More stories

  • in

    Flowering season of vernal herbs is shortened at elevated temperatures with reduced precipitation in early spring

    1.
    Walther, G. et al. Ecological responses to recent climate change. Nature 416, 389–395. https://doi.org/10.1038/416389a (2002).
    ADS  CAS  Article  PubMed  Google Scholar 
    2.
    Pereira, H. M. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501. https://doi.org/10.1126/science.1196624 (2010).
    ADS  CAS  Article  PubMed  Google Scholar 

    3.
    Carter, S. K., Saenz, D. & Rudolf, V. H. W. Shifts in phenological distributions reshape interaction potential in natural communities. Ecol. Lett. 21, 1143–1151. https://doi.org/10.1111/ele.13081 (2018).
    Article  PubMed  Google Scholar 

    4.
    Kahl, S. M., Lenhard, M. & Joshi, J. Compensatory mechanisms to climate change in the widely distributed species Silene vulgaris. J. Ecol. 107, 1918–1930. https://doi.org/10.1111/1365-2745.13133 (2019).
    Article  Google Scholar 

    5.
    Easterling, D. R. et al. Climate extremes: observations, modeling, and impacts. Science 289, 2068–2074. https://doi.org/10.1126/science.289.5487.2068 (2000).
    ADS  CAS  Article  PubMed  Google Scholar 

    6.
    IPCC. Global Warming of 1.5°C: An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty https://www.ipcc.ch/sr15/ (2018).

    7.
    Wolkovich, et al. Warming experiments underpredict plant phenological responses to climate change. Nature 485, 494–497. https://doi.org/10.1038/nature11014 (2012).
    ADS  CAS  Article  PubMed  Google Scholar 

    8.
    Ahammed, G. J., Li, X., Wan, H., Zhou, G. & Cheng, Y. SlWRKY81 reduces drought tolerance by attenuating proline biosynthesis in tomato. Sci. Hortic. 270, 109444. https://doi.org/10.1016/j.scienta.2020.109444 (2020).
    CAS  Article  Google Scholar 

    9.
    Dorji, T. et al. Impacts of climate change on flowering phenology and production in alpine plants: the importance of end of flowering. Agric. Ecosyst. Environ. 291, 106795. https://doi.org/10.1016/j.agee.2019.106795 (2020).
    Article  Google Scholar 

    10.
    Bertin, R. I. Plant phenology and distribution in relation to recent climate change. J. Torrey Bot. Soc. 135, 126–146. https://doi.org/10.3159/07-RP-035R.1 (2008).
    Article  Google Scholar 

    11.
    Lawson, C. R., Vindenes, Y., Bailey, L. & van de Poll, M. Environmental variation and population responses to global change. Ecol. Lett. 18, 724–736. https://doi.org/10.1111/ele.12437 (2015).
    Article  PubMed  Google Scholar 

    12.
    Sherry, R. A. et al. Divergence of reproductive phenology under climate warming. Proc. Nat. Acad. Sci. USA 104, 198–202. https://doi.org/10.1073/pnas.0605642104 (2007).
    ADS  CAS  Article  PubMed  Google Scholar 

    13.
    Nicotra, A. B. et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15, 684–692. https://doi.org/10.1016/j.tplants.2010.09.008 (2010).
    CAS  Article  PubMed  Google Scholar 

    14.
    Prevéy, J. S. et al. Warming shortens flowering seasons of tundra plant communities. Nat. Ecol. Evol. 3, 45–52. https://doi.org/10.1038/s41559-018-0745-6 (2019).
    Article  PubMed  Google Scholar 

    15.
    Ahammed, G. J., Li, X., Liu, A. & Chen, S. Physiological and defense responses of tea plants to elevated CO2: a review. Front. Plant Sci. 11, 305. https://doi.org/10.3389/fpls.2020.00305 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    16.
    Fogelström, E. & Ehrlén, J. Phenotypic but not genotypic selection for earlier flowering in a perennial herb. J. Ecol. 107, 2650–2659. https://doi.org/10.1111/1365-2745.13240 (2019).
    Article  Google Scholar 

    17.
    Badeck, F. et al. Responses of spring phenology to climate change. New Phytol. 162, 295–309. https://doi.org/10.1111/j.1469-8137.2004.01059.x (2004).
    Article  Google Scholar 

    18.
    Ehrlén, J., Raabova, J. & Dahlgren, J. P. Flowering schedule in a perennial plant: life-history trade-offs, seed predation, and total offspring fitness. Ecology 96, 2280–2288. https://doi.org/10.1890/14-1860.1 (2015).
    Article  PubMed  Google Scholar 

    19.
    Körner, C. & Basler, D. Phenology under global warming. Science 327, 1461–1462. https://doi.org/10.1126/science.1186473 (2010).
    ADS  Article  PubMed  Google Scholar 

    20.
    Gerst, K. L., Rossington, N. L. & Mazer, S. J. Phenological responsiveness to climate differs among four species of Quercus in North America. J. Ecol. 105, 1610–1622. https://doi.org/10.1111/1365-2745.12774 (2017).
    Article  Google Scholar 

    21.
    Grossiord, C. et al. Precipitation, not air temperature, drives functional responses of trees in semi-arid ecosystems. J. Ecol. 105, 163–175. https://doi.org/10.1111/1365-2745.12662 (2017).
    Article  Google Scholar 

    22.
    Crimmins, T. M., Crimmins, M. A. & Bertelsen, C. D. Onset of summer flowering in a ‘Sky Island’ is driven by monsoon moisture. New Phytol. 191, 468–479. https://doi.org/10.1111/j.1469-8137.2011.03705.x (2011).
    Article  PubMed  Google Scholar 

    23.
    Meng, F. D. et al. Changes in flowering functional group affect responses of community phenological sequences to temperature change. Ecology 98, 734–740. https://doi.org/10.1002/ecy.1685 (2017).
    CAS  Article  PubMed  Google Scholar 

    24.
    Dunne, J. A., Harte, J. & Taylor, K. J. Subalpine meadow flowering phenology responses to climate change: integrating experimental and gradient methods. Ecol. Monogr. 73, 69–86. https://doi.org/10.1890/0012-9615(2003)073[0069:SMFPRT]2.0.CO;2 (2003).
    Article  Google Scholar 

    25.
    Gugger, S., Kesselring, H., Stöcklin, J. & Hamann, E. Lower plasticity exhibited by high- versus mid- elevation species in their phenological responses to manipulated temperature and drought. Annu. Bot. 116, 953–962. https://doi.org/10.1093/aob/mcv155 (2015).
    Article  Google Scholar 

    26.
    Richardson, A. D. et al. Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature 560, 368–371. https://doi.org/10.1038/s41586-018-0399-1 (2018).
    ADS  CAS  Article  PubMed  Google Scholar 

    27.
    Fenner, M. The phenology of growth and reproduction in plants. Perspect. Plant Ecol. 1, 78–91. https://doi.org/10.1078/1433-8319-00053 (1998).
    Article  Google Scholar 

    28
    Lee, H. & Kang, H. Temperature-driven changes of pollinator assemblage and activity of Megaleranthis saniculifolia (Ranunculaceae) at high altitudes on Mt. Sobaeksan, South Korea. J. Ecol. Environ. 42, 31. https://doi.org/10.1186/s41610-018-0092-1 (2018).
    Article  Google Scholar 

    29.
    Yu, H., Luedeling, E. & Xu, J. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc. Nat. Acad. Sci. USA 107, 22151–22156. https://doi.org/10.1073/pnas.1012490107 (2010).
    ADS  Article  PubMed  Google Scholar 

    30.
    Cook, B. I., Wolkovich, E. M. & Parmesan, C. Divergent responses to spring and winter warming drive community level flowering trends. Proc. Nat. Acad. Sci. USA 109, 9000–9005. https://doi.org/10.1073/pnas.1118364109 (2012).
    ADS  Article  PubMed  Google Scholar 

    31.
    Meier, A. J., Bratton, S. P. & Duffy, D. C. Possible ecological mechanisms for loss of vernal-herb diversity in logged eastern deciduous forests. Ecol. Appl. 5, 935–946. https://doi.org/10.2307/2269344 (1995).
    Article  Google Scholar 

    32.
    Sung, J. et al. Growth environment and vegetation structure of native habitat of Corydalis cornupetala. Korean J. Environ. Ecol. 27, 271–279 (2013).
    Google Scholar 

    33.
    Augspurger, C. K. & Salk, C. F. Constraints of cold and shade on the phenology of spring ephemeral herb species. J. Ecol. 105, 246–254. https://doi.org/10.1111/1365-2745.12651 (2017).
    CAS  Article  Google Scholar 

    34.
    Rizhsky, L. et al. When defense pathways collide: the response of Arabidopsis to a combination of drought and heat stress. Plant Physiol. 134, 1683–1696. https://doi.org/10.1104/pp.103.033431 (2004).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    35.
    Su, Z. et al. Flower development under drought stress: morphological and transcriptomic analyses reveal acute response of long-term acclimation in Arabidopsis. Plant Cell 25, 3785–3807. https://doi.org/10.1105/tpc.113.115428 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    36.
    Vallales, F., Wright, S. J., Lasso, E., Kitajima, K. & Pearcy, R. W. Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology 81, 1925–1936. https://doi.org/10.1890/0012-9658(2000)081[1925:PPRTLO]2.0.CO;2 (2000).
    Article  Google Scholar 

    37.
    Valladares, F., Sanchez-Gomez, D. & Zavala, M. A. Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. J. Ecol. 94, 1103–1116. https://doi.org/10.1111/j.1365-2745.2006.01176.x (2006).
    Article  Google Scholar 

    38.
    CaraDonna, P. J., Iler, A. M. & Inouye, D. W. Shifts in flowering phenology reshape a subalpine plant community. Proc. Nat. Acad. Sci. USA 111, 13. https://doi.org/10.1073/pnas.1323073111 (2014).
    CAS  Article  Google Scholar 

    39.
    Forrest, J. & Miller-Rushing, A. J. Toward a synthetic understanding of the role of phenology in ecology and evolution. Philos. Trans. Biol. Sci. 365, 3101–3112. https://doi.org/10.1098/rstb.2010.0145 (2010).
    Article  Google Scholar 

    40.
    Richardson, A. D. et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 169, 156–173. https://doi.org/10.1016/j.agrformet.2012.09.012 (2013).
    ADS  Article  Google Scholar 

    41.
    Richards, F. J. A flexible growth function for empirical use. J. Exp. Bot. 29, 290–300. https://doi.org/10.1093/jxb/10.2.290 (1959).
    Article  Google Scholar 

    42.
    Barnabás, B., Jäger, K. & Fehér, A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 31, 11–38. https://doi.org/10.1111/j.1365-3040.2007.01727.x (2008).
    CAS  Article  PubMed  Google Scholar 

    43.
    Limousin, J.-M. et al. Morphological and phenological shoot plasticity in a Mediterranean evergreen oak facing long-term increased drought. Oecologia 169, 565–577. https://doi.org/10.1007/s00442-011-2221-8 (2012).
    ADS  Article  PubMed  Google Scholar 

    44.
    Li, X. et al. Exogeneous melatonin improves tea quality under moderate high temperatures by increasing epigallacatechin-3-gallate and theanine biosynthesis in Camellia sinensis L. J. Plant Physiol. 253, 153273. https://doi.org/10.1016/j.jplph.2020.153273 (2020).
    CAS  Article  PubMed  Google Scholar 

    45.
    Wheeler, J. A. et al. The snow and the willows: earlier spring snowmelt reduces performance in the low-lying alpine shrub Salix herbacea. J. Ecol. 104, 1041–1050. https://doi.org/10.1111/1365-2745.12579 (2016).
    CAS  Article  Google Scholar 

    46.
    Llorens, L. & Peñuelas, J. Experimental evidence of future drier and warmer conditions affecting flowering of two co-occurring Mediterranean shrubs. Int. J. Plant Sci. 166, 235–245. https://doi.org/10.1086/427480 (2005).
    Article  Google Scholar 

    47.
    Bernal, M., Estiarte, M. & Penuelas, J. Drought advances spring growth phenology of the Mediterranean shrub Erica multiflora. Plant Biol. 13, 252–257. https://doi.org/10.1111/j.1438-8677.2010.00358.x (2011).
    CAS  Article  PubMed  Google Scholar 

    48.
    Shavrukov, Y. et al. Early flowering as a drought escape mechanism in plants: how can it aid wheat production?. Front. Plant Sci. 8, 1950. https://doi.org/10.3389/fpls.2017.01950 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    49.
    Sherry, R. A. et al. Changes in duration of reproductive phases and lagged phenological response to experimental climate warming. Plant Ecol. Divers. 4, 23–35. https://doi.org/10.1080/17550874.2011.557669 (2011).
    Article  Google Scholar 

    50.
    Prasad, P. V. V., Pisipati, S. R., Momčilović, I. & Ristic, Z. Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. J. Agric. Crop Sci. 197(430–441), 2011. https://doi.org/10.1111/j.1439-037X.2011.00477.x (2011).
    CAS  Article  Google Scholar 

    51.
    Zong, J.-M. et al. The AaDREB1 transcription factor from the cold-tolerant plant Adonis amurensis enhances abiotic stress tolerance in transgenic plant. Int. J. Mol. Sci. 17, 611. https://doi.org/10.3390/ijms17040611 (2016).
    ADS  CAS  Article  PubMed Central  Google Scholar 

    52.
    Żuraw, B., Rysiak, K. & Szymczak, G. Ecology and morphology of the flowers of Hepatica nobilisSchreb. (Ranunculaceae). Mod. Phytomorphol. 4, 39–43. https://doi.org/10.5281/zenodo.161177 (2013).
    Article  Google Scholar 

    53.
    Kalliovirta, M., Ryttäri, T. & Heikkinen, R. K. Population structure of a threatened plant, Pulsatilla patens, in boreal forests: modeling relationships to overgrowth and site closure. Biodivers. Conserv. 15, 3095–3108. https://doi.org/10.1007/s10531-005-5403-z (2006).
    Article  Google Scholar 

    54
    Inghe, O. & Tamm, C. O. Survival and flowering of perennial herbs. IV. The behavior of Hepatica nobilis and Sanicula europaea on permanent plots during 1943–1981. Oikos 45, 400–420. https://doi.org/10.2307/3565576 (1985).
    Article  Google Scholar 

    55.
    Lee, T. B. Colored Flora of Korea (Hyangmunsa, Seoul, 2003).
    Google Scholar 

    56.
    Kang, H. & Jang, S. Flowering patterns among angiosperm species in Korea: diversity and constraints. J. Plant Biol. 47, 348–355. https://doi.org/10.1007/BF03030550 (2004).
    Article  Google Scholar 

    57.
    Culley, T. M. Reproductive biology and delayed selfing in Viola pubscens (Violaceae), an understory herb with chasmogamous and cleistogamous flowers. Int. J. Plant Sci. 163, 113–122. https://doi.org/10.1086/324180 (2002).
    Article  Google Scholar 

    58.
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, https://www.R-project.org (2017). More

  • in

    In vivo assessment of mitochondrial respiratory alternative oxidase activity and cyclic electron flow around photosystem I on small coral fragments

    1.
    Falkowski, P. G., Dubinsky, Z., Muscatine, L. & Porter, J. W. Light and the bioenergetics of a symbiotic coral. Bioscience 34, 705–709 (1984).
    CAS  Article  Google Scholar 
    2.
    Morris, L. A., Voolstra, C. R., Quigley, K. M., Bourne, D. G. & Bay, L. K. Nutrient availability and metabolism affect the stability of coral–symbiodiniaceae symbioses. Trends Microbiol. 27, 678–689 (2019).
    CAS  PubMed  Article  Google Scholar 

    3.
    LaJeunesse, T. C. et al. Systematic revision of symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570-2580.e6 (2018).
    CAS  PubMed  Article  Google Scholar 

    4.
    Cunning, R., Silverstein, R. N. & Baker, A. C. Symbiont shuffling linked to differential photochemical dynamics of Symbiodinium in three Caribbean reef corals. Coral Reefs 37, 145–152 (2018).
    ADS  Article  Google Scholar 

    5.
    Muscatine, L., Falkowski, P. G., Porter, J. W. & Dubinsky, Z. Fate of photosynthetic fixed carbon in light- and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Proc. R. Soc. B Biol. Sci. 222, 181–202 (1984).
    ADS  CAS  Google Scholar 

    6.
    Porter, J. W. Primary productivity in the sea: Reef corals in situ. In Primary Productivity in the Sea. Environmental Science Research (ed. Falkowski, P. G.) 403–410 (Springer, Boston, 1980).
    Google Scholar 

    7.
    Patterson, M. R., Sebens, K. P. & Olson, R. O. In situ measurements of flow effects on primary production and dark respiration in reef corals. Limnol. Oceanogr. 36, 936–948 (1991).
    ADS  CAS  Article  Google Scholar 

