The influence of climate variability on demographic rates of avian Afro-palearctic migrants
1.
Hawkins, B. A. et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117 (2003).
Article Google Scholar
2.
Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214. https://doi.org/10.1126/science.aai9214 (2017).
CAS Article PubMed Google Scholar
3.
Pearce-Higgins, J. W., Eglington, S. M., Martay, B. & Chamberlain, D. E. Drivers of climate change impacts on bird communities. J. Anim. Ecol. 84, 943–954 (2015).
PubMed Article PubMed Central Google Scholar
4.
Sanderson, F. J., Donald, P. F., Pain, D. J., Burfield, I. J. & van Bommel, F. P. J. Long-term population declines in Afro-Palearctic migrant birds. Biol. Conserv. 131, 93–105 (2006).
Article Google Scholar
5.
Wilcove, D. S. & Wikelski, M. Going, going, gone: Is animal migration disappearing. PLoS Biol. 6, e188. https://doi.org/10.1371/journal.pbio.0060188 (2008).
CAS Article PubMed PubMed Central Google Scholar
6.
Koleček, J., Procházka, P., Ieronymidou, C., Burfield, I. J. & Reif, J. Non-breeding range size predicts the magnitude of population trends in trans-Saharan migratory passerine birds. Oikos 127, 599–606 (2018).
Article Google Scholar
7.
Marra, P. P., Cohen, E. B., Loss, S. R., Rutter, J. E. & Tonra, C. M. A call for full annual cycle research in animal ecology. Biol. Lett. 11, 20150552. https://doi.org/10.1098/rsbl.2015.0552 (2015).
CAS Article PubMed PubMed Central Google Scholar
8.
Rolland, J. et al. The impact of endothermy on the climatic niche evolution and the distribution of vertebrate diversity. Nat. Ecol. Evol. 2, 459–464 (2018).
PubMed Article PubMed Central Google Scholar
9.
Jiguet, F. et al. Population trends of European common birds are predicted by characteristics of their climatic niche. Global Change Biol. 16, 497–505 (2010).
ADS Article Google Scholar
10.
Eglington, S. M. et al. Latitudinal gradients in the productivity of European migrant warblers have not shifted northwards during a period of climate change. Global Ecol. Biogeogr. 24, 427–436 (2015).
Article Google Scholar
11.
Meller, K., Piha, M., Vähätalo, A. V. & Lehikoinen, A. A positive relationship between spring temperature and productivity in 20 songbird species in the boreal zone. Oecologia 186, 883–893 (2018).
ADS PubMed Article PubMed Central Google Scholar
12.
Townsend, A. K. et al. Warm springs, early lay dates, and double brooding in a North American migratory songbird, the Black-Throated Blue Warbler. PLoS ONE 8, e59467. https://doi.org/10.1371/journal.pone.0059467 (2013).
ADS CAS Article PubMed PubMed Central Google Scholar
13.
Whittaker, R. J., Nogués-Bravo, D. & Araújo, M. B. Geographical gradients of species richness: a test of the water-energy conjecture of Hawkins et al. (2003) using European data for five taxa. Global Ecol. Biogeogr. 16, 76–89 (2007).
Article Google Scholar
14.
Visser, M. E. & Gienapp, P. Evolutionary and demographic consequences of phenological mismatches. Nat. Ecol. Evol. 3, 879–885 (2019).
PubMed PubMed Central Article Google Scholar
15.
Thackeray, S. J. et al. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob. Change Biol. 16, 3304–3313 (2010).
ADS Article Google Scholar
16.
Donnelly, A., Yu, R. & Liu, L. Trophic level responses differ as climate warms in Ireland. Int. J. Biometeorol. 59, 1007–1017 (2014).
PubMed Article PubMed Central Google Scholar
17.
Ross, M. V., Alisauskas, R. T., Douglas, D. C. & Kelletti, D. K. Decadal declines in avian herbivore reproduction: density-dependent nutrition and phenological mismatch in the Arctic. Ecology 98, 1869–1883 (2017).
PubMed Article PubMed Central Google Scholar
18.
Visser, M. E., Holleman, L. J. M. & Gienapp, P. Shifts in caterpillar biomassphenology due to climate change and its impact on the breeding biology of aninsectivorous bird. Oecologia 147, 164–172 (2006).
