More stories

  • in

    Presence of ice-nucleating Pseudomonas on wheat leaves promotes Septoria tritici blotch disease (Zymoseptoria tritici) via a mutually beneficial interaction

    Plants
    Wheat (variety Galaxie) was sown on John Innes No. 2 compost in 24-cell trays with 2–5 plants per cell, and maintained on a 16:8 h light:dark cycle at 18 °C (day) and 15 °C(night), with 80% RH in a MLR-352H-PE climate chamber (Sanyo). All plants were used for experiments at 2 weeks old.
    Bacteria and fungi
    Pseudomonas syringae pv. syringae strains reported to exhibit ice nucleation activity (281, 3010) or not reported to exhibit ice nucleation activity (1902, 3012) were purchased from the National Collection of Plant Pathogenic Bacteria (FERA, UK). Strains selected were not originally isolated from wheat (281, 1902—isolated from Syringa vulgaris; 3010, 3012—isolated from Malus sylvestris) and are not known wheat pathogens. Ice-nucleation activity was confirmed by floating smooth foil squares on the surface of a water/methanol ice bath, cooled to − 10, − 8, − 6, − 4 or − 2 °C. 100 μL droplets of sterile, distilled water were pipetted onto the foil squares and ice crystals formed spontaneously, within 1 min, only at − 10 °C. Two microliters of overnight bacterial culture were added to water droplets and time taken for ice formation recorded. Strain 281 showed the strongest ice nucleation activity and 1902 showed no detectable effect on ice formation; 3010 and 3012 were intermediate (Supplementary Table S1). Bacteria were maintained in 50% glycerol at − 80 °C and were grown on LB agar at 28 °C for all applications. For all experiments involving Z. tritici, the model isolate IPO3237 was used.
    Bacterial pathogenicity tests
    Bacteria were streaked onto LB agar and grown for 3 days before resuspension in 10 mM MgCl2 at 107 cfu/mL. Bacterial suspensions were sprayed onto wheat plants using a hand held atomiser at a rate of approximately 0.5 mL per cell of 2–5 two week old plants, giving visible misting of both leaf surfaces, on all leaves, without runoff of inoculum. Six cells of plants were inoculated with each strain. Plants were then returned to growth chambers and monitored for symptom development for 28 days. Only strain 3010 induced clear symptoms within this timeframe, although some plants inoculated with strain 3012 also showed mild chlorosis of leaf tips after day 14 (Supplementary Table S2). In further experiments, only strains 281 (INA+) and 1902 (INA−) were used.
    Ion leakage measurements
    10 cm lengths of 6–9 treated leaves were excised and placed in 10 mL ddH2O for 12 h. Conductivity of the ddH2O was measured using a conductivity meter and then leaves were boiled for 1 h and measurement repeated. ddH2O controls, without leaves, were treated in the same fashion. Ion leakage was reported as a percentage of total conductivity after boiling; control values were subtracted.
    Propidium iodide staining for cell death
    1 cm leaf sections were immersed for 1 h, in the dark, in 0.05% (w/v) propidium iodide (PI), mounted in 0.1% (v/v) phosphate buffered saline (PBS, pH 7) and viewed using a Leica SP8 confocal microscope using argon laser emission at 500 nm with detection at 600–630 nm. Five leaf sections were viewed for each treatment and 3 fields of view visualised in each leaf section. Cell death was scored as number of cells showing internal (cytoplasmic or nuclear) red fluorescence / total number of cells in field of view. No cell death was recorded.
    Wheat inoculation
    14 day-old wheat plants were inoculated with either INA+ or INA− bacteria suspended in 10 mM MgCl2 at 107 cfu/mL by spraying with a handheld atomiser until leaves were visibly beaded with moisture on both surfaces, avoiding runoff. Controls were sprayed with 10 mM MgCl2 only.
    For assays involving co-inoculation of plants with bacteria and Z. tritici, plants were allowed to dry for an hour before inoculation with Z. tritici blastospores. Blastospores were suspended in sterile distilled water at 105 cfu/mL, a low inoculum density preventing saturation of infection28. Inoculated plants were returned to growth chambers and kept under plastic cloches for 72 h, then maintained as usual.
    Analysis of STB speed and severity
    Plants were observed at 7, 10, 12, 14, 16, 18, 21, 24 and 28 days post inoculation (dpi) and the most severe symptom on each leaf recorded. At 28 dpi, all inoculated leaves were harvested, rehydrated for 1 h, then scanned at high resolution. Pycnidia were enumerated and leaf area measured in scanned images using ImageJ28.
    Antibiotic and competitor application
    INA+ bacterial inoculation was carried out as before. Plants were allowed to dry for 1 h at room temperature, then spray inoculated with INA− bacteria suspended in 10 mM MgCl2 at 107 cfu/mL, or sprayed with ampicillin solution (50 μg/mL). Following this second treatment, plants were returned to growth chambers for 24 h. Freezing treatment and subsequent Z. tritici inoculation was then carried out as above.
    Estimation of bacterial populations
    Two methods were used to estimate bacterial populations on leaves. Firstly, 1 cm leaf samples were harvested from 3 randomly selected leaves in each treatment. These samples were mounted on glass slides in phosphate buffered saline, to which BacLight Green bacterial stain and propidium iodide counterstain were added at 0.05% (w/v) each. After 10 min, leaf samples were imaged at 20× magnification using a Leica SP8 confocal microscope. 5 μM z-stacks were collected at three randomly selected fields of view for each leaf sample and maximum projections created from these. Laser power, gain, and other parameters were held constant between fields of view and samples. The number of green pixels in each projection was then counted using ImageJ software and summed across the three fields of view. The percentage of pixels in the three fields of view which were green was then calculated and used as a proxy for percentage leaf area covered by bacteria. Secondly, 1 cm leaf samples were harvested from 3 more randomly selected leaves in each treatment and homogenised in 10 mM MgCl2. Homogenate was diluted 1/10, 1/100 and 1/1000 in MgCl2 and five 10 μL samples of each dilution spotted onto King’s B29 agar with Pseudomonas selective supplement CFC (Oxoid). Colonies were counted after 24 h incubation at 28 °C. Both procedures were carried out at 1, 4, 7, 10 and 14 dpi.
    Experimental design and statistical methods
    Specific details of experimental design and analyses are presented in the figure legends alongside the relevant results. Some general principles were applied. Randomisation: where a set of pots of plants was divided between treatments, pots were numbered and randomly generated numbers used to select those assigned to each treatment. For selection of microscope fields of view within a leaf, the slide was placed so that the ‘bottom left’ part of the leaf was in view and a random distance (in mm, bounded by length and width of the leaf) moved in the x and y dimensions to select each field of view, returning to the 0,0 position before each selection.
    Replication: technical replication was used in all experiments, with the number of such replicates given in each figure legend. Three complete repeat experiments were carried out in most cases, with figure legends stating where replication was different (min. 2 repeats) and all data presented represent the mean of such replicates, with error bars showing standard errors. Statistical analyses: data were analysed using ANOVA unless otherwise stated, with appropriate checks for homoscedasticity and other assumptions. More

  • in

    A putative chordate luciferase from a cosmopolitan tunicate indicates convergent bioluminescence evolution across phyla

    1.
    van Soest, R. W. M. A monograph of the order Pyrosomatida (Tunicata, Thaliacea). J. Plankton Res. 3, 603–631 (1981).
    Article  Google Scholar 
    2.
    Archer, S. K. et al. Pyrosome consumption by benthic organisms during blooms in the northeast Pacific and Gulf of Mexico. Ecology 99, 981–984 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    3.
    Kuo, C.-Y. et al. An unusual bloom of the tunicate, Pyrosoma atlanticum, in southern Taiwan. Bull. Mar. Sci. 91, 363–364 (2015).
    ADS  Article  Google Scholar 

    4.
    Huxley, T. H. Observations upon the anatomy and physiology of Salpa and Pyrosoma. Philos. Trans. R. Soc. Lond. 141, 567–593 (1851).
    ADS  Google Scholar 

    5.
    Péron, F. Mémoire sur le nouveau genre Pyrosoma. Annales du Museum d’histoire naturelle, Paris 4, 437–446 (1803).
    Google Scholar 

    6.
    Panceri, P. The luminous organs and light of Prosoma. Q. J. Microsc. Sci. 13, 45–51 (1873).
    Google Scholar 

    7.
    Burghause, F. Kreislauf und Herzschlag bei Pyrosoma giganteum nebst Bemerkungen zum Leuchtvermögen. Zeitschrift für Wissenschaftliche Zoologie 108, 430–497 (1914).
    Google Scholar 

    8.
    Haddock, S. H. D., Moline, M. A. & Case, J. F. Bioluminescence in the sea. Ann. Rev. Mar. Sci. 2, 443–493 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    9.
    Pierantoni, U. Gli organi luminosi simbiotici ed il loro ciclo ereditario in Pyrosoma giganteum. Pubblicazioni della Stazione zoologica di Napoli3, 191–222 (1921).

    10.
    Mackie, G. O. & Bone, Q. Luminescence and associated effector activity in Pyrosoma (Tunicata: Pyrosomida). Proc. R. Soci. B Biol. Sci. 202, 483–495 (1978).
    ADS  Google Scholar 

    11.
    Phillips, B. T. et al. A dexterous, glove-based teleoperable low-power soft robotic arm for delicate deep-sea biological exploration. Sci. Rep. 8, 14779 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    12.
    Brodeur, R. et al. An unusual gelatinous plankton event in the NE Pacific: the great pyrosome bloom of 2017. PICES Press 26, 22–27 (2018).
    Google Scholar 

    13.
    Sutherland, K. R., Sorensen, H. L., Blondheim, O. N., Brodeur, R. D. & Galloway, A. W. E. Range expansion of tropical pyrosomes in the northeast Pacific Ocean. Ecology 99, 2397–2399 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    14.
    Kocot, K. M., Tassia, M. G., Halanych, K. M. & Swalla, B. J. Phylogenomics offers resolution of major tunicate relationships. Mol. Phylogenet. Evol. 121, 166–173 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    15.
    Lebrato, M. & Jones, D. O. B. Mass deposition event of Pyrosoma atlanticum carcasses off Ivory Coast (West Africa). Limnol. Oceanogr. 54, 1197–1209 (2009).
    ADS  CAS  Article  Google Scholar 

    16.
    Drits, A. V., Arashkevich, E. G. & Semenova, T. N. Pyrosoma atlanticum (Tunicata, Thaliacea): grazing impact on phytoplankton standing stock and role in organic carbon flux. J. Plankton Res. 14, 799–809 (1992).
    Article  Google Scholar 

    17.
    Perissinotto, R., Mayzaud, P., Nichols, P. D. & Labat, J. P. Grazing by Pyrosoma atlanticum (Tunicata, Thaliacea) in the south Indian Ocean. Mar. Ecol. Prog. Ser. 330, 1–11 (2007).
    ADS  CAS  Article  Google Scholar 

    18.
    Bone, Q. The Biology of Pelagic Tunicates (Oxford University Press on Demand, Oxford, 1998).
    Google Scholar 

    19.
    Sweeney, B. M., Fork, D. C. & Satoh, K. Stimulation of bioluminescence in dinoflagellates by red light. Photochem. Photobiol. 37, 457–465 (1983).
    CAS  Article  Google Scholar 

    20.
    Mauchline, J. IX.—the biology of the euphausiid crustacean, Meganyctiphanes norvegica (M. Sars). Proc. R. Soc. Edinb. Biol. 67, 141–179 (1959).
    Google Scholar 

    21.
    Widder, E. Bioluminescence and the pelagic visual environment. Mar. Freshw. Behav. Physiol. 35, 1–26 (2002).
    Article  Google Scholar 

    22.
    Bowlby, M. R., Widder, E. A. & Case, J. F. Patterns of stimulated bioluminescence in two pyrosomes (Tunicata: Pyrosomatidae). Biol. Bull. 179, 340–350 (1990).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Herring, P. J. The spectral characteristics of luminous marine organisms. Proc. R. Soc. B Biol. Sci. 220, 183–217 (1983).
    ADS  Google Scholar 

    24.
    Swift, E., Biggley, W. H. & Napora, T. A. The bioluminescence emission spectra of Pyrosoma atlanticum, P. spinosum (Tunicata), Euphausia tenera (Crustacea) and Gonostoma sp. (Pisces). J. Mar. Biol. Assoc. UK 57, 817 (1977).
    Article  Google Scholar 

    25.
    Mackie, G. O. Unconventional signalling in tunicates. Mar. Freshw. Behav. Physiol. 26, 197–205 (1995).
    Article  Google Scholar 

    26.
    Verdes, A. & Gruber, D. F. Glowing worms: biological, chemical, and functional diversity of bioluminescent annelids. Integr. Comput. Biol. 57, 18–32 (2017).
    CAS  Article  Google Scholar 

    27.
    Davis, M. P., Holcroft, N. I., Wiley, E. O., Sparks, J. S. & Leo Smith, W. Species-specific bioluminescence facilitates speciation in the deep sea. Mar. Biol. 161, 1139–1148 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Nealson, K. H. & Hastings, J. W. Bacterial bioluminescence: its control and ecological significance. Microbiol. Rev. 43, 496–518 (1979).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Delroisse, J. et al. A puzzling homology: a brittle star using a putative cnidarian-type luciferase for bioluminescence. Open Biol. 7, 160300 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    30.
    Janssen, D. B. Evolving haloalkane dehalogenases. Curr. Opin. Chem. Biol. 8, 150–159 (2004).
    CAS  PubMed  Article  Google Scholar 

    31.
    Loening, A. M., Fenn, T. D., Wu, A. M. & Gambhir, S. S. Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output. Protein Eng. Des. Sel. 19, 391–400 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Woo, J., Howell, M. H. & von Arnim, A. G. Structure-function studies on the active site of the coelenterazine-dependent luciferase from Renilla. Protein Sci. 17, 725–735 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Loening, A. M., Fenn, T. D. & Gambhir, S. S. Crystal structures of the luciferase and green fluorescent protein from Renilla reniformis. J. Mol. Biol. 374, 1017–1028 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Shimomura, O. Bioluminescence Chemical Principles and Methods (World Scientific, Singapore, 2006).
    Google Scholar 

    35.
    Kaskova, Z. M., Tsarkova, A. S. & Yampolsky, I. V. 1001 lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine. Chem. Soc. Rev. 45, 6048–6077 (2016).
    CAS  PubMed  Article  Google Scholar 

    36.
    Shimomura, O., Masugi, T., Johnson, F. H. & Haneda, Y. Properties and reaction mechanism of the bioluminescence system of the deep-sea shrimp Oplophorus gracilorostris. Biochemistry 17, 994–998 (1978).
    CAS  PubMed  Article  Google Scholar 

    37.
    Lorenz, W. W., McCann, R. O., Longiaru, M. & Cormier, M. J. Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc. Natl. Acad. Sci. USA 88, 4438–4442 (1991).
    ADS  CAS  PubMed  Article  Google Scholar 

    38.
    Martini, S. & Haddock, S. H. D. Quantification of bioluminescence from the surface to the deep sea demonstrates its predominance as an ecological trait. Sci. Rep. 7, 45750 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Shimomura, O., Inoue, S., Johnson, F. H. & Haneda, Y. Widespread occurrence of coelenterazine in marine bioluminescence. Comp. Biochem. Physiol. Part B Comp. Biochem. 65, 435–437 (1980).
    Article  Google Scholar 

    40.
    Shimomura, O. Presence of coelenterazine in non-bioluminescent marine organisms. Comp. Biochem. Physiol. Part B Comp. Biochem. 86, 361–363 (1987).
    Article  Google Scholar 

    41.
    Rees, J. F. et al. The origins of marine bioluminescence: turning oxygen defense mechanisms into deep-sea communication tools. J. Exp. Biol. 201, 1211–1221 (1998).
    CAS  PubMed  PubMed Central  Google Scholar 

    42.
    Julin, C. The specific histological characters of the ‘luminous cells’ of Pyrosoma giganteum and of Cyclosalpa pinnata. Rep. Brit. Ass. 492–493 (1912).