    8.
    Wangpraseurt, D. et al. Spectral effects on Symbiodinium photobiology studied with a programmable light engine. PLoS ONE 9, e112809 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    9.
    Kühl, M. et al. Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O2, pH and light. Mar. Ecol. Prog. Ser. 117, 159–172 (1995).
    ADS  Article  Google Scholar 

    10.
    Burriesci, M. S., Raab, T. K. & Pringle, J. R. Evidence that glucose is the major transferred metabolite in dinoflagellate-cnidarian symbiosis. J. Exp. Biol. 215, 3467–3477 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Houlbrèque, F. & Ferrier-Pagès, C. Heterotrophy in tropical scleractinian corals. Biol. Rev. 84, 1–17 (2009).
    PubMed  Article  Google Scholar 

    12.
    Holcomb, M., Tambutté, E., Allemand, D. & Tambutté, S. Light enhanced calcification in Stylophora pistillata: effects of glucose, glycerol and oxygen. PeerJ 2, e375 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    13.
    Agostini, S., Fujimura, H., Hayashi, H. & Fujita, K. Mitochondrial electron transport activity and metabolism of experimentally bleached hermatypic corals. J. Exp. Mar. Biol. Ecol. 475, 100–107 (2016).
    CAS  Article  Google Scholar 

    14.
    Imbs, A. B. & Yakovleva, I. M. Dynamics of lipid and fatty acid composition of shallow-water corals under thermal stress: and experimental approach. Coral Reefs 31, 31–41 (2012).
    ADS  Article  Google Scholar 

    15.
    Dunn, S. R., Pernice, M., Green, K., Hoegh-Guldberg, O. & Dove, S. G. Thermal stress promotes host mitochondrial degradation in symbiotic cnidarians: are the batteries of the reef going to run out?. PLoS ONE 7, e39024 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Blackstone, N. Mitochondria and the redox control of development in cnidarians. Semin. Cell Dev. Biol. 20, 330–336 (2009).
    CAS  PubMed  Article  Google Scholar 

    17.
    McDonald, A. E., Vanlerberghe, G. C. & Staples, J. F. Alternative oxidase in animals: unique characteristics and taxonomic distribution. J. Exp. Biol. 212, 2627–2634 (2009).
    CAS  PubMed  Article  Google Scholar 

    18.
    McDonald, A. E. & Gospodaryov, D. V. Alternative NAD(P)H dehydrogenase and alternative oxidase: proposed physiological roles in animals. Mitochondrion 45, 7–17 (2019).
    CAS  PubMed  Article  Google Scholar 

    19.
    Raven, J. A. & Beardall, J. Consequences of the genotypic loss of mitochondrial Complex I in dinoflagellates and of phenotypic regulation of Complex I content in other photosynthetic organisms. J. Exp. Bot. 68, 2683–2692 (2017).
    CAS  Article  Google Scholar 

    20.
    Oakley, C. A., Hopkinson, B. M. & Schmidt, G. W. Mitochondrial terminal alternative oxidase and its enhancement by thermal stress in the coral symbiont Symbiodinium. Coral Reefs 33, 543–552 (2014).
    ADS  Article  Google Scholar 

    21.
    Nelson, H. R. & Altieri, A. H. Oxygen: The universal currency on coral reefs. Coral Reefs 38, 177–189 (2019).
    ADS  Article  Google Scholar 

    22.
    Iglesias-prieto, A. R., Govind, N. S. & Trench, R. K. Isolation and characterization of three membrane bound chlorophyll-protein complexes from four dinoflagellate species. Philos. Trans. R. Soc. Lond. B 340, 381–392 (1993).
    CAS  Article  Google Scholar 

    23.
    Aihara, Y., Takahashi, S. & Minagawa, J. Heat induction of cyclic electron flow around photosystem I in the symbiotic dinoflagellate Symbiodinium. Plant Physiol. 171, 522–529 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Leggat, W., Badger, M. & Yellowlees, D. Evidence for an inorganic carbon-concentrating mechanism in the symbiotic dinoflagellate Symbiodinium sp. Plant Physiol. 121, 1247–1255 (1999).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Raven, J. A., Suggett, D. J. & Giordano, M. Inorganic carbon concentrating mechanisms in free-living and symbiotic dinoflagellates and chromerids. J. Phycol. https://doi.org/10.1111/jpy.13050 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    26.
    Barott, K. L. et al. Coral host cells acidify symbiotic algal microenvironment to promote photosynthesis. Proc. Natl. Acad. Sci. USA 112, 607–612 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Mayfield, A. B., Hsiao, Y. Y., Chen, H. K. & Chen, C. S. Rubisco expression in the dinoflagellate Symbiodinium sp. is influenced by both photoperiod and endosymbiotic lifestyle. Mar. Biotechnol. 16, 371–384 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Tremblay, P., Grover, R., Maguer, J. F., Legendre, L. & Ferrier-Pagès, C. Autotrophic carbon budget in coral tissue: A new 13C-based model of photosynthate translocation. J. Exp. Biol. 215, 1384–1393 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Maor-Landaw, K., van Oppen, M. J. H. & McFadden, G. I. Symbiotic lifestyle triggers drastic changes in the gene expression of the algal endosymbiont Breviolum minutum (Symbiodiniaceae). Ecol. Evol. 10, 451–466 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    30.
    Roth, M. S. The engine of the reef: photobiology of the coral-algal symbiosis. Front. Microbiol. 5, 1–22 (2014).
    ADS  Article  Google Scholar 

    31.
    Roberty, S., Béraud, E., Grover, R. & Ferrier-Pagès, C. Coral productivity is co-limited by bicarbonate and ammonium availability. Microorganisms 8, 640 (2020).
    PubMed Central  Article  PubMed  Google Scholar 

    32.
    Tchernov, D. et al. Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc. Natl. Acad. Sci. USA 101, 13531–13535 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    33.
    Cardol, P., Forti, G. & Finazzi, G. Regulation of electron transport in microalgae. Biochim. Biophys. Acta 1807, 912–918 (2011).
    CAS  PubMed  Article  Google Scholar 

    34.
    Papageorgiou, G. C. Chlorophyll a Fluorescence. A Signature of Photosynthesis (Springer, Dordrecht, 2004).
    Google Scholar 

    35.
    Hennige, S. J., Suggett, D. J., Warner, M. E., McDougall, K. E. & Smith, D. J. Photobiology of Symbiodinium revisited: Bio-physical and bio-optical signatures. Coral Reefs 28, 179–195 (2009).
    ADS  Article  Google Scholar 

    36.
    Reynolds, J. M. C., Bruns, B. U., Fitt, W. K. & Schmidt, G. W. Enhanced photoprotection pathways in symbiotic dinoflagellates of shallow-water corals and other cnidarians. Proc. Natl. Acad. Sci. USA 105, 17206 (2008).
    CAS  Article  Google Scholar 

    37.
    Roberty, S., Bailleul, B., Berne, N., Franck, F. & Cardol, P. PSI Mehler reaction is the main alternative photosynthetic electron pathway in Symbiodinium sp., symbiotic dinoflagellates of cnidarians. New Phytol. 204, 81–91 (2014).
    CAS  PubMed  Article  Google Scholar 

    38.
    Dang, K. V., Pierangelini, M., Roberty, S. & Cardol, P. Alternative photosynthetic electron transfers and bleaching phenotypes upon acute heat stress in Symbiodinium and Breviolum spp. (Symbiodiniaceae) in culture. Front. Mar. Sci. 6, 1–10 (2019).
    Article  Google Scholar 

    39.
    Hoogenboom, M. O., Campbell, D. A., Beraud, E., DeZeeuw, K. & Ferrier-Pagès, C. Effects of light, food availability and temperature stress on the function of photosystem II and photosystem I of coral symbionts. PLoS ONE 7, e30167 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Szabó, M. et al. Non-intrusive assessment of photosystem II and photosystem I in whole coral tissues. Front. Mar. Sci. 4, 269 (2017).
    Article  Google Scholar 

    41.
    Enríquez, S., Méndez, E. R. & Iglesias-Prieto, R. Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol. Oceanogr. 50, 1025–1032 (2005).
    ADS  Article  Google Scholar 

    42.
    Gilmore, A. M. et al. Simultaneous time resolution of the emission spectra of fluorescent proteins and zooxanthellar chlorophyll in reef-building corals. Photochem. Photobiol. 77, 515 (2003).
    CAS  PubMed  Article  Google Scholar 

    43.
    Maxwell, K. & Johnson, G. N. Chlorophyll fluorescence-a practical guide. J. Exp. Bot. 51, 659–668 (2000).
    CAS  PubMed  Article  Google Scholar 

    44.
    Sandmann, G., Reck, H., Kessler, E. & Böger, P. Distribution of plastocyanin and soluble plastidic cytochrome c in various classes of algae. Arch. Microbiol. 134, 23–27 (1983).
    CAS  Article  Google Scholar 

    45.
    Schreiber, U. Redox changes of ferredoxin, P700, and plastocyanin measured simultaneously in intact leaves. Photosynth. Res. 134, 343–360 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Joliot, P. & Joliot, A. Quantification of cyclic and linear flows in plants. Proc. Natl. Acad. Sci. USA 102, 4913–4918 (2005).
    ADS  CAS  PubMed  Article  Google Scholar 

    47.
    Witt, H. et al. Species-specific differences of the spectroscopic properties of P700: Analysis of the influence of non-conserved amino acid residues by site-directed mutagenesis of photosystem I from Chlamydomonas reinhardtii. J. Biol. Chem. 278, 46760–46771 (2003).
    CAS  PubMed  Article  Google Scholar 

    48.
    Klughammer, C. & Schreiber, U. An improved method, using saturating light pulses, for the determination of photosystem I quantum yield via P700+-absorbance changes at 830 nm. Planta 192, 261–268 (1994).
    CAS  Article  Google Scholar 

    49.
    Bailleul, B., Cardol, P., Breyton, C. & Finazzi, G. Electrochromism: A useful probe to study algal photosynthesis. Photosynth. Res. 106, 179–189 (2010).
    CAS  PubMed  Article  Google Scholar 

    50.
    Vega De Luna, F., Dang, K. V., Cardol, M., Roberty, S. & Cardol, P. Photosynthetic capacity of the endosymbiotic dinoflagellate Cladocopium sp. is preserved during digestion of its jellyfish host Mastigias papua by the anemone Entacmaea medusivora. FEMS Microbiol. Ecol. 95, 1–7 (2019).
    Google Scholar 

    51.
    Ritchie, R. J. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth. Res. 89, 27–41 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Hume, B. C. C. et al. An improved primer set and amplification protocol with increased specificity and sensitivity targeting the Symbiodinium ITS2 region. PeerJ 6, e4816 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    53.
    Hume, B. C. C. et al. SymPortal: A novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. Mol. Ecol. Resour. 19, 1063–1080 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Shafir, S., Van Rijn, J. & Rinkevich, B. Nubbing of coral colonies: a novel approach for the development of inland broodstocks. Aquar. Sci. Conserv. 3, 183–190 (2001).
    Article  Google Scholar 

    55.
    Hoadley, K. D. et al. Host–symbiont combinations dictate the photo-physiological response of reef-building corals to thermal stress. Sci. Rep. 9, 1–15 (2019).
    CAS  Article  Google Scholar 

    56.
    Heyward, A. J. & Collins, J. D. Fragmentation in Montipora ramosa: the genet and ramet concept applied to a reef coral. Coral Reefs 4, 35–40 (1985).
    ADS  Article  Google Scholar 

    57.
    Raz-Bahat, M., Erez, J. & Rinkevich, B. In vivo light-microscopic documentation for primary calcification processes in the hermatypic coral Stylophora pistillata. Cell Tissue Res. 325, 361–368 (2006).
    PubMed  Article  Google Scholar 

    58.
    Warner, M. E., Fitt, W. K. & Schmidt, G. W. Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc. Natl. Acad. Sci. USA 96, 8007–8012 (1999).
    ADS  CAS  PubMed  Article  Google Scholar 

    59.
    Rehman, A. U. et al. Symbiodinium sp. cells produce light-induced intra- and extracellular singlet oxygen, which mediates photodamage of the photosynthetic apparatus and has the potential to interact with the animal host in coral symbiosis. New Phytol. 212, 472–484 (2016).
    CAS  PubMed  Article  Google Scholar 

    60.
    Hill, R. & Ralph, P. J. Dark-induced reduction of the plastoquinone pool in zooxanthellae of scleractinian corals and implications for measurements of chlorophyll a fluorescence. Symbiosis 46, 45–56 (2008).
    CAS  Google Scholar 

    61.
    Einbinder, S. et al. Novel adaptive photosynthetic characteristics of mesophotic symbiotic microalgae within the reef-building coral, Stylophora pistillata. Front. Mar. Sci. 3, 1–9 (2016).
    Article  Google Scholar 

    62.
    Mass, T. et al. Photoacclimation of Stylophora pistillata to light extremes: metabolism and calcification. Mar. Ecol. Prog. Ser. 334, 93–102 (2007).
    ADS  CAS  Article  Google Scholar 

    63.
    Ferrier-Pagès, C., Gattuso, J. P., Dallot, S. & Jaubert, J. Effect of nutrient enrichment on growth and photosynthesis of the zooxanthellae coral Stylophora pistillata. Coral Reefs 19, 103–113 (2000).
    Article  Google Scholar 

    64.
    Peltier, G., Tolleter, D., Billon, E. & Cournac, L. Auxiliary electron transport pathways in chloroplasts of microalgae. Photosynth. Res. 106, 19–31 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Pierangelini, M., Thiry, M. & Cardol, P. Different levels of energetic coupling between photosynthesis and respiration do not determine the occurrence of adaptive responses of Symbiodiniaceae to global warming. New Phytol. https://doi.org/10.1111/nph.16738 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    66.
    Bailleul, B. et al. Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms. Nature 524, 366–369 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    Badger, M. R. et al. Electron flow to oxygen in higher plants and algae: Rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase. Philos. Trans. R. Soc. B 355, 1433–1446 (2000).
    CAS  Article  Google Scholar 

    68.
    Fan, D. Y. et al. Obstacles in the quantification of the cyclic electron flux around photosystem I in leaves of C3 plants. Photosynth. Res. 129, 239–251 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    69.
    Szabó, M. et al. Effective light absorption and absolute electron transport rates in the coral Pocillopora damicornis. Plant Physiol. Biochem. 83, 159–167 (2014).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    70.
    Kato, H. et al. Characterization of a giant photosystem I supercomplex in the symbiotic dinoflagellate Symbiodiniaceae. Plant Physiol. https://doi.org/10.1104/pp.20.00726 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    71.
    Alric, J. Cyclic electron flow around photosystem I in unicellular green algae. Photosynth. Res. 106, 47–56 (2010).
    CAS  PubMed  Article  Google Scholar 

    72.
    Melis, A. & Jeanette, J. S. Stoichiometry of system I and system II reaction centers and of plastoquinone in different photosynthetic membranes. Proc. Natl. Acad. Sci. USA. 77, 4712–4716 (1980).
    ADS  CAS  PubMed  Article  Google Scholar  More

  • in

    The daily resolved temperature dependence and structure of planktonic foraminifera blooms

    1.
    Bé, A. W. An ecological, zoogeographic and taxonomic review of Recent planktonic foraminifera. In Oceanic micropaleontology (ed. Ramsay, A. T. S.) 1–100 (Academic Press, New York, 1977).
    Google Scholar 
    2.
    Schiebel, R. & Hemleben, C. Planktic Foraminifera in the Modern Ocean (Springer, Berlin, 2017).
    Google Scholar 

    3.
    Taylor, B. J. et al. Distribution and ecology of planktic foraminifera in the North Pacific: implications for paleo-reconstructions. Quat. Sci. Rev. 191, 256–274 (2018).
    ADS  Article  Google Scholar 

    4.
    Schiebel, R. Planktic foraminiferal sedimentation and the marine calcite budget. Global Biogeochem. Cycles 16, 3-1-3–21 (2002).
    Article  CAS  Google Scholar 

    5.
    Kucera, M. Chapter six planktonic foraminifera as tracers of past oceanic environments. Dev. Mar. Geol. 1, 213–262 (2007).
    Google Scholar 

    6.
    Fox, L., Stukins, S., Hill, T. & Miller, C. G. Quantifying the Effect of Anthropogenic Climate Change on Calcifying Plankton. Sci. Rep. 10, 1620 (2020).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    7.
    De Moel, H. et al. Planktic foraminiferal shell thinning in the Arabian Sea due to anthropogenic ocean acidification?. Biogeosci. Discuss. 6, 1811–1835 (2009).
    ADS  Article  Google Scholar 

    8.
    Moy, A. D., Howard, W. R., Bray, S. G. & Trull, T. W. Reduced calcification in modern Southern Ocean planktonic foraminifera. Nat. Geosci. 2, 276–280 (2009).
    ADS  Article  CAS  Google Scholar 

