More stories

  • in

    Species composition and invasion risks of alien ornamental freshwater fishes from pet stores in Klang Valley, Malaysia

    1.
    Strecker, A. L., Campbell, P. M. & Olden, J. D. The aquarium trade as an invasion pathway in the Pacific Northwest. Fisheries 36, 74–85 (2011).
    Article  Google Scholar 
    2.
    Magalhães, A. L. et al. Small size today, aquarium dumping tomorrow: sales of juvenile non-native large fish as an important threat in Brazil. Neotrop. Ichthyol. 15, 1–10 (2017).
    Google Scholar 

    3.
    Maceda-Veiga, A., Escribano-Alacid, J., de Sostoa, A. & García-Berthou, E. The aquarium trade as a potential source of fish introductions in Southwestern Europe. Biol. Invasions 15, 2707–2716 (2014).
    Article  Google Scholar 

    4.
    Gertzen, E., Familiar, O. & Leung, B. Quantifying invasion pathways: fish introductions from the aquarium trade. Can. J. Fish. Aquat. Sci. 65, 1265–1273 (2008).
    Article  Google Scholar 

    5.
    Ishikawa, T. & Tachihara, K. Introduction history of non-native freshwater fish in Okinawa-Jima Island: ornamental aquarium fish pose the greatest risk for future invasions. Ichthyol. Res. 61, 17–26 (2014).
    Article  Google Scholar 

    6.
    Khairul-Adha, R., Yuzine, E. & Aziz, A. The influence of alien fish species on native fish community structure in Malaysian waters. Kuroshio Sci. 7, 81–93 (2013).
    Google Scholar 

    7.
    Department of Fisheries (DOF). Annual Fisheries Statistics, Department of Fisheries, Ministry of Agriculture and Agro-Based Industry, Putrajaya, Malaysia. https://www.dof.gov.my/index.php/pages/view (2007).

    8.
    Department of Fisheries (DOF). Annual Fisheries Statistics, Department of Fisheries, Ministry of Agriculture and Agro-Based Industry, Putrajaya, Malaysia. https://www.dof.gov.my/index.php/pages/view (2014).

    9.
    Duggan, I. C., Rixon, C. A. & MacIsaac, H. J. Popularity and propagule pressure: determinants of introduction and establishment of aquarium fish. Biol. Invasions 8, 377–382 (2006).
    Article  Google Scholar 

    10.
    Simonovic, P. et al. Risk assessment of non-native fishes in the Balkans Region using FISK, the invasiveness screening tool for non-native freshwater fishes. Mediterr. Mar. Sci. 14, 369–376 (2013).
    Article  Google Scholar 

    11.
    Singh, A. K. & Lakra, W. S. Risk and benefit assessment of alien fish species of the aquaculture and aquarium trade into India. Rev. Aquacult. 3, 3–18 (2011).
    Article  Google Scholar 

    12.
    Puntila, R., Vilizzi, L., Lehtiniemi, M. & Copp, G. H. First application of FISK, the Freshwater Fish Invasiveness Screening Kit, in Northern Europe: example of Southern Finland. Risk Anal. 33, 1397–1403 (2013).
    PubMed  Article  Google Scholar 

    13.
    Tarkan, A. S., Ekmekçi, F. G., Vilizzi, L. & Copp, G. H. Risk screening of non-native freshwater fishes at the frontier between Asia and Europe: first application in Turkey of the Fish Invasiveness Screening Kit. J. Appl. Ichthyol. 30, 392–398 (2014).
    Article  Google Scholar 

    14.
    Mendoza, R., Luna, S. & Aguilera, C. Risk assessment of the ornamental fish trade in Mexico: analysis of freshwater species and effectiveness of the FISK (Fish Invasiveness Screening Kit). Biol. Invasions 17, 3491–3502 (2015).
    Article  Google Scholar 

    15.
    Perdikaris, C. et al. Risk screening of non-native, translocated and traded aquarium freshwater fishes in Greece using Fish Invasiveness Screening Kit. Fisheries Manag. Ecol. 23, 32–43 (2016).
    Article  Google Scholar 

    16.
    Tarkan, A. S. et al. Identification of potentially invasive freshwater fishes, including translocated species, in Turkey using the Aquatic Species Invasiveness Screening Kit (AS-ISK). Int. Rev. Hydrobiol. 102, 47–56 (2017).
    Article  Google Scholar 

    17.
    Bilge, G., Filiz, H., Yapici, S., Tarkan, A. S. & Vilizzi, L. A risk screening study on the potential invasiveness of Lessepsian fishes in the South-Western coasts of Anatolia. Acta. Ichthyol. Piscat. 49, 23–31 (2019).
    Article  Google Scholar 

    18.
    Kiruba-Sakar, R. et al. Invasive species in freshwater ecosystems – threats to ecosystem services. In Biodiversity and Climate Change Adaptation in Tropical Islands(eds. Chandrakasan, S., Velmurugan, A., Singh, A. & Jaisankar, I.) 257–289 (Elsevier Inc. USA, 2018).

    19.
    Gaygusuz, Ö et al. Stocking of common carp (Cyprinus carpio) into some newly-established reservoirs of North-West Anatolia may enhance the spread of non-native fish. Turk. J. Fish. Aquat. S. 15, 833–840 (2015).
    Google Scholar 

    20.
    Rashid, M. F. A. & Ishak, A. G. The importance of internal migration: in the context of urban planning decision making. (International Conference on Built Environment in Developing Countries, Penang Malaysia, 2–3 December 2009. Penang, Malaysia, 2009).

    21.
    Naji, A., Ismail, A., Kamrani, E. & Sohrabi, T. Correlation of MT levels in livers and gills with heavy metals in wild tilapia (Oreochromis mossambicus) from the Klang River Malaysia. B. Environ. Contam. Tox. 92, 674–679 (2014).
    CAS  Article  Google Scholar 

    22.
    Rainboth, W. J. Fishes of the Cambodian Mekong. Mekong River Commission, Food and Agriculture Organization, Rome. https://library.enaca.org/inland/fishes-cambodian-mekong.pdf (1996).

    23.
    Mohsin, A. K. & Ambak, M. A. Ikan air tawar di Semenanjung Malaysia. (Freshwater fishes of Peninsular Malaysia). (Dewan Bahasa dan Pustaka, Kuala Lumpur, Malaysia, 1991).

    24.
    Berra, T. M. Freshwater fish distribution (The University of Chicago Press, Chicago, 2001).
    Google Scholar 

    25.
    Ng, H. H. & Tan, H. H. An annotated checklist of the non-native freshwater fish species in the reservoirs of Singapore. Cosmos. 6, 95–116 (2010).
    Article  Google Scholar 

    26.
    Tran, D. D. et al. Fishes of Mekong Delta (Can Tho University Publisher, Vietnam, 2010).
    Google Scholar 

    27.
    Ng, C. K. C., Lim, T. Y., Ahmad, A. B. & Khaironizam, M. Z. Provisional checklist of freshwater fish diversity and distribution in Perak, Malaysia, and some latest taxonomic concerns. Zootaxa 4567, 515–545 (2019).
    Article  Google Scholar 

    28.
    Zakaria-Ismail, M., Fatimah, A. & Khaironizam, M. Z. Fishes of the freshwater ecosystems of Peninsular Malaysia (Lambert Academic Publishing, Saarbrücken, 2019).
    Google Scholar 

    29.
    Froese, R. & Pauly, D. (eds.) FishBase. World Wide Web Electronic Publication. https://www.fishbase.org/search.php (2019).

    30.
    Fricke, R., Eschmeyer, W. N. & van der Laan, R. (eds.) Catalog of fishes: genera, species, references. California Academy of Sciences. https://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (2020).

    31.
    Papavlasopoulou, I. et al. Ornamental fish in pet stores in Greece: a threat to biodiversity?. Mediterr. Mar. Sci. 15, 126–134 (2014).
    Article  Google Scholar 

    32.
    IUCN. The IUCN Red List of Threatened Species. Version 2020–1. https://www.iucnredlist.org. (2020).

    33.
    Lawson, L. L., Vilizzi, L, Hill, J. E., Hardin, S. & Copp, G. H. Revisions of the Fish Invasiveness Scoring Kit (FISK) for its application in warmer climatic zones, with particular reference to Peninsular Florida. Risk Anal. 33, 1414–1431 (2013).

    34.
    Garcia de León, F. J. G., González-García, L., Herrera-Castillo, J. M., Winemiller, K. O. & Banda-Valdés, A. Ecology of the alligator gar, Atractosteus spatula, in the Vicente Guerrero Reservoir, Tamaulipas, Mexico. Southwest Nat.46, 151–157 (2001).

    35.
    Carman, S. M. Special animal abstract for Lepisosteus oculatus (spotted gar). (Michigan Natural Features Inventory, Lansing, MI.) https://mnfi.anr.msu.edu/abstracts/zoology/Lepisosteus_oculatus.pdf (2002).

    36.
    COSEWIC. Committee on the status of endangered wildlife in Canada (COSEWIC) assessment and update status report on the lake sturgeon Acipenser fulvescens in Canada, https://wildlife-species.canada.ca/species-risk-registry/virtual_sara/files/cosewic/sr_Lake%20Sturgeon_2017_e.pdf (2006).

    37.
    Roberts, D. “Atractosteus spatula”, Animal Diversity Web. https://animaldiversity.org/accounts/Atractosteus_spatula/ (2006).

    38.
    Herder, F. et al. Alien invasion in Wallace’s Dreamponds: records of the hybridogenic “flowerhorn” cichlid in Lake Matano, with an annotated checklist of fish species introduced to the Malili Lakes system in Sulawesi. Aquat. Invasions 7, 521–535 (2012).
    Article  Google Scholar 

    39.
    Speigel, J. “Potamotrygon motoro”, Animal Diversity Web., https://animaldiversity.org/accounts/Potamotrygon_motoro/ (2013).

    40.
    Franklin, P. A. Dissolved oxygen criteria for freshwater fish in New Zealand: a revised approach. New Zeal. J. Mar. Fresh. 48, 112–126 (2014).
    CAS  Article  Google Scholar 

    41.
    Felterman, M. A. Population dynamics, reproductive biology, and diet of alligator gar Atractosteus spatula in Terrebonne Estuary and Rockefeller Wildlife Refuge. Master’s Thesis, Nicholls State University, Thibodaux, Louisiana, USA. (2015).

    42.
    Fuller, P. Atractosteus spatula (Lacepède, 1803): U.S. geological survey, non-indigenous aquatic species database, Gainesville, Florida, USA. https://nas.er.usgs.gov/queries/FactSheet.aspx?speciesID=755 (2019).

    43.
    Islam, M. A., Uddin, M. H., Uddin, M. J. & Shahjahan, M. Temperature changes influenced the growth performance and physiological functions of Thai Pangas Pangasianodon hypophthalmus. Aquacult. Rep. 13, 100179 (2019).
    Article  Google Scholar 

    44.
    Lawson, L. L., Hill, J. E., Hardin, S., Vilizzi, L. & Copp, G. H. Evaluation of the fish invasiveness screening kit (FISK v2) for peninsular Florida. Manag. of Biol. Invasions 6, 413–422 (2015).
    Article  Google Scholar 

    45.
    Copp, G. H. et al. Calibration of FISK, an invasiveness screening tool for non-native freshwater fishes. Risk Anal. 29, 457–467 (2009).
    PubMed  Article  Google Scholar 

    46.
    Almeida, D., Ribeiro, F., Leunda, P. M., Vilizzi, L. & Copp, G. H. Effectiveness of FISK, an invasiveness screening tool for non-native freshwater fishes, to perform risk identification assessments in the Iberian Peninsula. Risk Anal. 33, 1404–1413 (2013).
    PubMed  Article  Google Scholar 

    47.
    Youden, W. J. Index for rating diagnostic tests. Cancer 3, 32–35 (1950).
    CAS  PubMed  Article  Google Scholar 

    48.
    Bewick, V., Cheek, L. & Ball, J. Statistics review 13: receiver operating characteristic curves. Crit. Care 8, 508–512 (2004).
    PubMed  PubMed Central  Article  Google Scholar 

    49.
    Tricarico, E., Vilizzi, L., Gherardi, F. & Copp, G. H. Calibration of FI-ISK, an invasiveness screening tool for nonnative freshwater invertebrates. Risk Anal. 30, 285–292 (2010).
    PubMed  Article  Google Scholar 

    50.
    Chang, A. L. et al. Tackling aquatic invasions: risks and opportunities for the aquarium fish industry. Biol. Invasions 11, 773–785 (2009).
    Article  Google Scholar 

    51.
    Magalhães, A. L. & Jacobi, C. M. Invasion risks posed by ornamental freshwater fish trade to south eastern Brazilian rivers. Neotrop. Ichthyol. 11, 433–441 (2013).
    Article  Google Scholar 

    52.
    Reis, R. E. et al. Fish biodiversity and conservation in South America. J. Fish. Biol. 89, 12–47 (2016).
    CAS  PubMed  Article  Google Scholar 

    53.
    Rixon, C. A., Duggan, I. C., Bergeron, N. M., Ricciardi, A. & Macisaac, H. J. Invasion risks posed by the aquarium trade and live fish markets on the Laurentian Great Lakes. Biodivers. Conserv. 14, 1365–1381 (2005).
    Article  Google Scholar 

    54.
    Cucherousset, J. & Olden, J. D. Ecological impacts of non-native freshwater fishes. Fisheries 36, 215–230 (2011).
    Article  Google Scholar 

    55.
    Ng, C. K. C. et al. A working checklist of the freshwater fish diversity for habitat management and conservation work in Sabah, Malaysia North Borneo. Biodiversitas 18, 560–574 (2017).
    Article  Google Scholar 

    56.
    Zakaria, R. Alien fish devouring local species in Sg Pahang. New Strait Times. https://www.nst.com.my/news/nation/2019/02/462595/alien-fish-devouring-local-species-sg-pahang (2019).

    57.
    Sharifudin, M. & Sharip, Z. Fisheries practices and fish diversity in Muda and Beris Lakes: a preliminary survey study. Geografia 16, 1–12 (2020).
    Article  Google Scholar 

    58.
    Zakaria, R. Alien fish ‘killing’ local boat operators. New Strait Times. https://www.nst.com.my/news/nation/2017/04/231359/alien-fish-killing-local-boat-operators/ (2017).

    59.
    Chong, V. C., Lee, P. K. Y. & Lau, C. M. Diversity, extinction risk and conservation of Malaysian fishes. J. Fish Biol. 76, 2009–2066 (2010).
    CAS  PubMed  Article  Google Scholar 

    60.
    NWGIAS. National Working Group on Invasive Alien Species (NWGIAS). National action plan for prevention, eradication, containment and control of aquatic invasive alien species in Malaysia. Department of Agriculture, Putrajaya (2014).

    61.
    Samat, A. et al. Reproductive biology of the introduced sailfin catfish Pterygoplichthys pardalis (Pisces: Loricariidae) in Peninsular Malaysia. Indian. J. Fish. 63, 35–41 (2016).
    Google Scholar 

    62.
    Tan, B. Bottom-feeding fish sucking life out of Johor Rivers, nature society warns. Malay Mail, https://www.malaymail.com/news/malaysia/2019/01/14/bottom-feeding-fish-suckinglife-out-of-johor-rivers-nature-society-warns/1712205 (2019).

