More stories

  • in

    Evidence of interactions between white sharks and large squids in Guadalupe Island, Mexico

    1.
    Smale, M. J. & Cliff, G. Cephalopods in the diets of four shark species (Galeocerdo cuvier, Sphyrna lewini, S. zygaena and S. mokarran) from KwaZulu-Natal, South Africa. Afr. J. Mar. Sci. 20(1), 241–253. https://doi.org/10.2989/025776198784126610 (2010).
    Article  Google Scholar 
    2.
    Smale, M. J. & Cliff, G. White sharks and cephalopod prey. In Global Perspectives on the Biology and Life History of the white shark (ed. Domeier, M. L.) (CRC Press, Boca Raton, 2012).
    Google Scholar 

    3.
    Galván-Magaña, F. et al. Shark predation on cephalopods in the Mexican and Ecuadorian Pacific Ocean. Deep-Sea Res. PT. II 95, 52–62. https://doi.org/10.1016/j.dsr2.2013.04.002 (2013).
    Article  Google Scholar 

    4.
    Ellis, R. & McCosker, J. E. Great White Shark (Stanford University Press, Stanford, 1991).
    Google Scholar 

    5.
    Jaime-Rivera, M., Caraveo-Patiño, J., Hoyos-Padilla, E. M. & Galván-Magaña, F. (2014) Feeding and migration habits of white shark Carcharodon carcharias (Lamniformes: Lamnidae) from Isla Guadalupe inferred by analysis of stable isotopes δ15N and δ13C. Rev. Biol. Trop. 62(2), 637–647. https://doi.org/10.15517/RBT.V62I2.7767.

    6.
    Boustany, A. M. et al. Expanded niche for white sharks. Nature 415, 35–36. https://doi.org/10.1038/415035b (2002).
    ADS  CAS  Article  PubMed  Google Scholar 

    7.
    Nasby-Lucas, N., Dewar, H., Lam, C. H., Goldman, K. J. & Domeier, M. L. White shark offshore habitat: a behavioral and environmental characterization of the Eastern Pacific shared offshore foraging area. PLoS ONE 4(12), e8163. https://doi.org/10.1371/journal.pone.0008163 (2009).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    8.
    Domeier, M. L. & Nasby-Lucas, N. Migration patterns of white sharks Carcharodon carcharias tagged at Guadalupe Island, Mexico, and identification of an eastern Pacific shared offshore foraging area. Mar. Ecol. Prog. Ser. 370, 221–237. https://doi.org/10.3354/meps07628 (2008).
    ADS  Article  Google Scholar 

    9.
    Hoyos-Padilla, E. M., Klimley, A. P., Galván-Magaña, F. & Antoniou, A. Contrasts in the movements and habitat use of juvenile and adult white sharks (Carcharodon carcharias) at Guadalupe Island, Mexico. Anim. Biotelem. 4(1), 14. https://doi.org/10.1186/s40317-016-0106-7 (2016).
    Article  Google Scholar 

    10.
    Galván-Magaña, F., Hoyos-Padilla, E. M., Navarro-Serment, C. J. & Márquez-Farías, F. Records of white shark, Carcharodon carcharias, in the Gulf of California, Mexico. Mar. Biodiver. Rec. https://doi.org/10.1017/S1755267210000977 (2010).
    Article  Google Scholar 

    11.
    Domeier, M. L. A new life-history hypothesis for white sharks, Carcharodon carcharias, in the Northeastern Pacific. In Global Perspectives on the Biology and Life History of the White Shark (ed. Domeier, M. L.) (CRC Press, Boca Raton, 2012).
    Google Scholar 

    12.
    Zeidberg, L. D. & Robinson, B. H. Invasive range expansion by the Humboldt squid, Dosidicus gigas, in the eastern North Pacific. Proc. Natl. Acad. Sci. U.S.A. 104, 12948–12950. https://doi.org/10.1073/pnas.0702043104 (2007).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    13.
    Walther-Mendoza, M., Ayala-Bocos, A., Hoyos-Padilla, M. & Reyes-Bonilla, H. New records of fishes from Guadalupe Island, northwest Mexico. Hidrobiologica 23(3), 410–414 (2013).
    Google Scholar 

    14.
    Gálvez, C., Pardo, M. A. & Elorriaga-Verplancken, F. R. Impacts of extreme ocean warming on the early development of a marine top predator: the Guadalupe fur seal. Prog. Oceanogr. 180, 102220. https://doi.org/10.1016/j.pocean.2019.102220 (2020).
    Article  Google Scholar 

    15.
    Gilly, W. F. et al. Vertical and horizontal migrations by the jumbo squid Dosidicus gigas revealed by electronic tagging. Mar. Ecol. Prog. Ser. 324, 1–17. https://doi.org/10.3354/meps324001 (2006).
    ADS  Article  Google Scholar 

    16.
    Medellín-Ortiz, A., Cadena-Cárdenas, L. & Santana-Morales, O. Environmental effects on the jumbo squid fishery along Baja California’s west coast. Fish. Sci. 82(6), 851–861. https://doi.org/10.1007/s12562-016-1026-4 (2016).
    CAS  Article  Google Scholar 

    17.
    Papastamatiou, Y. P., Verbeck, D., Hutchinson, M., Bracken-Grissom, H. D. & Chapman, D. An encounter between a pelagic shark and giant cephalopod. J. Fish. Biol. https://doi.org/10.1111/jfb.14415 (2020).
    Article  PubMed  Google Scholar 

    18.
    Ruiz-Cooley, R. I., Markaida, U., Gendron, D. & Aguíñiga, S. Stable isotopes in jumbo squid (Dosidicus gigas) beaks to estimate its trophic position: comparison between stomach contents and stable isotopes. J. Mar. Biol. Ass. UK 86, 437–445. https://doi.org/10.1017/S0025315406013324 (2006).
    Article  Google Scholar 

    19.
    Skomal, G. B., Hoyos-Padilla, E. M., Kukulya, A. & Stokey, R. Subsurface observations of white shark Carcharodon carcharias predatory behaviour using an autonomous underwater vehicle. J. Fish. Biol. 87(6), 1293–1312. https://doi.org/10.1111/jfb.12828 (2015).
    CAS  Article  PubMed  Google Scholar 

    20.
    Watanabe, H., Kubodera, T., Ichii, T. & Kawahara, S. Feeding habits of neon flying squid Ommastrephes bartramii in the transitional region of the central North Pacific. Mar. Ecol. Prog. Ser. 266, 173–184. https://doi.org/10.3354/meps266173 (2004).
    ADS  Article  Google Scholar 

    21.
    Roe, H. S. J. The food and feeding habits of the sperm whales (Physeter catodon L.) taken off the west coast of Iceland. ICES. J. Mar. Sci. 33(1), 93–102. https://doi.org/10.1093/icesjms/33.1.93 (1969).
    Article  Google Scholar 

    22.
    Evans, K., Morrice, M., Hindell, M. & Thiele, D. Three mass strandings of sperm whales (Physeter macrocephalus) in southern Australian waters. Mar. Mam. Sci. 18(3), 622–643. https://doi.org/10.1111/j.1748-7692.2002.tb01063.x (2002).
    Article  Google Scholar 

    23.
    Smith, A. Cephalopod sucker design and the physical limits to negative pressure. J. Exp. Biol. 199(4), 949–958 (1996).
    CAS  PubMed  Google Scholar 

    24.
    Saito, H., Sakai, M. & Wakabayashi, T. Characteristics of the lipid and fatty acid compositions of the Humboldt squid, Dosidicus gigas: the trophic relationship between the squid and its prey. Euro. J. Lipid Sci. Technol. 116(3), 360–366. https://doi.org/10.1002/ejlt.201300230 (2014).
    CAS  Article  Google Scholar 

    25.
    Pethybridge, H. R., Parrish, C. C., Bruce, B. D., Young, J. W. & Nichols, P. D. Lipid, fatty acid and energy density profiles of white sharks: insights into the feeding ecology and ecophysiology of a complex top predator. PLoS ONE 9(5), e97877. https://doi.org/10.1371/journal.pone.0097877 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    26.
    Galván-Magaña, F. et al. Shark ecology, the role of the apex predator and current conservation status. In Advances in Marine Biology Vol. 83 (eds Lowry, D. & Larson, S. E.) 61–114 (Academic Press, London, 2019). https://doi.org/10.1016/bs.amb.2019.08.005.
    Google Scholar 

    27.
    Rodríguez-Barreto, D. et al. Comparative study of lipid and fatty acid composition in different tissues of wild and cultured female broodstock of greater amberjack (Seriola dumerili). Aquaculture 2012, 360–361. https://doi.org/10.1016/j.aquaculture.2012.07.013 (2012).
    CAS  Article  Google Scholar 

    28.
    Sosa-Nishizaki, O., Morales-Bojórquez, E., Nasby-Lucas, N., Oñate-González, E. & Domeier, M. L. Problems with photo identification as a method of estimating abundance of white sharks, Carcharodon carcharias. In Global Perspectives on the Biology and Life History of the White Shark (ed. Domeier, M. L.) (CRC Press, Boca Raton, 2012).
    Google Scholar 