    9.
    Jonkers, L., Hillebrand, H. & Kucera, M. Global change drives modern plankton communities away from the pre-industrial state. Nature 570, 372–375 (2019).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    10.
    Wefer, G., Berger, W. H., Bijma, J. & Fischer, G. Clues to ocean history: a brief overview of proxies. In Use of Proxies in Paleoceanography 1–68 (Springer, Berlin, 1999). http://doi.org/10.1007/978-3-642-58646-0_1

    11
    Bé, A. W. H., Bishop, J. K. B., Sverdlove, M. S. & Gardner, W. D. Standing stock, vertical distribution and flux of planktonic foraminifera in the Panama Basin. Mar. Micropaleontol. 9, 307–333 (1985).
    ADS  Article  Google Scholar 

    12.
    Pados, T. & Spielhagen, R. F. Species distribution and depth habitat of recent planktic foraminifera in Fram Strait, Arctic Ocean. Polar Res. 33, 22483 (2014).
    Article  Google Scholar 

    13.
    Salmon, K. H., Anand, P., Sexton, P. F. & Conte, M. Upper ocean mixing controls the seasonality of planktonic foraminifer fluxes and associated strength of the carbonate pump in the oligotrophic North Atlantic. Biogeosciences 12, 223–235 (2015).
    ADS  Article  Google Scholar 

    14.
    Žarić, S., Donner, B., Fischer, G., Mulitza, S. & Wefer, G. Sensitivity of planktic foraminifera to sea surface temperature and export production as derived from sediment trap data. Mar. Micropaleontol. 55, 75–105 (2005).
    ADS  Article  Google Scholar 

    15.
    Schiebel, R., Waniek, J., Bork, M. & Hemleben, C. Planktic foraminiferal production stimulated by chlorophyll redistribution and entrainment of nutrients. Deep Sea Res. Part I 48, 721–740 (2001).
    Article  CAS  Google Scholar 

    16.
    Venancio, I. M. et al. Planktonic foraminifera shell fluxes from a weekly resolved sediment trap record in the southwestern Atlantic: evidence for synchronized reproduction. Mar. Micropaleontol. 125, 25–35 (2016).
    ADS  Article  Google Scholar 

    17.
    Erez, J. & Honjo, S. Comparison of isotopic composition of planktonic foraminifera in plankton tows, sediment traps and sediments. Palaeogeogr. Palaeoclimatol. Palaeoecol. 33, 129–156 (1981).
    Article  Google Scholar 

    18.
    Deuser, W. G., Ross, E. H., Hemleben, C. & Spindler, M. Seasonal changes in species composition, numbers, mass, size, and isotopic composition of planktonic foraminifera settling into the deep Sargasso Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 33, 103–127 (1981).
    Article  Google Scholar 

    19.
    Deuser, W. G. & Ross, E. H. Seasonally abundant planktonic foraminifera of the Sargasso Sea: succession, deep-water fluxes, isotopic compositions, and paleoceanographic implications. J. Foraminifer. Res. 19, 268–293 (1989).
    Article  Google Scholar 

    20.
    Sautter, L. R. & Thunell, R. C. Seasonal succession of planktonic Foraminifera: results from a four-year time-series sediment trap experiment in the Northeast Pacific. J. Foraminifer. Res. 19, 253–267 (1989).
    Article  Google Scholar 

    21.
    Curry, W. B., Thunell, R. C. & Honjo, S. Seasonal changes in the isotopic composition of planktonic foraminifera collected in Panama Basin sediment traps. Earth Planet. Sci. Lett. 64, 33–43 (1983).
    ADS  Article  CAS  Google Scholar 

    22.
    Thunell, R. C. & Honjo, S. Seasonal and interannual changes in planktonic foraminiferal production in the North Pacific. Nature 328, 335–337 (1988).
    ADS  Article  Google Scholar 

    23.
    Smart, S. M. et al. Ground-truthing the planktic foraminifer-bound nitrogen isotope paleo-proxy in the Sargasso Sea. Geochim. Cosmochim. Acta 235, 463–482 (2018).
    ADS  Article  CAS  Google Scholar 

    24.
    King, A. L. & Howard, W. R. Seasonality of foraminiferal flux in sediment traps at Chatham rise, SW Pacific: implications for paleotemperature estimates. Deep Res. Part I Oceanogr. Res. Pap. 48, 1687–1708 (2001).
    ADS  Article  Google Scholar 

    25.
    Levanon-Spanier, I., Padan, E. & Reiss, Z. Primary production in a desert-enclosed sea—the Gulf of Elat (Aqaba), Red Sea. Deep Sea Res Part A. Oceanogr. Res. Pap. 26, 673–685 (1979).
    ADS  Article  CAS  Google Scholar 

    26.
    Reiss, Z. & Hottinger, L. The Gulf of Aqaba: ecological micropaleontology (Springer, Berlin, 1984).
    Google Scholar 

    27.
    Lazar, B. et al. Recent environmental changes in the chemical–biological oceanography of the Gulf of Aqaba (Eilat). In Aqaba-Eilat, the Improbable Gulf. Environment, Biodiversity and Preservation 49–61 (2008).

    28.
    Erez, J., Almogi-Labin, A. & Avraham, S. On the life history of planktonic Foraminifera: lunar reproduction cycle in Globigerinoides sacculifer (Brady). Paleoceanography 6, 295–306 (1991).
    ADS  Article  Google Scholar 

    29.
    Zarubin, M., Lindemann, Y. & Genin, A. The Dispersion-Confinement mechanism: phytoplankton dynamics and the spring bloom in a deeply-mixing subtropical sea. Prog. Oceanogr. 155, 13–27 (2017).
    ADS  Article  Google Scholar 

    30.
    Kimor, B. & Golandsky, B. Microplankton of the Gulf of Elat: Aspects of seasonal and bathymetric distribution. Mar. Biol. 42, 55–67 (1977).
    Article  Google Scholar 

    31.
    Winter, A., Reiss, Z. & Luz, B. Distribution of living coccolithophore assemblages in the Gulf of Elat (Aqaba). Mar. Micropaleontol. 4, 197–223 (1979).
    ADS  Article  Google Scholar 

    32.
    Lindell, D. & Post, A. Ultraphytoplankton succession is triggered by deep winter mixing in the Gulf of Aqaba (Eilat), Red Sea. Limnol. Oceanogr. 40, 1130–1141 (1995).
    ADS  Article  Google Scholar 

    33.
    Labiosa, R. G., Arrigo, K. R., Genin, A., Monismith, S. G. & Van Dijken, G. The interplay between upwelling and deep convective mixing in determining the seasonal phytoplankton dynamics in the Gulf of Aqaba: evidence from SeaWiFS and MODIS. Limnol. Oceanogr. 48, 2355–2368 (2003).
    ADS  Article  Google Scholar 

    34.
    Meeder, E. et al. Nitrite dynamics in the open ocean – clues from seasonal and diurnal variations. Mar. Ecol. Prog. Ser. 453, 11–26 (2012).
    ADS  Article  CAS  Google Scholar 

    35.
    Carlson, D. F., Fredj, E. & Gildor, H. The annual cycle of vertical mixing and restratification in the Northern Gulf of Eilat/Aqaba (Red Sea) based on high temporal and vertical resolution observations. Deep. Res. Part I(84), 1–17 (2014).
    Google Scholar 

    36.
    Shaked, Y. Iron redox dynamics in the surface waters of the Gulf of Aqaba, Red Sea. Geochim. Cosmochim. Acta 72, 1540–1554 (2008).
    ADS  Article  CAS  Google Scholar 

    37.
    Almogi-Labin, A. Population dynamics of planktic Foraminifera and Pteropoda—Gulf of Aqaba, Red Sea. Proc. R. Netherl. Acad. Sci. B 87, 481–511 (1984).
    Google Scholar 

    38.
    Chernihovsky, N., Torfstein, A. & Almogi-Labin, A. Seasonal flux patterns of planktonic foraminifera in a deep, oligotrophic, marginal sea: Sediment trap time series from the Gulf of Aqaba, northern Red Sea. Deep Sea Res Part I Oceanogr. Res. Pap. 140, 78–94 (2018).
    ADS  Article  CAS  Google Scholar 

    39.
    Torfstein, A., Kienast, S. S., Yarden, B., Rivlin, A., Isaacs, S. & Shaked, Y. Bulk and export production fluxes in the Gulf of Aqaba, Northern Red Sea. ACS Earth Space Chem. 4(8), 1461–1479 (2020).
    Article  CAS  Google Scholar 

    40.
    Shaked, Y. & Genin, A. Israel National Monitroing Program at the Gulf of Eilat Annual Report. (2018).

    41.
    Genin, A., Lazar, B. & Brenner, S. Vertical mixing and coral death in the Red Sea following the eruption of Mount Pinatubo. Nature 377, 507–510 (1995).
    ADS  Article  CAS  Google Scholar 

    42.
    Torfstein, A. & Kienast, S. S. No Correlation between atmospheric dust and surface ocean chlorophyll-a in the oligotrophic Gulf of Aqaba, Northern Red Sea. J. Geophys. Res. Biogeosciences 123, 391–405 (2018).
    ADS  Article  Google Scholar 

    43.
    Meilland, J. et al. Highly replicated sampling reveals no diurnal vertical migration but stable species-specific vertical habitats in planktonic foraminifera. J. Plankton Res. https://doi.org/10.1093/plankt/fbz002 (2019).
    Article  Google Scholar 

    44.
    Iluz, D. et al. Short-term variability in primary productivity during a wind-driven diatom bloom in the Gulf of Eilat (Aqaba). Aquat. Microb. Ecol. 56, 205–215 (2009).
    Article  Google Scholar 

    45.
    Jonkers, L., Brummer, G.-J.A., Peeters, F. J. C., van Aken, H. M. & De Jong, M. F. Seasonal stratification, shell flux, and oxygen isotope dynamics of left-coiling N. pachyderma and T. quinqueloba in the western subpolar North Atlantic. Paleoceanography 25, 1–13 (2010).
    Google Scholar 

    46.
    Jonkers, L. & Kučera, M. Global analysis of seasonality in the shell flux of extant planktonic Foraminifera. Biogeosciences 12, 2207–2226 (2015).
    ADS  Article  Google Scholar 

    47.
    Hemleben, C., Spindler, M. & Anderson, O. R. Modern Planktonic Foraminifera (Springer, Berlin, 2012).
    Google Scholar 

    48.
    Brummer, G.-J.A., Hemleben, C. & Spindler, M. Planktonic foraminiferal ontogeny and new perspectives for micropalaeontology. Nature 319, 50–52 (1986).
    ADS  Article  Google Scholar 

    49.
    Boltovsky, E. Globigerinita clarkei (Rögl & Bolli) – an unfairly ignored small planktic foraminifer. Boreas 20, 151–154 (2008).
    Article  Google Scholar 

    50.
    Takagi, H. et al. Characterizing photosymbiosis in modern planktonic foraminifera. Biogeosciences 16, 3377–3396 (2019).
    ADS  Article  CAS  Google Scholar 

    51.
    Grigoratou, M. et al. A trait-based modelling approach to planktonic foraminifera ecology. Biogeosciences 16, 1469–1492 (2019).
    ADS  Article  Google Scholar 

    52.
    Spindler, M., Hemleben, C., Salomons, J. B. & Smit, L. P. Feeding behavior of some planktonic foraminifers in laboratory cultures. J. Foraminifer. Res. 14, 237–249 (1984).
    Article  Google Scholar 

    53.
    Spindler, M., Hemleben, C., Bayer, U., Bé, A. & Anderson, O. Lunar periodicity of reproduction in the planktonic foraminifer Hastigerina pelagica. Mar. Ecol. Prog. Ser. 1, 61–64 (1979).
    ADS  Article  Google Scholar 

    54.
    Jonkers, L., Reynolds, C. E., Richey, J. & Hall, I. R. Lunar periodicity in the shell flux of planktonic foraminifera in the Gulf of Mexico. Biogeosciences 12, 3061–3070 (2015).
    ADS  Article  Google Scholar 

    55.
    Bijma, J., Erez, J. & Hemleben, C. Lunar and semi-lunar reproduction cycles in some spinose planktonic foraminifers. J. Foraminifer. Res. 20, 117–127 (1990).
    Article  Google Scholar 

    56.
    Lin, H.-L. The seasonal succession of modern planktonic foraminifera: sediment traps observations from southwest Taiwan waters. Cont. Shelf Res. 84, 13–22 (2014).
    ADS  Article  Google Scholar 

    57.
    Lončarić, N., Brummer, G. J. A. & Kroon, D. Lunar cycles and seasonal variations in deposition fluxes of planktic foraminiferal shell carbonate to the deep South Atlantic (central Walvis Ridge). Deep Res. Part I Oceanogr. Res. Pap. 52, 1178–1188 (2005).
    ADS  Article  Google Scholar 

    58.
    Davis, C. V. et al. Extensive morphological variability in asexually produced planktic foraminifera. Sci. Adv. https://doi.org/10.1126/sciadv.abb8930 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    59.
    Takagi, H., Kurasawa, A. & Kimoto, K. Observation of asexual reproduction with symbiont transmission in planktonic foraminifera. J. Plankton Res. https://doi.org/10.1093/plankt/fbaa033 (2020).
    Article  Google Scholar 

    60.
    Hottinger, L., Halicz, E. & Reiss, Z. Recent Foraminiferida from the Gulf of Aqaba, Red Sea. Opera Sazu, Ljubljana, Slovania (1993).

    61.
    Brummer, G. J. A. & Kroon, D. Planktonic foraminifers as tracers of ocean-climate history: Ontogeny, relationships and preservation of modern species and stable isotopes, phenotypes and assemblage distribution in different water masses (Free University Press, 1988).

    62.
    Sprintall, J. & Tomczak, M. Evidence of the barrier layer in the surface layer of the tropics. J. Geophys. Res. 97, 7305 (1992).
    ADS  Article  Google Scholar 

    63.
    Trauth, M. H. MATLAB Recipes for Earth Sciences MATLAB Recipes for Earth Sciences 2nd edn. (Springer, Berlin, 2007). https://doi.org/10.1007/978-3-540-72749-1.
    Google Scholar  More

  • in

    Physical properties of epilithic river biofilm as a new lead to perform pollution bioassessments in overseas territories

    1.
    Monnier, O., Basilico, L., Reyjol, Y. et al. La bioindication en outre-mer: Situation et perspectives dans le contexte de la directive cadre sur l’eau. Synthèse du séminaire ONEMA «Méthodes de bioindication adaptées aux départements d’outre-mer » Paris, France (2016). https://www.seminaire-evaluation-outremer.oieau.fr/.
    2.
    Jackson, D. A., Peres-Neto, P. R. & Olden, J. D. What controls who is where in freshwater fish communities: the roles of biotic, abiotic, and spatial factors. Can. J. Fish. Aquat. Sci. 58, 157–170 (2001).
    Google Scholar 

    3.
    Battin, T. et al. The ecology and biogeochemistry of stream biofilms. Nat. Rev. Microbiol. 14, 251–263 (2016).
    CAS  PubMed  Article  Google Scholar 

    4.
    Abreu, P. C. et al. Importance of biofilm as food source for shrimp (Farfantepenaeus paulensis) evaluated by stable isotopes (d13C and d15N). J. Exp. Mar. Biol. Ecol. 347, 88–96 (2007).
    CAS  Article  Google Scholar 

    5.
    Lefrançois, E. et al. Epilithic biofilm as a key factor for small-scale river fisheries on Caribbean islands. Fish. Manag. Ecol. 18, 211–220 (2011).
    Article  Google Scholar 

    6.
    Smith, W. E. Reproductive ecology of Caribbean amphidromous fishes. Ph. D. North Carolina State University (2012).

    7.
    Mc Dowall, R. M. Diadromy: origins and definitions of terminology. Copeia 1, 248–251 (1992).
    Article  Google Scholar 

    8.
    Keith, P. Biology and ecology of amphidromous Gobiidae of the Indo-Pacific and the Caribbean regions. J. Fish Biol. 63, 831–847 (2003).
    Article  Google Scholar 

    9.
    Coat, S. & Monti, D. Lack of significance of usual ecological indicators in predicting pesticides contamination: specificities of tropical islands freshwaters. In: Proceedings of the 15th meeting of the Caribbean academy of sciences, May 21–23, 79–80 (2006).

    10.
    Bertrand, J. A., Abarnou, A., Bocquené, G. et al. Diagnostic de la contamination chimique de la faune halieutique des littoraux des Antilles françaises. Campagnes 2008 en Martinique et en Guadeloupe. Ifremer, Martinique. https://www.ifremer.fr/docelec/doc/2009/rapport-6896.pdf (2009).

    11.
    Coat, S. Identification du réseau trophique de rivière et étude de sa contamination par les pesticides organochlorés (Chlordécone et ß-HCH) en Guadeloupe. Thèse de Doctorat de l’Université des Antilles et de la Guyane, UFR SEN, Campus de Fouillole (2009).

