costa, D. P. & Gales, N. J. Foraging energetics and diving behavior of lactating New Zealand sea lions, Phocarctos hookeri. J. Exp. Biol. 203, 3655–3665 (2000).
    CAS  PubMed  Google Scholar 

    55.
    Volpov, B. L. et al. Dive characteristics can predict foraging success in Australian fur seals (Arctocephalus pusillus doriferus) as validated by animal-borne video. Biol. Open 5, 262–271. https://doi.org/10.1242/bio.016659 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    56.
    Nel, D. C. et al. Exploitation of mesoscale oceanographic features by grey-headed albatross Thalassarche chrysostoma in the southern Indian Ocean. Mar. Ecol. Prog. Ser. 217, 15–26. https://doi.org/10.3354/meps217015 (2001).
    ADS  Article  Google Scholar 

    57.
    Gibbs, C. F. Oceanography of Bass Strait: Implications for the food supply of little penguins Eudyptula minor. Emu Aust. Ornithol. 91, 395–401. https://doi.org/10.1071/MU9910395 (1991).
    Article  Google Scholar 

    58.
    Nieblas, A. E., Sloyan, B. M., Hobday, A. J., Coleman, R. & Richardsone, A. J. Variability of biological production in low wind-forced regional upwelling systems: A case study off southeastern Australia. Limnol. Oceanogr. 54, 1548–1558. https://doi.org/10.4319/lo.2009.54.5.1548 (2009).
    ADS  Article  Google Scholar 

    59.
    Hoskins, A. J., Costa, D. P. & Arnould, J. P. Y. Utilisation of intensive foraging zones by female Australian fur seals. PLoS One 10, 1–19. https://doi.org/10.1371/journal.pone.0117997 (2015).
    CAS  Article  Google Scholar 

    60.
    Beggs, H. et al. RAMSSA—an operational, high-resolution, Regional Australian Multi-Sensor Sea surface temperature analysis over the Australian region. Aust. Meteorol. Oceanogr. J. 61, 1–22. https://doi.org/10.22499/2.6101.001 (2011).
    Article  Google Scholar 

    61.
    NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Chlorophyll Data (NASA OB.DAAC, Greenbelt, MD, USA, 2018 Reprocessing). https://doi.org/10.5067/ORBVIEW-2/SEAWIFS/L3M/CHL/2018.

    62.
    NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Chlorophyll Data (NASA OB.DAAC, Greenbelt, MD, USA, 2018 Reprocessing). https://doi.org/10.5067/AQUA/MODIS/L3M/CHL/2018.

    63.
    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238. https://doi.org/10.1016/j.pocean.2015.12.014 (2016).
    ADS  Article  Google Scholar 

    64.
    Saji, N. H., Goswami, B. N., Vinayachandran, P. N. & Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 401, 360–363. https://doi.org/10.1038/43854 (1999).
    ADS  CAS  Article  PubMed  Google Scholar 

    65.
    Saji, N. H. & Yamagata, T. Possible impacts of Indian Ocean dipole mode events on global climate. Clim. Res. 25, 151–169. https://doi.org/10.3354/cr025151 (2003).
    Article  Google Scholar 

    66.
    Neira, F. J., Lyle, J. M., Ewing, G. P., Keane, J. P. & Tracey, S. R. Evaluation of Egg Production as a Method of Estimating Spawning Biomass of Redbait off the East Coast of Tasmania (Institute for Marine, Tasmania, 2008).
    Google Scholar 

    67.
    Kemp, J., Jenkins, G. P. & Swearer, S. E. The reproductive strategy of red cod, Pseudophycis bachus, a key prey species for high trophic-level predators. Fish. Res. 125, 161–172. https://doi.org/10.1016/j.fishres.2012.02.021 (2012).
    Article  Google Scholar 

    68.
    Zuur, A., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x (2010).
    Article  Google Scholar 

    69.
    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, Berlin, 2009).
    Google Scholar 

    70.
    nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–140 (2019).

    71.
    Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall, London, 2017).
    Google Scholar 

    72.
    Wood, S. N. Thin-plate regression splines. J. R. Stat. Soc. (B) 65, 95–114 (2003).
    MathSciNet  Article  Google Scholar 

    73.
    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. (B) 73, 3–36 (2011).
    MathSciNet  Article  Google Scholar 

    74.
    MuMIn: Multi-Model Inference. R package version 1.43.6 (2019).

    75.
    Burnham, K. & Anderson, D. Model Selection and Multi-model Inference. 2nd (2002).

    76.
    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312. https://doi.org/10.1038/s41558-019-0412-1 (2019).
    ADS  Article  Google Scholar 

    77.
    Babcock, R. C. et al. Severe continental-scale impacts of climate change are happening now: Extreme climate events impact marine habitat forming communities along 45% of Australia’s coast. Front. Mar. Sci. 6, 411. https://doi.org/10.3389/fmars.2019.00411 (2019).
    Article  Google Scholar 

    78.
    Jones, T. et al. Massive mortality of a planktivorous seabird in response to a marine heatwave. Geophys. Res. Lett. 45, 3193–3202. https://doi.org/10.1002/2017GL076164 (2018).
    ADS  Article  Google Scholar 

    79.
    Willis-Norton, E. et al. Climate change impacts on leatherback turtle pelagic habitat in the Southeast Pacific. Deep Sea Res. Part II Top. Stud. Oceanography 113, 260–267. https://doi.org/10.1016/j.dsr2.2013.12.019 (2015).
    ADS  Article  Google Scholar 

    80.
    Merrifield, M. A., Thompson, P. R. & Lander, M. Multidecadal sea level anomalies and trends in the western tropical Pacific. Geophys. Res. Lett. https://doi.org/10.1029/2012GL052032 (2012).
    Article  Google Scholar 

    81.
    Kliska, K. Environmental Correlates of Temporal Variation in the Diet of Australian fur Seals. Master of Research thesis, Macquarie University (2015).

    82.
    Tosh, C. A. et al. The importance of seasonal sea surface height anomalies for foraging juvenile southern elephant seals. Mar. Biol. 162, 2131–2140. https://doi.org/10.1007/s00227-015-2743-4 (2015).
    CAS  Article  Google Scholar 

    83.
    Foo, D., Hindell, M., McMahon, C. R. & Goldsworthy, S. D. Identifying foraging habitats of adult female long-nosed fur seal Arctocephalus forsteri based on vibrissa stable isotopes. Mar. Ecol. Prog. Ser. 628, 223–234. https://doi.org/10.3354/meps13113 (2019).
    ADS  CAS  Article  Google Scholar 

    84.
    Lovenduski, N. S. Impact of the southern annular mode on Southern Ocean circulation and biology. Geophys. Res. Lett. https://doi.org/10.1029/2005gl022727 (2005).
    Article  Google Scholar 

    85.
    Middleton, J. F. et al. El Niño effects and upwelling off South Australia. J. Phys. Oceanogr. 37, 2458–2477. https://doi.org/10.1175/jpo3119.1 (2007).
    ADS  Article  Google Scholar 

    86.
    Armbrecht, L. H. et al. Phytoplankton composition under contrasting oceanographic conditions: Upwelling and downwelling (Eastern Australia). Cont. Shelf Res. 75, 54–67. https://doi.org/10.1016/j.csr.2013.11.024 (2014).
    ADS  Article  Google Scholar 

    87.
    Falkowski, P. & Kiefer, D. A. Chlorophyll a fluorescence in phytoplankton: Relationship to photosynthesis and biomass. J. Plankton Res. 7, 715–731. https://doi.org/10.1093/plankt/7.5.715 (1985).
    CAS  Article  Google Scholar 

    88.
    Lanz, E., Nevarez-Martinez, M., López-Martínez, J. & Dworak, J. A. Small pelagic fish catches in the Gulf of California associated with sea surface temperature and chlorophyll. CalCOFI Rep. 20, 134–146 (2009).
    Google Scholar 

    89.
    Ronconi, R. A. & Burger, A. E. Limited foraging flexibility: Increased foraging effort by a marine predator does not buffer against scarce prey. Mar. Ecol. Prog. Ser. 366, 245–258. https://doi.org/10.3354/meps07529 (2008).
    ADS  Article  Google Scholar 

    90.
    Kernaleguen, L. et al. From video recordings to whisker stable isotopes: A critical evaluation of timescale in assessing individual foraging specialisation in Australian fur seals. Oecologia 180, 657–670. https://doi.org/10.1007/s00442-015-3407-2 (2016).
    ADS  Article  PubMed  Google Scholar 

    91.
    Meyers, N. The Cost of a Meal: Foraging Ecology of Female Australian fur Seals. Master of Science in Marine Biological Resources (IMBRSea) thesis, Deakin University (2019).

    92.
    Cai, W., Cowan, T. & Sullivan, A. Recent unprecedented skewness towards positive Indian Ocean Dipole occurrences and its impact on Australian rainfall. Geophys. Res. Lett. https://doi.org/10.1029/2009gl037604 (2009).
    Article  Google Scholar 

    93.
    Sparling, C. E., Georges, J. Y., Gallon, S. L., Fedak, M. A. & Thompson, D. How long does a dive last? Foraging decisions by breath-hold divers in a patchy environment: A test of a simple model. Anim. Behav. 74, 207–218. https://doi.org/10.1016/j.anbehav.2006.06.022 (2007).
    Article  Google Scholar 

    94.
    Gutiérrez, M., Castillo, R., Segura, M., Peraltilla, S. & Flores, M. Trends in spatio-temporal distribution of Peruvian anchovy and other small pelagic fish biomass from 1966–2009. Latin Am. J. Aquat. Res. 40, 633–648. https://doi.org/10.3856/vol40-issue3-fulltext-12 (2012).
    Article  Google Scholar 

    95.
    Crocker, D., Costa, D. P., Le Boeuf, B. J., Webb, P. M. & Houser, D. S. Impact of El Niño on the foraging behavior of female northern elephant seals. Mar. Ecol. Prog. Ser. 309, 1–10. https://doi.org/10.3354/meps309001 (2006).
    ADS  Article  Google Scholar 

    96.
    Gillett, N. P., Kell, T. D. & Jones, P. D. Regional climate impacts of the Southern Annular Mode. Geophys. Res. Lett. https://doi.org/10.1029/2006gl027721 (2006).
    Article  Google Scholar 

