More stories

  • in

    Nitrogen management and air quality in China

    1.
    Guo, Y. et al. Nat. Food https://doi.org/10.1038/s43016-020-00162-z (2020).
    2.
    Zhang, X. et al. Nature 528, 51–59 (2015).
    ADS  CAS  Article  Google Scholar 

    3.
    Crutzen, P. J., Mosier, A. R., Smith, K. A. & Winiwarter, W. Atmos. Chem. Phys. 8, 389–395 (2008).
    ADS  CAS  Article  Google Scholar 

    4.
    Montzka, S. A., Dlugokencky, E. J. & Butler, J. H. Nature 476, 43–50 (2011).
    CAS  Article  Google Scholar 

    5.
    Ravishankara, A. R., Daniel, J. S. & Portmann, R. W. Science 326, 123–125 (2009).
    ADS  CAS  Article  Google Scholar 

    6.
    Bouwman, L. et al. Proc. Natl Acad. Sci. USA 110, 20882–20887 (2013).
    ADS  CAS  Article  Google Scholar 

    7.
    Paulot, F. & Jacob, D. J. Environ. Sci. Technol. 48, 903–908 (2014).
    ADS  CAS  Article  Google Scholar 

    8.
    Shcherbak, I., Millar, N. & Robertson, G. P. Proc. Natl Acad. Sci. USA 111, 9199–9204 (2014).
    ADS  CAS  Article  Google Scholar 

    9.
    Parkin, T. B. & Hatfield, J. L. Agron. J. 106, 694–702 (2014).
    Article  Google Scholar 

    10.
    Griffis, T. J. et al. Proc. Natl Acad. Sci. USA 114, 12081–12085 (2017).
    ADS  CAS  Article  Google Scholar  More

  • in

    An unexpectedly large count of trees in the West African Sahara and Sahel

    1.
    Bayala, J., Sanou, J., Teklehaimanot, Z., Kalinganire, A. & Ouédraogo, S. Parklands for buffering climate risk and sustaining agricultural production in the Sahel of West Africa. Curr. Opin. Environ. Sustain. 6, 28–34 (2014).
    Article  Google Scholar 
    2.
    Stringer, L. C. et al. Challenges and opportunities in linking carbon sequestration, livelihoods and ecosystem service provision in drylands. Environ. Sci. Policy 19–20, 121–135 (2012).
    Article  Google Scholar 

    3.
    Schnell, S., Kleinn, C. & Ståhl, G. Monitoring trees outside forests: a review. Environ. Monit. Assess. 187, 600 (2015).
    Article  Google Scholar 

    4.
    LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
    ADS  CAS  Article  Google Scholar 

    5.
    Darkoh, M. B. K. The nature, causes and consequences of desertification in the drylands of Africa. Land Degrad. Dev. 9, 1–20 (1998).
    Article  Google Scholar 

    6.
    Ribot, J. C. A history of fear: imagining deforestation in the West African dryland forests. Glob. Ecol. Biogeogr. 8, 291–300 (1999).
    Article  Google Scholar 

    7.
    Fairhead, J. & Leach, M. False forest history, complicit social analysis: rethinking some West African environmental narratives. World Dev. 23, 1023–1035 (1995).
    Article  Google Scholar 

    8.
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
    ADS  CAS  Article  Google Scholar 

    9.
    Ickowitz, A., Powell, B., Salim, M. A. & Sunderland, T. C. H. Dietary quality and tree cover in Africa. Glob. Environ. Change 24, 287–294 (2014).
    Article  Google Scholar 

    10.
    Baudron, F., Chavarría, J. Y. D., Remans, R., Yang, K. & Sunderland, T. Indirect contributions of forests to dietary diversity in Southern Ethiopia. Ecol. Soc. 22, 28 (2017).
    Article  Google Scholar 

    11.
    Angelsen, A. et al. Environmental income and rural livelihoods: a global-comparative analysis. World Dev. 64, S12–S28 (2014).
    Article  PubMed  Google Scholar 

    12.
    Reed, J. et al. Trees for life: the ecosystem service contribution of trees to food production and livelihoods in the tropics. For. Policy Econ. 84, 62–71 (2017).
    Article  Google Scholar 

    13.
    Brito, J. C. et al. Unravelling biodiversity, evolution and threats to conservation in the Sahara-Sahel. Biol. Rev. Camb. Philos. Soc. 89, 215–231 (2014).
    Article  PubMed  Google Scholar 

    14.
    Brandt, M. et al. Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands. Nat. Ecol. Evol. 2, 827–835 (2018).
    Article  PubMed  Google Scholar 

    15.
    de Foresta, H. et al. Towards the Assessment of Trees Outside Forests (Resources Assessment Working Paper 183) (FAO, 2013).

    16.
    Crowther, T. W. et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    17.
    Axelsson, C. R. & Hanan, N. P. Patterns in woody vegetation structure across African savannas. Biogeosciences 14, 3239–3252 (2017).
    ADS  Article  Google Scholar 

    18.
    Schepaschenko, D. et al. Comment on “The extent of forest in dryland biomes”. Science 358, eaao0166 (2017).
    Article  PubMed  Google Scholar 

    19.
    Bastin, J.-F. et al. The extent of forest in dryland biomes. Science 356, 635–638 (2017).
    ADS  CAS  Article  PubMed  Google Scholar 

    20.
    Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).
    ADS  CAS  Article  PubMed  Google Scholar 

    21.
    Brandt, M. et al. Reduction of tree cover in West African woodlands and promotion in semi-arid farmlands. Nat. Geosci. 11, 328–333 (2018).
    ADS  CAS  Article  PubMed  Google Scholar 

    22.
    Brandt, M. et al. Woody plant cover estimation in drylands from Earth observation based seasonal metrics. Remote Sens. Environ. 172, 28–38 (2016).
    ADS  Article  Google Scholar 

    23.
    Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 

    24.
    Ronneberger, O., Fischer P. & Brox, T. U-net: convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention (eds. Navab, N. et al.) 234–241, (Springer, 2015).

    25.
    Muller-Landau, H. C. et al. Comparing tropical forest tree size distributions with the predictions of metabolic ecology and equilibrium models. Ecol. Lett. 9, 589–602 (2006).
    Article  Google Scholar 

    26.
    Buchhorn, M. et al. Copernicus global land service: land cover 100 m: epoch 2018: Africa demo. https://land.copernicus.eu/global/products/lc (2019).

    27.
    Wood, S. A. & Baudron, F. Soil organic matter underlies crop nutritional quality and productivity in smallholder agriculture. Agric. Ecosyst. Environ. 266, 100–108 (2018).
    CAS  Article  Google Scholar 

    28.
    Sandbrook, C., Sunderland, T., & Tu, T. N. in Forests and Food (eds Bhaskar, V. et al.) 73–136 (Open Book, 2015).

    29.
    Rasolofoson, R. A., Hanauer, M. M., Pappinen, A., Fisher, B. & Ricketts, T. H. Impacts of forests on children’s diet in rural areas across 27 developing countries. Sci. Adv. 4, eaat2853 (2018).
    ADS  Article  PubMed  Google Scholar 

    30.
    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).
    ADS  CAS  Article  PubMed  Google Scholar 

    31.
    Tucker, C. J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8, 127–150 (1979).
    ADS  Article  Google Scholar 

    32.
    LeCun, Y. et al. Handwritten digit recognition with a back-propagation network. In Advances in Neural Information Processing Systems 2 (ed. Touretzky, D. S.) 396–404 (Neural Information Processing Systems Foundation, 1990).

    33.
    Long, J., Shelhamer, E. & Darrell, T. Fully convolutional networks for semantic segmentation. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (eds Bischof, H. et al.) 3431–3440 (IEEE Computer Society, 2015).

    34.
    Sermanet, P. et al. OverFeat: integrated recognition, localization and detection using convolutional networks. Preprint at https://arxiv.org/abs/1312.6229 (2014).

    35.
    Cordts, M. et al. The cityscapes dataset for semantic urban scene understanding. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (eds Bajcsy, R. et al.) 3213–3223 (IEEE Computer Society, 2016).

    36.
    Simpson, A. L. et al. A large annotated medical image dataset for the development and evaluation of segmentation algorithms. Preprint at https://arxiv.org/abs/1902.09063 (2019).

    37.
    Perslev, M., Dam, E., Pai, A. & Igel, C. One network to segment them all: a general, lightweight system for accurate 3D medical image segmentation. In Medical Image Computing and Computer Assisted Intervention (MICCAI) (eds Shen, D. et al.) 30–38 (Springer, 2019).

    38.
    Koch, T., Perslev, M., Igel, C. & Brandt, S. Accurate segmentation of dental panoramic radiographs with U-nets. In Proc. IEEE International Symposium on Biomedical Imaging (ISBI) (eds Davis, L. et al.) 15–19 (IEEE Computer Society, 2019).

    39.
    Srivastava, N. et al. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014).
    MathSciNet  MATH  Google Scholar 

    40.
    Ioffe, S. & Szegedy, C. Batch normalization: accelerating deep network training by reducing internal covariate shift. In International Conference on Machine Learning (ICML) (eds Bach, F. & Blei, D.) 448–456 (PMLR, 2015).

    41.
    Odena, A., Dumoulin, V. & Olah, C. Deconvolution and checkerboard artifacts. Distill https://distill.pub/2016/deconv-checkerboard/ (2016).

    42.
    Sadegh, S., Salehi, M., Erdogmus, D. & Gholipour, A. Tversky loss function for image segmentation using 3D fully convolutional deep networks. In International Workshop on Machine Learning in Medical Imaging (eds Wang, Q. et al.) 379–387 (Springer, 2017).

    43.
    Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066 (2015).
    Article  PubMed  Google Scholar 

    44.
    Hengl, T. et al. Mapping soil properties of Africa at 250 m resolution: random forests significantly improve current predictions. PLoS ONE 10, e0125814 (2015).
    Article  PubMed  Google Scholar  More

  • in

    Monitoring elasmobranch assemblages in a data-poor country from the Eastern Tropical Pacific using baited remote underwater video stations

    1.
    McCauley, D. J. et al. Marine defaunation: animal loss in the global ocean. Science 80(347), 247–254 (2015).
    Google Scholar 
    2.
    Myers, R. A. & Worm, B. Rapid worldwide depletion of predatory fish communities. Nature 423, 280–283 (2003).
    ADS  CAS  PubMed  Article  Google Scholar 

    3.
    Myers, R. A. & Worm, B. Extinction, survival or recovery of large predatory fishes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 13–20 (2005).
    PubMed  PubMed Central  Article  Google Scholar 

    4.
    Dulvy, N. K. et al. Extinction risk and conservation of the world’s sharks and rays. Elife 3, e00590–e00590 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    5.
    Davidson, L. N. K., Krawchuk, M. A. & Dulvy, N. K. Why have global shark and ray landings declined: Improved management or overfishing?. Fish Fish. 17, 438–458 (2016).
    Article  Google Scholar 

    6.
    Chin, A., Kyne, P. M., Walker, T. I. & McAauley, R. B. An integrated risk assessment for climate change: analysing the vulnerability of sharks and rays on Australia’s Great Barrier Reef. Glob. Change Biol. 16, 1936–1953 (2010).
    ADS  Article  Google Scholar 

    7.
    Dulvy, N. K. et al. Ghosts of the coast: global extinction risk and conservation of sawfishes. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 134–153 (2014).
    Article  Google Scholar 