ADS PubMed Article PubMed Central Google Scholar
19.
Samplonius, J. M., Kappers, E. F., Brands, S. & Both, C. Phenological mismatch and ontogenetic diet shifts interactively affect offspring condition in a passerine. J. Anim. Ecol. 85, 1255–1264 (2016).
PubMed Article PubMed Central Google Scholar
20.
Finch, T., Pearce-Higgins, J., Leech, D. I. & Evans, K. Carry-over effects from passage regions are more important than breeding climate in determining the breeding phenology and performance of three avian migrants of conservation concern. Biodivers. Conserv. 23, 2427–2444 (2014).
Article Google Scholar
21.
Both, C., Ubels, R. & Ravussin, P.-A. Life-history innovation to climate change: can single-brooded migrant birds become multiple breeders?. J. Avian Biol. 50, 01951. https://doi.org/10.1111/jav.01951 (2019).
Article Google Scholar
22.
Ockendon, N. et al. Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct effects. Global Change Biol. 20, 2221–2229 (2014).
ADS Article Google Scholar
23.
Ambrosini, R., Saino, N., Rubolini, D. & Møller, A. P. Higher degree-days at the time of breeding predict size of second clutches in the barn swallow. Clim. Res. 50, 43–50 (2011).
Article Google Scholar
24.
Cayton, H. L., Haddad, N. M., Gross, K., Diamond, S. E. & Ries, L. Do growing degree days predict phenology across butterfly species?. Ecology 96, 1473–1479 (2015).
Article Google Scholar
25.
Saino, N. et al. Climate warming, ecological mismatch at arrival and population decline in migratory birds. Proc. R. Soc. B. 278, 835–842 (2011).
PubMed Article PubMed Central Google Scholar
26.
Winstanley, D., Spencer, R. & Williamson, K. Where have all the Whitethroats gone?. Bird Study 21, 1–14 (1974).
Google Scholar
27.
Peach, W. J., Baillie, S. R. & Balmer, D. E. Survival of British Sedge Warblers Acrocephalus schoenobaenus in relation to west African rainfall. Ibis 133, 300–305 (1991).
Article Google Scholar
28.
Johnston, A. et al. Survival of Afro-Palaearctic passerine migrants in western Europe and the impacts of seasonal weather variables. Ibis 158, 465–480 (2016).
Article Google Scholar
29.
Norris, D. R. & Marra, P. P. Seasonal interactions, habitat quality, and population dynamics in migratory birds. Condor 109, 535–547 (2007).
Article Google Scholar
30.
Gordo, O. & Sanz, J. J. The relative importance of conditions in wintering and passage areas on spring arrival dates: the case of long-distance Iberian migrants. J. Ornith. 149, 199–210 (2008).
Article Google Scholar
31.
Saino, N. et al. Temperature and rainfall anomalies in Africa predict timing of spring migration in trans-Saharan migratory birds. Clim. Res. 35, 123–134 (2007).
Article Google Scholar
32.
Smith, R. J. & Moore, F. R. Arrival fat and reproductive performance in a long-distance passerine migrant. Oecologia 134, 325–331 (2003).
ADS PubMed Article Google Scholar
33.
Norman, D. & Peach, W. J. Density-dependent survival and recruitment in a long-distance Palaearctic migrant, the Sand Martin Riparia riparia. Ibis 155, 284–296 (2013).
Article Google Scholar
34.
Nicholson, S. E. The nature of rainfall variability over Africa on time scales of decades to millenia. Glob. Planet. Change 26, 137–158 (2000).
ADS Article Google Scholar
35.
Vickery, J. A. et al. The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis 156, 1–22 (2014).
Article Google Scholar
36.
Post, E. & Forchhammer, M. C. Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch. Philos. Trans. R. Soc. B. 363, 2369–2375 (2008).
Article Google Scholar
37.
Møller, A. P., Rubolini, D. & Lehikoinen, E. Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc. Natl. Acad. Sci. U. S. A. 105, 16195–16200 (2008).
ADS PubMed PubMed Central Article Google Scholar
38.