    29.
    Gallo-Reynoso, J. P., Le Boeuf, B. J., Figueroa-Carranza, A. L. & Maravilla-Chávez, M. O. Los pinnípedos de Isla Guadalupe. In Isla Guadalupe: Hacia su restauración y conservación (eds Santos-del-Prado, K. & Peters, E.) (Instituto Nacional de Ecología, Mexico City, 2005).
    Google Scholar 

    30.
    Lynn, R. J. & Simpson, J. J. The California Current System: the seasonal variability of its physical characteristics. J. Geophys. R. 92, 12947–12966 (1987).
    ADS  Article  Google Scholar 

    31.
    Becerril-García, E. E., Hoyos-Padilla, E. M., Micarelli, P., Galván-Magaña, F. & Sperone, E. Behavioural responses of white sharks to specific baits during cage diving ecotourism. Sci. Rep. 10(1), 1–11. https://doi.org/10.1038/s41598-020-67947-x (2020).
    CAS  Article  Google Scholar 

    32.
    Bruce, B. D. & Bradford, R. W. Habitat use and spatial dynamics of juvenile white sharks, Carcharodon carcharias, in eastern Australia. In Global Perspectives on the Biology and Life History of the White Shark (ed. Domeier, M. L.) (CRC Press, Boca Raton, 2012).
    Google Scholar  More

  • in

    Microbial electroactive biofilms dominated by Geoalkalibacter spp. from a highly saline–alkaline environment

    1.
    Lovley, D. R. Electromicrobiology. Annu. Rev. Microbiol 66, 391–409 (2012).
    CAS  PubMed  Article  Google Scholar 
    2.
    Nealson, K. H. & Rowe, A. R. Electromicrobiology: realities, grand challenges, goals, and predictions. Micro. Biotechnol. 9, 595–600 (2016).
    Article  Google Scholar 

    3.
    Nealson, K. H. Bioelectricity (electromicrobiology) and sustainability. Micro. Biotechnol. 10, 1114–1119 (2017).
    CAS  Article  Google Scholar 

    4.
    Logan, B. E., Rossi, R., Ragab, A. & Saikaly, P. E. Electroactive microorganisms in bioelectrochemical systems. Nat. Rev. Microbiol 17, 307–319 (2019).
    CAS  PubMed  Article  Google Scholar 

    5.
    Lonergan, D. J. et al. Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J. Bacteriol. 178, 2402–2408 (1996).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Lovley, D. R., Phillips, E. J. P., Caccavo, F., Nealson, K. H. & Myers, C. Acetate oxidation by dissimilatory Fe(III) reducers. Appl. Environ. Microbiol 58, 3205–3208 (1992).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Myers, C. R., Nealson, K. H. & June, I. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240, 1319–1322 (1988).
    CAS  PubMed  Article  Google Scholar 

    8.
    Rotaru, A. E. et al. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ. Sci. 7, 408–415 (2014).
    CAS  Article  Google Scholar 

    9.
    Kato, S., Hashimoto, K. & Watanabe, K. Microbial interspecies electron transfer via electric currents through conductive minerals. Proc. Natl Acad Sci. USA 109, 10042–10046 (2012).
    CAS  PubMed  Article  Google Scholar 

    10.
    Katuri, K. P. et al. Dual-function electrocatalytic and macroporous hollow fiber cathode for converting water streams to valuable resources using microbial electrochemical systems. Adv. Mater. 30, 1707072 (2018).
    Article  CAS  Google Scholar 

    11.
    Pandey, P. et al. Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl. Energ. 168, 706–723 (2016).
    CAS  Article  Google Scholar 

    12.
    Chiranjeevi, P. & Patil, S. A. Strategies for improving the electroactivity and specific metabolic functionality of microorganisms for various microbial electrochemical technologies. Biotechnol. Adv. 39, 107468 (2020).

    13.
    Kiran, R. & Patil, S. A. in Introduction to Biofilm Engineering, Vol. 1323 (eds Rathinam, N. K. & Sani, R. K.) 159–186 (ACS: Symposium Series, 2019).

    14.
    Rowe, A. R. et al. In situ electrochemical enrichment and isolation of a magnetite-reducing bacterium from a high pH serpentinizing spring. Environ. Microbiol. 19, 2272–2285 (2017).
    CAS  PubMed  Article  Google Scholar 

    15.
    Shrestha, N. et al. Extremophiles for microbial-electrochemistry applications: a critical review. Bioresour. Technol. 255, 318–330 (2018).
    CAS  PubMed  Article  Google Scholar 

    16.
    Dopson, M., Ni, G. & Sleutels, T. H. J. A. Possibilities for extremophilic microorganisms in microbial electrochemical systems. FEMS Microbiol. Rev. 40, 164–181 (2016).
    CAS  PubMed  Article  Google Scholar 

    17.
    Pierra, M., Carmona-martínez, A. A., Trably, E., Godon, J. & Bernet, N. Bioelectrochemistry specific and efficient electrochemical selection of Geoalkalibacter subterraneus and Desulfuromonas acetoxidans in high current-producing biofilms. Bioelectrochemistry 106, 182–189 (2015).
    Article  CAS  Google Scholar 

    18.
    Alqahtani, M. F. et al. Enrichment of Marinobacter sp. and halophilic homoacetogens at biocathode of microbial electrosynthesis systems inoculated with Red-Sea brine pool. Front. Microbiol. 109, 2563 (2019).
    Article  Google Scholar 

    19.
    Shehab et al. Enrichment of extremophilic exoelectrogens in microbial electrolysis cells using Red Sea brine pools as inocula. Bioresour. Technol. 239, 82–86 (2017).
    CAS  PubMed  Article  Google Scholar 

    20.
    Sulonen, M. L. K., Kokko, M. E., Lakaniemi, A. & Puhakka, J. A. Electricity generation from tetrathionate in microbial fuel cells by acidophiles. J. Hazard Mater. 284, 182–189 (2015).
    CAS  PubMed  Article  Google Scholar 

    21.
    Badalamenti, J. P., Krajmalnik-Brown, R. & Torres, I. Generation of high current densities by pure cultures of anode-respiring Geoalkalibacter spp. under alkaline and saline conditions in microbial electrochemical cells. mBio 4, e00144–13 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Holmes, D. E., Nicoll, J. S., Bond, D. R. & Lovley, D. R. Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell. Appl. Environ. Microbiol. 75, 885 (2009).
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    23.
    Parameswaran, P., Bry, T., Popat, S. C., Lusk, B. G. & Rittmann, B. E. Kinetic, electrochemical, and microscopic characterization of the thermophilic, anode-respiring bacterium Thermincola ferriacetica. Environ. Sci. Technol. 47, 4934–4940 (2013).
    CAS  PubMed  Article  Google Scholar 

    24.
    Pillot, G. et al. Specific enrichment of hyperthermophilic electroactive Archaea from a deep-sea hydrothermal vent on electrically conductive support. Bioresour. Technol. 259, 304–311 (2018).
    CAS  PubMed  Article  Google Scholar 

    25.
    Cerqueira, T. et al. Sediment microbial diversity of three deep-sea hydrothermal vents southwest of the azores. Micro. Ecol. 74, 332–349 (2017).
    CAS  Article  Google Scholar 

    26.
    Jangir, Y. et al. In situ electrochemical studies of the terrestrial deep subsurface biosphere at the Sanford Underground Research Facility, South Dakota, USA. Front Energy Res 7, 1–17 (2019).
    Article  Google Scholar 

    27.
    Carmona-Martinez, A. A., Pierra, M., Trably, E. & Bernet, N. High current density via direct electron transfer by the halophilic anode respiring bacterium Geoalkalibacter subterraneus. Phys. Chem. Chem. Phys. 15, 19699–19707 (2013).
    CAS  PubMed  Article  Google Scholar 

    28.
    Abrevaya, X. C., Sacco, N., Mauas, P. J. D. & Cortón, E. Archaea-based microbial fuel cell operating at high ionic strength conditions. Extremophiles 15, 633–642 (2011).
    CAS  PubMed  Article  Google Scholar 

    29.
    Ledezma, P., Lu, Y. & Freguia, S. Electroactive haloalkaliphiles exhibit exceptional tolerance to free ammonia. FEMS Microbiol. Lett. 365, 1–6 (2018).
    Article  CAS  Google Scholar 

    30.
    Kumar, S. K., Feria, S. O., Ramírez, T. J., Seijas, R. N. & Varaldo, P. H. M. Electrochemical, and chemical enrichment methods of a sodic-saline inoculum for microbial fuel cells. Int. J. Hydrog. Energy 38, 12600–12609 (2013).
    Article  CAS  Google Scholar 

    31.
    Borul, S. B. Study of water quality of Lonar Lake. J. Chem. Pharm. Res. 4, 1716–1718 (2012).
    CAS  Google Scholar 

    32.
    Jadhav, R. D. & Mali, H. B. A search for the source of high content of sodium chloride (NaCl) at Crater Lake Lonar, Maharashtra, India. Int. J. Adv. Res. Ideas Innov. Technol. 4, 255–261 (2018).
    Google Scholar 

    33.
    Wani, A. A. et al. Molecular analyses of microbial diversity associated with the Lonar soda lake in India: an impact crater in a basalt area. Res. Microbiol. 157, 928–937 (2006).
    CAS  PubMed  Article  Google Scholar 

    34.
    Joshi, A. A. et al. Cultivable bacterial diversity of alkaline Lonar Lake. India Microbiol. Ecol. 55, 163–172 (2008).
    Article  Google Scholar 