    43.
    Leisman, G., Cohn, D. H. & Nealson, K. H. Bacterial origin of luminescence in marine animals. Science 208, 1271–1273 (1980).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    44.
    Fortova, A. et al. DspA from Strongylocentrotus purpuratus: the first biochemically characterized haloalkane dehalogenase of non-microbial origin. Biochimie 95, 2091–2096 (2013).
    CAS  PubMed  Article  Google Scholar 

    45.
    Chaloupkova, R. et al. Light-emitting dehalogenases: reconstruction of multifunctional biocatalysts. ACS Catal. 9, 4810–4823 (2019).
    CAS  Article  Google Scholar 

    46.
    Viviani, V. R. The origin, diversity, and structure function relationships of insect luciferases. Cell. Mol. Life Sci. 59, 1833–1850 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Haddock, S. H. D., Mastroianni, N. & Christianson, L. M. A photoactivatable green-fluorescent protein from the phylum Ctenophora. Proc. Biol. Sci. 277, 1155–1160 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Tessler, M. et al. Ultra-gentle soft robot fingers induce minimal transcriptomic response in a fragile marine animal during handling. Curr. Biol. 30, R157–R158 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    Tessler, M. et al. Marine leech anticoagulant diversity and evolution. J. Parasitol. 104, 210–220 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Tessler, M. et al. Luciferin production and luciferase transcription in the bioluminescent copepod. PeerJ 6, e5506 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    51.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Brugler, M. R., Aguado, M. T., Tessler, M. & Siddall, M. E. The transcriptome of the Bermuda fireworm Odontosyllis enopla (Annelida: Syllidae): a unique luciferase gene family and putative epitoky-related genes. PLoS ONE 13, e0200944 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    54.
    Biasini, M. et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42, W252–W258 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Brozovic, M. et al. ANISEED 2017: extending the integrated ascidian database to the exploration and evolutionary comparison of genome-scale datasets. Nucleic Acids Res. 46, D718–D725 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Gissi, C. et al. An unprecedented taxonomic revision of a model organism: the paradigmatic case of Ciona robusta and Ciona intestinalis. Zool. Scr. 46, 521–522 (2017).
    Article  Google Scholar 

    57.
    Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 5, 113 (2004).
    Article  CAS  Google Scholar 

    58.
    Nguyen, L.-T. et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    59.
    Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In 2010 Gateway Computing Environments Workshop (GCE) (2010). https://doi.org/10.1109/gce.2010.5676129. More

  • in

    Differential effects of pollution on adult and recruits of a canopy-forming alga: implications for population viability under low pollutant levels

    1.
    Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).
    ADS  CAS  Article  PubMed  Google Scholar 
    2.
    Jackson, J. B. C. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).
    CAS  Article  PubMed  Google Scholar 

    3.
    Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933 (2003).
    ADS  CAS  Article  PubMed  Google Scholar 

    4.
    Schiel, D. R., Steinbeck, J. R. & Foster, M. S. Ten years of induced ocean warming causes comprehensive changes in marine benthic communities. Ecology 85, 1833–1839 (2014).
    Article  Google Scholar 

    5.
    Filbee-Dexter, K. & Scheibling, R. E. Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. Mar. Ecol. Prog. Ser. 495, 1–25 (2014).
    ADS  Article  Google Scholar 

    6.
    Dayton, P. K. et al. Patch dynamics and stability of some California kelp communities. Ecol. Monogr. 54, 253–289 (1984).
    Article  Google Scholar 

    7.
    Dayton, P. K., Tegner, M. J., Parnell, P. E. & Edwards, P. B. Temporal and spatial patterns of disturbance and recovery in a kelp forest community. Ecol. Monogr. 62, 421–445 (1992).
    Article  Google Scholar 

    8.
    Ballesteros, E. et al. Deep-water stands of Cystoseira zosteroides C. Agardh (Fucales, Ochrophyta) in the Northwestern Mediterranean: Insights into assemblage structure and population dynamics. Estuar. Coast. Shelf Sci. 82, 477–484 (2009).
    ADS  Article  Google Scholar 

    9.
    Reed, D. C. & Foster, M. S. The effects of canopy shadings on algal recruitment and growth in a giant kelp forest. Ecology 65, 937–948 (1984).
    Article  Google Scholar 

    10.
    Gianni, F. et al. Conservation and restoration of marine forests in the Mediterranean Sea and the potential role of Marine Protected Areas. Adv. Oceanogr. Limnol. 4, 83–101 (2013).
    Article  Google Scholar 

    11.
    Wernberg, T. & Filbee-Dexter, K. Missing the marine forest for the trees. Mar. Ecol. Prog. Ser. 612, 209–215 (2019).
    ADS  Article  Google Scholar 

    12.
    Steneck, R. S. et al. Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ. Conserv. 29, 436–459 (2002).
    Article  Google Scholar 

    13.
    Airoldi, L. & Beck, M. Loss, status and trends for coastal marine habitats of Europe. In Oceanography and Marine Biology: An Annual Review (eds. Gibson, R. N., Atkinson, R. J. A. & Gordon, D. M.) vol. 45 345–405 (Taylor & Francis, Milton Park, 2007).
    Google Scholar 

    14.
    Krumhansl, K. A. et al. Global patterns of kelp forest change over the past half-century. Proc. Natl. Acad. Sci. 113, 13785–13790 (2016).
    CAS  Article  PubMed  Google Scholar 

    15.
    Connell, S. et al. Recovering a lost baseline: missing kelp forests from a metropolitan coast. Mar. Ecol. Prog. Ser. 360, 63–72 (2008).
    ADS  Article  Google Scholar 

    16.
    Gorman, D., Russell, B. D. & Connell, S. D. Land-to-sea connectivity: linking human-derived terrestrial subsidies to subtidal habitat change on open rocky coasts. Ecol. Appl. 19, 1114–1126 (2009).
    Article  PubMed  Google Scholar 

    17.
    Ling, S. D., Johnson, C. R., Frusher, S. D. & Ridgway, K. R. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc. Natl. Acad. Sci. 106, 22341–22345 (2009).
    ADS  CAS  Article  PubMed  Google Scholar 

    18.
    Sales, M. & Ballesteros, E. Long-term comparison of algal assemblages dominated by Cystoseira crinita (Fucales, Heterokontophyta) from Cap Corse (Corsica, North Western Mediterranean). Eur. J. Phycol. 45, 404–412 (2010).
    Article  Google Scholar 

    19.
    Vergés, A. et al. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B Biol. Sci. 281, 20140846 (2014).
    Article  Google Scholar 

    20.
    Vergés, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl. Acad. Sci. U. S. A. 113, 13791–13796 (2016).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    21.
    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    22.
    Capdevila, P. et al. Warming impacts on early life stages increase the vulnerability and delay the population recovery of a long-lived habitat-forming macroalga. J. Ecol. 107, 1129–1140 (2019).
    Article  Google Scholar 

    23.
    Filbee-Dexter, K. & Wernberg, T. Rise of turfs: a new battlefront for globally declining kelp forests. Bioscience 68, 64–76 (2018).
    Article  Google Scholar 

    24.
    Sagarin, R. D., Barry, J. P., Gilman, S. E. & Baxter, C. H. Climate-related change in an intertidal community over short and long time scales. Ecol. Monogr. 69, 465–490 (1999).
    Article  Google Scholar 

    25.
    Eriksson, B. K., Johansson, G. & Snoeijs, P. Long-term changes in the macroalgal vegetation of the inner Gullmar fjord Swedish Skagerrak coast. J. Phycol. 38, 284–296 (2002).
    Article  Google Scholar 

    26.
    Thibaut, T., Blanfuné, A., Boudouresque, C. F. & Verlaque, M. Decline and local extinction of Fucales in French Riviera: the harbinger of future extinctions?. Mediterr. Mar. Sci. 16, 206 (2015).
    Article  Google Scholar 

    27.
    Brown, C. J., Saunders, M. I., Possingham, H. P. & Richardson, A. J. Interactions between global and local stressors of ecosystems determine management effectiveness in cumulative impact mapping. Divers. Distrib. 20, 538–546 (2014).
    Article  Google Scholar 

    28.
    Feldmann, J. Recherches sur la végétation marine de la Méditerranée. La côte des Albères. Rev. Algol. (Université de Paris, 1937).

    29.
    Giaccone, G. Écologie et chorologie des Cystoseira de Méditerranée. Rapp. Comm. int. Mer Médit 22, 49–50 (1973).
    Google Scholar 

    30.
    Cormaci, M. & Furnari, G. Changes of the benthic algal flora of the Tremiti Islands (southern Adriatic) Italy. In Sixteenth International Seaweed Symposium vols 398–399 75–79 (Springer, Netherlands, 1999).

    31.
    Thibaut, T., Pinedo, S., Torras, X. & Ballesteros, E. Long-term decline of the populations of Fucales (Cystoseira spp. and Sargassum spp.) in the Albères coast (France, North-western Mediterranean). Mar. Pollut. Bull. 50, 1472–1489 (2005).
    CAS  Article  PubMed  Google Scholar 

    32.
    Thibaut, T., Blanfuné, A., Verlaque, M., Boudouresque, C.-F. & Ruitton, S. The Sargassum conundrum: very rare, threatened or locally extinct in the NW Mediterranean and still lacking protection. Hydrobiologia 781, 3–23 (2016).
    Article  Google Scholar 

    33.
    Blanfuné, A., Boudouresque, C. F., Verlaque, M. & Thibaut, T. The fate of Cystoseira crinita, a forest-forming Fucale (Phaeophyceae, Stramenopiles), in France (North Western Mediterranean Sea). Estuar. Coast. Shelf Sci. 181, 196–208 (2016).
    ADS  Article  Google Scholar 

    34.
    Mariani, S. et al. Past and present of Fucales from shallow and sheltered shores in Catalonia. Reg. Stud. Mar. Sci. 32, 100824 (2019).
    Article  Google Scholar 

    35.
    Pinedo, S., Zabala, M. & Ballesteros, E. Long-term changes in sublittoral macroalgal assemblages related to water quality improvement. Bot. Mar. 56, 461–469 (2013).
    Article  Google Scholar 

    36.
    Munda, I. M. Changes and degradation of seaweed stands in the Northern Adriatic. Hydrobiologia 260–261, 239–253 (1993).
    Article  Google Scholar 

    37.
    Munda, I. M. Impact of pollution on benthic marine algae in the Northern Adriatic. Int. J. Environ. Stud. 43, 185–199 (1993).
    CAS  Article  Google Scholar 

    38.
    Béthoux, J. P. et al. Nutrients in the Mediterranean Sea, mass balance and statistical analysis of concentrations with respect to environmental change. Mar. Chem. 63, 155–169 (1998).
    Article  Google Scholar 

    39.
    Palanques, A., Sánchez-Cabeza, J. A., Masqué, P. & Leon, L. Historical record of heavy metals in a highly contaminated Mediterranean deposit: the Besos prodelta. Mar. Chem. 61, 209–217 (1998).
    CAS  Article  Google Scholar 

    40.
    Terlizzi, A., Fraschetti, S., Gianguzza, P., Faimali, M. & Boero, F. Environmental impact of antifouling technologies: state of the art and perspectives. Aquat. Conserv. Mar. Freshw. Ecosyst. 11, 311–317 (2001).
    Article  Google Scholar 

    41.
    Bokn, T. L., Moy, F. E. & Walday, M. Improvement of the shallow water communities following reductions of industrial outlets and sewage discharge in the Hvaler estuary Norway. Hydrobiologia 326–327, 297–304 (1996).
    Article  Google Scholar 

    42.
    Pinedo, S., Arévalo, R. & Ballesteros, E. Seasonal dynamics of upper sublittoral assemblages on Mediterranean rocky shores along a eutrophication gradient. Estuar. Coast. Shelf Sci. 161, 93–101 (2015).
    CAS  Article  Google Scholar 

    43.
    Arévalo, R., Pinedo, S. & Ballesteros, E. Changes in the composition and structure of Mediterranean rocky-shore communities following a gradient of nutrient enrichment: descriptive study and test of proposed methods to assess water quality regarding macroalgae. Mar. Pollut. Bull. 55, 104–113 (2007).
    Article  CAS  PubMed  Google Scholar 

    44.
    Sales, M., Cebrian, E., Tomas, F. & Ballesteros, E. Pollution impacts and recovery potential in three species of the genus Cystoseira (Fucales, Heterokontophyta). Estuar. Coast. Shelf Sci. 92, 347–357 (2011).
    ADS  CAS  Article  Google Scholar 

    45.
    Andersson, S. & Kautsky, L. Copper effects on reproductive stages of Baltic Sea Fucus vesiculosus. Mar. Biol. 125, 171–176 (1996).
    CAS  Article  Google Scholar 

    46.
    Bond, P. et al. Arrested development in Fucus spiralis (Phaeophyceae) germlings exposed to copper. Eur. J. Phycol. 34, 513–521 (1999).
    Article  Google Scholar 

    47.
    Nielsen, S. L., Nielsen, H. D. & Pedersen, M. F. Juvenile life stages of the brown alga Fucus serratus L. are more sensitive to combined stress from high copper concentration and temperature than adults. Mar. Biol. 161, 1895–1904 (2014).
    CAS  Article  Google Scholar 

    48.
    Nielsen, H. D. & Nielsen, S. L. Adaptation to high light irradiances enhances the photosynthetic Cu2+ resistance in Cu2+ tolerant and non-tolerant populations of the brown macroalgae Fucus serratus. Mar. Pollut. Bull. 60, 710–717 (2010).
    CAS  Article  PubMed  Google Scholar 

    49.
    Capdevila, P., Hereu, B., Riera, J. L. & Linares, C. Unravelling the natural dynamics and resilience patterns of underwater Mediterranean forests: insights from the demography of the brown alga Cystoseira zosteroides. J. Ecol. 104, 1799–1808 (2016).
    Article  Google Scholar 

    50.
    Falace, A. et al. Effects of a glyphosate-based herbicide on Fucus virsoides (Fucales, Ochrophyta) photosynthetic efficiency. Environ. Pollut. 243, 912–918 (2018).
    CAS  Article  PubMed  Google Scholar 

    51.
    Mercurio, P., Flores, F., Mueller, J. F., Carter, S. & Negri, A. P. Glyphosate persistence in seawater. Mar. Pollut. Bull. 85, 385–390 (2014).
    CAS  Article  PubMed  Google Scholar 