Both, C., Bouwhuis, S., Lessells, C. M. & Visser, M. E. Climate change and population declines in a long-distance migratory bird. Nature 441, 81–83 (2006).
ADS CAS PubMed Article Google Scholar
39.
Sanz, J. J., Potti, J., Moreno, J., Merino, S. & Frías, O. Climate change and fitness components of a migratory bird breeding in the Mediterranean region. Global Change Biol. 9, 461–472 (2003).
ADS Article Google Scholar
40.
Skwarska, J. et al. Long-term variation in laying date and clutch size of Pied Flycatchers Ficedula hypoleuca in central Poland. Pol. J. Ecol. 60, 187–192 (2012).
Google Scholar
41.
González-Braojos, S., Jose Sanz, J. & Moreno, J. Decline of a montane Mediterranean pied flycatcher Ficedula hypoleuca population in relation to climate. J. Avian Biol. 48, 1383–1393 (2017).
Article Google Scholar
42.
Suryan, R. M., Irons, D. B., Brown, E. D., Jodice, P. G. R. & Roby, D. D. Site-specific effects on productivity of an upper trophic-level marine predator: bottom-up, top-down, and mismatch effects on reproduction in a colonial seabird. Prog. Oceanogr. 68, 303–328 (2006).
ADS Article Google Scholar
43.
Gaston, A. J., Gilchrist, H. G., Mallory, M. L. & Smith, P. A. Changes in seasonal events, peak food availability, and consequent breeding adjustment in a marine bird: a case of progressive mismatching. Condor 111, 111–119 (2009).
Article Google Scholar
44.
Ramírez, F. et al. Oceanographic drivers and mistiming processes shape breeding success in a seabird. Proc. R. Soc. B 283, 20152287. https://doi.org/10.1098/rspb.2015.2287 (2016).
CAS Article PubMed PubMed Central Google Scholar
45.
Doiron, M., Gauthier, G. & Lévesque, E. Trophic mismatch and its effects on the growth of young in an Arctic herbivore. Glob. Chang. Biol. 21, 4364–4376 (2015).
ADS PubMed Article PubMed Central Google Scholar
46.
McKinnon, L., Picotin, M., Bolduc, E., Juillet, C. & Bêty, J. Timing of breeding, peak food availability, and effects of mismatch on chick growth in birds nesting in the High Arctic. Can. J. Zoo. 90, 961–971 (2012).
Article Google Scholar
47.
Bowers, E. K. et al. Spring temperatures influence selection on breeding date and the potential for phenological mismatch in a migratory bird. Ecology 97, 2880–2891 (2016).
PubMed PubMed Central Article Google Scholar
48.
Charmentier, A. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803 (2008).
ADS Article CAS Google Scholar
49.
Koleček, J., Adamík, P. & Reif, J. Shifts in migration phenology under climate change: temperature vs. abundance effects in birds. Climatic Change 159, 177–194 (2020).
ADS Article Google Scholar
50.
Rubolini, D., Saino, N. & Møller, A. P. Migratory behaviour constrains the phenological response of birds to climate change. Clim. Res. 42, 45–55 (2010).
Article Google Scholar
51.
Schmaljohann, H. & Both, C. The limits of modifying migration speed to adjust to climate change. Nat. Clim. Change 7, 573–576 (2017).
ADS Article Google Scholar
52.
Kolarova, E. & Adamik, P. Bird arrival dates in Central Europe based on one of the earliest phenological networks. Clim. Res. 63, 91–98 (2015).
Article Google Scholar
53.
Rubolini, D., Møller, A. P., Rainio, K. & Lehikoinen, E. Intraspecific consistency and geographic variability in temporal trends of spring migration phenology among European bird species. Clim. Res. 35, 135–146 (2007).
Article Google Scholar
54.
Reed, T. E., Grøtan, V., Jenouvrier, S., Sæther, B.-E. & Visser, M. E. Population growth in a wild bird is buffered against phenological mismatch. Science 340, 488–491 (2013).
ADS CAS PubMed Article PubMed Central Google Scholar
55.
Mallord, J. W. et al. Diet flexibility in a declining long-distance migrant may allow it to escape the consequences of phenological mismatch with its caterpillar food supply. Ibis 159, 76–90 (2017).
Article Google Scholar
56.
