Relationships between nitrogen cycling microbial community abundance and composition reveal the indirect effect of soil pH on oak decline
1.
 van Mantgem PJ, Stephenson NL, Byrne JC, Daniels LD, Franklin JF, Fule PZ, et al. Widespread increase of tree mortality rates in the western United States. Science. 2009;323:521–4.
 PubMed  Article  CAS  PubMed Central  Google Scholar 
 2.
 Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag. 2010;259:660–84.
 Article  Google Scholar 
3.
 Carnicer J, Coll M, Ninyerola M, Pons X, Sanchez G, Penuelas J. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc Natl Acad Sci USA. 2011;108:1474–8.
 CAS  PubMed  Article  PubMed Central  Google Scholar 
4.
 Brown N, Vanguelova E, Parnell S, Broadmeadow S, Denman S. Predisposition of forests to biotic disturbance: predicting the distribution of Acute Oak Decline using environmental factors. For Ecol Manag. 2018;407:145–54.
 Article  Google Scholar 
5.
 Denman S, Doonan J, Ransom-Jones E, Broberg M, Plummer S, Kirk S, et al. Microbiome and infectivity studies reveal complex polyspecies tree disease in Acute Oak Decline. ISME J. 2017. https://doi.org/10.1038/ismej.2017.170.
6.
 Denman S, Barrett G, Kirk SA, McDonald JE, Coetzee MPA. Identification of Armillaria species on oak in Britain: implications for Oak Health. Forestry. 2017;90:148–61.
 Article  Google Scholar 
7.
 Martınez-Vilalta J, Lloret F, Breshears DD. Drought-induced forest decline: causes, scope and implications. Biol Lett. 2012;8:689–91.
 PubMed  Article  PubMed Central  Google Scholar 
8.
 McDowell NG, Ryan MG, Zeppel MJB, Tissue DT. Improving our knowledge of drought-induced forest mortality through experiments, observations, and modeling. N. Phytologist. 2013;200:289–93.
 Article  Google Scholar 
9.
 Thomas FM, Blank R, Hartmann G. Abiotic and biotic factors and their interactions as causes of oak decline in central Europe. Pathol. 2002;32:277–307.
 Article  Google Scholar 
10.
 Niinemets Ü. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: past stress history, stress interactions, tolerance and acclimation. Ecol Manag. 2010;260:1623–39.
 Article  Google Scholar 
11.
 Amoroso MM, Daniels LD, Larson BC. Temporal patterns of radial growth in declining Austrocedrus chilensis forests in Northern Patagonia: the use of treerings as an indicator of forest decline. Ecol Manag. 2012;265:62–70.
 Article  Google Scholar 
12.
 Bansal S, Hallsby G, Löfvenius MO, Nilsson MC. Synergistic, additive and antagonistic impacts of drought on herbivory on Pinus sylvestris: leaf, tissue and whole-plant responses and recovery. Tree Physiol. 2013;33:451–63.
 CAS  PubMed  Article  Google Scholar 
13.
 Whyte G, Howard K, Hardy GEStJ, Burgess T. The Tree Decline Recovery Seesaw; a conceptual model of the decline and recovery of drought stressed plantation trees. For Ecol Manag. 2016;370:102–13.
 Article  Google Scholar 
14.
 Calder JA, Kirkpatrick JB. Climate change and other factors influencing the decline of the Tasmanian cider gum (Eucalyptus gunnii). Australian J Botany. 2008;56. https://doi.org/10.1071/BT08105.
15.
 Avila JM, Gallardo A, Ibáñez B, Gómez‐Aparicio L. Quercus suber dieback alters soil respiration and nutrient availability in Mediterranean forests. J Ecol. 2016;104:1441–52.
 Article  Google Scholar 
16.
 Crawford N. Nitrate: nutrient and signal for plant growth. Plant Cell. 1995;7:859–68.
 CAS  PubMed  PubMed Central  Google Scholar 
17.
 Lovett GM, Arthur MA, Weathers KC, Griffin JM. Long-term changes in forest carbon and nitrogen cycling caused by an introduced pest/pathogen complex. Ecosystems. 2010;13:1188–1200.