    8.
    Espinoza, M., Heupel, M. R., Tobin, A. J. & Simpfendorfer, C. A. Evidence of partial migration in a large coastal predator: Opportunistic foraging and reproduction as key drivers?. PLoS ONE 11, e0147608 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    9.
    Papastamatiou, Y. P. et al. Telemetry and random-walk models reveal complex patterns of partial migration in a large marine predator. Ecology 94, 2595–2606 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    10.
    Williams, J. J. et al. Mobile marine predators: an understudied source of nutrients to coral reefs in an unfished atoll. Proc. R. Soc. Lond. B Biol. Sci. https://doi.org/10.1098/rspb.2017.2456 (2018).
    Article  Google Scholar 

    11.
    Ketchum, J. T. et al. Inter-island movements of scalloped hammerhead sharks (Sphyrna lewini) and seasonal connectivity in a marine protected area of the eastern tropical Pacific. Mar. Biol. 161, 939–951 (2014).
    Article  Google Scholar 

    12.
    Espinoza, M., Lédée, E. J., Simpfendorfer, C. A., Tobin, A. J. & Heupel, M. R. Contrasting movements and connectivity of reef-associated sharks using acoustic telemetry: implications for management. Ecol. Appl. 25, 2101–2118 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    13.
    Mallet, D. & Pelletier, D. Underwater video techniques for observing coastal marine biodiversity: a review of sixty years of publications (1952–2012). Fish. Res. 154, 44–62 (2014).
    Article  Google Scholar 

    14.
    Cappo, M., Speare, P. & Death, G. Comparison of baited remote underwater video stations (BRUVS) and prawn (shrimp) trawls for assessments of fish biodiversity in inter-reefal areas of the Great Barrier Reef Marine Park. J. Exp. Mar. Biol. Ecol. 302, 123–152 (2004).
    Article  Google Scholar 

    15.
    Caldwell, Z. R., Zgliczynski, B. J., Williams, G. J. & Sandin, S. A. Reef fish survey techniques: assessing the potential for standardizing methodologies. PLoS ONE 11, e0153066 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    16.
    Dapp, D., Arauz, R., Spotila, J. R. & O’Connor, M. P. Impact of Costa Rican longline fishery on its bycatch of sharks, stingrays, bony fish and olive ridley turtles (Lepidochelys olivacea). J. Exp. Mar. Biol. Ecol. 448, 228–239 (2013).
    Article  Google Scholar 

    17.
    Bicknell, A., Godley, B., Sheehan, E., Votier, S. & Witt, M. Camera technology for monitoring marine biodiversity and human impact. Front. Ecol. Environ. 14, 424–432 (2016).
    Article  Google Scholar 

    18.
    Consoli, P. et al. Fish distribution and habitat complexity on banks of the Strait of Sicily (central Mediterranean Sea) from remotely-operated vehicle (ROV) exploration. PLoS ONE 11, e0167809 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    19.
    Espinoza, M., Cappo, M., Heupel, M. R., Tobin, A. J. & Simpfendorfer, C. A. Quantifying shark distribution patterns and species-habitat associations: implications of Marine Park Zoning. PLoS ONE 9, e106885 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    20.
    Barley, S. C., Mehta, R. S., Meeuwig, J. J. & Meekan, M. G. To knot or not? Novel feeding behaviours in moray eels. Mar. Biodivers. 46, 703–705 (2016).
    Article  Google Scholar 

    21.
    Struthers, D. P., Danylchuk, A. J., Wilson, A. D. M. & Cooke, S. J. Action cameras: bringing aquatic and fisheries research into view. Fisheries 40, 502–512 (2015).
    Article  Google Scholar 

    22.
    Speed, C. W., Rees, M. J., Cure, K., Vaughan, B. & Meekan, M. G. Protection from illegal fishing and shark recovery restructures mesopredatory fish communities on a coral reef. Ecol. Evol. https://doi.org/10.1002/ece3.5575 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    23.
    Jabado, R. W., Al Hameli, S. M., Grandcourt, E. M. & Al Dhaheri, S. S. Low abundance of sharks and rays in baited remote underwater video surveys in the Arabian Gulf. Sci. Rep. 8, 1–11 (2018).
    CAS  Article  Google Scholar 

    24.
    Westerberg, H. & Westerberg, K. L. Properties of odour plumes from natural baits. Fish. Res. 110, 459–464 (2011).
    Article  Google Scholar 

    25.
    Dorman, S. R., Harvey, E. S. & Newman, S. J. Bait effects in sampling coral reef fish assemblages with stereo-BRUVs. PLoS ONE 7, e41538 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Sherley, R. B. et al. Estimating IUCN Red List population reduction: JARA—a decision-support tool applied to pelagic sharks. Conserv. Lett. https://doi.org/10.1111/conl.12688 (2019).
    Article  Google Scholar 

    27.
    Espinoza, M., Díaz, E., Angulo, A., Hernández, S. & Clarke, T. M. Chondrichthyan diversity, conservation status, and management challenges in Costa Rica. Front. Mar. Sci. 5, 1–15 (2018).
    Article  Google Scholar 

    28.
    Trujillo, P., Cisneros-Montemayor, A. M., Harper, S., Zylich, K. & Zeller, D. Reconstruction of Costa Rica’s marine fisheries catches, 1950–2010. Fish. Bethesda 31, 1–16 (2015).
    Google Scholar 

    29.
    Arias, A. & Pressey, R. L. Combatting illegal, unreported, and unregulated fishing with information: a case of probable illegal fishing in the tropical Eastern Pacific. Front. Mar. Sci. 3, 1–4 (2016).
    ADS  Article  Google Scholar 

    30.
    López-Garro, A., Ilena, Z., Frank, M., Geiner, G.-D. & Maikel, P.-M. pesca ilegal en el Parque Nacional Isla del Coco, Costa Rica. Rev. Biol. Trop. 64, 249–262 (2016).
    Article  Google Scholar 

    31.
    Heupel, M. R. & Simpfendorfer, C. A. Importance of environmental and biological drivers in the presence and space use of a reef-associated shark. Mar. Ecol. Prog. Ser. 496, 47–57 (2014).
    ADS  Article  Google Scholar 

    32.
    Drymon, J. M., Powers, S. P., Dindo, J., Dzwonkowski, B. & Henwood, T. A. Distributions of sharks across a continental shelf in the northern Gulf of Mexico. Mar. Coast. Fish. Dyn. Manag. Ecosyst. Sci. 2, 440–450 (2010).
    Article  Google Scholar 

    33.
    Poulakis, G. R., Stevens, P. W., Timmers, A. A., Wiley, T. R. & Simpfendorfer, C. A. Abiotic affinities and spatiotemporal distribution of the endangered smalltooth sawfish, Pristis pectinata, in a south-western Florida nursery. Mar. Freshw. Res. 62, 1165–1177 (2011).
    Article  Google Scholar 

    34.
    Sibaja-cordero, J. A. Tendencias espacio-temporales de los avistamientos de fauna marina en los buceos turísticos (Isla del Coco, Costa Rica). Revista 56, 113–132 (2008).
    Google Scholar 

    35.
    Clarke, T. M., Espinoza, M., Ahrens, R. & Wehrtmann, I. S. Elasmobranch bycatch associated with the shrimp trawl fishery off the pacific coast of Costa Rica, Central America. Fish. Bull. 114, 1–17 (2016).
    Google Scholar 

    36.
    Zanella, I. & López-Garro, A. Abundancia, reproducción y tallas del tiburón martillo Sphyrna lewini (Carcharhiniformes: Sphyrnidae) en la pesca artesanal de Golfo Dulce, Pacífico de Costa Rica. Rev. Biol. Trop. 63, 307–317 (2015).
    Google Scholar 

    37.
    Nalesso, E. et al. Movements of scalloped hammerhead sharks (Sphyrna lewini) at Cocos Island, Costa Rica and between oceanic islands in the Eastern Tropical Pacific. PLoS ONE 14, e0213741 (2019).
    Article  CAS  Google Scholar 

    38.
    Valerio-Vargas, J. & Espinoza, M. A beacon of hope: distribution and current status of the largetooth sawfish in Costa Rica. Endanger. Species Res. 40, 231–242 (2019).
    Article  Google Scholar 

    39.
    IUCN. The IUCN Red List of Threatened Species. Version 2019–3 (2020). Available at: https://www.iucnredlist.org.

    40.
    Whoriskey, S., Arauz, R. & Baum, J. K. Potential impacts of emerging mahi-mahi fisheries on sea turtle and elasmobranch bycatch species. Biol. Conserv. 144, 1841–1849 (2011).
    Article  Google Scholar 

    41.
    Cortés, J. et al. Elasmobranchs observed in deepwaters (45–330m) at Isla del Coco National Park, Costa Rica (Eastern Tropical Pacific). Rev. Biol. Trop. 60, 257–273 (2012).
    Google Scholar 

    42.
    White, E. R., Myers, M. C., Flemming, J. M. & Baum, J. K. Shifting elasmobranch community assemblage at Cocos Island-an isolated marine protected area. Conserv. Biol. 29, 1186–1197 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    43.
    López-Garro, A. & Zanella, I. Tiburones y rayas capturados por pesquerías artesanales con línea de fondo en el Golfo Dulce, Costa Rica. Rev. Biol. Trop. 63, 183–198 (2015).
    Google Scholar 

    44.
    López-Garro, A., Arauz-Vargas, R., Ilena, Z. & Le-Foulgo, L. Análisis de las capturas de tiburones y rayas en las pesquerías artesanales de Tárcoles, Pacífico Central de Costa Rica. Rev. Ciencias Mar. y Costeras 1, 145–157 (2009).
    Article  Google Scholar 

    45.
    Bizzarro, J. J., Smith, W. D., Márquez-Farías, J. F., Tyminski, J. & Hueter, R. E. Temporal variation in the artisanal elasmobranch fishery of Sonora, Mexico. Fish. Res. 97, 103–117 (2009).
    Article  Google Scholar 

    46.
    Dulvy, N. K. et al. Fishery stability, local extinctions, and shifts in community structure in skates. Conserv. Biol. 14, 283–293 (2000).
    Article  Google Scholar 

    47.
    White, J., Simpfendorfer, C. A., Tobin, A. J. & Heupel, M. R. Application of baited remote underwater video surveys to quantify spatial distribution of elasmobranchs at an ecosystem scale. J. Exp. Mar. Biol. Ecol. 448, 281–288 (2013).
    Article  Google Scholar 

    48.
    Salas, E., Sánchez-Godínez, C. & Montero-Cordero, A. Peces marinos de la Reserva Biológica Isla del Caño: Estructura de las comunidades de peces de arrecife y lista taxonómica actualizada de los peces costeros. Rev. Biol. Trop. 63, 97–116 (2015).
    Article  Google Scholar 

    49.
    Cappo, M., Harvey, E., Malcolm, H., Speare P. Potential of video techniques to monitor diversity, abundance and size of fish in studies of marine protected areas. In Beumer, J. P., Grant, A., Smith, D. C., editors, Aquatic protected areas. What works best and how do we know? Cairns ed. Vol. 1. Queensland: University of Queensland. 2003. p. 455–464.