    63.
    Hussan, A., Choudhury, T. G., Das, A. & Gita, S. Suckermouth sailfin catfishes: A future threat to aquatic ecosystems of India. Aquaculture Times 2, 20–22 (2016).
    Google Scholar 

    64.
    Ng, C. The ornamental freshwater fish trade in Malaysia. UTAR Agric Sci. J. 2, 7–18 (2016).
    Google Scholar 

    65.
    Lokman, E. D. et al. Use of GIS and remote sensing on ornamental fish farm’s activities monitoring in Layang-Layang, Kluang Johor. Adv. Ecol. Envir. Res. 4, 211–230 (2019).
    Google Scholar 

    66.
    Evers, H. G., Pinnegar, J. K. & Taylor, M. I. Where are they all from?–sources and sustainability in the ornamental freshwater fish trade. J. Fish Biol. 94, 909–916 (2019).
    PubMed  PubMed Central  Google Scholar 

    67.
    Chan, F. T. et al. Leaving the fish bowl: the ornamental trade as a global vector for freshwater fish invasions. Aquat. Ecosyst. Health 22, 417–439 (2019).
    Article  Google Scholar 

    68.
    Banha, F., Diniz, A. & Anastácio, P. M. Patterns and drivers of aquarium pet discharge in the wild. Ecol. Indicat. 106, 105513 (2019).
    Article  Google Scholar 

    69.
    Zakaria, R. & Bahrin, H. B. Two more foreign predatory fishes threaten survival of native species. New Strait Times, https://www.nst.com.my/news/exclusive/2018/05/372369/two-more-foreign-predatory-fishes-threaten-survival-native-species (2018).

    70.
    Daehler, C. C., Denslow, J. S., Ansari, S. & Kuo, S. A risk assessment system for screening out invasive pest plants from Hawaii and other Pacific islands. Conserv. Biol. 18, 360–368 (2004).
    Article  Google Scholar 

    71.
    Marchetti, M. P., Moyle, P. B. & Levine, R. Invasive species profiling? Exploring the characteristics of non-native fishes across invasion stages in California. Freshwater Biol. 49, 646–661 (2004).
    Article  Google Scholar 

    72.
    Piria, M. et al. Risk screening of non-native freshwater fishes in Croatia and Slovenia using the Fish Invasiveness Screening Kit. Fisheries Manag. Ecol. 23, 21–31 (2016).
    Article  Google Scholar 

    73.
    Marr, S. M. et al. Evaluating invasion risk for freshwater fishes in South Africa. Bothalia 47, 1–10 (2017).
    Article  Google Scholar 

    74.
    Thompson, K. A., Hill, J. E. & Nico, L. G. Eastern mosquitofish resists invasion by nonindigenous poeciliids through agnostic behaviors. Biol. Invasions 14, 1515–1529 (2012).
    Article  Google Scholar 

    75.
    Onikura, N. et al. Evaluating the potential for invasion by alien freshwater fishes in northern Kyushu Island, Japan, using the Fish Invasiveness Scoring Kit. Ichthyol. Res. 58, 382–387 (2011).
    Article  Google Scholar 

    76.
    Troca, D. A. & Vieira, J. P. Potential invasive non-native fish farmed in the coastal region of Rio Grande Do Sul Brazil. Boletim do Instituto de Pesca 38, 109–120 (2012).
    Google Scholar 

    77.
    Vilizzi, L. V. & Copp, G. H. Application of FISK, an invasiveness screening tool for non-native freshwater fishes, in the Murray-Darling Basin (Southeastern Australia). Risk Anal. 33, 1432–1440 (2013).
    PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Range expansion of muskox lungworms track rapid arctic warming: implications for geographic colonization under climate forcing

    1.
    Arneth, A. et al. Summary for Policymakers. (2019).
    2.
    Post, E. et al. Ecological consequences of sea-ice decline. Science 341, 519–524 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Altizer, S., Ostfeld, R. S., Johnson, P. T. J., Kutz, S. & Harvell, C. D. Climate change and infectious diseases: from evidence to a predictive framework. Science 341, 514–519 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Dobson, A., Molnár, P. K. & Kutz, S. Climate change and Arctic parasites. Trends Parasitol. 31, 181–188 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    5.
    Chan, F. T. et al. Climate change opens new frontiers for marine species in the Arctic: current trends and future invasion risks. Glob. Chang. Biol. 25, 25–38 (2019).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Descamps, S. et al. Climate change impacts on wildlife in a High Arctic archipelago—Svalbard, Norway. Glob. Chang. Biol. 23, 490–502 (2017).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Kutz, S. J., Hoberg, E. P., Polley, L. & Jenkins, E. J. Global warming is changing the dynamics of Arctic host–parasite systems. Proc. R. Soc. Lond. B Biol. Sci. 272, 2571–2576 (2005).
    CAS  Google Scholar 

    8.
    Kutz, S. J. et al. Invasion, establishment, and range expansion of two parasitic nematodes in the Canadian Arctic. Glob. Chang. Biol. 19, 3254–3262 (2013).
    PubMed  PubMed Central  Google Scholar 

    9.
    Hoberg, E. P. & Brooks, D. R. Evolution in action: climate change, biodiversity dynamics and emerging infectious disease. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20130553 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    10.
    Tomaselli, M., Gerlach, S. C., Kutz, S. J. & Checkley, S. L. Iqaluktutiaq voices: local perspectives about the importance of muskoxen, contemporary and traditional use and practices. Arctic 71, 1–14 (2018).
    Article  Google Scholar 

    11.
    Kutz, S. J. et al. The Arctic as a model for anticipating, preventing, and mitigating climate change impacts on host–parasite interactions. Vet. Parasitol. 163, 217–228 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    12.
    Hoberg, E. P., Galbreath, K. E., Cook, J. A., Kutz, S. J. & Polley, L. Northern host–parasite assemblages: history and biogeography on the borderlands of episodic climate and environmental transition. In Advances in Parasitology vol. 79. 1–97 (Elsevier, Amsterdam, 2012).

    13.
    Hoberg, E. P. et al. Arctic systems in the Quaternary: ecological collision, faunal mosaics and the consequences of a wobbling climate. J. Helminthol. 91, 409–421 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    COSEWIC. COSEWIC Assessment and Status Report on the Caribou (Rangifer tarandus) Dolphin and Union population in Canada 2017 (2017)

    15.
    Cuyler, C. et al. Muskox status, recent variation, and uncertain future. Ambio 49, 1–15 (2019).
    Google Scholar 

    16.
    Kutz, S., Hoberg, E. & Polley, L. A new lungworm in muskoxen: an exploration in Arctic parasitology. Trends Parasitol. 17, 276–280 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Kafle, P., Sullivan, J., Verocai, G. G. & Kutz, S. J. Experimental life-cycle of Varestrongylus eleguneniensis(Nematoda: Protostrongylidae) in a captive Reindeer (Rangifer tarandus tarandus) and a Muskox (Ovibos moschatus moschatus). J. Parasitol. 103, 584–587 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Kafle, P., Peacock, S. J., Grond, S., Orsel, K. & Kutz, S. Temperature-dependent development and freezing survival of protostrongylid nematodes of Arctic ungulates: implications for transmission. Parasit. Vectors 11, 400 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Kutz, S. J., Hoberg, E. P. & Polley, L. Experimental infections of muskoxen (Ovibos moschatus) and domestic sheep with Umingmakstrongylus pallikuukensis (Nematoda: Protostrongylidae): parasite development, population structure, and pathology. Can. J. Zool. 77, 1562–1572 (1999).
    Article  Google Scholar 

    20.
    Osborn, T. J. & Jones, P. The CRUTEM4 land-surface air temperature data set:Construction, previous versions and dissemination via Google earth. Earth Syst. Sci. Data 6, 61–68 (2014).
    ADS  Article  Google Scholar 

    21.
    Zhang, X. et al. Changes in temperature and precipitation across Canada; Chapter 4. In Canada’s Changing Climate Report (eds Bush, E. & Lemmen, D. S.) 112–193 (Ottawa, Ontario, Government of Canada, 2019).
    Google Scholar 

    22.
    Kutz, S. J. et al. Serendipitous discovery of a novel protostrongylid (Nematoda : Metastrongyloidea) in caribou, muskoxen, and moose from high latitudes of North America based on DNA sequence comparisons. Can. J. Zool. 85, 1143–1156 (2007).
    CAS  Article  Google Scholar 

    23.
    Hoberg, E. P., Polley, L., Gunn, A. & Nishi, J. S. Umingmakstrongylus pallikuukensis gen. nov. et sp. nov. (Nematoda: Protostrongylidae) from muskoxen, Ovibos moschatus, in the central Canadian Arctic, with comments on biology and biogeography. Can. J. Zool. Rev. Can. Zool. 73, 2266–2282 (1995).
    Article  Google Scholar 

    24.
    Forrester, S. G. & Lankester, M. W. Extracting protostrongylid nematode larvae from ungulate feces. J. Wildl. Dis. 33, 511–516 (1997).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Kafle, P. et al. Morphological keys to advance the understanding of protostrongylid biodiversity in caribou (Rangifer spp.) at high latitudes. Int. J. Parasitol. Parasites Wildl. 6, 331–339 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    26.
    Kafle, P., Lejeune, M., Verocai, G. G., Hoberg, E. P. & Kutz, S. J. Morphological and morphometric differentiation of dorsal-spined first-stage larvae of lungworms (Nematoda: Protostrongylidae) infecting muskoxen (Ovibos moschatus) in the central Canadian Arctic. Int. J. Parasitol. Parasites Wildl.4 (2015).

    27.
    Hoberg, E. et al. Caudal polymorphism and cephalic morphology among first-stage larvae of Parelaphostrongylus odocoilei (Protostrongylidae: Elaphostrongylinae) in Dall’s sheep from the Mackenzie mountains, Canada. J. Parasitol. 91, 1318–1325 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    28.
    Snyder, R. L., Spano, D., Cesaraccio, C. & Duce, P. Determining degree-day thresholds from field observations. Int. J. Biometeorol. 42, 177–182 (1999).
    ADS  Article  Google Scholar 

    29.
    Kutz, S. J., Hoberg, E. P. & Polley, L. Umingmakstrongylus pallikuukensis (Nematoda : Protostrongylidae) in gastropods: larval morphology, morphometrics, and development rates. J. Parasitol. 87, 527–535 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Dainton, B. H. Field and laboratory observations on slug and snail behaviour. Monograph-British Crop Protection Council (1989).

    31.
    Felber, R., Stoeckli, S. & Calanca, P. Generic calibration of a simple model of diurnal temperature variations for spatial analysis of accumulated degree-days. Int. J. Biometeorol. 62, 621–630 (2018).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Purcell, L. C. Comparison of thermal units derived from daily and hourly temperatures. Crop Sci. 43, 1874–1879 (2003).
    Article  Google Scholar 

    33.
    Mesinger, F. et al. North American regional reanalysis. Bull. Am. Meteorol. Soc. 87, 343–360 (2006).
    ADS  Article  Google Scholar 

    34.
    Roltsch, W. J., Zalom, F. G., Strawn, A. J., Strand, J. F. & Pitcairn, M. J. Evaluation of several degree-day estimation methods in California climates. Int. J. Biometeorol. 42, 169–176 (1999).
    ADS  Article  Google Scholar 

    35.
    Kutz, S. J., Hoberg, E. P., Nishi, J. & Polley, L. Development of the muskox lungworm, Umingmakstrongylus pallikuukensis (Protostrongylidae), in gastropods in the Arctic. Can. J. Zool. 80, 1977–1985 (2002).
    Article  Google Scholar 

    36.
    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2017).
    Google Scholar 

    37.
    Rózsa, L., Reiczigel, J. & Majoros, G. Quantifying parasites in samples of hosts. J. Parasitol. 86, 228–232 (2000).
    PubMed  Article  PubMed Central  Google Scholar 

    38.
    Verocai, G. G. et al. The biogeography of the caribou lungworm, Varestrongylus eleguneniensis (Nematoda: Protostrongylidae) across northern North America. Int. J. Parasitol. Parasites Wildl 11, 93–102 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    39.
    Verocai, G. G., Kutz, S. J., Simard, M. & Hoberg, E. P. Varestrongylus eleguneniensis sp n. (Nematoda: Protostrongylidae): a widespread, multi-host lungworm of wild North American ungulates, with an emended diagnosis for the genus and explorations of biogeography. Parasit. Vectors 7, 22 (2014).
    Article  Google Scholar 

    40.
    Bintanja, R. & van der Linden, E. C. The changing seasonal climate in the Arctic. Sci. Rep. 3, 1556 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Bush, E. & Lemmen, D. S. Canada’s Changing Climate Report; Government of Canada, Ottawa, ON. 444 (2019).

    42.
    Trenberth, K. E. Observation: surface and atmospheric climate change. Climate Change 2007: The Physical Science Basis. Contribution of working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (2007).

    43.
    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).
    ADS  CAS  Article  Google Scholar 

    44.
    Hoar, B. M., Ruckstuhl, K. & Kutz, S. Development and availability of the free-living stages of Ostertagia gruehneri, an abomasal parasite of barrenground caribou (Rangifer tarandus groenlandicus), on the Canadian tundra. Parasitology 139, 1093–1100 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    45.
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37 (2003).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    47.
    Hickling, R., Roy, D. B., Hill, J. K., Fox, R. & Thomas, C. D. The distributions of a wide range of taxonomic groups are expanding polewards. Glob. Chang. Biol. 12, 450–455 (2006).
    ADS  Article  Google Scholar 

    48.
    Hope, A. G., Waltari, E., Payer, D. C., Cook, J. A. & Talbot, S. L. Future distribution of tundra refugia in northern Alaska. Nat Clim Change 3, 931–938 (2013).
    ADS  Article  Google Scholar 

    49.
    Hope, A. G. et al. Arctic biodiversity: increasing richness accompanies shrinking refugia for a cold-associated tundra fauna. Ecosphere 6, 1–67 (2015).
    ADS  Article  Google Scholar 

    50.
    Laaksonen, S. et al. Climate change promotes the emergence of serious disease outbreaks of filarioid nematodes. Ecohealth (2010).

    51.
    Kovats, R. S., Campbell-Lendrum, D. H., McMichel, A. J., Woodward, A. & Cox, J. S. H. Early effects of climate change: do they include changes in vector-borne disease?. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 1057–1068 (2001).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Hoberg, E. P. Invasive processes, mosaics and the structure of helminth parasite faunas. Rev. Sci. Tech. 29, 255 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Bryan, H. M. et al. Identification of Parelaphostrongylus odocoilei (Nematoda: Protostrongylidae) first-stage larvae in the feces of gray wolves (Canis lupus) by molecular methods. J. Wildl. Dis. 46, 297–302 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    54.
    Bird, S. et al. Geography, seasonality, and host-associated population structure influence the fecal microbiome of a genetically depauparate Arctic mammal. Ecol. Evol. 23, 13202–13217 (2019).
    Article  Google Scholar 

    55.
    Prewer, E., Kutz, S., Leclerc, L. M. & Kyle, C. J. Already at the bottom? Demographic declines are unlikely further to undermine genetic diversity of a large Arctic ungulate: muskox, Ovibos moschatus (Artiodactyla: Bovidae). Biol. J. Linn. Soc. 129, 459–469 (2020).
    Article  Google Scholar 

    56.
    Kutz, S. J., Hoberg, E. P. & Polley, L. Emergence of third-stage larvae of Umingmakstrongylus pallikuukensis from three gastropod intermediate host species. J. Parasitol. 86, 743–749 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Sullivan, J. Developing a Systematic Sampling Framework for Terrestrial Gastropods in the Canadian Arcitc Calgary, Alberta (University of Calgary, Calgary, 2016).
    Google Scholar 

    58.
    Kearney, M. & Porter, W. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12, 334–350 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    59.
    Kearney, M. & Porter, W. P. Mapping the fundamental niche: physiology, climate, and the distribution of a nocturnal lizard. Ecology 85, 3119–3131 (2004).
    Article  Google Scholar 

    60.
    Simon, J. A. et al. Climate change and habitat fragmentation drive the occurrence of Borrelia burgdorferi, the agent of Lyme disease, at the northeastern limit of its distribution. Evol. Appl. 7, 750–764 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    61.
    Vanhanen, H., Veteli, T. O., Paivinen, S., Kellomaki, S. & Niemela, P. Climate change and range shifts in two insect defoliators: gypsy moth and nun moth-a model study. Silva Fenn. 41, 621 (2007).
    Article  Google Scholar 

    62.
    Yang, G.-J. et al. A growing degree-days based time-series analysis for prediction of Schistosoma japonicum transmission in Jiangsu province, China. Am. J. Trop. Med. Hyg. 75, 549–555 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    63.
    Molnár, P. K., Sckrabulis, J. P., Altman, K. A. & Raffel, T. R. Thermal performance curves and the metabolic theory of ecology-a practical guide to models and experiments for parasitologists. J. Parasitol. (2017).