    35.
    Paul, D. et al. Exploration of microbial diversity and community structure of Lonar Lake: the only hypersaline meteorite Crater Lake within basalt rock. Front. Microbiol. 6, 1–12 (2016).
    Article  Google Scholar 

    36.
    Misra, S. et al. Geochemical identification of impactor for Lonar crater, India. Meteorit. Planet Sci. 1018, 1001–1018 (2009).
    Article  Google Scholar 

    37.
    Koshy, N. et al. Characterization of the soil samples from the Lonar crater. India Geotech. Eng. 49, 99–105 (2018).
    Google Scholar 

    38.
    Yee, M. O., Deutzmann, J., Spormann, A. & Rotaru, A. Cultivating electroactive microbes—from field to bench. Nanotechnology 31, 174003 (2020).
    CAS  PubMed  Article  Google Scholar 

    39.
    Korth, B. & Harnisch, F. Spotlight on the energy harvest of electroactive microorganisms: the impact of the applied anode potential. Front. Microbiol. 10, 1–9 (2019).
    Article  Google Scholar 

    40.
    Parot, S., Delia, M. L. & Bergel, A. Forming electrochemically active biofilms from garden compost under chronoamperometry. Bioresour. Technol. 99, 4809–4816 (2008).
    CAS  PubMed  Article  Google Scholar 

    41.
    Torres, C. I. et al. Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization. Environ. Sci. Technol. 43, 9519–9524 (2009).
    CAS  PubMed  Article  Google Scholar 

    42.
    Babu, P., Chandel, A. K. & Singh, O. V. in Extremophiles and Their Applications in Medical Processes (eds Babu, P., Chandel, A. K. & Singh, O.V.) 9–24 (Springer, 2015).

    43.
    Harnisch, F. & Freguia, S. A basic tutorial on cyclic voltammetry for the investigation of electroactive microbial biofilms. Chem. Asian J. 7, 466–475 (2012).
    CAS  PubMed  Article  Google Scholar 

    44.
    Peng, L. et al. Geobacter sulfurreducens adapts to low electrode potential for extracellular electron transfer. Electrochim. Acta 191, 743–749 (2016).
    CAS  Article  Google Scholar 

    45.
    Marsili, E., Sun, J. & Bond, D. R. Voltammetry and growth physiology of Geobacter sulfurreducens biofilms as a function of the growth stage and imposed electrode potential. Electroanalysis 22, 865–874 (2010).
    CAS  Article  Google Scholar 

    46.
    Yoho, R. A., Popat, S. C., Rago, L. & Guisasola, A. Anode biofilms of Geoalkalibacter ferrihydriticus exhibit electrochemical signatures of multiple electron transport pathways. Langmuir 31, 12552–12559 (2015).
    CAS  PubMed  Article  Google Scholar 

    47.
    Schroder, U. & Harnisch, F. In Encyclopedia of Applied Electrochemistry (eds Kreysa, G., Ota, K. & Savinell, R. F.) 120–126 (Springer, New York, 2014).

    48.
    Patil, S. A., Harnisch, F., Kapadnis, B. & Schröder, U. Electroactive mixed culture biofilms in microbial bioelectrochemical systems: The role of temperature on the formation and performance. Biosens. Bioelectron. 26, 803–808 (2010).
    CAS  PubMed  Article  Google Scholar 

    49.
    Liu, Y., Climent, V., Berná, A. & Feliu, J. M. Effect of temperature on the catalytic ability of electrochemically active biofilm as anode catalyst in microbial fuel cells. Electroanalysis 23, 387–394 (2011).
    CAS  Article  Google Scholar 

    50.
    Huang, L., Hwang, A. & Phillips, J. Effect of temperature on microbial growth rate-mathematical analysis: the Arrhenius and Eyring-Polanyi connections. J. Food Sci. 76, 553–560 (2011).
    Article  CAS  Google Scholar 

    51.
    Labelle, E. & Bond, D. R. In Bioelectrochemical Systems: From Extracellular Electron Transfer to Biotechnological Applications (eds Rabaey, K., Angenent, I., Schroder, U. & Keller, J.) 137–152 (IWA Publishing, London, 2005).

    52.
    Patil, S. A., Hägerhäll, C. & Gorton, L. Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems. Bio Anal. Rev. 4, 159–192 (2012).
    Article  Google Scholar 

    53.
    Richter, H. et al. Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer. Energy Environ. Sci. 2, 506–516 (2009).
    CAS  Article  Google Scholar 

    54.
    Katuri, K. P., Rengaraj, S., Kavanagh, P., O’Flaherty, V. & Leech, D. Charge transport through Geobacter sulfurreducens biofilms grown on graphite rods. Langmuir 28, 7904–7913 (2012).
    CAS  PubMed  Article  Google Scholar 

    55.
    Fricke, K., Harnisch, F. & Schroder, U. On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells. Energy Environ. Sci. 1, 144–147 (2008).
    CAS  Article  Google Scholar 

    56.
    Harnisch, F. et al. Revealing the electrochemically driven selection in natural community derived microbial biofilms using flow-cytometry. Energy Environ. Sci. 4, 1265–1267 (2011).
    CAS  Article  Google Scholar 

    57.
    Carmona-Martinez, A. A. et al. Cyclic voltammetric analysis of the electron transfer of Shewanella oneidensis MR-1 and nanofilament and cytochrome knock-out mutants. Bioelectrochemistry 81, 74–80 (2011).
    CAS  PubMed  Article  Google Scholar 

    58.
    Firer-Sherwood, M., Pulcu, G. S. & Elliott, S. J. Electrochemical interrogations of the Mtr cytochromes from Shewanella: opening a potential window. J. Biol. Inorg. Chem. 13, 849–854 (2008).
    CAS  PubMed  Article  Google Scholar 

    59.
    Baron, D., LaBelle, E., Coursolle, D., Gralnick, J. A. & Bond, D. R. Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1. J. Biol. Chem. 284, 28865–28873 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Holmes, D. E., Nevin, K. P. & Lovley, D. R. Comparison of nifD, recA, gyrB and fusA genes within the family Geobacteraceae Fam. nov. Int. J. Syst. Evol. Microbiol 54, 1591–1599 (2004).
    CAS  PubMed  Article  Google Scholar 

    61.
    Greene, A. C., Patel, B. K. C. & Yacob, S. Anaerobic Fe (III) – and Mn (IV) -reducing bacterium from a petroleum reservoir, and emended descriptions of the family Desulfuromonadaceae and the genus Geoalkalibacter. Int. J. Syst. Evol. Microbiol. 59, 781–785 (2009).
    CAS  PubMed  Article  Google Scholar 

    62.
    Badalamenti, J. P., Summers, Z. M., Chan, C. H., Gralnick, J. A. & Bond, D. R. Isolation and genomic characterization of ‘Desulfuromonas soudanensis WTL’, a metal- and electrode-respiring bacterium from anoxic deep subsurface brine. Front. Microbiol. 7, 1–11 (2016).
    Article  Google Scholar 

    63.
    Jayashree, C., Tamilarasan, K., Rajkumar, M., Arulazhagan, P. & Yogalakshmi, K. N. Treatment of seafood processing wastewater using up-flow microbial fuel cell for power generation and identification of bacterial community in anodic biofilm. J. Environ. Manag. 180, 351–358 (2016).
    CAS  Article  Google Scholar 

    64.
    Monzon, O. et al. Microbial fuel cell fed by Barnett Shale produced water: power production by hypersaline autochthonous bacteria and coupling to a desalination unit. Biochem. Eng. J. 117, 87–91 (2017).
    CAS  Article  Google Scholar 

    65.
    Kevbrin, V. V., Zhilina, T. N., Rainey, F. A. & Zavarzin, G. A. Tindallia magadii gen. nov., sp. nov.: an alkaliphilic anaerobic ammonifier from Soda Lake deposits. Curr. Microbiol. 37, 94–100 (1998).
    CAS  PubMed  Article  Google Scholar 

    66.
    Mei, N. et al. Serpentinicella alkaliphila gen. nov., sp. nov., a novel alkaliphilic anaerobic bacterium isolated from the serpentinite-hosted Prony hydrothermal field, New Caledonia. Int. J. Syst. Evol. Microbiol. 66, 4464–4470 (2016).
    CAS  PubMed  Article  Google Scholar 

    67.
    Pasupuleti, S. B., Srikanth, S., Dominguez-Benetton, X., Mohan, S. V. & Pant, D. Dual gas diffusion cathode design for Microbial Fuel Cell (MFC): optimizing the suitable mode of operation in terms of biochemical & bioelectro-kinetic evaluation. J. Chem. Technol. Biotechnol. 91, 624–639 (2016).
    CAS  Article  Google Scholar 

    68.
    Srikanth, S. et al. Electro-biocatalytic conversion of carbon dioxide to alcohols using gas diffusion electrodes. Bioresour. Technol. 265, 45–51 (2018).
    CAS  PubMed  Article  Google Scholar 

    69.
    Patil, S. A. et al. Electroactive mixed culture derived biofilms in microbial bioelectrochemical systems: the role of pH on biofilm formation, performance, and composition. Bioresour. Technol. 102, 9683–9690 (2011).
    CAS  PubMed  Article  Google Scholar 

