Diel vertical migration into anoxic and high-pCO2 waters: acoustic and net-based krill observations in the Humboldt Current
1.
Pachauri, R. K. & Meyer, L. A. Intergovernmental panel on climate change (IPCC). In Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014).
2.
Feely, R. A., Sabine, C. L., Hernández-Ayon, J. M., Ianson, D. & Hales, B. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320, 1490–1492 (2008).
ADS CAS PubMed Article PubMed Central Google Scholar
3.
Escribano, R., Hidalgo, P. & Krautz, C. Zooplankton associated with the oxygen minimum zone system in the northern upwelling region of Chile during March 2000. Deep Sea Res. II 56, 1083–1094 (2009).
Article Google Scholar
4.
Paulmier, A. & Ruiz-Pino, D. Oxygen minimum zones (OMZs) in the modern ocean. Prog. Oceanogr. 80, 113–128 (2009).
ADS Article Google Scholar
5.
Ulloa, O., Canfield, D. E., DeLong, E. F., Letelier, R. M. & Stewart, F. J. Microbial oceanography of anoxic oxygen minimum zones. Proc. Natl. Acad. Sci. 109, 15996–16003 (2012).
ADS CAS PubMed Article PubMed Central Google Scholar
6.
Thamdrup, B., Dalsgaard, T. & Revsbech, N. P. Widespread functional anoxia in the oxygen minimum zone of the eastern South Pacific. Deep Sea Res. I 65, 36–45 (2012).
CAS Article Google Scholar
7.
Chan, F. et al. Emergence of anoxia in the California current large marine ecosystem. Science 319, 920–920 (2008).
ADS CAS PubMed Article PubMed Central Google Scholar
8.
Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).
ADS CAS PubMed PubMed Central Article Google Scholar
9.
Friederich, G. E., Ledesma, J., Ulloa, O. & Chavez, F. P. Air–sea carbon dioxide fluxes in the coastal southeastern tropical Pacific. Prog. Oceanogr. 79, 156–166 (2008).
ADS Article Google Scholar
10.
Feely, R. A. et al. The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuar. Coast. Shelf Sci. 88, 442–449 (2010).
ADS CAS Article Google Scholar
11.
Torres, R. et al. Air-sea CO2 fluxes along the coast of Chile: From CO2 outgassing in central northern upwelling waters to CO2 uptake in southern Patagonian fjords. J. Geophys. Res. 116, C09006. https://doi.org/10.1029/2010JC006344 (2011).
ADS CAS Article Google Scholar
12.
Vargas, C. A. et al. Influences of riverine and upwelling waters on the coastal carbonate system off Central Chile and their ocean acidification implications. J. Geophys. Res. Biogeosci. 121, 15. https://doi.org/10.1002/2015JG003213 (2016).
Article Google Scholar
13.
Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 0084. https://doi.org/10.1038/s41559-017-0084 (2017).
Article Google Scholar
14.
Booth, J. A. et al. Natural intrusions of hypoxic, low pH water into nearshore marine environments on the California coast. Cont. Shelf Res. 45, 108–115 (2012).
ADS Article Google Scholar
15.
Forward, R. B. Diel vertical migration: zooplankton photobiology and behaviour. Oceanogr. Mar. Biol. Annu. Rev 26, 1–393 (1988).
Google Scholar
16.
Cohen, J. H. & Forward, R. B. Jr. Zooplankton diel vertical migration: A review of proximate control. Oceanogr. Mar. Biol. Ann. Rev 47, 77–110 (2009).
Google Scholar
17.
Brinton, E. Vertical migration and avoidance capability of euphausiids in the California current. Limnol. Oceanogr. 12, 451–483 (1967).
ADS PubMed PubMed Central Article Google Scholar
18.
McQuinn, I. H., Dion, M. & St. Pierre, J.-F. The acoustic multifrequency classification of two sympatric euphausiid species (Meganyctiphanes norvegica and Thysanoessa raschii), with empirical and SDWBA model validation. ICES J. Mar. Sci. 70, 636–649 (2013).
Article Google Scholar
19.
