Flowering season of vernal herbs is shortened at elevated temperatures with reduced precipitation in early spring
1.
Walther, G. et al. Ecological responses to recent climate change. Nature 416, 389–395. https://doi.org/10.1038/416389a (2002).
ADS CAS Article PubMed Google Scholar
2.
Pereira, H. M. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501. https://doi.org/10.1126/science.1196624 (2010).
ADS CAS Article PubMed Google Scholar
3.
Carter, S. K., Saenz, D. & Rudolf, V. H. W. Shifts in phenological distributions reshape interaction potential in natural communities. Ecol. Lett. 21, 1143–1151. https://doi.org/10.1111/ele.13081 (2018).
Article PubMed Google Scholar
4.
Kahl, S. M., Lenhard, M. & Joshi, J. Compensatory mechanisms to climate change in the widely distributed species Silene vulgaris. J. Ecol. 107, 1918–1930. https://doi.org/10.1111/1365-2745.13133 (2019).
Article Google Scholar
5.
Easterling, D. R. et al. Climate extremes: observations, modeling, and impacts. Science 289, 2068–2074. https://doi.org/10.1126/science.289.5487.2068 (2000).
ADS CAS Article PubMed Google Scholar
6.
IPCC. Global Warming of 1.5°C: An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty https://www.ipcc.ch/sr15/ (2018).
7.
Wolkovich, et al. Warming experiments underpredict plant phenological responses to climate change. Nature 485, 494–497. https://doi.org/10.1038/nature11014 (2012).
ADS CAS Article PubMed Google Scholar
8.
Ahammed, G. J., Li, X., Wan, H., Zhou, G. & Cheng, Y. SlWRKY81 reduces drought tolerance by attenuating proline biosynthesis in tomato. Sci. Hortic. 270, 109444. https://doi.org/10.1016/j.scienta.2020.109444 (2020).
CAS Article Google Scholar
9.
Dorji, T. et al. Impacts of climate change on flowering phenology and production in alpine plants: the importance of end of flowering. Agric. Ecosyst. Environ. 291, 106795. https://doi.org/10.1016/j.agee.2019.106795 (2020).
Article Google Scholar
10.
Bertin, R. I. Plant phenology and distribution in relation to recent climate change. J. Torrey Bot. Soc. 135, 126–146. https://doi.org/10.3159/07-RP-035R.1 (2008).
Article Google Scholar
11.
Lawson, C. R., Vindenes, Y., Bailey, L. & van de Poll, M. Environmental variation and population responses to global change. Ecol. Lett. 18, 724–736. https://doi.org/10.1111/ele.12437 (2015).
Article PubMed Google Scholar
12.
Sherry, R. A. et al. Divergence of reproductive phenology under climate warming. Proc. Nat. Acad. Sci. USA 104, 198–202. https://doi.org/10.1073/pnas.0605642104 (2007).
ADS CAS Article PubMed Google Scholar
13.
Nicotra, A. B. et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15, 684–692. https://doi.org/10.1016/j.tplants.2010.09.008 (2010).
CAS Article PubMed Google Scholar
14.
Prevéy, J. S. et al. Warming shortens flowering seasons of tundra plant communities. Nat. Ecol. Evol. 3, 45–52. https://doi.org/10.1038/s41559-018-0745-6 (2019).
Article PubMed Google Scholar
15.
Ahammed, G. J., Li, X., Liu, A. & Chen, S. Physiological and defense responses of tea plants to elevated CO2: a review. Front. Plant Sci. 11, 305. https://doi.org/10.3389/fpls.2020.00305 (2020).
Article PubMed PubMed Central Google Scholar
16.
Fogelström, E. & Ehrlén, J. Phenotypic but not genotypic selection for earlier flowering in a perennial herb. J. Ecol. 107, 2650–2659. https://doi.org/10.1111/1365-2745.13240 (2019).
Article Google Scholar
17.
Badeck, F. et al. Responses of spring phenology to climate change. New Phytol. 162, 295–309. https://doi.org/10.1111/j.1469-8137.2004.01059.x (2004).
Article Google Scholar
18.
Ehrlén, J., Raabova, J. & Dahlgren, J. P. Flowering schedule in a perennial plant: life-history trade-offs, seed predation, and total offspring fitness. Ecology 96, 2280–2288. https://doi.org/10.1890/14-1860.1 (2015).
Article PubMed Google Scholar
19.
Körner, C. & Basler, D. Phenology under global warming. Science 327, 1461–1462. https://doi.org/10.1126/science.1186473 (2010).
ADS Article PubMed Google Scholar
20.
Gerst, K. L., Rossington, N. L. & Mazer, S. J. Phenological responsiveness to climate differs among four species of Quercus in North America. J. Ecol. 105, 1610–1622. https://doi.org/10.1111/1365-2745.12774 (2017).
Article Google Scholar
21.