    70.
    Feng, Y., Yang, Q., Wang, X. & Logan, B. E. Treatment of carbon fiber brush anodes for improving power generation in air-cathode microbial fuel cells. J. Power Sources 195, 1841–1844 (2010).
    CAS  Article  Google Scholar  More

  • in

    Spotlight on the invasion of a carabid beetle on an oceanic island over a 105-year period

    1.
    Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435. https://doi.org/10.1038/ncomms14435 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 
    2.
    Parker, I. M. et al. Impact: toward a framework for understanding the ecological effects of invaders. Biol. Invasions 1, 3–19. https://doi.org/10.1023/A:1010034312781 (1999).
    Article  Google Scholar 

    3.
    Gurevitch, J. & Padilla, D. K. Are invasive species a major cause of extinctions?. Trends Ecol. Evol. 19, 470–474. https://doi.org/10.1016/j.tree.2004.07.005 (2004).
    Article  PubMed  PubMed Central  Google Scholar 

    4.
    Richardson, D. M., Pyšek, P. & Carlton, J. T. A compendium of essential concepts and terminology in invasion ecology. In Fifty Years of Invasion Ecology: The Legacy of Charles Elton (ed. Richardson, D. M.) 409–420 (Wiley, Oxford, 2011).
    Google Scholar 

    5.
    Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339. https://doi.org/10.1016/j.tree.2011.03.023 (2011).
    Article  PubMed  PubMed Central  Google Scholar 

    6.
    Chabrerie, O. et al. Biological invasion theories: merging perspectives from population, community, and ecosystem scales. Hal-Inria. https://doi.org/10.20944/preprints201910.0327.v1 (2019).
    Article  Google Scholar 

    7.
    Simberloff, D. & Rejmanek, M. Encyclopedia of Biological Invasions (University of California Press, Berkeley, 2011).
    Google Scholar 

    8.
    Thuiller, W., Richardson, D. M., Rouget, M., Procheş, Ş & Wilson, J. R. U. Interactions between environment, species traits, and human uses describe patterns of plant invasion. Ecology 87, 1755–1769. https://doi.org/10.1890/0012-9658(2006)87[1755:IBESTA]2.0.CO;2 (2006).
    Article  PubMed  PubMed Central  Google Scholar 

    9.
    Thuiller, W., Gassó, N., Pino, J. & Vilà, M. Ecological niche and species traits: key drivers of regional plant invader assemblages. Biol. Invasions 14, 1963–1980. https://doi.org/10.1007/s10530-012-0206-0 (2012).
    Article  Google Scholar 

    10.
    Renault, D., Laparie, M., McCauley, S. J. & Bonte, D. Environmental adaptations, ecological filtering, and dispersal central to insect invasions. Annu. Rev. Entomol. 63, 345–368. https://doi.org/10.1146/annurev-ento-020117-043315 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    11.
    Alpert, P., Bone, E. & Holzapfel, C. Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspect. Plant Ecol. Evol. Syst. 3, 52–66. https://doi.org/10.1078/1433-8319-00004 (2000).
    Article  Google Scholar 

    12.
    David, P. et al. Impacts of invasive species on food webs: a review of empirical data. In Networks of Invasion: A Synthesis of Concepts. Adv Ecol Res Vol. 56 (eds Bohan, D. A. et al.) 1–60 (Academic Press, Boca Raton, 2017).
    Google Scholar 

    13.
    Hui, C. et al. Defining invasiveness and invasibility in ecological networks. Biol. Invasions 18, 971–983. https://doi.org/10.1007/s10530-016-1076-7 (2016).
    Article  Google Scholar 

    14.
    Kolar, C. S. & Lodge, D. M. Progress in invasion biology: predicting invaders. Trends Ecol. Evol. 16, 199–204. https://doi.org/10.1016/S0169-5347(01)02101-2 (2001).
    Article  PubMed  PubMed Central  Google Scholar 

    15.
    Jeschke, J. M. & Strayer, D. L. Invasion success of vertebrates in Europe and North America. Proc. Natl. Acad. Sci. USA 102, 7198–7202. https://doi.org/10.1073/pnas.0504835102 (2005).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    16.
    Liebhold, A., Halverson, J. & Elmes, G. Gypsy moth invasion in North America: a quantitative analysis. J. Biogeogr. 19, 513–520. https://doi.org/10.2307/2845770 (1992).
    Article  Google Scholar 

    17.
    Goldstein, J., Park, J., Haran, M., Liebhold, A. & Bjonstad, O. N. Quantifying spatio-temporal variation of invasion spread. Proc. R. Soc. B 286, 20182294 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    18.
    Costello, C. J. & Solow, A. R. On the pattern of discovery of introduced species. Proc. Natl. Acad. Sci. USA 100, 3321–3323. https://doi.org/10.1073/pnas.0636536100 (2003).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    19.
    Crooks, J. A. Lag times and exotic species: the ecology and management of biological invasions in slow-motion. Ecoscience 12, 316–329. https://doi.org/10.2980/i1195-6860-12-3-316.1 (2005).
    Article  Google Scholar 

    20.
    Carey, J. R. The incipient Mediterranean fruit fly population in California: implications for invasion biology. Ecology 77, 1690–1697. https://doi.org/10.2307/2265775 (1996).
    Article  Google Scholar 

    21.
    Cavey, J. F., Hoebeke, E., Passoa, S. & Lingafelter, S. W. A new exotic threat to North American hardwood forests: an Asian longhorned beetle, Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae). I. Larval description and diagnosis. Proc. Entomol. Soc. Wash. 100, 373–381 (1998).
    Google Scholar 

    22.
    Turgeon, J. J. et al. Density and location of simulated signs of injury affect efficacy of ground surveys for Asian longhorned beetle. Can. Entomol. 142, 80–96 (2010).
    Article  Google Scholar 

    23.
    Brown, P. M. J. et al. Harmonia axyridis in Europe: spread and distribution of a non-native coccinellid. Biocontrol 53, 5–21. https://doi.org/10.1007/s10526-007-9132-y (2008).
    Article  Google Scholar 

    24.
    Perrard, A., Haxaire, J., Rortais, A. & Villemant, C. Observations on the colony activity of the Asian hornet Vespa velutina Lepeletier 1836 (Hymenoptera: Vespidae: Vespinae) in France. Ann. Soc. Entomol. Fr. 45, 119–127. https://doi.org/10.1080/00379271.2009.10697595 (2009).
    Article  Google Scholar 

    25.
    Brown, P. M. J. et al. The global spread of Harmonia axyridis (Coleoptera: Coccinellidae): distribution, dispersal and routes of invasion. Biocontrol 56, 623–641. https://doi.org/10.1007/s10526-011-9379-1 (2011).
    Article  Google Scholar 

    26.
    Lombaert, E. et al. Bridgehead effect in the worldwide invasion of the biocontrol Harlequin Ladybird. PLoS ONE 5, e9743. https://doi.org/10.1371/journal.pone.0009743 (2010).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    27.
    Ball-Damerow, J. E. et al. Research applications of primary biodiversity databases in the digital age. PLoS ONE 14(9), e0215794. https://doi.org/10.1371/journal.pone.0215794 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    28.
    Lustig, A. et al. A modeling framework for the establishment and spread of invasive species in heterogeneous environments. Ecol. Evol. 7, 8338–8348. https://doi.org/10.1002/ece3.2915 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    29.
    Sofaer, H. R. et al. Development and delivery of species distribution models to inform decision-making. Bioscience 69, 544–557. https://doi.org/10.1093/biosci/biz045 (2019).
    Article  Google Scholar 

    30.
    Stevenson, M. D., Rossmo, D. K., Knell, R. K. & Le Comber, S. C. Geographic profiling as a novel spatial tool for targeting the control of invasive species. Ecography 35, 704–715. https://doi.org/10.1111/j.1600-0587.2011.07292.x (2012).
    Article  Google Scholar 

    31.
    Lefcheck, J. S. PiecewiseSEM: piecewise structural equation modelling in R for ecology, evolution and systematics. Methods Ecol. Evol. 7, 573–579. https://doi.org/10.1111/2041-210X.12512 (2016).
    Article  Google Scholar 

    32.
    Frenot, Y. et al. Biological invasions in the Antarctic: extent, impacts and implications. Biol. Rev. 80, 45–72. https://doi.org/10.1017/S1464793104006542 (2005).
    Article  PubMed  PubMed Central  Google Scholar 

    33.
    Lebouvier, M. et al. The significance of the sub-Antarctic Kerguelen Islands for the assessment of the vulnerability of native communities to climate change, alien insect invasions and plant viruses. Biol. Invasions 13, 1195–1208. https://doi.org/10.1007/s10530-011-9946-5 (2011).
    Article  Google Scholar 

    34.
    Greve, M., Mathakutha Rabia Steyn, C. & Chown, S. L. Terrestrial invasions on sub-Antarctic Marion and Prince Edward Islands. Bothalia Afr. Biodivers. Conserv. 47, 1–21. https://doi.org/10.4102/abc.v47i2.2143 (2017).
    Article  Google Scholar 

    35.
    Greve, M., von der Meden, C. E. O. & Janion-Scheepers, C. Biological invasions in South Africa’s offshore Sub-Antarctic Territories. In Biological invasions in South Africa. Invading nature—Springer series in invasion ecology Vol. 14 (eds van Wilgen, B. et al.) (Springer, Cham, 2020).
    Google Scholar 

    36.
    Hullé, M., Buchard, C., Georges, R. & Vernon, P. Guide d’identification des Invertébrés de Kerguelen et Crozet. 2nde édition (Université de Rennes 1, France, 2018). https://doi.org/10.15454/1.5375302767618145E12.