    50.
    Lindfield, S. J., Harvey, E. S., McIlwain, J. L. & Halford, A. R. Silent fish surveys: bubble-free diving highlights inaccuracies associated with SCUBA-based surveys in heavily fished areas. Methods Ecol. Evol. 5, 1061–1069 (2014).
    Article  Google Scholar 

    51.
    Bond, M. E. et al. Top predators induce habitat shifts in prey within marine protected areas. Oecologia 190, 375–385 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Acuña-Marrero, D. et al. Spatial patterns of distribution and relative abundance of coastal shark species in the Galapagos Marine Reserve. Mar. Ecol. Prog. Ser. 593, 73–95 (2018).
    ADS  Article  Google Scholar 

    53.
    Lara-Lizardi, F. Distribution Patterns of Sharks in the Revillagigedo Archipelago and Their Connectivity in the Eastern Tropical Pacific. Tesis de Maestria. (Instituto Politecnico Nacional, 2018).

    54.
    Bond, M. E. et al. Reef sharks exhibit site-fidelity and higher relative abundance in marine reserves on the Mesoamerican Barrier Reef. PLoS ONE 7, e32983 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Edgar, G. J. et al. Global conservation outcomes depend on marine protected areas with five key features. Nature 506, 216–220 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Cinner, J. E. et al. Gravity of human impacts mediates coral reef conservation gains. Proc. Natl. Acad. Sci. U.S.A. 115, E6116–E6125 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Juhel, J.-B. et al. Reef accessibility impairs the protection of sharks. J. Appl. Ecol. 55, 673–683 (2018).
    Article  Google Scholar 

    58.
    Friedlander, A. M. et al. The shallow-water fish assemblage of Isla del Coco National Park, Costa Rica: structure and patterns in an isolated, predator-dominated ecosystem. Rev. Biol. Trop. 60, 321–338 (2012).
    Google Scholar 

    59.
    Fourriére, M. et al. Energy flow structure and role of keystone groups in shallow water environments in Isla del Coco, Costa Rica, Eastern Tropical Pacific. Ecol. Model. 396, 74–85 (2019).
    Article  Google Scholar 

    60.
    Alvarado, J. J., Cortés, J., Esquivel, M. F. & Salas, E. Costa Rica’s marine protected areas: status and perspectives. Rev. Biol. Trop. 60, 129–142 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    61.
    Arias, A., Pressey, R. L., Jones, R. E., Álvarez-Romero, J. G. & Cinner, J. E. Optimizing enforcement and compliance in offshore marine protected areas: a case study from Cocos Island, Costa Rica. Oryx 50, 18–26 (2014).
    Article  Google Scholar 

    62.
    Graham, N. A. J., Spalding, M. D. & Sheppard, C. R. C. Reef shark declines in remote atolls highlight the need for multi-faceted conservation action. Aquat. Conserv. Mar. Freshw. Ecosyst. 20, 543–548 (2010).
    Article  Google Scholar 

    63.
    Dent, F. & Clarke, S. State of the global market for shark products. FAO Fisheries and Aquaculture Technical Paper 590. Food and Agriculture Organization of the United Nations, Rome, Italy (2015).

    64.
    Hooker, S. K. et al. Making protected area networks effective for marine top predators. Endanger. Species Res. 13, 203–218 (2011).
    Article  Google Scholar 

    65.
    De’ath, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. U.S.A. 109, 17995–17999 (2012).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    McKinney, J. A., Hoffmayer, E. R., Wu, W., Fulford, R. & Hendon, J. M. Feeding habitat of the whale shark Rhincodon typus in the northern Gulf of Mexico determined using species distribution modelling. Mar. Ecol. Prog. Ser. 458, 199–211 (2012).
    ADS  Article  Google Scholar 

    67.
    Norton, S. L. et al. Designating critical habitat for juvenile endangered smalltooth sawfish in the United States. Mar. Coast. Fish. 4, 473–480 (2012).
    Article  Google Scholar 

    68.
    Alvarado, J. J. et al. Cuando la conservación no puede seguir el ritmo del desarrollo: Estado de salud de los ecosistemas coralinos del Pacífico Norte de Costa Rica. Rev. Biol. Trop. 66, 280–308 (2018).
    Article  Google Scholar 

    69.
    Arias-Godínez, G. et al. Spatial and temporal changes in reef fish assemblages on disturbed coral reefs, north Pacific coast of Costa Rica. Mar. Ecol. 40, e12532 (2019).
    Article  Google Scholar 

    70.
    Beita-Jiménez, A., Alvarado, J. J., Mena, S. & Guzmán-Mora, A. G. Benefits of protection on reef fish assemblages in a human impacted region in Costa Rica. Ocean Coast. Manag. 169, 165–170 (2019).
    Article  Google Scholar 

    71.
    Cortés, J., Jiménez, C. E., Fonseca, A. C. & Alvarado, J. J. Status and conservation of coral reefs in Costa Rica. Rev. Biol. Trop. 58(Suppl 1), 33–50 (2010).
    PubMed  Google Scholar 

    72.
    Stevens, J., Bonfil, R., Dulvy, N. K. & Walker, P. A. The effects of fishing on sharks, rays, and chimaeras (chondrichthyans), and the implications for marine ecosystems. ICES J. Mar. Sci. 57, 476–494 (2000).
    Article  Google Scholar 

    73.
    Sandin, S. A. et al. Baselines and degradation of coral reefs in the Northern Line Islands. PLoS ONE 3, e1548 (2008).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    74.
    Heithaus, M. R. et al. Seagrasses in the age of sea turtle conservation and shark overfishing. Front. Mar. Sci. 1, 1–6 (2014).
    Article  Google Scholar 

    75.
    Roff, G. et al. The ecological role of sharks on Coral Reefs. Trends Ecol. Evol. 31, 395–407 (2016).
    PubMed  Article  Google Scholar 

    76.
    Villalobos-Rojas, F., Herrera-Correal, J., Garita-Alvarado, C., Clarke, T. & Beita-Jiménez, A. Actividades pesqueras dependientes de la ictiofauna en el Pacífico Norte de Costa Rica. Rev. Biol. Trop. 62, 119–138 (2014).
    Article  Google Scholar 

    77.
    Ruppert, J. L. W., Travers, M. J., Smith, L. L., Fortin, M.-J. & Meekan, M. G. Caught in the middle: combined impacts of shark removal and coral loss on the fish communities of coral reefs. PLoS ONE 8, e74648 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    78.
    Schlaff, A. M., Heupel, M. R. & Simpfendorfer, C. A. Influence of environmental factors on shark and ray movement, behaviour and habitat use: a review. Rev. Fish Biol. Fish. 24, 1089–1103 (2014).
    Article  Google Scholar 

    79.
    Rizzari, J. R., Frisch, A. J. & Magnenat, K. A. Diversity, abundance, and distribution of reef sharks on outer-shelf reefs of the Great Barrier Reef, Australia. Mar. Biol. 161, 2847–2855 (2014).
    Article  Google Scholar 

    80.
    Goetze, J. S. et al. Drivers of reef shark abundance and biomass in the Solomon Islands. PLoS ONE 13, 1–16 (2018).
    Article  CAS  Google Scholar 

    81.
    Bessudo, S. et al. Residency of the scalloped hammerhead shark (Sphyrna lewini) at Malpelo Island and evidence of migration to other islands in the Eastern Tropical Pacific. Environ. Biol. Fishes 91, 165–176 (2011).
    Article  Google Scholar 

    82.
    Hardinge, J., Harvey, E. S., Saunders, B. J. & Newman, S. J. A little bait goes a long way: the influence of bait quantity on a temperate fish assemblage sampled using stereo-BRUVs. J. Exp. Mar. Bio. Ecol. 449, 250–260 (2013).
    Article  Google Scholar 

    83.
    Bouchet, P. J. & Meeuwig, J. J. Drifting baited stereo-videography: a novel sampling tool for surveying pelagic wildlife in offshore marine reserves. Ecosphere 6, 137 (2015).
    Article  Google Scholar 

    84.
    Whitmarsh, S. K., Fairweather, P. G. & Huveneers, C. What is Big BRUVver up to? Methods and uses of baited underwater video. Rev. Fish Biol. Fish. 27, 53–73 (2017).
    Article  Google Scholar 

    85.
    Currey-Randall, L. M., Cappo, M., Simpfendorfer, C. A., Farabaugh, N. F. & Heupel, M. R. Optimal soak times for Baited remote underwater video station surveys of reef-associated elasmobranchs. PLoS ONE 15, e0231688 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    86.
    Wehrtmann, I. S. & Cortés, J. Marine Biodiversity of Costa Rica, Central America (Springer, Berlin, 2009).
    Google Scholar 

    87.
    Cortés, J. Comunidades coralinas y arrecifes del Area de Conservación Guanacaste, Costa Rica. Rev. Biol. Trop. 44–45, 623–625 (1997).
    Google Scholar 

    88.
    Alfaro, E. et al. Climate and subsurface sea temperature in Bahía Culebra, Costa Rica. Rev. Biol. Trop. 60, 159–171 (2012).
    Article  Google Scholar 

    89.
    Stuhldreier, I., Sánchez-Noguera, C., Roth, F., Cortés, J., Rixen, T. & Wild, C. Upwelling increases net primary production of corals and reef-wide gross primary production along the Pacific coast of Costa Rica. Front. Mar. Sci. 2, 113 (2015).
    Article  Google Scholar 

    90.
    Quesada Alpízar, M. A. & Cortés, J. Los ecosistemas marinos del Pacífico sur de Costa Rica: estado del conocimiento y perspectivas de manejo. Rev. Biol. Trop. 54, 101–145 (2006).
    Google Scholar 

    91.
    Cortés, J. et al. Ambientes y organismos marinos de la Reserva Biológica Isla del Caño, Área de Conservación Osa, Costa Rica. Serie Técnica: Apoyando los esfuerzos en el manejo y protección de la biodiversidad tropical. No. 13. TNC, San José, Costa Rica. 48 p (2009).
    Google Scholar 

    92.
    Guzman, H. M. & Cortes, J. Coral reef community structure at Caño Island, Pacific Costa Rica. Mar. Ecol. 10, 23–41 (1989).
    ADS  Article  Google Scholar 

    93.
    Fourriére, M., Alvarado, J. J., Ayala Bocos, A. & Cortés, J. Updated checklist and analysis of completeness of the marine fish fauna of Isla del Coco, Pacific of Costa Rica. Mar. Biodivers. https://doi.org/10.1007/s12526-016-0501-6 (2016).
    Article  Google Scholar 

    94.
    Lizano, O. G. Rasgos morfológicos alrededor de la Isla del Coco y de sus montes submarinos vecinos, Pacífico de Costa Rica. Rev. Biol. Trop. 60, 43–51 (2012).
    Google Scholar 

    95.
    Guzman, H. M. & Cortes, J. Cocos Island (Pacific of Costa Rica) coral reefs after the 1982–83 El Niño disturbance. Rev. Biol. Trop. 40, 309–324 (1992).
    Google Scholar 

    96.
    Lizano, O. G. Dinámica de aguas alrededor de la Isla del Coco, Costa Rica. Rev. Biol. Trop. 56, 31–48 (2008).
    Google Scholar 

    97.
    Alvarado, J. J. et al. Coral reefs of Isla del Coco National Park, Costa Rica: structure and comparison (1987–2014). Rev. Biol. Trop. 64, S153–S176 (2016).
    Article  Google Scholar 

    98.
    Acuña-González, J., García-Céspedes, J., Gómez Ramírez, E., Vargas-Zamora, J. & Cortés, J. Parámetros físico-químicos en aguas costeras de la Isla del Coco, Costa Rica (2001–2007). Rev. Biol. Trop. 56, 49–56 (2008).
    Google Scholar 

    99.
    Cappo, M., De’ath, G. & Speare, P. Inter-reef vertebrate communities of the Great Barrier Reef Marine Park determined by baited remote underwater video stations. Mar. Ecol. Prog. Ser. 350, 209–221 (2007).
    ADS  Article  Google Scholar 

    100.
    Robertson, D. R. & R Allen, G. Shorefishes of the Tropical Eastern Pacific online information system. Version 2.0 Smithsonian Tropical Research Institute, Balboa, Panama (2015).