 CAS  Article  Google Scholar 
18.
 Throop H, Lerdau MT. Effects of nitrogen deposition on insect herbivory: Implications for community and ecosystem processes. Ecosystems. 2004;7:109–33.
 CAS  Article  Google Scholar 
19.
 Thomas FM, Ahlers U. Effects of excess nitrogen on frost hardiness and freezing injury of above-ground tissue in young oaks (Quercus petraea and Q. robur). N. Phytologist. 1999;144:73–83.
 Article  Google Scholar 
20.
 Hardham AR. The cell biology behind Phytophthora pathogenicity. Australas Plant Pathol. 2001;30:91–98.
 Article  Google Scholar 
21.
 Brown N, Jeger M, Kirk S, Xu X, Denman S. Spatial and temporal patterns in symptom expression within eight woodlands affected by acute Oak Decline. For Ecol Manag. 2016;360:97–109.
 Article  Google Scholar 
22.
 Scarlett K, Guest DI, Daniel R. Elevated soil nitrogen increases the severity of dieback due to Phytophthora cinnamomi. Australas Plant Pathol. 2013;42:155–62.
 Article  Google Scholar 
23.
 Yao H, Bowman D, Shi W. Seasonal variations in soil microbial biomass and activity in warm and cool season turfgrass systems. Soil Biol Biochem. 2011;43:1536–43.
 CAS  Article  Google Scholar 
24.
 Prosser JI, Nicol GW. Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol. 2008;10:2931–41.
 CAS  PubMed  Article  Google Scholar 
25.
 Prosser JI, Nicol GW. Archaeal and bacterial ammonia oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol. 2012;20:523–31.
 CAS  PubMed  Article  Google Scholar 
26.
 Erguder TH, Boon N, Wittebolle L, Marzorati M, Verstraete W. Environmental factors shaping the ecological niches of ammonia‐oxidizing archaea. FEMS Microbiol Rev. 2009;33:855–69.
 CAS  PubMed  Article  Google Scholar 
27.
 Hink L, Lycus P, Gubry-Rangin C, Frostgard A, Nicol GW, Prosser JI, et al. Kinetics of NH3‐oxidation, NO‐turnover, N2O‐production and electron flow during oxygen depletion in model bacterial and archaeal ammonia oxidisers. Environ Microbiol. 2017;19:4882–96.
 CAS  PubMed  Article  Google Scholar 
28.
 Gubry-Rangin C, Hai B, Quince C, Engel M, Thomson BC, James P, et al. Niche specialization of terrestrial archaeal ammonia oxidisers. Proc Natl Acad Sci. 2011;108:21206–11.
 CAS  PubMed  Article  Google Scholar 
29.
 Leininger S, Schloter UT, Schwark I, Qi J, Nicol GW, Prosser JI, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature. 2006;442:806–9.
 CAS  PubMed  Article  Google Scholar 
30.
 Gubry-Rangin C, Nicol GW, Prosser JI. Archaea rather than bacterial control nitrification in two agricultural acidic soils. FEMS Microbiol Ecol. 2010;74:566–74.
 CAS  PubMed  Article  PubMed Central  Google Scholar 
31.
 Verhamme DT, Prosser JI, Nicol GW. Ammonia concentration determines differential growth of ammonia oxidizing archaeal and bacteria in soil microcosms. ISME J. 2011;5:1067–71.
 CAS  PubMed  PubMed Central  Article  Google Scholar 
32.
 Di HJ, Cameron KC, Shen J-P, Winefield CS, O’Callaghan M, Bowatte S, et al. Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiol Ecol. 2010;72:386–94.
 CAS  PubMed  Article  PubMed Central  Google Scholar 
33.
 Hink L, Gubry-Rangin C, Nicol GW, Prosser J. The consequences of niche and physiological differentiation of archaeal and bacterial ammonia oxidisers for nitrous oxide emissions. ISME J. 2018;12:1084–93.
 CAS  PubMed  PubMed Central  Article  Google Scholar 
34.