    97.
    Costa, D. P. et al. Approaches to studying climatic change and its role on the habitat selection of antarctic pinnipeds. Integr. Comp. Biol. 50, 1018–1030. https://doi.org/10.1093/icb/icq054 (2010).
    Article  PubMed  Google Scholar 

    98.
    Tommasi, D. et al. Managing living marine resources in a dynamic environment: The role of seasonal to decadal climate forecasts. Prog. Oceanogr. 152, 15–49. https://doi.org/10.1016/j.pocean.2016.12.011 (2017).
    ADS  Article  Google Scholar 

    99.
    Schumann, N., Gales, N. J., Harcourt, R. G. & Arnould, J. P. Y. Impacts of climate change on Australian marine mammals. Aust. J. Zool. https://doi.org/10.1071/zo12131 (2013).
    Article  Google Scholar 

    100.
    Evans, P. G. & Bjørge, A. Impacts of climate change on marine mammals. MCCIP Sci. Rev. https://doi.org/10.14465/2013.arc15.134-148 (2013).
    Article  Google Scholar 

    101.
    Cansse, T., Fauchet, L., Wells, M. R. & Arnould, J. P. Y. Factors influencing prey capture success and profitability in Australasian gannets (Morus serrator). Biol. Open. https://doi.org/10.1242/bio.047514 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    102.
    Kowalczyk, N. D., Reina, R. D., Preston, T. J. & Chiaradia, A. Environmental variability drives shifts in the foraging behaviour and reproductive success of an inshore seabird. Oecologia 178, 967–979. https://doi.org/10.1007/s00442-015-3294-6 (2015).
    ADS  Article  PubMed  Google Scholar 

    103.
    Hindell, M. A. et al. Circumpolar habitat use in the southern elephant seal: Implications for foraging success and population trajectories. Ecosphere 7, e01213 (2016).
    Article  Google Scholar 

    104.
    Gong, T., Feldstein, S. B. & Luo, D. The impact of ENSO on wave breaking and southern annular mode events. J. Atmos. Sci. 67, 2854–2870. https://doi.org/10.1175/2010jas3311.1 (2010).
    ADS  Article  Google Scholar 

    105.
    Luo, J. et al. Interaction between El Niño and extreme Indian Ocean Dipole. J. Clim. 23, 726–742. https://doi.org/10.1175/2009JCLI3104.1 (2010).
    ADS  Article  Google Scholar 

    106.
    Chambers, L. E. et al. Determining trends and environmental drivers from long-term marine mammal and seabird data: Examples from Southern Australia. Reg. Environ. Change 15, 197–209. https://doi.org/10.1007/s10113-014-0634-8 (2014).
    Article  Google Scholar 

    107.
    Goldsworthy, S. D. et al. Trophodynamics of the eastern Great Australian Bight ecosystem: Ecological change associated with the growth of Australia’s largest fishery. Ecol. Model. 255, 38–57. https://doi.org/10.1016/j.ecolmodel.2013.01.006 (2013).
    Article  Google Scholar 

    108.
    Watson, R. A. et al. Ecosystem model of Tasmanian waters explores impacts of climate-change induced changes in primary productivity. Ecol. Model. 264, 115–129. https://doi.org/10.1016/j.ecolmodel.2012.05.008 (2013).
    Article  Google Scholar 

    109.
    Grose, M., Timbal, B., Wilson, L., Bathols, J. & Kent, D. The subtropical ridge in CMIP5 models, and implications for projections of rainfall in southeast Australia. Aust. Meteorol. Oceanogr. J. 65, 90–106 (2015).
    Article  Google Scholar 

    110.
    Pante, E. & Simon-Bouhet, B. marmap: A Package for importing, plotting and analyzing bathymetric and topographic data in R. PLoS One 8(9), e73051. https://doi.org/10.1371/journal.pone.0073051 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    111.
    Kelley, D. & Richards, C. oce: Analysis of Oceanographic Data. R package version 1.1-1. https://CRAN.R-project.org/package=oce (2019).

    112.
    Kelley, D. ocedata: Oceanographic Data Sets for ‘oce’ Package. R package version 0.1.5. https://CRAN.R-project.org/package=ocedata (2018).

    113.
    Adobe Inc. Adobe Illustrator. https://adobe.com/products/illustrator. (2019). More

  • in

    Large seasonal and spatial variation in nano- and microphytoplankton diversity along a Baltic Sea—North Sea salinity gradient

    1.
    Simon, N., Cras, A. L., Foulon, E. & Lemée, R. Diversity and evolution of marine phytoplankton. C. R. Biol 332, 159–170 (2009).
    PubMed  Article  Google Scholar 
    2.
    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Diaz, S. et al. IPBES: Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services. IPBES secretariat, Bonn, Germany, 56 pp. (2019).

    4.
    IPCC. The Ocean and Cryosphere in a changing climate (2019).

    5.
    Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    6.
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Gamfeldt, L. et al. Marine biodiversity and ecosystem functioning: what´s known and what´s next? Oikos 124, 252–265 (2015).
    Article  Google Scholar 

    8.
    Kardol, P., Fanin, N. & Wardle, D. A. Long-term effects of species loss on community properties across contrasting ecosystems. Nature 557, 710–713 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Klawonn, I. et al. Cell-specific nitrogen- and carbon-fixation of cyanobacteria in a temperate marine system (Baltic Sea). Environ. Microb. 18(12), 4596–4609 (2016).
    CAS  Article  Google Scholar 

    10.
    Cloern, J. E., Jassby, A. D., Schraga, T. S., Nejad, E. & Martin, C. Ecosystem variability along the estuarine salinity gradient: examples from long-term study of San Francisco Bay. Limnol. Oceanogr. 62, S272–S291 (2017).
    ADS  CAS  Article  Google Scholar 

    11.
    Karlusich, J. J. P., Ibarbalz, F. M., & Bowler. C. Phytoplankton in the Tara Ocean. Annu. Rev. Mar. Sci. 12, 233–265 (2020).

    12.
    Lehtimäki, J., Moisander, P., Sivonen, K. & Kononen, K. Growth, nitrogen fixation, and nodularin production by two Baltic Sea cyanobacteria. Appl. Environ. Microb. 63(5), 1647–1656 (1997).
    Article  Google Scholar 

    13.
    Laamanen, M. J., Forsström, L. & Sivonen, K. Diversity of Aphanizomenon flos aquae (cyanobacterium) populations along a Baltic Sea salinity gradient. Appl. Environ. Microb. 68, 5296–5303 (2002).
    CAS  Article  Google Scholar 

    14.
    Mazur-Marzec, H., Żeglińska, L. & Pliński, M. The effect of salinity on the growth, toxin production, and morphology of Nodularia spumigena isolated from Gulf of Gdańsk, southern Baltic Sea. J. Appl. Phycol. 17, 171–179 (2005).
    CAS  Article  Google Scholar 

    15.
    Teikari, J. E. et al. Insight into the genome and brackish water adaptation strategies of toxic and bloom-forming Baltic Sea Dolichospermum sp. UHCC 0315. Sci. Rep. 9, 4888 (2019).

    16.
    Logares, R. et al. Infrequent marine–freshwater transitions in the microbial world. Trends Microbiol. 17, 414–422 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Snoeijs-Leijonmalm, P. Patterns of biodiversity. In Biological Oceanography of the Baltic Sea (eds Snoeijs-Leijonmalm, P. et al.) 123–191 (Springer, Dordrecht, 2017).
    Google Scholar 

    18.
    Olli, K., Ptacnik, R., Klais, R. & Tamminen, T. Phytoplankton species richness along coastal and estuarine salinity continua. Am. Nat. 194, 2 (2019).
    Article  Google Scholar 

    19.
    Frenken, T. et al. Warming accelerates termination of a phytoplankton spring bloom by fungal parasites. Glob. Change Biol. 22, 299–309 (2016).
    ADS  Article  Google Scholar 

    20.
    Romo, S. & Villena, M-J. Phytoplankton strategies and diversity under different nutrient levels and planktivorous fish densities in a shallow Mediterranean lake. J. Plankton Res. 27, 1273–1286 (2005).

    21.
    Gasiunaite, Z. R. et al. Seasonality of coastal phytoplankton in the Baltic Sea: Influence of salinity and eutrophication. Est. Coast Shelf S. 65, 239–252 (2005).
    Article  Google Scholar 

    22.
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. R version 3.5.1. https://www.R-project.org/ (2018).

    23.
    Rodhe, J. On the dynamics of the large-scale circulation of Skagerrak. J. Sea Res. 35, 9–21 (1996).
    ADS  Google Scholar 

    24.
    Dutkiewicz, S. et al. Dimensions of marine phytoplankton diversity. Biogeosci. 17, 609–634 (2020).
    ADS  Article  Google Scholar 

    25.
    Olofsson, M., Suikkanen, S., Kobos, J., Wasmund, N. & Karlson, B. Basin-specific changes in filamentous cyanobacteria community composition across four decades in the Baltic Sea. Harm. Alg. 91, 101685 (2020).
    CAS  Article  Google Scholar 

    26.
    Andersson, A., Höglander, H., Karlsson, C. & Huseby, S. Key role of phosphorus and nitrogen in regulating cyanoacterial community composition in the northern Baltic Sea. Estuar. Coast Shelf S. 164, 161–171 (2015).
    CAS  Article  Google Scholar 

    27.
    Olofsson, M. et al. Nitrate and ammonium fluxes to diatoms and dinoflagellates at a single cell level in mixed field communities in the sea. Sci. Rep. 9, 1424 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    28.
    Adler, PB.. et al. Productivity is a poor predictor of plant species richness. Science 333: 1750–1753 (2011).

    29.
    Irigoien, J., Huisman, R. & Harris, P. Global biodiversity patterns of marine phytoplankton and zooplankton. Nature 429, 863–867 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    30.
    Vallina, S. M. et al. Global relationship between phytoplankton diversity and productivity in the ocean. Nat. Comms. 5, 4299 (2011).
    ADS  Article  CAS  Google Scholar 

    31.
    Righetti, D., Vogt, M., Gruber, N., Psomas, A. & Zimmermann, N. E. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci. Adv. 5, eaau6253 (2019).