Grossiord, C. et al. Precipitation, not air temperature, drives functional responses of trees in semi-arid ecosystems. J. Ecol. 105, 163–175. https://doi.org/10.1111/1365-2745.12662 (2017).
Article Google Scholar
22.
Crimmins, T. M., Crimmins, M. A. & Bertelsen, C. D. Onset of summer flowering in a ‘Sky Island’ is driven by monsoon moisture. New Phytol. 191, 468–479. https://doi.org/10.1111/j.1469-8137.2011.03705.x (2011).
Article PubMed Google Scholar
23.
Meng, F. D. et al. Changes in flowering functional group affect responses of community phenological sequences to temperature change. Ecology 98, 734–740. https://doi.org/10.1002/ecy.1685 (2017).
CAS Article PubMed Google Scholar
24.
Dunne, J. A., Harte, J. & Taylor, K. J. Subalpine meadow flowering phenology responses to climate change: integrating experimental and gradient methods. Ecol. Monogr. 73, 69–86. https://doi.org/10.1890/0012-9615(2003)073[0069:SMFPRT]2.0.CO;2 (2003).
Article Google Scholar
25.
Gugger, S., Kesselring, H., Stöcklin, J. & Hamann, E. Lower plasticity exhibited by high- versus mid- elevation species in their phenological responses to manipulated temperature and drought. Annu. Bot. 116, 953–962. https://doi.org/10.1093/aob/mcv155 (2015).
Article Google Scholar
26.
Richardson, A. D. et al. Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature 560, 368–371. https://doi.org/10.1038/s41586-018-0399-1 (2018).
ADS CAS Article PubMed Google Scholar
27.
Fenner, M. The phenology of growth and reproduction in plants. Perspect. Plant Ecol. 1, 78–91. https://doi.org/10.1078/1433-8319-00053 (1998).
Article Google Scholar
28
Lee, H. & Kang, H. Temperature-driven changes of pollinator assemblage and activity of Megaleranthis saniculifolia (Ranunculaceae) at high altitudes on Mt. Sobaeksan, South Korea. J. Ecol. Environ. 42, 31. https://doi.org/10.1186/s41610-018-0092-1 (2018).
Article Google Scholar
29.
Yu, H., Luedeling, E. & Xu, J. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc. Nat. Acad. Sci. USA 107, 22151–22156. https://doi.org/10.1073/pnas.1012490107 (2010).
ADS Article PubMed Google Scholar
30.
Cook, B. I., Wolkovich, E. M. & Parmesan, C. Divergent responses to spring and winter warming drive community level flowering trends. Proc. Nat. Acad. Sci. USA 109, 9000–9005. https://doi.org/10.1073/pnas.1118364109 (2012).
ADS Article PubMed Google Scholar
31.
Meier, A. J., Bratton, S. P. & Duffy, D. C. Possible ecological mechanisms for loss of vernal-herb diversity in logged eastern deciduous forests. Ecol. Appl. 5, 935–946. https://doi.org/10.2307/2269344 (1995).
Article Google Scholar
32.
Sung, J. et al. Growth environment and vegetation structure of native habitat of Corydalis cornupetala. Korean J. Environ. Ecol. 27, 271–279 (2013).
Google Scholar
33.
Augspurger, C. K. & Salk, C. F. Constraints of cold and shade on the phenology of spring ephemeral herb species. J. Ecol. 105, 246–254. https://doi.org/10.1111/1365-2745.12651 (2017).
CAS Article Google Scholar
34.
Rizhsky, L. et al. When defense pathways collide: the response of Arabidopsis to a combination of drought and heat stress. Plant Physiol. 134, 1683–1696. https://doi.org/10.1104/pp.103.033431 (2004).
CAS Article PubMed PubMed Central Google Scholar
35.
Su, Z. et al. Flower development under drought stress: morphological and transcriptomic analyses reveal acute response of long-term acclimation in Arabidopsis. Plant Cell 25, 3785–3807. https://doi.org/10.1105/tpc.113.115428 (2013).
CAS Article PubMed PubMed Central Google Scholar
36.
Vallales, F., Wright, S. J., Lasso, E., Kitajima, K. & Pearcy, R. W. Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology 81, 1925–1936. https://doi.org/10.1890/0012-9658(2000)081[1925:PPRTLO]2.0.CO;2 (2000).
Article Google Scholar
37.
Valladares, F., Sanchez-Gomez, D. & Zavala, M. A. Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. J. Ecol. 94, 1103–1116. https://doi.org/10.1111/j.1365-2745.2006.01176.x (2006).
Article Google Scholar
38.
CaraDonna, P. J., Iler, A. M. & Inouye, D. W. Shifts in flowering phenology reshape a subalpine plant community. Proc. Nat. Acad. Sci. USA 111, 13. https://doi.org/10.1073/pnas.1323073111 (2014).
CAS Article Google Scholar
39.
Forrest, J. & Miller-Rushing, A. J. Toward a synthetic understanding of the role of phenology in ecology and evolution. Philos. Trans. Biol. Sci. 365, 3101–3112. https://doi.org/10.1098/rstb.2010.0145 (2010).