 Clark D, McKew B, Dong L, Leung G, Dumbrell AJ, Stott A, et al. Mineralization and nitrification: archaea dominate ammonia-oxidising communities in grassland soils. Soil Biol Biochem. 2020;143:107725.
 CAS  Article  Google Scholar 
35.
 Delgado-Baquerizo M, Maestre FT, Eldridge DJ, Singh BK. Microsite differentiation drives the abundance of soil ammonia oxidizing bacteria along aridity gradients. Front Microbiol. 2016;7:505.
 PubMed  PubMed Central  Article  Google Scholar 
36.
 Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature. 2009;461:976–9.
 CAS  PubMed  Article  PubMed Central  Google Scholar 
37.
 Barta J, Tahovska K, Santruckova H, Oulehle F. Microbial communities with distinct denitrification potential in spruce and beech soils differing in nitrate leaching. Sci Rep Nat. 2017;7:9738.
 Article  CAS  Google Scholar 
38.
 Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 2012;6:1007–17. https://doi.org/10.1038/ismej.2011.159.
 CAS  Article  PubMed  Google Scholar 
39.
 Ramirez KS, Lauber CL, Knight R, Bradford MA, Fierer N. Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems. Ecology. 2010;91:3463–70. https://doi.org/10.1890/10-0426.1.
 Article  PubMed  PubMed Central  Google Scholar 
40.
 Cranfield University 2020. The Soils Guide. www.landis.org.uk. UK; Cranfield University.
41.
 G Kerr, J Haufe. Thinning practice. A Silvicultural Guide. Bristol: Forestry Commission; 2011;1:54.
42.
 Cools N, De Vos B Sampling and Analysis of Soil. In: Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Hamburg: UNECE, ICP Forests; 2010, pp. 208.
43.
 MAFF. Code of good agricultural practice for the protection of soil. London, UK: Ministry of Agriculture, Fisheries and Food; 1993.
 Google Scholar 
44.
 Li J, Nedwell DB, Beddow J, Dumbrell AJ, McKew BA, Thorpe EL, et al. amoA gene abundances and nitrification potential rates suggest that benthic ammonia-oxidizing bacteria (AOB) not archaea (AOA) dominate N cycling in the Colne estuary, UK. Appl Environ Microbiol. 2015;81:159–65.
 PubMed  Article  CAS  Google Scholar 
45.
 Beddow J, Stolpe B, Cole PA, Lead JR, Sapp M, Lyons BP, et al. Nanosilver inhibits nitrification and reduces ammonia-oxidizing bacterial but not archaeal amoA gene abundance in estuarine sediments. Environ Microbiol. 2017;19:500–10.
 CAS  PubMed  Article  Google Scholar 
46.
 Tourna M, Freitag TE, Nicol GW, Prosser JI. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ Microbiol. 2008;10:1357–64.
 CAS  PubMed  Article  Google Scholar 
47.
 Rotthauwe JH, Witzel KP, Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol. 1997;63:4704–12.
 CAS  PubMed  PubMed Central  Article  Google Scholar 
48.
 Throbäck IN, Enwall K, Jarvis A, Hallin S. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol. 2004;49:401–17.
 PubMed  Article  CAS  Google Scholar 
49.
 Braker G, Fesefeldt A, Witzel KP. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl Environ Microbiol. 1998;64:3769–75.
 CAS  PubMed  PubMed Central  Article  Google Scholar 
50.
 Henry S, Bru D, Stres B, Hallet S, Philippot L. Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ Genes in Soils. Appl Environ Microbiol. 2006;72:5181–9.
 CAS  PubMed  PubMed Central  Article  Google Scholar 
51.
 Herlemann D, Labrenz M, Jürgens K, Bertilsson S, Waniek J, Andersson A. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011;5:1571–9.
 CAS  PubMed  PubMed Central  Article  Google Scholar 
52.
 Raskin L, Stromley JM, Rittmann BE, Stahl DA. Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol. 1994;60:1232–40.
 CAS  PubMed  PubMed Central  Article  Google Scholar 
53.