    52.
    Orellana, S., Hernández, M. & Sansón, M. Diversity of Cystoseira sensu lato (Fucales, Phaeophyceae) in the eastern Atlantic and Mediterranean based on morphological and DNA evidence, including Carpodesmia gen. emend. and Treptacantha gen. emend. Eur. J. Phycol. 54, 447–465 (2019).
    CAS  Article  Google Scholar 

    53.
    Sales, M. & Ballesteros, E. Seasonal dynamics and annual production of Cystoseira crinita (Fucales: Ochrophyta)-dominated assemblages from the northwestern Mediterranean. Sci. Mar. 76, 391–401 (2012).
    Article  Google Scholar 

    54.
    Ballesteros, E. Els vegetals i la zonació litoral: espècies, comunitats i factors que influeixen en la seva distribució. Arx. Secc. Ciències IEC 101, 1–616 (1992).
    Google Scholar 

    55.
    Ballesteros, E. Flora Phycologica Iberica. Vol. 1. Fucales. Gómez-Garreta, A. (ed.). Sci. Mar. 66, 187–188 (2002).
    Article  Google Scholar 

    56.
    Sales, M. & Ballesteros, E. Shallow Cystoseira (Fucales: Ochrophyta) assemblages thriving in sheltered areas from Menorca (NW Mediterranean): relationships with environmental factors and anthropogenic pressures. Estuar. Coast. Shelf Sci. 84, 476–482 (2009).
    ADS  CAS  Article  Google Scholar 

    57.
    Munda, I. The effects of organic pollution on the distribution of fucoid algae from the Istrian coast (vicinity of Rovinj). Acta Adriat. 23, 329–337 (1982).
    Google Scholar 

    58.
    Montesanto, B. & Panayotidis, P. The Cystoseira spp. Communities from the Aegean Sea (NE Mediterranean). Mediterr. Mar. Sci. 2, 57 (2001).
    Article  Google Scholar 

    59.
    Bianchi, C. N., Corsini-Foka, M., Morri, C. & Zenetos, A. Thirty years after: dramatic change in the coastal marine ecosystems of Kos Island (Greece), 1981–2013. Mediterr. Mar. Sci. 15, 482–497 (2014).
    Article  Google Scholar 

    60.
    Mačić, V. & Antolić, B. Distribution of rare Cystoseira species along the Montenegro coast (South-Eastern Adriatic sea). Period. Biol. 117, 441–447 (2015).
    Article  Google Scholar 

    61.
    Iveša, L., Djakovac, T. & Devescovi, M. Long-term fluctuations in Cystoseira populations along the west Istrian Coast (Croatia) related to eutrophication patterns in the northern Adriatic Sea. Mar. Pollut. Bull. 106, 162–173 (2016).
    Article  CAS  PubMed  Google Scholar 

    62.
    Ignatiades, L., Gotsis-Skretas, O., Pagou, K. & Krasakopoulou, E. Diversification of phytoplankton community structure and related parameters along a large-scale longitudinal east-west transect of the Mediterranean Sea. J. Plankton Res. 31, 411–428 (2009).
    Article  Google Scholar 

    63.
    Burgeot, T. et al. Oyster summer mortality risks associated with environmental stress. In Summer Mortality of Pacific Oyster Crassostrea gigas. The Morest Project. (eds. Samain, J. F. & McCombie, H.) 107–151 (EditionsQu. Versailles, 2008).

    64.
    Kittle, R. P. & McDermid, K. J. Glyphosate herbicide toxicity to native Hawaiian macroalgal and seagrass species. J. Appl. Phycol. 28, 2597–2604 (2016).
    CAS  Article  Google Scholar 

    65.
    Verdura, J., Sales, M., Ballesteros, E., Cefalì, M. E. & Cebrian, E. Restoration of a canopy-forming alga based on recruitment enhancement: methods and long-term success assessment. Front. Plant Sci. 9, 1832 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    66.
    Murchie, E. H. & Lawson, T. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J. Exp. Bot. 64, 3983–3998 (2013).
    CAS  Article  PubMed  Google Scholar 

    67.
    Pinheiro, J. C. & Bates, D. M. Linear Mixed-Effects Models: Basic Concepts and Examples. In Mixed-Effects Models in Sand S-PLUS. Statistics and Computing. (eds. Pinheiro, J. C. & Bates, D. M.) 3–56 (Springer, New York, 2000). https://doi.org/10.1007/978-1-4419-0318-1_1.

    68.
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    69.
    Venables, W. N. & Ripley, B. D. Modern applied statistics with S. (2002).

    70.
    Fox, J. & Weisberg, S. An R Companion to Applied Regression. (SAGE Pubblications, Inc., 2019).

    71.
    Lenth, R. V. Least-squares means: the R package lsmeans. J. Stat. Softw. 69, 1–33 (2016).
    Article  Google Scholar 

    72.
    Abdala-Díaz, R. T., Cabello-Pasini, A., Pérez-Rodríguez, E., Álvarez, R. M. C. & Figueroa, F. L. Daily and seasonal variations of optimum quantum yield and phenolic compounds in Cystoseira tamariscifolia (Phaeophyta). Mar. Biol. 148, 459–465 (2006).
    Article  CAS  Google Scholar 

    73.
    Yu, Y. Q. et al. Diurnal changes of photosynthetic quantum yield in the intertidal macroalga Sargassum thunbergii under simulated tidal emersion conditions. J. Sea Res. 80, 50–57 (2013).
    ADS  Article  Google Scholar 

    74.
    Gévaert, F. et al. Laminaria saccharina photosynthesis measured in situ: photoinhibition and xanthophyll cycle during a tidal cycle. Mar. Ecol. Prog. Ser. 247, 43–50 (2003).
    ADS  Article  Google Scholar 

    75.
    Huppertz, K., Hanelt, D. & Nultsch, W. Photoinhibition of photosynthesis in the marine brown algae Fucus serratus as studied in field experiments. Mar. Ecol. Prog. Ser. 66, 175–182 (1990).
    ADS  Article  Google Scholar 

    76.
    Davis, T. A. et al. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 26, 265–275 (2011).
    ADS  Google Scholar 

    77.
    Evans, L. K. & Edwards, M. S. Bioaccumulation of copper and zinc by the giant kelp Macrocystis pyrifera. Algae 26, 265–275 (2011).
    CAS  Article  Google Scholar 

    78.
    Pan, Y. et al. Screening of seaweeds in the East China Sea as potential bio-monitors of heavy metals. Environ. Sci. Pollut. Res. 25, 16640–16651 (2018).
    CAS  Article  Google Scholar 

    79.
    Hopkin, R. & Kain, J. M. The effects of some pollutants on the survival, growth and respiration of Laminaria hyperborea. Estuar. Coast. Mar. Sci. 7, 531–553 (1978).
    ADS  CAS  Article  Google Scholar 

    80.
    Marsden, A. D., DeWreede, R. E. & Levings, C. D. Survivorship and growth of Fucus gardneri after transplant to an acid mine drainage-polluted area. Mar. Pollut. Bull. 46, 65–73 (2003).
    Article  PubMed  Google Scholar 

    81.
    Pellegrini, M. et al. Interactions between the toxicity of the heavy metals cadmium, copper, zinc in combinations and the detoxifying role of calcium in the brown alga Cystoseira barbata. J. Appl. Phycol. 5, 351–361 (1993).
    CAS  Article  Google Scholar 

    82.
    Mangialajo, L., Chiantore, M. & Cattaneo-Vietti, R. Loss of fucoid algae along a gradient of urbanisation, and structure of benthic assemblages. Mar. Ecol. Prog. Ser. 358, 63–74 (2008).
    ADS  Article  Google Scholar 

    83.
    Strömgren, T. The effect of dissolved copper on the increase in length of four species of intertidal fucoid algae. Mar. Environ. Res. 3, 5–13 (1980).
    Article  Google Scholar 

    84.
    Rodríguez-Prieto, C. & Polo, L. Effects of sewage pollution in the structure and dynamics of the community of Cystoseira mediterranea (Fucales, Phaeophyceae). Sci. Mar. 60, 253–263 (1996).
    Google Scholar 

    85.
    Boudouresque, C. F., Marcot-Coqueugniot, J. & Nédélec, H. The phytobentos of a Mediterranean Harbour, Port Vendres. In Proceedings of the International Seaweed Symposium 229–234 (1981).

    86.
    Costa, G. B. et al. Effects of copper and lead exposure on the ecophysiology of the brown seaweed Sargassum cymosum. Protoplasma 253, 111–125 (2016).
    CAS  Article  PubMed  Google Scholar 

    87.
    Baumann, H. A., Morrison, L. & Stengel, D. B. Metal accumulation and toxicity measured by PAM-Chlorophyll fluorescence in seven species of marine macroalgae. Ecotoxicol. Environ. Saf. 72, 1063–1075 (2009).
    CAS  Article  PubMed  Google Scholar 

    88.
    Topinka, J. A. & Robbins, J. V. Effects of nitrate and ammonium enrichment on growth and nitrogen physiology in Fucus spiralis. Limnol. Oceanogr. 21, 659–664 (1976).
    ADS  CAS  Article  Google Scholar 

    89.
    Chapman, A. R. O. & Craigie, J. S. Seasonal growth in Laminaria longicruris: relations with dissolved inorganic nutrients and internal reserves of nitrogen. Mar. Biol. 40, 197–205 (1977).
    CAS  Article  Google Scholar 

    90.
    Gerard, V. A. In situ rates of nitrate uptake by giant kelp, Macrocystis pyrifera (L.) C. Agardh: tissue differences, environmental effects, and predictions of nitrogen-limited growth. J. Exp. Mar. Biol. Ecol. 62, 211–224 (1982).
    CAS  Article  Google Scholar 

    91.
    Buschmann, A. H. et al. Ecophysiological plasticity of annual populations of giant kelp (Macrocystis pyrifera) in a seasonally variable coastal environment in the Northern Patagonian Inner Seas of Southern Chile. J. Appl. Phycol. 26, 837–847 (2014).
    Article  Google Scholar 

    92.
    Braga, A. D. C. & Yoneshigue-Valentin, Y. Growth of Laminaria abyssalis (Phaeophyta) at different nitrate concentrations. Phycologia 33, 271–274 (1994).
    Article  Google Scholar 

    93.
    Wallentinus, I. Comparisons of nutrient uptake rates for Baltic macroalgae with different thallus morphologies. Mar. Biol. 80, 215–225 (1984).
    CAS  Article  Google Scholar 

    94.
    Gordillo, F. J. L., Dring, M. J. & Savidge, G. Nitrate and phosphate uptake characteristics of three species of brown algae cultured at low salinity. Mar. Ecol. Prog. Ser. 234, 111–118 (2002).
    ADS  CAS  Article  Google Scholar 

    95.
    Thomas, T. E., Harrison, P. J. & Taylor, E. B. Nitrogen uptake and growth of the germlings and mature thalli of Fucus distichus. Mar. Biol. 84, 267–274 (1985).
    Article  Google Scholar 

    96.
    Nielsen, H. D., Brownlee, C., Coelho, S. M. & Brown, M. T. Inter-population differences in inherited copper tolerance involve photosynthetic adaptation and exclusion mechanisms in Fucus serratus. New Phytol. 160, 157–165 (2003).
    CAS  Article  Google Scholar 

    97.
    Guillemin, M. L., Valenzuela, P., Gaitán-Espitia, J. D. & Destombe, C. Evidence of reproductive cost in the triphasic life history of the red alga Gracilaria chilensis (Graciliarales, Rhodophyta). J. Appl. Phycol. 26, 569–575 (2014).
    CAS  Article  Google Scholar 

    98.
    Scanlan, C. M. & Wilkinson, M. The use of seaweeds in biocide toxicity testing. Part 1. The sensitivity of different stages in the life-history of Fucus, and of other algae, to certain biocides. Mar. Environ. Res. 21, 11–29 (1987).
    CAS  Article  Google Scholar 

    99.
    Garman, G. D., Pillai, M. C. & Cherr, G. N. Inhibition of cellular events during early algal gametophyte development: effects of select metals and an aqueous petroleum waste. Aquat. Toxicol. 28, 127–144 (1994).
    CAS  Article  Google Scholar 

    100.
    Chung, I. K. & Brinkhuis, B. H. Copper effects in early stages of the kelp Laminaria saccharina. Mar. Pollut. Bull. 17, 213–218 (1986).
    CAS  Article  Google Scholar 

    101.
    Giesy, J. P., Dobson, S. & Solomon, K. R. Ecotoxicological Risk Assessment for Roundup® Herbicide. Rev. Environ. Contam. Toxicol. 167, 35–120 (2000).
    CAS  Google Scholar 

    102.
    Pérez, G. L., Solange Vera, M. & Miranda, L. A. Nitrate and phosphate uptake characteristics of three species of brown algae cultured at low salinity. In Herbicides and Environment (ed. Kortekamp, A.) 343–368 (InTech, 2011). https://doi.org/10.5772/57353.

    103.
    Solomon, K. R. & Thompson, D. G. Ecological risk assessment for aquatic organisms from over-water uses of glyphosate. J. Toxicol. Environ. Heal. Part B Crit. Rev. 6, 289–324 (2003).

    104.
    Cedergreen, N. & Streibig, J. C. The toxicity of herbicides to non-target aquatic plants and algae: assessment of predictive factors and hazard. Pest Manag. Sci. 61, 1152–1160 (2005).
    CAS  Article  PubMed  Google Scholar 

    105.
    Pang, T., Liu, J., Liu, Q., Zhang, L. & Lin, W. Impacts of glyphosate on photosynthetic behaviors in Kappaphycus alvarezii and Neosiphonia savatieri detected by JIP-test. J. Appl. Phycol. 24, 467–473 (2012).
    CAS  Article  Google Scholar 

    106.
    Franz, J. E., Mao, M. K. & Sikorinski, J. A. Glyphosate, a unique global herbicide. Weed Technol. 12, 564–565 (1998).
    Article  Google Scholar 

    107.
    Siehl, D. L. Inhibitors of EPSP synthase, glutamine synthetase and histidine synthesis. In Herbicide Activity:Toxicology, Biochemistry and Molecular Biology (eds. Roe, R. M., Burton, J. D. & Kuhr, R. J.) 37–67 (1997).

    108.
    Duke, S. O., Baerson, S. R. & Rimando, A. M. Glyphosate. In Encyclopedia of Agrochemicals (John Wiley & Sons, Inc., 2003). https://doi.org/10.1002/047126363X.agr119.

    109.
    Billen, G. et al. Nitrogen flows from European regional watersheds to coastal marine waters. Eur. Nitrogen Assess. 271–297 (2011). https://doi.org/10.1017/cbo9780511976988.016.

    110.
    Giani, M. et al. Recent changes in the marine ecosystems of the northern Adriatic Sea. Estuar. Coast. Shelf Sci. 115, 63–74 (2012).
    ADS  Article  Google Scholar 

    111.
    EEA. Nutrients in transitional, coastal and marine waters (CSI 021). https://www.eea.europa.eu/data-and-maps/indicators/nutrients-in-transitional-coastal-and-3/assessment (2015).