Tremblay, N. & Abele, D. Response of three krill species to hypoxia and warming: An experimental approach to oxygen minimum zones expansion in coastal ecosystems. Mar. Ecol. 37, 179–199 (2016).
ADS CAS Article Google Scholar
20.
Ambriz-Arreola, I. et al. Vertical pelagic habitat of euphausiid species assemblages in the Gulf of California. Deep Sea Res. I 123, 75–89 (2017).
CAS Article Google Scholar
21.
Cooper, H. L., Potts, D. & Paytan, A. Metabolic responses of the North Pacific krill, Euphausia pacifica, to short- and long-term pCO2 exposure. Mar. Biol. 163, 207 (2016).
Article CAS Google Scholar
22.
Seibel, B. A., Schneider, J. L., Kaartvedt, S., Wishner, K. F. & Daly, K. L. Hypoxia tolerance and metabolic suppression in Oxygen Minimum Zone euphausiids: Implications for ocean deoxygenation and biogeochemical cycles. Integr. Comp. Biol. 56, 510–523 (2016).
CAS PubMed Article Google Scholar
23.
Barry, J. P., Hall-Spencer, J. M. & Tyrrell, T. In Guide to Best Practices for Ocean Acidification Research and Data Reporting (eds. Riebesell, U., Fabry, V. J., Hansson, L. & Gattuso, J. P.) 53–66 (Publications Office of the European Union, 2010).
24.
Paulmier, A., Ruiz-Pino, D., Garçon, V. & Farías, L. Maintaining of the eastern south Pacific oxygen minimum zone (OMZ) off Chile. Geophys. Res. Lett. 33, L20601 (2006).
ADS Article CAS Google Scholar
25.
Stramma, L., Johnson, G. C., Sprintall, J. & Mohrholz, V. Expanding oxygen-minimum zones in the tropical oceans. Science 320, 655–658 (2008).
ADS CAS PubMed Article Google Scholar
26.
Gilly, W. F., Beman, J. M., Litvin, S. Y. & Robison, B. H. Oceanographic and biological effects of shoaling of the oxygen minimum zone. Ann. Rev. Mar. Sci. 5, 393–420 (2013).
PubMed Article Google Scholar
27.
Garcia-Robledo, E. et al. Cryptic oxygen cycling in anoxic marine zones. Proc. Natl. Acad. Sci. USA 114, 8319–8324 (2017).
ADS CAS PubMed Article Google Scholar
28.
Bianchi, D., Galbraith, E. D., Carozza, D. A., Mislan, K. A. S. & Stock, C. A. Intensification of open-ocean oxygen depletion by vertically migrating animals. Nat. Geosci. 6, 545–548 (2013).
ADS CAS Article Google Scholar
29.
Wishner, K. F. et al. Ocean deoxygenation and zooplankton: Very small oxygen differences matter. Sci. Adv. 4, eaa518 (2018).
Article CAS Google Scholar
30.
Kawaguchi, S. et al. Will krill fare well under Southern Ocean acidification?. Biol. Lett. 7, 288–291 (2011).
PubMed Article PubMed Central Google Scholar
31.
Sperfeld, E., Mangor-Jensen, A. & Dalpadado, P. Effect of increasing seawater pCO2 on the northern Atlantic krill species Nyctiphanes couchii. Mar. Biol. 165, 116. https://doi.org/10.1007/s00227-018-3370-7 (2014).
CAS Article Google Scholar
32.
Cooper, H. L., Potts, D. C. & Paytan, A. Effects of elevated pCO2 on the survival, growth, and moulting of the Pacific krill species, Euphausia pacifica. ICES J. Mar. Sci. 74, 1005–1012. https://doi.org/10.1093/icesjms/fsw021 (2017).
Article Google Scholar
33.
Ericson, J. A. et al. Adult Antarctic krill proves resilient in a simulated high CO2 ocean. Commun. Biol. 1, 190 (2018).
PubMed PubMed Central Article CAS Google Scholar
34.
Opstad, I. et al. Effects of high pCO2 on the northern krill Thysanoessa inermis in relation to carbonate chemistry of its collection area, Rijpfjorden. Mar. Biol. 165, 116 (2018).