    12.
    Multigner, L. et al. Chlordecone exposure and risk of prostate cancer. J. Clin. Oncol. 28, 3457–3462 (2010).
    CAS  PubMed  Article  Google Scholar 

    13.
    Foster, R. Kepone: the ‘Flour’ factory. In Richmondmag (2005). https://richmondmagazine.com/news/kepone-disaster-pesticide.

    14.
    Sanders, H. O. et al. Biological effects of Kepone and mirex in freshwater invertebrates. Arch. Environ. Contam. Toxicol. 10, 531–539 (1981).
    CAS  PubMed  Article  Google Scholar 

    15.
    Orndorff, S. A. & Colwell, R. R. Distribution and degradation potential of Kepone resistant bacteria in the James River and Upper Chesapeake Bay. In Workshop: Microbial Degradation of Pollutants in Marine Environments, EPA-600/9-79-012 (eds. Bourquin, A. W. & Pritchard, P. H.) 396–407. EPA Environmental Research Information Center, Cincinnati, Ohio (1979).

    16.
    Orndorff, S. A. & Colwell, R. R. Distribution and characterization of kepone-resistant bacteria in the aquatic environment. Appl. Environ. Microbiol. 39, 611–622 (1980).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Mahaffey, W. R., Pritchard, P. H. & Bourquin, A. W. Effects of kepone on growth and respiration of several estuarine bacteria. Appl. Environ. Microbiol. 43, 1419–1424 (1982).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Hödl, I. et al. Voronoi tessellation captures very early clustering of single primary cells as induced by interactions in nascent biofilms. PLoS ONE 6(10), e26368 (2011).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    19.
    Tamaru, Y. et al. Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium. Nostoc Commune Appl. Environ. Microbiol. 71, 7327–7333 (2005).
    CAS  PubMed  Article  Google Scholar 

    20.
    Or, D., Phutane, S. & Dechesne, A. Extracellular polymeric substances affecting pore-scale hydrologic conditions for bacterial activity in unsaturated soils. Vadose Zone J. 6, 298–305 (2007).
    CAS  PubMed  Article  Google Scholar 

    21.
    Battin, T. J. et al. Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature 426, 439–442 (2003).
    ADS  CAS  PubMed  Article  Google Scholar 

    22.
    Lawrence, J.R., Neu, T.R., Paule, A. et al. Aquatic biofilms: development, cultivation, analyses, and applications. In Manual of Environmental Microbiology (ed. Yates, M., Nakatsu, C., Miller, R., Pillai, S., 4th edn, 4.2.3-1–4.2.3-33 (ASM, Washington, 2016).

    23.
    Flemming, H. C. et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).
    CAS  PubMed  Article  Google Scholar 

    24.
    Mora-Gómez, J., Freixa, A., & Perujo, N. et al. Limits of the biofilm concept and types of aquatic biofilms. Aquat. Biofilms. Ecol. Water Qual. Wastewater Treat. 229, 3-27 (2016).

    25.
    Holmström, C. et al. Inhibition of common fouling organisms by marine bacterial isolates with special reference to the role of pigmented bacteria. Biofouling 10, 251–259 (1996).
    PubMed  Article  Google Scholar 

    26.
    Callow, J. A. et al. Cellular and molecular approaches to understanding primary adhesion in Enteromorpha: an overview. Biofouling 16, 141–150 (2000).
    CAS  Article  Google Scholar 

    27.
    Bozorg, A., Gates, I. D. & Sen, A. Real time monitoring of biofilm development under flow conditions in porous media. Biofouling 28, 937–951 (2012).
    PubMed  Article  Google Scholar 

    28.
    Rubol, S. et al. Seeing through porous media: an experimental study for unveiling interstitial flows. Hydrol. Process. 32, 402–407 (2018).
    ADS  Article  Google Scholar 

    29.
    Kundukad, B. et al. Mechanical properties of the superficial biofilm layer determine the architecture of biofilms. Soft Matter 12, 5718 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    30.
    Morita, Y. et al. Frictional properties of regenerated cartilage in vitro. J. Biomech. 39, 103–109 (2006).
    PubMed  Article  Google Scholar 

    31.
    Grad, S. et al. Sliding motion modulates stiffness and friction coefficient at the surface of tissue engineered cartilage. Osteoarthr. Cartil. 20, 288–295 (2012).
    CAS  PubMed  Article  Google Scholar 

    32.
    Souza, J. C. et al. Biofilms inducing ultra-low friction on titanium. J. Dent. Res. 89, 1470–1475 (2010).
    CAS  PubMed  Article  Google Scholar 

    33.
    Garrett, T. R., Bhakoo, M. & Zhang, Z. Bacterial adhesion and biofilms on surfaces. Prog. Nat. Sci. 18, 1049–1056 (2008).
    CAS  Article  Google Scholar 

    34.
    Schultz, M. P. et al. Impact of diatomaceous biofilms on the frictional drag of fouling-release coatings. Biofouling 31, 759–773 (2015).
    CAS  PubMed  Article  Google Scholar 

    35.
    Ditsche, P. et al. More than just slippery: the impact of biofilm on the attachment of non-sessile freshwater mayfly larvae. J. R. Soc. Interface 11, 20130989 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    36.
    Rubol, S. et al. Linking biofilm spatial structure to real-time microscopic oxygen decay imaging. Biofouling 34, 200–211 (2018).
    CAS  PubMed  Article  Google Scholar 

    37.
    Larson, F. et al. Surface adhesion measurements in aquatic biofilms using magnetic particle induction: MagPI. Limnol. Oceanogr. Methods 7, 490–497 (2009).
    Article  Google Scholar 

    38.
    Gerbersdorf, S. U. et al. New insights into MagPI: a promising tool to determine the adhesive capacity of biofilm on the mesoscale. Biofouling 34, 618–629 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Passarelli, C. et al. Surface adhesion of microphytobenthic biofilms is enhanced under Hediste diversicolor (O.F. Muller) trophic pressure. J. Exp. Mar. Biol. Ecol. 438, 52–60 (2012).
    Article  Google Scholar 

    40.
    Thom, M. et al. Seasonal biostabilization and erosion behavior of fluvial biofilms under different hydrodynamic and light conditions. Int. J. Sediment Res. 30, 273–284 (2015).
    Article  Google Scholar 

    41.
    Schmidt, H. et al. The effect of seasonality upon the development of lotic biofilms and microbial biostabilisation. Freshw. Biol. 61, 963–978 (2016).
    CAS  Article  Google Scholar 

    42.
    Schmidt, H. et al. Exposure to silver nanoparticles affects biofilm structure and adhesiveness. J. Aquatic Pollut. Toxicol. 1, 1–9 (2017).
    Google Scholar 

    43.
    Oliver, W. & Pharr, G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).
    ADS  CAS  Article  Google Scholar 

    44.
    Cense, A. W. et al. Mechanical properties and failure of Streptococcus mutans biofilms, studied using a microindentation device. J. Microbiol. Methods 67, 463–472 (2006).
    CAS  PubMed  Article  Google Scholar 

    45.
    Minatchy, G. et al. Influence of the volume structure on the tribological properties of lamellar tribofilms. Tribol. Lett. 61, 1–15 (2016).
    CAS  Article  Google Scholar 

    46.
    Gloag, E. S. et al. Biofilm mechanics: implications in infection and survival. Biofilm 2, 100017 (2020).
    Article  Google Scholar 

    47.
    Malavoi, J. R. Typologie des faciès d’écoulement ou unités morphodynamiques des cours d’eau à haute énergie. Bull. fr. pêche piscic. 315, 189–210 (1989).
    Article  Google Scholar 

    48.
    Bahner, L. H. et al. Kepone bioconcentration, accumulation, loss, and transfer through estuarine food chains. Chesapeake Sci. 18, 299–308 (1977).
    CAS  Article  Google Scholar 

    49.
    Lange-Bertalot, H. Pollution tolerance of diatoms as a criterion for water quality estimation. Nova Hedwigia 64, 285–304 (1979).
    Google Scholar 

    50.
    Smol, J. P. & Stoermer, E. F. The Diatoms: Applications for the Environmental and Earth Sciences 2nd edn. (Cambridge University Press, Cambridge, 2010).
    Google Scholar 

    51.
    Lobo, E. et al. Diatoms as Bioindicators in Rivers. In River Algae (ed. Orlando Necchi, J. R.) 245–271 (Springer, Berlin, 2016).
    Google Scholar 

    52.
    Shoaib, N. et al. Toxicity of pesticides on photosynthesis of diatoms. Pak. J. Bot. 43, 2067–2069 (2011).
    CAS  Google Scholar 

    53.
    Ebenezer, V. & Ki, J. S. Quantification of toxic effects of the organochlorine insecticide endosulfan on marine green algae, diatom and dinoflagellate. Indian J. Mar. Sci. 43, 393–399 (2014).
    Google Scholar 

    54.
    Karthikeyan, P., Mohan, D. & Jaikumar, M. Growth inhibition effect of organophosphate pesticide monocrotophos on marine diatoms. Indian J. Mar. Sci. 44, 1516–1520 (2015).
    Google Scholar 

    55.
    Bruckner, C. G. et al. Growth and release of extracellular organic compounds by benthic diatoms depend on interactions with bacteria. Environ. Microbiol. 13, 1052–1063 (2011).
    CAS  PubMed  Article  Google Scholar 

    56.
    Yang, C. et al. The possible role of bacterial signal molecules N-acyl homoserine lactones in the formation of diatom-biofilm (Cylindrotheca sp.). Mar. Pollut. Bull. 107, 118–124 (2016).
    CAS  PubMed  Article  Google Scholar 

    57.
    Tapolczai, K. et al. Trait-based ecological classifications for benthic algae: review and perspectives. Hydrobiologia 776, 117 (2016).
    Article  Google Scholar 

    58.
    Pandey, L. K. & Bergey, E. A. Exploring the status of motility, lipid bodies, deformities and size reduction in periphytic diatom community from chronically metal (Cu, Zn) polluted waterbodies as a biomonitoring tool. Sci. Total Environ. 550, 372–381 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    59.
    Wu, N. et al. Using river microalgae as indicators for freshwater biomonitoring: review of published research and future directions. Ecol. Indic. 81, 124–131 (2017).
    CAS  Article  Google Scholar 

    60.
    Coquillé, N. et al. Use of diatom motility features as endpoints of metolachlor toxicity. Aquat. Toxicol. 158, 202–210 (2015).
    PubMed  Article  CAS  Google Scholar 

    61.
    Rimet, F. & Bouchez, A. Life-forms, cell-sizes and ecological guilds of diatoms in European rivers. Knowl. Manag. Aquat. Ecosyst. 406, 1–12 (2012).
    Article  Google Scholar 

    62.
    Sedki, M. et al. Online-monitoring of biofilm formation using nanostructured electrode surfaces. Mater. Sci. Eng. C 100, 178–185 (2019).
    CAS  Article  Google Scholar 

    63.
    Gómez-Gómez, B. et al. Fate and effect of in-house synthesized tellurium based nanoparticles on bacterial biofilm biomass and architecture. Challenges for nanoparticles characterization in living systems. Sci. Total Environ. 719, 137501 (2020).
    ADS  PubMed  Article  CAS  Google Scholar 

    64.
    Wang, X. et al. Manganese/polymetallic nodules: Micro-structural characterization of exolithobiontic- and endolithobiontic microbial biofilms by scanning electron microscopy. Micron 40, 350–358 (2009).
    CAS  PubMed  Article  Google Scholar 

    65.
    Rabiller-Baudry, M. et al. Coupling of SEM-EDX and FTIR-ATR to (quantitatively) investigate organic fouling on porous organic composite membranes. Curr. Microsc. Contrib. Adv. Sci. Technol. 10, 1066–1076 (2012).
    Google Scholar 

    66.
    Li, N. et al. Improvement of exopolysaccharide production in Lactobacillus casei LC2W by overexpression of NADH oxidase gene. Microbiol. Res. 171, 73–77 (2015).
    CAS  PubMed  Article  Google Scholar 

    67.
    Zhou, J., Mopper, K. & Passow, U. The role of surface-active carbohydrates in the formation of transparent exopolymer particles by bubble adsorption of seawater. Limnol. Oceanogr. 43, 1860–1871 (1998).
    ADS  CAS  Article  Google Scholar 

    68.
    Hansson, P. M. et al. Frictional forces between hydrophilic and hydrophobic particle coated nanostructured surfaces. Phys. Chem. Chem. Phys. 15, 17893–17902 (2013).
    CAS  PubMed  Article  Google Scholar 

    69.
    Thorp, J. H. & Delong, M. D. Dominance of autochtonous autotrophic carbon in food webs of heterotrophic rivers. Oikos 96, 543–550 (2002).
    Article  Google Scholar 

    70.
    ODE971. Database Office de l’Eau Guadeloupe. https://www.observatoire-eau-guadeloupe.fr/outils/base-de-donnees/cours-deau/physico-chimie-et-chimie.

    71.
    Cravo-Laureau, C. et al. Microbial responses to pollution-ecotoxicology: introducing the different biological levels. In Microbial Ecotoxicology (eds Cravo-Laureau, C. et al.) (Springer, New York, 2017).
    Google Scholar 

    72.
    Tapie, N., Kanan, R., Pardon, P. et al. Utilisation d’échantillonneurs passifs de type POCIS pour le suivi de la contamination Chlordécone des eaux de la Guadeloupe. 44ème congrès du Groupe Français des Pesticides (GFP), 26–29 mai 2014, Schœlcher, Martinique (2014).

    73.
    Tapie, N., Risser, T., Pardon, P. et al. Calibration d’échantillonneurs passifs de type POCIS pour le suivi de la contamination des eaux en Chlordécone. 46ème congrès du Groupe Français des Pesticides (GFP), 17–19 mai 2016, Bordeaux, France (2016).

    74.
    Dubois, M. et al. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956).
    CAS  Article  Google Scholar 

    75.
    Raunkjaer, K., Hvitved-Jacobsen, T. & Nielsen, P. H. Measurement of pools of protein, carbohydrate and lipid in domestic wastewater. Water Res. 28, 251–262 (1994).
    CAS  Article  Google Scholar 

    76.
    Stoermer, E. F. et al. Paleolimnological evidence of rapid recent change in Lake Erie’s trophic status. Can. J. Fish. Aquat. Sci. 53, 1451–1458 (1996).
    Article  Google Scholar 

    77.
    Oliver, W. C. & Pharr, G. M. Measurement of hardness and elastic modulus by instrumental indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20 (2004).
    ADS  CAS  Article  Google Scholar 

    78.
    Fischer-Cripps, A. C. Nanoindentation (2nd ed. Softcover of orig. ed. 2004). Collection: Mechanical Engineering Series (Springer, New York, 2010).
    Google Scholar 

    79.
    Cattan, P., Berns, A.E., Cabidoche, Y.-M. et al.Quel devenir pour la Chlordécone? CHLORDEXCO, La contamination d’écosystèmes antillais 20 ans après l’application de l’organochloré. In Journée ANR Huit ans de recherche en environnement, dernières découvertes et innovations, Paris, France, 11 décembre 2012. https://agritrop.cirad.fr/569760/.

    80.
    Tonetto, A. F., Branco, C. C. Z. & Peres, C. K. The effects of irradiance and spectral composition on the establishment of macroalgae in streams. Annales de Limnologie-Int. J. Limnol. 48, 363–370 (2012).
    Article  Google Scholar 

    81.
    R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2017).

    82.
    Ward, J. H. Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963).
    MathSciNet  Article  Google Scholar 

    83.
    Pollard, K. & van der Laan, M. A method to identify significant clusters in gene expression data Sixth World Multiconference on Systemics. Cybern. Inf. 6, 318–325 (2002).
    Google Scholar  More

  • in

    Species composition and invasion risks of alien ornamental freshwater fishes from pet stores in Klang Valley, Malaysia

    1.
    Strecker, A. L., Campbell, P. M. & Olden, J. D. The aquarium trade as an invasion pathway in the Pacific Northwest. Fisheries 36, 74–85 (2011).
    Article  Google Scholar 
    2.
    Magalhães, A. L. et al. Small size today, aquarium dumping tomorrow: sales of juvenile non-native large fish as an important threat in Brazil. Neotrop. Ichthyol. 15, 1–10 (2017).
    Google Scholar 

    3.
    Maceda-Veiga, A., Escribano-Alacid, J., de Sostoa, A. & García-Berthou, E. The aquarium trade as a potential source of fish introductions in Southwestern Europe. Biol. Invasions 15, 2707–2716 (2014).
    Article  Google Scholar 

    4.
    Gertzen, E., Familiar, O. & Leung, B. Quantifying invasion pathways: fish introductions from the aquarium trade. Can. J. Fish. Aquat. Sci. 65, 1265–1273 (2008).
    Article  Google Scholar 

    5.
    Ishikawa, T. & Tachihara, K. Introduction history of non-native freshwater fish in Okinawa-Jima Island: ornamental aquarium fish pose the greatest risk for future invasions. Ichthyol. Res. 61, 17–26 (2014).
    Article  Google Scholar 

    6.
    Khairul-Adha, R., Yuzine, E. & Aziz, A. The influence of alien fish species on native fish community structure in Malaysian waters. Kuroshio Sci. 7, 81–93 (2013).
    Google Scholar 

    7.
    Department of Fisheries (DOF). Annual Fisheries Statistics, Department of Fisheries, Ministry of Agriculture and Agro-Based Industry, Putrajaya, Malaysia. https://www.dof.gov.my/index.php/pages/view (2007).

