Identification of plastic-associated species in the Mediterranean Sea using DNA metabarcoding with Nanopore MinION
1.
Windsor, F. M. et al. A catchment-scale perspective of plastic pollution. Glob. Change Biol. 25, 1207–1221 (2019).
ADS Article Google Scholar
2.
Boucher, J. & Billard, G. The challenges of measuring plastic pollution. Field Actions Sci. Rep. J. Field Actions 19, 68–75 (2019).
Google Scholar
3.
Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).
ADS CAS PubMed Article PubMed Central Google Scholar
4.
Worm, B., Lotze, H. K., Jubinville, I., Wilcox, C. & Jambeck, J. Plastic as a persistent marine pollutant. Annu. Rev. Environ. Resour. 42, 1–26 (2017).
Article Google Scholar
5.
Amaral-Zettler, L. A., Zettler, E. R. & Mincer, T. J. Ecology of the plastisphere. Nat. Rev. Microbiol. 18, 139–151 (2020).
CAS PubMed Article PubMed Central Google Scholar
6.
Zettler, E. R., Mincer, T. J. & Amaral-Zettler, L. A. Life in the “plastisphere”: microbial communities on plastic marine debris. Environ. Sci. Technol. 47, 7137–7146 (2013).
ADS CAS PubMed Article PubMed Central Google Scholar
7.
Dussud, C. et al. Evidence of niche partitioning among bacteria living on plastics, organic particles and surrounding seawaters. Environ. Pollut. 236, 807–816 (2018).
CAS PubMed Article PubMed Central Google Scholar
8.
Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21, 2045–2050 (2012).
CAS PubMed Article PubMed Central Google Scholar
9.
De Tender, C. A. et al. Bacterial community profiling of plastic litter in the Belgian part of the North Sea. Environ. Sci. Technol. 49, 9629–9638 (2015).
ADS PubMed Article CAS PubMed Central Google Scholar
10.
Santos, A., van Aerle, R., Barrientos, L. & Martinez-Urtaza, J. Computational methods for 16S metabarcoding studies using Nanopore sequencing data. Comput. Struct. Biotechnol. J. 18, 296–305 (2020).
CAS PubMed PubMed Central Article Google Scholar
11.
Jacquin, J. et al. Microbial ecotoxicology of marine plastic debris: a review on colonization and biodegradation by the ‘plastisphere’. Front. Microbiol. 10, 865 (2019).
PubMed PubMed Central Article Google Scholar
12.
Bleidorn, C. Third generation sequencing: technology and its potential impact on evolutionary biodiversity research. Syst. Biodivers. 14, 1–8 (2016).
Article Google Scholar
13.
Krehenwinkel, H. et al. Nanopore sequencing of long ribosomal DNA amplicons enables portable and simple biodiversity assessments with high phylogenetic resolution across broad taxonomic scale. GigaScience 8, giz006 (2019).
PubMed PubMed Central Article CAS Google Scholar
14.
Pawlowski, J. et al. CBOL protist working group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biol. 10, e1001419 (2012).
CAS PubMed PubMed Central Article Google Scholar
15.
Leray, M. & Knowlton, N. Censusing marine eukaryotic diversity in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150331 (2016).
Article Google Scholar
16.
Piganeau, G., Eyre-Walker, A., Grimsley, N. & Moreau, H. How and why DNA barcodes underestimate the diversity of microbial eukaryotes. PLoS ONE 6, e16342 (2011).
ADS CAS PubMed PubMed Central Article Google Scholar
17.
Saunders, G. W. & Kucera, H. An evaluation of rbcL, tufA, UPA, LSU and ITS as DNA barcode markers for the marine green macroalgae. Cryptogamie Algologie 31, 487 (2010).
Google Scholar
18.
Schoch, C. L. et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. 109, 6241–6246 (2012).
ADS CAS PubMed Article PubMed Central Google Scholar
19.
Hebert, P. D., Cywinska, A., Ball, S. L. & Dewaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. Ser. B Biol. Sci. 270, 313–321 (2003).