    37.
    Jeannel, R. Croisière du Bougainville aux Iles Australes françaises. Mém MNHN sér A Paris 14, 63–201 (1940).
    Google Scholar 

    38.
    Renault, D., Chevrier, M., Laparie, M., Vernon, P. & Lebouvier, M. Characterization of the habitats colonized by the alien ground beetle Merizodus soledadinus at the Kerguelen Islands. Rev Ecol (Terre et Vie) suppt 12, 28–32 (2015).
    Google Scholar 

    39.
    Chevrier, M., Vernon, P. & Frenot, Y. Potential effects of two alien insects on a sub-Antarctic wingless fly in the Kerguelen islands. In Antarctic Communities—Species, Structure and Survival (eds Battaglia, B. et al.) 424–431 (Cambridge University Press, Cambridge, 1997).
    Google Scholar 

    40.
    Reed, E. C. On the Coleoptera Geodephaga of Chile. In Proceedings of the General Meetings for Scientific Business of the Zoological Society of London, 48–70, plate XIII (1874).

    41.
    Champion, G. C. The Coleoptera of the Falkland Islands. Ann. Mag. Nat. Hist. 9(1), 167–186 (1918).
    Article  Google Scholar 

    42.
    Jeannel, R. Monographie des Trechinae (1). L’Abeille 32, 221–550 (1926).
    Google Scholar 

    43.
    Jeannel, R. Les Trechides de la Paléantarctide occidentale. In Biologie de l’Amérique Australe, Etudes sur la Faune du Sol (eds Delamare-Debouteville, C. & Rapoport, E.) 527–655 (Editions du C.N.R.S, Paris, 1962).
    Google Scholar 

    44.
    Jeannel, R. Biogéographie des Terres Australes de l’Océan Indien. Rev. Fr. Entomol. 31, 319–417 (1964).
    Google Scholar 

    45.
    Moore, D. M. The vascular flora of the Falkland Islands. Br. Antarct. Surv. Sci. Rep. 60, 1–160 (1968).
    Google Scholar 

    46.
    Darlington, P. J. Coleoptera: Carabidae of South Georgia. Pac Insects Monogr. 23, 234 (1970).
    Google Scholar 

    47.
    Roux, P. & Voisin, F.-F. Notes sur les Carabiques des îles Falkland (Col., Caraboidea). Bull. Soc. Entomol. Fr. 87, 200–204 (1982).
    Google Scholar 

    48.
    Block, W. & Somme, L. Low temperature adaptations in beetles from the sub-Antarctic Island of South Georgia. Polar Biol. 2, 109–114 (1983).
    Article  Google Scholar 

    49.
    Vogel, M. & Nicolai, V. Invertebrates collected at the old whaling station, Grytviken, South Georgia. Polar Rec. 21, 607–609. https://doi.org/10.1017/S0032247400022051 (1983).
    Article  Google Scholar 

    50.
    Tréhen, P. & Voisin, J.-F. Sur la présence de Merizodus soledadinus Guérin à Kerguelen (Coléoptère, Trechidae). L’Entomologiste 40, 53–54 (1984).
    Google Scholar 

    51.
    Lewis Smith, R. I. & Prince, P. A. The natural history of Beauchêne Island. Biol. J. Lin. Soc. 24, 233–283. https://doi.org/10.1111/j.1095-8312.1985.tb00374.x (1985).
    Article  Google Scholar 

    52.
    Smith, K. G. V. Darwin’s insects. Charles Darwin’s Entomological Notes. Bulletin of the British Museum (Natural History) (historical series), 14 1 (1987).

    53.
    Ottesen, P. S. Diel activity patterns of Carabidae, Staphylinidae and Perimylopidae (Coleoptera) at South Georgia, sub-Antarctic. Polar Biol. 10, 515–519. https://doi.org/10.1007/BF00233700 (1990).
    Article  Google Scholar 

    54.
    Dreux, P., Galiana, D. & Voisin, J. F. Acclimatation de Merizodus soledadinus Guérin dans l’archipel de Kerguelen (Coleoptera, Trechidae). Bull. Soc. Entomol. Fr. 97, 219–221 (1992).
    Google Scholar 

    55.
    Ernsting, G. Observations on life cycle and feeding ecology of two recently introduced predatory beetle species at South Georgia, sub-Antarctic. Polar Biol. 13, 423–428. https://doi.org/10.1007/BF01681985 (1993).
    Article  Google Scholar 

    56.
    Ernsting, G., Block, W., MacAlister, H. & Todd, C. The invasion of the carnivorous carabid beetle Trechisibus antarcticus on South Georgia (sub-Antarctic) and its effect on the endemic herbivorous beetle Hydromedion spasutum. Oecologia 103, 34–42 (1995).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Chevrier, M. Introduction de deux espèces d’insectes aux îles Kerguelen: processus de colonisation et exemples d’interactions. Thèse de doctorat, Université de Rennes 1, France (1996).

    58.
    Todd, C. M. Respiratory metabolism in two species of carabid beetle from the sub-Antarctic island of South Georgia. Polar Biol. 18, 166–171. https://doi.org/10.1007/s003000050173 (1997).
    Article  Google Scholar 

    59.
    Todd, C. M. & Block, W. Responses to desiccation in four Coleopterans from sub-Antarctic South Georgia. J. Insect Physiol. 43, 905–913. https://doi.org/10.1016/S0022-1910(97)00055-3 (1997).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    60.
    Grebennikov, V. V. Larvae of Zolini (Coleoptera: Carabidae): Genera Oopterus Guérin-Méneville and Idacarabus lea. Coleopt. Bull. 53(3), 245–252 (1999).
    Google Scholar 

    61.
    Brandjes, G. J., Block, W. & Ernsting, G. Spatial dynamics of two introduced species of carabid beetles on the sub-Antarctic island of South Georgia. Polar Biol. 21, 326–334. https://doi.org/10.1007/s003000050369 (1999).
    Article  Google Scholar 

    62.
    Arndt, E. Larvae of the subfamily Trechinae from the Southern Hemisphere (Insecta, Coleoptera, Carabidae). Spixiana 23, 85–91 (2000).
    Google Scholar 

    63.
    Casagranda, M. D., Roigt-Juňent, S. & Szumik, C. Endemism at different spatial scales: an example with Carabidae (Coleoptera: Insecta) of austral South America. Rev. Chil. Hist. Nat. 82, 17–42. https://doi.org/10.4067/S0716-078X2009000100002 (2009).
    Article  Google Scholar 

    64.
    Papadopoulou, A., Jones, A. G., Hammond, P. M. & Vogler, A. P. DNA taxonomy and phylogeography of beetles of the Falkland Islands (Islas Malvinas). Mol. Phylogenet. Evol. 53, 935–947 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Convey, P., Key, R. S., Key, R. J. D., Belchier, M. & Waller, C. L. Recent range expansion in non-native predatory beetles on sub-Antarctic South Georgia. Polar Biol. 34, 597–602. https://doi.org/10.1007/s00300-010-0909-6 (2011).
    Article  Google Scholar 

    66.
    Briot, C. Les frères Bossière : pionniers des Kerguelen. Recueil de l’Association des Amis du Vieux Havre 49, 113–143 (1990).
    Google Scholar 

    67.
    Arnaud, P. & Beurois, J. Les Armateurs du Rêve (Editions F. Jambois, Marseille, 1996).

    68.
    Delépine, G. Histoires extraordinaires et inconnues dans les mers australes (Editions Ouest-France, Rennes, 2002).
    Google Scholar 

    69.
    Hulme, P. E. et al. Grasping at the routes of biological invasions: a framework for integrating pathways into policy. J. Appl. Ecol. 45, 403–414. https://doi.org/10.1111/j.1365-2664.2007.01442.x (2008).
    Article  Google Scholar 

    70.
    Veldtman, R., Chown, S. L. & McGeoch, M. A. Using scale-area curves to quantify the distribution, abundance and range expansion potential of an invasive species. Divers. Distrib. 16, 159–169. https://doi.org/10.1111/j.1472-4642.2009.00632.x (2010).
    Article  Google Scholar 

    71.
    Frenot, Y., Gloaguen, J.-C., Massé, L. & Lebouvier, M. Human activities, ecosystem disturbance and plant invasions in subantarctic Crozet, Kerguelen and Amsterdam Islands. Biol. Conserv. 101, 33–50. https://doi.org/10.1016/S0006-3207(01)00052-0 (2001).
    Article  Google Scholar 

    72.
    Kiritani, K. & Yamamura, K. Exotic insects and their pathways for invasion. In Invasive Species-Vectors and Management Strategies (eds Ruiz, G. M. & Carlton, J. T.) 44–67 (Island Press, Washington, 2003).
    Google Scholar 

    73.
    Morimoto, N. et al. Finding indications of lag time, saturation and trading inflow in the emergence record of exotic agricultural insect pests in Japan. Appl. Entomol. Zool. 54, 437–450. https://doi.org/10.1007/s13355-019-00640-2 (2019).
    Article  Google Scholar 