 Stahl DA, Amann R Development and application of nucleic acid probes. In: Nucleic acid techniques in bacterial systematics. Stackebrandt, E, Goodfellow M, editors. Chichester, UK: John Wiley & Sons Ltd; 1991. pp. 205–48.
54.
 Dumbrell AJ, Ferguson RMW, Clark DR. Microbial community analysis by single-amplicon high-throughput next generation sequencing: Data analysis—from raw output to ecology. In: McGenity T, Timmis K, Nogales B, editors. Hydrocarbon and Lipid Microbiology Protocols. Berlin, Heidelberg: Springer Protocols Handbooks. Springer; 2016. 155–206.
55.
 Joshi NA, Fass JN Sickle: A Sliding-Window, Adaptive, Quality-Based Trimming Tool for FastQ Files 2011; (Version 1.33).
56.
 Nurk S, Bankevich A, Antipov D, Gurevich AA, Korobeynikov A, Lapidus A, et al. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J Comput Biol. 2013;20:714–37.
 CAS  PubMed  PubMed Central  Article  Google Scholar 
57.
 Nikolenko SI, Korobeynikov AI, Alekseyev MA. BayesHammer: Bayesian clustering for error correction in single-cell sequencing. BMC Genomics SP. 2013;14:S7.
 Article  Google Scholar 
58.
 Rognes T, Flouri T, Nichols B, Quince C, Mahé F VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4. https://doi.org/10.7717/peerj.2584.
59.
 Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;16:2194–200.
 Article  CAS  Google Scholar 
60.
 Wang Q, Quensen JF, Fish JA, Lee TK, Sun Y, Tiedje JM, et al. Ecological patterns of nifH genes in four terrestrial climatic zones explored with targeted metagenomics using FrameBot, a new informatics tool. MBio. 2013;4:e00592–13.
 PubMed  PubMed Central  Google Scholar 
61.
 Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;16:5261–7.
 Article  CAS  Google Scholar 
62.
 Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;5:1792–7.
 Article  CAS  Google Scholar 
63.
 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;12:2725–9.
 Article  CAS  Google Scholar 
64.
 Fish J, Chai B, Wang Q, Sun Y, Brown CT, Tiedje JM, et al. FunGene: the functional gene pipeline and repository. Front Microbiol. 2013;4:291.
 PubMed  PubMed Central  Article  Google Scholar 
65.
 Altschul S, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.
 CAS  PubMed  PubMed Central  Article  Google Scholar 
66.
 Lefcheck J. PIECEWISESEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol Evol. 2016;7:573–9.
 Article  Google Scholar 
67.
 Shipley B. A new inferential test for path models based on directed acyclic graphs. Struct Equ Modeling. 2000;7:206–18.
 Article  Google Scholar 
68.
 Grace JB. Structural Equation Modelling and Natural Systems. New York, NY: Cambridge University Press; 2006.
 Google Scholar 
69.
 Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Vegan: Community Ecology Package. R package Version. 2017;2:4–3.
 Google Scholar 
70.
 Leininger Wang Y, Naumann U, Wright S, Warton D. Mvabund—an R package for model‐based analysis of multivariate abundance data. Methods Ecol Evolution. 2012;3:471–4.
 Article  Google Scholar 
71.
 Lehtovirta-Morley LE, Stoecker K, Vilcinskas A, Prosser JI, Nicol GW. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proc Natl Acad Sci USA. 2011;108:15892–7.
 CAS  PubMed  Article  PubMed Central  Google Scholar 
72.
 Hu H, Zhang L, Dai Y, et al. pH-dependent distribution of soil ammonia oxidizers across a large geographical scale as revealed by high-throughput pyrosequencing. J Soils Sediment. 2013;13:1439–49.
 Article  CAS  Google Scholar 
73.
 Hu BL, Liu S, Wang W, Shen LD, Lou LP, Liu WP, et al. pH-dominated niche segregation of ammonia-oxidising microorganisms in Chinese agricultural soils. FEMS Microbiol Ecol. 2014;90:290–9. https://doi.org/10.1111/1574-6941.12391.
 CAS  Article  Google Scholar 
74.