    64.
    Laaksonen, S., Oksanen, A. & Hoberg, E. A lymphatic dwelling filarioid nematode, Rumenfilaria andersoni (Filarioidea; Splendidofilariinae), is an emerging parasite in Finnish cervids. Parasites Vectors 8, 228 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    65.
    Laaksonen, S. et al. Filarioid nematodes, threat to arctic food safety and security. In Game Meat Hygiene: Food Safety and Security, 213–223 (Wageningen Academic Publishers, Wageningen, 2017).

    66.
    Brooks, D. R., Hoberg, E. P. & Boeger, W. A. The Stockholm Paradigm: Climate Change and Emerging Disease (University of Chicago Press, Chicago, 2019).
    Google Scholar 

    67.
    Cook, J. A. et al. The Beringian Coevolution Project: holistic collections of mammals and associated parasites reveal novel perspectives on evolutionary and environmental change in the North. Arctic Science 3, 585–617 (2016).
    Article  Google Scholar 

    68.
    Stocker, T. F. et al. Climate Change 2013: The Physical Science Basis, Working Group 1 (WG1) Contribution to the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5). Cambridge, UK and New York, New York, USA (2013)

    69.
    Berkelhammer, M. Synchronous modes of terrestrial and marine productivity in the North Pacific. Front. Earth Sci.7 (2019).

    70.
    Agosta, S. J., Janz, N. & Brooks, D. R. How specialists can be generalists: resolving the” parasite paradox” and implications for emerging infectious disease. Zoologia (Curitiba) 27, 151–162 (2010).
    Article  Google Scholar 

    71.
    Araujo, S. B. et al. Understanding host-switching by ecological fitting. PLoS ONE10 (2015).

    72.
    IPCC Climate Change: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC (eds Core Writing Team et al.) 151 (IPCC, Geneva, 2014).
    Google Scholar 

    73.
    Ford, J. D. & Beaumier, M. Feeding the family during times of stress: experience and determinants of food insecurity in an Inuit community. Geograph J 177, 44–61 (2011).
    Article  Google Scholar 

    74.
    Kutz, S. et al. Erysipelothrix rhusiopathiae associated with recent widespread muskox mortalities in the Canadian Arctic. Can Vet J Rev Vet Can 56, 560–563 (2015).
    Google Scholar 

    75.
    Tomaselli, M. et al. Contagious ecthyma, rangiferine brucellosis, and lungworm infection in a muskox (Ovibos moschatus) from the Canadian Arctic, 2014. J. Wildl. Dis. 52, 719–724 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    76.
    Kutz, S. et al. Muskox health ecology symposium 2016: gathering to share knowledge on Umingmak in a time of rapid change. Arctic 70, 225–236 (2017).
    Article  Google Scholar 

    77.
    Vors, L. S. & Boyce, M. S. Global declines of caribou and reindeer. Glob. Chang. Biol. 15, 2626–2633 (2009).
    ADS  Article  Google Scholar 

    78.
    Fisheries, N. Diseased ice seals|NOAA fisheries. NOAA https://www.fisheries.noaa.gov/alaska/marine-life-distress/diseased-ice-seals (2020).

    79.
    Jones, T. et al. Unusual mortality of Tufted puffins (Fratercula cirrhata) in the eastern Bering Sea. PloS ONE14 (2019).

    80.
    Pörtner, H. O. Intergovernmental panel on climate change: summary for policymakers. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (2019). More

  • in

    Diel vertical migration into anoxic and high-pCO2 waters: acoustic and net-based krill observations in the Humboldt Current

    1.
    Pachauri, R. K. & Meyer, L. A. Intergovernmental panel on climate change (IPCC). In Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014).
    2.
    Feely, R. A., Sabine, C. L., Hernández-Ayon, J. M., Ianson, D. & Hales, B. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320, 1490–1492 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Escribano, R., Hidalgo, P. & Krautz, C. Zooplankton associated with the oxygen minimum zone system in the northern upwelling region of Chile during March 2000. Deep Sea Res. II 56, 1083–1094 (2009).
    Article  Google Scholar 

    4.
    Paulmier, A. & Ruiz-Pino, D. Oxygen minimum zones (OMZs) in the modern ocean. Prog. Oceanogr. 80, 113–128 (2009).
    ADS  Article  Google Scholar 

    5.
    Ulloa, O., Canfield, D. E., DeLong, E. F., Letelier, R. M. & Stewart, F. J. Microbial oceanography of anoxic oxygen minimum zones. Proc. Natl. Acad. Sci. 109, 15996–16003 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Thamdrup, B., Dalsgaard, T. & Revsbech, N. P. Widespread functional anoxia in the oxygen minimum zone of the eastern South Pacific. Deep Sea Res. I 65, 36–45 (2012).
    CAS  Article  Google Scholar 

    7.
    Chan, F. et al. Emergence of anoxia in the California current large marine ecosystem. Science 319, 920–920 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Friederich, G. E., Ledesma, J., Ulloa, O. & Chavez, F. P. Air–sea carbon dioxide fluxes in the coastal southeastern tropical Pacific. Prog. Oceanogr. 79, 156–166 (2008).
    ADS  Article  Google Scholar 

    10.
    Feely, R. A. et al. The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuar. Coast. Shelf Sci. 88, 442–449 (2010).
    ADS  CAS  Article  Google Scholar 

    11.
    Torres, R. et al. Air-sea CO2 fluxes along the coast of Chile: From CO2 outgassing in central northern upwelling waters to CO2 uptake in southern Patagonian fjords. J. Geophys. Res. 116, C09006. https://doi.org/10.1029/2010JC006344 (2011).
    ADS  CAS  Article  Google Scholar 

    12.
    Vargas, C. A. et al. Influences of riverine and upwelling waters on the coastal carbonate system off Central Chile and their ocean acidification implications. J. Geophys. Res. Biogeosci. 121, 15. https://doi.org/10.1002/2015JG003213 (2016).
    Article  Google Scholar 

    13.
    Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 0084. https://doi.org/10.1038/s41559-017-0084 (2017).
    Article  Google Scholar 

    14.
    Booth, J. A. et al. Natural intrusions of hypoxic, low pH water into nearshore marine environments on the California coast. Cont. Shelf Res. 45, 108–115 (2012).
    ADS  Article  Google Scholar 

    15.
    Forward, R. B. Diel vertical migration: zooplankton photobiology and behaviour. Oceanogr. Mar. Biol. Annu. Rev 26, 1–393 (1988).
    Google Scholar 

    16.
    Cohen, J. H. & Forward, R. B. Jr. Zooplankton diel vertical migration: A review of proximate control. Oceanogr. Mar. Biol. Ann. Rev 47, 77–110 (2009).
    Google Scholar 

    17.
    Brinton, E. Vertical migration and avoidance capability of euphausiids in the California current. Limnol. Oceanogr. 12, 451–483 (1967).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    McQuinn, I. H., Dion, M. & St. Pierre, J.-F. The acoustic multifrequency classification of two sympatric euphausiid species (Meganyctiphanes norvegica and Thysanoessa raschii), with empirical and SDWBA model validation. ICES J. Mar. Sci. 70, 636–649 (2013).
    Article  Google Scholar 

    19.
    Tremblay, N. & Abele, D. Response of three krill species to hypoxia and warming: An experimental approach to oxygen minimum zones expansion in coastal ecosystems. Mar. Ecol. 37, 179–199 (2016).
    ADS  CAS  Article  Google Scholar 

    20.
    Ambriz-Arreola, I. et al. Vertical pelagic habitat of euphausiid species assemblages in the Gulf of California. Deep Sea Res. I 123, 75–89 (2017).
    CAS  Article  Google Scholar 

    21.
    Cooper, H. L., Potts, D. & Paytan, A. Metabolic responses of the North Pacific krill, Euphausia pacifica, to short- and long-term pCO2 exposure. Mar. Biol. 163, 207 (2016).
    Article  CAS  Google Scholar 

    22.
    Seibel, B. A., Schneider, J. L., Kaartvedt, S., Wishner, K. F. & Daly, K. L. Hypoxia tolerance and metabolic suppression in Oxygen Minimum Zone euphausiids: Implications for ocean deoxygenation and biogeochemical cycles. Integr. Comp. Biol. 56, 510–523 (2016).
    CAS  PubMed  Article  Google Scholar 

    23.
    Barry, J. P., Hall-Spencer, J. M. & Tyrrell, T. In Guide to Best Practices for Ocean Acidification Research and Data Reporting (eds. Riebesell, U., Fabry, V. J., Hansson, L. & Gattuso, J. P.) 53–66 (Publications Office of the European Union, 2010).

    24.
    Paulmier, A., Ruiz-Pino, D., Garçon, V. & Farías, L. Maintaining of the eastern south Pacific oxygen minimum zone (OMZ) off Chile. Geophys. Res. Lett. 33, L20601 (2006).
    ADS  Article  CAS  Google Scholar 

    25.
    Stramma, L., Johnson, G. C., Sprintall, J. & Mohrholz, V. Expanding oxygen-minimum zones in the tropical oceans. Science 320, 655–658 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    26.
    Gilly, W. F., Beman, J. M., Litvin, S. Y. & Robison, B. H. Oceanographic and biological effects of shoaling of the oxygen minimum zone. Ann. Rev. Mar. Sci. 5, 393–420 (2013).
    PubMed  Article  Google Scholar 

    27.
    Garcia-Robledo, E. et al. Cryptic oxygen cycling in anoxic marine zones. Proc. Natl. Acad. Sci. USA 114, 8319–8324 (2017).
    ADS  CAS  PubMed  Article  Google Scholar 

    28.
    Bianchi, D., Galbraith, E. D., Carozza, D. A., Mislan, K. A. S. & Stock, C. A. Intensification of open-ocean oxygen depletion by vertically migrating animals. Nat. Geosci. 6, 545–548 (2013).
    ADS  CAS  Article  Google Scholar 

    29.
    Wishner, K. F. et al. Ocean deoxygenation and zooplankton: Very small oxygen differences matter. Sci. Adv. 4, eaa518 (2018).
    Article  CAS  Google Scholar 

    30.
    Kawaguchi, S. et al. Will krill fare well under Southern Ocean acidification?. Biol. Lett. 7, 288–291 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    31.
    Sperfeld, E., Mangor-Jensen, A. & Dalpadado, P. Effect of increasing seawater pCO2 on the northern Atlantic krill species Nyctiphanes couchii. Mar. Biol. 165, 116. https://doi.org/10.1007/s00227-018-3370-7 (2014).
    CAS  Article  Google Scholar 

    32.
    Cooper, H. L., Potts, D. C. & Paytan, A. Effects of elevated pCO2 on the survival, growth, and moulting of the Pacific krill species, Euphausia pacifica. ICES J. Mar. Sci. 74, 1005–1012. https://doi.org/10.1093/icesjms/fsw021 (2017).
    Article  Google Scholar 

    33.
    Ericson, J. A. et al. Adult Antarctic krill proves resilient in a simulated high CO2 ocean. Commun. Biol. 1, 190 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    34.
    Opstad, I. et al. Effects of high pCO2 on the northern krill Thysanoessa inermis in relation to carbonate chemistry of its collection area, Rijpfjorden. Mar. Biol. 165, 116 (2018).
    Article  CAS  Google Scholar 

    35.
    Powers, E. B. The physiology of the respiration of fishes relation to the hydrogen ion concentration of the medium. J. Gen. Physiol. 4, 305–317 (1922).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Mayol, E., Ruiz-Halpern, S., Duarte, C. M., Castilla, J. C. & Pelegrí, J. L. Coupled CO2 and O2-driven compromises to marine life in summer along the Chilean sector of the Humboldt Current System. Biogeosciences 9, 1183–1194 (2012).
    ADS  CAS  Article  Google Scholar 

    37.
    González, H. E., Ortiz, V. C. & Sobarzo, M. The role of faecal material in the particulate organic carbon flux in the northern Humboldt Current, Chile (23 S), before and during the 1997–1998 El Niño. J. Plankton Res. 22, 499–529 (2000).
    Article  Google Scholar 

    38.
    González, H. E. et al. Carbon fluxes within the epipelagic zone of the Humboldt Current System off Chile: The significance of euphausiids and diatoms as key functional groups for the biological pump. Progr. Oceanogr. 83, 217–227 (2009).
    ADS  Article  Google Scholar 

    39.
    Dagg, M. J., Jackson, G. A. & Checkley, D. M. The distribution and vertical flux of fecal pellets from large zooplankton in Monterey Bay and coastal California. Deep Sea Res. 94, 72–86 (2014).
    Article  Google Scholar 

    40.
    Sato, M., Dower, J. F., Kunze, E. & Dewey, R. Second-order seasonal variability in diel vertical migration timing of euphausiids in a coastal inlet. Mar. Ecol. Prog. Ser. 480, 39–56 (2013).
    ADS  Article  Google Scholar 

    41.
    Platt, S. A. & Sanislow, C. A. Norm-of-reaction: Definition and misinterpretation of animal research. J. Comp. Psychol. 102, 254–261 (1988).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Wishner, K. F., Outram, D. M., Seibel, B. A., Daly, K. & Williams, R. L. Zooplankton in the Eastern Tropical North Pacific: Boundary effects of oxygen minimum zone expansion. Deep Sea Res. I 79, 122–140 (2013).
    CAS  Article  Google Scholar 

    43.
    Dickson, A. G., Afghan, J. D. & Anderson, G. C. Reference materials for oceanic CO2 analysis: A method for the certification of total alkalinity. Mar. Chem. 80, 185–197 (2003).
    CAS  Article  Google Scholar 

    44.
    Pierrot, D.E., Lewis, E. & Wallace, D.W.R. MS Excel program developed for CO2system calculations. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy (2006). https://cdiac.ornl.gov/ftp/co2sys.

    45.
    Mehrbach, C., Culberson, C., Hawley, J. & Pytkovicz, R. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18, 897–907 (1973).
    ADS  CAS  Article  Google Scholar 

    46.
    Dickson, A. G. & Millero, F. J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res. 34, 1733–1743 (1987).
    ADS  CAS  Article  Google Scholar 

    47.
    Dickson, A. G. Standard potential of the reaction: AgCl(s) + 12 H 2 (g) 1⁄4 Ag(s) + HCl (aq), and the standard acidity constant of the ion HSO in synthetic seawater from 273.15 to 318.15 K. J. Chem. Thermodyn. 22, 113–127 (1990).
    CAS  Article  Google Scholar 

    48.
    Mitson, R. B. Underwater noise of research vessels: Review and recommendations. ICES Coop. Res. Rep. 209, 61 (1995).
    Google Scholar 

    49.
    Simrad. Simrad ER60 scientific echo sounder manual. Reference Manual. Release 2.2.0, Kongsberg Maritime AS, Norway, 226 (2008).