    101.
    Syms, C. Principal components analysis. In Encyclopedia of Ecology (eds Jorgenses, S. E. & Fath, B. D.) 2940–2949 (Elsevier, Amsterdam, 2008).
    Google Scholar 

    102.
    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2019) URL https://www.R-project.org/.

    103.
    Froese, R. & Pauly, D. FishBase. Available at: https://fishbase.org. (2019)

    104.
    Heupel, M. R., Knip, D. M., Simpfendorfer, C. A. & Dulvy, N. K. Sizing up the ecological role of sharks as predators. Mar. Ecol. Prog. Ser. 495, 291–298 (2014).
    ADS  Article  Google Scholar 

    105.
    Roff, G. et al. The Ecological Role of Sharks on Coral Reefs. Trends Ecol. Evol. XX, 1–13 (2016).
    Google Scholar 

    106.
    Clarke, K. R. & Gorley, R. N. Primer Version 5 (2001). More

  • in

    Global priority areas for ecosystem restoration

    1.
    IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).
    2.
    IPCC. An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes In Terrestrial Ecosystems (SRCCL) (World Meteorological Organization, 2019).

    3.
    Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).
    ADS  Article  Google Scholar 

    4.
    Maron, M., Simmonds, J. S. & Watson, J. E. M. Bold nature retention targets are essential for the global environment agenda. Nat. Ecol. Evol. 2, 1194–1195 (2018).
    Article  Google Scholar 

    5.
    IPBES. The IPBES Assessment Report on Land Degradation and Restoration (IPBES Secretariat, 2018).

    6.
    Bastin, J. F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
    ADS  CAS  Article  Google Scholar 

    7.
    Chazdon, R. & Brancalion, P. Restoring forests as a means to many ends. Science 365, 24–25 (2019).
    ADS  CAS  Article  Google Scholar 

    8.
    Temperton, V. M. et al. Step back from the forest and step up to the Bonn challenge: how a broad ecological perspective can promote successful landscape restoration. Restor. Ecol. 27, 705–719 (2019).
    Google Scholar 

    9.
    Strassburg, B. B. N. et al. Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. Nat. Ecol. Evol. 3, 62–70 (2019).
    Article  Google Scholar 

    10.
    Brancalion, P. H. S. et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 5, eaav3223 (2019).
    ADS  Article  Google Scholar 

    11.
    Mappin, B. et al. Restoration priorities to achieve the global protected area target. Conserv. Lett. 12, e12646 (2019).
    Article  Google Scholar 

    12.
    Brooks, T. M. et al. Global biodiversity conservation priorities. Science 313, 58–61 (2006).
    ADS  CAS  Article  Google Scholar 

    13.
    Joppa, L. N., Visconti, P., Jenkins, C. N. & Pimm, S. L. Achieving the convention on biological diversity’s goals for plant conservation. Science 341, 1100–1103 (2013).
    ADS  CAS  Article  Google Scholar 

    14.
    Montesino Pouzols, F. et al. Global protected area expansion is compromised by projected land-use and parochialism. Nature 516, 383–386 (2014).
    ADS  CAS  Article  Google Scholar 

    15.
    Ando, A., Camm, J., Polasky, S. & Solow, A. Species distributions, land values, and efficient conservation. Science 279, 2126–2128 (1998).
    ADS  CAS  Article  Google Scholar 

    16.
    Naidoo, R. et al. Global mapping of ecosystem services and conservation priorities. Proc. Natl Acad. Sci. USA 105, 9495–9500 (2008).
    ADS  CAS  Article  Google Scholar 

    17.
    Beyer, H. L., Dujardin, Y., Watts, M. E. & Possingham, H. P. Solving conservation planning problems with integer linear programming. Ecol. Modell. 328, 14–22 (2016).
    Article  Google Scholar 

    18.
    Cabeza, M. & Moilanen, A. Design of reserve networks and the persistence of biodiversity. Trends Ecol. Evol. 16, 242–248 (2001).
    CAS  Article  Google Scholar 

    19.
    European Space Agency. Climate Change Initiative (ESA CCI). https://www.esa-landcover-cci.org/?q=node/158 (accessed May 2018).

    20.
    Veldman, J. W. et al. Where tree planting and forest expansion are bad for biodiversity and ecosystem services. Bioscience 65, 1011–1018 (2015).
    Article  Google Scholar 

    21.
    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).
    ADS  CAS  Article  Google Scholar 

    22.
    Strassburg, B. B. N. et al. Impacts of incentives to reduce emissions from deforestation on global species extinctions. Nat. Clim. Chang. 2, 350–355 (2012).
    ADS  CAS  Article  Google Scholar 

    23.
    Strassburg, B. B. N. et al. Moment of truth for the Cerrado hotspot. Nat. Ecol. Evol. 1, 0099 (2017).
    Article  Google Scholar 

    24.
    IUCN. The IUCN Red List of Threatened Species. Version 2019-3 http://www.iucnredlist.org (accessed 10 December 2019).

    25.
    Brooks, T. M. et al. Measuring terrestrial area of habitat (AOH) and its utility for the IUCN Red List. Trends Ecol. Evol. 34, 977–986 (2019).
    Article  Google Scholar 

    26.
    Erb, K.-H. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76 (2018).
    ADS  CAS  Article  Google Scholar 

    27.
    Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. USA 114, 9575–9580 (2017).
    CAS  Article  Google Scholar 

    28.
    IPCC. in Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) 3–24 (World Meteorological Organization, 2018).

    29.
    Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).
    ADS  CAS  Article  Google Scholar 

    30.
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).
    ADS  CAS  Article  Google Scholar 

    31.
    Strassburg, B. B. N. et al. Increasing Agricultural Output While Avoiding Deforestation—A Case Study for Mato Grosso, Brazil (International Institute for Sustainability, 2012).

    32.
    Latawiec, A. E., Strassburg, B. B. N., Brancalion, P. H. S., Rodrigues, R. R. & Gardner, T. Creating space for large-scale restoration in tropical agricultural landscapes. Front. Ecol. Environ. 13, 211–218 (2015).
    Article  Google Scholar 

    33.
    Anderson, C. B. et al. Determining nature’s contributions to achieve the sustainable development goals. Sustain. Sci. 14, 543–547 (2019).
    Article  Google Scholar 

    34.
    Martín-López, B. et al. Nature’s contributions to people in mountains: a review. PLoS ONE 14, e0217847 (2019).
    Article  Google Scholar 

    35.
    Latawiec, A. E., Strassburg, B. B. N., Valentim, J. F., Ramos, F. & Alves-Pinto, H. N. Intensification of cattle ranching production systems: socioeconomic and environmental synergies and risks in Brazil. Animal 8, 1255–1263 (2014).
    CAS  Article  Google Scholar 

    36.
    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).
    ADS  CAS  Article  Google Scholar 

    37.
    Balmford, A. et al. The environmental costs and benefits of high-yield farming. Nat. Sustain. 1, 477–485 (2018).
    Article  Google Scholar 

    38.
    Garnett, T. et al. Sustainable intensification in agriculture: premises and policies. Science 341, 33–34 (2013).
    ADS  CAS  Article  Google Scholar 

    39.
    Erb, K.-H. et al. Exploring the biophysical option space for feeding the world without deforestation. Nat. Commun. 7, 11382 (2016).
    ADS  CAS  Article  Google Scholar 

    40.
    Reyes-García, V. et al. The contributions of Indigenous Peoples and local communities to ecological restoration. Restor. Ecol. 27, 3–8 (2019).
    Article  Google Scholar 

    41.
    Possingham, H. P., Bode, M. & Klein, C. J. Optimal conservation outcomes require both restoration and protection. PLoS Biol. 13, e1002052 (2015).
    Article  Google Scholar 

    42.
    Beresford, A. et al. Minding the protection gap: estimates of species’ range sizes and holes in the protected area network. Anim. Conserv. 14, 114–116 (2011).
    Article  Google Scholar 

    43.
    Rondinini, C. et al. Global habitat suitability models of terrestrial mammals. Phil. Trans. R. Soc. Lond. B 366, 2633–2641 (2011).
    Article  Google Scholar 

    44.
    Di Marco, M. et al. Synergies and trade-offs in achieving global biodiversity targets. Conserv. Biol. 30, 189–195 (2016).
    Article  Google Scholar 

    45.
    Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).
    CAS  Article  Google Scholar 

    46.
    Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, e1001891 (2014).
    Article  Google Scholar 

    47.
    Joppa, L. N. et al. Filling in biodiversity threat gaps. Science 352, 416–418 (2016).
    ADS  CAS  Article  Google Scholar 

    48.
    Knight, A. T., Cowling, R. M. & Campbell, B. M. An operational model for implementing conservation action. Conserv. Biol. 20, 408–419 (2006).
    Article  Google Scholar 

    49.
    Ban, N. C. et al. A social–ecological approach to conservation planning: embedding social considerations. Front. Ecol. Environ. 11, 194–202 (2013).
    Article  Google Scholar 

    50.
    Halpern, B. S. et al. Achieving the triple bottom line in the face of inherent trade-offs among social equity, economic return, and conservation. Proc. Natl Acad. Sci. USA 110, 6229–6234 (2013).
    ADS  CAS  Article  Google Scholar 

    51.
    Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).
    Article  Google Scholar 

    52.
    Robinson, T. P. et al. Mapping the global distribution of livestock. PLoS ONE 9, e96084 (2014).
    ADS  Article  Google Scholar 

    53.
    Gibbs, H. K., Brown, S., Niles, J. O. & Foley, J. A. Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ. Res. Lett. 2, 045023 (2007).
    ADS  Article  Google Scholar 

    54.
    Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Chang. 2, 182–185 (2012).
    ADS  CAS  Article  Google Scholar 

    55.
    Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011).
    ADS  CAS  Article  Google Scholar 

    56.
    Erb, K.-H. et al. A comprehensive global 5 min resolution land-use data set for the year 2000 consistent with national census data. J. Land Use Sci. 2, 191–224 (2007).
    Article  Google Scholar 

    57.
    IPCC. Guidelines for National Greenhouse Gas Inventories (National Greenhouse Gas Inventories Programme, 2006).

    58.
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).
    Article  Google Scholar 

    59.
    Harrell, F. E. Jr et al. Hmisc: Harrell Miscellaneous. R package version 4.1-1. https://cran.r-project.org/web/packages/Hmisc/Hmisc.pdf (2018).

    60.
    Goldewijk, K. K., Beusen, A., Van Drecht, G. & De Vos, M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 20, 73–86 (2011).
    Article  Google Scholar 

    61.
    Fonseca, W. et al. Carbon accumulation in the biomass and soil of different aged secondary forests in the humid tropics of Costa Rica. For. Ecol. Manage. 262, 1400–1408 (2011).
    Article  Google Scholar 

    62.
    Guo, L. B. & Gifford, R. M. Soil carbon stocks and land use change: a meta analysis. Glob. Change Biol. 8, 345–360 (2002).
    ADS  Article  Google Scholar 

    63.
    Yang, Y., Tilman, D., Furey, G. & Lehman, C. Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nat. Commun. 10, 718 (2019).
    ADS  Article  Google Scholar 

    64.
    Mitchard, E. T. et al. Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps. Carbon Balance Manag. 8, 10 (2013).
    Article  Google Scholar 

    65.
    Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).
    Article  Google Scholar 

    66.
    BirdLife International & NatureServe. Bird Species Distribution Maps of the World. Version 2018.1 http://datazone.birdlife.org/species/requestdis (BirdLife International and Handbook of the Birds of the World, 2018).