    8.
    Department of Fisheries (DOF). Annual Fisheries Statistics, Department of Fisheries, Ministry of Agriculture and Agro-Based Industry, Putrajaya, Malaysia. https://www.dof.gov.my/index.php/pages/view (2014).

    9.
    Duggan, I. C., Rixon, C. A. & MacIsaac, H. J. Popularity and propagule pressure: determinants of introduction and establishment of aquarium fish. Biol. Invasions 8, 377–382 (2006).
    Article  Google Scholar 

    10.
    Simonovic, P. et al. Risk assessment of non-native fishes in the Balkans Region using FISK, the invasiveness screening tool for non-native freshwater fishes. Mediterr. Mar. Sci. 14, 369–376 (2013).
    Article  Google Scholar 

    11.
    Singh, A. K. & Lakra, W. S. Risk and benefit assessment of alien fish species of the aquaculture and aquarium trade into India. Rev. Aquacult. 3, 3–18 (2011).
    Article  Google Scholar 

    12.
    Puntila, R., Vilizzi, L., Lehtiniemi, M. & Copp, G. H. First application of FISK, the Freshwater Fish Invasiveness Screening Kit, in Northern Europe: example of Southern Finland. Risk Anal. 33, 1397–1403 (2013).
    PubMed  Article  Google Scholar 

    13.
    Tarkan, A. S., Ekmekçi, F. G., Vilizzi, L. & Copp, G. H. Risk screening of non-native freshwater fishes at the frontier between Asia and Europe: first application in Turkey of the Fish Invasiveness Screening Kit. J. Appl. Ichthyol. 30, 392–398 (2014).
    Article  Google Scholar 

    14.
    Mendoza, R., Luna, S. & Aguilera, C. Risk assessment of the ornamental fish trade in Mexico: analysis of freshwater species and effectiveness of the FISK (Fish Invasiveness Screening Kit). Biol. Invasions 17, 3491–3502 (2015).
    Article  Google Scholar 

    15.
    Perdikaris, C. et al. Risk screening of non-native, translocated and traded aquarium freshwater fishes in Greece using Fish Invasiveness Screening Kit. Fisheries Manag. Ecol. 23, 32–43 (2016).
    Article  Google Scholar 

    16.
    Tarkan, A. S. et al. Identification of potentially invasive freshwater fishes, including translocated species, in Turkey using the Aquatic Species Invasiveness Screening Kit (AS-ISK). Int. Rev. Hydrobiol. 102, 47–56 (2017).
    Article  Google Scholar 

    17.
    Bilge, G., Filiz, H., Yapici, S., Tarkan, A. S. & Vilizzi, L. A risk screening study on the potential invasiveness of Lessepsian fishes in the South-Western coasts of Anatolia. Acta. Ichthyol. Piscat. 49, 23–31 (2019).
    Article  Google Scholar 

    18.
    Kiruba-Sakar, R. et al. Invasive species in freshwater ecosystems – threats to ecosystem services. In Biodiversity and Climate Change Adaptation in Tropical Islands(eds. Chandrakasan, S., Velmurugan, A., Singh, A. & Jaisankar, I.) 257–289 (Elsevier Inc. USA, 2018).

    19.
    Gaygusuz, Ö et al. Stocking of common carp (Cyprinus carpio) into some newly-established reservoirs of North-West Anatolia may enhance the spread of non-native fish. Turk. J. Fish. Aquat. S. 15, 833–840 (2015).
    Google Scholar 

    20.
    Rashid, M. F. A. & Ishak, A. G. The importance of internal migration: in the context of urban planning decision making. (International Conference on Built Environment in Developing Countries, Penang Malaysia, 2–3 December 2009. Penang, Malaysia, 2009).

    21.
    Naji, A., Ismail, A., Kamrani, E. & Sohrabi, T. Correlation of MT levels in livers and gills with heavy metals in wild tilapia (Oreochromis mossambicus) from the Klang River Malaysia. B. Environ. Contam. Tox. 92, 674–679 (2014).
    CAS  Article  Google Scholar 

    22.
    Rainboth, W. J. Fishes of the Cambodian Mekong. Mekong River Commission, Food and Agriculture Organization, Rome. https://library.enaca.org/inland/fishes-cambodian-mekong.pdf (1996).

    23.
    Mohsin, A. K. & Ambak, M. A. Ikan air tawar di Semenanjung Malaysia. (Freshwater fishes of Peninsular Malaysia). (Dewan Bahasa dan Pustaka, Kuala Lumpur, Malaysia, 1991).

    24.
    Berra, T. M. Freshwater fish distribution (The University of Chicago Press, Chicago, 2001).
    Google Scholar 

    25.
    Ng, H. H. & Tan, H. H. An annotated checklist of the non-native freshwater fish species in the reservoirs of Singapore. Cosmos. 6, 95–116 (2010).
    Article  Google Scholar 

    26.
    Tran, D. D. et al. Fishes of Mekong Delta (Can Tho University Publisher, Vietnam, 2010).
    Google Scholar 

    27.
    Ng, C. K. C., Lim, T. Y., Ahmad, A. B. & Khaironizam, M. Z. Provisional checklist of freshwater fish diversity and distribution in Perak, Malaysia, and some latest taxonomic concerns. Zootaxa 4567, 515–545 (2019).
    Article  Google Scholar 

    28.
    Zakaria-Ismail, M., Fatimah, A. & Khaironizam, M. Z. Fishes of the freshwater ecosystems of Peninsular Malaysia (Lambert Academic Publishing, Saarbrücken, 2019).
    Google Scholar 

    29.
    Froese, R. & Pauly, D. (eds.) FishBase. World Wide Web Electronic Publication. https://www.fishbase.org/search.php (2019).

    30.
    Fricke, R., Eschmeyer, W. N. & van der Laan, R. (eds.) Catalog of fishes: genera, species, references. California Academy of Sciences. https://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (2020).

    31.
    Papavlasopoulou, I. et al. Ornamental fish in pet stores in Greece: a threat to biodiversity?. Mediterr. Mar. Sci. 15, 126–134 (2014).
    Article  Google Scholar 

    32.
    IUCN. The IUCN Red List of Threatened Species. Version 2020–1. https://www.iucnredlist.org. (2020).

    33.
    Lawson, L. L., Vilizzi, L, Hill, J. E., Hardin, S. & Copp, G. H. Revisions of the Fish Invasiveness Scoring Kit (FISK) for its application in warmer climatic zones, with particular reference to Peninsular Florida. Risk Anal. 33, 1414–1431 (2013).

    34.
    Garcia de León, F. J. G., González-García, L., Herrera-Castillo, J. M., Winemiller, K. O. & Banda-Valdés, A. Ecology of the alligator gar, Atractosteus spatula, in the Vicente Guerrero Reservoir, Tamaulipas, Mexico. Southwest Nat.46, 151–157 (2001).

    35.
    Carman, S. M. Special animal abstract for Lepisosteus oculatus (spotted gar). (Michigan Natural Features Inventory, Lansing, MI.) https://mnfi.anr.msu.edu/abstracts/zoology/Lepisosteus_oculatus.pdf (2002).

    36.
    COSEWIC. Committee on the status of endangered wildlife in Canada (COSEWIC) assessment and update status report on the lake sturgeon Acipenser fulvescens in Canada, https://wildlife-species.canada.ca/species-risk-registry/virtual_sara/files/cosewic/sr_Lake%20Sturgeon_2017_e.pdf (2006).

    37.
    Roberts, D. “Atractosteus spatula”, Animal Diversity Web. https://animaldiversity.org/accounts/Atractosteus_spatula/ (2006).

    38.
    Herder, F. et al. Alien invasion in Wallace’s Dreamponds: records of the hybridogenic “flowerhorn” cichlid in Lake Matano, with an annotated checklist of fish species introduced to the Malili Lakes system in Sulawesi. Aquat. Invasions 7, 521–535 (2012).
    Article  Google Scholar 

    39.
    Speigel, J. “Potamotrygon motoro”, Animal Diversity Web., https://animaldiversity.org/accounts/Potamotrygon_motoro/ (2013).

    40.
    Franklin, P. A. Dissolved oxygen criteria for freshwater fish in New Zealand: a revised approach. New Zeal. J. Mar. Fresh. 48, 112–126 (2014).
    CAS  Article  Google Scholar 

    41.
    Felterman, M. A. Population dynamics, reproductive biology, and diet of alligator gar Atractosteus spatula in Terrebonne Estuary and Rockefeller Wildlife Refuge. Master’s Thesis, Nicholls State University, Thibodaux, Louisiana, USA. (2015).

    42.
    Fuller, P. Atractosteus spatula (Lacepède, 1803): U.S. geological survey, non-indigenous aquatic species database, Gainesville, Florida, USA. https://nas.er.usgs.gov/queries/FactSheet.aspx?speciesID=755 (2019).

    43.
    Islam, M. A., Uddin, M. H., Uddin, M. J. & Shahjahan, M. Temperature changes influenced the growth performance and physiological functions of Thai Pangas Pangasianodon hypophthalmus. Aquacult. Rep. 13, 100179 (2019).
    Article  Google Scholar 

    44.
    Lawson, L. L., Hill, J. E., Hardin, S., Vilizzi, L. & Copp, G. H. Evaluation of the fish invasiveness screening kit (FISK v2) for peninsular Florida. Manag. of Biol. Invasions 6, 413–422 (2015).
    Article  Google Scholar 

    45.
    Copp, G. H. et al. Calibration of FISK, an invasiveness screening tool for non-native freshwater fishes. Risk Anal. 29, 457–467 (2009).
    PubMed  Article  Google Scholar 

    46.
    Almeida, D., Ribeiro, F., Leunda, P. M., Vilizzi, L. & Copp, G. H. Effectiveness of FISK, an invasiveness screening tool for non-native freshwater fishes, to perform risk identification assessments in the Iberian Peninsula. Risk Anal. 33, 1404–1413 (2013).
    PubMed  Article  Google Scholar 

    47.
    Youden, W. J. Index for rating diagnostic tests. Cancer 3, 32–35 (1950).
    CAS  PubMed  Article  Google Scholar 

    48.
    Bewick, V., Cheek, L. & Ball, J. Statistics review 13: receiver operating characteristic curves. Crit. Care 8, 508–512 (2004).
    PubMed  PubMed Central  Article  Google Scholar 

    49.
    Tricarico, E., Vilizzi, L., Gherardi, F. & Copp, G. H. Calibration of FI-ISK, an invasiveness screening tool for nonnative freshwater invertebrates. Risk Anal. 30, 285–292 (2010).
    PubMed  Article  Google Scholar 

    50.
    Chang, A. L. et al. Tackling aquatic invasions: risks and opportunities for the aquarium fish industry. Biol. Invasions 11, 773–785 (2009).
    Article  Google Scholar 

    51.
    Magalhães, A. L. & Jacobi, C. M. Invasion risks posed by ornamental freshwater fish trade to south eastern Brazilian rivers. Neotrop. Ichthyol. 11, 433–441 (2013).
    Article  Google Scholar 

    52.
    Reis, R. E. et al. Fish biodiversity and conservation in South America. J. Fish. Biol. 89, 12–47 (2016).
    CAS  PubMed  Article  Google Scholar 

    53.
    Rixon, C. A., Duggan, I. C., Bergeron, N. M., Ricciardi, A. & Macisaac, H. J. Invasion risks posed by the aquarium trade and live fish markets on the Laurentian Great Lakes. Biodivers. Conserv. 14, 1365–1381 (2005).
    Article  Google Scholar 

    54.
    Cucherousset, J. & Olden, J. D. Ecological impacts of non-native freshwater fishes. Fisheries 36, 215–230 (2011).
    Article  Google Scholar 

    55.
    Ng, C. K. C. et al. A working checklist of the freshwater fish diversity for habitat management and conservation work in Sabah, Malaysia North Borneo. Biodiversitas 18, 560–574 (2017).
    Article  Google Scholar 

    56.
    Zakaria, R. Alien fish devouring local species in Sg Pahang. New Strait Times. https://www.nst.com.my/news/nation/2019/02/462595/alien-fish-devouring-local-species-sg-pahang (2019).

    57.
    Sharifudin, M. & Sharip, Z. Fisheries practices and fish diversity in Muda and Beris Lakes: a preliminary survey study. Geografia 16, 1–12 (2020).
    Article  Google Scholar 

    58.
    Zakaria, R. Alien fish ‘killing’ local boat operators. New Strait Times. https://www.nst.com.my/news/nation/2017/04/231359/alien-fish-killing-local-boat-operators/ (2017).

    59.
    Chong, V. C., Lee, P. K. Y. & Lau, C. M. Diversity, extinction risk and conservation of Malaysian fishes. J. Fish Biol. 76, 2009–2066 (2010).
    CAS  PubMed  Article  Google Scholar 

    60.
    NWGIAS. National Working Group on Invasive Alien Species (NWGIAS). National action plan for prevention, eradication, containment and control of aquatic invasive alien species in Malaysia. Department of Agriculture, Putrajaya (2014).

    61.
    Samat, A. et al. Reproductive biology of the introduced sailfin catfish Pterygoplichthys pardalis (Pisces: Loricariidae) in Peninsular Malaysia. Indian. J. Fish. 63, 35–41 (2016).
    Google Scholar 

    62.
    Tan, B. Bottom-feeding fish sucking life out of Johor Rivers, nature society warns. Malay Mail, https://www.malaymail.com/news/malaysia/2019/01/14/bottom-feeding-fish-suckinglife-out-of-johor-rivers-nature-society-warns/1712205 (2019).

    63.
    Hussan, A., Choudhury, T. G., Das, A. & Gita, S. Suckermouth sailfin catfishes: A future threat to aquatic ecosystems of India. Aquaculture Times 2, 20–22 (2016).
    Google Scholar 

    64.
    Ng, C. The ornamental freshwater fish trade in Malaysia. UTAR Agric Sci. J. 2, 7–18 (2016).
    Google Scholar 

    65.
    Lokman, E. D. et al. Use of GIS and remote sensing on ornamental fish farm’s activities monitoring in Layang-Layang, Kluang Johor. Adv. Ecol. Envir. Res. 4, 211–230 (2019).
    Google Scholar 

    66.
    Evers, H. G., Pinnegar, J. K. & Taylor, M. I. Where are they all from?–sources and sustainability in the ornamental freshwater fish trade. J. Fish Biol. 94, 909–916 (2019).
    PubMed  PubMed Central  Google Scholar 

    67.
    Chan, F. T. et al. Leaving the fish bowl: the ornamental trade as a global vector for freshwater fish invasions. Aquat. Ecosyst. Health 22, 417–439 (2019).
    Article  Google Scholar 

    68.
    Banha, F., Diniz, A. & Anastácio, P. M. Patterns and drivers of aquarium pet discharge in the wild. Ecol. Indicat. 106, 105513 (2019).
    Article  Google Scholar 

    69.
    Zakaria, R. & Bahrin, H. B. Two more foreign predatory fishes threaten survival of native species. New Strait Times, https://www.nst.com.my/news/exclusive/2018/05/372369/two-more-foreign-predatory-fishes-threaten-survival-native-species (2018).