    32.
    Vidal, T., Calado, A. J., Moita, M. T. & Cunha, M. R. Phytoplankton dynamics in relation to seasonal variability and upwelling and relaxation patterns at the mouth of Ria de Aveiro (West Iberian Margin) over a four-year period. PLoS ONE 12, e0177237 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    33.
    Shimadzu, H., Dornelas, M., Henderson, P. A. & Magurran, A. E. Diversity is maintained by seasonal variation in species abundance. BMC Biol. 11, 98 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    34.
    Ryther, J. & Sanders, J. Experimental evidence of zooplankton control of the species composition and size distribution of marine phytoplankton. Mar. Ecol. Prog. Ser. 3, 279–283 (1980).
    ADS  Article  Google Scholar 

    35.
    Thomas, K. & Nielsen, T. G. Regulation of zooplankton biomass and production in a temperate, coastal ecosystem. 1. Copepods. Limnol. Oceanogr. 39, 493–507 (1994).
    ADS  Article  Google Scholar 

    36.
    Amin, S. A., Parker, M. S. & Armbrust, E. V. Interactions between diatoms and bacteria. Microbiol. Mol. Biol. R. 76, 667–684 (2012).
    CAS  Article  Google Scholar 

    37.
    Durham, B. P. et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc. Nat. Acad. Sci. USA 112, 453–457 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Cirri, E. & Pohnert, G. Algae bacteria interactions that balance the planktonic microbiome. New Phytol. 223, 1–7 (2019).
    Article  Google Scholar 

    39.
    Bunse, C. et al. High frequency multi-year variability in Baltic Sea Microbial plankton stocks and activities. Front. Mar. Sci. 9, 3296 (2019).
    Google Scholar 

    40.
    Gallego, I., Venail, P. & Ibelings, B. W. Size differences predict niche and relative fitness differences between phytoplankton species but not their coexistence. ISME J. 13, 1133–1143 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Søndergaard, M., Jensen, L. M. & Ærtebjerg, G. Picoalgae in danish coastal waters during summer stratification. Mar. Ecol. Prog. Ser. 79, 139–149 (1992).
    ADS  Article  Google Scholar 

    42.
    Jochem, F. Distribution and importance of autotrophic ultraplankton in a boreal inshore area (Kiel Bight, Western Baltic). Mar. Ecol. Prog. Ser. 53, 153–168 (1989).
    ADS  Article  Google Scholar 

    43.
    Hu, Y. O. O., Karlson, B., Charvet, S. & Andersson, A. F. Diversity of pico- to mesoplankton along the 2000 km salinity gradient of the Baltic Sea. Front. Microbiol. 7, 17 (2016).
    Google Scholar 

    44.
    Gran-Stadniczeñko, S. et al. Protist diversity and seasonal dynamics in skagerrak plankton communities as revealed by metabarcoding and microscopy. J. Eukaryot. Microbiol. 66, 494–513 (2019).
    PubMed  Article  CAS  Google Scholar 

    45.
    Utermöhl, H. Zur Vervollkomnung der quantitativen Phytoplankton-Methodik. Mitt. Int. Ver. Theor. Angew. Limnol. 9, 1–38 (1958).
    Google Scholar 

    46.
    Olenina, I. et al. Biovolumes and size-classes of phytoplankton in the Baltic Sea HELCOM Balt. Sea Environ. Proc. 106, 144 (2006).
    Google Scholar 

    47.
    Menden-Deuer, S. & Lessard, E. J. Carbon to volume relationship for dinoflagellates, diatoms and other protest plankton. Limnol. Oceanogr. 45, 569–579 (2000).
    ADS  CAS  Article  Google Scholar 

    48.
    HELCOM 2017. Manual for marine monitoring in the COMBINE Programme of HELCOM. Part B General guidelines on quality assurance for monitoring in the Baltic Sea. Annex B-9 Technical note on the determination of nutrients.

    49.
    Karlson, B. et al. Plankton toolbox—open source software making it easier to work with plankton data. In: MacKenzie AL (ed). Proceedings of 16th International Conference on Harmful Algae. Cawthron Institute, Nelson, New Zealand and the International Society for the Study of Harmful Algae (ISSHA), pp. 194–197 (2016).

    50.
    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).
    Article  Google Scholar 

    51.
    Chao, A., Chiu, C. H. & Jost, L. Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through Hill numbers. Annu. Rev. Ecol. Evol. S. 45, 297–324 (2014).
    Article  Google Scholar 

    52.
    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).
    Article  Google Scholar 

    53.
    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4(2), 133–142 (2012).
    Article  Google Scholar 

    54.
    Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ. 6, e4794 (2018).
    PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Changing carbon-to-nitrogen ratios of organic-matter export under ocean acidification

    1.
    Kwon, E. Y., Primeau, F. & Sarmiento, J. L. The impact of remineralization depth on the air–sea carbon balance. Nat. Geosci. 2, 630–635 (2009).
    CAS  Article  Google Scholar 
    2.
    Volk, T. & Hoffert, M. I. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present Vol. 32 (eds Sundquist, E. T. & Broeker, W. S.) 99–110 (American Geophysical Union, 1985).

    3.
    Passow, U. & Carlson, C. A. The biological pump in a high CO2 world. Mar. Ecol. Prog. Ser. 470, 249–271 (2012).
    CAS  Article  Google Scholar 

    4.
    Martiny, A. C. et al. Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nat. Geosci. 6, 279–283 (2013).
    CAS  Article  Google Scholar 

    5.
    DeVries, T. New directions for ocean nutrients. Nat. Geosci. 11, 15–16 (2018).
    CAS  Article  Google Scholar 

    6.
    Redfield, A. in James Johnstone Memorial Volume (ed. Daniel, R. J.) 177–192 (University Press of Liverpool, 1934).

    7.
    Kroeker, K. J., Kordas, R. L., Crim, R. N. & Singh, G. G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13, 1419–1434 (2010).
    Article  Google Scholar 

    8.
    Riebesell, U. & Tortell, P. D. in Ocean Acidification (eds Gattuso, J. P. & Hansson, L.) 99–121 (Oxford Univ. Press, 2011).

    9.
    Boyd, P. W. & Newton, P. P. Does planktonic community structure determine downward particulate organic carbon flux in different oceanic provinces? Deep Sea Res. I 46, 63–91 (1999).
    CAS  Article  Google Scholar 

    10.
    Stange, P. et al. Ocean acidification-induced restructuring of the plankton food web can influence the degradation of sinking particles. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00140 (2018).

    11.
    Engel, A. et al. Impact of CO2 enrichment on organic matter dynamics during nutrient induced coastal phytoplankton blooms. J. Plankton Res. 36, 641–657 (2014).
    CAS  Article  Google Scholar 

    12.
    Riebesell, U. et al. Technical note: a mobile sea-going mesocosm system—new opportunities for ocean change research. Biogeosciences 10, 1835–1847 (2013).
    Article  Google Scholar 

    13.
    Sswat, M. et al. Food web changes under ocean acidification promote herring larvae survival. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-018-0514-6 (2018).

    14.
    Riebesell, U. et al. Enhanced biological carbon consumption in a high CO2 ocean. Nature 450, 545–548 (2007).
    CAS  Article  Google Scholar 

    15.
    Finkel, Z. V. et al. Phytoplankton in a changing world: cell size and elemental stoichiometry. J. Plankton Res. 32, 119–137 (2010).
    CAS  Article  Google Scholar 

    16.
    van de Waal, D. B., Verschoor, A. M., Verspagen, J. M. H., van Donk, E. & Huisman, J. Climate-driven changes in the ecological stoichiometry of aquatic ecosystems. Front. Ecol. Environ. 8, 145–152 (2010).
    Article  Google Scholar 

    17.
    Tagliabue, A., Bopp, L. & Gehlen, M. The response of marine carbon and nutrient cycles to ocean acidification: large uncertainties related to phytoplankton physiological assumptions. Glob. Biogeochem. Cycle https://doi.org/10.1029/2010gb003929 (2011).

    18.
    Thomas, H., Ittekkot, V., Osterroht, C. & Schneider, B. Preferential recycling of nutrients—the ocean’s way to increase new production and to pass nutrient limitation? Limnol. Oceanogr. 44, 1999–2004 (1999).
    CAS  Article  Google Scholar 

    19.
    Schneider, B., Schlitzer, R., Fischer, G. & Nothig, E. M. Depth-dependent elemental compositions of particulate organic matter (POM) in the ocean. Glob. Biogeochem. Cycle https://doi.org/10.1029/2002gb001871 (2003).

    20.
    Cripps, G., Flynn, K. J. & Lindeque, P. K. Ocean acidification affects the phyto-zoo plankton trophic transfer efficiency. PLoS ONE https://doi.org/10.1371/journal.pone.0151739 (2016).

    21.
    Thor, P. & Oliva, E. O. Ocean acidification elicits different energetic responses in an Arctic and a boreal population of the copepod Pseudocalanus acuspes. Mar. Biol. 162, 799–807 (2015).
    CAS  Article  Google Scholar 

    22.
    Endres, S., Galgani, L., Riebesell, U., Schulz, K. G. & Engel, A. Stimulated bacterial growth under elevated (p_{{rm{CO}}_{2}}): results from an off-shore mesocosm study. PLoS ONE 9, e99228 (2014).
    Article  Google Scholar 

    23.
    Piontek, J. et al. Response of bacterioplankton activity in an Arctic fjord system to elevated (p_{{rm{CO}}_{2}}): results from a mesocosm perturbation study. Biogeosciences 10, 297–314 (2013).
    Article  Google Scholar 

    24.
    Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).
    Article  Google Scholar 

    25.
    Taucher, J. & Oschlies, A. Can we predict the direction of marine primary production change under global warming? Geophys. Res. Lett. https://doi.org/10.1029/2010gl045934 (2011).

    26.
    Schneider, B., Engel, A. & Schlitzer, R. Effects of depth- and CO2-dependent C:N ratios of particulate organic matter (POM) on the marine carbon cycle. Glob. Biogeochem. Cycle https://doi.org/10.1029/2003gb002184 (2004).

    27.
    Oschlies, A., Schulz, K. G., Riebesell, U. & Schmittner, A. Simulated 21st century’s increase in oceanic suboxia by CO2-enhanced biotic carbon export. Glob. Biogeochem. Cycle https://doi.org/10.1029/2007gb003147 (2008).