Article CAS Google Scholar
35.
Powers, E. B. The physiology of the respiration of fishes relation to the hydrogen ion concentration of the medium. J. Gen. Physiol. 4, 305–317 (1922).
CAS PubMed PubMed Central Article Google Scholar
36.
Mayol, E., Ruiz-Halpern, S., Duarte, C. M., Castilla, J. C. & Pelegrí, J. L. Coupled CO2 and O2-driven compromises to marine life in summer along the Chilean sector of the Humboldt Current System. Biogeosciences 9, 1183–1194 (2012).
ADS CAS Article Google Scholar
37.
González, H. E., Ortiz, V. C. & Sobarzo, M. The role of faecal material in the particulate organic carbon flux in the northern Humboldt Current, Chile (23 S), before and during the 1997–1998 El Niño. J. Plankton Res. 22, 499–529 (2000).
Article Google Scholar
38.
González, H. E. et al. Carbon fluxes within the epipelagic zone of the Humboldt Current System off Chile: The significance of euphausiids and diatoms as key functional groups for the biological pump. Progr. Oceanogr. 83, 217–227 (2009).
ADS Article Google Scholar
39.
Dagg, M. J., Jackson, G. A. & Checkley, D. M. The distribution and vertical flux of fecal pellets from large zooplankton in Monterey Bay and coastal California. Deep Sea Res. 94, 72–86 (2014).
Article Google Scholar
40.
Sato, M., Dower, J. F., Kunze, E. & Dewey, R. Second-order seasonal variability in diel vertical migration timing of euphausiids in a coastal inlet. Mar. Ecol. Prog. Ser. 480, 39–56 (2013).
ADS Article Google Scholar
41.
Platt, S. A. & Sanislow, C. A. Norm-of-reaction: Definition and misinterpretation of animal research. J. Comp. Psychol. 102, 254–261 (1988).
CAS PubMed Article PubMed Central Google Scholar
42.
Wishner, K. F., Outram, D. M., Seibel, B. A., Daly, K. & Williams, R. L. Zooplankton in the Eastern Tropical North Pacific: Boundary effects of oxygen minimum zone expansion. Deep Sea Res. I 79, 122–140 (2013).
CAS Article Google Scholar
43.
Dickson, A. G., Afghan, J. D. & Anderson, G. C. Reference materials for oceanic CO2 analysis: A method for the certification of total alkalinity. Mar. Chem. 80, 185–197 (2003).
CAS Article Google Scholar
44.
Pierrot, D.E., Lewis, E. & Wallace, D.W.R. MS Excel program developed for CO2system calculations. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy (2006). https://cdiac.ornl.gov/ftp/co2sys.
45.
Mehrbach, C., Culberson, C., Hawley, J. & Pytkovicz, R. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18, 897–907 (1973).
ADS CAS Article Google Scholar
46.
Dickson, A. G. & Millero, F. J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res. 34, 1733–1743 (1987).
ADS CAS Article Google Scholar
47.
Dickson, A. G. Standard potential of the reaction: AgCl(s) + 12 H 2 (g) 1⁄4 Ag(s) + HCl (aq), and the standard acidity constant of the ion HSO in synthetic seawater from 273.15 to 318.15 K. J. Chem. Thermodyn. 22, 113–127 (1990).
CAS Article Google Scholar
48.
Mitson, R. B. Underwater noise of research vessels: Review and recommendations. ICES Coop. Res. Rep. 209, 61 (1995).
Google Scholar
49.
Simrad. Simrad ER60 scientific echo sounder manual. Reference Manual. Release 2.2.0, Kongsberg Maritime AS, Norway, 226 (2008).
50.
Mair, A., Fernandes, P., Lebourges-Dhaussy, A. & Brierley, A. An investigation into the zooplankton composition of a prominent 38-khz scattering layer in the North Sea. J. Plank. Res. 27, 623–633 (2005).
CAS Article Google Scholar
51.