    112.
    Strain, E. M. A., Thomson, R. J., Micheli, F., Mancuso, F. P. & Airoldi, L. Identifying the interacting roles of stressors in driving the global loss of canopy-forming to mat-forming algae in marine ecosystems. Glob. Change Biol. 20, 3300–3312 (2014).
    ADS  Article  Google Scholar 

    113.
    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).
    ADS  CAS  Article  PubMed  Google Scholar 

    114.
    Verdura, J., Sales, M., Ballesteros, E., Cefalí, M. E. VI Jornades de Medi Ambient de les Illes Balears. In Programa de seguiment científic de l’Estació d’Investigació “Jaume Ferrer”: recuperació d’una població de Cystoseira barbata desapareguda a Cala Teulera (Port de Maó) (ed. Pons, G. X., del Valle, L., Vicens, D., Pinya, S., McMinn, M., Pomar, F.) 180–183 (Societat d’Història Natural de les Balears. Maó, Spain, 2018).

    115.
    Falace, A., Kaleb, S., De La Fuente, G., Asnaghi, V. & Chiantore, M. Ex situ cultivation protocol for Cystoseira amentacea var. stricta (Fucales, Phaeophyceae) from a restoration perspective. PLoS ONE 13, e0193011 (2018). More

  • in

    Riparian and in-channel habitat properties linked to dragonfly emergence

    1.
    Noss, R. F. Indicators for monitoring biodiversity: A hierarchical approach. Conserv. Biol. 4, 355–364 (1990).
    Article  Google Scholar 
    2.
    Lambeck, R. J. Focal species: A multi-species umbrella for nature conservation. Conserv. Biol. 11, 849–856 (1997).
    Article  Google Scholar 

    3.
    Knight, T. M., McCoy, M. W., Chase, J. M., McCoy, K. A. & Holt, R. D. Trophic cascades across ecosystems. Nature 437, 880–883 (2005).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Rudolf, V. H. W. & Rasmussen, N. L. Ontogenetic functional diversity: Size structure of a keystone predator drives functioning of a complex ecosystem. Ecology 94, 1046–1056 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    5.
    Bulánková, E. Dragonflies (Odonata) as bioindicators. Biologia, Bratislava 52, 177–180 (1997).
    Google Scholar 

    6.
    Catling, P. M. A potential for the use of dragonfly (Odonata) diversity as a bioindicator of the efficiency of sewage lagoons. Can. Field Nat. 119, 233 (2005).
    Article  Google Scholar 

    7.
    Vorster, C. et al. Development of a new continental-scale index for freshwater assessment based on dragonfly assemblages. Ecol. Indic. 109, 105819 (2020).
    Article  Google Scholar 

    8.
    Jeremiason, J. D., Reiser, T. K., Weitz, R. A., Berndt, M. E. & Aiken, G. R. Aeshnid dragonfly larvae as bioindicators of methylmercury contamination in aquatic systems impacted by elevated sulfate loading. Ecotoxicology 25, 456–468 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Chovanec, A. & Raab, R. Dragonflies (Insecta, Odonata) and the ecological status of newly created wetlands—examples for long-term bioindication programmes. Limnologica 27, 381–392 (1997).
    Google Scholar 

    10.
    Chovanec, A. & Waringer, J. Ecological integrity of river–floodplain systems—assessment by dragonfly surveys (Insecta: Odonata). Regul. Rivers Res. Manag. 17, 493–507 (2001).
    Article  Google Scholar 

    11.
    Rocha-Ortega, M., Rodríguez, P. & Córdoba-Aguilar, A. Can dragonfly and damselfly communities be used as bioindicators of land use intensification?. Ecol. Indic. 107, 105553 (2019).
    Article  Google Scholar 

    12.
    Kalkman, V. J. et al. Diversity and conservation of European dragonflies and damselflies (Odonata). Hydrobiologia 811, 269–282 (2018).
    Article  Google Scholar 

    13.
    Harvey, J. A. et al. International scientists formulate a roadmap for insect conservation and recovery. Nat. Ecol. Evol. 4, 174–176 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    14.
    Falck, J. & Johansson, F. Patterns in size, sex ratio and time at emergence in a South Swedish population of Sympetrum sanguineum (Odonata). Aquat. Insects 22, 311–317 (2000).
    Article  Google Scholar 

    15.
    Farkas, A. et al. Sex ratio in Gomphidae (Odonata) at emergence: Is there a relationship with water temperature?. Int. J. Odonatol. 16, 279–287 (2013).
    Article  Google Scholar 

    16.
    Cardoso, P., Erwin, T. L., Borges, P. A. V. & New, T. R. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 144, 2647–2655 (2011).
    Article  Google Scholar 

    17.
    Daigle, R. J. Sea-level rise estimates for New Brunswick municipalities: Saint John, Sackville, Richibucto, Shippagan, Caraquet, Le Goulet. Report for the Atlantic Climate Adaptation Solutions Association (2011).

    18.
    Tockner, K., Pusch, M., Borchardt, D. & Lorang, M. S. Multiple stressors in coupled river–floodplain ecosystems. Freshw. Biol. 55, 135–151 (2010).
    Article  Google Scholar 

    19.
    Nakano, S. & Murakami, M. Reciprocal subsidies: Dynamic interdependence between terrestrial and aquatic food webs. Proc. Natl. Acad. Sci. 98, 166–170 (2001).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Rantala, M. J., Ilmonen, J., Koskimäki, J., Suhonen, J. & Tynkkynen, K. The macrophyte, Stratiotes aloides, protects larvae of dragonfly Aeshna viridis against fish predation. Aquat. Ecol. 38, 77–82 (2004).
    Google Scholar 

    21.
    Suhonen, J., Suutari, E., Kaunisto, K. M. & Krams, I. Patch area of macrophyte Stratioites aloides as a critical resource for declining dragonfly Aeshna viridis. J. Insect Conserv. 17, 393–398 (2013).
    Google Scholar 

    22.
    Bell, H. L. Effect of low pH on the survival and emergence of aquatic insects. Water Res. 5, 313–319 (1971).
    Google Scholar 

    23.
    Farkas, A., Jakab, T., Tóth, A., Kalmár, A. F. & Dévai, G. Emergence patterns of riverine dragonflies (Odonata: Gomphidae) in Hungary: Variations between habitats and years. Aquat. Insects 34, 77–89 (2012).
    Google Scholar 

    24.
    Boda, R. et al. Emergence behaviour of the red listed Balkan Goldenring (Cordulegaster heros Theischinger, 1979) in Hungarian upstreams: Vegetation structure affects the last steps of the larvae. J. Insect Conserv. 19, 547–557 (2015).
    Google Scholar 

    25.
    Remsburg, A. J. & Turner, M. G. Aquatic and terrestrial drivers of dragonfly (Odonata) assemblages within and among north-temperate lakes. J. N. Am. Benthol. Soc. 28, 44–56 (2009).
    Google Scholar 

    26.
    Remsburg, A. Relative influence of prior life stages and habitat variables on dragonfly (Odonata: Gomphidae) densities among lake sites. Diversity 3, 200–216 (2011).
    Google Scholar 

    27.
    Aoki, T. Larval development, emergence and seasonal regulation in Asiagomphus pryeri (Selys) (Odonata: Gomphidae). Hydrobiologia 394, 179–192 (1999).
    Google Scholar 

    28.
    Paulson, D. Dragonflies and Damselflies of the East (Princeton University Press, Princeton, 2011).
    Google Scholar 

    29.
    Foster, S. E. & Soluk, D. A. Evaluating exuvia collection as a management tool for the federally endangered Hine’s emerald dragonfly, Somatochlora hineana Williamson (Odonata: Cordulidae). Biol. Conserv. 118, 15–20 (2004).
    Google Scholar 

    30.
    Raebel, E. M., Merckx, T., Riordan, P., Macdonald, D. W. & Thompson, D. J. The dragonfly delusion: Why it is essential to sample exuviae to avoid biased surveys. J. Insect Conserv. 14, 523–533 (2010).
    Article  Google Scholar 

    31.
    Needham, J. G., Westfall, M. J. & May, M. L. Dragonflies of North America: The Odonata (Anisoptera) Fauna of Canada, the Continental United States, Northern Mexico and the Greater Antilles (Scientific Publishers, Jodhpur, 2014).
    Google Scholar 

    32.
    Aliberti Lubertazzi, M. A. & Ginsberg, H. S. Persistence of dragonfly exuviae on vegetation and rock substrates. Northeast. Nat. 16, 141–147 (2009).
    Article  Google Scholar 

    33.
    Brodin, T. & Johansson, F. Effects of predator-induced thinning and activity changes on life history in a damselfly. Oecologia 132, 316–322 (2002).
    ADS  PubMed  Article  Google Scholar 

    34.
    Johansson, F., Crowley, P. H. & Brodin, T. Sexual size dimorphism and sex ratios in dragonflies (Odonata). Biol. J. Linn. Soc. 86, 507–513 (2005).
    Article  Google Scholar 

    35.
    Lamit, L. J. et al. Genotype variation in bark texture drives lichen community assembly across multiple environments. Ecology 96, 960–971 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Wolman, M. G. A method of sampling coarse river-bed material. EOS Trans. Am. Geophys. Union 35, 951–956 (1954).
    Article  Google Scholar 

    37.
    Richter, B. D., Baumgartner, J. V., Powell, J. & Braun, D. P. A method for assessing hydrologic alteration within ecosystems. Conserv. Biol. 10, 1163–1174 (1996).
    Article  Google Scholar 

    38.
    Sabo, J. L., Bastow, J. L. & Power, M. E. Length–mass relationships for adult aquatic and terrestrial invertebrates in a California watershed. J. N. Am. Benthol. Soc. 21, 336–343 (2002).
    Article  Google Scholar 

    39.
    Sample, B. E., Cooper, R. J., Greer, R. D. & Whitmore, R. C. Estimation of insect biomass by length and width. Am. Midl. Nat. 129, 234 (1993).
    Article  Google Scholar 

    40.
    McCune, B. & Mefford, M. J. PC-ORD. Multivariate Analysis of Ecological Data, Version 5.0 for Windows. MjM Software, Gleneden Beach, Oregon, U.S.A. (2006).

    41.
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-2. https://CRAN.R-project.org/package=vegan (2018).

    42.
    R Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna Austria (2018).

    43.
    Anderson, M. J. Permutational Multivariate Analysis of Variance (Department of Statistics, University of Auckland, Auckland, 2005).
    Google Scholar 

    44.
    Manly, B. F. J. Randomization, Bootstrap and Monte Carlo Methods in Biology 3rd edn. (CRC Press, Boca Raton, 2006).
    Google Scholar 

    45.
    Goslee, S. C. & Urban, D. L. The ecodist Package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22, 1–19 (2007).
    Article  Google Scholar 

    46.
    Crabot, J., Clappe, S., Dray, S. & Datry, T. Testing the Mantel statistic with a spatially-constrained permutation procedure. Methods Ecol. Evol. 10, 532–540 (2019).
    Article  Google Scholar 

    47.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).
    MathSciNet  MATH  Google Scholar 

    48.
    Clarke, K. R. & Gorley, R. N. PRIMER v7: User Manual/Tutorial 3rd edn. (Plymouth U. K. Primer-E Ltd, Wellington, 2015).
    Google Scholar 

    49.
    Baird, I. R. C. & Burgin, S. An emergence study of Petalura gigantea (Odonata: Petaluridae). Int. J. Odonatol. 16, 193–211 (2013).
    Article  Google Scholar 

    50.
    Richter, O., Suhling, F., Müller, O. & Kern, D. A model for predicting the emergence of dragonflies in a changing climate. Freshw. Biol. 53, 1868–1880 (2008).
    Google Scholar 

    51.
    Kennedy, T. A. et al. Flow management for hydropower extirpates aquatic insects, undermining river food webs. Bioscience 66, 561–575 (2016).
    Google Scholar 

    52.
    Worthen, W. B. & Horacek, H. J. The distribution of dragonfly larvae in a South Carolina stream: Relationships with sediment type, body size, and the presence of other larvae. J. Insect Sci. 15, 31–31 (2015).
    PubMed  PubMed Central  Google Scholar 

    53.
    Corbet, P. A Biology of Dragonflies. HF & G. Witherby LTD (Northumberland Press Limited, Newcastle-upon-Tyne, 1962).
    Google Scholar 

    54.
    Corbet, P. S. Dragonflies: Behavior and Ecology of Odonata (Cornell University Press, New York, 1999).
    Google Scholar 

    55.
    Baxter, C. V., Fausch, K. D. & Saunders, W. C. Tangled webs: Reciprocal flows of invertebrate prey link streams and riparian zones. Freshw. Biol. 50, 201–220 (2005).
    Article  Google Scholar 

    56.
    Burdon, F. J. & Harding, J. S. The linkage between riparian predators and aquatic insects across a stream-resource spectrum. Freshw. Biol. 53, 330–346 (2008).
    Google Scholar 

    57.
    Grof-Tisza, P., LoPresti, E., Heath, S. K. & Karban, R. Plant structural complexity and mechanical defenses mediate predator–prey interactions in an odonate–bird system. Ecol. Evol. 7, 1650–1659 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    58.
    Iwata, T. Linking stream habitats and spider distribution: Spatial variations in trophic transfer across a forest–stream boundary. Ecol. Res. 22, 619–628 (2007).
    Article  Google Scholar 

    59.
    Jakob, C. & Suhling, F. Risky times? Mortality during emergence in two species of dragonflies (Odonata: Gomphidae, Libellulidae). Aquat. Insects 21, 1–10 (1999).
    Article  Google Scholar 

    60.
    Kurata, M. Life history of Gomphys melaenops (Gomphidae). Tombo 14, 6–11 (1971).
    Google Scholar 

    61.
    Corbet, P. S. The life-history of the emperor dragonfly anax imperator leach (Odonata: Aeshnidae). J. Anim. Ecol. 26, 1–69 (1957).
    Google Scholar 

    62.
    Suhling, F. Temporal patterns of emergence of the riverine dragonfly Onychogomphus uncatus (Odonata: Gomphidae). Hydrobiologia 302, 113–118 (1995).
    Google Scholar 

    63.
    Wissmar, R. C. & Beschta, R. L. Restoration and management of riparian ecosystems: A catchment perspective. Freshw. Biol. 40, 571–585 (1998).
    Google Scholar 

    64.
    Evans, B. F., Townsend, C. R. & Crowl, T. A. Distribution and abundance of coarse woody debris in some southern New Zealand streams from contrasting forest catchments. N. Z. J. Mar. Freshw. Res. 27, 227–239 (1993).
    Google Scholar 

    65.
    Studinski, J. M., Hartman, K. J., Niles, J. M. & Keyser, P. The effects of riparian forest disturbance on stream temperature, sedimentation, and morphology. Hydrobiologia 686, 107–117 (2012).
    Google Scholar 

    66.
    Wang, L., Lyons, J., Kanehl, P. & Gatti, R. Influences of watershed land use on habitat quality and biotic integrity in wisconsin streams. Fisheries 22, 6–12 (1997).
    Google Scholar 

    67.
    Martin, T. G. & Mcintyre, S. Impacts of livestock grazing and tree clearing on birds of woodland and riparian habitats. Conserv. Biol. 21, 504–514 (2007).
    PubMed  PubMed Central  Google Scholar 