    67.
    Beresford, A. et al. Poor overlap between the distribution of protected areas and globally threatened birds in Africa. Anim. Conserv. 14, 99–107 (2011).
    Article  Google Scholar 

    68.
    Staude, I. R. et al. Range size predicts the risk of local extinction from habitat loss. Glob. Ecol. Biogeogr. 29, 16–25 (2020).
    Article  Google Scholar 

    69.
    Carrasco, L. R., Webb, E. L., Symes, W. S., Koh, L. P. & Sodhi, N. S. Global economic trade-offs between wild nature and tropical agriculture. PLoS Biol. 15, e2001657 (2017).
    Article  Google Scholar 

    70.
    Naidoo, R & Iwamura, T. Global-scale mapping of economic benefits from agricultural lands: implications for conservation priorities. Biol. Conserv. 140, 40–49 (2007).
    Article  Google Scholar 

    71.
    Polasky, S. et al. Where to put things? Spatial land management to sustain biodiversity and economic returns. Biol. Conserv. 141, 1505–1524 (2008).
    Article  Google Scholar 

    72.
    Sulser, T. B. et al. in Beyond a Middle Income Africa: Transforming African Economies for Sustained Growth with Rising Employment and Incomes (ReSAKSS Annual Trends and Outlook Report 2014 (eds. Badiane, O. et al.) Ch. 2 (International Food Policy Research Institute (IFPRI), 2014).

    73.
    Robinson, S. et al. The International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT): Model Description for Version 3 (IFPRI Discussion Paper 1483) (International Food Policy Research Institute (IFPRI), (2015).

    74.
    IIASA & FAO. Global Agro-ecological Zones (GAEZ v.3.0) (IIASA & FAO, 2012).

    75.
    Hoppe, R. A. Structure and Finances of U.S. Farms: Family Farm Report (EIB-132) (US Department of Agriculture Economic Research Service, 2014).

    76.
    Baležentis, T. et al. Decomposing dynamics in the farm profitability: an application of index decomposition analysis to Lithuanian FADN sample. Sustainability 11, 2861 (2019).
    Article  Google Scholar 

    77.
    Statistic Canada. Table 32-10-0136-01, Farm Operating Revenues and Expenses, Annual. https://open.canada.ca/data/en/dataset/59ca6332-391b-4fdf-bb3a-31e5e45f6bb7 (2008).

    78.
    De Groot, R. S. et al. Benefits of investing in ecosystem restoration. Conserv. Biol. 27, 1286–1293 (2013).
    Article  Google Scholar 

    79.
    International Labour Organization. ILOSTAT database. https://ilostat.ilo.org/data (accessed March 2020).

    80.
    United Nations Statistics Division. UN Comtrade Database. https://comtrade.un.org/ (accessed March 2020).

    81.
    Brancalion, P. H. S. et al. What makes ecosystem restoration expensive? A systematic cost assessment of projects in Brazil. Biol. Conserv. 240, 108274 (2019).
    Article  Google Scholar 

    82.
    Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).
    ADS  CAS  Article  Google Scholar 

    83.
    Mueller, N. D. et al. Declining spatial efficiency of global cropland nitrogen allocation. Glob. Biogeochem. Cycles 31, 245–257 (2017).
    ADS  CAS  Google Scholar 

    84.
    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).
    ADS  CAS  Article  Google Scholar 

    85.
    Hornik, K. et al. SYMPHONY in R, an R interface to the SYMPHONY solver for mixed-integer linear programs. http://R-Forge.R-project.org/projects/rsymphony/ (2019).

    86.
    Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).
    Article  Google Scholar  More

  • in

    Strategies to revise agrosystems and breeding to control Fusarium wilt of banana

    1.
    García-Bastidas, F. et al. First report of Fusarium wilt tropical race 4 in Cavendish bananas caused by Fusarium odoratissimum in Colombia. Plant Dis. 104, 994 (2020).
    Google Scholar 
    2.
    FAOSTAT Crops (Food and Agriculture Organization of the United Nations, 2020); http://www.fao.org/faostat/en/#data/QC

    3.
    Varma, V. & Bebber, D. P. Climate change impacts on banana yields around the world. Nat. Clim. Change 9, 752–757 (2019).
    ADS  Google Scholar 

    4.
    Simmonds, N. W. & Shepherd, K. The taxonomy and origins of the cultivated bananas. J. Linn. Soc. Bot. 55, 302–312 (1955).
    Google Scholar 

    5.
    Gold, C. S., Kiggundu, A., Abera, A. M. K. & Karamura, D. Diversity, distribution and farmer preference of Musa cultivars in Uganda. Exp. Agric. 38, 39–50 (2002).
    Google Scholar 

    6.
    Gambart, C. et al. Impact and opportunities of agroecological intensification strategies on farm performance: a case study of banana-based systems in central and south-western Uganda. Front. Sustain. Food Syst. 23, 87 (2020).
    Google Scholar 

    7.
    Wielemaker, F. in Achieving Sustainable Cultivation of Bananas. Volume 1: Cultivation Techniques (eds Kema, G. H. J. & Drenth, A.) Ch. 15 (Burleigh Dodds Science Publishing, 2018).

    8.
    Ordonez, N. et al. Worse comes to worst: bananas and Panama disease—when plant and pathogen clones meet. PLOS Pathog. 11, e1005197 (2015).
    PubMed  PubMed Central  Google Scholar 

    9.
    Ndayihanzamaso, P. et al. The development of a multiplex PCR assay for the detection of Fusarium oxysporum f. sp. cubense lineage VI strains in East and Central Africa. Eur. J. Plant Pathol. https://doi.org/10.1007/s10658-020-02092-9 (2020).

    10.
    Soluri, J. Accounting for taste: export bananas, mass markets, and Panama disease. Environ. Hist. 7, 386–410 (2002).
    Google Scholar 

    11.
    Stover, R. H. Disease management strategies and the survival of the banana industry. Annu. Rev. Phytopathol. 24, 83–91 (1986).
    Google Scholar 

    12.
    Bubici, G., Kaushal, M., Prigigallo, M. I., Gómez-Lama Cabanás, C. & Mercado-Blanco, J. Biological control agents against Fusarium wilt of banana. Front. Microbiol. 10, 616 (2019).
    PubMed  PubMed Central  Google Scholar 

    13.
    Kaushal, M., Mahuku, G. & Swennen, R. Metagenomic insights of the root colonizing microbiome associated with symptomatic and non-symptomatic bananas in Fusarium wilt infected fields. Plants. 9, 263 (2020).
    CAS  PubMed Central  Google Scholar 

    14.
    Mollot, G., Tixier, P., Lescourret, F., Quilici, S. & Duyck, P. F. New primary resource increases predation on a pest in a banana agroecosystem. Agric. For. Entomol. 14, 317–323 (2012).
    Google Scholar 

    15.
    Djigal, D. et al. Cover crops alter the soil nematode food web in banana agroecosystems. Soil Biol. Biochem. 48, 142–150 (2012).
    CAS  Google Scholar 

    16.
    Karangwa, P. et al. Genetic Diversity of Fusarium oxysporum f. sp. cubense in East and Central Africa. Plant Dis. 102, 552–560 (2018).
    CAS  PubMed  Google Scholar 

    17.
    Jassogne, L. et al. in Banana Systems in the Humid Highlands of Sub-Saharan Africa (eds Blomme, G. et al.) 144–149 (CABI, 2013).

    18.
    Norgrove, L. & Hauser, S. Yield of plantain under different tree densities and ‘slash and mulch’ versus ‘slash and burn’ management in a agrisilvicultural system in southern Cameroon. Field Crops Res. 78, 185–195 (2002).
    Google Scholar 

    19.
    Zhu, Y. et al. Genetic diversity and disease control in rice. Nature 406, 718–722 (2000).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    20.
    Deltour, P. et al. Disease suppressiveness to Fusarium wilt of banana in an agroforestry system: influence of soil characteristics and plant community. Agric. Ecosyst. Environ. 239, 173–181 (2017).
    Google Scholar 

    21.
    Zhu, S. & Morel, J.-B. Molecular mechanisms underlying microbial disease control in intercropping. Mol. Plant Microbe Interact. 32, 20–24 (2019).
    CAS  PubMed  Google Scholar 

    22.
    Wei, Z. et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci. Adv. 5, eaaw0759 (2019).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Yu, K., Pieterse, C. M. J., Bakker, P. A. H. M. & Berendsen, R. L. Beneficial microbes going underground of root immunity. Plant Cell Environ. 42, 2860–2870 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    24.
    Morella, N. M. et al. Successive passaging of a plant-associated microbiome reveals robust habitat and host genotype-dependent selection. Proc. Natl Acad. Sci. USA 117, 1148–1159 (2020).
    CAS  PubMed  Google Scholar 

    25.
    Wille, L., Messmer, M. M., Studer, B. & Hohmann, P. Insights to plant-microbe interactions provide opportunities to improve resistance breeding against root diseases in grain legumes. Plant Cell Environ. 42, 20–40 (2019).
    CAS  PubMed  Google Scholar 

    26.
    Christelová, P. et al. Molecular and cytological characterization of the global Musa germplasm collection provides insights into the treasure of banana diversity. Biodivers. Conserv. 26, 801–824 (2016).
    Google Scholar 

    27.
    Ortiz, R. & Swennen, R. From crossbreeding to biotechnology-facilitated improvement of banana and plantain. Biotechnol. Adv. 32, 158–169 (2014).
    CAS  PubMed  Google Scholar 

    28.
    Zuo, C. et al. Germplasm screening of Musa spp. for resistance to Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4). Eur. J. Plant Pathol. 151, 723–734 (2018).
    Google Scholar 

    29.
    Chen, Y. F. et al. Fusarium wilt-resistant lines of Brazil banana (Musa spp., AAA) obtained by EMS-induced mutation in a micro-cross-section cultural system. Plant Pathol. 62, 112–119 (2013).
    CAS  Google Scholar 

    30.
    Dale, J. et al. Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4. Nat. Commun. 8, 1496 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    31.
    McFadden, B. R. The unknowns and possible implications of mandatory labeling. Trends Biotechnol. 35, 1–3 (2017).
    CAS  PubMed  Google Scholar 

    32.
    Cheng, K., Wang, Y., Zhang, R., Zhang, H. & Gao, C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 70, 667–697 (2019).
    Google Scholar 

    33.
    Zaidi, S. S. -E. -A. et al. New plant breeding technologies for food security. Science 363, 1390–1391 (2019).
    ADS  CAS  PubMed  Google Scholar 

    34.
    Zhang, Y., Pribil, M., Palmgren, M. & Gao, C. A CRISPR way for accelerating improvement of food crops. Nat. Food 1, 200–205 (2020).
    Google Scholar 

    35.
    Ntui, V. O., Tripathi, J. N. & Tripathi, L. Robust CRISPR/Cas9 mediated genome editing tool for banana and plantain (Musa spp.). Curr. Plant Biol. 21, 100128 (2020).
    Google Scholar 