    28.
    Broecker, W. S. & Henderson, G. M. The sequence of events surrounding Termination II and their implications for the cause of glacial–interglacial CO2 changes. Paleoceanography 13, 352–364 (1998).
    Article  Google Scholar 

    29.
    Broecker, W. S. Ocean chemistry during glacial time. Geochim. Cosmochim. Acta 46, 1689–1705 (1982).
    CAS  Article  Google Scholar 

    30.
    Boxhammer, T., Bach, L. T., Czerny, J. & Riebesell, U. Technical note: sampling and processing of mesocosm sediment trap material for quantitative biogeochemical analysis. Biogeosciences 13, 2849–2858 (2016).
    Article  Google Scholar 

    31.
    Sharp, J. H. Improved analysis for “particulate” organic carbon and nitrogen from seawater. Limnol. Oceanogr. 19, 984–989 (1974).
    CAS  Article  Google Scholar 

    32.
    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

    33.
    Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).
    Article  Google Scholar 

    34.
    Schartau, M., Landry, M. R. & Armstrong, R. A. Density estimation of plankton size spectra: a reanalysis of IronEx II data. J. Plankton Res. 32, 1167–1184 (2010).
    Article  Google Scholar 

    35.
    Mackey, M. D., Mackey, D. J., Higgins, H. W. & Wright, S. W. CHEMTAX—a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar. Ecol. Prog. Ser. 144, 265–283 (1996).
    CAS  Article  Google Scholar 

    36.
    Utermöhl, V. H. Neue Wege in der quantitativen Erfassung des Planktons. (Mit besondere Beriicksichtigung des Ultraplanktons). Verh. Internat. Verein. Theor. Angew. Limnol. 5, 567–595 (1931).
    Google Scholar 

    37.
    Bach, L. T., Riebesell, U. & Schulz, K. G. Distinguishing between the effects of ocean acidification and ocean carbonation in the coccolithophore Emiliania huxleyi. Limnol. Oceanogr. 56, 2040–2050 (2011).
    CAS  Article  Google Scholar 

    38.
    Stange et al. Quantifying the time lag between organic matter production and export in the surface ocean: implications for estimates of export efficiency. Geophys. Res. Lett. 44, 268–276 (2017).
    CAS  Article  Google Scholar  More

  • in

    The network structure and eco-evolutionary dynamics of CRISPR-induced immune diversification

    1.
    Labrie, S. J., Samson, J. E. & Moineau, S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8, 317–327 (2010).
    CAS  PubMed  Google Scholar 
    2.
    van Houte, S., Buckling, A. & Westra, E. R. Evolutionary ecology of prokaryotic immune mechanisms. Microbiol. Mol. Biol. Rev. 80, 745–763 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    3.
    Mayer, A., Mora, T., Rivoire, O. & Walczak, A. M. Diversity of immune strategies explained by adaptation to pathogen statistics. Proc. Natl Acad. Sci. USA 113, 8630–8635 (2016).
    CAS  PubMed  Google Scholar 

    4.
    Chevallereau, A., Meaden, S., van Houte, S., Westra, E. R. & Rollie, C. The effect of bacterial mutation rate on the evolution of CRISPR–Cas adaptive immunity. Philos. Trans. R. Soc. Lond. B 374, 20180094 (2019).
    CAS  Google Scholar 

    5.
    Gurney, J., Pleška, M. & Levin, B. R. Why put up with immunity when there is resistance: an excursion into the population and evolutionary dynamics of restriction–modification and CRISPR–Cas. Philos. Trans. R. Soc. Lond. B 374, 20180096 (2019).
    CAS  Google Scholar 

    6.
    Weitz, J. S. et al. Phage–bacteria infection networks. Trends Microbiol. 21, 82–91 (2013).
    CAS  PubMed  Google Scholar 

    7.
    Gurney, J. et al. Network structure and local adaptation in co-evolving bacteria-phage interactions. Mol. Ecol. 26, 1764–1777 (2017).
    CAS  PubMed  Google Scholar 

    8.
    Fortuna, M. A. et al. Coevolutionary dynamics shape the structure of bacteria-phage infection networks. Evolution 73, 1001–1011 (2019).
    PubMed  Google Scholar 

    9.
    Krasnov, B. R. et al. Phylogenetic signal in module composition and species connectivity in compartmentalized host-parasite networks. Am. Nat. 179, 501–511 (2012).
    PubMed  Google Scholar 

    10.
    Pilosof, S. et al. Host–parasite network structure is associated with community-level immunogenetic diversity. Nat. Commun. 5, 5172 (2014).
    CAS  PubMed  Google Scholar 

    11.
    Dallas, T. & Cornelius, E. Co-extinction in a host-parasite network: identifying key hosts for network stability. Sci. Rep. 5, 13185 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    12.
    Pilosof, S., Morand, S., Krasnov, B. R. & Nunn, C. L. Potential parasite transmission in multi-host networks based on parasite sharing. PLoS ONE 10, e0117909 (2015).
    PubMed  PubMed Central  Google Scholar 

    13.
    Vázquez, D. P., Poulin, R., Krasnov, B. R. & Shenbrot, G. I. Species abundance and the distribution of specialization in host–parasite interaction networks. J. Anim. Ecol. 74, 946–955 (2005).
    Google Scholar 

    14.
    Fortuna, M. A. et al. Nestedness versus modularity in ecological networks: two sides of the same coin? J. Anim. Ecol. 79, 811–817 (2010).
    PubMed  Google Scholar 

    15.
    Flores, C. O., Meyer, J. R., Valverde, S., Farr, L. & Weitz, J. S. Statistical structure of host–phage interactions. Proc. Natl Acad. Sci. USA 108, E288–E297 (2011).
    CAS  PubMed  Google Scholar 

    16.
    Beckett, S. J. & Williams, H. T. P. Coevolutionary diversification creates nested-modular structure in phage–bacteria interaction networks. Interface Focus 3, 20130033 (2013).
    PubMed  PubMed Central  Google Scholar 

    17.
    He, Q. et al. Networks of genetic similarity reveal non-neutral processes shape strain structure in Plasmodium falciparum. Nat. Commun. 9, 1817 (2018).
    PubMed  PubMed Central  Google Scholar 

    18.
    Pilosof, S. et al. Competition for hosts modulates vast antigenic diversity to generate persistent strain structure in plasmodium falciparum. PLoS Biol. 17, e3000336 (2019).
    PubMed  PubMed Central  Google Scholar 

    19.
    van der Oost, J., Westra, E. R., Jackson, R. N. & Wiedenheft, B. Unravelling the structural and mechanistic basis of CRISPR–Cas systems. Nat. Rev. Microbiol. 12, 479–492 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    20.
    Childs, L. M., Held, N. L., Young, M. J., Whitaker, R. J. & Weitz, J. S. Multiscale model of CRISPR-induced coevolutionary dynamics: diversification at the interface of Lamarck and Darwin. Evolution 66, 2015–2029 (2012).
    PubMed  PubMed Central  Google Scholar 

    21.
    Paez-Espino, D. et al. CRISPR immunity drives rapid phage genome evolution in Streptococcus thermophilus. mBio 6, e00262-15 (2015).
    PubMed  PubMed Central  Google Scholar 

    22.
    van Houte, S. et al. The diversity-generating benefits of a prokaryotic adaptive immune system. Nature 532, 385–388 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Daly, R. A. et al. Viruses control dominant bacteria colonizing the terrestrial deep biosphere after hydraulic fracturing. Nat. Microbiol. 4, 352–361 (2019).
    CAS  PubMed  Google Scholar 

    24.
    Pauly, M. D., Bautista, M. A., Black, J. A. & Whitaker, R. J. Diversified local CRISPR–Cas immunity to viruses of Sulfolobus islandicus. Philos. Trans. R. Soc. Lond. B 374, 20180093 (2019).
    CAS  Google Scholar 

    25.
    Childs, L. M., England, W. E., Young, M. J., Weitz, J. S. & Whitaker, R. J. CRISPR-induced distributed immunity in microbial populations. PLoS ONE 9, e101710 (2014).
    PubMed  PubMed Central  Google Scholar 

    26.
    Almeida-Neto, M. & Ulrich, W. A straightforward computational approach for measuring nestedness using quantitative matrices. Environ. Model. Softw. 26, 173–178 (2011).
    Google Scholar 

    27.
    Held, N. L., Herrera, A., Cadillo-Quiroz, H. & Whitaker, R. J. CRISPR associated diversity within a population of Sulfolobus islandicus. PLoS ONE 5, e12988 (2010).
    PubMed  PubMed Central  Google Scholar 

    28.
    England, W. E., Kim, T. & Whitaker, R. J. Metapopulation structure of CRISPR–Cas immunity in Pseudomonas aeruginosa and its viruses. mSystems 3, e00075-18 (2018).
    PubMed  PubMed Central  Google Scholar 

    29.
    Marvig, R. L., Sommer, L. M., Molin, S. & Johansen, H. K. Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis. Nat. Genet. 47, 57–64 (2015).
    CAS  PubMed  Google Scholar 

    30.
    Pirnay, J.-P. et al. Pseudomonas aeruginosa population structure revisited. PLoS ONE 4, e7740 (2009).
    PubMed  PubMed Central  Google Scholar 

    31.
    Hall, A. R., Scanlan, P. D., Morgan, A. D. & Buckling, A. Host–parasite coevolutionary arms races give way to fluctuating selection. Ecol. Lett. 14, 635–642 (2011).
    PubMed  Google Scholar 

    32.
    Levin, B. R., Moineau, S., Bushman, M. & Barrangou, R. The population and evolutionary dynamics of phage and bacteria with CRISPR-mediated immunity. PLoS Genet. 9, e1003312 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    33.
    Koskella, B. & Brockhurst, M. A. Bacteria–phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol. Rev. 38, 916–931 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    34.
    Weissman, J. L. et al. Immune loss as a driver of coexistence during host-phage coevolution. ISME J. 12, 585–597 (2018).
    PubMed  PubMed Central  Google Scholar 

    35.
    Braga, L. P. P., Soucy, S. M., Amgarten, D. E., da Silva, A. M. & Setubal, J. C. Bacterial diversification in the light of the interactions with phages: the genetic symbionts and their role in ecological speciation. Front. Ecol. Evol. 6, 6 (2018).
    Google Scholar 