    68.
    Ormerod, S. J., Rundle, S. D., Lloyd, E. C. & Douglas, A. A. The influence of riparian management on the habitat structure and macroinvertebrate communities of upland streams draining plantation forests. J. Appl. Ecol. 30, 13–24 (1993).
    Google Scholar 

    69.
    Cordero, A. Vertical stratification during emergence in odonates. Not. Odonatol. 4, 103–105 (1995).
    Google Scholar 

    70.
    Coppa, G. Notes sur l’émergence d’Epitheca bimaculata (Charpentier)(Odonata: Corduliidae). Martinia 7, 7–16 (1991).
    Google Scholar 

    71.
    Miller, P. L. Notes on Ictinogomphus ferox Rambur (Odonata: Gomphidae). Entomologist 97, 2–66 (1964).
    Google Scholar 

    72.
    Worthen, W. B. Emergence-site selection by the dragonfly Epitheca spinosa (Hagen). Southeast. Nat. 9, 251–258 (2010).
    Article  Google Scholar 

    73.
    Magoba, R. N. & Samways, M. J. Recovery of benthic macroinvertebrate and adult dragonfly assemblages in response to large scale removal of riparian invasive alien trees. J. Insect Conserv. 14, 627–636 (2010).
    Article  Google Scholar 

    74.
    Cothran, M. L. & Thorp, J. H. Emergence patterns and size variation of Odonata in a thermal reservoir. Freshw. Invertebr. Biol. 1, 30–39 (1982).
    Article  Google Scholar 

    75.
    Mccauley, S. J., Hammond, J. I., Frances, D. N. & Mabry, K. E. Effects of experimental warming on survival, phenology, and morphology of an aquatic insect (Odonata). Ecol. Entomol. 40, 211–220 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    76.
    McCauley, S. J., Hammond, J. I. & Mabry, K. E. Simulated climate change increases larval mortality, alters phenology, and affects flight morphology of a dragonfly. Ecosphere 9, e02151 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    77.
    de Nadaï-Monoury, E., Gilbert, F. & Lecerf, A. Forest canopy cover determines invertebrate diversity and ecosystem process rates in depositional zones of headwater streams. Freshw. Biol. 59, 1532–1545 (2014).
    Article  Google Scholar 

    78.
    Flenner, I. & Sahlén, G. Dragonfly community re-organisation in boreal forest lakes: Rapid species turnover driven by climate change?. Insect Conserv. Divers. 1, 169–179 (2008).
    Article  Google Scholar 

    79.
    Harper, M. P. & Peckarsky, B. L. Emergence cues of a mayfly in a high-altitude stream ecosystem: Potential response to climate change. Ecol. Appl. 16, 612–621 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    80.
    Jonsson, M. et al. Climate change modifies the size structure of assemblages of emerging aquatic insects. Freshw. Biol. 60, 78–88 (2015).
    Article  Google Scholar 

    81.
    Dudgeon, D. et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    82.
    Sala, O. E. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).
    CAS  Article  Google Scholar 

    83.
    Likens, G. E. & Bormann, F. H. Linkages between terrestrial and aquatic ecosystems. Bioscience 24, 447–456 (1974).
    Article  Google Scholar 

    84.
    England, L. E. & Rosemond, A. D. Small reductions in forest cover weaken terrestrial-aquatic linkages in headwater streams. Freshw. Biol. 49, 721–734 (2004).
    Article  Google Scholar 

    85.
    Lafage, D. et al. Local and landscape drivers of aquatic-to-terrestrial subsidies in riparian ecosystems: A worldwide meta-analysis. Ecosphere 10, e02697 (2019).
    Article  Google Scholar  More

  • in

    Environmental influences on foraging effort, success and efficiency in female Australian fur seals

    1.
    Chambers, L. E. et al. Observed and predicted effects of climate on Australian seabirds. Emu Austr. Ornithol. 111, 235–251. https://doi.org/10.1071/MU10033 (2011).
    Article  Google Scholar 
    2.
    Stephens, D. W. & Krebs, J. R. Foraging Theory Vol 1 (Princeton University Press, Princeton, 1986).
    Google Scholar 

    3.
    Costa, D. P. The relationship between reproductive and foraging energetics and the evolution of the Pinnipedia. Symp. Zool. Soc. Lond. 66, 293–314 (1993).
    Google Scholar 

    4.
    Weimerskirch, H., Le Corre, M., Jaquemet, S. & Marsac, F. Foraging strategy of a tropical seabird, the red-footed booby, in a dynamic marine environment. Mar. Ecol. Prog. Ser. 288, 251–261. https://doi.org/10.3354/meps288251 (2005).
    ADS  Article  Google Scholar 

    5.
    Costa, D. P. A conceptual model of the variation in parental attendance in response to environmental fluctuation: Foraging energetics of lactating sea lions and fur seals. Aquat. Conserv. Mar. Freshw. Ecosyst. 17, S44–S52. https://doi.org/10.1002/aqc.917 (2007).
    ADS  Article  Google Scholar 

    6.
    Villegas-Amtmann, S., McDonald, B. I., Páez-Rosas, D., Aurioles-Gamboa, D. & Costa, D. P. Adapted to change: Low energy requirements in a low and unpredictable productivity environment, the case of the Galapagos sea lion. Deep Sea Res. Part II Top. Stud. Oceanography 140, 94–104 (2017).
    ADS  Article  Google Scholar 

    7.
    Trillmich, F. & Limberger, D. Drastic effects of El Niño on Galapagos pinnipeds. Oecologia 67, 19–22 (1985).
    ADS  Article  Google Scholar 

    8.
    Dunstan, P. K. et al. Global patterns of change and variation in sea surface temperature and chlorophyll a. Sci. Rep. 8, 14624. https://doi.org/10.1038/s41598-018-33057-y (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    9.
    IPCC. Summary for Policymakers. (2019).

    10.
    Cai, W., Shi, G., Cowan, T., Bi, D. & Ribbe, J. The response of the Southern Annular Mode, the East Australian Current, and the southern mid-latitude ocean circulation to global warming. Geophys. Res. Lett. https://doi.org/10.1029/2005GL024701 (2005).
    Article  Google Scholar 

    11.
    Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111. https://doi.org/10.1038/nclimate2100 (2014).
    ADS  CAS  Article  Google Scholar 

    12.
    Cai, W. et al. Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature 510, 254–258. https://doi.org/10.1038/nature13327 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    13.
    Poloczanska, E. S. et al. Climate change and Australian marine life. Oceanogr. Mar. Biol. 45, 407 (2007).
    Google Scholar 

    14.
    Beentjes, M. P. & Renwick, J. A. The relationship between red cod, Pseudophycis bachus, recruitment and environmental variables in New Zealand. Environ. Biol. Fishes 61, 315–328. https://doi.org/10.1023/A:1010943906264 (2001).
    Article  Google Scholar 

    15.
    Hewitt, R. P., Theilacker, G. H. & Lo, N. C. H. Causes of mortality in young jack mackerel. Mar. Ecol. Prog. Ser. 26, 1–10 (1985).
    ADS  Article  Google Scholar 

    16.
    Rindorf, A., Wanless, S. & Harris, M. P. Effects of changes in sandeel availability on the reproductive output of seabirds. Mar. Ecol. Prog. Ser. 202, 241–252. https://doi.org/10.3354/meps202241 (2000).
    ADS  Article  Google Scholar 

    17.
    Wanless, S., Harris, M. P., Redman, P. & Speakman, J. R. Low energy values of fish as a probable cause of a major seabird breeding failure in the North Sea. Mar. Ecol. Prog. Ser. 294, 1–8. https://doi.org/10.3354/meps294001 (2005).
    ADS  Article  Google Scholar 

    18.
    Carroll, M. J. et al. Kittiwake breeding success in the southern North Sea correlates with prior sandeel fishing mortality. Aquat. Conserv. Mar. Freshw. Ecosys. 27, 1164–1175. https://doi.org/10.1002/aqc.2780 (2017).
    Article  Google Scholar 

    19.
    Ridgway, K. R. Long-term trend and decadal variability of the southward penetration of the East Australian Current. Geophys. Res. Lett. 34, L13613. https://doi.org/10.1029/2007GL030393 (2007).
    ADS  Article  Google Scholar 

    20.
    Hobday, A. J. & Pecl, G. T. Identification of global marine hotspots: Sentinels for change and vanguards for adaptation action. Rev. Fish Biol. Fish. 24, 415–425. https://doi.org/10.1007/s11160-013-9326-6 (2014).
    Article  Google Scholar 

    21.
    Hobday, A. J. & Lough, J. M. Projected climate change in Australian marine and freshwater environments. Mar. Freshw. Res. 62, 1000–1014. https://doi.org/10.1071/MF10302 (2011).
    Article  Google Scholar 

    22.
    Johnson, C. R. et al. Climate change cascades: Shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania. J. Exp. Mar. Biol. Ecol. 400, 17–32. https://doi.org/10.1016/j.jembe.2011.02.032 (2011).
    Article  Google Scholar 

    23.
    Thompson, P. A., Baird, M. E., Ingleton, T. & Doblin, M. A. Long-term changes in temperate Australian coastal waters: Implications for phytoplankton. Mar. Ecol. Prog. Ser. 394, 1–19. https://doi.org/10.3354/meps08297 (2009).
    ADS  CAS  Article  Google Scholar 

    24.
    Last, P. R. et al. Long-term shifts in abundance and distribution of a temperate fish fauna: A response to climate change and fishing practices. Glob. Ecol. Biogeogr. 20, 58–72. https://doi.org/10.1111/j.1466-8238.2010.00575.x (2011).
    Article  Google Scholar 

    25.
    Robinson, L. M. et al. Rapid assessment of short-term datasets in an ocean warming hotspot reveals “high” confidence in potential range extensions. Glob. Environ. Change 31, 28–37 (2015).
    Article  Google Scholar 

    26.
    Frederiksen, M., Edwards, M., Richardson, A. J., Halliday, N. C. & Wanless, S. From plankton to top predators: Bottom-up control of a marine food web across four trophic levels. J. Anim. Ecol. 75, 1259–1268. https://doi.org/10.1111/j.1365-2656.2006.01148.x (2006).
    Article  PubMed  Google Scholar 

    27.
    27Warneke, R. M. & Shaughnessy, P. D. in Studies of Sea Mammals in South Latitudes 53–77 (1985).

    28.
    McIntosh, R. R. et al. Understanding meta-population trends of the Australian fur seal, with insights for adaptive monitoring. PLoS One 13, e0200253. https://doi.org/10.1371/journal.pone.0200253 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    29.
    Gibbens, J. & Arnould, J. P. Y. Interannual variation in pup production and the timing of breeding in benthic foraging Australian fur seals. Mar. Mammal Sci. 25, 573–587. https://doi.org/10.1111/j.1748-7692.2008.00270.x (2009).
    Article  Google Scholar 

    30.
    Kirkwood, R. et al. Continued population recovery by Australian fur seals. Mar. Freshw. Res. 61, 695–701. https://doi.org/10.1071/MF09213 (2010).
    CAS  Article  Google Scholar 

    31.
    Arnould, J. P. Y. & Warneke, R. M. Growth and condition in Australian fur seals (Arctocephalus pusillus doriferus) (Carnivora: Pinnipedia). Aust. J. Zool. https://doi.org/10.1071/zo01077 (2002).
    Article  Google Scholar 

    32.
    Boness, D. J. & Bowen, W. D. The evolution of maternal care in pinnipeds. Bioscience 46, 645–654. https://doi.org/10.2307/1312894 (1996).
    Article  Google Scholar 

    33.
    Arnould, J. P. Y. & Hindell, M. A. Dive behaviour, foraging locations, and maternal-attendance patterns of Australian fur seals (Arctocephalus pusillus doriferus). Can. J. Zool. 79, 35–48. https://doi.org/10.1139/cjz-79-1-35 (2001).
    Article  Google Scholar 

    34.
    Arnould, J. P. Y. & Kirkwood, R. Habitat selection by female Australian fur seals (Arctocephalus pusillus doriferus). Aquat. Conserv. Mar. Freshw. Ecosyst. 17, S53–S67. https://doi.org/10.1002/aqc.908 (2008).
    Article  Google Scholar 

    35.
    Kirkwood, R., Hume, F. & Hindell, M. Sea temperature variations mediate annual changes in the diet of Australian fur seals in Bass Strait. Mar. Ecol. Prog. Ser. 369, 297–309. https://doi.org/10.3354/meps07633 (2008).
    ADS  Article  Google Scholar 

    36.
    Deagle, B. E., Kirkwood, R. & Jarman, S. N. Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces. Mol. Ecol. 18, 2022–2038. https://doi.org/10.1111/j.1365-294X.2009.04158.x (2009).
    CAS  Article  PubMed  Google Scholar 

    37.
    Gales, R., Pemberton, D., Lu, C. C. & Clarke, M. R. Cephalopod diet of the Australian fur seal: Variation due to location, season and sample type. Mar. Freshw. Res. 44, 657–671. https://doi.org/10.1071/MF9930657 (1993).
    Article  Google Scholar 

    38.
    Gibbs, C. F., Tomczak, M. Jr. & Longmore, A. R. Nutrient regime of Bass Strait. Aust. J. Mar. Freshw. Res. 37, 451–466 (1986).
    CAS  Article  Google Scholar 

    39.
    Sandery, P. A. & Kämpf, J. Transport timescales for identifying seasonal variation in Bass Strait, south-eastern Australia. Estuar. Coast. Shelf Sci. 74, 684–696. https://doi.org/10.1016/j.ecss.2007.05.011 (2007).
    ADS  Article  Google Scholar 

    40.
    Sandery, P. A. & Kämpf, J. Winter-Spring flushing of Bass Strait, South-Eastern Australia: A numerical modelling study. Estuar. Coast. Shelf Sci. 63, 23–31. https://doi.org/10.1016/j.ecss.2004.10.009 (2005).
    ADS  Article  Google Scholar 

    41.
    Costa, D. P. & Gales, N. J. Energetics of a benthic diver: Seasonal foraging ecology of the Australian sea lion, Neophoca cinerea. Ecol. Monogr. 73, 27–43 (2003).
    Article  Google Scholar 

    42.
    Costa, D. P., Kuhn, C. E., Weise, M. J., Shaffer, S. A. & Arnould, J. P. Y. When does physiology limit the foraging behaviour of freely diving mammals?. Int. Congr. Ser. 1275, 359–366. https://doi.org/10.1016/j.ics.2004.08.058 (2004).
    Article  Google Scholar 

    43.
    Arnould, J. P. Y. & Costa, D. Sea Lions of the World: Conservation and Research in the 21st Century 309–323 (Fairbanks, Alaska, 2006).
    Google Scholar 

    44.
    Welsford, D. C. & Lyle, J. M. Redbait (Emmelichthys nitidus): A Synopsis of Fishery and Biological Data (Tasmanian Aquaculture and Fisheries Institute, Marine Research Laboratories, Hobart, 2003).
    Google Scholar 

    45.
    Smith-Vaniz, W. F. et al. Trachurus declivis. Report No. e.T20437665A67871520 (2018).

    46.
    Gaughan, D., Di Dario, F. & Hata, H. Sardinops sagax. Report No. e.T183347A143831586 (2018).

    47.
    Hume, F., Hindell, M. A., Pemberton, D. & Gales, R. Spatial and temporal variation in the diet of a high trophic level predator, the Australian fur seal (Arctocephalus pusillus doriferus). Mar. Biol. 144, 407–415. https://doi.org/10.1007/s00227-003-1219-0 (2004).
    Article  Google Scholar 

    48.
    Gibbens, J. & Arnould, J. P. Y. Age-specific growth, survival, and population dynamics of female Australian fur seals. Can. J. Zool. 87, 902–911 (2009).
    Article  Google Scholar 

    49.
    Hoskins, A. J. & Arnould, J. P. Y. Relationship between long-term environmental fluctuations and diving effort of female Australian fur seals. Mar. Ecol. Prog. Ser. 511, 285–295. https://doi.org/10.3354/meps10935 (2014).
    ADS  Article  Google Scholar 

    50.
    diveMove. R package version 1.4.5 (2019).