    50.
    Mair, A., Fernandes, P., Lebourges-Dhaussy, A. & Brierley, A. An investigation into the zooplankton composition of a prominent 38-khz scattering layer in the North Sea. J. Plank. Res. 27, 623–633 (2005).
    CAS  Article  Google Scholar 

    51.
    Cade, D. E. & Benoit-Bird, K. J. Depths, migration rates and environmental associations of acoustic scattering layers in the Gulf of California. Deep Sea Res. I 102, 78–89 (2015).
    Article  Google Scholar 

    52.
    Sato, M. et al. Impacts of moderate hypoxia on fish and zooplankton prey distributions in a coastal fjord. Mar. Ecol. Prog. Ser 560, 57–72 (2016).
    ADS  CAS  Article  Google Scholar 

    53.
    Pérez-Santos, I. et al. Turbulence and hypoxia contribute to dense biological scattering layers in a Patagonian fjord system. Ocean Sci. 14, 1185–1206 (2018).
    ADS  Article  CAS  Google Scholar 

    54.
    Díaz-Astudillo, M., Cáceres, M. & Landaeta, M. Zooplankton structure and vertical migration: Using acoustics and biomass to compare stratified and mixed fjord systems. Cont. Shelf Res 148, 208–218 (2017).
    ADS  Article  Google Scholar 

    55.
    MacLennan, D. N., Fernandez, P. G. & Dalen, J. A consistent approach to definitions and symbols in fisheries acoustics, ICES. J. Mar. Sci. 59, 365–369 (2002).
    Google Scholar 

    56.
    Ballón, M. et al. Is there enough zooplankton to feed forage fish populations off Peru? An acoustic (positive) answer. Prog. Oceanogr. 91, 360–381 (2011).
    ADS  Article  Google Scholar 

    57.
    Clarke, K.R. & Gorley, R.N. PRIMER v7: User Manual/Tutorial PRIMER-E: Plymouth (2015).

    58.
    Kloser, R. J., Ryan, T., Sakov, P., Williams, A. & Koslow, J. A. Species identification in deep water using multiple acoustic frequencies. Can. J. Fish. Aquat. Sci. 59, 1065–1077 (2002).
    Article  Google Scholar 

    59.
    Werner, T. & Buchholz, F. Diel vertical migration behaviour in Euphausiids of the northern Benguela current: Seasonal adaptations to food availability and strong gradients of temperature and oxygen. J. Plankton Res. 35, 792–812 (2013).
    CAS  Article  Google Scholar 

    60.
    Bertrand, A., Ballón, M. & Chaigneau, A. Acoustic observation of living organisms reveals the upper limit of the oxygen minimum zone. PLoS ONE 5(4), e10330 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    61.
    McLaskey, A. K. et al. Development of Euphausia pacifica (krill) larvae is impaired under pCO2 levels currently observed in the Northeast Pacific. Mar. Ecol. Prog. Ser. 555, 65–78 (2016).
    ADS  CAS  Article  Google Scholar 

    62.
    Flores, H. et al. Impact of climate change on Antarctic krill. Mar. Ecol. Prog. Ser. 458, 1–19 (2012).
    ADS  Article  Google Scholar 

    63.
    Brewer, P. G. & Peltzer, E. T. Limits to marine life. Science 324, 347–348 (2009).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Montgomery, D. W. et al. Rising CO2 enhances hypoxia tolerance in a marine fish. Sci. Rep. 9, 15152 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    65.
    Kiko, R., Hauss, H., Buchholz, F. & Melzner, F. Ammonium excretion and oxygen respiration of tropical copepods and euphausiids exposed to oxygen minimum zone conditions. Biogeosciences 13, 2241–2255 (2016).
    ADS  CAS  Article  Google Scholar 

    66.
    Antezana, T. Adaptive behaviour of Euphausia mucronata in relation to the oxygen minimum layer of the Humboldt Current. In Oceanography of the Eastern Pacific (ed. J. Farber), vol. 2, 29–40 (2002).

    67.
    Torres, J. J. & Childress, J. J. Relationship of oxygen consumption to swimming speed in Euphausia pacifica. Mar. Biol. 74, 79–86 (1983).
    Article  Google Scholar 

    68.
    Anderson, M.J., Gorley R.N. & Clarke K.R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. PRIMER-E: Plymouth, UK (2008)

    69.
    Hansen, H.P. & Koroleff, F. Determination of nutrients. In Methods sof Seawater Analysis (eds. K. Grasshoff, K. Kremling & M. Ehrhardt) 159–228 https://doi.org/10.1002/9783527613984.ch10 (2007).

    70.
    Tremblay, N., Hünerlage, K. & Werner, T. Hypoxia tolerance of 10 Euphausiid species in relation to vertical temperature and oxygen gradients. Front. Physiol. 11, 248. https://doi.org/10.3389/fphys.2020.00248 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    71.
    Tremblay, N., Gómez-Gutiérrez, J., Zenteno-Savín, T., Robinson, C. & Sánchez-Velascoa, L. Role of oxidative stress in seasonal and daily vertical migration of three krill species in the Gulf of California. Limnol. Oceanogr. 55, 2570–2584 (2010).
    ADS  CAS  Article  Google Scholar 

    72.
    Herrera, I. et al. Vertical variability of Euphausia distinguenda metabolic rates during diel migration into the oxygen minimum layer of the Eastern Tropical Pacific off Mexico. J. Plankton Res. 41, 165–176 (2019).
    CAS  Article  Google Scholar 

    73.
    Hernández-León, S., Calles, S. & Fernández de Puelles, M. L. The estimation of metabolism in the mesopelagic zone: Disentangling deep-sea zooplankton respiration. Progr. Oceanogr. 178, 102163 (2019).
    Article  Google Scholar 

    74.
    Hernández-León, S. et al. Carbon export through zooplankton active flux in the Canary Current. J. Mar. Syst. 189, 12–21 (2019).
    Article  Google Scholar 

    75.
    Baker, A. de C., Boden, B.P. & Brinton, E. A Practical Guide to the Euphausiids of the World. British Museum (Natural History), London, 96 pp. (1990).

    76.
    Alegría, N., Arana, P.M. & Sepúlveda, A. Hydroacoustic survey around Elephant Island (Sub-area 48.1) and South Orkney Islands (Subarea 48.2), austral summer 2016. 2017 IEEE/OES Acoustics in Underwater Geosciences Symposium (RIO Acoustics), 5 pp. (2017).

    77.
    Ryan, T. E., Downie, R. A., Kloser, R. J. & Keith, G. Reducing bias due to noise and attenuation in open-ocean echo integration data. ICES J. Mar. Sci. 72, 2482–2493 (2015).
    Article  Google Scholar 

    78.
    De Robertis, A. & Higginbottom, I. A post-processing technique to estimate the signal-to-noise ratio and remove echosounder background noise. ICES J. Mar. Sci. 64, 1282–1291 (2007).
    Article  Google Scholar 

    79.
    Hewitt, R. P. & Demer, D. A. The use of acoustic sampling to estimate the dispersion and abundance of euphausiids, with an emphasis on Antarctic krill (Euphausia superba). Fish. Res. 47, 215–229 (2000).
    Article  Google Scholar 

    80.
    Watkins, J. & Brierley, A. Verification of the acoustic techniques used to identify Antarctic krill. ICES J. Mar. Sci. 59, 1326–1336 (2002).
    Article  Google Scholar 

    81.
    Simmonds, E. & MacLennan, D. Observation and measurement of fish. In Fisheries Acoustics: Theory and Practice (ed. Pitcher, T. J.) 163–215 (Blackwell Science, Oxford, UK, 2005).
    Google Scholar 

    82.
    Reiss, C. S., Cossio, A. M., Loeb, V. & Demer, D. A. Variations in the biomass of Antarctic krill (Euphausia superba) around the South Shetland Islands, 1996–2006. ICES J. Mar. Sci. 65, 497–508 (2008).
    Article  Google Scholar 

    83.
    Santora, J. A. et al. Submarine canyons represent an essential habitat network for krill hotspots in a Large Marine Ecosystem. Sci. Rep. 8, 7579 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    84.
    Hartin, C. A., Bond-Lamberty, B., Patel, P. & Mundra, A. Ocean acidification over the next three centuries using a simple global climate carbon-cycle model: projections and sensitivities. Biogeosciences 13, 4329–4342 (2016).
    ADS  CAS  Article  Google Scholar  More

  • in

    Plant species determine tidal wetland methane response to sea level rise

    1.
    Bridgham, S. D., Megonigal, J. P., Keller, J. K., Bliss, N. B. & Trettin, C. The carbon balance of North American wetlands. Wetlands 26, 889–916 (2006).
    Article  Google Scholar 
    2.
    Windham-Myers, L. et al. Tidal wetlands and estuaries. in Second State of the Carbon Cycle Report (eds Cavallaro, N. et al.) 596–648 (U.S. Global Change Research Program, 2018)

    3.
    Poulter, B. et al. Global wetland contribution to 2000–2012 atmospheric methane growth rate dynamics. Environ. Res. Lett. 12, https://doi.org/10.1088/1748-9326/aa8391 (2017).

    4.
    Saunois, M. et al. The global methane budget 2000–2017. Earth Syst. Sci. 12, 1561–1623 (2020).
    ADS  Article  Google Scholar 

    5.
    Megonigal, J. P., Hines, M. E. & Visscher, P. T. Anaerobic metabolism: linkages to trace gases and aerobic processes. in Biogeochemistry (ed. Schlesinger, W. H.) 317–424 (Elsevier-Pergamon, 2004).

    6.
    Poffenbarger, H. J., Needelman, B. A. & Megonigal, J. P. Salinity influence on methane emissions from tidal marshes. Wetlands 31, 831–842 (2011).
    Article  Google Scholar 

    7.
    Al-Haj, A. N. & Fulweiler, R. W. A synthesis of methane emissions from shallow vegetated coastal ecosystems. Glob. Change Biol 26, 2988–3005 (2020).
    ADS  Article  Google Scholar 

    8.
    Oreska, M. P. J. et al. The greenhouse gas offset potential from seagrass restoration. Sci. Rep. https://doi.org/10.1038/s41598-020-64094-1 (2020).

    9.
    Rosentreter, J. A., Maher, D. T., Erler, D. V., Murray, R. H. & Eyre, B. D. Methane emissions partially offset “blue carbon” burial in mangroves. Sci. Adv. https://doi.org/10.1126/sciadv.aao4985 (2018).

    10.
    Crooks, S. et al. Coastal wetland management as a contribution to the US National Greenhouse Gas Inventory. Nat. Clim. Chang. 8, 1109–1112 (2018).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Chamberlain, S. D. et al. Soil properties and sediment accretion modulate methane fluxes from restored wetlands. Glob. Chang. Biol. 24, 4107–4121 (2018).
    Article  Google Scholar 

    12.
    Call, M. et al. Spatial and temporal variability of carbon dioxide and methane fluxes over semi-diurnal and spring-neap-spring timescales in a mangrove creek. Geochim. Cosmochim. Acta 150, 211–225 (2015).
    ADS  CAS  Article  Google Scholar 

    13.
    van der Nat, F.-J. W. A. & Middelburg, J. J. Effects of two common macrophytes on methane dynamics in freshwater sediments. Biogeochemistry 43, 79–104 (1998).
    Article  Google Scholar 

    14.
    Mueller, P. et al. Complex invader-ecosystem interactions and seasonality mediate the impact of non-native Phragmites on CH4 emissions. Biol. Invasions 18, 2635–2647 (2016).
    Article  Google Scholar 

    15.
    Tong, C., Morris, J. T., Huang, J., Xu, H. & Wan, S. Changes in pore-water chemistry and methane emission following the invasion of Spartina alterniflora into an oliogohaline marsh. Limnol. Oceanogr. 63, 384–396 (2018).
    ADS  CAS  Article  Google Scholar 

    16.
    Macreadie, P. I. et al. The future of Blue Carbon science. Nat. Commun. 10, 3998 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    17.
    Spivak, A. C., Sanderman, J., Bowen, J. L., Canuel, E. A. & Hopkinson, C. S. Global-change controls on soil-carbon accumulation and loss in coastal vegetated ecosystems. Nat. Geosci. 12, 685–692 (2019).
    ADS  CAS  Article  Google Scholar 

    18.
    Kirwan, M. L. & Megonigal, J. P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504, 53–60 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    19.
    Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marba, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Chang. 3, 961–968 (2013).
    ADS  CAS  Article  Google Scholar 

    20.
    Rogers, K. et al. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature 567, 91–95 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    21.
    Megonigal, J. P. & Schlesinger, W. H. Enhanced CH4 emissions from a wetland soil exposed to elevated CO2. Biogeochemistry 37, 77–88 (1997).
    CAS  Article  Google Scholar 

    22.
    Beaulieu, J. J., DelSontro, T. & Downing, J. A. Eutrophication will increase methane emissions from lakes and impoundments during the 21st century. Nat. Commun. 10, 1375 (2019).
    Article  CAS  Google Scholar 

    23.
    Wilson, R. M. et al. Stability of peatland carbon to rising temperatures. Nat. Commun. 7, 13723 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Stocker, B. D. et al. Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios. Nat. Clim. Chang. 3, 666–672 (2013).
    ADS  CAS  Article  Google Scholar 

    25.
    Knoblauch, C., Beer, C., Liebner, S., Grigoriev, M. N. & Pfeiffer, E. M. Methane production as key to the greenhouse gas budget of thawing permafrost. Nat. Clim. Chang. 8, 309–312 (2018).
    ADS  CAS  Article  Google Scholar 

    26.
    Whiting, G. J. & Chanton, J. P. Primary production control of methane emission from wetlands. Nature 364, 794–795 (1993).
    ADS  CAS  Article  Google Scholar 

    27.
    Langley, J. A., Mozdzer, T. J., Shepard, K. A., Hagerty, S. B. & Megonigal, J. P. Tidal marsh plant responses to elevated CO2, nitrogen fertilization, and sea level rise. Glob. Chang. Biol. 19, 1495–1503 (2013).
    Article  Google Scholar 

    28.
    Mueller, P. et al. Global-change effects on early-stage decomposition processes in tidal wetlands—implications from a global survey using standardized litter. Biogeosciences 15, 3189–3202 (2018).
    ADS  CAS  Article  Google Scholar 

    29.
    Kirwan, M. L. & Guntenspergen, G. R. Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh. J. Ecol. 100, 764–770 (2012).
    Article  Google Scholar 

    30.
    Redelstein, R., Dinter, T., Hertel, D. & Leuschner, C. Effects of inundation, nutrient availability and plant species diversity on fine root mass and morphology across a saltmarsh flooding gradient. Front. Plant Sci. 9, 1–15 (2018).
    Article  Google Scholar 

    31.
    Morris, J. T. Estimating net primary production of salt marsh macrophytes. in Principles and Standards for Measuring Primary Production (eds Fahey, T. J. & Knapp, A. K.) 106–119 (Oxford University Press, 2007).