Cade, D. E. & Benoit-Bird, K. J. Depths, migration rates and environmental associations of acoustic scattering layers in the Gulf of California. Deep Sea Res. I 102, 78–89 (2015).
Article Google Scholar
52.
Sato, M. et al. Impacts of moderate hypoxia on fish and zooplankton prey distributions in a coastal fjord. Mar. Ecol. Prog. Ser 560, 57–72 (2016).
ADS CAS Article Google Scholar
53.
Pérez-Santos, I. et al. Turbulence and hypoxia contribute to dense biological scattering layers in a Patagonian fjord system. Ocean Sci. 14, 1185–1206 (2018).
ADS Article CAS Google Scholar
54.
Díaz-Astudillo, M., Cáceres, M. & Landaeta, M. Zooplankton structure and vertical migration: Using acoustics and biomass to compare stratified and mixed fjord systems. Cont. Shelf Res 148, 208–218 (2017).
ADS Article Google Scholar
55.
MacLennan, D. N., Fernandez, P. G. & Dalen, J. A consistent approach to definitions and symbols in fisheries acoustics, ICES. J. Mar. Sci. 59, 365–369 (2002).
Google Scholar
56.
Ballón, M. et al. Is there enough zooplankton to feed forage fish populations off Peru? An acoustic (positive) answer. Prog. Oceanogr. 91, 360–381 (2011).
ADS Article Google Scholar
57.
Clarke, K.R. & Gorley, R.N. PRIMER v7: User Manual/Tutorial PRIMER-E: Plymouth (2015).
58.
Kloser, R. J., Ryan, T., Sakov, P., Williams, A. & Koslow, J. A. Species identification in deep water using multiple acoustic frequencies. Can. J. Fish. Aquat. Sci. 59, 1065–1077 (2002).
Article Google Scholar
59.
Werner, T. & Buchholz, F. Diel vertical migration behaviour in Euphausiids of the northern Benguela current: Seasonal adaptations to food availability and strong gradients of temperature and oxygen. J. Plankton Res. 35, 792–812 (2013).
CAS Article Google Scholar
60.
Bertrand, A., Ballón, M. & Chaigneau, A. Acoustic observation of living organisms reveals the upper limit of the oxygen minimum zone. PLoS ONE 5(4), e10330 (2010).
ADS PubMed PubMed Central Article CAS Google Scholar
61.
McLaskey, A. K. et al. Development of Euphausia pacifica (krill) larvae is impaired under pCO2 levels currently observed in the Northeast Pacific. Mar. Ecol. Prog. Ser. 555, 65–78 (2016).
ADS CAS Article Google Scholar
62.
Flores, H. et al. Impact of climate change on Antarctic krill. Mar. Ecol. Prog. Ser. 458, 1–19 (2012).
ADS Article Google Scholar
63.
Brewer, P. G. & Peltzer, E. T. Limits to marine life. Science 324, 347–348 (2009).
ADS CAS PubMed Article PubMed Central Google Scholar
64.
Montgomery, D. W. et al. Rising CO2 enhances hypoxia tolerance in a marine fish. Sci. Rep. 9, 15152 (2019).
ADS PubMed PubMed Central Article CAS Google Scholar
65.
Kiko, R., Hauss, H., Buchholz, F. & Melzner, F. Ammonium excretion and oxygen respiration of tropical copepods and euphausiids exposed to oxygen minimum zone conditions. Biogeosciences 13, 2241–2255 (2016).
ADS CAS Article Google Scholar
66.
Antezana, T. Adaptive behaviour of Euphausia mucronata in relation to the oxygen minimum layer of the Humboldt Current. In Oceanography of the Eastern Pacific (ed. J. Farber), vol. 2, 29–40 (2002).
67.
Torres, J. J. & Childress, J. J. Relationship of oxygen consumption to swimming speed in Euphausia pacifica. Mar. Biol. 74, 79–86 (1983).
Article Google Scholar
68.
Anderson, M.J., Gorley R.N. & Clarke K.R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. PRIMER-E: Plymouth, UK (2008)
69.