    74.
    Liebhold, A. M. & Tobin, P. C. Growth of newly established alien populations: comparison of North American gypsy moth colonies with invasion theory. Popul. Ecol. 48, 253–262. https://doi.org/10.1007/s10144-006-0014-4 (2006).
    Article  Google Scholar 

    75.
    Tobin, P. C., Berec, L. & Liebhold, A. M. Exploiting Allee effects for managing biological invasions. Ecol. Lett. 14, 615–624. https://doi.org/10.1111/j.1461-0248.2011.01614.x (2011).
    Article  PubMed  PubMed Central  Google Scholar 

    76.
    Taylor, C. M. & Hastings, A. Allee effects in biological invasions. Ecol. Lett. 8, 895–908. https://doi.org/10.1111/j.1461-0248.2005.00787.x (2005).
    Article  Google Scholar 

    77.
    Catford, J. A., Jansson, R. & Nilsson, C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers. Distrib. 15, 22–40 (2009).
    Article  Google Scholar 

    78.
    Enders, M. et al. A conceptual map of invasion biology: integrating hypotheses into a consensus network. Glob. Ecol. Biogeogr. 29, 978–991 (2020).
    Article  Google Scholar 

    79.
    Ouisse, T., Laparie, M., Lebouvier, M. & Renault, D. New insights into the ecology of Merizodus soledadinus, a predatory carabid beetle invading the sub-Antarctic Kerguelen Islands. Polar Biol. 40, 2201–2209. https://doi.org/10.1007/s00300-017-2134-z (2017).
    Article  Google Scholar 

    80.
    Ouisse, T. Phenotypic and genetic characterisation of the carabid beetle Merizodus soledadinus along its invasion gradient at the subantarctic Kerguelen Islands. Thesis of the University of Rennes 1. 143p (2016).

    81.
    Renault, D. Sea water transport and submersion tolerance as dispersal strategies for the invasive ground beetle Merizodus soledadinus (Carabidae). Polar Biol. 34, 1591–1595. https://doi.org/10.1007/s00300-011-1020-3 (2011).
    Article  Google Scholar 

    82.
    Hidalgo, K. et al. Metabolic fingerprinting of the responses to salinity in the invasive ground beetle Merizodus soledadinus at the Kerguelen Islands. J. Insect Physiol. 59, 91–100. https://doi.org/10.1016/j.jinsphys.2012.10.017 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    83.
    Lindenmayer, D. B. & Fischer, J. Tackling the habitat fragmentation panchreston. Trends Ecol. Evol. 22, 127–132. https://doi.org/10.1016/j.tree.2006.11.006 (2007).
    Article  PubMed  PubMed Central  Google Scholar 

    84.
    Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 48, 110316–122612. https://doi.org/10.1146/annurev-ecolsys-110316-022612 (2017).
    Article  Google Scholar 

    85.
    Renault, D. A review of the phenotypic traits associated with insect dispersal polymorphism, and experimental designs for sorting out resident and disperser phenotypes. Insects 11, 214 (2020).
    PubMed Central  Article  Google Scholar 

    86.
    Sharov, A. A. & Liebhold, A. M. Model of slowing the spread of gypsy moth (Lepidoptera: Lymantriidae) with a barrier zone. Ecol. Appl. 8, 1170–1179 (1998).
    Article  Google Scholar 

    87.
    De la Giroday, H.-M.C., Carrol, A. L. & Aukemar, B. H. Honey-Maire breach of the northern rocky mountain geoclimatic barrier: initiation of range expansion by the mountain pine beetle. J. Biogeogr. 39, 1112–1123 (2012).
    Article  Google Scholar 

    88.
    Li, C. et al. Effect of temperature on the occurrence and distribution of Colorado potato beetle (Coleoptera: Chrysomelidae) in China. Environ. Entomol. 43, 511–519 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    89.
    Kennedy, T. A. et al. Biodiversity as a barrier to ecological invasion. Nature 417, 636–638 (2002).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    90.
    Zhu, R. et al. Penguins significantly increased phosphine formation and phosphorus contribution in maritime Antarctic soils. Sci. Rep. 4, 7055. https://doi.org/10.1038/srep07055 (2015).
    CAS  Article  Google Scholar 

    91.
    Ribeiro Nunes, L. J., Meireles, C. I. R., Pinto Gomes, C. J. & Almeida Ribeiro, N. M. C. Propagation model of invasive species: road systems as dispersion facilitators. Res. Ecol. https://doi.org/10.30564/re.v2i1.1054 (2020).
    Article  Google Scholar 

    92.
    Leuven, R. S. E. W. et al. The river Rhine: a global highway for dispersal of aquatic invasive species. Biol. Invasions 11, 1989–2008 (2009).
    Article  Google Scholar 

    93.
    Liu, X. et al. Risks of biological invasion on the Belt and Road. Curr. Biol. 29, 499–505 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    94.
    Ouisse, T., Hendrickx, F., Lebouvier, M., Bonte, D. & Renault, D. The desiccation sensitivity of an invasive ground beetle as the main driver of its geographical distribution in subpolar islands. J. Insect Physiol. 93, 42–49 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    95.
    Tréhen, P., Vernon, P., Delettre, Y. & Frenot, Y. Organisation et dynamique des peuplements diptérologiques à Kerguelen. Mise en évidence de modifications liées à l’insularité (exemple de l’Ile de Croÿ, Iles Nuageuses). Comité National Français des Recherches Antarctiques 58, 241–253 (1987).
    Google Scholar 

    96.
    Kavanaugh, D. H. & Erwin, T. L. Trechus obtusus Erichson (Coleoptera: Carabidae), a European ground beetle, on the Pacific coast of North America: its distribution, introduction, and spread. Pan-Pac Entomol. 61, 170–179 (1985).
    Google Scholar 

    97.
    Liebherr, J. K. & Takumi, R. Introduction and distributional expansion of Trechus obtusus (Coleoptera, Carabidae) in Maui, Hawai’i. Pac. Sci. 56, 365–375 (2002).
    Article  Google Scholar 

    98.
    Engell Dahl, J. et al. Thermal tolerance patterns of a carabid beetle sampled along invasion and altitudinal gradients at a sub-Antarctic island. J. Therm. Biol. https://doi.org/10.1016/j.jtherbio.2019.102447 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    99.
    Lalouette, L., Williams, C. M., Cottin, M., Sinclair, B. J. & Renault, D. Thermal biology of the alien ground beetle Merizodus soledadinus introduced to the Kerguelen Islands. Polar Biol. 35, 509–517. https://doi.org/10.1007/s00300-011-1096-9 (2012).
    Article  Google Scholar 

    100.
    Laparie, M. & Renault, D. Physiological responses to temperature in Merizodus soledadinus (Col., Carabidae), a subpolar carabid beetle invading sub-Antarctic islands. Polar Biol. 39, 35–45. https://doi.org/10.1007/s00300-014-1600-0 (2016).
    Article  Google Scholar 

    101.
    Ouisse, T. et al. Does climate change facilitate the expansion of the invasive carabid beetle Merizodus soledadinus in the sub-Antarctic Kerguelen Islands?. Sci. Rep. 10, 1–12 (2020).
    Article  CAS  Google Scholar 

    102.
    Chapuis, J. -L., Vernon, P. & Frenot, Y. Fragilité des peuplements insulaires: exemple des îles Kerguelen, archipel subantarctique. In Réactions des êtres vivants aux changements de l’environnement, PIREN, CNRS, 235–248 (1991).

    103.
    Chapuis, J.-L., Boussès, P. & Barnaud, G. Alien mammals, impact and management in the French Subantarctic Islands. Biol. Conserv. 67, 97–104. https://doi.org/10.1016/0006-3207(94)90353-0 (1994).
    Article  Google Scholar 

    104.
    Pertierra, L. R. et al. Combining correlative and mechanistic niche models with human activity data to elucidate the invasive potential of a sub-Antarctic insect. J. Biogeogr. https://doi.org/10.1111/jbi.13780 (2019).
    Article  Google Scholar 

    105.
    Robinson, G. S. Insects of the Falkland Islands: a checklist and bibliography (Henry Ling Ltd., The Dorset Press, Dorchester, 1984).
    Google Scholar 

    106.
    Niemelä, J. Habitat distribution of carabid beetles in Tierra Del Fuego, South-America. Entomol. Fenn. 1, 3–16. https://doi.org/10.33338/ef.83348 (1990).
    Article  Google Scholar 

    107.
    Enderlein, G. Die Insekten des Antarkto-Archiplata-Gebietes (Feuerland, Falklands-Inseln, Süd-Georgien). Konglica Svenska Vetenskapsakademiens Handlingar 48, 1–170 (1912).
    Google Scholar 

    108.
    Johns, P. M. Arthropoda of the subantarctic islands of New Zealand (1) Coleoptera: Carabidae Southern New Zealand, Patagonian, and Falkland Islands insular Carabidae. J. R. Soc. N. Z. 4, 283–302. https://doi.org/10.1080/03036758.1974.10419396 (1974).
    Article  Google Scholar 

    109.
    Lalouette, L. Impact de l’activité anthropique et des changements climatiques sur le succès envahissant de Merizodus soledadinus (Coleoptera, Carabidae) introduit aux Iles Kerguelen. Thèse de doctorat, Université de Lyon 1, France (2009).