    32.
    Arp, W. J., Drake, B. G., Pockman, W. T., Curtis, P. S. & Whigham, D. F. Interactions between C3 and C4 salt marsh plant species during four years of exposure to elevated atmospheric CO2. Vegetatio. 104, 133–143 (1993).
    Article  Google Scholar 

    33.
    Erickson, J. E., Megonigal, J. P., Peresta, G. & Drake, B. G. Salinity and sea level mediate elevated CO2 effects on C3-C4 plant interactions and tissue nitrogen in a Chesapeake Bay tidal wetland. Glob. Chang. Biol. 13, 202–215 (2007).
    ADS  Article  Google Scholar 

    34.
    Drake, B. G. Rising sea level, temperature, and precipitation impact plant and ecosystem responses to elevated CO2 on a Chesapeake Bay wetland: Review of a 28-year study. Glob. Chang. Biol. 20, 3329–3343 (2014).
    ADS  PubMed  Article  Google Scholar 

    35.
    Kirwan, M. L., Langley, J. A., Guntenspergen, G. R. & Megonigal, J. P. The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes. Biogeosciences 10, 1869–1876 (2013).
    ADS  CAS  Article  Google Scholar 

    36.
    Phillips, R. P., Finzi, A. C. & Bernhardt, E. S. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol. Lett. 14, 187–194 (2011).
    PubMed  Article  Google Scholar 

    37.
    Phillips, R. P., Bernhardt, E. S. & Schlesinger, W. H. Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response. Tree Physiol. 29, 1513–1523 (2009).
    CAS  PubMed  Article  Google Scholar 

    38.
    Lin, G., Ehleringer, J. R., Rygiewicz, P. T., Johnson, M. G. & Tingey, D. T. Elevated CO2 and temperature impacts on different components of soil CO2 efflux in Douglas-fir terracosms. Glob. Chang. Biol. 5, 157–168 (1999).
    ADS  Article  Google Scholar 

    39.
    Megonigal, J. P. et al. A plant-soil-atmosphere microcosm for tracing radiocarbon from photosynthesis through methanogenesis. Soil Sci. Soc. Am. J. 63, 665–671 (1999).
    ADS  CAS  Article  Google Scholar 

    40.
    Dacey, J. W. H., Drake, B. G. & Klug, M. J. Stimulation of methane emission by carbon dioxide enrichment of marsh vegetation. Nature 370, 47–49 (1994).
    ADS  CAS  Article  Google Scholar 

    41.
    Keller, J. K., Wolf, A. A., Weisenhorn, P. B., Drake, B. G. & Megonigal, J. P. Elevated CO2 affects porewater chemistry in a brackish marsh. Biogeochemistry 96, 101–117 (2009).
    CAS  Article  Google Scholar 

    42.
    Langley, J. A. & Megonigal, J. P. Ecosystem response to elevated CO2 levels limited by nitrogen-induced plant species shift. Nature 466, 96–99 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    43.
    Langley, J. A., McKee, K. L., Cahoon, D. R., Cherry, J. A. & Megonigal, J. P. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise. Proc. Natl Acad. Sci. U.S.A. 106, 6182–6186 (2009).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Langley, J. A. et al. Ambient changes exceed treatment effects on plant species abundance in global change experiments. Glob. Chang. Biol. 24, 5668–5679 (2018).
    ADS  PubMed  Article  Google Scholar 

    45.
    Bhullar, G. S., Edwards, P. J. & Olde Venterink, H. Variation in the plant-mediated methane transport and its importance for methane emission from intact wetland peat mesocosms. J. Plant Ecol. 6, 298–304 (2013).
    Article  Google Scholar 

    46.
    van der Nat, F.-J. W. A., Middelburg, J. J., Van Meteren, D. & Wielemakers, A. Diel methane emission patterns from Scirpus lacustris and Phragmites australis. Biogeochemistry 41, 1–22 (1998).
    Article  Google Scholar 

    47.
    Van Der Nat, F. J. W. A. & Middelburg, J. J. Seasonal variation in methane oxidation by the rhizosphere of Phragmites australis and Scirpus lacustris. Aquat. Bot. 61, 95–110 (1998).
    Article  Google Scholar 

    48.
    Wolf, A. A., Drake, B. G., Erickson, J. E. & Megonigal, J. P. An oxygen-mediated positive feedback between elevated carbon dioxide and soil organic matter decomposition in a simulated anaerobic wetland. Glob. Chang. Biol. 13, 2036–2044 (2007).
    ADS  Article  Google Scholar 

    49.
    Bernal, B., Megonigal, J. P. & Mozdzer, T. J. An invasive wetland grass primes deep soil carbon pools. Glob. Chang. Biol. 23, 2104–2116 (2017).
    ADS  PubMed  Article  Google Scholar 

    50.
    Mueller, P., Jensen, K. & Megonigal, J. P. Plants mediate soil organic matter decomposition in response to sea level rise. Glob. Chang. Biol. 22, 404–414 (2016).
    ADS  PubMed  Article  Google Scholar 

    51.
    Yuan, J. et al. Spartina alterniflora invasion drastically increases methane production potential by shifting methanogenesis from hydrogenotrophic to methylotrophic pathway in a coastal marsh. J. Ecol. 107, 2436–2450 (2019).
    CAS  Article  Google Scholar 

    52.
    Marsh, A. S., Rasse, D. P., Drake, B. G. & Megonigal, J. P. Effect of elevated CO2 on carbon pools and fluxes in a brackish marsh. Estuaries 28, 694–704 (2005).
    CAS  Article  Google Scholar 

    53.
    Broome, S. W., Mendelssohn, I. A. & McKee, K. L. Relative growth of Spartina patens (Ait.) Muhl. and Scirpus olneyi gray occurring in a mixed stand as affected by salinity and flooding depth. Wetlands 15, 20–30 (1995).
    Article  Google Scholar 

    54.
    Mozdzer, T. J., Langley, J. A., Mueller, P. & Megonigal, J. P. Deep rooting and global change facilitate spread of invasive grass. Biol. Invasions 18, 2619–2631 (2016).
    Article  Google Scholar 

    55.
    IPCC. United Nations Framework Convention on Climate Change. United Nations Framew. Conv. Clim. Chang. https://doi.org/10.1111/j.1467-9388.1992.tb00046.x (2014).

    56.
    Noyce, G. L., Kirwan, M. L., Rich, R. L. & Megonigal, J. P. Asynchronous nitrogen supply and demand produce nonlinear plant allocation responses to warming and elevated CO2. Proc. Natl Acad. Sci. U.S.A. 116, 21623–21628 (2019).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Megonigal, J. P. & Rabenhorst, M. Reduction–oxidation potential and oxygen. in Methods in Biogeochemistry of Wetlands (eds DeLaune, R. D., Reddy, K. R., Richardson, C. J. & Megonigal, J. P.) 71–85 (Soil Science Society of America, Inc., 2013).

    58.
    Aselmann, I. & Crutzen, P. J. Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J. Atmos. Chem. 8, 307–358 (1989).
    CAS  Article  Google Scholar 

    59.
    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. Past: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 4 (2001).
    Google Scholar  More

  • in

    Discovering spatial interaction patterns of near repeat crime by spatial association rules mining

    Framework for discovering significant spatial transmission pattern of crime occurrence
    In this section, a framework for discovering significant spatial interaction pattern of crime is developed. As illustrated in Fig. 1, the proposed framework comprises the following three steps.
    Figure 1

    Overview of framework for discovering spatial transmission patterns of crime occurrence.

    Full size image

    The proposed method works on a collection of crime points with spatial and temporal information. Firstly, near repeat crime pairs are identified by specifying the spatio-temporal proximity. All near repeat crime pairs would form a network structure, making it difficult to discover the dominant patterns. Therefore, we simplify the network by overlaying with spatial girds and then aggregating it. Finally, some indicators are defined to measure the spatial interaction strength, and a spatial association pattern mining approach was developed. The whole framework is designed to discover the most probable spatial transmission routes and related high flow regions. Explanation for each step is further illustrated in following sections.
    Construction of crime transmission network
    This study aims to discover spatial interaction patterns from a collection of discrete points. Each point represents a location where crime incident happens. However, these crime incidents are not totally independent, but related with each other in spatial aspect. The typical phenomena demonstrating such interaction is the near repeat crime. The interaction between near repeat crime pairs can be represented as a “directed link”, and a directed network can well describe the spatial interaction of all crime incidents (denoted as “transmission network”).
    The crime transmission network is composed of a node set V and an edge set E, which can be denoted as N = (V, E). Each node in V indicates a crime incident and each edge represents the spatio-temporal relation between two incidents. Because the influence of a crime only existed in a limited spatial and temporal range, spatio-temporal proximity should be defined to identify the near repeat crime. Specifically, given two crime incidents c1 and c2 occurring at timestamps tA and tB, their spatial distance and time difference are denoted as rAB and tAB, respectively. A directed edge eAB is added if the following conditions are satisfied:

    $$left{ {begin{array}{*{20}l} {{0} le t_{B} – t_{A} le Delta t} hfill \ {r_{AB} le Delta s} hfill \ end{array} } right.$$
    (1)

    where Δs and Δt are two parameters to define the spatio-temporal proximity. In this manner, a crime transmission network can be constructed with the dual constraint of spatial and temporal proximity.
    Spatial aggregation based on spatial grids
    In the crime transmission network, each edge stands for an instance of near repeat crime pairs. As described above, crime transmission network indicates the “spatial interaction”. To explore the spatial interaction, the spatial analysis scale should be determined first. On the other hand, because “near repeat” pairs are judged by the spatio-temporal proximity, a single crime incident may be viewed as “close pair” with many other incidents, all the “close pairs” of crime incidents may form a complex structure (like a complex network), thus making it difficult to extract dominant patterns from such complex structure. As illustrated in Fig. 2, network nodes are usually clustered and network edges are usually intersected in an unregularly way. In situation of lots of nodes and edges, it is difficult to extract dominant spatial interaction patterns from the complex network.
    Figure 2

    Illustrative example of spatial aggregation of original network.

    Full size image

    To address the above issues, we then overlay the crime transmission network with spatial grids. The advantage of applying spatial grids lies in two aspects. First, the spatial interaction should be explored at a spatial scale. The analysis scale is closely related to spatial grid size. By setting different grid sizes, multiple scales analysis results can be achieved. Second, by overlaying spatial grids with the crime transmission network, each node and edge in the network can be associated with one or several spatial grids, then the crime network can be simplified greatly by spatial aggregation. As an example illustrated in Fig. 2, each circle in sub-figure (a) represents a crime incident, and crime pairs are connected by dashed lines. Obviously, it is not easy to identify the dominant spatial patterns. The complex network can be simplified by overlaying with spatial grids. The close crime pairs can be classified into two categories: “following in same grids” and “crossing different grids”, and those crossing different grids can be used to analyze spatial interaction between different regions. In sub-figure (d), each spatial region is represented as a square, and the numbers beside links represent number of close crime pairs crossing different regions (i.e. the by spatial aggregation). In this manner, the original crime transmission network has been simplified. It should be pointed out that the “spatial aggregation” does not discard any close crime pair. Those falling in a single grid can be used to measure strength of spatial interaction, which will be described in following section.
    Discovery of significant spatial interaction patterns
    From the above description, we can learn that the aggregated crime network is a directed network. Each node of network represents a spatial region (spatial grid) and edges indicates near repeat pairs crossing different grids. After the aggregated crime network is obtained, the spatial association rule mining technique can be applied to discover the spatial interactions patterns. The spatio-temporal association rule mining approach is a powerful tool for discovering the interdependence relation in both spatial and temporal domains. The existing research has proved that it can not only reveal a spatial dependence structure among various spatial features or spatial objects38,39 but also discover the dynamic interactions among different spatial regions37,40,41. For example, Verhein and Chawla describe spatial interaction patterns between different regions using spatio-temporal association rules37.
    In this study, we also try to summarize the spatial interaction pattern by applying spatio-temporal association rules mining. To fulfil that, following definitions are first clarified.
    Definition 1
    Given two adjacent spatial grids (denoted as GA and GB) and two crime incidents (c1 and c2), if c1 falls in grid GA, c2 falls in GB, and their distance satisfies the spatio-temporal proximity constraint in Eq. (1), then the pair of c1 and c2 is called an instance of flow from GA to GB and denoted as: instance (GA → GB). The total number of instance (GA → GB) is called the out flow number of (GA) and denoted as outNum(GA). Correspondingly, total number of instance (GB → GA) is called the inflow number of (GA) and denoted as inNum(GA). In addition, the total number of close pair which totally falls in grid GA is denoted as statbleNum (GA).
    Definition 2
    The spatial region GA is termed as a source when out flow number outNum (GA) is higher than random assumption. Conversely, region is termed as sink if inflow number inNum (GA) is higher than random assumption. A thoroughfare is a region which meets both the source and sink requirements. Collectively, sources, sinks and thoroughfares are called high flow regions in which near repeat crime pairs can be frequently observed.
    Definition 3
    High flow regions and transmission routes together can describe spatial interaction pattern between different regions. For regions GA and GB, if the number of instance (GA → GB) is higher than random assumption, then it is called a significant transmission route from GA → GB, denoted as route (GA → GB), while GA is called antecedent and GB is consequent of the route.
    Definition 4
    Another two concepts are defined to evaluate the discovered spatial transmission routes. The spatial support of a transmission route r, denoted as Sup(r), is the sum of spatial areas referenced in the antecedent and consequent of the transmission route. The confidence of a transmission route r, denoted as Conf (r), is defined as the ratio of number of instance (GA → GB) to number of instances flowing out and falling in the antecedent grid. They can be represented formally as:

    $$Supleft( r right) = arealeft( {G_{A} } right) + arealeft( {G_{B} } right)$$
    (2)

    $$confleft( r right) = frac{{sum {instance} ;left( {G_{A} to G_{B} } right)}}{{outNumleft( {G_{A} } right) + stableNum(G_{A} )}}$$
    (3)

    The first three definitions are used to discover the spatial interaction pattern, while the last one can be used to evaluate the discovered results. The definition of spatial support considers spatial semantic of discovered pattern (the size of spatial area) and confidence indicates the transmission possibility between antecedent and consequent regions. Both support and confidence indicators are commonly used in Apriori-like association rule mining approaches42, while these concepts have different meanings in this study.
    Based on the above concepts, spatial interaction pattern can be discovered. In spatial association pattern mining process, thresholds for indicators measuring association strength should be determined in advance, e.g. outNum and inNum in this study. However, determination of the thresholds objectively is not easy. Thus, the discovered results are evaluated via the Monte Carlo (MC) testing. In another words, we aim to find out these patterns with their indicators significantly higher than that would be observed by chance. In the current study, MC methods are employed to generate N simulated spatial crime distributions with permutation of temporal information. For example, statistical significance of spatial transmission route r can be calculated as:

    $$pleft( r right) = frac{{sum {left( {instance_num^{obs} left( r right) le instance_num^{ith_sim} left( r right)} right)} + 1}}{N + 1}$$
    (4)

    where (instance_num^{obs} left( r right)) represent the number of instance (r) calculated on real observed data, and (nstance_num^{ith_sim} left( r right)) represent the number calculated on a simulated spatial dataset. Then, given a significant level α (0.05 by default), if the p(r) value is less than the significance level, it can be treated as a significant pattern.
    Study area and material description
    To evaluate the effectiveness of the proposed approach, we aim to explore the spatial interaction pattern of a robbery in the city of Philadelphia, United States. Located in southeastern Pennsylvania, Philadelphia is an economic and cultural anchor of the greater Delaware Valley, with a population of 1,580,863 (based on 2017 census-estimated results). The crime occurrence in Philadelphia consistently ranks above the national average, which is a major concern for the government. The crime-related data can be freely accessed via the OpenDataPhilly website (https://www.opendataphilly.org/), which provides both crime datasets and basic geographic data. The geographic data include administrative division and road network. The crime incidents are recorded with detailed longitude, latitude and timestamps. In this study, we mainly focus on unarmed robbery during the period of January 1st, 2016, to June 30th, 2016. During this period, the total number of unarmed robberies was 1612. We selected robbery crime as a case study because robbery is frequently observed in the study regions and have a profound effect on the quality of life in urban neighborhood43. This study aims to find out: (1) whether robbery crime exhibits the near repeat phenomena? and (2) what kinds of spatial interaction patterns are embedded in the near repeat phenomena? The study region and distribution of robbery crime are showed in the Fig. 3.
    Figure 3

    Study region and distribution of robbery incidents.

    Full size image More

  • in

    An integrated analysis of Maglemose bone points reframes the Early Mesolithic of Southern Scandinavia

    1.
    Jessen, C. A. et al. Early Maglemosian culture in the Preboreal landscape: archaeology and vegetation from the earliest Mesolithic site in Denmark at Lundby Mose Sjælland. Quat. Int. 378, 73–87 (2015).
    Article  Google Scholar 
    2.
    Mortensen, M. F., Henriksen, P. S., Christensen, C., Petersen, P. V. & Olsen, J. Vegetation development in south-east Denmark during the Weichselian Late Glacial: palaeoenvironmental studies close to the Palaeolithic site of Hasselø. Danish J. Archaeol. 3, 33–51 (2014).
    Article  Google Scholar 

    3.
    Sarauw, G. F. L. En Stenalders Boplads i Maglemose ved Mullerup Sammenholdt med Beslægtede Fund (H.H Thieles Bogtrykkeri, København, 1903).
    Google Scholar 

    4.
    Broholm, H. C. Nye fund fra den Ældste Stenalder, Holmegaard- og Sværdborgfundene. Aarbøger for Nordisk Oldkyndighed og Historie 1–144 (1924).