    36.
    Shao, X. et al. Using CRISPR/Cas9 genome editing system to create MaGA20ox2 gene-modified semi-dwarf banana. Plant Biotechnol. J. 18, 17–19 (2019).
    PubMed  PubMed Central  Google Scholar 

    37.
    Kaur, N. et al. CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali genome. Funct. Integr. Genomics 18, 89–99 (2018).
    CAS  PubMed  Google Scholar 

    38.
    Naim, F. et al. Gene editing the phytoene desaturase alleles of Cavendish banana using CRISPR/Cas9. Transgenic Res. 27, 451–460 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    39.
    Klimyuk, V. I. et al. A chromodomain protein encoded by the Arabidopsis CAO gene is a plant-specific component of the chloroplast signal recognition particle pathway that is involved in LHCP targeting. Plant Cell 11, 87–99 (1999).
    CAS  PubMed  PubMed Central  Google Scholar 

    40.
    Zhang, Y., Malzahn, A. A., Sretenovic, S. & Qi, Y. The emerging and uncultivated potential of CRISPR technology in plant science. Nat. Plants 5, 778–794 (2019).
    PubMed  Google Scholar 

    41.
    Strosse, H. et al. Development of embryogenic cell suspensions from shoot meristematic tissue in bananas and plantains (Musa spp.). Plant Sci. 170, 104–112

    42.
    Escalant, J. V. & Teisson, C. Somatic embryogenesis and plants from immature zygotic embryos of species Musa acuminata and Musa balbisiana. Plant Cell Rep. 7, 181–186 (1989).
    Google Scholar 

    43.
    Kelliher, T. et al. One-step genome editing of elite crop germplasm during haploid induction. Nat. Biotechnol. 37, 287–292 (2019).
    CAS  PubMed  Google Scholar 

    44.
    Jacquier, N. M. A. et al. Puzzling out plant reproduction by haploid induction for innovations in plant breeding. Nat. Plants 6, 610–619 (2020).
    PubMed  Google Scholar 

    45.
    Veillet, F. et al. Transgene-free genome editing in tomato and potato plants using Agrobacterium-mediated delivery of a CRISPR / Cas9 cytidine base editor. Int. J. Mol. Sci. 20, 402 (2019).
    PubMed Central  Google Scholar 

    46.
    Demirer, G. S. et al. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat. Nanotechnol. 14, 456–464 (2019).
    ADS  CAS  PubMed  Google Scholar 

    47.
    Svitashev, S. et al. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat. Commun. 16, 13274 (2016).
    ADS  Google Scholar 

    48.
    Zhang, Y. et al. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat. Commun. 7, 12617 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    49.
    Woo, J. W. et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat. Biotechnol. 33, 1162–1164 (2015).
    CAS  PubMed  Google Scholar 

    50.
    Sági, L. et al. Genetic transformation of banana and plantain (Musa spp.) via particle bombardment. Nat. Biotechnol. 13, 481–485 (1995).
    Google Scholar 

    51.
    Sági, L., Remy, S., Panis, B., Swennen, R. & Volckaert, G. Transient gene expression in electroporated banana (Musa spp., cv. ‘Bluggoe’, ABB group) protoplasts isolated from regenerable embryogenetic cell suspensions. Plant Cell Rep. 13, 262–266 (1994).
    PubMed  Google Scholar 

    52.
    Oh, T. J. et al. Genomic changes associated with somaclonal variation in banana (Musa spp.). Physiol. Plant. 129, 766–74 (2007).
    CAS  Google Scholar 

    53.
    Lowe, K. et al. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 28, 1998–2015 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    54.
    Panis, B., Withers, L. & De Langhe, E. Cryopreservation of Musa suspension cultures and subsequent regeneration of plants. Cryo Lett. 11, 337–350 (1990).
    Google Scholar 

    55.
    Ghosh, S. et al. Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat. Protoc. 13, 2944–2963 (2018).
    CAS  PubMed  Google Scholar 

    56.
    Arinaitwe, I. K. et al. Evaluation of banana germplasm and genetic analysis of an F1 population for resistance to Fusarium oxysporum f. sp. cubense race 1. Euphytica 215, 175 (2019).
    PubMed  PubMed Central  Google Scholar 

    57.
    Sun, J. et al. Comparative transcriptome analysis reveals resistance-related genes and pathways in Musa acuminata banana ‘Guijiao 9’ in response to Fusarium wilt. Plant Physiol. Biochem. 141, 83–94 (2019).
    CAS  PubMed  Google Scholar 

    58.
    Zhang, L. et al. Transcriptomic analysis of resistant and susceptible banana corms in response to infection by Fusarium oxysporum f. sp. cubense tropical race 4. Sci. Rep. 9, 8199 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    59.
    Li, C. et al. Analysis of banana transcriptome and global gene expression profiles in banana roots in response to infection by race 1 and tropical race 4 of Fusarium oxysporum f. sp. cubense. BMC Genom. 14, 851 (2013).
    Google Scholar 

    60.
    Chatterjee, M. et al. Analysis of root proteome unravels differential molecular responses during compatible and incompatible interaction between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceri Race1 (Foc1). BMC Genom. 15, 949 (2015).
    Google Scholar 

    61.
    Shen, Y. & Diener, A. C. Arabidopsis thaliana RESISTANCE TO FUSARIUM OXYSPORUM 2 implicates tyrosine-sulfated peptide signaling in susceptibility and resistance to root infection. PLOS Genet. 9, e1003525 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    62.
    D’Hont, A., Denoeud, F. & Aury, J. et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488, 213–217 (2012).
    ADS  PubMed  Google Scholar 

    63.
    Côte, F. et al. Agro-ecological intensification in banana and plantain (Musa spp.): an approach to develop more sustainable cropping systems for both smallholder farmers and large-scale commercial producers. Acta Hortic. 879, 457–463 (2010).
    Google Scholar 

    64.
    Tixier, P., Malezieux, E. & Dorel, M. SIMBA-POP: a cohort population model for long-term simulation of banana crop harvest. Ecol. Model. 180, 407–417 (2004).
    Google Scholar 

    65.
    Carvajal-Yepes, M. et al. A global surveillance system for crop diseases. Science 364, 1237–1239 (2019).
    ADS  CAS  PubMed  Google Scholar  More

  • in

    Satellites could soon map every tree on Earth

    NEWS AND VIEWS
    14 October 2020

    An analysis of satellite images has pinpointed individual tree canopies over a large area of West Africa. The data suggest that it will soon be possible, with certain limitations, to map the location and size of every tree worldwide.

    Niall P. Hanan &

    Niall P. Hanan is with the Jornada Basin Long-Term Ecological Research Program, Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico 88003, USA.
    Contact

    Search for this author in:

    Julius Y. Anchang

    Julius Y. Anchang is in the Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico 88003, USA.
    Contact

    Search for this author in:

    Terrestrial ecosystems are defined in large part by their woody plants. Grasslands, shrublands, savannahs, woodlands and forests represent a series of gradations in tree and shrub density, from ecosystems with low-density, low-stature woody plants to those with taller trees and overlapping canopies. Accurate information on the woody-vegetation structure of ecosystems is, therefore, fundamental to our understanding of global-scale ecology, biogeography and the biogeochemical cycles of carbon, water and other nutrients. Writing in Nature, Brandt et al.1 report their analysis of a massive database of high-resolution satellite images covering more than 1.3 million square kilometres of the western Sahara and Sahel regions of West Africa. The authors mapped the location and size of more than 1.8 billion individual tree canopies; never before have trees been mapped at this level of detail across such a large area.

    The spatial resolution of most satellite data is relatively coarse, with individual image pixels generally corresponding to areas on the ground that are larger than 100 square metres, and often larger than one square kilometre. This limitation has forced researchers in the field of Earth observation to focus on measuring bulk properties, such as the proportion of a landscape covered by tree canopies when viewed from above (a measurement known as canopy cover).
    However, during the past two decades, a variety of commercial satellites have begun to collect data at a higher spatial resolution, capable of capturing ground objects measuring one square metre or less. This resolution improvement places the field of terrestrial remote sensing on the threshold of a fundamental leap forward: from focusing on aggregate landscape-scale measurements to having the potential to map the location and canopy size of every tree over large regional or global scales. This revolution in observational capabilities will undoubtedly drive fundamental changes in how we think about, monitor, model and manage global terrestrial ecosystems.
    Brandt et al. provide a striking demonstration of this transformation in terrestrial remote sensing. The authors analysed more than 11,000 images, at a spatial resolution of 0.5 m, to identify individual trees and shrubs with canopy diameters of 2 m or more. The authors completed this giant task using artificial intelligence — exploiting a computational approach that involves what are called fully convolutional neural networks. This deep-learning method is designed to recognize objects (in this case, tree canopies) on the basis of their characteristic shapes and colours within a larger image. Convolutional networks rely on the availability of training data, which in this case consisted of satellite images in which the visible outlines of tree and shrub canopies were manually traced. Through training using these samples, the computer learnt how to identify individual tree canopies with high precision in other images. The result is a wall-to-wall mapping of all trees larger than 2 m in diameter across the whole of southern Mauritania, Senegal and southwestern Mali.

    A previous estimate2 of the total number of trees on a global scale was obtained using field data from approximately 430,000 forest plots around the world. The authors of that study used statistical regression models to estimate tree density between the field sites, on the basis of vegetation type and climate. Their analysis suggested that there are approximately three trillion trees globally. However, this approach to tree-density estimation has inherent errors and uncertainties, particularly for drylands, for which relatively few field measurements are available to calibrate the models.
    A comparison (Fig. 1) of that earlier result with Brandt and colleagues’ findings in the western Sahel, for example, shows that the previous study tended to underestimate the number of trees in the drier regions (areas with annual rainfall of less than 600 millimetres). Moreover, the previous estimates provided no information on the location and size of individual trees within each square kilometre, whereas Brandt and colleagues provide detailed information on the location and size of every individual canopy. The improvement provided in the latest study can also be seen in the much higher level of detail it gives for the wetter regions (those with annual rainfall greater than 600 mm), and shows local spatial variability in trees that is presumably associated with contrasting soil types, water availability, land use and land-use history.

    Figure 1 | Large-scale tree mapping. Accurate information about tree distribution provides useful ecological insights, but such data are difficult to obtain for large areas of land. a, A previous study2 estimating global tree density per hectare relied on data from field plots — samples of these data are shown for western Africa. The inset box in a is in a dry region (with an average annual rainfall of less than 600 millimetres per year), and corresponds to b. Dotted lines indicate the boundaries of average rainfall in millimetres per year. c, d, Brandt et al.1 report the detection of individual tree canopies across western Africa, obtained using an artificial-intelligence approach to analyse high-resolution satellite images. The authors found a higher tree density in dry regions of Africa than did the earlier study. For example, Brandt and colleagues’ analysis of the area corresponding to the inset box in a produced the tree density per hectare shown in c. They identified the size and location of individual tree canopies (green), as shown in d for an area corresponding to the inset box in c. Tree information at this level of detail was not available in the earlier study. (Images made using data from refs 1 and 2.) (Springer Nature remains neutral with regard to jurisdictional claims in published maps.)