Article Google Scholar
40.
Richardson, A. D. et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 169, 156–173. https://doi.org/10.1016/j.agrformet.2012.09.012 (2013).
ADS Article Google Scholar
41.
Richards, F. J. A flexible growth function for empirical use. J. Exp. Bot. 29, 290–300. https://doi.org/10.1093/jxb/10.2.290 (1959).
Article Google Scholar
42.
Barnabás, B., Jäger, K. & Fehér, A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 31, 11–38. https://doi.org/10.1111/j.1365-3040.2007.01727.x (2008).
CAS Article PubMed Google Scholar
43.
Limousin, J.-M. et al. Morphological and phenological shoot plasticity in a Mediterranean evergreen oak facing long-term increased drought. Oecologia 169, 565–577. https://doi.org/10.1007/s00442-011-2221-8 (2012).
ADS Article PubMed Google Scholar
44.
Li, X. et al. Exogeneous melatonin improves tea quality under moderate high temperatures by increasing epigallacatechin-3-gallate and theanine biosynthesis in Camellia sinensis L. J. Plant Physiol. 253, 153273. https://doi.org/10.1016/j.jplph.2020.153273 (2020).
CAS Article PubMed Google Scholar
45.
Wheeler, J. A. et al. The snow and the willows: earlier spring snowmelt reduces performance in the low-lying alpine shrub Salix herbacea. J. Ecol. 104, 1041–1050. https://doi.org/10.1111/1365-2745.12579 (2016).
CAS Article Google Scholar
46.
Llorens, L. & Peñuelas, J. Experimental evidence of future drier and warmer conditions affecting flowering of two co-occurring Mediterranean shrubs. Int. J. Plant Sci. 166, 235–245. https://doi.org/10.1086/427480 (2005).
Article Google Scholar
47.
Bernal, M., Estiarte, M. & Penuelas, J. Drought advances spring growth phenology of the Mediterranean shrub Erica multiflora. Plant Biol. 13, 252–257. https://doi.org/10.1111/j.1438-8677.2010.00358.x (2011).
CAS Article PubMed Google Scholar
48.
Shavrukov, Y. et al. Early flowering as a drought escape mechanism in plants: how can it aid wheat production?. Front. Plant Sci. 8, 1950. https://doi.org/10.3389/fpls.2017.01950 (2017).
Article PubMed PubMed Central Google Scholar
49.
Sherry, R. A. et al. Changes in duration of reproductive phases and lagged phenological response to experimental climate warming. Plant Ecol. Divers. 4, 23–35. https://doi.org/10.1080/17550874.2011.557669 (2011).
Article Google Scholar
50.
Prasad, P. V. V., Pisipati, S. R., Momčilović, I. & Ristic, Z. Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. J. Agric. Crop Sci. 197(430–441), 2011. https://doi.org/10.1111/j.1439-037X.2011.00477.x (2011).
CAS Article Google Scholar
51.
Zong, J.-M. et al. The AaDREB1 transcription factor from the cold-tolerant plant Adonis amurensis enhances abiotic stress tolerance in transgenic plant. Int. J. Mol. Sci. 17, 611. https://doi.org/10.3390/ijms17040611 (2016).
ADS CAS Article PubMed Central Google Scholar
52.
Żuraw, B., Rysiak, K. & Szymczak, G. Ecology and morphology of the flowers of Hepatica nobilisSchreb. (Ranunculaceae). Mod. Phytomorphol. 4, 39–43. https://doi.org/10.5281/zenodo.161177 (2013).
Article Google Scholar
53.
Kalliovirta, M., Ryttäri, T. & Heikkinen, R. K. Population structure of a threatened plant, Pulsatilla patens, in boreal forests: modeling relationships to overgrowth and site closure. Biodivers. Conserv. 15, 3095–3108. https://doi.org/10.1007/s10531-005-5403-z (2006).
Article Google Scholar
54
Inghe, O. & Tamm, C. O. Survival and flowering of perennial herbs. IV. The behavior of Hepatica nobilis and Sanicula europaea on permanent plots during 1943–1981. Oikos 45, 400–420. https://doi.org/10.2307/3565576 (1985).
Article Google Scholar
55.
Lee, T. B. Colored Flora of Korea (Hyangmunsa, Seoul, 2003).
Google Scholar
56.
Kang, H. & Jang, S. Flowering patterns among angiosperm species in Korea: diversity and constraints. J. Plant Biol. 47, 348–355. https://doi.org/10.1007/BF03030550 (2004).
Article Google Scholar
57.
Culley, T. M. Reproductive biology and delayed selfing in Viola pubscens (Violaceae), an understory herb with chasmogamous and cleistogamous flowers. Int. J. Plant Sci. 163, 113–122. https://doi.org/10.1086/324180 (2002).
Article Google Scholar
58.
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, https://www.R-project.org (2017). More