Smaller climatic niche shifts in invasive than non-invasive alien ant species
1.
Early, R. et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 7, 1–9 (2016).
2.
Seebens, H. et al. Global rise in emerging alien species results from increased accessibility of new source pools. Proc. Natl Acad. Sci. USA 115, E2264–E2273 (2018).
CAS PubMed Article Google Scholar
3.
Seebens, H. et al. Global trade will accelerate plant invasions in emerging economies under climate change. Glob. Chang. Biol. 21, 4128–4140 (2015).
ADS PubMed Article Google Scholar
4.
Simberloff, D. et al. Impacts of biological invasions: what’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).
PubMed Article Google Scholar
5.
Vilà, M. et al. How well do we understand the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. Front. Ecol. Environ. 8, 135–144 (2010).
Article Google Scholar
6.
Van Kleunen, M., Dawson, W., Schlaepfer, D., Jeschke, J. M. & Fischer, M. Are invaders different? A conceptual framework of comparative approaches for assessing determinants of invasiveness. Ecol. Lett. 13, 947–958 (2010).
PubMed Google Scholar
7.
Enserink, M. Biological invaders sweep in. Science 285, 1834–1836 (1999).
CAS Article Google Scholar
8.
Hulme, P. E. Phenotypic plasticity and plant invasions: is it all Jack? Funct. Ecol. 22, 3–7 (2008).
Article Google Scholar
9.
Murray, B. R., Thrall, P. H., Gill, A. M. & Nicotra, A. B. How plant life-history and ecological traits relate to species rarity and commonness at varying spatial scales. Austral Ecol. 27, 291–310 (2002).
Article Google Scholar
10.
Davidson, A. M., Jennions, M. & Nicotra, A. B. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecol. Lett. 14, 419–431 (2011).
PubMed Article Google Scholar
11.
Bazin, É., Mathé-Hubert, H., Facon, B., Carlier, J. & Ravigné, V. The effect of mating system on invasiveness: Some genetic load may be advantageous when invading new environments. Biol. Invasion. 16, 875–886 (2014).
Article Google Scholar
12.
Zheng, Y. et al. Are invasive plants more competitive than native conspecifics? Patterns vary with competitors. Sci. Rep. 5, 1–8 (2015).
Google Scholar
13.
Callaway, R. M. & Aschehoug, E. T. Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290, 521–523 (2000).
ADS CAS PubMed Article Google Scholar
14.
Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C. & Kueffer, C. Unifying niche shift studies: insights from biological invasions. Trends Ecol. Evol. 29, 260–269 (2014).
PubMed Article Google Scholar
15.
Gallagher, R. V., Beaumont, L. J., Hughes, L. & Leishman, M. R. Evidence for climatic niche and biome shifts between native and novel ranges in plant species introduced to Australia. J. Ecol. 98, 790–799 (2010).
Article Google Scholar
16.
Petitpierre, B. et al. Climatic niche shifts are rare among terrestrial plant invaders. Science 335, 1344–1348 (2012).
ADS CAS PubMed Article Google Scholar
17.
Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D. & Case, T. J. The causes and consequences of ant invasions. Annu. Rev. Ecol. Syst. 33, 181–233 (2002).
Article Google Scholar
18.
Hölldobler, Bert, E. O. W. The Ants. (Havard University Press, 1990).
19.
Meurisse, N., Rassati, D., Hurley, B. P., Brockerhoff, E. G. & Haack, R. A. Common pathways by which non-native forest insects move internationally and domestically. J. Pest Sci. 92, 13–27 (2018).
Article Google Scholar
20.
Bertelsmeier, C., Luque, G. M., Hoffmann, B. D. & Courchamp, F. Worldwide ant invasions under climate change. Biodivers. Conserv. 24, 117–128 (2015).
Article Google Scholar
21.
Fitzpatrick, M. C., Weltzin, J. F., Sanders, N. J. & Dunn, R. R. The biogeography of prediction error: why does the introduced range of the fire ant over-predict its native range? Glob. Ecol. Biogeogr. 16, 24–33 (2007).
Article Google Scholar
22.
Bradshaw, C. J. A. et al. Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 7, 1–8 (2016).
23.
Bertelsmeier, C., Ollier, S., Liebhold, A. & Keller, L. Recent human history governs global ant invasion dynamics. Nat. Ecol. Evol. 1, 0184 (2017).
PubMed PubMed Central Article Google Scholar
24.
Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339 (2011).
PubMed Article Google Scholar
25.
Essl, F. et al. Socioeconomic legacy yields an invasion debt. Proc. Natl Acad. Sci. USA 108, 203–207 (2011).
ADS CAS PubMed Article Google Scholar
26.
Rouget, M. et al. Invasion debt-quantifying future biological invasions. Divers. Distrib. 22, 445–456 (2016).
Article Google Scholar
27.
Soberon, J. & Peterson, A. T. Interpretation of models of fundamental ecological niches and species’ distributional Areas. Biodivers. Inform. 2, 0–10 (2005).
Article Google Scholar
28.
Keane, R. M. & Crawley, M. J. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17, 164–170 (2002).
Article Google Scholar
29.
Shea, K. & Chesson, P. Community ecology theory as a framework for biological invasions. Trends Ecol. Evol. 163, 170–176 (2002).
Article Google Scholar
30.
Bocsi, T. et al. Plants’ native distributions do not reflect climatic tolerance. Divers. Distrib. 22, 615–624 (2016).
Article Google Scholar
31.
Bolnick, D. I. et al. Ecological release from interspecific competition leads to decoupled changes in population and individual niche width. Proc. R. Soc. B Biol. Sci. 277, 1789–1797 (2010).
Article Google Scholar
32.