Simmonds, E. G., Sheldon, B. C., Coulson, T. & Cole, E. F. Incubation behavior adjustments, driven by ambient temperature variation, improve synchrony between hatch dates and caterpillar peak in a wild bird population. Ecol. Evol. 7, 9415–9425 (2017).
PubMed PubMed Central Article Google Scholar
57.
Tomotani, B. M. et al. Climate change leads to differential shifts in the timing of annual cycle stages in a migratory bird. Glob. Change Biol. 24, 823–835 (2018).
ADS Article Google Scholar
58.
Vatka, E., Rytkonen, S. & Orell, M. Does the temporal mismatch hypothesis match in boreal populations?. Oecologia 176, 595–605 (2014).
ADS PubMed Article PubMed Central Google Scholar
59.
Eeva, T., Lehikoinen, E., Rönkä, M., Lummaa, V. & Currie, D. Different responses to cold weather in two pied flycatcher populations. Ecography 25, 705–713 (2002).
Article Google Scholar
60.
McKinnon, L., Nol, E. & Juillet, C. Arctic-nesting birds find physiological relief in the face of trophic constraints. Sci. Rep. 3, 1816. https://doi.org/10.1038/srep01816 (2013).
ADS CAS Article PubMed PubMed Central Google Scholar
61.
Wittwer, T., O’Hara, R. B., Caplat, P., Hickler, T. & Smith, H. G. Long-term population dynamics of a migrant bird suggests interaction of climate change and competition with resident species. Oikos 124, 1151–1159 (2015).
Article Google Scholar
62.
Wiebe, K. L. Interspecific competition for nests: Prior ownership trumps resource holding potential for Mountain Bluebird competing with Tree Swallow. Auk 133, 512–519 (2016).
Article Google Scholar
63.
Ahola, M. P., Laaksonen, T., Eeva, T. & Lehikoinen, E. Climate change can alter competitive relationships between resident and migratory birds. J. Anim. Ecol. 76, 1045–1052 (2007).
PubMed Article PubMed Central Google Scholar
64.
Samplonius, J. M. & Both, C. Climate change may affect fatal competition between two bird species. Curr. Biol. 29, 327–331 (2019).
CAS PubMed Article PubMed Central Google Scholar
65.
Wesolowski, T. Primeval conditions—what can we learn from them?. Ibis 149, 64–77 (2007).
Article Google Scholar
66.
Adamík, P. & Král, M. Climate-and resource-driven long-term changes in dormice populations negatively affect hole-nesting songbirds. J. Zool. 275, 209–215 (2008).
Article Google Scholar
67.
Ӧberg, M. et al. Rainfall during parental care reduces reproductive and survival components of fitness in a passerine bird. Ecol. Evol. 5, 345–356 (2015).
Article Google Scholar
68.
Mazer, S. J., Gerst, K. L., Matthews, E. R. & Evenden, A. Species-specific phenological responses to winter temperature and precipitation in a waterlimited ecosystem. Ecosphere 6, 1–27 (2015).
Article Google Scholar
69.
Morrison, C. A., Robinson, R. A., Butler, S. J., Clark, J. A. & Gill, J. A. Demographic drivers of decline and recovery in an Afro-Palaearctic migratory bird population. Proc. R. Soc. B 283, 20161387. https://doi.org/10.1098/rspb.2016.1387 (2016).
Article PubMed PubMed Central Google Scholar
70.
Ockendon, N., Hewson, C. M., Johnston, A. & Atkinson, P. W. Declines in British breeding populations of Afro-Palaearctic migrant birds are linked to bioclimatic wintering zone in Africa, possibly via constraints on arrival time advancement. Bird Study 59, 111–125 (2012).
Article Google Scholar
71.
Zwarts, L., Bijlsma, R. G., van der Kamp, J. & Wymenga, E. Living on the Edge: Wetlands and Birds in a Changing Sahel (Zeist, KNNV Uitgeveri, 2009).
Google Scholar
72.
Tøttrup, A. P. et al. Drought in Africa caused delayed arrival of European songbirds. Science 338, 1307–1307 (2012).
ADS PubMed Article CAS PubMed Central Google Scholar
73.