    36.
    Fontaine, C. et al. The ecological and evolutionary implications of merging different types of networks. Ecol. Lett. 14, 1170–1181 (2011).
    PubMed  Google Scholar 

    37.
    Gupta, S. & Day, K. P. A strain theory of malaria transmission. Parasitol. Today 10, 476–481 (1994).
    CAS  PubMed  Google Scholar 

    38.
    Buckee, C. O., Recker, M., Watkins, E. R. & Gupta, S. Role of stochastic processes in maintaining discrete strain structure in antigenically diverse pathogen populations. Proc. Natl Acad. Sci. USA 108, 15504–15509 (2011).
    CAS  PubMed  Google Scholar 

    39.
    Artzy-Randrup, Y. et al. Population structuring of multi-copy, antigen-encoding genes in Plasmodium falciparum. eLife 1, e00093 (2012).
    PubMed  PubMed Central  Google Scholar 

    40.
    Zinder, D., Bedford, T., Gupta, S. & Pascual, M. The roles of competition and mutation in shaping antigenic and genetic diversity in influenza. PLoS Pathog. 9, e1003104 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Song, C., Rohr, R. P. & Saavedra, S. Why are some plant–pollinator networks more nested than others? J. Anim. Ecol. 86, 1417–1424 (2017).
    PubMed  Google Scholar 

    42.
    Chabas, H. et al. Evolutionary emergence of infectious diseases in heterogeneous host populations. PLoS Biol. 16, e2006738 (2018).
    PubMed  PubMed Central  Google Scholar 

    43.
    Iranzo, J., Lobkovsky, A. E., Wolf, Y. I. & Koonin, E. V. Evolutionary dynamics of the prokaryotic adaptive immunity system CRISPR–Cas in an explicit ecological context. J. Bacteriol. 195, 3834–3844 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    44.
    Staniczenko, P. P. A., Kopp, J. C. & Allesina, S. The ghost of nestedness in ecological networks. Nat. Commun. 4, 1391 (2013).
    PubMed  Google Scholar 

    45.
    Rosvall, M. & Bergstrom, C. T. Maps of random walks on complex networks reveal community structure. Proc. Natl Acad. Sci. USA 105, 1118–1123 (2008).
    CAS  PubMed  Google Scholar 

    46.
    Rosvall, M., Axelsson, D. & Bergstrom, C. T. The map equation. Eur. Phys. J. Spec. Top. 178, 13–23 (2010).
    Google Scholar 

    47.
    Farage, C., Edler, D., Eklöf, A., Rosvall, M. & Pilosof, S. A dynamical perspective to community detection in ecological networks. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/2020.04.14.040519v1 (2020).

    48.
    Newman, M. E. J. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004).
    CAS  Google Scholar 

    49.
    Lancichinetti, A. & Fortunato, S. Community detection algorithms: a comparative analysis. Phys. Rev. E 80, 056117 (2009).
    Google Scholar 

    50.
    Campbell, K. M. et al. Sulfolobus islandicus meta-populations in Yellowstone National Park hot springs. Environ. Microbiol. 19, 2334–2347 (2017).
    PubMed  Google Scholar 

    51.
    Bautista, M. A., Black, J. A., Youngblut, N. D. & Whitaker, R. J. Differentiation and structure in Sulfolobus islandicus rod-shaped virus populations. Viruses 9, 120 (2017).
    PubMed Central  Google Scholar  More

  • in

    Integration of time-series meta-omics data reveals how microbial ecosystems respond to disturbance

    A time-resolved meta-omics dataset
    To characterize the niche space of lipid-accumulating populations as well as resistance and resilience of the microbial community, we sampled a municipal BWWTP weekly over a 14-months period (from 2011-03-21 to 2012-05-03). Additionally, two preliminary time-points outside of the time-series were included13,26. Samples were split into intracellular and extracellular fractions, followed by concomitant biomolecular extractions27 and high-throughput measurements (Fig. 1). MG, MT, and MP data were obtained on the intracellular fractions and MM data was generated on both the intracellular and extracellular fractions.
    Fig. 1: Overview of the study design.

    Samples are derived from in situ sampling of an anoxic tank of a municipal biological wastewater treatment plant. Metagenomic (MG), metatranscriptomic (MT), metaproteomic (MP), and meta-metabolomic (MM) data is generated. Physicochemical data is also collected. Additionally, MG and MT data is generated for ex situ experiments using biomass from the same system and fed with oleic acid under different oxic conditions to evaluate short-term responses to pulse disturbance. The time-series meta-omics data is integrated to define metagenome-assembled genomes (MAGs) over all time points. Representative MAGs (rMAGs) across time are selected for further analysis. The rMAGs’ functional potential is used to infer the fundamental niches. Abundance and activity data are derived from the functional omics and substrate usage is inferred per population. The variability of gene expression is used to assess the phenotypic plasticity of the individual populations.

    Full size image

    After quality filtering, the per-sample averages of MG and MT reads were 5.3 × 107 (±7.7 × 106 s.d.) and 3.3 × 107 reads (±1.2 × 107 s.d.), respectively (Supplementary Data 1). We performed sample-specific genome assemblies (average of 4.1 × 105 contigs per sample) followed by binning28 yielding a total of 1364 MAGs passing our quality filtering criteria (see “Methods” section). To track the abundance, gene expression, and activity of individual microbial populations over time, we dereplicated29 the MAGs across samples to generate 220 representative MAGs (rMAGs). From these, we further selected those with the highest completeness resulting in 78 rMAGs (76.2% mean completeness, 2.2% mean contamination) (Supplementary Data 2). These genomes represent the major populations across the time-series, with an average mapping percentage of 26% ± 3% (s.d.) and 27% ± 3% (s.d.) of total MG reads and total MT reads per time-point, respectively, and are corroborated by a previous study based on 16S rRNA amplicon sequencing13. For the MP measurements, we obtained a per-sample average of 1.5 × 105 ± 8.2 × 103 (s.d.) MS2 spectra and a total of 7.6 × 106 MS2 spectra. Of 7.8 × 105 identified peptides, 3.3 × 105 (43%) could be matched to 2.1 × 105 predicted coding sequences of the 78 rMAGS. Per time-point, on average 1.5 × 104 ± 4.5 × 103 (s.d.) spectral matches, i.e., on average 94% of all rMAG-associated matches could be assigned to genes with predicted functions, i.e., assigned KEGG ortholog groups (KOs). To study the community-wide resource space and metabolite turnover, we measured metabolite levels by an untargeted approach using gas chromatography (GC) coupled with mass spectrometry (MS) (Supplementary Data 3). In total, 89% (58 of 65) of the identified metabolites could be linked to enzymes encoded by the rMAGs. We estimated resource uptake by calculating intracellular vs. extracellular metabolite ratios for 42 metabolites detected in both fractions (Supplementary Data 3). Additionally, six abiotic parameters were measured during sampling, as well as 34 parameters recorded continuously as part of the BWWTP online monitoring (Supplementary Data 4).
    We also generated MG and MT data for the ex situ experiments. These simulated the fluctuating conditions within the BWWTP, namely the short-term response to pulse disturbances of oleic acid influx under shifting dissolved oxygen conditions. We sequenced DNA and RNA fractions obtained at 0, 5, and 8 h after addition of oleic acid, yielding on average 1.02 × 108 MG and 9.33 × 107 MT reads per sample. The increased sequencing depth compared to the in situ time-series was important to obtain a fine-grained view on short-term responses to oleic acid. Mapping of the sequencing reads to the selected set of rMAGs revealed mapping percentages comparable to the in situ time-series (mean: 21% ± s.d.: 1% for both MG reads and MT reads).
    Overall, our meta-omics dataset comprehensively describes mixed microbial communities underlying lipid-accumulation processes in BWWTPs, and in particular their functional potential, composition, activity, as well as substrate availability and assimilation.
    Distinct niche types
    To resolve the fundamental niches of the pertinent bacterial populations through their functional genomic potential, we assigned KOs to the rMAGs’ predicted coding sequences. We hypothesized that individual populations would form clusters based on the similarity/dissimilarity of their functional potential. We found four distinct clusters of rMAGs by projecting pairwise Jaccard distances of KO presence (Fig. 2a and Supplementary Fig. 1). These functional clusters (FunCs) represent differences of known, overall metabolic capabilities of the rMAGs and reflect their fundamental niches. FunC-1 consisted of Actinobacteria, and FunC-2 was primarily comprised of members of the Bacteroidetes phylum, mainly of the Sphingobacteriia class (Fig. 2a). FunC-3 contained Betaproteobacteria and Gammaproteobacteria whereas FunC-4 appeared more diverse, containing Spirochaetia as a subcluster, Deltaproteobacteria, and taxonomically unclassified rMAGs. We found mash-based genomic distance30 to be strongly linked to FunC assignment (PROCRUSTES sum of squares: 0.399, correlation 0.775, PROTEST p-value 0.001, Supplementary Fig. 2a), highlighting that phylogeny is a strong determinant for FunC assignment. However, some distantly linked subgroups were defined by their shared functional complement, i.e., assigned to a different FunC than their neighbors in a corresponding phylogenetic tree (Supplementary Fig. 2b). This shows that KO profile similarity-based analyses provide important information in addition to phylogeny-based approaches31.
    Fig. 2: Fundamental niche types.

    a Multidimensional scaling (MDS) of Jaccard distances for the functional repertoire (presence of KEGG ortholog groups [KOs]) for each rMAG. Ellipses containing 95% (inner) or 99% (outer) of cluster-assigned data points are shown resulting in four distinct functional clusters (FunCs). Colors indicate the class-level taxonomy of the rMAGs. b Numbers of shared and unique KO assignments between the FunCs. Colored bars show the total number of nonredundant KO assignments within the individual FunCs. Overlaps between different sets of FunCs and their unique KOs are represented by the central black bars with the points below defining the members of the respective sets. c Presence of key functions within the four FunCs. Bars next to metabolic conversions show the proportion of rMAGs encoding characteristic enzymes for the respective reaction or pathway adjusted for mean rMAG completeness. Pathways ubiquitously present across rMAGs are shown in gray color. Source data are provided as a Source Data file. red. reductase, GLN syn. glutamine synthetase, GLU dhg. glutmatate dehydrogenase, glyox. cyc. glyoxylate cycle, ethylm.-CoA ethylmalonyl-CoA pathway, PHA depolym. PHA depolymerase.