    110.
    Voisin, J. -F., Chapelin-Viscardi, J. -D., Ponel, P., Rapp, M. Les Coléoptères de la province de Kerguelen (îles subantarctiques de l’océan Indien). Faune de France n°99. Fédération française des Sociétés de Sciences naturelles, Paris (2017).

    111.
    Vernon, P. Peuplement diptérologique des substrats enrichis en milieu insulaire subantarctique (Iles Crozet). Etude des Sphaeroceridae du genre Anatalanta., Thèse Doctorat 3ème Cycle, Université de Rennes I, France (1981). More

  • in

    Deep amoA amplicon sequencing reveals community partitioning within ammonia-oxidizing bacteria in the environmentally dynamic estuary of the River Elbe

    1.
    Kowalchuk, G. A. & Stephen, J. R. Ammonia-oxidizing bacteria: A model for molecular microbial ecology. Annu. Rev. Microbiol. 55, 485–529. https://doi.org/10.1146/annurev.micro.55.1.485 (2001).
    CAS  Article  PubMed  Google Scholar 
    2.
    Koops, H.-P. & Pommerening-Röser, A. Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiol. Ecol. 37, 1–9. https://doi.org/10.1111/j.1574-6941.2001.tb00847.x (2001).
    CAS  Article  Google Scholar 

    3.
    Monteiro, M., Seneca, J. & Magalhaes, C. The history of aerobic ammonia oxidizers: From the first discoveries to today. J. Microbiol. 52, 537–547. https://doi.org/10.1007/s12275-014-4114-0 (2014).
    CAS  Article  PubMed  Google Scholar 

    4.
    Lehtovirta-Morley, L. E. Ammonia oxidation: Ecology, physiology, biochemistry and why they must all come together. FEMS Microbiol. Lett. https://doi.org/10.1093/femsle/fny058 (2018).
    Article  PubMed  Google Scholar 

    5.
    Könneke, M. et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437, 543. https://doi.org/10.1038/nature03911 (2005).
    ADS  CAS  Article  PubMed  Google Scholar 

    6.
    Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504. https://doi.org/10.1038/nature16461 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    7.
    van Kessel, M. A. H. J. et al. Complete nitrification by a single microorganism. Nature 528, 555. https://doi.org/10.1038/nature16459 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    8.
    Leininger, S. et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442, 806–809. https://doi.org/10.1038/nature04983 (2006).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    9.
    Martens-Habbena, W., Berube, P. M., Urakawa, H., de la Torre, J. R. & Stahl, D. A. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461, 976–979. https://doi.org/10.1038/nature08465 (2009).
    ADS  CAS  Article  PubMed  Google Scholar 

    10.
    Prosser, J. I. & Nicol, G. W. Archaeal and bacterial ammonia-oxidisers in soil: The quest for niche specialisation and differentiation. Trends Microbiol. 20, 523–531. https://doi.org/10.1016/j.tim.2012.08.001 (2012).
    CAS  Article  PubMed  Google Scholar 

    11.
    Shen, J. P., Zhang, L. M., Zhu, Y. G., Zhang, J. B. & He, J. Z. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environ. Microbiol. 10, 1601–1611. https://doi.org/10.1111/j.1462-2920.2008.01578.x (2008).
    CAS  Article  PubMed  Google Scholar 

    12.
    Tourna, M., Freitag, T. E., Nicol, G. W. & Prosser, J. I. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ. Microbiol. 10, 1357–1364. https://doi.org/10.1111/j.1462-2920.2007.01563.x (2008).
    CAS  Article  PubMed  Google Scholar 

    13.
    Verhamme, D. T., Prosser, J. I. & Nicol, G. W. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. ISME J. 5, 1067–1071. https://doi.org/10.1038/ismej.2010.191 (2011).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    14.
    Wang, Y. F., Li, X. Y. & Gu, J. D. Differential responses of ammonia/ammonium-oxidizing microorganisms in mangrove sediment to amendment of acetate and leaf litter. Appl. Microbiol. Biotechnol. 98, 3165–3180. https://doi.org/10.1007/s00253-013-5318-7 (2014).
    CAS  Article  PubMed  Google Scholar 

    15.
    Sahan, E. & Muyzer, G. Diversity and spatio-temporal distribution of ammonia-oxidizing Archaea and Bacteria in sediments of the Westerschelde estuary. FEMS Microbiol. Ecol. 64, 175–186. https://doi.org/10.1111/j.1574-6941.2008.00462.x (2008).
    CAS  Article  PubMed  Google Scholar 

    16.
    Saha, M., Sarkar, A. & Bandhophadhyay, B. Introduction to establish the comparative analysis of 16S rRNA gene sequences with amoA and nxrA for nitrifying bacteria isolated from East Kolkata wetland: An International Ramsar Site. J. Aquac. Res. Dev. https://doi.org/10.4172/2155-9546.1000270 (2014).
    Article  Google Scholar 

    17.
    Watson, S. W. Characteristics of a marine nitrifying bacterium, Nitrosocystis oceanus sp. n.. Limnol. Oceanogr. 10, 274–289 (1965).
    ADS  Article  Google Scholar 

    18.
    Campbell, M. A. et al. Nitrosococcus watsonii sp. nov., a new species of marine obligate ammonia-oxidizing bacteria that is not omnipresent in the world’s oceans: Calls to validate the names ‘Nitrosococcus halophilus’ and ‘Nitrosomonas mobilis’. FEMS Microbiol. Ecol. 76, 39–48. https://doi.org/10.1111/j.1574-6941.2010.01027.x (2011).
    CAS  Article  PubMed  Google Scholar 

    19.
    Hayatsu, M. et al. An acid-tolerant ammonia-oxidizing gamma-proteobacterium from soil. ISME J. 11, 1130–1141. https://doi.org/10.1038/ismej.2016.191 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    20.
    Koops, H.-P., Böttcher, B., Möller, U. C., Pommerening-Röser, A. & Stehr, G. Description of a new species of Nitrosococcus. Arch. Microbiol. 154, 244–248. https://doi.org/10.1007/bf00248962 (1990).
    CAS  Article  Google Scholar 

    21.
    Garrity, G. M., Bell, J. A., Lilburn, T. F. & I. , Nitrosomonadaceae fam nov. In Bergey’s Manual of Systematic Bacteriology, second edition, vol. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) (eds Brenner, D. J. et al.) 864 (Springer, New York, 2006).
    Google Scholar 

    22.
    Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996. https://doi.org/10.1038/nbt.4229 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    23.
    Schoer, J. H. Determination of the origin of suspended matter and sediments in the Elbe Estuary using natural tracers. Estuaries 13, 161–172. https://doi.org/10.2307/1351585 (1990).
    CAS  Article  Google Scholar 

    24.
    Groengroeft, A. et al. Distribution of metals in sediments of the Elbe estuary in 1994. Water Sci. Technol. 37, 109–116. https://doi.org/10.1016/S0273-1223(98)00189-9 (1998).
    CAS  Article  Google Scholar 

    25.
    Kleisinger, C., Haase, H., Hentschke, U. & Schubert, B. Contamination of sediments in the German North Sea Estuaries Elbe, Weser and Ems and its sensitivity to climate change. In (eds. Heiniger P. & Cullmann J.) 129–149 (Springer International Publishing, Geneva, 2015).

    26.
    Reese, A., Zimmermann, T., Profrock, D. & Irrgeher, J. Extreme spatial variation of Sr, Nd and Pb isotopic signatures and 48 element mass fractions in surface sediment of the Elbe River Estuary—Suitable tracers for processes in dynamic environments?. Sci. Total Environ. 668, 512–523. https://doi.org/10.1016/j.scitotenv.2019.02.401 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 

    27.
    Rotthauwe, J. H., Witzel, K. P. & Liesack, W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63, 4704–4712 (1997).
    CAS  Article  Google Scholar 

    28.
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17(3), 2011. https://doi.org/10.14806/ej.17.1.200 (2011).
    Article  Google Scholar 

    29.
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584. https://doi.org/10.7717/peerj.2584 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    30.
    Šmilauer, P. & Lepš, J. Multivariate Analysis of Ecological Data using CANOCO 5 2nd edn. (Cambridge University Press, Cambridge, 2014).
    Google Scholar 

    31.
    Hammer, Ø, Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
    Google Scholar 

    32.
    Holmes, A. J., Costello, A., Lidstrom, M. E. & Murrell, J. C. Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol. Lett. 132, 203–208. https://doi.org/10.1016/0378-1097(95)00311-r (1995).
    CAS  Article  PubMed  Google Scholar 

    33.
    Okano, Y. et al. Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Appl. Environ. Microbiol. 70, 1008–1016. https://doi.org/10.1128/aem.70.2.1008-1016.2004 (2004).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    34.
    Stehr, G., Böttcher, B., Dittberner, P., Rath, G. & Koops, H.-P. The ammonia-oxidizing nitrifying population of the River Elbe estuary. FEMS Microbiol. Ecol. 17, 177–186. https://doi.org/10.1016/0168-6496(95)00022-3 (1995).
    CAS  Article  Google Scholar 