CAS Article Google Scholar
20.
Bahram, M., Anslan, S., Hildebrand, F., Bork, P. & Tedersoo, L. Newly designed 16S rRNA metabarcoding primers amplify diverse and novel archaeal taxa from the environment. Environ. Microbiol. Rep. 11, 487–494 (2019).
PubMed Article PubMed Central Google Scholar
21.
Debeljak, P. et al. Extracting DNA from ocean microplastics: a method comparison study. Anal. Methods 9, 1521–1526 (2017).
CAS Article Google Scholar
22.
Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703 (1991).
CAS PubMed PubMed Central Article Google Scholar
23.
Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).
PubMed PubMed Central Google Scholar
24.
Hadziavdic, K. et al. Characterization of the 18S rRNA gene for designing universal eukaryote specific primers. PLoS ONE 9, e87624 (2014).
ADS PubMed PubMed Central Article CAS Google Scholar
25.
Vieira, H. H. et al. tufA gene as molecular marker for freshwater Chlorophyceae. Algae 31, 155–165 (2016).
CAS Article Google Scholar
26.
De Beeck, M. O. et al. Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies. PLoS ONE 9, e97629 (2014).
ADS Article Google Scholar
27.
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).
Article Google Scholar
28.
De Coster, W., D’Hert, S., Schultz, D. T., Cruts, M. & Van Broeckhoven, C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 34, 2666–2669 (2018).
PubMed PubMed Central Article CAS Google Scholar
29.
Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–864 (2011).
CAS PubMed PubMed Central Article Google Scholar
30.
Baloğlu, B. et al. A workflow for accurate metabarcoding using nanopore MinION sequencing. BioRxiv. https://doi.org/10.1101/2020.05.21.108852 (2020).
Article Google Scholar
31.
Srivathsan, A. et al. A Min IONTM-based pipeline for fast and cost-effective DNA barcoding. Mol. Ecol. Resour. 18, 1035–1049 (2018).
CAS Article Google Scholar
32.
Maestri, S. et al. A rapid and accurate MinION-based workflow for tracking species biodiversity in the field. Genes 10, 468 (2019).
CAS PubMed Central Article Google Scholar
33.
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).
CAS PubMed PubMed Central Article Google Scholar
34.
Voorhuijzen-Harink, M. M. et al. Toward on-site food authentication using nanopore sequencing. Food Chem. X2 (2019).
35.
Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, 259–264 (2019).
Article CAS Google Scholar
36.
Sauvage, T., Schmidt, W. E., Suda, S. & Fredericq, S. A metabarcoding framework for facilitated survey of endolithic phototrophs with tufA. BMC Ecol. 16, 8 (2016).
PubMed PubMed Central Article Google Scholar
37.
Heller, P., Casaletto, J., Ruiz, G. & Geller, J. A database of metazoan cytochrome c oxidase subunit I gene sequences derived from GenBank with CO-ARBitrator. Sci. Data 5, 180156 (2018).
CAS PubMed PubMed Central Article Google Scholar
38.
McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
ADS CAS PubMed PubMed Central Article Google Scholar
39.
Andersen, K. S., Kirkegaard, R. H., Karst, S. M. & Albertsen, M. ampvis2: an R package to analyse and visualise 16S rRNA amplicon data. BioRxiv, 299537 (2018).
40.
R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, 2014).
Google Scholar
41.
Mafune, K. K., Godfrey, B. J., Vogt, D. J. & Vogt, K. A. A rapid approach to profiling diverse fungal communities using the MinION™ nanopore sequencer. BioTechniques 68, 72–78 (2019).
PubMed Article CAS PubMed Central Google Scholar
42.
Herbst, F. A. et al. Elucidation of in situ polycyclic aromatic hydrocarbon degradation by functional metaproteomics (protein-SIP). Proteomics 13, 2910–2920 (2013).
CAS PubMed Article PubMed Central Google Scholar
43.