 Hu H, Zhang L, Yuan C, Zheng Y, Wang J, Chen D, et al. The large-scale distribution of ammonia oxidizers in paddy soils is driven by soil pH, geographic distance, and climatic factors. Front Microbiol. 2015;6:938.
 PubMed  PubMed Central  Google Scholar 
75.
 Delgado-Baquerizo M, Gallardo A, Wallenstein MD, Maestre FT. Vascular plants mediate the effects of aridity and soil properties on ammonia-oxidizing bacteria and archaea. FEMS Microbiol Ecol. 2013;13:273–82.
 Article  CAS  Google Scholar 
76.
 Eldridge DJ, Beecham G, Grace J. Do shrubs reduce the adverse effects of grazing on soil properties? Ecohydrology. 2015;8:1503–13.
 Article  Google Scholar 
77.
 Berdugo M, Soliveres S, Maestre FT. Vascular plants and biocrusts modulate how abiotic factors affect wetting and drying events in drylands. Ecosystems. 2014;17:1242–56.
 CAS  Article  Google Scholar 
78.
 Köhler S, Levia DF, Jungkunst HF, Gerold G. An In Situ Method to Measure and Map Bark pH. J Wood Chem Technol. 2015;35:438–49.
 Article  CAS  Google Scholar 
79.
 Matschonat G, Falkengren-Grerup U. Recovery of soil pH, Cation-exchange Capacity and the Saturation of Exchange Sites from Stemflow-induced Soil Acidification in Three Swedish Beech (Fagus sylvatica L.) Forests. Scand J For Res. 2000;15:39–48.
 Article  Google Scholar 
80.
 Wang Y, Uchida Y, Shimomura U, Akiyama H, Hayatsu M. Responses of denitrifying bacterial communities to short-term waterlogging of soils. Sci Rep. 2017;7:803.
 PubMed  PubMed Central  Article  CAS  Google Scholar 
81.
 Liu J, Yu Z, Yao Q, Sui Y, Shi Y, Chu H, et al. Ammonia-oxidizing Archaea show more distinct biogeographic distribution patterns than ammonia-oxidizing bacteria across the black soil zone of Northeast China. Front Microbiol. 2018;9:171.
 PubMed  PubMed Central  Article  Google Scholar 
82.
 Shen C, Xiong J, Zhang H, Feng Y, Lin X, Li X, et al. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol Biochem. 2013;57:204–11.
 CAS  Article  Google Scholar 
83.
 Nicol GW, Leininger S, Schleper C, Prosser JI. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol. 2008;10:2966–78.
 CAS  PubMed  Article  Google Scholar 
84.
 Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010;4:1340–51.
 PubMed  Article  Google Scholar 
85.
 Yuan YL, Si GC, Wang J, Luo TX, Zhang GX. Bacterial community in alpine grasslands along an altitudinal gradient on the Tibetan Plateau. FEMS Microbiol Ecol. 2014;87:121–32.
 CAS  PubMed  Article  Google Scholar 
86.
 Kaiser k, Wemheuer B, Korolkow V, Wemheuer F, Nacke H, Schöning I, et al. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests. Sci Rep. 2017;7:9738.
 Article  CAS  Google Scholar 
87.
 Meaden S, Metcalf CJE, Koskella B. The effects of host age and spatial location on bacterial community composition in the English Oak tree (Quercus robur). Environ Microbiol Rep. 2016;8:649–58.
 CAS  PubMed  Article  Google Scholar 
88.
 Patra AK, Abbadie L, Clays-Josserand A, Degrange V, Grayston SJ, Guillaumaud N, et al. Effects of management regime and plant species on the enzyme activity and genetic structure of N-fixing, denitrifying and nitrifying bacterial communities in grassland soils. Environ Microbiol. 2006;8:1005–16.
 CAS  PubMed  Article  Google Scholar 
89.
 Bremer C, Braker G, Matthies D, Beierkuhnlein C, Conrad R. Plant presence and species combination, but not diversity, influence denitrifier activity and the composition of nirK-type denitrifier communities in grassland soil. FEMS Microbiol Ecol. 2009;70:377–87.
 CAS  PubMed  Article  Google Scholar  More
 