Hansen, H.P. & Koroleff, F. Determination of nutrients. In Methods sof Seawater Analysis (eds. K. Grasshoff, K. Kremling & M. Ehrhardt) 159–228 https://doi.org/10.1002/9783527613984.ch10 (2007).
70.
Tremblay, N., Hünerlage, K. & Werner, T. Hypoxia tolerance of 10 Euphausiid species in relation to vertical temperature and oxygen gradients. Front. Physiol. 11, 248. https://doi.org/10.3389/fphys.2020.00248 (2020).
Article PubMed PubMed Central Google Scholar
71.
Tremblay, N., Gómez-Gutiérrez, J., Zenteno-Savín, T., Robinson, C. & Sánchez-Velascoa, L. Role of oxidative stress in seasonal and daily vertical migration of three krill species in the Gulf of California. Limnol. Oceanogr. 55, 2570–2584 (2010).
ADS CAS Article Google Scholar
72.
Herrera, I. et al. Vertical variability of Euphausia distinguenda metabolic rates during diel migration into the oxygen minimum layer of the Eastern Tropical Pacific off Mexico. J. Plankton Res. 41, 165–176 (2019).
CAS Article Google Scholar
73.
Hernández-León, S., Calles, S. & Fernández de Puelles, M. L. The estimation of metabolism in the mesopelagic zone: Disentangling deep-sea zooplankton respiration. Progr. Oceanogr. 178, 102163 (2019).
Article Google Scholar
74.
Hernández-León, S. et al. Carbon export through zooplankton active flux in the Canary Current. J. Mar. Syst. 189, 12–21 (2019).
Article Google Scholar
75.
Baker, A. de C., Boden, B.P. & Brinton, E. A Practical Guide to the Euphausiids of the World. British Museum (Natural History), London, 96 pp. (1990).
76.
Alegría, N., Arana, P.M. & Sepúlveda, A. Hydroacoustic survey around Elephant Island (Sub-area 48.1) and South Orkney Islands (Subarea 48.2), austral summer 2016. 2017 IEEE/OES Acoustics in Underwater Geosciences Symposium (RIO Acoustics), 5 pp. (2017).
77.
Ryan, T. E., Downie, R. A., Kloser, R. J. & Keith, G. Reducing bias due to noise and attenuation in open-ocean echo integration data. ICES J. Mar. Sci. 72, 2482–2493 (2015).
Article Google Scholar
78.
De Robertis, A. & Higginbottom, I. A post-processing technique to estimate the signal-to-noise ratio and remove echosounder background noise. ICES J. Mar. Sci. 64, 1282–1291 (2007).
Article Google Scholar
79.
Hewitt, R. P. & Demer, D. A. The use of acoustic sampling to estimate the dispersion and abundance of euphausiids, with an emphasis on Antarctic krill (Euphausia superba). Fish. Res. 47, 215–229 (2000).
Article Google Scholar
80.
Watkins, J. & Brierley, A. Verification of the acoustic techniques used to identify Antarctic krill. ICES J. Mar. Sci. 59, 1326–1336 (2002).
Article Google Scholar
81.
Simmonds, E. & MacLennan, D. Observation and measurement of fish. In Fisheries Acoustics: Theory and Practice (ed. Pitcher, T. J.) 163–215 (Blackwell Science, Oxford, UK, 2005).
Google Scholar
82.
Reiss, C. S., Cossio, A. M., Loeb, V. & Demer, D. A. Variations in the biomass of Antarctic krill (Euphausia superba) around the South Shetland Islands, 1996–2006. ICES J. Mar. Sci. 65, 497–508 (2008).
Article Google Scholar
83.
Santora, J. A. et al. Submarine canyons represent an essential habitat network for krill hotspots in a Large Marine Ecosystem. Sci. Rep. 8, 7579 (2018).
ADS PubMed PubMed Central Article CAS Google Scholar
84.
Hartin, C. A., Bond-Lamberty, B., Patel, P. & Mundra, A. Ocean acidification over the next three centuries using a simple global climate carbon-cycle model: projections and sensitivities. Biogeosciences 13, 4329–4342 (2016).
ADS CAS Article Google Scholar More