    5.
    Mathiassen, T., Troels-Smith, J. & Degerbøl, M. Stenalderbopladser i Aamosen. (1943).

    6.
    Clark, J. G. D. The Mesolithic Settlement of Northern Europe: A Study of the Food-Gathering Peoples of Northern Europe During the Early Post-Glacial Period (Greenwood Press, New York, 1936).
    Google Scholar 

    7.
    Verhart, L. B. M. Stone Age Bone and Antler As Indicators for ‘Social Territories’ in the European Mesolithic. In Contributions to the Mesolithic in Europe (eds Vermeersch, P. M. & Van Peer, P.) 139–151 (Leuven University Press, Leuven, 1990).
    Google Scholar 

    8.
    Larsson, L., Sjöström, A. & Nilsson, B. Lost at the bottom of the lake. Early and Middle Mesolithic leister points found in the bog Rönneholms Mosse, southern Sweden. In Working at the Sharp End: From Bone and Antler to Early Mesolithic Life in Northern Europe (eds Groß, D. et al.) 1–8 (Wacholtz, Kiel, 2019).
    Google Scholar 

    9.
    Andersen, K. Stenalder bebyggelsen i den Vestsjællandske Åmose (Fredningsstyrelsen, Copenhagen, 1983).
    Google Scholar 

    10.
    David, E. L’industrie en matières dures animale du Mésolithique ancien et moyen d’ Europe du nord, contribution de l’ analyse technologique à la définition du Maglemosien. (Université Paris X-Nanterre, 1999).

    11.
    Leduc, C. Ungulates exploitation for subsistence and raw material, during the Maglemose culture in Denmark: the example of Mullerup site (Sarauw’s Island) in Sjælland. Danish J. Archaeol. 1, 62–81 (2012).
    Article  Google Scholar 

    12.
    David, É The osseous technology of Hohen Viecheln: a Maglemosian idiosyncrasy? In From Bone and Antler to Early Mesolithic Life in Northern Europe (eds Groß, D. et al.) 1–36 (Wachholtz Verlag, Neumünster, 2019).
    Google Scholar 

    13.
    Gummesson, S. & Molin, F. Points of bone and antler from the Late Mesolithic settlement in Motala, eastern central Sweden. In Working at the Sharp End: From Bone and Antler to Early Mesolithic Life in Northern Europe (eds Groß, D. et al.) 1–25 (Wacholtz, Kiel, 2019).
    Google Scholar 

    14.
    Fischer, A. At the border of human habitat. The late Palaeolithic and early Mesolithic in Scandinavia. In The Earliest Settlement of Scandinavia and Its Relationship with Neighbouring Areas (ed. Larsson, L.) 157–176 (Almquist & Wiksell, Stockholm, 1996).
    Google Scholar 

    15.
    Fischer, A. Tissø og Amoserne som trafikforbindelse og kultsted i stenalderen. Historisk Samfund for Holbæk Amt 27–44 (2003).

    16.
    Ramsey, C. B. Methods for summarizing radiocarbon datasets. Radiocarbon 59, 1809–1833 (2017).
    CAS  Article  Google Scholar 

    17.
    Welker, F. et al. Palaeoproteomic evidence identifies archaic hominins associated with the Châtelperronian at the Grotte du Renne. Proc. Natl. Acad. Sci. USA 113, 11162–11167 (2016).
    CAS  PubMed  Article  Google Scholar 

    18.
    Buckley, M. & Collins, M. J. Collagen survival and its use for species identification in Holocene-lower Pleistocene bone fragments from British archaeological and paleontological sites. Antiqua 1, 1–7 (2011).
    Article  Google Scholar 

    19.
    Rodriguez, J., Gupta, N., Smith, R. D. & Pevzner, P. A. Does trypsin cut before proline?. J. Proteome Res. 7, 300–305 (2008).
    CAS  PubMed  Article  Google Scholar 

    20.
    Ekström, J. The Late Quaternary history of the urus (Bos primigenius Bojanus 1827) in Sweden. vol. 29 (Lund Univ., Dep. of Quaternary Geology, 1993).

    21.
    Aaris-Sørensen, K., Mühldorff, R. & Petersen, E. B. The Scandinavian reindeer (Rangifer tarandus L.) after the last glacial maximum: time, seasonality and human exploitation. J. Archaeol. Sci.34, 914–923 (2007/6).

    22.
    Aaris-Sørensen, K. Diversity and dynamics of the mammalian fauna in Denmark throughout the last glacial-interglacial cycle, 115–0 kyr bp. Fossils Strata 57, 1–59 (2010).
    Google Scholar 

    23.
    Aaris-Sørensen, K. Diversity and Dynamics of the Mammalian Fauna in Denmark Throughout the Last Glacial-Interglacial Cycle, 115–0 kyr BP (Wiley, New York, 2010).
    Google Scholar 

    24.
    Aaris-Sørensen, K. Depauperation of the Mammalian Fauna of the Island of Zealand during the Atlantic Period. Vidensk. Meddr Dansk Naturh. Foren. 142, 131–138 (1980).
    Google Scholar 

    25.
    Noe-Nygaard, N., Price, T. D. & Hede, S. Diet of aurochs and early cattle in southern Scandinavia: evidence from N and C stable isotopes. J. Archaeol. Sci. 32, 855–871 (2005).
    Article  Google Scholar 

    26.
    McGrath, K. et al. Identifying archaeological bone via non-destructive ZooMS and the materiality of symbolic expression: examples from iroquoian bone points. Sci. Rep. 9, 11027 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    27.
    Sjöström, A. Mesolitiska lämningar i Rönneholms mosse. Arkeologisk förundersökning 2010: Hassle 32:18, Stehag socken, Eslövs kommun 1–79 (Skåne. Lund University, Lund, 2011).
    Google Scholar 

    28.
    Sjöström, A. Mesolitiska lämningar i Rönneholms mosse. Arkeologisk förundersökning. Hassle 32:18, Stehag socken, Eslövs kommun Skåne 1–84 (. Lund University, Lund, 2014).
    Google Scholar 

    29.
    Fischer, A. Dating the early trapeze horizon. Radiocarbon dates from submerged settlements in Musholm Bay and Kalø Vig, Denmark. Mesolithc Misc. 15, 1–7 (1994).
    Google Scholar 

    30.
    Sørensen, S. A. Kongemosekulturen i Sydskandinavien (Egnsmuseet Færgegården, Jægerspris, 1996).
    Google Scholar 

    31.
    Sjöström, A. Ringsjöholm. A boreal-early atlantic settlement in Central Scania, Sweden. Lund Archaeol. Rev. 3, 5–20 (1997).
    Google Scholar 

    32.
    Fischer, A. People and the sea—settlement and fishing along the mesolithic coasts. In The Danish Storebælt Since the Ice Age—Man, Sea and Forest (eds Pedersen, L. et al.) 63–77 (A/S Storebælt Fixed Link, Copenhagen, 1997).
    Google Scholar 

    33.
    Tauber, H. Copenhagen radiocarbon dates VII. Radiocarbon 8, 213–234 (1966).
    Article  Google Scholar 

    34.
    Tauber, H. Copenhagen radiocarbon dates X. Radiocarbon 15, 86–112 (1973).
    Article  Google Scholar 

    35.
    Fischer, A. Food for Feasting? An evaluation of explanations of the neolithisation of Denmark and southern Sweden. In The Neolithisation of Denmark—150 Years of Debate (eds Fischer, A. & Krisiansen, K.) 343–393 (J. R Collis, Sheffield, 2002).
    Google Scholar 

    36.
    Andersen, S. H. & Petersen, P. V. Maglemosekulturens stortandede harpuner. Aarbøger Nordisk Oldkynd. Hist. 2004, 7–41 (2009).
    Google Scholar 

    37.
    Larsson, L. The colonization of South Sweden during the deglaciation. In The Earliest Settlement of Scandinavia and Its Relationship with Neighbouring Areas 24 (ed. Larsson, L.) 141–155 (Acta Archaeologica Ludensia, Stockholm, 1996).
    Google Scholar 

    38.
    Sørensen, L. & Casati, C. Hunter-gatherers living in a flooded world: the change of climate, landscapes and settlement patterns during the Late Palaeolithic and Mesolithic on Bornholm, Denmark. In Climate and Ancient Societies (eds Kerner, S. et al.) 41–69 (Museum Tusculanum, Copenhagen, 2015).
    Google Scholar 

    39.
    Sørensen, M. Early mesolithic regional mobility and social organization: evidence from lithic blade technology and microlithic production in southern Scandinavia. In Technology of Early Settlement in Northern Europe—Transmission of Knowledge and Culture (eds Knutsson, K. et al.) 173–201 (Equinox Publishing, London, 2018).
    Google Scholar 

    40.
    Bond, G. et al. A pervasive millennial-scale cycle in North Atlantic Holocene and Glacial Climates. Science 278, 1257–1266 (1997).
    ADS  CAS  Article  Google Scholar 

    41.
    Björck, S. et al. High-resolution analyses of an early Holocene climate event may imply decreased solar forcing as an important climate trigger. Geology 29, 1107–1110 (2001).
    ADS  Article  Google Scholar 

    42.
    Dahl, S. O., Nesje, A., Lie, Ø, Fjordheim, K. & Matthews, J. A. Timing, equilibrium-line altitudes and climatic implications of two early-Holocene glacier readvances during the Erdalen Event at Jostedalsbreen, western Norway. Holocene 12, 17–25 (2002).
    ADS  Article  Google Scholar 

    43.
    Nesje, A., Dahl, S. O. & Bakke, J. Were abrupt Lateglacial and early-Holocene climatic changes in northwest Europe linked to freshwater outbursts to the North Atlantic and Arctic Oceans?. Holocene 14, 299–310 (2004).
    ADS  Article  Google Scholar 

    44.
    Bakke, J., Dahl, S. O. & Nesje, A. Lateglacial and early Holocene palaeoclimatic reconstruction based on glacier fluctuations and equilibrium-line altitudes at northern Folgefonna, Hardanger, Western Norway. J. Quat. Sci. 2, 179–198 (2005).
    Article  Google Scholar 

    45.
    Nesje, A. Latest Pleistocene and Holocene alpine glacier fluctuations in Scandinavia. Quat. Sci. Rev. 28, 2119–2136 (2009).
    ADS  Article  Google Scholar 

    46.
    Berner, K. S., Koç, N. & Godtliebsen, F. High frequency climate variability of the Norwegian Atlantic Current during the early Holocene period and a possible connection to the Gleissberg cycle. Holocene 20, 245–255 (2010).
    ADS  Article  Google Scholar 

    47.
    Balascio, N. L. & Bradley, R. S. Evaluating Holocene climate change in northern Norway using sediment records from two contrasting lake systems. J. Paleolimnol. 48, 259–273 (2012).
    ADS  Article  Google Scholar 

    48.
    Jørgensen, S. Early Postglacial in Aamosen: Geological and Pollen-analytical Investigations of Maglemosian Settlements in the West-Zealand Bog Aamosen (Reitzel, Aigle, 1963).
    Google Scholar 

    49.
    Noe-Nygaard, N. Sedimentary, geochemical and ecological evolution of a Lateglacial-Postglacial lacustrine basin: lakelevel and climatic influence on flora, fauna and human population (Aamosen, Denmark). Foss. Strata 37, 1–436 (1995).
    Google Scholar 

    50.
    Noe-Nygaard, N., Abildtrup, C. H., Albrechtsen, T., Gotfredsen, A. B. & Richter, J. Palæobiologiske, sedimentologiske og geokemiske undersøgelser af Sen Weichel og Holocæne aflejringer i Store Åmose Danmark. Geol. tidsskr. 2, 1–65 (1998).
    Google Scholar 

    51.
    Gedda, B. Environmental and climatic aspects of the early to mid Holocene calcareous tufa and land mollusc fauna in southern Sweden (Lund University, Lund, 2001).
    Google Scholar 

    52.
    Digerfeldt, G., Björck, S., Hammarlund, D. & Persson, T. Reconstruction of Holocene lake-level changes in Lake Igelsjön, southern Sweden. GFF 135, 162–170 (2013).
    CAS  Article  Google Scholar 

    53.
    Gaillard, M.-J. Postglacial paleoclimatic changes in Scandinavia and Central Europe. A tentative correlation based on studies of lake-level fluctuations. Ecol. Mediterr. 11, 159–175 (1985).
    Article  Google Scholar 

    54.
    Nilsson, T. Die pollenanalytische Zonengliederung der spät- und postglazialen Bildungen Schonens. Geol. Föreningen Stockh. Förhandlingar 57, 385–562 (1935).
    Article  Google Scholar 

    55.
    Digerfeldt, G. Reconstruction and regional correlation of Holocene lake-level fluctuations in Lake Bysjon South Sweden. Boreas 17, 165–182 (1988).
    Article  Google Scholar 

    56.
    Dreibrodt, S. et al. Are mid-latitude slopes sensitive to climatic oscillations? Implications from an Early Holocene sequence of slope deposits and buried soils from eastern Germany. Geomorphology 122, 351–369 (2010).
    ADS  Article  Google Scholar 

    57.
    Olsson, F., Gaillard, M. J., Lemdahl, G. & Greisman, A. A continuous record of fire covering the last 10,500 calendar years from southern Sweden—the role of climate and human activities. Palaeogeogr. Palaeoclimatol. Palaeoecol. 291, 128–141 (2010).
    Article  Google Scholar 

    58.
    Manninen, M. A., Tallavaara, M. & Seppä, H. Human responses to early Holocene climate variability in eastern Fennoscandia. Quat. Int. 465, 287–297 (2018).
    Article  Google Scholar 

    59.
    Grünberg, J. The Mesolithic burials of the Middle Elbe-Saale region. In: Mesolithic burials—Rites, symbols and socialorganisation of early postglacial communities (eds. Judith M. Grünberg, B. G., Larsson, L., Orscheidt, J. & Meller, H.) vol. 13,1 257–290 (Halle (Saale) Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt, Landesmuseum für Vorgeschichte 2016, 2016).

    60.
    Crombé, P. Mesolithic projectile variability along the southern North Sea basin (NW Europe): hunter-gatherer responses to repeated climate change at the beginning of the Holocene. PLoS ONE 14, e0219094 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    61.
    Solheim, S., Damlien, H. & Fossum, G. Technological transitions and human-environment interactions in Mesolithic southeastern Norway, 11 500–6000 cal. BP. Quat. Sci. Rev. 246, 106501 (2020).
    Article  Google Scholar 

    62.
    Hammarlund, D., Björck, S., Buchardt, B., Israelson, C. & Thomsen, C. T. Rapid hydrological changes during the Holocene revealed by stable isotope records of lacustrine carbonates from Lake Igelsjön, southern Sweden. Quat. Sci. Rev. 22, 353–370 (2003).
    ADS  Article  Google Scholar 

    63.
    Cziesla, E. & Pettitt, P. B. AMS-14C-Datieirungen von spätpaläolithischen und mesolithischen Funden aus dem Bützsee (Brandenburg). Archäol. Korresp. 33, 21–38 (2003).
    Google Scholar 

    64.
    Nordqvist, B. The Mesolithic settlements of the west coast of Sweden-with special emphasis on chronology and topography of coastal settlements. In Man and the Sea in the Mesolithic: Coastal Settlements Above and Below Present Sea Level; 1993; Kalundborg; Denmark (ed. Fischer, A.) 185–196 (Oxbow Books, Oxford, 1995).
    Google Scholar 

    65.
    Nordqvist, B. Coastal Adaptations in the Mesolitic [Mesolithic]: A Study of Coastal Sites with Organic Remains from the Boreal and Atlantic Periods in Western Sweden (Department of Archaeology Göteborg University, Gothenburg, 2000).
    Google Scholar 

    66.
    Johansson, G. En 10 000 år gammal boplats med organiskt material i Mölndal. Ytterligare en överlagrad Sandarnaboplats vid Balltorp. Västra Götalands län, Västergötland, Mölndal stad, Balltorp Ytterligare en överlagrad Sandarnaboplats vid Balltorp Västra Götalands län, Västergötland, Mölndal stad, Balltorp 1:124, Mölndal 182 Dnr 3.1.1-04306-2008(2014).