    70.
    Daehler, C. C., Denslow, J. S., Ansari, S. & Kuo, S. A risk assessment system for screening out invasive pest plants from Hawaii and other Pacific islands. Conserv. Biol. 18, 360–368 (2004).
    Article  Google Scholar 

    71.
    Marchetti, M. P., Moyle, P. B. & Levine, R. Invasive species profiling? Exploring the characteristics of non-native fishes across invasion stages in California. Freshwater Biol. 49, 646–661 (2004).
    Article  Google Scholar 

    72.
    Piria, M. et al. Risk screening of non-native freshwater fishes in Croatia and Slovenia using the Fish Invasiveness Screening Kit. Fisheries Manag. Ecol. 23, 21–31 (2016).
    Article  Google Scholar 

    73.
    Marr, S. M. et al. Evaluating invasion risk for freshwater fishes in South Africa. Bothalia 47, 1–10 (2017).
    Article  Google Scholar 

    74.
    Thompson, K. A., Hill, J. E. & Nico, L. G. Eastern mosquitofish resists invasion by nonindigenous poeciliids through agnostic behaviors. Biol. Invasions 14, 1515–1529 (2012).
    Article  Google Scholar 

    75.
    Onikura, N. et al. Evaluating the potential for invasion by alien freshwater fishes in northern Kyushu Island, Japan, using the Fish Invasiveness Scoring Kit. Ichthyol. Res. 58, 382–387 (2011).
    Article  Google Scholar 

    76.
    Troca, D. A. & Vieira, J. P. Potential invasive non-native fish farmed in the coastal region of Rio Grande Do Sul Brazil. Boletim do Instituto de Pesca 38, 109–120 (2012).
    Google Scholar 

    77.
    Vilizzi, L. V. & Copp, G. H. Application of FISK, an invasiveness screening tool for non-native freshwater fishes, in the Murray-Darling Basin (Southeastern Australia). Risk Anal. 33, 1432–1440 (2013).
    PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Range expansion of muskox lungworms track rapid arctic warming: implications for geographic colonization under climate forcing

    1.
    Arneth, A. et al. Summary for Policymakers. (2019).
    2.
    Post, E. et al. Ecological consequences of sea-ice decline. Science 341, 519–524 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Altizer, S., Ostfeld, R. S., Johnson, P. T. J., Kutz, S. & Harvell, C. D. Climate change and infectious diseases: from evidence to a predictive framework. Science 341, 514–519 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Dobson, A., Molnár, P. K. & Kutz, S. Climate change and Arctic parasites. Trends Parasitol. 31, 181–188 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    5.
    Chan, F. T. et al. Climate change opens new frontiers for marine species in the Arctic: current trends and future invasion risks. Glob. Chang. Biol. 25, 25–38 (2019).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Descamps, S. et al. Climate change impacts on wildlife in a High Arctic archipelago—Svalbard, Norway. Glob. Chang. Biol. 23, 490–502 (2017).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Kutz, S. J., Hoberg, E. P., Polley, L. & Jenkins, E. J. Global warming is changing the dynamics of Arctic host–parasite systems. Proc. R. Soc. Lond. B Biol. Sci. 272, 2571–2576 (2005).
    CAS  Google Scholar 

    8.
    Kutz, S. J. et al. Invasion, establishment, and range expansion of two parasitic nematodes in the Canadian Arctic. Glob. Chang. Biol. 19, 3254–3262 (2013).
    PubMed  PubMed Central  Google Scholar 

    9.
    Hoberg, E. P. & Brooks, D. R. Evolution in action: climate change, biodiversity dynamics and emerging infectious disease. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20130553 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    10.
    Tomaselli, M., Gerlach, S. C., Kutz, S. J. & Checkley, S. L. Iqaluktutiaq voices: local perspectives about the importance of muskoxen, contemporary and traditional use and practices. Arctic 71, 1–14 (2018).
    Article  Google Scholar 

    11.
    Kutz, S. J. et al. The Arctic as a model for anticipating, preventing, and mitigating climate change impacts on host–parasite interactions. Vet. Parasitol. 163, 217–228 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    12.
    Hoberg, E. P., Galbreath, K. E., Cook, J. A., Kutz, S. J. & Polley, L. Northern host–parasite assemblages: history and biogeography on the borderlands of episodic climate and environmental transition. In Advances in Parasitology vol. 79. 1–97 (Elsevier, Amsterdam, 2012).

    13.
    Hoberg, E. P. et al. Arctic systems in the Quaternary: ecological collision, faunal mosaics and the consequences of a wobbling climate. J. Helminthol. 91, 409–421 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    COSEWIC. COSEWIC Assessment and Status Report on the Caribou (Rangifer tarandus) Dolphin and Union population in Canada 2017 (2017)

    15.
    Cuyler, C. et al. Muskox status, recent variation, and uncertain future. Ambio 49, 1–15 (2019).
    Google Scholar 

    16.
    Kutz, S., Hoberg, E. & Polley, L. A new lungworm in muskoxen: an exploration in Arctic parasitology. Trends Parasitol. 17, 276–280 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Kafle, P., Sullivan, J., Verocai, G. G. & Kutz, S. J. Experimental life-cycle of Varestrongylus eleguneniensis(Nematoda: Protostrongylidae) in a captive Reindeer (Rangifer tarandus tarandus) and a Muskox (Ovibos moschatus moschatus). J. Parasitol. 103, 584–587 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Kafle, P., Peacock, S. J., Grond, S., Orsel, K. & Kutz, S. Temperature-dependent development and freezing survival of protostrongylid nematodes of Arctic ungulates: implications for transmission. Parasit. Vectors 11, 400 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Kutz, S. J., Hoberg, E. P. & Polley, L. Experimental infections of muskoxen (Ovibos moschatus) and domestic sheep with Umingmakstrongylus pallikuukensis (Nematoda: Protostrongylidae): parasite development, population structure, and pathology. Can. J. Zool. 77, 1562–1572 (1999).
    Article  Google Scholar 

    20.
    Osborn, T. J. & Jones, P. The CRUTEM4 land-surface air temperature data set:Construction, previous versions and dissemination via Google earth. Earth Syst. Sci. Data 6, 61–68 (2014).
    ADS  Article  Google Scholar 

    21.
    Zhang, X. et al. Changes in temperature and precipitation across Canada; Chapter 4. In Canada’s Changing Climate Report (eds Bush, E. & Lemmen, D. S.) 112–193 (Ottawa, Ontario, Government of Canada, 2019).
    Google Scholar 

    22.
    Kutz, S. J. et al. Serendipitous discovery of a novel protostrongylid (Nematoda : Metastrongyloidea) in caribou, muskoxen, and moose from high latitudes of North America based on DNA sequence comparisons. Can. J. Zool. 85, 1143–1156 (2007).
    CAS  Article  Google Scholar 

    23.
    Hoberg, E. P., Polley, L., Gunn, A. & Nishi, J. S. Umingmakstrongylus pallikuukensis gen. nov. et sp. nov. (Nematoda: Protostrongylidae) from muskoxen, Ovibos moschatus, in the central Canadian Arctic, with comments on biology and biogeography. Can. J. Zool. Rev. Can. Zool. 73, 2266–2282 (1995).
    Article  Google Scholar 

    24.
    Forrester, S. G. & Lankester, M. W. Extracting protostrongylid nematode larvae from ungulate feces. J. Wildl. Dis. 33, 511–516 (1997).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Kafle, P. et al. Morphological keys to advance the understanding of protostrongylid biodiversity in caribou (Rangifer spp.) at high latitudes. Int. J. Parasitol. Parasites Wildl. 6, 331–339 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    26.
    Kafle, P., Lejeune, M., Verocai, G. G., Hoberg, E. P. & Kutz, S. J. Morphological and morphometric differentiation of dorsal-spined first-stage larvae of lungworms (Nematoda: Protostrongylidae) infecting muskoxen (Ovibos moschatus) in the central Canadian Arctic. Int. J. Parasitol. Parasites Wildl.4 (2015).

    27.
    Hoberg, E. et al. Caudal polymorphism and cephalic morphology among first-stage larvae of Parelaphostrongylus odocoilei (Protostrongylidae: Elaphostrongylinae) in Dall’s sheep from the Mackenzie mountains, Canada. J. Parasitol. 91, 1318–1325 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    28.
    Snyder, R. L., Spano, D., Cesaraccio, C. & Duce, P. Determining degree-day thresholds from field observations. Int. J. Biometeorol. 42, 177–182 (1999).
    ADS  Article  Google Scholar 

    29.
    Kutz, S. J., Hoberg, E. P. & Polley, L. Umingmakstrongylus pallikuukensis (Nematoda : Protostrongylidae) in gastropods: larval morphology, morphometrics, and development rates. J. Parasitol. 87, 527–535 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Dainton, B. H. Field and laboratory observations on slug and snail behaviour. Monograph-British Crop Protection Council (1989).

    31.
    Felber, R., Stoeckli, S. & Calanca, P. Generic calibration of a simple model of diurnal temperature variations for spatial analysis of accumulated degree-days. Int. J. Biometeorol. 62, 621–630 (2018).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Purcell, L. C. Comparison of thermal units derived from daily and hourly temperatures. Crop Sci. 43, 1874–1879 (2003).
    Article  Google Scholar 

    33.
    Mesinger, F. et al. North American regional reanalysis. Bull. Am. Meteorol. Soc. 87, 343–360 (2006).
    ADS  Article  Google Scholar 

    34.
    Roltsch, W. J., Zalom, F. G., Strawn, A. J., Strand, J. F. & Pitcairn, M. J. Evaluation of several degree-day estimation methods in California climates. Int. J. Biometeorol. 42, 169–176 (1999).
    ADS  Article  Google Scholar 

    35.
    Kutz, S. J., Hoberg, E. P., Nishi, J. & Polley, L. Development of the muskox lungworm, Umingmakstrongylus pallikuukensis (Protostrongylidae), in gastropods in the Arctic. Can. J. Zool. 80, 1977–1985 (2002).
    Article  Google Scholar 

    36.
    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2017).
    Google Scholar 

    37.
    Rózsa, L., Reiczigel, J. & Majoros, G. Quantifying parasites in samples of hosts. J. Parasitol. 86, 228–232 (2000).
    PubMed  Article  PubMed Central  Google Scholar 

    38.
    Verocai, G. G. et al. The biogeography of the caribou lungworm, Varestrongylus eleguneniensis (Nematoda: Protostrongylidae) across northern North America. Int. J. Parasitol. Parasites Wildl 11, 93–102 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    39.
    Verocai, G. G., Kutz, S. J., Simard, M. & Hoberg, E. P. Varestrongylus eleguneniensis sp n. (Nematoda: Protostrongylidae): a widespread, multi-host lungworm of wild North American ungulates, with an emended diagnosis for the genus and explorations of biogeography. Parasit. Vectors 7, 22 (2014).
    Article  Google Scholar 

    40.
    Bintanja, R. & van der Linden, E. C. The changing seasonal climate in the Arctic. Sci. Rep. 3, 1556 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Bush, E. & Lemmen, D. S. Canada’s Changing Climate Report; Government of Canada, Ottawa, ON. 444 (2019).

    42.
    Trenberth, K. E. Observation: surface and atmospheric climate change. Climate Change 2007: The Physical Science Basis. Contribution of working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (2007).

    43.
    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).
    ADS  CAS  Article  Google Scholar 

    44.
    Hoar, B. M., Ruckstuhl, K. & Kutz, S. Development and availability of the free-living stages of Ostertagia gruehneri, an abomasal parasite of barrenground caribou (Rangifer tarandus groenlandicus), on the Canadian tundra. Parasitology 139, 1093–1100 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    45.
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37 (2003).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    47.
    Hickling, R., Roy, D. B., Hill, J. K., Fox, R. & Thomas, C. D. The distributions of a wide range of taxonomic groups are expanding polewards. Glob. Chang. Biol. 12, 450–455 (2006).
    ADS  Article  Google Scholar 

    48.
    Hope, A. G., Waltari, E., Payer, D. C., Cook, J. A. & Talbot, S. L. Future distribution of tundra refugia in northern Alaska. Nat Clim Change 3, 931–938 (2013).
    ADS  Article  Google Scholar 

    49.
    Hope, A. G. et al. Arctic biodiversity: increasing richness accompanies shrinking refugia for a cold-associated tundra fauna. Ecosphere 6, 1–67 (2015).
    ADS  Article  Google Scholar 

    50.
    Laaksonen, S. et al. Climate change promotes the emergence of serious disease outbreaks of filarioid nematodes. Ecohealth (2010).

    51.
    Kovats, R. S., Campbell-Lendrum, D. H., McMichel, A. J., Woodward, A. & Cox, J. S. H. Early effects of climate change: do they include changes in vector-borne disease?. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 1057–1068 (2001).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Hoberg, E. P. Invasive processes, mosaics and the structure of helminth parasite faunas. Rev. Sci. Tech. 29, 255 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Bryan, H. M. et al. Identification of Parelaphostrongylus odocoilei (Nematoda: Protostrongylidae) first-stage larvae in the feces of gray wolves (Canis lupus) by molecular methods. J. Wildl. Dis. 46, 297–302 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    54.
    Bird, S. et al. Geography, seasonality, and host-associated population structure influence the fecal microbiome of a genetically depauparate Arctic mammal. Ecol. Evol. 23, 13202–13217 (2019).
    Article  Google Scholar 

    55.
    Prewer, E., Kutz, S., Leclerc, L. M. & Kyle, C. J. Already at the bottom? Demographic declines are unlikely further to undermine genetic diversity of a large Arctic ungulate: muskox, Ovibos moschatus (Artiodactyla: Bovidae). Biol. J. Linn. Soc. 129, 459–469 (2020).
    Article  Google Scholar 

    56.
    Kutz, S. J., Hoberg, E. P. & Polley, L. Emergence of third-stage larvae of Umingmakstrongylus pallikuukensis from three gastropod intermediate host species. J. Parasitol. 86, 743–749 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Sullivan, J. Developing a Systematic Sampling Framework for Terrestrial Gastropods in the Canadian Arcitc Calgary, Alberta (University of Calgary, Calgary, 2016).
    Google Scholar 

    58.
    Kearney, M. & Porter, W. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12, 334–350 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    59.
    Kearney, M. & Porter, W. P. Mapping the fundamental niche: physiology, climate, and the distribution of a nocturnal lizard. Ecology 85, 3119–3131 (2004).
    Article  Google Scholar 

    60.
    Simon, J. A. et al. Climate change and habitat fragmentation drive the occurrence of Borrelia burgdorferi, the agent of Lyme disease, at the northeastern limit of its distribution. Evol. Appl. 7, 750–764 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    61.
    Vanhanen, H., Veteli, T. O., Paivinen, S., Kellomaki, S. & Niemela, P. Climate change and range shifts in two insect defoliators: gypsy moth and nun moth-a model study. Silva Fenn. 41, 621 (2007).
    Article  Google Scholar 

    62.
    Yang, G.-J. et al. A growing degree-days based time-series analysis for prediction of Schistosoma japonicum transmission in Jiangsu province, China. Am. J. Trop. Med. Hyg. 75, 549–555 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    63.
    Molnár, P. K., Sckrabulis, J. P., Altman, K. A. & Raffel, T. R. Thermal performance curves and the metabolic theory of ecology-a practical guide to models and experiments for parasitologists. J. Parasitol. (2017).

    64.
    Laaksonen, S., Oksanen, A. & Hoberg, E. A lymphatic dwelling filarioid nematode, Rumenfilaria andersoni (Filarioidea; Splendidofilariinae), is an emerging parasite in Finnish cervids. Parasites Vectors 8, 228 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    65.
    Laaksonen, S. et al. Filarioid nematodes, threat to arctic food safety and security. In Game Meat Hygiene: Food Safety and Security, 213–223 (Wageningen Academic Publishers, Wageningen, 2017).

    66.
    Brooks, D. R., Hoberg, E. P. & Boeger, W. A. The Stockholm Paradigm: Climate Change and Emerging Disease (University of Chicago Press, Chicago, 2019).
    Google Scholar 

    67.
    Cook, J. A. et al. The Beringian Coevolution Project: holistic collections of mammals and associated parasites reveal novel perspectives on evolutionary and environmental change in the North. Arctic Science 3, 585–617 (2016).
    Article  Google Scholar 

    68.
    Stocker, T. F. et al. Climate Change 2013: The Physical Science Basis, Working Group 1 (WG1) Contribution to the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5). Cambridge, UK and New York, New York, USA (2013)

    69.
    Berkelhammer, M. Synchronous modes of terrestrial and marine productivity in the North Pacific. Front. Earth Sci.7 (2019).

    70.
    Agosta, S. J., Janz, N. & Brooks, D. R. How specialists can be generalists: resolving the” parasite paradox” and implications for emerging infectious disease. Zoologia (Curitiba) 27, 151–162 (2010).
    Article  Google Scholar 

    71.
    Araujo, S. B. et al. Understanding host-switching by ecological fitting. PLoS ONE10 (2015).

    72.
    IPCC Climate Change: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC (eds Core Writing Team et al.) 151 (IPCC, Geneva, 2014).
    Google Scholar 

    73.
    Ford, J. D. & Beaumier, M. Feeding the family during times of stress: experience and determinants of food insecurity in an Inuit community. Geograph J 177, 44–61 (2011).
    Article  Google Scholar 

    74.
    Kutz, S. et al. Erysipelothrix rhusiopathiae associated with recent widespread muskox mortalities in the Canadian Arctic. Can Vet J Rev Vet Can 56, 560–563 (2015).
    Google Scholar 

    75.
    Tomaselli, M. et al. Contagious ecthyma, rangiferine brucellosis, and lungworm infection in a muskox (Ovibos moschatus) from the Canadian Arctic, 2014. J. Wildl. Dis. 52, 719–724 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    76.
    Kutz, S. et al. Muskox health ecology symposium 2016: gathering to share knowledge on Umingmak in a time of rapid change. Arctic 70, 225–236 (2017).
    Article  Google Scholar 

    77.
    Vors, L. S. & Boyce, M. S. Global declines of caribou and reindeer. Glob. Chang. Biol. 15, 2626–2633 (2009).
    ADS  Article  Google Scholar 

    78.
    Fisheries, N. Diseased ice seals|NOAA fisheries. NOAA https://www.fisheries.noaa.gov/alaska/marine-life-distress/diseased-ice-seals (2020).