Jin, H. M., Kim, J. M., Lee, H. J., Madsen, E. L. & Jeon, C. O. Alteromonas as a key agent of polycyclic aromatic hydrocarbon biodegradation in crude oil-contaminated coastal sediment. Environ. Sci. Technol. 46, 7731–7740 (2012).
ADS CAS PubMed Article PubMed Central Google Scholar
44.
Lin, X., Yang, B., Shen, J. & Du, N. Biodegradation of crude oil by an Arctic psychrotrophic bacterium Pseudoalteromomas sp. P29. Curr. Microbiol. 59, 341–345 (2009).
CAS PubMed Article PubMed Central Google Scholar
45.
Hedlund, B. P. & Staley, J. T. Isolation and characterization of Pseudoalteromonas strains with divergent polycyclic aromatic hydrocarbon catabolic properties. Environ. Microbiol. 8, 178–182 (2006).
CAS PubMed Article PubMed Central Google Scholar
46.
Schneiker, S. et al. Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat. Biotechnol. 24, 997–1004 (2006).
CAS PubMed PubMed Central Article Google Scholar
47.
Yakimov, M. M. et al. Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int. J. Syst. Evolut. Microbiol. 48, 339–348 (1998).
CAS Google Scholar
48.
Delacuvellerie, A., Cyriaque, V., Gobert, S., Benali, S. & Wattiez, R. The plastisphere in marine ecosystem hosts potential specific microbial degraders including Alcanivorax borkumensis as a key player for the low-density polyethylene degradation. J. Hazard. Mater. 380, 120899 (2019).
CAS PubMed Article PubMed Central Google Scholar
49.
Wangensteen, O. S. & Turon, X. Metabarcoding techniques for assessing biodiversity of marine animal forests. Mar. Anim. For. Ecol. Benthic Biodivers. Hotspots 1, 445–503 (2017).
Article Google Scholar
50.
Truelove, N. K., Andruszkiewicz, E. A. & Block, B. A. A rapid environmental DNA method for detecting white sharks in the open ocean. Methods Ecol. Evol. 10, 1128–1135 (2019).
Article Google Scholar
51.
Gillespie, R. et al. Nanopore sequencing of long ribosomal DNA amplicons enables portable and simple biodiversity assessments with high phylogenetic resolution across broad taxonomic scale. GigaScience 8, giz006 (2019).
PubMed PubMed Central Article CAS Google Scholar
52.
Kono, N. & Arakawa, K. Nanopore sequencing: review of potential applications in functional genomics. Dev. Growth Differ. 61, 316–326 (2019).
PubMed Article PubMed Central Google Scholar
53.
Nair, S. A., Devassy, V., Dwivedi, S. & Selvakumar, R. Preliminary observations on tar-like material observed on some beaches. Curr. Sci. India 41, 766–767 (1972).
Google Scholar
54.
Kasai, Y. et al. Predominant growth of Alcanivorax strains in oil-contaminated and nutrient-supplemented sea water. Environ. Microbiol. 4, 141–147 (2002).
CAS PubMed Article PubMed Central Google Scholar
55.
Reisser, J. et al. Millimeter-sized marine plastics: a new pelagic habitat for microorganisms and invertebrates. PLoS ONE 9, e100289 (2014).
ADS PubMed PubMed Central Article CAS Google Scholar
56.
Masó, M., Fortuño, J. M., de Juan, S. & Demestre, M. Microfouling communities from pelagic and benthic marine plastic debris sampled across Mediterranean coastal waters. Sci. Mar. 80, 117–127 (2016).
Article Google Scholar
57.
Wang, S. et al. The interactions between microplastic polyvinyl chloride and marine diatoms: physiological, morphological, and growth effects. Ecotoxicol. Environ. Saf. 203, 111000 (2020).
CAS PubMed Article PubMed Central Google Scholar
58.
De Tender, C. et al. A review of microscopy and comparative molecular-based methods to characterize “Plastisphere” communities. Anal. Methods 9, 2132–2143 (2017).
Article CAS Google Scholar More