    There are, of course, caveats and limitations to Brandt and colleagues’ work and the potential for scaling up their approach to a global analysis. Successful canopy detection declined drastically below a canopy diameter of 2 m, owing to constraints imposed by the spatial resolution of the imagery, and consistent with earlier work3. Although we can expect further improvements in the spatial resolution of satellite images, it becomes pertinent to ask what minimum canopy size is needed to characterize woody-plant communities in various regions. For global tree-canopy mapping, if we assume that the computational and storage challenges associated with large data volumes can be overcome, the biggest roadblock would lie in developing efficient approaches for automated classification and delineation of canopies. Brandt and colleagues’ deep-learning method required an input of approximately 90,000 manually digitized training points. This approach becomes untenable for work on a global scale, and more-automated (unsupervised) methods for extracting information from satellite imagery would be necessary4.

    A related problem is the ability to distinguish between what might look like one large canopy and adjacent, overlapping canopies of different individual trees. To improve canopy separation, Brandt et al. used a weighting scheme in training their convolutional neural network, but still resorted to a ‘canopy clump’ class to describe aggregated canopy areas of more than 200 m2, suggesting that the separation approach was not always effective. For application in wetter regions, where overlapping canopies in woodlands and forests are common, canopy delineation and separation methods will need refinement and automation to be feasible at global scales.
    Yet more challenging is the identification of tree species. Although feasible, on the basis of canopy colour, shape and texture5, it will be particularly tricky at regional and global scales and across biodiverse ecosystems. The mapping of individual tree canopies by species will probably remain at the top of the Earth-observation research community’s wish list for some time6.
    In the years ahead, remote sensing will undoubtedly provide unprecedented detail about vegetation structure as data from a range of sources — including light detection and ranging (lidar), radar and high-resolution visible and near-infrared sensors — become more readily available7. Satellite-derived high-resolution data on tree canopy size and density could contribute to the inventory and management of forests and woodland, deforestation monitoring, and assessment of the carbon sequestered in biomass, timber, fuel wood and tree crops. The ability to map the size and location of individual tree canopies using such satellite data will complement information available from other instruments that provide data for tree height, vertical canopy profiles and above-ground wood biomass. Continuing research will be needed to develop more-efficient canopy-classification algorithms. In the meantime, Brandt and colleagues have clearly demonstrated the potential for future global mapping of tree canopies at submetre scales.

    doi: 10.1038/d41586-020-02830-3

    References

    1.
    Brandt, M. et al. Nature https://doi.org/10.1038/s41586-020-2824-5 (2020).

    2.
    Crowther, T. W. et al. Nature 525, 201–205 (2015).

    3.
    Axelsson, C. R. & Hanan, N. P. Biogeosciences 14, 3239–3252 (2017).

    4.
    Reichstein, M. et al. Nature 566, 195–204 (2019).

    5.
    Engler, R. et al. Forest Ecol. Mgmt 310, 64–73 (2013).

    6.
    Draper, F. C. et al. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2020.08.003 (2020).

    7.
    National Academies of Sciences, Engineering, and Medicine. Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space (Natl Academies Press, 2018).

    Download references

    Latest on:

    Environmental sciences

    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Related Articles More

  • in

    Understanding deep learning in land use classification based on Sentinel-2 time series

    1.
    Commission, E. et al. A resource-efficient Europe-flagship initiative under the Europe 2020 strategy. Communication 2011, 21 (2011).
    Google Scholar 
    2.
    Union, E. Commission implementing regulation (eu) 2018/746 of 18 May 2018 amending implementing regulation (eu) no 809/2014 as regards modification of single applications and payment claims and checks. Off. J. Eur. Union 61, 1–7 (2018).
    Google Scholar 

    3.
    Reichstein, M. et al. Deep learning and process understanding for data-driven earth system science. Nature 566, 195–204 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    4.
    Liu, Y. et al. Application of deep convolutional neural networks for detecting extreme weather in climate datasets. arXiv:1605.01156(arXiv preprint) (2016).

    5.
    Vandal, T. et al. Deepsd: Generating high resolution climate change projections through single image super-resolution. In Proceedings of the 23rd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, 1663–1672 (2017).

    6.
    Shi, X. et al. Deep learning for precipitation nowcasting: A benchmark and a new model. Adv. Neural Inf. Process. Syst. 20, 5617–5627 (2017).
    Google Scholar 

    7.
    Reichstein, M. et al. Potential of new machine learning methods for understanding long-term interannual variability of carbon and energy fluxes and states from site to global scale. AGUFM 2016, B44A-07 (2016).
    Google Scholar 

    8.
    Liu, Y. et al. Deep learning for pixel-level image fusion: Recent advances and future prospects. Inf. Fusion 42, 158–173 (2018).
    Article  Google Scholar 

    9.
    Wang, S. et al. A deep learning framework for remote sensing image registration. ISPRS J. Photogramm. Remote Sens. 145, 148–164 (2018).
    ADS  Article  Google Scholar 

    10.
    Lyu, H., Lu, H. & Mou, L. Learning a transferable change rule from a recurrent neural network for land cover change detection. Remote Sens. 8, 506 (2016).
    ADS  Article  Google Scholar 

    11.
    Liu, Y., Minh Nguyen, D., Deligiannis, N., Ding, W. & Munteanu, A. Hourglass-shapenetwork based semantic segmentation for high resolution aerial imagery. Remote Sens. 9, 522 (2017).
    ADS  Article  Google Scholar 

    12.
    Lees, T. et al. A machine learning pipeline to predict vegetation health. Eighth International Conference on Learning Representations 1–5, (2020).

    13.
    Zhao, W. & Du, S. Learning multiscale and deep representations for classifying remotely sensed imagery. ISPRS J. Photogramm. Remote Sens. 113, 155–165 (2016).
    ADS  Article  Google Scholar 

    14.
    Rußwurm, M. & Körner, M. Multi-temporal land cover classification with long short-term memory neural networks. Int. Arch. Photogramm. Remote Sens. Spat.Inf. Sci. 42, 551 (2017).
    Article  Google Scholar 

    15.
    Chen, Y., Lin, Z., Zhao, X., Wang, G. & Gu, Y. Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7, 2094–2107 (2014).
    ADS  Article  Google Scholar 

    16.
    Li, W., Fu, H., Yu, L. & Cracknell, A. Deep learning based oil palm tree detection and counting for high-resolution remote sensing images. Remote Sens. 9, 22 (2017).
    ADS  Article  Google Scholar 

    17.
    Hu, F., Xia, G.-S., Hu, J. & Zhang, L. Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Remote Sens. 7, 14680–14707 (2015).
    ADS  Article  Google Scholar 

    18.
    Liang, H. & Li, Q. Hyperspectral imagery classification using sparse representations of convolutional neural network features. Remote Sens. 8, 99 (2016).
    ADS  Article  Google Scholar 

    19.
    Zhang, L., Zhang, L. & Du, B. Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geosci. Remote Sens.Mag. 4, 22–40 (2016).
    Article  Google Scholar 

    20.
    Zhu, X. X. et al. Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geosci. Remote Sens.Mag. 5, 8–36 (2017).
    Article  Google Scholar 

    21.
    Ma, L. et al. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 152, 166–177 (2019).
    ADS  Article  Google Scholar 

    22.
    Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (The MIT Press, New York, 2016).
    Google Scholar 

    23.
    Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).
    CAS  PubMed  Article  Google Scholar 

    24.
    Campos-Taberner, M. et al. Processing of extremely high-resolution lidar and RGB data: Outcome of the 2015 IEEE GRSS data fusion contest-part a: 2-d contest. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 9, 5547–5559 (2016).
    ADS  Article  Google Scholar 

    25.
    Zhong, L., Hu, L. & Zhou, H. Deep learning based multi-temporal crop classification. Remote Sens. Environ. 221, 430–443 (2019).
    ADS  Article  Google Scholar 

    26.
    Liu, T., Abd-Elrahman, A., Morton, J. & Wilhelm, V. L. Comparing fully convolutional networks, random forest, support vector machine, and patch-based deep convolutional neural networks for object-based wetland mapping using images from small unmanned aircraft system. GISci. Remote Sens. 55, 243–264 (2018).
    Article  Google Scholar 

    27.
    Montavon, G., Samek, W. & Müller, K.-R. Methods for interpreting and understanding deep neural networks. Digit. Signal Proc. 73, 1–15 (2018).
    MathSciNet  Article  Google Scholar 

    28.
    Gunning, D. et al. Xai–explainable artificial intelligence. Sci. Robot. 4, 20 (2019).
    Article  Google Scholar 

    29.
    Samek, W. Explainable AI: Interpreting, Explaining and Visualizing Deep Learning Vol. 11700 (Springer, Berlin, 2019).
    Google Scholar 

    30.
    Haury, A.-C., Gestraud, P. & Vert, J.-P. The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures. PLoS One 6, e28210 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    Lundberg, S. M. et al. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2, 2522–5839 (2020).
    Article  Google Scholar 

    32.
    Skilton, M. & Hovsepian, F. The 4th Industrial Revolution: Responding to the Impact of Artificial Intelligence on Business (Springer, Berlin, 2017).
    Google Scholar 

    33.
    Tjoa, E. & Guan, C. A survey on explainable artificial intelligence (XAI): Towards medical XAI. arXiv:1907.07374(arXiv preprint) (2019).

    34.
    Samek, W., Montavon, G., Lapuschkin, S., Anders, C. J. & Müller, K.-R. Toward interpretable machine learning: Transparent deep neural networks and beyond. arXiv:2003.07631(arXiv preprint) (2020).

    35.
    Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).
    ADS  MATH  Article  Google Scholar 

    36.
    Montavon, G., Binder, A., Lapuschkin, S., Samek, W. & Müller, K.-R. Layer-wise relevance propagation: An overview. In Explainable AI: Interpreting, Explaining and Visualizing Deep Learning 193–209 (Springer, Berlin, 2019).
    Google Scholar 

    37.
    Arras, L. et al. Explaining and interpreting lstms. In Explainable AI: Interpreting, Explaining and Visualizing Deep Learning 211–238 (Springer, Berlin, 2019).
    Google Scholar 

    38.
    Zhou, B., Khosla, A., Lapedriza, A., Oliva, A. & Torralba, A. Learning deep features for discriminative localization. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2921–2929, (2016).

    39.
    Wolanin, A. et al. Estimating and understanding crop yields with explainable deep learning in the Indian wheat belt. Environ. Res. Lett. 15, 024019 (2020).
    ADS  Article  Google Scholar 

    40.
    Marcos, D., Lobry, S. & Tuia, D. Semantically interpretable activation maps: What-where-how explanations within CNNS. In 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), 4207–4215 (IEEE, 2019).

    41.
    Pelletier, C., Webb, G. I. & Petitjean, F. Temporal convolutional neural network for the classification of satellite image time series. Remote Sens. 11, 523 (2019).
    ADS  Article  Google Scholar 

    42.
    Rußwurm, M. & Körner, M. Multi-temporal land cover classification with sequential recurrent encoders. ISPRS Int. J. Geo-Inf. 7, 129 (2018).
    Article  Google Scholar 

    43.
    Mnih, V. et al. Recurrent models of visual attention. Adv. Neural Inf. Process. Syst. 20, 2204–2212 (2014).
    Google Scholar 

    44.
    Yin, W., Schütze, H., Xiang, B. & Zhou, B. Abcnn: Attention-based convolutional neural network for modeling sentence pairs. Trans. Assoc. Comput. Linguist. 4, 259–272 (2016).
    Article  Google Scholar 

    45.
    Ran, X., Shan, Z., Fang, Y. & Lin, C. An LSTM-based method with attention mechanism for travel time prediction. Sensors 19, 861 (2019).
    Article  Google Scholar 

    46.
    Liu, G. & Guo, J. Bidirectional LSTM with attention mechanism and convolutional layer for text classification. Neurocomputing 337, 325–338 (2019).
    Article  Google Scholar 

    47.
    Xu, R., Tao, Y., Lu, Z. & Zhong, Y. Attention-mechanism-containing neural networks for high-resolution remote sensing image classification. Remote Sens. 10, 1602 (2018).
    ADS  Article  Google Scholar 

    48.
    Liu, R., Cheng, Z., Zhang, L. & Li, J. Remote sensing image change detection based on information transmission and attention mechanism. IEEE Access 7, 156349–156359 (2019).
    Article  Google Scholar 

    49.
    Fu, J. et al. Dual attention network for scene segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 3146–3154, (2019).