    79.
    Jones, T. et al. Unusual mortality of Tufted puffins (Fratercula cirrhata) in the eastern Bering Sea. PloS ONE14 (2019).

    80.
    Pörtner, H. O. Intergovernmental panel on climate change: summary for policymakers. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (2019). More

  • in

    Diel vertical migration into anoxic and high-pCO2 waters: acoustic and net-based krill observations in the Humboldt Current

    1.
    Pachauri, R. K. & Meyer, L. A. Intergovernmental panel on climate change (IPCC). In Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014).
    2.
    Feely, R. A., Sabine, C. L., Hernández-Ayon, J. M., Ianson, D. & Hales, B. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320, 1490–1492 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Escribano, R., Hidalgo, P. & Krautz, C. Zooplankton associated with the oxygen minimum zone system in the northern upwelling region of Chile during March 2000. Deep Sea Res. II 56, 1083–1094 (2009).
    Article  Google Scholar 

    4.
    Paulmier, A. & Ruiz-Pino, D. Oxygen minimum zones (OMZs) in the modern ocean. Prog. Oceanogr. 80, 113–128 (2009).
    ADS  Article  Google Scholar 

    5.
    Ulloa, O., Canfield, D. E., DeLong, E. F., Letelier, R. M. & Stewart, F. J. Microbial oceanography of anoxic oxygen minimum zones. Proc. Natl. Acad. Sci. 109, 15996–16003 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Thamdrup, B., Dalsgaard, T. & Revsbech, N. P. Widespread functional anoxia in the oxygen minimum zone of the eastern South Pacific. Deep Sea Res. I 65, 36–45 (2012).
    CAS  Article  Google Scholar 

    7.
    Chan, F. et al. Emergence of anoxia in the California current large marine ecosystem. Science 319, 920–920 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Friederich, G. E., Ledesma, J., Ulloa, O. & Chavez, F. P. Air–sea carbon dioxide fluxes in the coastal southeastern tropical Pacific. Prog. Oceanogr. 79, 156–166 (2008).
    ADS  Article  Google Scholar 

    10.
    Feely, R. A. et al. The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuar. Coast. Shelf Sci. 88, 442–449 (2010).
    ADS  CAS  Article  Google Scholar 

    11.
    Torres, R. et al. Air-sea CO2 fluxes along the coast of Chile: From CO2 outgassing in central northern upwelling waters to CO2 uptake in southern Patagonian fjords. J. Geophys. Res. 116, C09006. https://doi.org/10.1029/2010JC006344 (2011).
    ADS  CAS  Article  Google Scholar 

    12.
    Vargas, C. A. et al. Influences of riverine and upwelling waters on the coastal carbonate system off Central Chile and their ocean acidification implications. J. Geophys. Res. Biogeosci. 121, 15. https://doi.org/10.1002/2015JG003213 (2016).
    Article  Google Scholar 

    13.
    Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 0084. https://doi.org/10.1038/s41559-017-0084 (2017).
    Article  Google Scholar 

    14.
    Booth, J. A. et al. Natural intrusions of hypoxic, low pH water into nearshore marine environments on the California coast. Cont. Shelf Res. 45, 108–115 (2012).
    ADS  Article  Google Scholar 

    15.
    Forward, R. B. Diel vertical migration: zooplankton photobiology and behaviour. Oceanogr. Mar. Biol. Annu. Rev 26, 1–393 (1988).
    Google Scholar 

    16.
    Cohen, J. H. & Forward, R. B. Jr. Zooplankton diel vertical migration: A review of proximate control. Oceanogr. Mar. Biol. Ann. Rev 47, 77–110 (2009).
    Google Scholar 

    17.
    Brinton, E. Vertical migration and avoidance capability of euphausiids in the California current. Limnol. Oceanogr. 12, 451–483 (1967).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    McQuinn, I. H., Dion, M. & St. Pierre, J.-F. The acoustic multifrequency classification of two sympatric euphausiid species (Meganyctiphanes norvegica and Thysanoessa raschii), with empirical and SDWBA model validation. ICES J. Mar. Sci. 70, 636–649 (2013).
    Article  Google Scholar 

    19.
    Tremblay, N. & Abele, D. Response of three krill species to hypoxia and warming: An experimental approach to oxygen minimum zones expansion in coastal ecosystems. Mar. Ecol. 37, 179–199 (2016).
    ADS  CAS  Article  Google Scholar 

    20.
    Ambriz-Arreola, I. et al. Vertical pelagic habitat of euphausiid species assemblages in the Gulf of California. Deep Sea Res. I 123, 75–89 (2017).
    CAS  Article  Google Scholar 

    21.
    Cooper, H. L., Potts, D. & Paytan, A. Metabolic responses of the North Pacific krill, Euphausia pacifica, to short- and long-term pCO2 exposure. Mar. Biol. 163, 207 (2016).
    Article  CAS  Google Scholar 

    22.
    Seibel, B. A., Schneider, J. L., Kaartvedt, S., Wishner, K. F. & Daly, K. L. Hypoxia tolerance and metabolic suppression in Oxygen Minimum Zone euphausiids: Implications for ocean deoxygenation and biogeochemical cycles. Integr. Comp. Biol. 56, 510–523 (2016).
    CAS  PubMed  Article  Google Scholar 

    23.
    Barry, J. P., Hall-Spencer, J. M. & Tyrrell, T. In Guide to Best Practices for Ocean Acidification Research and Data Reporting (eds. Riebesell, U., Fabry, V. J., Hansson, L. & Gattuso, J. P.) 53–66 (Publications Office of the European Union, 2010).

    24.
    Paulmier, A., Ruiz-Pino, D., Garçon, V. & Farías, L. Maintaining of the eastern south Pacific oxygen minimum zone (OMZ) off Chile. Geophys. Res. Lett. 33, L20601 (2006).
    ADS  Article  CAS  Google Scholar 

    25.
    Stramma, L., Johnson, G. C., Sprintall, J. & Mohrholz, V. Expanding oxygen-minimum zones in the tropical oceans. Science 320, 655–658 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    26.
    Gilly, W. F., Beman, J. M., Litvin, S. Y. & Robison, B. H. Oceanographic and biological effects of shoaling of the oxygen minimum zone. Ann. Rev. Mar. Sci. 5, 393–420 (2013).
    PubMed  Article  Google Scholar 

    27.
    Garcia-Robledo, E. et al. Cryptic oxygen cycling in anoxic marine zones. Proc. Natl. Acad. Sci. USA 114, 8319–8324 (2017).
    ADS  CAS  PubMed  Article  Google Scholar 

    28.
    Bianchi, D., Galbraith, E. D., Carozza, D. A., Mislan, K. A. S. & Stock, C. A. Intensification of open-ocean oxygen depletion by vertically migrating animals. Nat. Geosci. 6, 545–548 (2013).
    ADS  CAS  Article  Google Scholar 

    29.
    Wishner, K. F. et al. Ocean deoxygenation and zooplankton: Very small oxygen differences matter. Sci. Adv. 4, eaa518 (2018).
    Article  CAS  Google Scholar 

    30.
    Kawaguchi, S. et al. Will krill fare well under Southern Ocean acidification?. Biol. Lett. 7, 288–291 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    31.
    Sperfeld, E., Mangor-Jensen, A. & Dalpadado, P. Effect of increasing seawater pCO2 on the northern Atlantic krill species Nyctiphanes couchii. Mar. Biol. 165, 116. https://doi.org/10.1007/s00227-018-3370-7 (2014).
    CAS  Article  Google Scholar 

    32.
    Cooper, H. L., Potts, D. C. & Paytan, A. Effects of elevated pCO2 on the survival, growth, and moulting of the Pacific krill species, Euphausia pacifica. ICES J. Mar. Sci. 74, 1005–1012. https://doi.org/10.1093/icesjms/fsw021 (2017).
    Article  Google Scholar 

    33.
    Ericson, J. A. et al. Adult Antarctic krill proves resilient in a simulated high CO2 ocean. Commun. Biol. 1, 190 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    34.
    Opstad, I. et al. Effects of high pCO2 on the northern krill Thysanoessa inermis in relation to carbonate chemistry of its collection area, Rijpfjorden. Mar. Biol. 165, 116 (2018).
    Article  CAS  Google Scholar 

    35.
    Powers, E. B. The physiology of the respiration of fishes relation to the hydrogen ion concentration of the medium. J. Gen. Physiol. 4, 305–317 (1922).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Mayol, E., Ruiz-Halpern, S., Duarte, C. M., Castilla, J. C. & Pelegrí, J. L. Coupled CO2 and O2-driven compromises to marine life in summer along the Chilean sector of the Humboldt Current System. Biogeosciences 9, 1183–1194 (2012).
    ADS  CAS  Article  Google Scholar 

    37.
    González, H. E., Ortiz, V. C. & Sobarzo, M. The role of faecal material in the particulate organic carbon flux in the northern Humboldt Current, Chile (23 S), before and during the 1997–1998 El Niño. J. Plankton Res. 22, 499–529 (2000).
    Article  Google Scholar 

    38.
    González, H. E. et al. Carbon fluxes within the epipelagic zone of the Humboldt Current System off Chile: The significance of euphausiids and diatoms as key functional groups for the biological pump. Progr. Oceanogr. 83, 217–227 (2009).
    ADS  Article  Google Scholar 

    39.
    Dagg, M. J., Jackson, G. A. & Checkley, D. M. The distribution and vertical flux of fecal pellets from large zooplankton in Monterey Bay and coastal California. Deep Sea Res. 94, 72–86 (2014).
    Article  Google Scholar 

    40.
    Sato, M., Dower, J. F., Kunze, E. & Dewey, R. Second-order seasonal variability in diel vertical migration timing of euphausiids in a coastal inlet. Mar. Ecol. Prog. Ser. 480, 39–56 (2013).
    ADS  Article  Google Scholar 

    41.
    Platt, S. A. & Sanislow, C. A. Norm-of-reaction: Definition and misinterpretation of animal research. J. Comp. Psychol. 102, 254–261 (1988).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Wishner, K. F., Outram, D. M., Seibel, B. A., Daly, K. & Williams, R. L. Zooplankton in the Eastern Tropical North Pacific: Boundary effects of oxygen minimum zone expansion. Deep Sea Res. I 79, 122–140 (2013).
    CAS  Article  Google Scholar 

    43.
    Dickson, A. G., Afghan, J. D. & Anderson, G. C. Reference materials for oceanic CO2 analysis: A method for the certification of total alkalinity. Mar. Chem. 80, 185–197 (2003).
    CAS  Article  Google Scholar 

    44.
    Pierrot, D.E., Lewis, E. & Wallace, D.W.R. MS Excel program developed for CO2system calculations. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy (2006). https://cdiac.ornl.gov/ftp/co2sys.

    45.
    Mehrbach, C., Culberson, C., Hawley, J. & Pytkovicz, R. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18, 897–907 (1973).
    ADS  CAS  Article  Google Scholar 

    46.
    Dickson, A. G. & Millero, F. J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res. 34, 1733–1743 (1987).
    ADS  CAS  Article  Google Scholar 

    47.
    Dickson, A. G. Standard potential of the reaction: AgCl(s) + 12 H 2 (g) 1⁄4 Ag(s) + HCl (aq), and the standard acidity constant of the ion HSO in synthetic seawater from 273.15 to 318.15 K. J. Chem. Thermodyn. 22, 113–127 (1990).
    CAS  Article  Google Scholar 

    48.
    Mitson, R. B. Underwater noise of research vessels: Review and recommendations. ICES Coop. Res. Rep. 209, 61 (1995).
    Google Scholar 

    49.
    Simrad. Simrad ER60 scientific echo sounder manual. Reference Manual. Release 2.2.0, Kongsberg Maritime AS, Norway, 226 (2008).

    50.
    Mair, A., Fernandes, P., Lebourges-Dhaussy, A. & Brierley, A. An investigation into the zooplankton composition of a prominent 38-khz scattering layer in the North Sea. J. Plank. Res. 27, 623–633 (2005).
    CAS  Article  Google Scholar 

    51.
    Cade, D. E. & Benoit-Bird, K. J. Depths, migration rates and environmental associations of acoustic scattering layers in the Gulf of California. Deep Sea Res. I 102, 78–89 (2015).
    Article  Google Scholar 

    52.
    Sato, M. et al. Impacts of moderate hypoxia on fish and zooplankton prey distributions in a coastal fjord. Mar. Ecol. Prog. Ser 560, 57–72 (2016).
    ADS  CAS  Article  Google Scholar 

    53.
    Pérez-Santos, I. et al. Turbulence and hypoxia contribute to dense biological scattering layers in a Patagonian fjord system. Ocean Sci. 14, 1185–1206 (2018).
    ADS  Article  CAS  Google Scholar 

    54.
    Díaz-Astudillo, M., Cáceres, M. & Landaeta, M. Zooplankton structure and vertical migration: Using acoustics and biomass to compare stratified and mixed fjord systems. Cont. Shelf Res 148, 208–218 (2017).
    ADS  Article  Google Scholar 

    55.
    MacLennan, D. N., Fernandez, P. G. & Dalen, J. A consistent approach to definitions and symbols in fisheries acoustics, ICES. J. Mar. Sci. 59, 365–369 (2002).
    Google Scholar 

    56.
    Ballón, M. et al. Is there enough zooplankton to feed forage fish populations off Peru? An acoustic (positive) answer. Prog. Oceanogr. 91, 360–381 (2011).
    ADS  Article  Google Scholar 

    57.
    Clarke, K.R. & Gorley, R.N. PRIMER v7: User Manual/Tutorial PRIMER-E: Plymouth (2015).

    58.
    Kloser, R. J., Ryan, T., Sakov, P., Williams, A. & Koslow, J. A. Species identification in deep water using multiple acoustic frequencies. Can. J. Fish. Aquat. Sci. 59, 1065–1077 (2002).
    Article  Google Scholar 

    59.
    Werner, T. & Buchholz, F. Diel vertical migration behaviour in Euphausiids of the northern Benguela current: Seasonal adaptations to food availability and strong gradients of temperature and oxygen. J. Plankton Res. 35, 792–812 (2013).
    CAS  Article  Google Scholar 

    60.
    Bertrand, A., Ballón, M. & Chaigneau, A. Acoustic observation of living organisms reveals the upper limit of the oxygen minimum zone. PLoS ONE 5(4), e10330 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    61.
    McLaskey, A. K. et al. Development of Euphausia pacifica (krill) larvae is impaired under pCO2 levels currently observed in the Northeast Pacific. Mar. Ecol. Prog. Ser. 555, 65–78 (2016).
    ADS  CAS  Article  Google Scholar 

    62.
    Flores, H. et al. Impact of climate change on Antarctic krill. Mar. Ecol. Prog. Ser. 458, 1–19 (2012).
    ADS  Article  Google Scholar 

    63.
    Brewer, P. G. & Peltzer, E. T. Limits to marine life. Science 324, 347–348 (2009).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Montgomery, D. W. et al. Rising CO2 enhances hypoxia tolerance in a marine fish. Sci. Rep. 9, 15152 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    65.
    Kiko, R., Hauss, H., Buchholz, F. & Melzner, F. Ammonium excretion and oxygen respiration of tropical copepods and euphausiids exposed to oxygen minimum zone conditions. Biogeosciences 13, 2241–2255 (2016).
    ADS  CAS  Article  Google Scholar 

    66.
    Antezana, T. Adaptive behaviour of Euphausia mucronata in relation to the oxygen minimum layer of the Humboldt Current. In Oceanography of the Eastern Pacific (ed. J. Farber), vol. 2, 29–40 (2002).

    67.
    Torres, J. J. & Childress, J. J. Relationship of oxygen consumption to swimming speed in Euphausia pacifica. Mar. Biol. 74, 79–86 (1983).
    Article  Google Scholar 

    68.
    Anderson, M.J., Gorley R.N. & Clarke K.R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. PRIMER-E: Plymouth, UK (2008)

    69.
    Hansen, H.P. & Koroleff, F. Determination of nutrients. In Methods sof Seawater Analysis (eds. K. Grasshoff, K. Kremling & M. Ehrhardt) 159–228 https://doi.org/10.1002/9783527613984.ch10 (2007).