Woodworth, B. K., Wheelwright, N. T., Newman, A. E., Schaub, M. & Norris, D. R. Winter temperatures limit population growth rate of a migratory songbird. Nature Commun. 8, 14812. https://doi.org/10.1038/ncomms14812 (2017).
ADS CAS Article Google Scholar
74.
Calvert, A. M., Walde, S. J. & Taylor, P. D. Nonbreeding-season drivers of population dynamics in seasonal migrants: conservation parallels across taxa. Avian Conserv. Ecol. 4, 5–5 (2009).
Article Google Scholar
75.
Cresswell, W. Migratory connectivity of Palaearctic-African migratory birds and their responses to environmental change: the serial residency hypothesis. Ibis 156, 493–510 (2014).
Article Google Scholar
76.
Brlík, V. et al. Weak effects of geolocators on small birds: a meta-analysis controlled for phylogeny and publication bias. J. Anim. Ecol. 89, 207–220 (2020).
PubMed Article Google Scholar
77.
Cepák, J. et al. (eds) Czech and Slovak Bird Migration Atlas (Aventinum, 2008).
78.
Šťastný, K. & Hudec, K. (eds) Fauna of the Czech Republic. Birds III. (Academia, 2011).
79.
Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).
PubMed PubMed Central Article Google Scholar
80.
Anonymus. Metodický předpis č. 10: Návod pro činnost fenologických stanic. Lesní rostliny[Methodical instruction No.10: Instructions for phenological stations. Wild plants] (ČHMÚ, 2009).
81.
Šímová, I. & Storch, D. The enigma of terrestrial primary productivity: measurements, models, scales and the diversity-productivity relationship. Ecography 40, 239–252 (2017).
Article Google Scholar
82.
Huntley, B., Green, R. E., Collingham, Y. C. & Willis, S. G. A Climatic Atlas of European Breeding Birds (Lynx Edicions, 2007)
83.
Mu, Q. Z., Zhao, M. S. & Running, S. W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781–1800 (2011).
ADS Article Google Scholar
84.
Adamík, P. et al. Barrier crossing in small avian migrants: individual tracking reveals prolonged nocturnal flights into the day as a common migratory strategy. Sci. Rep. 6, 21560. https://doi.org/10.1038/srep21560 (2016).
ADS CAS Article PubMed PubMed Central Google Scholar
85.
Koleček, J. et al. Cross-continental migratory connectivity and spatiotemporal migratory patterns in the great reed warbler. J. Avian Biol. 47, 756–767 (2016).
Article Google Scholar
86.
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48 (2015).
Article Google Scholar
87.
R Core Team. R: A language and environment for statistical computing. https://www.r-project.org/ (2016).
88.
Kéry, M. & Royle, J. A. Applied Hierarchical Modeling in Ecology: Analysis of Distribution, Abundance and Species Richness in R and BUGS. Volume 1: Prelude and Static Models. (Academic, 2016)
89.
Grosbois, V. et al. Assessing the impact of climate variation on survival in vertebrate populations. Biol. Rev. 83, 357–399 (2008).
CAS PubMed Article PubMed Central Google Scholar
90.
Pradel, R., Hines, J. E., Lebreton, J. D. & Nichols, J. D. Capture-recapture survival models taking account of transients. Biometrics 53, 60–72 (1997).
MATH Article Google Scholar
91.
Laake, J. L. RMark: An R Interface for Analysis of Capture-recapture Data with MARK (AFSC Processed Rep., 2013).
92.
Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).
MATH Article Google Scholar
93.
Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: convergence diagnosis and output analysis for MCMC. R News 6, 7–11 (2006).
Google Scholar
94.
Westoby, M., Leishman, M. & Lord, J. Further remarks on phylogenetic correction. J. Ecol. 83, 727–729 (1995).
Article Google Scholar
95.
de Bello, F. et al. On the need for phylogenetic ‘corrections’ in functional trait-based approaches. Folia Geobot. 50, 349–357 (2015).
Article Google Scholar
96.
Reif, J., Telenský, T., Klvaňa, P., Jelínek, M. & Cepák, J. Data from: The influence of climate variability on demographic rates of avian Afro-palearctic migrants. Dryad. https://doi.org/10.5061/dryad.x95x69pgf (2020).
Article Google Scholar More