    67.
    Boethius, A. Fishing for Ways to Thrive: Integrating Zooarchaeology to Understand Subsistence Strategies and Their Implications Among EARLY and Middle Mesolithic Southern Scandinavian Foragers (Lunds University, Lund, 2018).
    Google Scholar 

    68.
    Astrup, P. M. Sea-Level Change in Mesolithic Southern Scandinavia. Long- and Short-Term Effects on Society and the Environment 106 (Jutland Archaeological Society Publications, Højbjerg, 2018).
    Google Scholar 

    69.
    Fischer, A. & Petersen, P. V. Denmark—a sea of archaeological plenty. In Oceans of Archaeology (eds Fischer, A. & Pedersen, L.) 68–83 (Jutland Archaeological Society, Højbjerg, 2018).
    Google Scholar 

    70.
    Fischer, A. et al. Coast–inland mobility and diet in the Danish Mesolithic and Neolithic: evidence from stable isotope values of humans and dogs. J. Archaeol. Sci. 34, 2125–2150 (2007).
    Article  Google Scholar 

    71.
    Ahlström, T. & Sjögren, K.-G. Kvinnan från Österöd—ett tidigmesolitiskt skelett från Bohuslän. In Situ Archaeologica 7, 47–69 (2007).
    Google Scholar 

    72.
    Ahlström, T. Mesolithic human skeletal remains from Tågerup, Scania, Sweden. In: Mesolithic on the Move. Papers Presented at the Sixth International Conference on the Mesolithic in Europe, Stockholm 2000 (eds. Larsson, L., Kindgren, H., Knutsson, K., Loeffler, D. & Åkerlund, A.) 478–484 (Oxbow Books, Oxford, 2003).

    73.
    Desrosiers, P. M. The Emergence of Pressure Blade Making: From Origin to Modern Experimentation (Springer, Berlin, 2012).
    Google Scholar 

    74.
    Sørensen, M. The arrival and development of pressure blade technology in Southern Scandinavia. In The Emergence of Pressure Blade Making: From Origin to Modern Experimentation (ed. Desrosiers, P. M.) 237–259 (Springer, Cham, 2012).
    Google Scholar 

    75.
    Sørensen, M. et al. The first eastern migrations of people and knowledge into Scandinavia: evidence from studies of Mesolithic Technology, 9th-8th Millennium BC. Nor. Archaeol. Rev. 46, 19–56 (2013).
    Article  Google Scholar 

    76.
    Günther, T. et al. Population genomics of Mesolithic Scandinavia: investigating early postglacial migration routes and high-latitude adaptation. PLoS Biol. 16, 1–22 (2018).
    Article  CAS  Google Scholar 

    77.
    Kashuba, N. et al. Ancient DNA from mastics solidifies connection between material culture and genetics of mesolithic hunter–gatherers in Scandinavia. Nat. Commun. Biol. 2, 1–10 (2019).
    Article  Google Scholar 

    78.
    Damlien, H., Kjällquist, M. & Knutsson, K. The pioneer settlement of Scandinavia and its aftermath: new evidence from Western and Central Scandinavia. In The Technology of Early Settlement in Northern Europe—Transmission of Knowledge and Culture 2 (eds Knutsson, K. et al.) 99–137 (Equinox Publishing, Sheffield, 2018).
    Google Scholar 

    79.
    Brock, F., Higham, T., Ditchfield, P. & Ramsey, C. B. Current pretreatment methods for AMS radiocarbon dating at the Oxford radiocarbon accelerator unit (Orau). Radiocarbon 52, 103–112 (2010).
    CAS  Article  Google Scholar 

    80.
    Dee, M. & Bronk Ramsey, C. Refinement of graphite target production at ORAU. Nucl. Instrum. Methods Phys. Res. B 172, 449–453 (2000).
    ADS  CAS  Article  Google Scholar 

    81.
    Ramsey, C. B., Higham, T. & Leach, P. Towards high-precision AMS: progress and limitations. Radiocarbon 46, 17–24 (2004).
    CAS  Article  Google Scholar 

    82.
    Ramsey, C. B. C. B. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).
    CAS  Article  Google Scholar 

    83.
    Buckley, M., Collins, M., Thomas-Oates, J. & Wilson, J. C. Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 23, 3843–3854 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    84.
    van Doorn, N. L., Hollund, H. & Collins, M. J. A novel and non-destructive approach for ZooMS analysis: ammonium bicarbonate buffer extraction. Archaeol. Anthropol. Sci. 3, 281 (2011).
    Article  Google Scholar 

    85.
    Kirby, D. P., Buckley, M., Promise, E., Trauger, S. A. & Holdcraft, T. R. Identification of collagen-based materials in cultural heritage. Analyst 138, 4849–4858 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    86.
    Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucl. Acids Res. 47, D442–D450 (2019).
    CAS  PubMed  Article  Google Scholar  More

  • in

    Cloning and activity analysis of the promoter of nucleotide exchange factor gene ZjFes1 from the seagrasses Zostera japonica

    Plant material
    Z. japonica used in this study was collected from Fangchenggang, Guangxi, China.
    DNA extraction and primer design
    Leaves of Z. japonica were used as materials to extract genomic DNA from young leaves that had grown well. A MiniBEST Plant Genomic DNA Extraction Kit (TaKaRa, 9768) was used to extract genomic DNA from the leaves of Z. japonica following the manufacturer’s instructions. Based on the full-length cDNA sequence of ZjFes1 obtained by RACE18, three identical and high annealing temperature specific primers (SP Primer) were designed, and four specifically designed degenerate primers, AP1, AP2, AP3 and AP4, were used for thermal asymmetric interlaced PCR (TAIL-PCR). Typically, at least one of these degenerate primers can react with specific primers by TAIL-PCR based on the difference of annealing temperature, and the flanking sequence of known sequence can be obtained by three nested PCR reactions. Because the length obtained in one experiment cannot meet the experimental requirements, we continue to acquire the flanking sequence according to the sequence information obtained in the first genome walking. Four genome walkings were conducted. Twelve SP Primers were designed. DNAMAN software was used to combine the four fragments described above into a consensus sequence by combining overlapping fragments. Specific primers were designed to amplify 2 kb sequences according to the results (Table 1), and the experimental results were verified.
    Table 1 PCR primer sequences.
    Full size table

    Cloning and construction of the plant expression vector and sequence analysis of promoter
    The full-length promoter sequence was amplified using high fidelity polymerase 2 × TransStart FastPfu PCR SuperMix (-dye) (TRANSGEN BIOTECH, AS221-01) using the DNA of Z. japonica as a template following the manufacturer’s instructions. The PCR products were detected using 1% gel electrophoresis. The results showed that the size of the bands was the same as that of the target fragments, and the PCR products were recovered using a MiniBEST Agarose Gel DNA Extraction Kit Ver. 4.0 (TaKaRa, 9762). The pCXGUS-P plasmid is a vector designed to detect the activity of plant promoters. The promoter activity is detected by the dyeing intensity of GUS. We used XcmI to digest the empty vector to obtain T vector. After recovery, the product was recombined with T vector, and then the recombinant vector was transformed into E. coli DH5α Competent Cells (TaKaRa, 9057) following the manufacturer’s instructions. The positive samples identified by PCR were verified by sequencing at the Guangzhou Sequencing Department of Invitrogen. The sequencing results were compared using DNAMAN software. The plasmid was extracted from the correct bacterial solution and designated pZjFes1::GUS. The sequence analysis of cis-acting elements that could possibly be found in the promoter was performed using the plant-CARE online prediction database (plant cis-acting regulatory element, https://bioinformatics.psb.ugent.be/webtools/plantcare/html/)20.
    Agrobacterium-mediated genetic transformation of pZjFes1::GUS into Arabidopsis thaliana
    The fusion vector pZjFes1::GUS was transformed into Agrobacterium Rhizobium strain GV3101 chemically competent cells (Biomed, BC304) using the freeze–thaw method following the manufacturer’s instructions. Transgenic plants of A. thaliana were obtained by floral dipping. Plants in nutrient soil were cultured to form a large number of immature flower clusters. The monoclone of A. tumefaciens GV3101 was selected and inoculated in liquid LB medium containing kanamycin and rifampicin (50 µg/mL). The monoclone was cultured overnight at 200 rpm and 28 °C. A volume of 2 mL bacterial solution was transferred to a 500 mL flask culture (containing 200 mL liquid LB with 50 µg/mL kanamycin and rifampicin added) and was cultured overnight at 200 rpm and 28 °C. The next day, the OD600 of Agrobacterium solution was 1.8–2.0. The solution was centrifuged at 5000 rpm for 15 min at 4 °C. The supernatant was discarded, and the precipitate of A. tumefaciens was resuspended in 1/2 volume (100 mL) osmotic medium (1/2 Murashige-Skoog, 5% sucrose, 0.5 g/L MES, 10 µg/mL 6-BA, 200 µl/L Silwet L-77, and 150 µM acetyleugenone, pH 5.7), resulting in an OD600 of approximately 1.6. The bacterial solution was adsorbed on the transformed plants using the floral dip method (5 min), wrapped with film to keep it fresh, and cultured overnight, followed by the removal of the film. The plants were cultured until the seeds were ripe, and they were harvested. A mixed disinfectant consisting of 70% ethanol and 30% bleaching water was used to soak the seeds for 3 min, suspend them continuously, and wash them three times with anhydrous ethanol. The dried seeds were evenly dispersed on the surface of solid screening medium containing hygromycin (25 µg/mL). After stratification at 4 °C for 2 days, the seeds were germinated in a light incubator and cultured for 2 weeks at 21 °C and 16 h light/8 h darkness. The development of seedlings and length of roots were used to determine whether they were transformants.
    GUS dyeing and activity analysis
    The expression of GUS reporter gene in Arabidopsis tissues was determined using a GUS staining kit (Solarbio, G3060) following the manufacturer’s instructions. The seedlings, leaves, flowers and siliques to be dyed were immersed in GUS dye solution and incubated overnight at 37 °C. The chlorophyll was removed with 75% ethanol until the background color disappeared completely. The results were documented by photography using a Canon 60d camera.
    The material needed to determine Gus enzyme activity was frozen rapidly with liquid nitrogen, and then ground into powder by ball mill. The extraction buffer solution (50 mM NaH2PO4 (pH 7.0), 10 mM EDTA, 0.1% Triton X-100, 0.1 (w / v) sodium dodecyl sulfonate, 10 mM β-mercaptoethanol) were added to extract protein. After centrifugation at 4 °C, 12,000 r/min for 10 min, the supernatant was taken as protein extract. The protein concentration was determined by Bradford method. 4-MUG, the substrate of GUS reaction, was added and reacted at 37 °C for 30 min. Fluorescence measurement was carried out under the condition of 365 nm excitation light and 455 nm emission light. Three independent biological repeats were conducted. Finally, the GUS enzyme activity value was calculated according to the relative change of product in unit time. More

  • in

    Effects of canopy midstory management and fuel moisture on wildfire behavior

    1.
    Westerling, A. L. Increasing western us forest wildfire activity: sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. B 371, 20150178 (2016).
    Article  Google Scholar 
    2.
    Dennison, P. E., Brewer, S. C., Arnold, J. D. & Moritz, M. A. Large wildfire trends in the western united states, 1984–2011. Geophys. Res. Lett. 41, 2928–2933 (2014).
    ADS  Article  Google Scholar 

    3.
    Kasischke, E. S. & Turetsky, M. R. Recent changes in the fire regime across the North American boreal region—spatial and temporal patterns of burning across Canada and Alaska. Geophys. Res. Lett. 33 (2006).

    4.
    Littell, J. S., McKenzie, D., Peterson, D. L. & Westerling, A. L. Climate and wildfire area burned in western US ecoprovinces, 1916–2003. Ecol. Appl. 19, 1003–1021 (2009).
    PubMed  Article  Google Scholar 

    5.
    Abatzoglou, J. T. & Kolden, C. A. Relationships between climate and macroscale area burned in the western United States. Int. J. Wildland Fire 22, 1003–1020 (2013).
    Article  Google Scholar 

    6.
    Kelly, R. et al. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. Proc. Natl. Acad. Sci. 110, 13055–13060 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    7.
    Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. 113, 11770–11775 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    8.
    Williams, A. P. & Abatzoglou, J. T. Recent advances and remaining uncertainties in resolving past and future climate effects on global fire activity. Curr. Clim. Change Rep. 2, 1–14 (2016).
    Article  Google Scholar 

    9.
    Seager, R. et al. Climatology, variability, and trends in the us vapor pressure deficit, an important fire-related meteorological quantity. J. Appl. Meteorol. Climatol. 54, 1121–1141 (2015).
    ADS  Article  Google Scholar 

    10.
    Radeloff, V. C. et al. Rapid growth of the us wildland–urban interface raises wildfire risk. Proc. Natl. Acad. Sci. 115, 3314–3319 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    11.
    Fried, J. S. et al. Predicting the effect of climate change on wildfire behavior and initial attack success. Clim. Change 87, 251–264 (2008).
    Article  Google Scholar 

    12.
    Agee, J. K. & Skinner, C. N. Basic principles of forest fuel reduction treatments. For. Ecol. Manag. 211, 83–96 (2005).
    Article  Google Scholar 

    13.
    Schwilk, D. W. et al. The national fire and fire surrogate study: effects of fuel reduction methods on forest vegetation structure and fuels. Ecol. Appl. 19, 285–304 (2009).
    PubMed  Article  Google Scholar 

    14.
    Whitehead, R. et al. Effect of a spaced thinning in mature lodgepole pine on within-stand microclimate and fine fuel moisture content. In Andrews, P. L., & Butler, B. W., comps. Fuels Management-How to Measure Success: Conference Proceedings. 28–30 March 2006; Portland, OR. Proceedings RMRS-P-41. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station, vol. 41, 523–536 (2006).

    15.
    Whitehead, R. J. et al. Effect of commercial thinning on within-stand microclimate and fine fuel moisture conditions in a mature lodgepole pine stand in southeastern British Columbia. Canadian Forest Service, Canadian Wood Fibre Centre. British Columbia, Information Report, FI-X-004 (2008).

    16.
    Parsons, R. A. et al. Modeling thinning effects on fire behavior with standfire. Ann. For. Sci. 75, 7 (2018).
    Article  Google Scholar 

    17.
    Kalies, E. L. & Kent, L. L. Y. Tamm review: Are fuel treatments effective at achieving ecological and social objectives? A systematic review. For. Ecol. Manag. 375, 84–95 (2016).
    Article  Google Scholar 

    18.
    Banerjee, T. Impacts of forest thinning on wildland fire behavior. Forests 11, 918 (2020).
    Article  Google Scholar 

    19.
    Syifa, M., Panahi, M. & Lee, C.-W. Mapping of post-wildfire burned area using a hybrid algorithm and satellite data: the case of the camp fire wildfire in California, USA. Remote Sensing 12, 623 (2020).
    ADS  Article  Google Scholar 

    20.
    Storey, M. A., Price, O. F., Sharples, J. J. & Bradstock, R. A. Drivers of long-distance spotting during wildfires in south-eastern Australia. Int. J. Wildland Fire (2020).