Torres, U. et al. Using niche conservatism information to prioritize hotspots of invasion by non-native freshwater invertebrates in New Zealand. Divers. Distrib. 24, 1802–1815 (2018).
Article Google Scholar
33.
Blonder, B., Lamanna, C., Violle, C. & Enquist, B. J. The n-dimensional hypervolume. Glob. Ecol. Biogeogr. 23, 595–609 (2014).
Article Google Scholar
34.
Godefroid, M., Rasplus, J. Y. & Rossi, J. P. Is phylogeography helpful for invasive species risk assessment? The case study of the bark beetle genus Dendroctonus. Ecography 39, 1197–1209 (2016).
Article Google Scholar
35.
Bujan, J., Roeder, K. A., Yanoviak, S. P. & Kaspari, M. Seasonal plasticity of thermal tolerance in ants. Ecology 101, 1–6 (2020).
Article Google Scholar
36.
Bujan, J. & Kaspari, M. Nutrition modifies critical thermal maximum of a dominant canopy ant. J. Insect Physiol. 102, 1–6 (2017).
CAS PubMed Article Google Scholar
37.
Alexander, J. M. & Edwards, P. J. Limits to the niche and range margins of alien species. Oikos 119, 1377–1386 (2010).
Article Google Scholar
38.
Pearman, P. B., Guisan, A., Broennimann, O. & Randin, C. F. Niche dynamics in space and time. Trends Ecol. Evol. 23, 149–158 (2008).
PubMed Article Google Scholar
39.
Tingley, R., Vallinoto, M., Sequeira, F. & Kearney, M. R. Realized niche shift during a global biological invasion. Proc. Natl Acad. Sci. USA 111, 10233–10238 (2014).
ADS CAS PubMed Article Google Scholar
40.
Medley, K. A. Niche shifts during the global invasion of the Asian tiger mosquito, Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models. Glob. Ecol. Biogeogr. 19, 122–133 (2010).
Article Google Scholar
41.
Kolbe, J. J. et al. Genetic variation increases during biological invasion by a Cuban lizard. Nature 431, 177–181 (2004).
ADS CAS PubMed Article Google Scholar
42.
Angetter, L. S., Lotters, S. & Rodder, D. Climate niche shift in invasive species: the case of the brown anole. Biol. J. Linn. Soc. 104, 943–954 (2011).
Article Google Scholar
43.
Colautti, R. I. & Lau, J. A. Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation. Mol. Ecol. 24, 1999–2017 (2015).
PubMed Article Google Scholar
44.
Bertelsmeier, C. & Keller, L. Bridgehead effects and role of adaptive evolution in invasive populations. Trends Ecol. Evol. 33, 527–534 (2018).
PubMed Article Google Scholar
45.
Srivastava, V., Lafond, V. & Griess, V. C. Species distribution models (SDM): applications, benefits and challenges in invasive species management. CAB Rev. 14, 1–13 (2019).
46.
Pili, A. N., Tingley, R., Sy, E. Y., Diesmos, M. L. L. & Diesmos, A. C. Niche shifts and environmental non-equilibrium undermine the usefulness of ecological niche models for invasion risk assessments. Sci. Rep. 10, 1–18 (2020).
Article CAS Google Scholar
47.
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).
PubMed PubMed Central Article Google Scholar
48.
Kirchhof, S. et al. Thermoregulatory behavior and high thermal preference buffer impact of climate change in a Namib Desert lizard. Ecosphere 8, e02033 (2017).
49.
Woods, H. A., Dillon, M. E. & Pincebourde, S. The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change. J. Therm. Biol. 54, 86–97 (2015).
PubMed Article Google Scholar
50.
Chapman, D. S., Scalone, R., Štefanić, E. & Bullock, J. M. Mechanistic species distribution modeling reveals a niche shift during invasion. Ecology 98, 1671–1680 (2017).
PubMed Article Google Scholar
51.
Janicki, J., Narula, N., Ziegler, M., Guénard, B. & Economo, E. P. Visualizing and interacting with large-volume biodiversity data using client-server web-mapping applications: The design and implementation of antmaps.org. Ecol. Inform. 32, 185–193 (2016).
Article Google Scholar
52.
Guénard, B., Weiser, M. D., Gómez, K., Narula, N. & Economo, E. P. The Global Ant Biodiversity Informatics (GABI) database: Synthesizing data on the geographic distribution of ant species (Hymenoptera: Formicidae). Myrmecological N. 24, 83–89 (2017).
Google Scholar
53.
Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2007).
Article Google Scholar
54.
Pagad, S., Genovesi, P., Carnevali, L., Scalera, R. & Clout, M. IUCN SSC invasive species specialist group: Invasive alien species information management supporting practitioners, policy makers and decision takers. Manag. Biol. Invasion. 6, 127–135 (2015).
Article Google Scholar
55.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
Article Google Scholar
56.
Dray, S. & Dufour, A.-B. The ade4 Package: implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).
57.
Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497 (2012).
Article Google Scholar
58.
Di Cola, V. et al. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787 (2017).
Article Google Scholar
59.
Schoener, T. W. The Anolis Lizards of Bimini: resource partitioning in a complex fauna were invaded by anoline lizards. Ecol. Soc. Am. 49, 704–726 (1968).
Google Scholar
60.
Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62, 2868–2883 (2008).
PubMed Article Google Scholar
61.
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Royal Stat. Soc. 57, 289–300 (1995).
MathSciNet MATH Google Scholar
62.
Bates, O. K., Ollier, S. & Bertelsmeier, C. Smaller climatic niche shifts in invasive than non-invasive alien ant species. GitHub. https://doi.org/10.5281/zenodo.4041296 (2020).
63.
Team, R. C. R.: A Language and Environment for Statistical Computing. (2019). More