    51.
    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2019).

    52.
    Hoskins, A. J., Costa, D. P., Wheatley, K. E., Gibbens, J. R. & Arnould, J. P. Y. Influence of intrinsic variation on foraging behaviour of adult female Australian fur seals. Mar. Ecol. Prog. Ser. 526, 227–239 (2015).
    ADS  Article  Google Scholar 

    53.
    Hoskins, A. J. & Arnould, J. P. Y. Temporal allocation of foraging effort in female Australian fur seals (Arctocephalus pusillus doriferus). PLoS One 8, e79484. https://doi.org/10.1371/journal.pone.0079484 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    54.
    Costa, D. P. & Gales, N. J. Foraging energetics and diving behavior of lactating New Zealand sea lions, Phocarctos hookeri. J. Exp. Biol. 203, 3655–3665 (2000).
    CAS  PubMed  Google Scholar 

    55.
    Volpov, B. L. et al. Dive characteristics can predict foraging success in Australian fur seals (Arctocephalus pusillus doriferus) as validated by animal-borne video. Biol. Open 5, 262–271. https://doi.org/10.1242/bio.016659 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    56.
    Nel, D. C. et al. Exploitation of mesoscale oceanographic features by grey-headed albatross Thalassarche chrysostoma in the southern Indian Ocean. Mar. Ecol. Prog. Ser. 217, 15–26. https://doi.org/10.3354/meps217015 (2001).
    ADS  Article  Google Scholar 

    57.
    Gibbs, C. F. Oceanography of Bass Strait: Implications for the food supply of little penguins Eudyptula minor. Emu Aust. Ornithol. 91, 395–401. https://doi.org/10.1071/MU9910395 (1991).
    Article  Google Scholar 

    58.
    Nieblas, A. E., Sloyan, B. M., Hobday, A. J., Coleman, R. & Richardsone, A. J. Variability of biological production in low wind-forced regional upwelling systems: A case study off southeastern Australia. Limnol. Oceanogr. 54, 1548–1558. https://doi.org/10.4319/lo.2009.54.5.1548 (2009).
    ADS  Article  Google Scholar 

    59.
    Hoskins, A. J., Costa, D. P. & Arnould, J. P. Y. Utilisation of intensive foraging zones by female Australian fur seals. PLoS One 10, 1–19. https://doi.org/10.1371/journal.pone.0117997 (2015).
    CAS  Article  Google Scholar 

    60.
    Beggs, H. et al. RAMSSA—an operational, high-resolution, Regional Australian Multi-Sensor Sea surface temperature analysis over the Australian region. Aust. Meteorol. Oceanogr. J. 61, 1–22. https://doi.org/10.22499/2.6101.001 (2011).
    Article  Google Scholar 

    61.
    NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Chlorophyll Data (NASA OB.DAAC, Greenbelt, MD, USA, 2018 Reprocessing). https://doi.org/10.5067/ORBVIEW-2/SEAWIFS/L3M/CHL/2018.

    62.
    NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Chlorophyll Data (NASA OB.DAAC, Greenbelt, MD, USA, 2018 Reprocessing). https://doi.org/10.5067/AQUA/MODIS/L3M/CHL/2018.

    63.
    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238. https://doi.org/10.1016/j.pocean.2015.12.014 (2016).
    ADS  Article  Google Scholar 

    64.
    Saji, N. H., Goswami, B. N., Vinayachandran, P. N. & Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 401, 360–363. https://doi.org/10.1038/43854 (1999).
    ADS  CAS  Article  PubMed  Google Scholar 

    65.
    Saji, N. H. & Yamagata, T. Possible impacts of Indian Ocean dipole mode events on global climate. Clim. Res. 25, 151–169. https://doi.org/10.3354/cr025151 (2003).
    Article  Google Scholar 

    66.
    Neira, F. J., Lyle, J. M., Ewing, G. P., Keane, J. P. & Tracey, S. R. Evaluation of Egg Production as a Method of Estimating Spawning Biomass of Redbait off the East Coast of Tasmania (Institute for Marine, Tasmania, 2008).
    Google Scholar 

    67.
    Kemp, J., Jenkins, G. P. & Swearer, S. E. The reproductive strategy of red cod, Pseudophycis bachus, a key prey species for high trophic-level predators. Fish. Res. 125, 161–172. https://doi.org/10.1016/j.fishres.2012.02.021 (2012).
    Article  Google Scholar 

    68.
    Zuur, A., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x (2010).
    Article  Google Scholar 

    69.
    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, Berlin, 2009).
    Google Scholar 

    70.
    nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–140 (2019).

    71.
    Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall, London, 2017).
    Google Scholar 

    72.
    Wood, S. N. Thin-plate regression splines. J. R. Stat. Soc. (B) 65, 95–114 (2003).
    MathSciNet  Article  Google Scholar 

    73.
    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. (B) 73, 3–36 (2011).
    MathSciNet  Article  Google Scholar 

    74.
    MuMIn: Multi-Model Inference. R package version 1.43.6 (2019).

    75.
    Burnham, K. & Anderson, D. Model Selection and Multi-model Inference. 2nd (2002).

    76.
    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312. https://doi.org/10.1038/s41558-019-0412-1 (2019).
    ADS  Article  Google Scholar 

    77.
    Babcock, R. C. et al. Severe continental-scale impacts of climate change are happening now: Extreme climate events impact marine habitat forming communities along 45% of Australia’s coast. Front. Mar. Sci. 6, 411. https://doi.org/10.3389/fmars.2019.00411 (2019).
    Article  Google Scholar 

    78.
    Jones, T. et al. Massive mortality of a planktivorous seabird in response to a marine heatwave. Geophys. Res. Lett. 45, 3193–3202. https://doi.org/10.1002/2017GL076164 (2018).
    ADS  Article  Google Scholar 

    79.
    Willis-Norton, E. et al. Climate change impacts on leatherback turtle pelagic habitat in the Southeast Pacific. Deep Sea Res. Part II Top. Stud. Oceanography 113, 260–267. https://doi.org/10.1016/j.dsr2.2013.12.019 (2015).
    ADS  Article  Google Scholar 

    80.
    Merrifield, M. A., Thompson, P. R. & Lander, M. Multidecadal sea level anomalies and trends in the western tropical Pacific. Geophys. Res. Lett. https://doi.org/10.1029/2012GL052032 (2012).
    Article  Google Scholar 

    81.
    Kliska, K. Environmental Correlates of Temporal Variation in the Diet of Australian fur Seals. Master of Research thesis, Macquarie University (2015).

    82.
    Tosh, C. A. et al. The importance of seasonal sea surface height anomalies for foraging juvenile southern elephant seals. Mar. Biol. 162, 2131–2140. https://doi.org/10.1007/s00227-015-2743-4 (2015).
    CAS  Article  Google Scholar 

    83.
    Foo, D., Hindell, M., McMahon, C. R. & Goldsworthy, S. D. Identifying foraging habitats of adult female long-nosed fur seal Arctocephalus forsteri based on vibrissa stable isotopes. Mar. Ecol. Prog. Ser. 628, 223–234. https://doi.org/10.3354/meps13113 (2019).
    ADS  CAS  Article  Google Scholar 

    84.
    Lovenduski, N. S. Impact of the southern annular mode on Southern Ocean circulation and biology. Geophys. Res. Lett. https://doi.org/10.1029/2005gl022727 (2005).
    Article  Google Scholar 

    85.
    Middleton, J. F. et al. El Niño effects and upwelling off South Australia. J. Phys. Oceanogr. 37, 2458–2477. https://doi.org/10.1175/jpo3119.1 (2007).
    ADS  Article  Google Scholar 

    86.
    Armbrecht, L. H. et al. Phytoplankton composition under contrasting oceanographic conditions: Upwelling and downwelling (Eastern Australia). Cont. Shelf Res. 75, 54–67. https://doi.org/10.1016/j.csr.2013.11.024 (2014).
    ADS  Article  Google Scholar 

    87.
    Falkowski, P. & Kiefer, D. A. Chlorophyll a fluorescence in phytoplankton: Relationship to photosynthesis and biomass. J. Plankton Res. 7, 715–731. https://doi.org/10.1093/plankt/7.5.715 (1985).
    CAS  Article  Google Scholar 

    88.
    Lanz, E., Nevarez-Martinez, M., López-Martínez, J. & Dworak, J. A. Small pelagic fish catches in the Gulf of California associated with sea surface temperature and chlorophyll. CalCOFI Rep. 20, 134–146 (2009).
    Google Scholar 

    89.
    Ronconi, R. A. & Burger, A. E. Limited foraging flexibility: Increased foraging effort by a marine predator does not buffer against scarce prey. Mar. Ecol. Prog. Ser. 366, 245–258. https://doi.org/10.3354/meps07529 (2008).
    ADS  Article  Google Scholar 

    90.
    Kernaleguen, L. et al. From video recordings to whisker stable isotopes: A critical evaluation of timescale in assessing individual foraging specialisation in Australian fur seals. Oecologia 180, 657–670. https://doi.org/10.1007/s00442-015-3407-2 (2016).
    ADS  Article  PubMed  Google Scholar 

    91.
    Meyers, N. The Cost of a Meal: Foraging Ecology of Female Australian fur Seals. Master of Science in Marine Biological Resources (IMBRSea) thesis, Deakin University (2019).

    92.
    Cai, W., Cowan, T. & Sullivan, A. Recent unprecedented skewness towards positive Indian Ocean Dipole occurrences and its impact on Australian rainfall. Geophys. Res. Lett. https://doi.org/10.1029/2009gl037604 (2009).
    Article  Google Scholar 

    93.
    Sparling, C. E., Georges, J. Y., Gallon, S. L., Fedak, M. A. & Thompson, D. How long does a dive last? Foraging decisions by breath-hold divers in a patchy environment: A test of a simple model. Anim. Behav. 74, 207–218. https://doi.org/10.1016/j.anbehav.2006.06.022 (2007).
    Article  Google Scholar 

    94.
    Gutiérrez, M., Castillo, R., Segura, M., Peraltilla, S. & Flores, M. Trends in spatio-temporal distribution of Peruvian anchovy and other small pelagic fish biomass from 1966–2009. Latin Am. J. Aquat. Res. 40, 633–648. https://doi.org/10.3856/vol40-issue3-fulltext-12 (2012).
    Article  Google Scholar 

    95.
    Crocker, D., Costa, D. P., Le Boeuf, B. J., Webb, P. M. & Houser, D. S. Impact of El Niño on the foraging behavior of female northern elephant seals. Mar. Ecol. Prog. Ser. 309, 1–10. https://doi.org/10.3354/meps309001 (2006).
    ADS  Article  Google Scholar 

    96.
    Gillett, N. P., Kell, T. D. & Jones, P. D. Regional climate impacts of the Southern Annular Mode. Geophys. Res. Lett. https://doi.org/10.1029/2006gl027721 (2006).
    Article  Google Scholar 

    97.
    Costa, D. P. et al. Approaches to studying climatic change and its role on the habitat selection of antarctic pinnipeds. Integr. Comp. Biol. 50, 1018–1030. https://doi.org/10.1093/icb/icq054 (2010).
    Article  PubMed  Google Scholar 

    98.
    Tommasi, D. et al. Managing living marine resources in a dynamic environment: The role of seasonal to decadal climate forecasts. Prog. Oceanogr. 152, 15–49. https://doi.org/10.1016/j.pocean.2016.12.011 (2017).
    ADS  Article  Google Scholar 

    99.
    Schumann, N., Gales, N. J., Harcourt, R. G. & Arnould, J. P. Y. Impacts of climate change on Australian marine mammals. Aust. J. Zool. https://doi.org/10.1071/zo12131 (2013).
    Article  Google Scholar 

    100.
    Evans, P. G. & Bjørge, A. Impacts of climate change on marine mammals. MCCIP Sci. Rev. https://doi.org/10.14465/2013.arc15.134-148 (2013).
    Article  Google Scholar 

    101.
    Cansse, T., Fauchet, L., Wells, M. R. & Arnould, J. P. Y. Factors influencing prey capture success and profitability in Australasian gannets (Morus serrator). Biol. Open. https://doi.org/10.1242/bio.047514 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    102.
    Kowalczyk, N. D., Reina, R. D., Preston, T. J. & Chiaradia, A. Environmental variability drives shifts in the foraging behaviour and reproductive success of an inshore seabird. Oecologia 178, 967–979. https://doi.org/10.1007/s00442-015-3294-6 (2015).
    ADS  Article  PubMed  Google Scholar 

    103.
    Hindell, M. A. et al. Circumpolar habitat use in the southern elephant seal: Implications for foraging success and population trajectories. Ecosphere 7, e01213 (2016).
    Article  Google Scholar 

    104.
    Gong, T., Feldstein, S. B. & Luo, D. The impact of ENSO on wave breaking and southern annular mode events. J. Atmos. Sci. 67, 2854–2870. https://doi.org/10.1175/2010jas3311.1 (2010).
    ADS  Article  Google Scholar 

    105.
    Luo, J. et al. Interaction between El Niño and extreme Indian Ocean Dipole. J. Clim. 23, 726–742. https://doi.org/10.1175/2009JCLI3104.1 (2010).
    ADS  Article  Google Scholar 

    106.
    Chambers, L. E. et al. Determining trends and environmental drivers from long-term marine mammal and seabird data: Examples from Southern Australia. Reg. Environ. Change 15, 197–209. https://doi.org/10.1007/s10113-014-0634-8 (2014).
    Article  Google Scholar 

    107.
    Goldsworthy, S. D. et al. Trophodynamics of the eastern Great Australian Bight ecosystem: Ecological change associated with the growth of Australia’s largest fishery. Ecol. Model. 255, 38–57. https://doi.org/10.1016/j.ecolmodel.2013.01.006 (2013).
    Article  Google Scholar 

    108.
    Watson, R. A. et al. Ecosystem model of Tasmanian waters explores impacts of climate-change induced changes in primary productivity. Ecol. Model. 264, 115–129. https://doi.org/10.1016/j.ecolmodel.2012.05.008 (2013).
    Article  Google Scholar 

    109.
    Grose, M., Timbal, B., Wilson, L., Bathols, J. & Kent, D. The subtropical ridge in CMIP5 models, and implications for projections of rainfall in southeast Australia. Aust. Meteorol. Oceanogr. J. 65, 90–106 (2015).
    Article  Google Scholar 

    110.
    Pante, E. & Simon-Bouhet, B. marmap: A Package for importing, plotting and analyzing bathymetric and topographic data in R. PLoS One 8(9), e73051. https://doi.org/10.1371/journal.pone.0073051 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    111.
    Kelley, D. & Richards, C. oce: Analysis of Oceanographic Data. R package version 1.1-1. https://CRAN.R-project.org/package=oce (2019).