    Full size image

    A total of 1857 KOs was shared between all FunCs and we found that FunCs 1, 3, and 4 contained comparable numbers of nonredundant KOs with 4276, 4177, and 4129 KOs, respectively (Fig. 2b). FunC-2 exhibited a reduced number of KOs (3550), however it also represented the least taxonomically diverse FunC as it almost exclusively consisted of Haliscomenobacter spp. and Chitinophaga spp. (Supplementary Data 2). We tested for the molecular functions that were significantly enriched in individual FunCs and found, among others, functions related to lipid metabolism for FunC-1, amino sugar, and nucleotide sugar metabolism for FunC-2, and biofilm and secretion systems for FunC-3 to be enriched (Fig. 2c and Supplementary Data 5; one-sided Fisher′s exact test, adjusted p-values < 0.05). While lipid-accumulating organisms hold great potential for the recovery of high-value molecules5, interactions between these organisms as well as the community at large are understudied in situ. We found that diacylglycerol O-acyltransferase (DGAT/WS), which is involved in lipid storage32, was encoded in 23 out of 24 rMAGs of FunC-1, pointing to the importance of TAG accumulation in this cluster. Most FunC-3 members also encoded DGAT/WS (14 of 19). Moreover, PHA synthase was enriched in this cluster (15 of 19). All rMAGs encoded lipases, functions involved in fatty acid synthesis, or beta-oxidation. However, several acyl-CoA and acyl-ACP dehydrogenases were overrepresented in FunC-1 and FunC-3. Additionally, acetyl-CoA acetyltransferases involved in the degradation and biosynthesis of fatty acids were prevalent throughout all FunCs. The enrichment in FunC-1 and FunC-3 for genes involved in lipid accumulation are consistent with previous metabolic characterizations, with FunC-1 consisting mainly of Actinobacteria for which TAG accumulation has been described33. FunC-3 contains Betaproteobacteria and Gammaproteobacteria that have been characterized as TAG, WE, and/or PHA accumulators, e.g., Thauera spp., Albidiferax spp., or Acinetobacter spp.33,34. Importantly, we observed a difference between these FunCs in the utilization of acetyl-CoA. Specifically, FunC-1 members showed an enrichment in functions related to the ethylmalonyl-CoA pathway (crotonyl-CoA reductase and enoyl ACP reductase), while FunC-3 members encoded key enzymes involved in the glyoxylate cycle (malate synthase and isocitrate lyase). We further determined specific functional enrichment for the four FunCs in relation to the breakdown of other macromolecules (including CAZymes and proteases), nitrogen cycling, stress response, and motility (Supplementary Data 5). The discriminating functions point towards interdependencies between the different FunCs, e.g., in terms of denitrification (Fig. 2c). We found that the separation into taxonomically consistent groups is accompanied by specific conserved functions, e.g., strong enrichment in FunC-1 for WhiB transcriptional regulators characteristic of the Actinobacteria35. Overall, we observed a widely distributed set of core functions in foaming sludge microbiomes and identified groups of populations characterized by distinct functional potential in lipid metabolism, amino sugar, and nucleotide sugar metabolism as well as biofilm and secretion systems. Community dynamics and stability To understand whether population dynamics can be related to substrate availability and other abiotic factors36, we used MG depth-of-coverage to infer rMAG population abundance across the time-series. We computed distances between the rMAGs’ abundance profiles (based on their pairwise correlations) and found that the dynamics of rMAGs can be partially explained by the FunC assignment (PERMANOVA R2 = 0.12, Pr > F = 0.002; no significant difference in dispersion; Supplementary Fig. 3), thereby linking FunC membership to temporal abundance shifts. The most abundant taxa (Supplementary Data 2) included Candidatus Microthrix (26.0% relative abundance across the time-series; referred to as Microthrix in the remaining text), Acinetobacter (8.1%), Haliscomenobacter (8.0%), Intrasporangium (7.2%), Leptospira (6.3%), Albidiferax (5.7%), and Dechloromonas (2.4%) (Fig. 3a). Several of the recovered rMAGs belonged to filamentous taxa according to the MiDAS field guide database for organisms in activated sludge37, such as the highly abundant Microthrix, and Haliscomenobacter, as well as the less abundant Anaerolinea (1.1 %) and Gordonia (0.2 %).
    Fig. 3: Community structure and function dynamics.

    a, b Relative abundance and expression levels of recovered populations represented by rMAGs over time based on MG depth (a) and MT depth (b) of coverage, respectively, representing mapping percentages of MG [26% ± 3% (s.d.)] and MT [27% ± 3% (s.d.)]. The relative abundance of individual rMAGs is grouped based on genus-level taxonomic assignment with rMAGs of unresolved taxonomy grouped in “Other”. Recovered genera with mean abundance below 2% are summarized as a single group (light gray). c, d Ordination of Bray–Curtis dissimilarity of relative abundances, MG (c) and MT (d), of individual rMAGs constrained by selected abiotic factors (metabolite levels, metabolite-ratios, and physico-chemical parameters shown as black arrows with arrow lengths indicating environmental scores as predictors for each factor). Points are colored by month of sampling and point-shape reflects the year of sampling. Thin black lines connecting the points visualize the time course of sampling. Source data are provided as a Source Data file.

    Full size image

    Variations during the operation of BWWTPs occur largely due to changes in the influent wastewater composition and climatic conditions38. We observed gradual changes in the community structure with the seasons (Fig. 3a). In October 2011 (month seven of the timeseries), the community composition began to shift, with a markedly altered composition in late November 2011. This shift was characterized by spikes in the relative abundance of Leptospira (peak at 2011-11-23) and Acinetobacter (peak at 2011-11-29) (Fig. 3a), and co-occurred with a pronounced shift in substrates (Fig. 4 and Supplementary Fig. 4). The substrates included mainly nonpolar metabolites, including long-chain fatty acids (LCFAs) and glycerides, as well as polar metabolites mannose, glucose, disaccharides, ethanolamine, and putrescine. We found that the intersample distances of MG-based abundances could partially be explained by a subset of the abiotic factors (Fig. 3c). Summer samples were characterized by higher temperatures, phosphate levels and higher intracellular vs. extracellular oleic acid ratios. Higher extracellular mannose levels and a slight increase in conductivity marked the beginning of the autumn shift. During November, intracellular and extracellular levels for LCFAs increased, indicating a higher availability or turnover of LCFAs, but not necessarily an equivalent conversion to neutral storage lipids. In the subsequent winter time-points, substrate levels normalized and the community transitioned back to the predisturbance state.
    Fig. 4: Levels of metabolites and physico-chemical parameters.

    Z-score transformed metabolite intensities, metabolite ratios, and physico-chemical parameter levels over time are shown. Row annotations highlight classes of metabolites and parameters, measurement types (bnp: intracellular nonpolar metabolites, bp: intracellular polar m., pcparams: physico-chemical parameters, ratio: metabolite intrac./extrac. ratio, snp: extracellular nonpolar m., sp: extracellular polar m.), and the subtype or fraction of the measurement (manual: measured during sampling, online: measured during WWTP operation). Selected rows are shown (comprehensive heatmap shown in Supplementary Fig. 6). Source data are provided as a Source Data file.

    Full size image

    The dominance of Microthrix was re-established within approximately ten generations, given estimates for in situ growth rates of 0.12–0.3 growth cycles per day7,8. The stability39 of the individual rMAGs was heavily affected by the November shift (mean population stability: 1.43 ± 0.69 s.d.), compared to the stability when excluding the respective time-points (mean population stability: 2.39 ± 1.28 s.d.; 2011-11-02 to 2011-11-29; Supplementary Data 2). The observed population dynamics indicate that the community composition is resilient, i.e., recovers after pronounced changes in available substrates, and resistant to small-scale environment fluctuations over time.
    While MG depth was used as a proxy for population abundance, MT depth enabled the analysis of transcriptional activity within the community and of individual populations (Fig. 3b). The comparison of intersample distances based on mean, relative MT depth showed similar patterns to MG-based results (Fig. 3c), albeit with a higher degree of variability indicated by increased inter-sample distances (Fig. 3d). A comparison of relative MP counts showed a more even distribution between populations with comparable overall trends (Supplementary Fig. 5). Samples collected in April 2011 and 2012 appeared to represent transition states between seasons. Additionally, a set of late winter and early spring samples in 2011 and 2012 showed higher similarities at the expression level than at the abundance level. Interestingly, the high abundance of individual genera, such as Microthrix or Chitinophaga was not necessarily reflected in their mean expression levels (Fig. 3b and Supplementary Fig. 5): populations assigned to Leptospira, Haliscomenobacter, Anaerolinea, and Acinetobacter showed higher mean expression overall. Spikes in relative MT depth as for Acinetobacter rMAGs (Fig. 3b; 2011-04-14, 2011-05-08, and 2012-04-25) point towards increased activity around these time-points, which however did not lead to major shifts in community structure. Notably, higher expression levels of Acinetobacter were succeeded by increased expression levels of Haliscomenobacter (2011-04-14 to 2011-05-20) or Anaerolinea (2011-05-08 to 2011-09-19). On average, MT-based stability values were less affected by the community shift than MG-based stability values (Supplementary Table 2). We also observed adaptation of metabolic pathway activity to environmental conditions (Fig. 5). Pentose to EMP pathway intermediates exhibited the highest correlation between MT and MP abundances, followed by Hydrogen metabolism and Fatty acid oxidation. Several pathways exhibited a characteristic drop during the November shift, e.g., hydrogen metabolism, hydrocarbon degradation, and TCA cycle, while fatty acid oxidation showed a marked peak. This highlights the transition from dominance by generalist, lipid-accumulating populations towards a lipolytic community.
    Fig. 5: Gene levels over time grouped by functional categories.

    Metatranscriptomic and metaproteomic levels (normalized relative expression for MT data and normalized relative spectral counts for MP data) of rMAG-derived genes assigned to FOAM ontology-based functional categories. Pearson correlation coefficients (r) of MT and MP values are shown in the title of each panel. Panels are ordered from highest to lowest mean MP relative count in row-major order. Source data are provided as a Source Data file.