    21.
    Arienti, M. C., Cumming, S. G. & Boutin, S. Empirical models of forest fire initial attack success probabilities: the effects of fuels, anthropogenic linear features, fire weather, and management. Can. J. For. Res. 36, 3155–3166 (2006).
    Article  Google Scholar 

    22.
    Van Wagner, C. E. Fire Behaviour Mechanisms in a Red Pine Plantation: Field and Laboratory Evidence, vol. 1229 (Ministry of Forestry and Rural Development, 1968).

    23.
    Wagner, C. V. Conditions for the start and spread of crown fire. Can. J. For. Res. 7, 23–34 (1977).
    Article  Google Scholar 

    24.
    Graham, R. T., Harvey, A. E., Jain, T. B. & Tonn, J. R. Effects of thinning and similar stand treatments on fire behavior in western forests. USDA Forest Service, Pacific Northwest Research Station, General Technical Report PNW-GTR-463 (1999).

    25.
    Graham, R. T., McCaffrey, S. & Jain, T. B. Science basis for changing forest structure to modify wildfire behavior and severity. The Bark Beetles, Fuels, and Fire Bibliography 167 (2004).

    26.
    Varner, M. & Keyes, C. R. Fuels treatments and fire models: errors and corrections. Fire Manag. Today 69, 47–50 (2009).
    Google Scholar 

    27.
    Amiro, B., Stocks, B., Alexander, M., Ana, F. & Wotton, B. Fire, climate change, carbon and fuel management in the Canadian boreal forest. Int. J. Wildland Fire 10, 405–4 (2001).
    Article  Google Scholar 

    28.
    Pollet, J. & Omi, P. N. Effect of thinning and prescribed burning on crown fire severity in ponderosa pine forests. Int. J. Wildland Fire 11, 1–10 (2002).
    Article  Google Scholar 

    29.
    Peterson, D. L. et al. Forest structure and fire hazard in dry forests of the western United States. Gen. Tech. Rep. PNW-GTR-628. Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research Station. 30 p 628 (2005).

    30.
    Stephens, S. L. & Moghaddas, J. J. Experimental fuel treatment impacts on forest structure, potential fire behavior, and predicted tree mortality in a california mixed conifer forest. For. Ecol. Manag. 215, 21–36 (2005).
    Article  Google Scholar 

    31.
    Safford, H. D., Schmidt, D. A. & Carlson, C. H. Effects of fuel treatments on fire severity in an area of wildland-urban interface, angora fire, lake Tahoe basin, California. For. Ecol. Manag. 258, 773–787 (2009).
    Article  Google Scholar 

    32.
    Stephens, S. L. et al. Fire treatment effects on vegetation structure, fuels, and potential fire severity in western us forests. Ecol. Appl. 19, 305–320 (2009).
    PubMed  Article  Google Scholar 

    33.
    Hudak, A. et al. Review of fuel treatment effectiveness in forests and rangelands and a case study from the 2007 megafires in central Idaho USA (no. rmrs-gtr-252). Fort Collins, CO: Rocky Mountain Research Station Publishing Services (2011).

    34.
    Waldrop, T. A. & Goodrick, S. L. Introduction to prescribed fires in southern ecosystems. Science Update SRS-054. Asheville, NC: US Department of Agriculture Forest Service, Southern Research Station. 80 p. 54, 1–80 (2012).

    35.
    Martinson, E. J. & Omi, P. N. Fuel treatments and fire severity: a meta-analysis. Res. Pap. RMRS-RP-103WWW. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. 38, p. 103 (2013).

    36.
    Kennedy, M. C. & Johnson, M. C. Fuel treatment prescriptions alter spatial patterns of fire severity around the wildland–urban interface during the Wallow Fire, Arizona, USA. For. Ecol. Manag. 318, 122–132 (2014).
    Article  Google Scholar 

    37.
    Barnett, K., Parks, S. A., Miller, C. & Naughton, H. T. Beyond fuel treatment effectiveness: characterizing interactions between fire and treatments in the US. Forests 7, 237 (2016).
    Article  Google Scholar 

    38.
    Just, M. G., Hohmann, M. G. & Hoffmann, W. A. Where fire stops: vegetation structure and microclimate influence fire spread along an ecotonal gradient. Plant Ecol. 217, 631–644 (2016).
    Article  Google Scholar 

    39.
    Veenendaal, E. M. et al. On the relationship between fire regime and vegetation structure in the tropics. New Phytol. 218, 153–166 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    40.
    Bessie, W. & Johnson, E. The relative importance of fuels and weather on fire behavior in subalpine forests. Ecology 76, 747–762 (1995).
    Article  Google Scholar 

    41.
    Rothermel, R. C. A mathematical model for predicting fire spread in wildland fuels. Res. Pap. INT-115. Ogden, UT: US Department of Agriculture, Intermountain Forest and Range Experiment Station. 40 p. 115 (1972).

    42.
    Hoffman, C. M. et al. Surface fire intensity influences simulated crown fire behavior in lodgepole pine forests with recent mountain pine beetle-caused tree mortality. For. Sci. 59, 390–399 (2012).
    Article  Google Scholar 

    43.
    Keyes, C. & Varner, J. Pitfalls in the silvicultural treatment of canopy fuels. Fire Management Today (2006).

    44.
    Moon, K., Duff, T. & Tolhurst, K. Sub-canopy forest winds: understanding wind profiles for fire behaviour simulation. Fire Saf. J. 105, 320–329 (2016).
    Article  Google Scholar 

    45.
    Beer, T. The interaction of wind and fire. Boundary-Layer Meteorol.https://doi.org/10.1007/BF00183958 (1991).
    ADS  Article  Google Scholar 

    46.
    Cheney, N., Gould, J. & Catchpole, W. The influence of fuel, weather and fire shape variables on fire-spread in grasslands. Int. J. Wildland Fire 3, 31–44 (1993).
    Article  Google Scholar 

    47.
    Cochrane, M. A. Fire science for rainforests. Nature 421, 913 (2003).
    ADS  CAS  PubMed  Article  Google Scholar 

    48.
    Fulé, P. Z., McHugh, C., Heinlein, T. A. & Covington, W. W. Potential fire behavior is reduced following forest restoration treatments (Technical Report 2001).

    49.
    Fulé, P. Z., Crouse, J. E., Roccaforte, J. P. & Kalies, E. L. Do thinning and/or burning treatments in western USA ponderosa or Jeffrey pine-dominated forests help restore natural fire behavior?. For. Ecol. Manag. 269, 68–81 (2012).
    Article  Google Scholar 

    50.
    Contreras, M. A., Parsons, R. A. & Chung, W. Modeling tree-level fuel connectivity to evaluate the effectiveness of thinning treatments for reducing crown fire potential. For. Ecol. Manag. 264, 134–149 (2012).
    Article  Google Scholar 

    51.
    White, D. L., Waldrop, T. A. & Jones, S. M. Forty years of prescribed burning on the santee fire plots: effects on understory vegetation. Gen. Tech. Rep. SE-69. Asheville, NC: US Department of Agriculture, Forest Service, Southeastern Forest Experiment Station. pp. 51–59 (1990).

    52.
    Davies, G., Domenech-Jardi, R., Gray, A. & Johnson, P. Vegetation structure and fire weather influence variation in burn severity and fuel consumption during peatland wildfires. Biogeosciences 12, 15737–15762 (2016).
    Article  Google Scholar 

    53.
    Keeley, J. E. & Syphard, A. D. Twenty-first century California, USA, wildfires: fuel-dominated vs. wind-dominated fires. Fire Ecol. 15, 24 (2019).
    Article  Google Scholar 

    54.
    Hiers, J. K. et al. Fine dead fuel moisture shows complex lagged responses to environmental conditions in a saw palmetto (Serenoa repens) flatwoods. Agric. For. Meteorol. 266, 20–28 (2019).
    ADS  Article  Google Scholar 

    55.
    Finney, M. A. et al. Role of buoyant flame dynamics in wildfire spread. Proc. Natl. Acad. Sci. 112, 9833–9838 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    56.
    Reisner, J., Wynne, S., Margolin, L. & Linn, R. Coupled atmospheric-fire modeling employing the method of averages. Mon. Weather Rev. 128, 3683–3691 (2000).
    ADS  Article  Google Scholar 

    57.
    Mell, W., Maranghides, A., McDermott, R. & Manzello, S. L. Numerical simulation and experiments of burning douglas fir trees. Combust. Flame 156, 2023–2041 (2009).
    CAS  Article  Google Scholar 

    58.
    Morvan, D. Physical phenomena and length scales governing the behaviour of wildfires: a case for physical modelling. Fire Technol. 47, 437–460 (2011).
    Article  Google Scholar 

    59.
    Parsons, R. A., Mell, W. E. & McCauley, P. Linking 3d spatial models of fuels and fire: effects of spatial heterogeneity on fire behavior. Ecol. Model. 222, 679–691 (2011).
    Article  Google Scholar 

    60.
    Parsons, R. et al. STANDFIRE: An IFT-DSS module for spatially explicit, 3d fuel treatment analysis (Technical Report 2015).

    61.
    Hoffman, C. M., Linn, R., Parsons, R., Sieg, C. & Winterkamp, J. Modeling spatial and temporal dynamics of wind flow and potential fire behavior following a mountain pine beetle outbreak in a lodgepole pine forest. Agric. For. Meteorol. 204, 79–93 (2015).
    ADS  Article  Google Scholar 

    62.
    Hoffman, C. et al. Evaluating crown fire rate of spread predictions from physics-based models. Fire Technol. 52, 221–237 (2016).
    Article  Google Scholar 

    63.
    Pimont, F. et al. Modeling fuels and fire effects in 3d: model description and applications. Environ. Model. Softw. 80, 225–244 (2016).
    Article  Google Scholar 

    64.
    Pimont, F., Dupuy, J.-L., Linn, R. R., Parsons, R. & Martin-StPaul, N. Representativeness of wind measurements in fire experiments: lessons learned from large-eddy simulations in a homogeneous forest. Agric. For. Meteorol. 232, 479–488 (2017).
    ADS  Article  Google Scholar 

    65.
    Pimont, F., Dupuy, J.-L., Linn, R. R. & Dupont, S. Impacts of tree canopy structure on wind flows and fire propagation simulated with FIRETEC. Ann. For. Sci. 68, 523 (2011).
    Article  Google Scholar 

    66.
    Linn, R. R., Sieg, C. H., Hoffman, C. M., Winterkamp, J. L. & McMillin, J. D. Modeling wind fields and fire propagation following bark beetle outbreaks in spatially-heterogeneous Pinyon–Juniper woodland fuel complexes. Agric. For. Meteorol. 173, 139–153 (2013).
    ADS  Article  Google Scholar 

    67.
    Kiefer, M. T., Heilman, W. E., Zhong, S., Charney, J. J. & Bian, X. Mean and turbulent flow downstream of a low-intensity fire: influence of canopy and background atmospheric conditions. J. Appl. Meteorol. Climatol. 54, 42–57 (2015).
    ADS  Article  Google Scholar 

    68.
    Clements, C. B. et al. Observing the dynamics of wildland grass fires: fireflux—a field validation experiment. Bull. Am. Meteorol. Soc. 88, 1369–1382 (2007).
    ADS  Article  Google Scholar 

    69.
    Clements, C. B., Zhong, S., Bian, X., Heilman, W. E. & Byun, D. W. First observations of turbulence generated by grass fires. J. Geophys. Res. Atmos. 113, D22 (2008).
    Article  Google Scholar 

    70.
    Seto, D., Clements, C. B. & Heilman, W. E. Turbulence spectra measured during fire front passage. Agric. For. Meteorol. 169, 195–210. https://doi.org/10.1016/j.agrformet.2012.09.015 (2013).
    ADS  Article  Google Scholar 

    71.
    Heilman, W. E. et al. Observations of fire-induced turbulence regimes during low-intensity wildland fires in forested environments: implications for smoke dispersion. Atmos. Sci. Lett. 16, 453–460 (2015).
    ADS  Article  Google Scholar 

    72.
    Clements, C. B. et al. The fireflux II experiment: a model-guided field experiment to improve understanding of fire–atmosphere interactions and fire spread. Int. J. Wildland Fire 28, 308–326 (2019).
    Article  Google Scholar 

    73.
    Banerjee, T. & Katul, G. Logarithmic scaling in the longitudinal velocity variance explained by a spectral budget. Phys. Fluids 25, 125106 (2013).
    ADS  Article  CAS  Google Scholar 

    74.
    Heilman, W. E. et al. Atmospheric turbulence observations in the vicinity of surface fires in forested environments. J. Appl. Meteorol. Climatol. 56, 3133–3150 (2017).
    ADS  Article  Google Scholar 

    75.
    Keeley, J. E. & Zedler, P. H. Large, high-intensity fire events in southern California shrublands: debunking the fine-grain age patch model. Ecol. Appl. 19, 69–94 (2009).
    PubMed  Article  Google Scholar 

    76.
    Jin, Y. et al. Contrasting controls on wildland fires in southern California during periods with and without Santa Ana winds. J. Geophys. Res. Biogeosciences 119, 432–450 (2014).
    ADS  Article  Google Scholar 

    77.
    Hiers, J. K., O’Brien, J. J., Will, R. E. & Mitchell, R. J. Forest floor depth mediates understory vigor in xeric pinus palustris ecosystems. Ecol. Appl. 17, 806–814 (2007).
    PubMed  Article  Google Scholar 

    78.
    Parresol, B. R., Shea, D. & Ottmar, R. Creating a fuels baseline and establishing fire frequency relationships to develop a landscape management strategy at the savannah river site. In Andrews, P. L. & Butler, B. W., comps Fuels Management-How to Measure Success: Conference Proceedings. 28–30 March 2006; Portland, OR. Proceedings RMRS-P-41. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station, vol. 41, pp 351–366 (2006).

    79.
    Sackett, S. S. & Haase, S. M. Fuel loadings in southwestern ecosystems of the United States. United States Department of Agriculture, Forest Service General Technical Report 187–192 (1996).

    80.
    Bigelow, S. W. & North, M. P. Microclimate effects of fuels-reduction and group-selection silviculture: implications for fire behavior in Sierran mixed-conifer forests. For. Ecol. Manag. 264, 51–59 (2012).
    Article  Google Scholar 

    81.
    Faiella, S. M. & Bailey, J. D. Fluctuations in fuel moisture across restoration treatments in semi-arid ponderosa pine forests of northern Arizona, USA. Int. J. Wildland Fire 16, 119–127 (2007).
    Article  Google Scholar 

    82.
    Estes, B. L., Knapp, E. E., Skinner, C. N. & Uzoh, F. C. Seasonal variation in surface fuel moisture between unthinned and thinned mixed conifer forest, northern California, USA. Int. J. Wildland Fire 21, 428–435 (2012).
    Article  Google Scholar 

    83.
    Pook, E. & Gill, A. Variation of live and dead fine fuel moisture in pinus radiata plantations of the Australian-capital-territory. Int. J. Wildland Fire 3, 155–168 (1993).
    Article  Google Scholar 

    84.
    Weatherspoon, C. P. & Skinner, C. Fire-silviculture relationships in sierra forests. Sierra nevada ecosystem project: final report to congress 2, 1167–1176 (1996).

    85.
    Countryman, C. Old-growth conversion also converts fire climate. US Forest Service Fire Control Notes 17, 15–19 (1955).
    Google Scholar 

    86.
    Linn, R. R. A transport model for prediction of wildfire behavior. Technical Report, Los Alamos National Lab., NM (United States) (1997).

    87.
    Linn, R., Winterkamp, J., Colman, J. J., Edminster, C. & Bailey, J. D. Modeling interactions between fire and atmosphere in discrete element fuel beds. Int. J. Wildland Fire 14, 37–48 (2005).
    Article  Google Scholar 

    88.
    Linn, R. R. & Cunningham, P. Numerical simulations of grass fires using a coupled atmosphere-fire model: basic fire behavior and dependence on wind speed. J. Geophys. Res. Atmos. 110, D13 (2005).
    Article  Google Scholar  More