    50.
    Campos-Taberner, M., García-Haro, F. J., Martínez, B., Sánchez-Ruíz, S. & Gilabert, M. A. A copernicus Sentinel-1 and Sentinel-2 classification framework for the 2020+ European Common Agricultural Policy: A case study in València (Spain). Agronomy 9, 556 (2019).
    Article  Google Scholar 

    51.
    Campos-Taberner, M. et al. A critical comparison of remote sensing leaf area index estimates over rice-cultivated areas: From Sentinel-2 and Landsat-7/8 to MODIS, GEOV1 and EUMETSAT Polar System. Remote Sens. 10, 763 (2018).
    ADS  Article  Google Scholar 

    52.
    Campos-Taberner, M. et al. Exploitation of SAR and optical Sentinel data to detect rice crop and estimate seasonal dynamics of leaf area index. Remote Sens. 9, 248 (2017).
    ADS  Article  Google Scholar 

    53.
    Immitzer, M., Vuolo, F. & Atzberger, C. First experience with Sentinel-2 data for crop and tree species classifications in central Europe. Remote Sens. 8, 166 (2016).
    ADS  Article  Google Scholar 

    54.
    Vuolo, F., Neuwirth, M., Immitzer, M., Atzberger, C. & Ng, W.-T. How much does multi-temporal Sentinel-2 data improve crop type classification?. Int. J. Appl. Earth Obs. Geoinf. 72, 122–130 (2018).
    ADS  Article  Google Scholar 

    55.
    García-Haro, F. J. et al. A global canopy water content product from AVHRR/Metop. ISPRS J. Photogramm. Remote Sens. 162, 77–93 (2020).
    ADS  Article  Google Scholar 

    56.
    Kobayashi, N., Tani, H., Wang, X. & Sonobe, R. Crop classification using spectral indices derived from Sentinel-2a imagery. J. Inf. Telecommun. 4, 67–90 (2020).
    Google Scholar 

    57.
    Rouse Jr, J., Haas, R., Schell, J. & Deering, D. Monitoring vegetation systems in the great plains with ERTS. In Third Earth Resources Technology Satellite-1 Symposium: The Proceedings of a Symposium Held by Goddard Space Flight Center at Washington, DC on December 10-14, 1973: Prepared at Goddard Space Flight Center, vol. 351, 309–317 (Scientific and Technical Information Office, National Aeronautics and Space…, 1974).

    58.
    Tucker, C. J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8, 127–150 (1979).
    ADS  Article  Google Scholar 

    59.
    Chatziantoniou, A., Psomiadis, E. & Petropoulos, G. P. Co-orbital Sentinel 1 and 2 for lulc mapping with emphasis on wetlands in a mediterranean setting based on machine learning. Remote Sens. 9, 1259 (2017).
    ADS  Article  Google Scholar 

    60.
    Erinjery, J. J., Singh, M. & Kent, R. Mapping and assessment of vegetation types in the tropical rainforests of the western ghats using multispectral Sentinel-2 and sar Sentinel-1 satellite imagery. Remote Sens. Environ. 216, 345–354 (2018).
    ADS  Article  Google Scholar 

    61.
    Schuster, M. & Paliwal, K. K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45, 2673–2681 (1997).
    ADS  Article  Google Scholar  More

  • in

    Prioritizing where to restore Earth’s ecosystems

    NEWS AND VIEWS
    14 October 2020

    Targets for ecosystem restoration are usually specified in terms of the total area to be restored. A global analysis reveals that the benefits and costs of achieving such targets depend greatly on where this restoration occurs.

    Simon Ferrier

    Simon Ferrier is at the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australian Capital Territory 2601, Australia.
    Contact

    Search for this author in:

    Figure 1 | Tree planting during forest restoration in Madagascar.Credit: RIJASOLO/AFP/Getty

    The declaration by the United Nations of 2021–30 as the UN Decade on Ecosystem Restoration is drawing worldwide attention to the challenge of restoring natural ecosystems that have been degraded or converted (for agricultural use, for example)1. Ecosystem-restoration targets already feature prominently in global and national policy frameworks aimed at limiting ongoing biodiversity loss and climate change. These targets are set mainly in terms of the total area or percentage of land to be restored. But how can this restoration effort be best distributed spatially to maximize benefits for both biodiversity conservation and efforts to tackle climate change? Writing in Nature, Strassburg et al.2 address this crucial question across all of Earth’s biomes (broad zones of vegetation adapted to particular climates). To do this, they analyse data on the benefits and costs of restoration, using information assembled at high spatial resolution across the entire global land surface.
    Ecosystem-restoration targets have long been regarded as complementing targets for protecting relatively intact ecosystems. For example, the Aichi Biodiversity Targets3 for 2011–20, which were established under a key UN biodiversity treaty, the Convention on Biological Diversity, coupled the ambition of restoring “at least 15 per cent of degraded ecosystems” with that of increasing the coverage of protected areas to include “at least 17 per cent of terrestrial and inland water, and 10 per cent of coastal and marine areas”. However, until now, the science of prioritizing where best to invest in ecosystem restoration at global and national scales has lagged behind the many notable scientific advances made in prioritizing additions to protected areas4.

    One of the biggest challenges in prioritizing areas for restoration (Fig. 1) is balancing the benefits for biodiversity conservation against those for climate-change mitigation. Forests are usually the biomes with the highest potential to sequester carbon. However, all biomes, including non-forest biomes such as natural grasslands and shrublands, can contain ecosystems in urgent need of restoration to prevent the extinction of species found only in those ecosystems. Even areas offering similar potential for carbon sequestration within the same biome (for example, in tropical rainforests) can vary greatly in terms of potential restoration benefits for biodiversity conservation. This is because such benefits depend on the number and uniqueness of the species associated with a given area of that biome, and the extent to which these species have lost habitat elsewhere across their range.
    Balancing benefits is further complicated by variation in the probable costs of ecosystem restoration in different parts of the world — both the direct costs of restoration and the indirect costs of forgoing income from other land uses, particularly agricultural production. Strassburg and colleagues confront this daunting prioritization challenge head-on using a new multicriteria approach based on a mathematical technique called linear programming. This enabled them to optimize restoration outcomes that balance the benefits for biodiversity and climate-change mitigation, and the associated costs, in a variety of ways. The authors carried out their analysis using state-of-the-art data sets that describe the spatial distribution of: ecosystem types expected in the absence of major human activity; current land uses; the potential for carbon sequestration by living and dead organic matter; habitats of vertebrate species; and expected restoration costs.

    Strassburg et al. show that the benefits and costs of restoring a given total area of land depend very much on where this restoration is undertaken. Prioritizing the spatial distribution of restoration using a single criterion of benefit or cost generally performs poorly in achieving desirable outcomes for the other criteria. For example, restoring 15% of the world’s converted lands by focusing solely on maximizing benefits for climate-change mitigation would achieve only 65% of the gains potentially achievable for biodiversity (assessed as the resulting reduction in risk of species extinctions) if the restoration focused instead on maximizing biodiversity benefits. Restoration focused solely on minimizing costs would achieve only 34% of the maximum potential gain for biodiversity and 39% of the potential gain for climate-change mitigation. Encouragingly, however, optimizing for all three criteria simultaneously yields a solution that would achieve 91% and 82% of potential gains for biodiversity and climate-change mitigation, respectively, while maximizing cost-effectiveness.
    These findings have major implications for the setting and implementation of global targets for ecosystem restoration. A key discovery by Strassburg and colleagues is that the total area restored is a relatively weak metric of how restoration might help in reaching fundamental goals for biodiversity conservation and climate-change mitigation. This is conveyed most compellingly by the finding that the reduction in risk of species extinctions that is achieved by different spatial allocations of the same total area of restoration can vary by a factor of up to six. Thus, any high-level goal for ecosystem restoration, and associated indicators for assessing progress, should ideally be specified in a way that ensures actions are directed towards areas that will contribute most effectively to achieving fundamental biodiversity and climate goals.

    Strassburg and co-workers’ study is particularly laudable for linking perspectives on ecosystem restoration to bridge the domains of biodiversity conservation and climate-change mitigation. However, challenges remain in further linking such prioritization to other key drivers and pressures, and other types of action beyond restoration. Multiple interactions between these factors will together determine overall global outcomes for biodiversity and climate. Consider, for example, the scope of such interactions just in relation to the goal of preventing species extinctions. Strassburg and colleagues’ extinction-risk modelling assumes that the distribution of potentially suitable environments for species will remain fixed, despite growing evidence that many of these distributions are already shifting, or are likely to shift over time, owing to climate change5. Research assessing the combined effects of land use and climate change on biodiversity suggests that not considering climate-change effects might lead to a severe underestimation of extinction risk6.
    The authors’ modelling also assumes that all habitat currently provided by intact ecosystems will remain intact. But, given current trends in ecosystem degradation worldwide7, it seems probable that the area of habitat available for species will ultimately be determined not only by gains made through restoration, but also by the interplay of such gains with losses occurring elsewhere in the extent and integrity of ecosystems8. The magnitude and spatial configuration of future losses will, in turn, be determined by ongoing interactions between socio-economic drivers of demand for converted lands, and actions aimed at either reducing the demand itself, or ameliorating the effect of this demand by protecting key areas of intact habitat from conversion9.
    The role of such interactions in shaping ultimate outcomes underscores the need to take these interactions into account when defining, implementing and assessing progress in achieving global targets10. The post-2020 global biodiversity framework (see go.nature.com/36fqq44), currently being developed for adoption by the parties to the Convention on Biological Diversity, offers a timely opportunity to address this need by explicitly defining interlinkages between any agreed ecosystem protection and restoration targets and the framework’s over-arching biodiversity goals.

    doi: 10.1038/d41586-020-02750-2

    References

    1.
    Temperton, V. M. et al. Restor. Ecol. 27, 705–719 (2019).

    2.
    Strassburg, B. N. et al. Nature https://doi.org/10.1038/s41586-020-2784-9 (2020).

    3.
    Convention on Biological Diversity. COP Decision X/2: Strategic Plan for Biodiversity 2011–2020 (2012).

    4.
    Dinerstein, E. et al. Sci. Adv. 6, eabb2824 (2020).

    5.
    Pecl, G. T. et al. Science 355, eaai9214 (2017).

    6.
    Di Marco, M. et al. Glob. Change Biol. 25, 2763–2778 (2019).

    7.
    Beyer, H. L., Venter, O., Grantham, H. S. & Watson, J. E. M. Conserv. Lett. 13, e12692 (2020).

    8.
    Maron, M. et al. Nature Ecol. Evol. 4, 46–49 (2020).

    9.
    Leclère, D. et al. Nature 585, 551–556 (2020).

    10.
    Nicholson, E. et al. Trends Ecol. Evol. 34, 57–68 (2019).

    Download references

    Latest on:

    Agriculture

    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Related Articles More