    Full size image

    With each of the four FunCs comprising multiple organisms encoding similar KOs and, hence, metabolic capabilities, we studied how individual populations adapt to their environment. To this end, we linked changes in community structure and in the expression levels of individual populations to the influence of environmental parameters. While rMAG abundance patterns could be linked to FunC assignment (Supplementary Fig. 3), we could not identify an analogous categorization when correlating rMAG abundances to abiotic factors. Instead, correlation patterns indicating similar preferences to environmental conditions emerged for subgroups of rMAGs across different FunCs (Supplementary Fig. 7). This shows that populations with a similar fundamental niche type responded differently to the environmental conditions pointing towards functional plasticity and, thus, adaptations of their realized niches
    Niche characteristics of in situ and ex situ time-series
    While we identified four fundamental niche types, it may be assumed that cohabiting species cannot occupy the same realized niches, leading to realized niche segregation within and between types. We hypothesized that different degrees of niche overlap, leading to variable levels of competition, must exist40,41. To better understand the complementarity of realized niches, we used the functional omics data to study how rMAGs overlapped in relation to their encoded genes and how rMAGs varied in their expression profiles. While the former represents competition between populations with overlapping profiles, the latter is an important factor for the adaptability and overall survival strategy of individual populations. We distinguished between expressed KOs and nonexpressed KOs based on MT/MG ratios as well as MP data and computed distances between the resulting time-point-specific expression profiles. While the separation based on the functional potential was preserved in a clustering of expression profiles (in particular for FunC-2), the expression profiles of FunCs-1, FunCs-3, and FunCs-4 overlapped to a greater extent than those of FunC-2 (Fig. 6a). Two Anaerolinea populations assigned to FunC-1 appeared to express similar functions compared to the rMAGs of FunC-3 and FunC-4 and were found in a subgroup of rMAGs that showed a higher overall activity in terms of MT/MG ratios also when clustering expression profiles per time-point (Supplementary Fig. 8). Overall, the clusters based on KO expression status per time-point did not exhibit a separation according to the grouping into FunCs (Supplementary Fig. 8). This indicates a propensity of the respective rMAGs to more frequently express shared KOs than discriminatory KOs and, consequently, increased the competition for specific substrates.
    Fig. 6: Realized niches.

    a MDS of time-point specific expression profiles based on MT/MG ratios or evidence at the MP level. Colors indicate FunC assignment of the individual rMAGs. Point shape represents cluster assignment based on automated clustering of the embedded points. Ellipses containing 95% of cluster-assigned data points are shown. Points size represents the average MT/MG depth ratios of the individual rMAGs. The amounts of variance explained by the first two dimensions are shown on the respective axes. b Mean MT/MG depth ratios over all time-points are shown per condition for 78 rMAGs (boxplots show: center line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; Each group of boxplots corresponds to a group of rMAGs (FunC-1 n = 24, FunC-2 n = 23, FunC-3 n = 19, FunC-4 n = 12), each boxplot represents an independent experiment.). c Mean MT/MG depth ratios grouped according to class-level taxonomic assignment of the rMAGs with the number of rMAGs for each group are shown in the top of the plot (n). Source data are provided as a Source Data file.

    Full size image

    To investigate the importance of individual, discriminatory functions, we selected rMAG clusters, based on gene expression and MP counts, to which the two most abundant rMAGs (D51_G1.1.2, A01_O1.2.4) had been assigned. We observed that clusters into which rMAG D51_G1.1.2 (Microthrix) was consistently categorized showed expression of few KOs with the majority being ribosomal proteins, TCA cycle-related enzymes such as pyruvate, malate, and glyceraldehyde 3-phosphate dehydrogenases, chaperones, and most frequently the WhiB family transcriptional regulator (19 time-points; Supplementary Data 6).
    Clusters containing rMAG A01_O1.2.4 (Acinetobacter) frequently exhibited expression of genes related to motility and chemotaxis as well as stress response, but also functions related to phosphate accumulation, such as K08311 and K00937 (Supplementary Data 6). KOs related to lipid metabolism were also frequently expressed in these clusters e.g. acylglycerol lipase (in 35 time-points) or diacylglycerol O-acyltransferase (25 time-points). This indicates that high expression of key functionalities is an integral part of the strategies of the populations within these clusters even though they differed with respect to their encoded functions.
    We next studied how the observed distinction between populations with high activity is linked to phenotypic plasticity. As alternating oxygen levels in BWWTPs play an important role in selecting for lipid accumulating populations7,42, we added oleic acid, the preferred carbon source for Microthrix43, in lab-scale experiments under different oxygen fluctuation conditions8 (see “Methods” section; Fig. 1). These ex situ conditions involved aerobic, anoxic, aerobically preconditioned biomass followed by hourly anoxic alternations, and anoxically preconditioned followed by hourly aerobic alternations. The MT/MG ratios for FunC-1 and FunC-3 were higher ex situ when compared to the in situ samples, and vice versa for FunC-2 and FunC-4 rMAGs (Fig. 6b). Furthermore, especially for FunC-3, average MT/MG ratios were highest in the aerobic conditions and lowest in the anaerobic conditions. This is in line with FunC-3 being comprised mainly of Betaproteobacteria and Gammaproteobacteria, which include mostly aerobic genera44. A more fine-grained view on differences in specific activity was obtained, when grouping rMAGs based on taxonomic assignment (Fig. 6c). While rMAGs of the classes Acidimicrobia and Actinobacteria (FunC-1) showed the lowest mean MT/MG ratios across the in situ time-series (0.5), the ratio was twice as high in the ex situ experiments across all conditions which can be attributed to the oleic acid pulse. Betaproteobacteria (FunC-3) behaved similarly, while Gammaproteobacteria (FunC-3) showed a tendency towards higher activity with increased oxygen levels. We observed high activity for rMAGs assigned to Anaerolineae and Spirochaetia in the in situ time-series. Interestingly, this was not the case for Spirochaetia in the ex situ experiments, which points towards the necessity for additional substrates. The Anaerolineae rMAGs, with taxonomically related species being mainly anaerobic45, showed the lowest MT/MG ratio under the alternating conditions, while Deltaproteobacteria rMAGs showed high MT/MG ratios. Overall, the differentiated responses under alternating conditions point to distinct short-term and long-term adaptation strategies.
    To study how fast the adaptations in response to the influx of oleic acid occur, we compared the baseline (0 h time-points, before oleic acid addition) against the 5 and 8 h time-points (after oleic acid addition). At 5 h, lipases, involved in TAG hydrolysis, for which high expression in the in situ samples was observed, were downregulated in the ex situ response to the addition of oleic acid (Supplementary Fig. 9a). An increased number of genes related to beta-oxidation were upregulated at 5 h, particularly in rMAGs assigned to FunC-3 (Supplementary Fig. 9b). Similar effects were observed when comparing the 0 h and 8 h time-points (Supplementary Fig. 10a, b). This suggests that responses in gene expression happen within the 5 h timeframe but on distinct time scales for different populations. In-depth analyses of the populations exhibiting the highest expression levels for TAG lipases, DGAT/WS, and PHB synthases (Supplementary Note 1 and Supplementary Figs. 11–14) underline the previously determined role of Microthrix as a key lipid accumulator in BWWTPs13,46. The results also indicate that populations such as Anaerolinea, Leptospira and Acinetobacter overlap with Microthrix in terms of their capacity to assimilate LCFAs and available neutral lipids. Niche complementarity and plasticity, i.e., overlapping fundamental and realized niches, as well as gene expression variability, impart population-independent processing of lipids in situ. From an ecosystem perspective, this community-wide trait confers functional resistance and resilience. More

  • in

    Phylogenetic diversity shapes salt tolerance in Phragmites australis estuarine populations in East China

    1.
    Eller, F. et al. Cosmopolitan species as models for ecophysiological responses to global change: The common reed Phragmites australis. Front. Plant Sci. https://doi.org/10.3389/fpls.2017.01833 (2017).
    Article  PubMed  PubMed Central  Google Scholar 
    2.
    Hauber, D. P., Saltonstall, K., White, D. A. & Hood, C. S. Genetic variation in the common reed, Phragmites australis, in the Mississippi River Delta marshes: Evidence for multiple introductions. Estuar. Coast 34, 851–862 (2011).
    CAS  Article  Google Scholar 

    3.
    Lambertini, C. et al. Tracing the origin of Gulf Coast Phragmites (Poaceae): A story of long-distance dispersal and hybridization. Am. J. Bot. 99, 538–551 (2012).
    CAS  Article  Google Scholar 

    4.
    Lambertini, C.et al. Revisiting Phragmites australisvariation in the Danube Delta with DNA molecular techniques. Water Resources and Wetlands, Conference Proceeding, 142–150; https://www.limnology.ro/water2012/Proceedings/019.html (2012).

    5.
    Nguyen, L. X. et al. Are the photosynthetic characteristics of co-existing lineages of Phragmites australis based on adaptations acquired in their native climatic zones?. AoB Plants https://doi.org/10.1093/aobpla/plt016 (2013).
    Article  PubMed Central  Google Scholar 

    6.
    Eller, F., Lambertini, C., Nguyen, L. X. & Brix, H. Increased invasive potential of nonnative Phragmites australis: Elevated CO2 and temperature alleviate salinity effects on photosynthesis. Change Biol Glob https://doi.org/10.1111/gcb.12346 (2014).
    Article  Google Scholar 

    7.
    Guo, W.-Y. et al. Phenotypic traits of the Mediterranean Phragmites australis M1 lineage: Differences between the native and introduced ranges. Biol. Invasions 18, 2551–2561 (2016).
    Article  Google Scholar 

    8.
    Chambers, R. M., Meyerson, L. A. & Saltonstall, K. Expansion of Phragmites australis into tidal wetlands of North America. Aquat. Bot. 64, 261–273 (1999).
    Article  Google Scholar 

    9.
    Saltonstall, K. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc. Natl. Acad. Sci. USA 99, 2445–2449 (2002).
    ADS  CAS  Article  Google Scholar 

    10.
    Zhao, K. F., Feng, L. T. & Zhang, S. Q. Study of the salinity-adaptation physiology in different ecotypes of Phragmites australis in the Yellow River Delta of China: Osmotica and their contribution to the osmotic adjustment. Estuar. Coast Shelf 49, 37–42 (1999).
    ADS  CAS  Article  Google Scholar 