    70.
    Tremblay, N., Hünerlage, K. & Werner, T. Hypoxia tolerance of 10 Euphausiid species in relation to vertical temperature and oxygen gradients. Front. Physiol. 11, 248. https://doi.org/10.3389/fphys.2020.00248 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    71.
    Tremblay, N., Gómez-Gutiérrez, J., Zenteno-Savín, T., Robinson, C. & Sánchez-Velascoa, L. Role of oxidative stress in seasonal and daily vertical migration of three krill species in the Gulf of California. Limnol. Oceanogr. 55, 2570–2584 (2010).
    ADS  CAS  Article  Google Scholar 

    72.
    Herrera, I. et al. Vertical variability of Euphausia distinguenda metabolic rates during diel migration into the oxygen minimum layer of the Eastern Tropical Pacific off Mexico. J. Plankton Res. 41, 165–176 (2019).
    CAS  Article  Google Scholar 

    73.
    Hernández-León, S., Calles, S. & Fernández de Puelles, M. L. The estimation of metabolism in the mesopelagic zone: Disentangling deep-sea zooplankton respiration. Progr. Oceanogr. 178, 102163 (2019).
    Article  Google Scholar 

    74.
    Hernández-León, S. et al. Carbon export through zooplankton active flux in the Canary Current. J. Mar. Syst. 189, 12–21 (2019).
    Article  Google Scholar 

    75.
    Baker, A. de C., Boden, B.P. & Brinton, E. A Practical Guide to the Euphausiids of the World. British Museum (Natural History), London, 96 pp. (1990).

    76.
    Alegría, N., Arana, P.M. & Sepúlveda, A. Hydroacoustic survey around Elephant Island (Sub-area 48.1) and South Orkney Islands (Subarea 48.2), austral summer 2016. 2017 IEEE/OES Acoustics in Underwater Geosciences Symposium (RIO Acoustics), 5 pp. (2017).

    77.
    Ryan, T. E., Downie, R. A., Kloser, R. J. & Keith, G. Reducing bias due to noise and attenuation in open-ocean echo integration data. ICES J. Mar. Sci. 72, 2482–2493 (2015).
    Article  Google Scholar 

    78.
    De Robertis, A. & Higginbottom, I. A post-processing technique to estimate the signal-to-noise ratio and remove echosounder background noise. ICES J. Mar. Sci. 64, 1282–1291 (2007).
    Article  Google Scholar 

    79.
    Hewitt, R. P. & Demer, D. A. The use of acoustic sampling to estimate the dispersion and abundance of euphausiids, with an emphasis on Antarctic krill (Euphausia superba). Fish. Res. 47, 215–229 (2000).
    Article  Google Scholar 

    80.
    Watkins, J. & Brierley, A. Verification of the acoustic techniques used to identify Antarctic krill. ICES J. Mar. Sci. 59, 1326–1336 (2002).
    Article  Google Scholar 

    81.
    Simmonds, E. & MacLennan, D. Observation and measurement of fish. In Fisheries Acoustics: Theory and Practice (ed. Pitcher, T. J.) 163–215 (Blackwell Science, Oxford, UK, 2005).
    Google Scholar 

    82.
    Reiss, C. S., Cossio, A. M., Loeb, V. & Demer, D. A. Variations in the biomass of Antarctic krill (Euphausia superba) around the South Shetland Islands, 1996–2006. ICES J. Mar. Sci. 65, 497–508 (2008).
    Article  Google Scholar 

    83.
    Santora, J. A. et al. Submarine canyons represent an essential habitat network for krill hotspots in a Large Marine Ecosystem. Sci. Rep. 8, 7579 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    84.
    Hartin, C. A., Bond-Lamberty, B., Patel, P. & Mundra, A. Ocean acidification over the next three centuries using a simple global climate carbon-cycle model: projections and sensitivities. Biogeosciences 13, 4329–4342 (2016).
    ADS  CAS  Article  Google Scholar  More

  • in

    Plant species determine tidal wetland methane response to sea level rise

    1.
    Bridgham, S. D., Megonigal, J. P., Keller, J. K., Bliss, N. B. & Trettin, C. The carbon balance of North American wetlands. Wetlands 26, 889–916 (2006).
    Article  Google Scholar 
    2.
    Windham-Myers, L. et al. Tidal wetlands and estuaries. in Second State of the Carbon Cycle Report (eds Cavallaro, N. et al.) 596–648 (U.S. Global Change Research Program, 2018)

    3.
    Poulter, B. et al. Global wetland contribution to 2000–2012 atmospheric methane growth rate dynamics. Environ. Res. Lett. 12, https://doi.org/10.1088/1748-9326/aa8391 (2017).

    4.
    Saunois, M. et al. The global methane budget 2000–2017. Earth Syst. Sci. 12, 1561–1623 (2020).
    ADS  Article  Google Scholar 

    5.
    Megonigal, J. P., Hines, M. E. & Visscher, P. T. Anaerobic metabolism: linkages to trace gases and aerobic processes. in Biogeochemistry (ed. Schlesinger, W. H.) 317–424 (Elsevier-Pergamon, 2004).

    6.
    Poffenbarger, H. J., Needelman, B. A. & Megonigal, J. P. Salinity influence on methane emissions from tidal marshes. Wetlands 31, 831–842 (2011).
    Article  Google Scholar 

    7.
    Al-Haj, A. N. & Fulweiler, R. W. A synthesis of methane emissions from shallow vegetated coastal ecosystems. Glob. Change Biol 26, 2988–3005 (2020).
    ADS  Article  Google Scholar 

    8.
    Oreska, M. P. J. et al. The greenhouse gas offset potential from seagrass restoration. Sci. Rep. https://doi.org/10.1038/s41598-020-64094-1 (2020).

    9.
    Rosentreter, J. A., Maher, D. T., Erler, D. V., Murray, R. H. & Eyre, B. D. Methane emissions partially offset “blue carbon” burial in mangroves. Sci. Adv. https://doi.org/10.1126/sciadv.aao4985 (2018).

    10.
    Crooks, S. et al. Coastal wetland management as a contribution to the US National Greenhouse Gas Inventory. Nat. Clim. Chang. 8, 1109–1112 (2018).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Chamberlain, S. D. et al. Soil properties and sediment accretion modulate methane fluxes from restored wetlands. Glob. Chang. Biol. 24, 4107–4121 (2018).
    Article  Google Scholar 

    12.
    Call, M. et al. Spatial and temporal variability of carbon dioxide and methane fluxes over semi-diurnal and spring-neap-spring timescales in a mangrove creek. Geochim. Cosmochim. Acta 150, 211–225 (2015).
    ADS  CAS  Article  Google Scholar 

    13.
    van der Nat, F.-J. W. A. & Middelburg, J. J. Effects of two common macrophytes on methane dynamics in freshwater sediments. Biogeochemistry 43, 79–104 (1998).
    Article  Google Scholar 

    14.
    Mueller, P. et al. Complex invader-ecosystem interactions and seasonality mediate the impact of non-native Phragmites on CH4 emissions. Biol. Invasions 18, 2635–2647 (2016).
    Article  Google Scholar 

    15.
    Tong, C., Morris, J. T., Huang, J., Xu, H. & Wan, S. Changes in pore-water chemistry and methane emission following the invasion of Spartina alterniflora into an oliogohaline marsh. Limnol. Oceanogr. 63, 384–396 (2018).
    ADS  CAS  Article  Google Scholar 

    16.
    Macreadie, P. I. et al. The future of Blue Carbon science. Nat. Commun. 10, 3998 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    17.
    Spivak, A. C., Sanderman, J., Bowen, J. L., Canuel, E. A. & Hopkinson, C. S. Global-change controls on soil-carbon accumulation and loss in coastal vegetated ecosystems. Nat. Geosci. 12, 685–692 (2019).
    ADS  CAS  Article  Google Scholar 

    18.
    Kirwan, M. L. & Megonigal, J. P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504, 53–60 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    19.
    Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marba, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Chang. 3, 961–968 (2013).
    ADS  CAS  Article  Google Scholar 

    20.
    Rogers, K. et al. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature 567, 91–95 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    21.
    Megonigal, J. P. & Schlesinger, W. H. Enhanced CH4 emissions from a wetland soil exposed to elevated CO2. Biogeochemistry 37, 77–88 (1997).
    CAS  Article  Google Scholar 

    22.
    Beaulieu, J. J., DelSontro, T. & Downing, J. A. Eutrophication will increase methane emissions from lakes and impoundments during the 21st century. Nat. Commun. 10, 1375 (2019).
    Article  CAS  Google Scholar 

    23.
    Wilson, R. M. et al. Stability of peatland carbon to rising temperatures. Nat. Commun. 7, 13723 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Stocker, B. D. et al. Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios. Nat. Clim. Chang. 3, 666–672 (2013).
    ADS  CAS  Article  Google Scholar 

    25.
    Knoblauch, C., Beer, C., Liebner, S., Grigoriev, M. N. & Pfeiffer, E. M. Methane production as key to the greenhouse gas budget of thawing permafrost. Nat. Clim. Chang. 8, 309–312 (2018).
    ADS  CAS  Article  Google Scholar 

    26.
    Whiting, G. J. & Chanton, J. P. Primary production control of methane emission from wetlands. Nature 364, 794–795 (1993).
    ADS  CAS  Article  Google Scholar 

    27.
    Langley, J. A., Mozdzer, T. J., Shepard, K. A., Hagerty, S. B. & Megonigal, J. P. Tidal marsh plant responses to elevated CO2, nitrogen fertilization, and sea level rise. Glob. Chang. Biol. 19, 1495–1503 (2013).
    Article  Google Scholar 

    28.
    Mueller, P. et al. Global-change effects on early-stage decomposition processes in tidal wetlands—implications from a global survey using standardized litter. Biogeosciences 15, 3189–3202 (2018).
    ADS  CAS  Article  Google Scholar 

    29.
    Kirwan, M. L. & Guntenspergen, G. R. Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh. J. Ecol. 100, 764–770 (2012).
    Article  Google Scholar 

    30.
    Redelstein, R., Dinter, T., Hertel, D. & Leuschner, C. Effects of inundation, nutrient availability and plant species diversity on fine root mass and morphology across a saltmarsh flooding gradient. Front. Plant Sci. 9, 1–15 (2018).
    Article  Google Scholar 

    31.
    Morris, J. T. Estimating net primary production of salt marsh macrophytes. in Principles and Standards for Measuring Primary Production (eds Fahey, T. J. & Knapp, A. K.) 106–119 (Oxford University Press, 2007).

    32.
    Arp, W. J., Drake, B. G., Pockman, W. T., Curtis, P. S. & Whigham, D. F. Interactions between C3 and C4 salt marsh plant species during four years of exposure to elevated atmospheric CO2. Vegetatio. 104, 133–143 (1993).
    Article  Google Scholar 

    33.
    Erickson, J. E., Megonigal, J. P., Peresta, G. & Drake, B. G. Salinity and sea level mediate elevated CO2 effects on C3-C4 plant interactions and tissue nitrogen in a Chesapeake Bay tidal wetland. Glob. Chang. Biol. 13, 202–215 (2007).
    ADS  Article  Google Scholar 

    34.
    Drake, B. G. Rising sea level, temperature, and precipitation impact plant and ecosystem responses to elevated CO2 on a Chesapeake Bay wetland: Review of a 28-year study. Glob. Chang. Biol. 20, 3329–3343 (2014).
    ADS  PubMed  Article  Google Scholar 

    35.
    Kirwan, M. L., Langley, J. A., Guntenspergen, G. R. & Megonigal, J. P. The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes. Biogeosciences 10, 1869–1876 (2013).
    ADS  CAS  Article  Google Scholar 

    36.
    Phillips, R. P., Finzi, A. C. & Bernhardt, E. S. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol. Lett. 14, 187–194 (2011).
    PubMed  Article  Google Scholar 

    37.
    Phillips, R. P., Bernhardt, E. S. & Schlesinger, W. H. Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response. Tree Physiol. 29, 1513–1523 (2009).
    CAS  PubMed  Article  Google Scholar 

    38.
    Lin, G., Ehleringer, J. R., Rygiewicz, P. T., Johnson, M. G. & Tingey, D. T. Elevated CO2 and temperature impacts on different components of soil CO2 efflux in Douglas-fir terracosms. Glob. Chang. Biol. 5, 157–168 (1999).
    ADS  Article  Google Scholar 

    39.
    Megonigal, J. P. et al. A plant-soil-atmosphere microcosm for tracing radiocarbon from photosynthesis through methanogenesis. Soil Sci. Soc. Am. J. 63, 665–671 (1999).
    ADS  CAS  Article  Google Scholar 

    40.
    Dacey, J. W. H., Drake, B. G. & Klug, M. J. Stimulation of methane emission by carbon dioxide enrichment of marsh vegetation. Nature 370, 47–49 (1994).
    ADS  CAS  Article  Google Scholar 

    41.
    Keller, J. K., Wolf, A. A., Weisenhorn, P. B., Drake, B. G. & Megonigal, J. P. Elevated CO2 affects porewater chemistry in a brackish marsh. Biogeochemistry 96, 101–117 (2009).
    CAS  Article  Google Scholar 

    42.
    Langley, J. A. & Megonigal, J. P. Ecosystem response to elevated CO2 levels limited by nitrogen-induced plant species shift. Nature 466, 96–99 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    43.
    Langley, J. A., McKee, K. L., Cahoon, D. R., Cherry, J. A. & Megonigal, J. P. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise. Proc. Natl Acad. Sci. U.S.A. 106, 6182–6186 (2009).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Langley, J. A. et al. Ambient changes exceed treatment effects on plant species abundance in global change experiments. Glob. Chang. Biol. 24, 5668–5679 (2018).
    ADS  PubMed  Article  Google Scholar 

    45.
    Bhullar, G. S., Edwards, P. J. & Olde Venterink, H. Variation in the plant-mediated methane transport and its importance for methane emission from intact wetland peat mesocosms. J. Plant Ecol. 6, 298–304 (2013).
    Article  Google Scholar 

    46.
    van der Nat, F.-J. W. A., Middelburg, J. J., Van Meteren, D. & Wielemakers, A. Diel methane emission patterns from Scirpus lacustris and Phragmites australis. Biogeochemistry 41, 1–22 (1998).
    Article  Google Scholar 

    47.
    Van Der Nat, F. J. W. A. & Middelburg, J. J. Seasonal variation in methane oxidation by the rhizosphere of Phragmites australis and Scirpus lacustris. Aquat. Bot. 61, 95–110 (1998).
    Article  Google Scholar 

    48.
    Wolf, A. A., Drake, B. G., Erickson, J. E. & Megonigal, J. P. An oxygen-mediated positive feedback between elevated carbon dioxide and soil organic matter decomposition in a simulated anaerobic wetland. Glob. Chang. Biol. 13, 2036–2044 (2007).
    ADS  Article  Google Scholar 

    49.
    Bernal, B., Megonigal, J. P. & Mozdzer, T. J. An invasive wetland grass primes deep soil carbon pools. Glob. Chang. Biol. 23, 2104–2116 (2017).
    ADS  PubMed  Article  Google Scholar 

    50.
    Mueller, P., Jensen, K. & Megonigal, J. P. Plants mediate soil organic matter decomposition in response to sea level rise. Glob. Chang. Biol. 22, 404–414 (2016).
    ADS  PubMed  Article  Google Scholar 

    51.
    Yuan, J. et al. Spartina alterniflora invasion drastically increases methane production potential by shifting methanogenesis from hydrogenotrophic to methylotrophic pathway in a coastal marsh. J. Ecol. 107, 2436–2450 (2019).
    CAS  Article  Google Scholar 

    52.
    Marsh, A. S., Rasse, D. P., Drake, B. G. & Megonigal, J. P. Effect of elevated CO2 on carbon pools and fluxes in a brackish marsh. Estuaries 28, 694–704 (2005).
    CAS  Article  Google Scholar 

    53.
    Broome, S. W., Mendelssohn, I. A. & McKee, K. L. Relative growth of Spartina patens (Ait.) Muhl. and Scirpus olneyi gray occurring in a mixed stand as affected by salinity and flooding depth. Wetlands 15, 20–30 (1995).
    Article  Google Scholar 

    54.
    Mozdzer, T. J., Langley, J. A., Mueller, P. & Megonigal, J. P. Deep rooting and global change facilitate spread of invasive grass. Biol. Invasions 18, 2619–2631 (2016).
    Article  Google Scholar 

    55.
    IPCC. United Nations Framework Convention on Climate Change. United Nations Framew. Conv. Clim. Chang. https://doi.org/10.1111/j.1467-9388.1992.tb00046.x (2014).

    56.
    Noyce, G. L., Kirwan, M. L., Rich, R. L. & Megonigal, J. P. Asynchronous nitrogen supply and demand produce nonlinear plant allocation responses to warming and elevated CO2. Proc. Natl Acad. Sci. U.S.A. 116, 21623–21628 (2019).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Megonigal, J. P. & Rabenhorst, M. Reduction–oxidation potential and oxygen. in Methods in Biogeochemistry of Wetlands (eds DeLaune, R. D., Reddy, K. R., Richardson, C. J. & Megonigal, J. P.) 71–85 (Soil Science Society of America, Inc., 2013).

    58.
    Aselmann, I. & Crutzen, P. J. Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J. Atmos. Chem. 8, 307–358 (1989).
    CAS  Article  Google Scholar 

    59.
    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. Past: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 4 (2001).
    Google Scholar  More