    112.
    Kelley, D. ocedata: Oceanographic Data Sets for ‘oce’ Package. R package version 0.1.5. https://CRAN.R-project.org/package=ocedata (2018).

    113.
    Adobe Inc. Adobe Illustrator. https://adobe.com/products/illustrator. (2019). More

  • in

    Large seasonal and spatial variation in nano- and microphytoplankton diversity along a Baltic Sea—North Sea salinity gradient

    1.
    Simon, N., Cras, A. L., Foulon, E. & Lemée, R. Diversity and evolution of marine phytoplankton. C. R. Biol 332, 159–170 (2009).
    PubMed  Article  Google Scholar 
    2.
    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Diaz, S. et al. IPBES: Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services. IPBES secretariat, Bonn, Germany, 56 pp. (2019).

    4.
    IPCC. The Ocean and Cryosphere in a changing climate (2019).

    5.
    Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    6.
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Gamfeldt, L. et al. Marine biodiversity and ecosystem functioning: what´s known and what´s next? Oikos 124, 252–265 (2015).
    Article  Google Scholar 

    8.
    Kardol, P., Fanin, N. & Wardle, D. A. Long-term effects of species loss on community properties across contrasting ecosystems. Nature 557, 710–713 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Klawonn, I. et al. Cell-specific nitrogen- and carbon-fixation of cyanobacteria in a temperate marine system (Baltic Sea). Environ. Microb. 18(12), 4596–4609 (2016).
    CAS  Article  Google Scholar 

    10.
    Cloern, J. E., Jassby, A. D., Schraga, T. S., Nejad, E. & Martin, C. Ecosystem variability along the estuarine salinity gradient: examples from long-term study of San Francisco Bay. Limnol. Oceanogr. 62, S272–S291 (2017).
    ADS  CAS  Article  Google Scholar 

    11.
    Karlusich, J. J. P., Ibarbalz, F. M., & Bowler. C. Phytoplankton in the Tara Ocean. Annu. Rev. Mar. Sci. 12, 233–265 (2020).

    12.
    Lehtimäki, J., Moisander, P., Sivonen, K. & Kononen, K. Growth, nitrogen fixation, and nodularin production by two Baltic Sea cyanobacteria. Appl. Environ. Microb. 63(5), 1647–1656 (1997).
    Article  Google Scholar 

    13.
    Laamanen, M. J., Forsström, L. & Sivonen, K. Diversity of Aphanizomenon flos aquae (cyanobacterium) populations along a Baltic Sea salinity gradient. Appl. Environ. Microb. 68, 5296–5303 (2002).
    CAS  Article  Google Scholar 

    14.
    Mazur-Marzec, H., Żeglińska, L. & Pliński, M. The effect of salinity on the growth, toxin production, and morphology of Nodularia spumigena isolated from Gulf of Gdańsk, southern Baltic Sea. J. Appl. Phycol. 17, 171–179 (2005).
    CAS  Article  Google Scholar 

    15.
    Teikari, J. E. et al. Insight into the genome and brackish water adaptation strategies of toxic and bloom-forming Baltic Sea Dolichospermum sp. UHCC 0315. Sci. Rep. 9, 4888 (2019).

    16.
    Logares, R. et al. Infrequent marine–freshwater transitions in the microbial world. Trends Microbiol. 17, 414–422 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Snoeijs-Leijonmalm, P. Patterns of biodiversity. In Biological Oceanography of the Baltic Sea (eds Snoeijs-Leijonmalm, P. et al.) 123–191 (Springer, Dordrecht, 2017).
    Google Scholar 

    18.
    Olli, K., Ptacnik, R., Klais, R. & Tamminen, T. Phytoplankton species richness along coastal and estuarine salinity continua. Am. Nat. 194, 2 (2019).
    Article  Google Scholar 

    19.
    Frenken, T. et al. Warming accelerates termination of a phytoplankton spring bloom by fungal parasites. Glob. Change Biol. 22, 299–309 (2016).
    ADS  Article  Google Scholar 

    20.
    Romo, S. & Villena, M-J. Phytoplankton strategies and diversity under different nutrient levels and planktivorous fish densities in a shallow Mediterranean lake. J. Plankton Res. 27, 1273–1286 (2005).

    21.
    Gasiunaite, Z. R. et al. Seasonality of coastal phytoplankton in the Baltic Sea: Influence of salinity and eutrophication. Est. Coast Shelf S. 65, 239–252 (2005).
    Article  Google Scholar 

    22.
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. R version 3.5.1. https://www.R-project.org/ (2018).

    23.
    Rodhe, J. On the dynamics of the large-scale circulation of Skagerrak. J. Sea Res. 35, 9–21 (1996).
    ADS  Google Scholar 

    24.
    Dutkiewicz, S. et al. Dimensions of marine phytoplankton diversity. Biogeosci. 17, 609–634 (2020).
    ADS  Article  Google Scholar 

    25.
    Olofsson, M., Suikkanen, S., Kobos, J., Wasmund, N. & Karlson, B. Basin-specific changes in filamentous cyanobacteria community composition across four decades in the Baltic Sea. Harm. Alg. 91, 101685 (2020).
    CAS  Article  Google Scholar 

    26.
    Andersson, A., Höglander, H., Karlsson, C. & Huseby, S. Key role of phosphorus and nitrogen in regulating cyanoacterial community composition in the northern Baltic Sea. Estuar. Coast Shelf S. 164, 161–171 (2015).
    CAS  Article  Google Scholar 

    27.
    Olofsson, M. et al. Nitrate and ammonium fluxes to diatoms and dinoflagellates at a single cell level in mixed field communities in the sea. Sci. Rep. 9, 1424 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    28.
    Adler, PB.. et al. Productivity is a poor predictor of plant species richness. Science 333: 1750–1753 (2011).

    29.
    Irigoien, J., Huisman, R. & Harris, P. Global biodiversity patterns of marine phytoplankton and zooplankton. Nature 429, 863–867 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    30.
    Vallina, S. M. et al. Global relationship between phytoplankton diversity and productivity in the ocean. Nat. Comms. 5, 4299 (2011).
    ADS  Article  CAS  Google Scholar 

    31.
    Righetti, D., Vogt, M., Gruber, N., Psomas, A. & Zimmermann, N. E. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci. Adv. 5, eaau6253 (2019).

    32.
    Vidal, T., Calado, A. J., Moita, M. T. & Cunha, M. R. Phytoplankton dynamics in relation to seasonal variability and upwelling and relaxation patterns at the mouth of Ria de Aveiro (West Iberian Margin) over a four-year period. PLoS ONE 12, e0177237 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    33.
    Shimadzu, H., Dornelas, M., Henderson, P. A. & Magurran, A. E. Diversity is maintained by seasonal variation in species abundance. BMC Biol. 11, 98 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    34.
    Ryther, J. & Sanders, J. Experimental evidence of zooplankton control of the species composition and size distribution of marine phytoplankton. Mar. Ecol. Prog. Ser. 3, 279–283 (1980).
    ADS  Article  Google Scholar 

    35.
    Thomas, K. & Nielsen, T. G. Regulation of zooplankton biomass and production in a temperate, coastal ecosystem. 1. Copepods. Limnol. Oceanogr. 39, 493–507 (1994).
    ADS  Article  Google Scholar 

    36.
    Amin, S. A., Parker, M. S. & Armbrust, E. V. Interactions between diatoms and bacteria. Microbiol. Mol. Biol. R. 76, 667–684 (2012).
    CAS  Article  Google Scholar 

    37.
    Durham, B. P. et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc. Nat. Acad. Sci. USA 112, 453–457 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Cirri, E. & Pohnert, G. Algae bacteria interactions that balance the planktonic microbiome. New Phytol. 223, 1–7 (2019).
    Article  Google Scholar 

    39.
    Bunse, C. et al. High frequency multi-year variability in Baltic Sea Microbial plankton stocks and activities. Front. Mar. Sci. 9, 3296 (2019).
    Google Scholar 

    40.
    Gallego, I., Venail, P. & Ibelings, B. W. Size differences predict niche and relative fitness differences between phytoplankton species but not their coexistence. ISME J. 13, 1133–1143 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Søndergaard, M., Jensen, L. M. & Ærtebjerg, G. Picoalgae in danish coastal waters during summer stratification. Mar. Ecol. Prog. Ser. 79, 139–149 (1992).
    ADS  Article  Google Scholar 

    42.
    Jochem, F. Distribution and importance of autotrophic ultraplankton in a boreal inshore area (Kiel Bight, Western Baltic). Mar. Ecol. Prog. Ser. 53, 153–168 (1989).
    ADS  Article  Google Scholar 

    43.
    Hu, Y. O. O., Karlson, B., Charvet, S. & Andersson, A. F. Diversity of pico- to mesoplankton along the 2000 km salinity gradient of the Baltic Sea. Front. Microbiol. 7, 17 (2016).
    Google Scholar 

    44.
    Gran-Stadniczeñko, S. et al. Protist diversity and seasonal dynamics in skagerrak plankton communities as revealed by metabarcoding and microscopy. J. Eukaryot. Microbiol. 66, 494–513 (2019).
    PubMed  Article  CAS  Google Scholar 

    45.
    Utermöhl, H. Zur Vervollkomnung der quantitativen Phytoplankton-Methodik. Mitt. Int. Ver. Theor. Angew. Limnol. 9, 1–38 (1958).
    Google Scholar 

    46.
    Olenina, I. et al. Biovolumes and size-classes of phytoplankton in the Baltic Sea HELCOM Balt. Sea Environ. Proc. 106, 144 (2006).
    Google Scholar 

    47.
    Menden-Deuer, S. & Lessard, E. J. Carbon to volume relationship for dinoflagellates, diatoms and other protest plankton. Limnol. Oceanogr. 45, 569–579 (2000).
    ADS  CAS  Article  Google Scholar 

    48.
    HELCOM 2017. Manual for marine monitoring in the COMBINE Programme of HELCOM. Part B General guidelines on quality assurance for monitoring in the Baltic Sea. Annex B-9 Technical note on the determination of nutrients.

    49.
    Karlson, B. et al. Plankton toolbox—open source software making it easier to work with plankton data. In: MacKenzie AL (ed). Proceedings of 16th International Conference on Harmful Algae. Cawthron Institute, Nelson, New Zealand and the International Society for the Study of Harmful Algae (ISSHA), pp. 194–197 (2016).

    50.
    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).
    Article  Google Scholar 

    51.
    Chao, A., Chiu, C. H. & Jost, L. Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through Hill numbers. Annu. Rev. Ecol. Evol. S. 45, 297–324 (2014).
    Article  Google Scholar 

    52.
    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).
    Article  Google Scholar 

    53.
    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4(2), 133–142 (2012).
    Article  Google Scholar 

    54.
    Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ. 6, e4794 (2018).
    PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Changing carbon-to-nitrogen ratios of organic-matter export under ocean acidification

    1.
    Kwon, E. Y., Primeau, F. & Sarmiento, J. L. The impact of remineralization depth on the air–sea carbon balance. Nat. Geosci. 2, 630–635 (2009).
    CAS  Article  Google Scholar 
    2.
    Volk, T. & Hoffert, M. I. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present Vol. 32 (eds Sundquist, E. T. & Broeker, W. S.) 99–110 (American Geophysical Union, 1985).

    3.
    Passow, U. & Carlson, C. A. The biological pump in a high CO2 world. Mar. Ecol. Prog. Ser. 470, 249–271 (2012).
    CAS  Article  Google Scholar 

    4.
    Martiny, A. C. et al. Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nat. Geosci. 6, 279–283 (2013).
    CAS  Article  Google Scholar 

    5.
    DeVries, T. New directions for ocean nutrients. Nat. Geosci. 11, 15–16 (2018).
    CAS  Article  Google Scholar 

    6.
    Redfield, A. in James Johnstone Memorial Volume (ed. Daniel, R. J.) 177–192 (University Press of Liverpool, 1934).

    7.
    Kroeker, K. J., Kordas, R. L., Crim, R. N. & Singh, G. G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13, 1419–1434 (2010).
    Article  Google Scholar 

    8.
    Riebesell, U. & Tortell, P. D. in Ocean Acidification (eds Gattuso, J. P. & Hansson, L.) 99–121 (Oxford Univ. Press, 2011).

    9.
    Boyd, P. W. & Newton, P. P. Does planktonic community structure determine downward particulate organic carbon flux in different oceanic provinces? Deep Sea Res. I 46, 63–91 (1999).
    CAS  Article  Google Scholar 

    10.
    Stange, P. et al. Ocean acidification-induced restructuring of the plankton food web can influence the degradation of sinking particles. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00140 (2018).

    11.
    Engel, A. et al. Impact of CO2 enrichment on organic matter dynamics during nutrient induced coastal phytoplankton blooms. J. Plankton Res. 36, 641–657 (2014).
    CAS  Article  Google Scholar 

    12.
    Riebesell, U. et al. Technical note: a mobile sea-going mesocosm system—new opportunities for ocean change research. Biogeosciences 10, 1835–1847 (2013).
    Article  Google Scholar 

    13.
    Sswat, M. et al. Food web changes under ocean acidification promote herring larvae survival. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-018-0514-6 (2018).

    14.
    Riebesell, U. et al. Enhanced biological carbon consumption in a high CO2 ocean. Nature 450, 545–548 (2007).
    CAS  Article  Google Scholar 

    15.
    Finkel, Z. V. et al. Phytoplankton in a changing world: cell size and elemental stoichiometry. J. Plankton Res. 32, 119–137 (2010).
    CAS  Article  Google Scholar 

    16.
    van de Waal, D. B., Verschoor, A. M., Verspagen, J. M. H., van Donk, E. & Huisman, J. Climate-driven changes in the ecological stoichiometry of aquatic ecosystems. Front. Ecol. Environ. 8, 145–152 (2010).
    Article  Google Scholar 

    17.
    Tagliabue, A., Bopp, L. & Gehlen, M. The response of marine carbon and nutrient cycles to ocean acidification: large uncertainties related to phytoplankton physiological assumptions. Glob. Biogeochem. Cycle https://doi.org/10.1029/2010gb003929 (2011).

    18.
    Thomas, H., Ittekkot, V., Osterroht, C. & Schneider, B. Preferential recycling of nutrients—the ocean’s way to increase new production and to pass nutrient limitation? Limnol. Oceanogr. 44, 1999–2004 (1999).
    CAS  Article  Google Scholar 

    19.
    Schneider, B., Schlitzer, R., Fischer, G. & Nothig, E. M. Depth-dependent elemental compositions of particulate organic matter (POM) in the ocean. Glob. Biogeochem. Cycle https://doi.org/10.1029/2002gb001871 (2003).

    20.
    Cripps, G., Flynn, K. J. & Lindeque, P. K. Ocean acidification affects the phyto-zoo plankton trophic transfer efficiency. PLoS ONE https://doi.org/10.1371/journal.pone.0151739 (2016).