    11.
    Guo, W., Wang, R., Zhou, S., Zhang, S. & Zhang, Z. Genetic diversity and clonal structure of Phragmites australis in the Yellow River delta of China. Bio. Chem. Syst. Ecol. 31, 1093–1109 (2003).
    CAS  Article  Google Scholar 

    12.
    Vasquez, E. A., Glenn, E. P., Brown, J. J., Guntensprenger, G. R. & Nelson, S. G. Salt tolerance underlies the cryptic invasion of North American salt marshes by an introduced haplotype of the common reed Phragmites australis (Poaceae). Mar. Ecol. Prog. Ser. 298, 1–8 (2005).
    ADS  Article  Google Scholar 

    13.
    Hurry, C. R., James, E. A. & Thompson, R. M. Connectivity, genetic structure and stress response of Phragmites australis: issues for restoration in a salinizing wetland system. Aquat. Bot. 104, 138–146 (2013).
    Article  Google Scholar 

    14.
    Holmes, G. D., Hall, N. E., Gendall, A. R., Boon, P. I. & James, E. A. Using transcriptomics to identify differential gene expression in response to salinity among Australian Phragmites australis clones. Front. Plant Sci. https://doi.org/10.3389/fpls.2016.00432 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    15.
    Achenbach, L., Eller, F., Nguyen, L. X. & Brix, H. Differences in salinity tolerance in genetically distinct Phragmites australis clones. AoB Plants 5, 19. https://doi.org/10.1093/aobpla/plt019 (2013).
    CAS  Article  Google Scholar 

    16.
    Gao, L. et al. Spatial genetic structure in natural populations of Phragmites australis in a mosaic of saline habitats in the Yellow River Delta China. PONE 7(8), e43334. https://doi.org/10.1371/journal.pone.0043334 (2012).
    CAS  Article  Google Scholar 

    17.
    Lambertini, C. et al. A phylogeographic study of the cosmopolitan genus Phragmites (Poaceae) based on AFLPs. Plant. Syst. Evol. 258, 161–182 (2006).
    Article  Google Scholar 

    18.
    Lambertini, C., Sorrell, B. K., Riis, T., Olesen, B. & Brix, H. Exploring the borders of European Phragmites within a cosmopolitan genus. AoB Plants https://doi.org/10.1093/aobpla/pls020 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    19.
    An, J., Wang, Q., Yang, J. & Liu, Q. Phylogeographic analyses of Phagmites australis in China: Native distribution and habitat preference of the haplotype that invaded North America. J. Syst. Evol. 00, 1–7 (2012).
    Google Scholar 

    20.
    Chu, H. et al. Identification of natural hybrids in Korean Phragmites using haplotype and genotype analyses. Plant Syst. Evol. 293, 247–253 (2011).
    Article  Google Scholar 

    21.
    Tanaka, T., Chagan, I. & Tatsuya, I. Phylogenetic analyses of Phragmites spp. in southwest China identified two lineages and their hybrids. Plant Sys. Evol. 303, 699–707 (2017).
    Article  Google Scholar 

    22.
    Saltonstall, K. The naming of Phragmites haplotypes. Biol. Invasions 18, 2433–2441. https://doi.org/10.1007/s10530-016-1192-4 (2016).
    Article  Google Scholar 

    23.
    Zong, W., Chen, R., Taniguchi, K. & Kondo, K. A chromosome study in intraspecific polyploidy of Phragmites australis and its related species. La Kromosomo 63–64, 2168–2172 (1991).
    Google Scholar 

    24.
    Clevering, O. A. & Lissner, J. Taxonomy, chromosome numbers, clonal diversity and population dynamics of Phragmites australis. Aquat. Bot. 64, 185–208 (1999).
    Article  Google Scholar 

    25.
    Takahashi, R., Liu, S. & Takano, T. Cloning and functional comparison of a high affinity K+ transporter gene PhaHKT1 of salt-tolerant and salt-sensitive reed plants. J. Exp. Bot. 58, 4387–4395 (2007).
    CAS  Article  Google Scholar 

    26.
    Yao, P.-C. Evaluating sampling strategy for DNA barcoding study of coastal and inland halo-tolerant Poaceae and Chenopodiaceae: A case study for increased sample size. PLoS ONE 12(9), e0185311. https://doi.org/10.1371/journal.pone.0185311 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    27.
    Ishii, J. & Kadono, Y. Factors influencing seed production of Phragmites australis. Aquat. Bot. 72, 129–141 (2002).
    Article  Google Scholar 

    28.
    Brix, H. et al. Large-scale management of common reed, Phragmites australis, for paper production: A case study from the Liaohe Delta, China. Ecol. Eng. 73, 760–769. https://doi.org/10.1016/j.ecoleng.2014.09.099 (2014).
    Article  Google Scholar 

    29.
    Lambertini, C., Gustafsson, M. H. G., Frydenberg, J., Speranza, M. & Brix, H. Genetic diversity patterns in Phragmites australis at the population, regional and continental scales. Aquat. Bot. 88, 160–170. https://doi.org/10.1016/j.aquabot.2007.10.002 (2008).
    CAS  Article  Google Scholar 

    30.
    Fér, T. & Hroudová, Z. Genetic diversity and dispersal of Phragmites australis in a small river system. Aquat. Bot. 90, 165–171 (2009).
    Article  Google Scholar 

    31.
    Krzakowa, M. & Michalak, M. Genetic differentiation of common reed (Phragmites australis) populations from selected lakes of Pomerania (NW Poland), revealed by elecrophoretically detected peroxidase variability. Biodivers. Resour. Conserv. 17, 19–22 (2010).
    Article  Google Scholar 

    32.
    McCormick, M., Kettenring, K. M., Baron, H. M. & Whigham, D. Spread of invasive Phragmites australis in estuaries with differing degrees of development: genetic patterns Allee effects and interpretation. J. Ecol. 98, 1369–1378 (2010).
    Article  Google Scholar 

    33.
    Canavan, K., Paterson, I. D., Lambertini, C. & Hill, M. P. Expansive reed populations—alien invasion or disturbed wetlands?. AoB PLANTS https://doi.org/10.1093/aobpla/ply014 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    34.
    Li, M. et al. Clonal genetic diversity and populational genetic differentiation in Phragmites australis distributed in the Songnen Prairie in northeast China as revealed by amplified length polymorphism and sequence-specific amplification polymorphism molecular markers. Ann. Appl. Biol. 154, 43–55 (2008).
    Article  Google Scholar 

    35.
    Qiu, T., Jiang, L. L. & Yang, Y. F. Genetic and epigenetic diversity and structure of Phragmites australis from local habitats of the Songnen Prairie using amplified fragment length polymorphism markers. Genet. Mol. Res. https://doi.org/10.4238/gmr.15038585 (2016).
    Article  PubMed  Google Scholar 

    36.
    Lin, W. F., Chen, L. J. & Zhu, X. Y. An analysis of genetic diversity of different ecotypes of reed (Phragmites communis Trin) by molecular marker techniques. J. Plant. Physiol. Mol. Biol. 33, 77–84 (2007).
    CAS  Google Scholar 

    37.
    Rus, A. et al. AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proc. Natl. Acad. Sci. USA 98, 14150–14155. https://doi.org/10.1073/pnas.241501798 (2001).
    ADS  CAS  Article  PubMed  Google Scholar 

    38.
    Baxter, I. et al. A coastal cline in sodium accumulation in Arabidopsis thaliana is driven by natural variation of the sodium transporter AtHKT1. PLoS Genet. 6(11), e1001193. https://doi.org/10.1371/journal.pgen.1001193 (2010).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    39.
    Thuong, V. T. et al. Examining spatiotemporal salinity dynamics in the Mekong River Delta using Landsat time series imagery and a spatial regression approach. Sci. Tot. Environ. 687, 1087–1097 (2019).
    Article  Google Scholar 

    40.
    Hall, T. A. Bioedit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).
    CAS  Google Scholar 

    41.
    Lambertini, C. Heteroplasmy: Another complexity of the Phragmites genome to take into account. Biol. Invasions 18, 2443–2455. https://doi.org/10.1007/s10530-016-1193-3 (2016).
    Article  Google Scholar 

    42.
    Swofford, D.L. PAUP. Phylogenetic Analysis Using Parsimony (and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts (2002).

    43.
    Farris, J. S., Albert, V. A., Källersjö, M., Lipscomb, D. & Kluge, A. G. Parsimony jackknifing outperforms neighbor-joining. Cladistics 12, 99–124. https://doi.org/10.1111/j.1096-0031.1996.tb00196.x (1996).
    Article  Google Scholar 

    44.
    Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539 (2012).
    CAS  Article  Google Scholar 

    45.
    Peakall, R. & Smouse, P. E. GenAlex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).
    Google Scholar 

    46.
    Saltonstall, K. Microsatellite variation within and among North American lineages of Phragmites australis. Mol. Ecol. 12, 1689–1702 (2003).
    CAS  Article  Google Scholar 

    47.
    Pritchard, K. J., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    48.
    Earl, D. A. & von Holdt, B. M. Structure Harvester: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).
    Article  Google Scholar 

    49.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).
    CAS  Article  Google Scholar 

    50.
    Fischer, G. et al. Global agro-ecological zones assessment for agriculture (GAEZ 2008). IIASA, Laxenburg, Austria and FAO, Rome, Italy (2008)

    51.
    Lv, Z. Z. et al. Spatial variability of soil salinity in Bohai Sea coastal wetlands, China: Partition into four management zones. Plant Biosyst. 147, 1201–1210 (2013).
    Article  Google Scholar 

    52.
    Fan, X., Liu, Y., Tao, J. & Weng, Y. Soil salinity retrieval from advanced multi-spectral sensor with Partial Least Square Regression. Remote Sens. 7, 488–511 (2015).
    ADS  Article  Google Scholar 

    53.
    Yang, L., Huang, C., Liu, G., Liu, J. & Zhu, A. X. Mapping soil salinity using a similarity-based prediction approach: A case study in Huanghe River Delta China. Chin. Geogr. Sci. 25, 283–294. https://doi.org/10.1007/s11769-015-0740-7 (2015).
    Article  Google Scholar 

    54.
    Jiang, J. Y. et al. Soil organic carbon storage in tidal wetland and its relationships with soil physico-chemical factors: A case study of Dongtan of Chongming, Shanghai. J. Ecol. Rural Environ. 31, 540–547 (2015).
    Google Scholar  More