    21.
    Thor, P. & Oliva, E. O. Ocean acidification elicits different energetic responses in an Arctic and a boreal population of the copepod Pseudocalanus acuspes. Mar. Biol. 162, 799–807 (2015).
    CAS  Article  Google Scholar 

    22.
    Endres, S., Galgani, L., Riebesell, U., Schulz, K. G. & Engel, A. Stimulated bacterial growth under elevated (p_{{rm{CO}}_{2}}): results from an off-shore mesocosm study. PLoS ONE 9, e99228 (2014).
    Article  Google Scholar 

    23.
    Piontek, J. et al. Response of bacterioplankton activity in an Arctic fjord system to elevated (p_{{rm{CO}}_{2}}): results from a mesocosm perturbation study. Biogeosciences 10, 297–314 (2013).
    Article  Google Scholar 

    24.
    Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).
    Article  Google Scholar 

    25.
    Taucher, J. & Oschlies, A. Can we predict the direction of marine primary production change under global warming? Geophys. Res. Lett. https://doi.org/10.1029/2010gl045934 (2011).

    26.
    Schneider, B., Engel, A. & Schlitzer, R. Effects of depth- and CO2-dependent C:N ratios of particulate organic matter (POM) on the marine carbon cycle. Glob. Biogeochem. Cycle https://doi.org/10.1029/2003gb002184 (2004).

    27.
    Oschlies, A., Schulz, K. G., Riebesell, U. & Schmittner, A. Simulated 21st century’s increase in oceanic suboxia by CO2-enhanced biotic carbon export. Glob. Biogeochem. Cycle https://doi.org/10.1029/2007gb003147 (2008).

    28.
    Broecker, W. S. & Henderson, G. M. The sequence of events surrounding Termination II and their implications for the cause of glacial–interglacial CO2 changes. Paleoceanography 13, 352–364 (1998).
    Article  Google Scholar 

    29.
    Broecker, W. S. Ocean chemistry during glacial time. Geochim. Cosmochim. Acta 46, 1689–1705 (1982).
    CAS  Article  Google Scholar 

    30.
    Boxhammer, T., Bach, L. T., Czerny, J. & Riebesell, U. Technical note: sampling and processing of mesocosm sediment trap material for quantitative biogeochemical analysis. Biogeosciences 13, 2849–2858 (2016).
    Article  Google Scholar 

    31.
    Sharp, J. H. Improved analysis for “particulate” organic carbon and nitrogen from seawater. Limnol. Oceanogr. 19, 984–989 (1974).
    CAS  Article  Google Scholar 

    32.
    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

    33.
    Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).
    Article  Google Scholar 

    34.
    Schartau, M., Landry, M. R. & Armstrong, R. A. Density estimation of plankton size spectra: a reanalysis of IronEx II data. J. Plankton Res. 32, 1167–1184 (2010).
    Article  Google Scholar 

    35.
    Mackey, M. D., Mackey, D. J., Higgins, H. W. & Wright, S. W. CHEMTAX—a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar. Ecol. Prog. Ser. 144, 265–283 (1996).
    CAS  Article  Google Scholar 

    36.
    Utermöhl, V. H. Neue Wege in der quantitativen Erfassung des Planktons. (Mit besondere Beriicksichtigung des Ultraplanktons). Verh. Internat. Verein. Theor. Angew. Limnol. 5, 567–595 (1931).
    Google Scholar 

    37.
    Bach, L. T., Riebesell, U. & Schulz, K. G. Distinguishing between the effects of ocean acidification and ocean carbonation in the coccolithophore Emiliania huxleyi. Limnol. Oceanogr. 56, 2040–2050 (2011).
    CAS  Article  Google Scholar 

    38.
    Stange et al. Quantifying the time lag between organic matter production and export in the surface ocean: implications for estimates of export efficiency. Geophys. Res. Lett. 44, 268–276 (2017).
    CAS  Article  Google Scholar  More

  • in

    The network structure and eco-evolutionary dynamics of CRISPR-induced immune diversification

    1.
    Labrie, S. J., Samson, J. E. & Moineau, S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8, 317–327 (2010).
    CAS  PubMed  Google Scholar 
    2.
    van Houte, S., Buckling, A. & Westra, E. R. Evolutionary ecology of prokaryotic immune mechanisms. Microbiol. Mol. Biol. Rev. 80, 745–763 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    3.
    Mayer, A., Mora, T., Rivoire, O. & Walczak, A. M. Diversity of immune strategies explained by adaptation to pathogen statistics. Proc. Natl Acad. Sci. USA 113, 8630–8635 (2016).
    CAS  PubMed  Google Scholar 

    4.
    Chevallereau, A., Meaden, S., van Houte, S., Westra, E. R. & Rollie, C. The effect of bacterial mutation rate on the evolution of CRISPR–Cas adaptive immunity. Philos. Trans. R. Soc. Lond. B 374, 20180094 (2019).
    CAS  Google Scholar 

    5.
    Gurney, J., Pleška, M. & Levin, B. R. Why put up with immunity when there is resistance: an excursion into the population and evolutionary dynamics of restriction–modification and CRISPR–Cas. Philos. Trans. R. Soc. Lond. B 374, 20180096 (2019).
    CAS  Google Scholar 

    6.
    Weitz, J. S. et al. Phage–bacteria infection networks. Trends Microbiol. 21, 82–91 (2013).
    CAS  PubMed  Google Scholar 

    7.
    Gurney, J. et al. Network structure and local adaptation in co-evolving bacteria-phage interactions. Mol. Ecol. 26, 1764–1777 (2017).
    CAS  PubMed  Google Scholar 

    8.
    Fortuna, M. A. et al. Coevolutionary dynamics shape the structure of bacteria-phage infection networks. Evolution 73, 1001–1011 (2019).
    PubMed  Google Scholar 

    9.
    Krasnov, B. R. et al. Phylogenetic signal in module composition and species connectivity in compartmentalized host-parasite networks. Am. Nat. 179, 501–511 (2012).
    PubMed  Google Scholar 

    10.
    Pilosof, S. et al. Host–parasite network structure is associated with community-level immunogenetic diversity. Nat. Commun. 5, 5172 (2014).
    CAS  PubMed  Google Scholar 

    11.
    Dallas, T. & Cornelius, E. Co-extinction in a host-parasite network: identifying key hosts for network stability. Sci. Rep. 5, 13185 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    12.
    Pilosof, S., Morand, S., Krasnov, B. R. & Nunn, C. L. Potential parasite transmission in multi-host networks based on parasite sharing. PLoS ONE 10, e0117909 (2015).
    PubMed  PubMed Central  Google Scholar 

    13.
    Vázquez, D. P., Poulin, R., Krasnov, B. R. & Shenbrot, G. I. Species abundance and the distribution of specialization in host–parasite interaction networks. J. Anim. Ecol. 74, 946–955 (2005).
    Google Scholar 

    14.
    Fortuna, M. A. et al. Nestedness versus modularity in ecological networks: two sides of the same coin? J. Anim. Ecol. 79, 811–817 (2010).
    PubMed  Google Scholar 

    15.
    Flores, C. O., Meyer, J. R., Valverde, S., Farr, L. & Weitz, J. S. Statistical structure of host–phage interactions. Proc. Natl Acad. Sci. USA 108, E288–E297 (2011).
    CAS  PubMed  Google Scholar 

    16.
    Beckett, S. J. & Williams, H. T. P. Coevolutionary diversification creates nested-modular structure in phage–bacteria interaction networks. Interface Focus 3, 20130033 (2013).
    PubMed  PubMed Central  Google Scholar 

    17.
    He, Q. et al. Networks of genetic similarity reveal non-neutral processes shape strain structure in Plasmodium falciparum. Nat. Commun. 9, 1817 (2018).
    PubMed  PubMed Central  Google Scholar 

    18.
    Pilosof, S. et al. Competition for hosts modulates vast antigenic diversity to generate persistent strain structure in plasmodium falciparum. PLoS Biol. 17, e3000336 (2019).
    PubMed  PubMed Central  Google Scholar 

    19.
    van der Oost, J., Westra, E. R., Jackson, R. N. & Wiedenheft, B. Unravelling the structural and mechanistic basis of CRISPR–Cas systems. Nat. Rev. Microbiol. 12, 479–492 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    20.
    Childs, L. M., Held, N. L., Young, M. J., Whitaker, R. J. & Weitz, J. S. Multiscale model of CRISPR-induced coevolutionary dynamics: diversification at the interface of Lamarck and Darwin. Evolution 66, 2015–2029 (2012).
    PubMed  PubMed Central  Google Scholar 

    21.
    Paez-Espino, D. et al. CRISPR immunity drives rapid phage genome evolution in Streptococcus thermophilus. mBio 6, e00262-15 (2015).
    PubMed  PubMed Central  Google Scholar 

    22.
    van Houte, S. et al. The diversity-generating benefits of a prokaryotic adaptive immune system. Nature 532, 385–388 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Daly, R. A. et al. Viruses control dominant bacteria colonizing the terrestrial deep biosphere after hydraulic fracturing. Nat. Microbiol. 4, 352–361 (2019).
    CAS  PubMed  Google Scholar 

    24.
    Pauly, M. D., Bautista, M. A., Black, J. A. & Whitaker, R. J. Diversified local CRISPR–Cas immunity to viruses of Sulfolobus islandicus. Philos. Trans. R. Soc. Lond. B 374, 20180093 (2019).
    CAS  Google Scholar 

    25.
    Childs, L. M., England, W. E., Young, M. J., Weitz, J. S. & Whitaker, R. J. CRISPR-induced distributed immunity in microbial populations. PLoS ONE 9, e101710 (2014).
    PubMed  PubMed Central  Google Scholar 

    26.
    Almeida-Neto, M. & Ulrich, W. A straightforward computational approach for measuring nestedness using quantitative matrices. Environ. Model. Softw. 26, 173–178 (2011).
    Google Scholar 

    27.
    Held, N. L., Herrera, A., Cadillo-Quiroz, H. & Whitaker, R. J. CRISPR associated diversity within a population of Sulfolobus islandicus. PLoS ONE 5, e12988 (2010).
    PubMed  PubMed Central  Google Scholar 

    28.
    England, W. E., Kim, T. & Whitaker, R. J. Metapopulation structure of CRISPR–Cas immunity in Pseudomonas aeruginosa and its viruses. mSystems 3, e00075-18 (2018).
    PubMed  PubMed Central  Google Scholar 

    29.
    Marvig, R. L., Sommer, L. M., Molin, S. & Johansen, H. K. Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis. Nat. Genet. 47, 57–64 (2015).
    CAS  PubMed  Google Scholar 

    30.
    Pirnay, J.-P. et al. Pseudomonas aeruginosa population structure revisited. PLoS ONE 4, e7740 (2009).
    PubMed  PubMed Central  Google Scholar 

    31.
    Hall, A. R., Scanlan, P. D., Morgan, A. D. & Buckling, A. Host–parasite coevolutionary arms races give way to fluctuating selection. Ecol. Lett. 14, 635–642 (2011).
    PubMed  Google Scholar 

    32.
    Levin, B. R., Moineau, S., Bushman, M. & Barrangou, R. The population and evolutionary dynamics of phage and bacteria with CRISPR-mediated immunity. PLoS Genet. 9, e1003312 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    33.
    Koskella, B. & Brockhurst, M. A. Bacteria–phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol. Rev. 38, 916–931 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    34.
    Weissman, J. L. et al. Immune loss as a driver of coexistence during host-phage coevolution. ISME J. 12, 585–597 (2018).
    PubMed  PubMed Central  Google Scholar 

    35.
    Braga, L. P. P., Soucy, S. M., Amgarten, D. E., da Silva, A. M. & Setubal, J. C. Bacterial diversification in the light of the interactions with phages: the genetic symbionts and their role in ecological speciation. Front. Ecol. Evol. 6, 6 (2018).
    Google Scholar 

    36.
    Fontaine, C. et al. The ecological and evolutionary implications of merging different types of networks. Ecol. Lett. 14, 1170–1181 (2011).
    PubMed  Google Scholar 

    37.
    Gupta, S. & Day, K. P. A strain theory of malaria transmission. Parasitol. Today 10, 476–481 (1994).
    CAS  PubMed  Google Scholar 

    38.
    Buckee, C. O., Recker, M., Watkins, E. R. & Gupta, S. Role of stochastic processes in maintaining discrete strain structure in antigenically diverse pathogen populations. Proc. Natl Acad. Sci. USA 108, 15504–15509 (2011).
    CAS  PubMed  Google Scholar 

    39.
    Artzy-Randrup, Y. et al. Population structuring of multi-copy, antigen-encoding genes in Plasmodium falciparum. eLife 1, e00093 (2012).
    PubMed  PubMed Central  Google Scholar 

    40.
    Zinder, D., Bedford, T., Gupta, S. & Pascual, M. The roles of competition and mutation in shaping antigenic and genetic diversity in influenza. PLoS Pathog. 9, e1003104 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Song, C., Rohr, R. P. & Saavedra, S. Why are some plant–pollinator networks more nested than others? J. Anim. Ecol. 86, 1417–1424 (2017).
    PubMed  Google Scholar 

    42.
    Chabas, H. et al. Evolutionary emergence of infectious diseases in heterogeneous host populations. PLoS Biol. 16, e2006738 (2018).
    PubMed  PubMed Central  Google Scholar 

    43.
    Iranzo, J., Lobkovsky, A. E., Wolf, Y. I. & Koonin, E. V. Evolutionary dynamics of the prokaryotic adaptive immunity system CRISPR–Cas in an explicit ecological context. J. Bacteriol. 195, 3834–3844 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    44.
    Staniczenko, P. P. A., Kopp, J. C. & Allesina, S. The ghost of nestedness in ecological networks. Nat. Commun. 4, 1391 (2013).
    PubMed  Google Scholar 

    45.
    Rosvall, M. & Bergstrom, C. T. Maps of random walks on complex networks reveal community structure. Proc. Natl Acad. Sci. USA 105, 1118–1123 (2008).
    CAS  PubMed  Google Scholar 

    46.
    Rosvall, M., Axelsson, D. & Bergstrom, C. T. The map equation. Eur. Phys. J. Spec. Top. 178, 13–23 (2010).
    Google Scholar 

    47.
    Farage, C., Edler, D., Eklöf, A., Rosvall, M. & Pilosof, S. A dynamical perspective to community detection in ecological networks. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/2020.04.14.040519v1 (2020).

    48.
    Newman, M. E. J. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004).
    CAS  Google Scholar 

    49.
    Lancichinetti, A. & Fortunato, S. Community detection algorithms: a comparative analysis. Phys. Rev. E 80, 056117 (2009).
    Google Scholar 

    50.
    Campbell, K. M. et al. Sulfolobus islandicus meta-populations in Yellowstone National Park hot springs. Environ. Microbiol. 19, 2334–2347 (2017).
    PubMed  Google Scholar 

    51.
    Bautista, M. A., Black, J. A., Youngblut, N. D. & Whitaker, R. J. Differentiation and structure in Sulfolobus islandicus rod-shaped virus populations. Viruses 9, 120 (2017).
    PubMed Central  Google Scholar  More