    35.
    Koops, H. P., Böttcher, B., Möller, U. C., Pommerening-Röser, A. & Stehr, G. Classification of eight new species of ammonia-oxidizing bacteria: Nitrosomonas communis sp. nov., Nitrosomonas ureae sp. nov., Nitrosomonas aestuarii sp. nov., Nitrosomonas marina sp. nov., Nitrosomonas nitrosa sp. nov., Nitrosomonas eutropha sp. nov., Nitrosomonas oligotropha sp. nov. and Nitrosomonas halophila sp. nov.. Microbiology 137, 1689–1699. https://doi.org/10.1099/00221287-137-7-1689 (1991).
    CAS  Article  Google Scholar 

    36.
    Suwa, Y., Sumino, T. & Noto, K. Phylogenetic relationships of activated sludge isolates of ammonia oxidizers with different sensitivities to ammonium sulfate. J. Gen. Appl. Microbiol. 43, 373–379 (1997).
    CAS  Article  Google Scholar 

    37.
    Koops, H. P., Purkhold, U., Pommerening-Roser, A., Timmermann, G. & Wagner, M. The lithoautotrophic ammonia-oxidizing bacteria. In The Prokaryotes: An Evoluting Electronic Resource for the Microbiological Community (ed. Dworkin, M.) (Springer, New York, 2003).
    Google Scholar 

    38.
    Ballinger, S. J., Head, I. M., Curtis, T. P. & Godley, A. R. Molecular microbial ecology of nitrification in an activated sludge process treating refinery wastewater. Water Sci. Technol. 37, 105–108. https://doi.org/10.1016/S0273-1223(98)00091-2 (1998).
    CAS  Article  Google Scholar 

    39.
    Gieseke, A., Purkhold, U., Wagner, M., Amann, R. & Schramm, A. Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm. Appl. Environ. Microbiol. 67, 1351–1362. https://doi.org/10.1128/aem.67.3.1351-1362.2001 (2001).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    40.
    Dionisi, H. M. et al. Quantification of Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and Nitrospira spp. from full-scale wastewater treatment plants by competitive PCR. Appl. Environ. Microbiol. 68, 245–253. https://doi.org/10.1128/AEM.68.1.245-253.2002 (2002).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    41.
    Harms, G. et al. Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ. Sci. Technol. 37, 343–351. https://doi.org/10.1021/es0257164 (2003).
    ADS  CAS  Article  PubMed  Google Scholar 

    42.
    Qin, Y. Y., Li, D. T. & Yang, H. Investigation of total bacterial and ammonia-oxidizing bacterial community composition in a full-scale aerated submerged biofilm reactor for drinking water pretreatment in China. FEMS Microbiol. Lett. 268, 126–134. https://doi.org/10.1111/j.1574-6968.2006.00571.x (2007).
    CAS  Article  PubMed  Google Scholar 

    43.
    Regan, J. M., Harrington, G. W. & Noguera, D. R. Ammonia- and nitrite-oxidizing bacterial communities in a pilot-scale chloraminated drinking water distribution system. Appl. Environ. Microbiol. 68, 73–81 (2002).
    CAS  Article  Google Scholar 

    44.
    Stehr, G. et al. Exopolymers: An ecological characteristic of a floc-attached, ammonia-oxidizing bacterium. Microb. Ecol. 30, 115–126 (1995).
    CAS  Article  Google Scholar 

    45.
    Bollmann, A. & Laanbroek, H. J. Influence of oxygen partial pressure and salinity on the community composition of ammonia-oxidizing bacteria in the Schelde estuary. Aquat. Microb. Ecol. 28, 239–247 (2002).
    Article  Google Scholar 

    46.
    Cébron, A., Coci, M., Garnier, J. & Laanbroek, H. J. Denaturing gradient gel electrophoretic analysis of ammonia-oxidizing bacterial community structure in the lower Seine River: Impact of Paris wastewater effluents. Appl. Environ. Microbiol. 70, 6726–6737. https://doi.org/10.1128/aem.70.11.6726-6737.2004 (2004).
    Article  PubMed  PubMed Central  Google Scholar 

    47.
    Cao, H., Hong, Y., Li, M. & Gu, J. D. Community shift of ammonia-oxidizing bacteria along an anthropogenic pollution gradient from the Pearl River Delta to the South China Sea. Appl. Microbiol. Biotechnol. 94, 247–259. https://doi.org/10.1007/s00253-011-3636-1 (2012).
    CAS  Article  PubMed  Google Scholar 

    48.
    Limpiyakorn, T., Shinohara, Y., Kurisu, F. & Yagi, O. Communities of ammonia-oxidizing bacteria in activated sludge of various sewage treatment plants in Tokyo. FEMS Microbiol. Ecol. 54, 205–217. https://doi.org/10.1016/j.femsec.2005.03.017 (2005).
    CAS  Article  PubMed  Google Scholar 

    49.
    Winogradsky, S. & Winogradsky, H. Etudes sur la microbiologie du sol. VII Nouvelles recherches sur les organismes de la nitrification. Ann. Inst Pasteur 50, 350–432 (1933).
    Google Scholar 

    50.
    Watson, S. W. Reisolation of Nitrosospira briensis S. Winogradsky and H. Winogradsky 1933. Archiv fur Mikrobiologie 75, 179–188. https://doi.org/10.1007/bf00408979 (1971).
    CAS  Article  PubMed  Google Scholar 

    51.
    Urakawa, H. et al. Nitrosospira lacus sp. nov., a psychrotolerant, ammonia-oxidizing bacterium from sandy lake sediment. Int. J. Syst. Evol. Microbiol. 65, 242–250. https://doi.org/10.1099/ijs.0.070789-0 (2015).
    CAS  Article  PubMed  Google Scholar 

    52.
    Harms, H., Koops, H. P. & Wehrmann, H. An ammonia-oxidizing bacterium, Nitrosovibrio tenuis nov. gen. nov. sp. Arch. Microbiol. 108, 105–111. https://doi.org/10.1007/bf00425099 (1976).
    CAS  Article  PubMed  Google Scholar 

    53.
    Watson, S. W., Graham, L. B., Remsen, C. C. & Valois, F. W. A lobular, ammonia-oxidizing bacterium, Nitrosolobus multiformis nov. gen. nov. sp. Archiv fur Mikrobiologie 76, 183–203. https://doi.org/10.1007/bf00409115 (1971).
    CAS  Article  PubMed  Google Scholar 

    54.
    Hiorns, W. D. et al. Amplification of 16S ribosomal RNA genes of autotrophic ammonia-oxidizing bacteria demonstrates the ubiquity of nitrosospiras in the environment. Microbiology 141(Pt 11), 2793–2800. https://doi.org/10.1099/13500872-141-11-2793 (1995).
    Article  PubMed  Google Scholar 

    55.
    Hastings, R. C. et al. Direct molecular biological analysis of ammonia oxidising bacteria populations in cultivated soil plots treated with swine manure. FEMS Microbiol. Ecol. 23, 45–54. https://doi.org/10.1111/j.1574-6941.1997.tb00390.x (1997).
    CAS  Article  Google Scholar 

    56.
    Ceccherini, M. T. et al. Effects of swine manure on autotrophic ammonia-oxidizing bacteria in soil microcosms. Appl. Soil Ecol. 7, 149–157 (1998).
    Article  Google Scholar 

    57.
    Martikainen, P. J. & Nurmiaho-Lassila, E.-L. Nitrosospira, an important ammonium-oxidizing bacterium in fertilized coniferous forest soil. Can. J. Microbiol. 31, 190–197. https://doi.org/10.1139/m85-037 (1985).
    CAS  Article  Google Scholar 

    58.
    Kowalchuk, G. A., Stienstra, A. W., Heilig, G. H., Stephen, J. R. & Woldendorp, J. W. Changes in the community structure of ammonia-oxidizing bacteria during secondary succession of calcareous grasslands. Environ. Microbiol. 2, 99–110 (2000).
    CAS  Article  Google Scholar 

    59.
    Speksnijder, A. G., Kowalchuk, G. A., Roest, K. & Laanbroek, H. J. Recovery of a Nitrosomonas-like 16S rDNA sequence group from freshwater habitats. Syst. Appl. Microbiol. 21, 321–330. https://doi.org/10.1016/s0723-2020(98)80040-4 (1998).
    CAS  Article  PubMed  Google Scholar 

    60.
    Whitby, C. B., Saunders, J. R., Pickup, R. W. & McCarthy, A. J. A comparison of ammonia-oxidiser populations in eutrophic and oligotrophic basins of a large freshwater lake. Antonie Van Leeuwenhoek 79, 179–188. https://doi.org/10.1023/A:1010202211368 (2001).
    CAS  Article  PubMed  Google Scholar 

    61.
    Burrell, P. C., Phalen, C. M. & Hovanec, T. A. Identification of Bacteria Responsible For Ammonia Oxidation In Freshwater Aquaria. Appl. Environ. Microbiol. 67, 5791–5800. https://doi.org/10.1128/aem.67.12.5791-5800.2001 (2001).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    62.
    Spieck, E., Meincke, M. & Bock, E. Taxonomic diversity of Nitrosovibrio strains isolated from building sandstones. FEMS Microbiol. Ecol. 11, 21–26. https://doi.org/10.1111/j.1574-6968.1992.tb05791.x (1992).
    Article  Google Scholar 

    63.
    Nugroho, R. A., Roling, W. F., Laverman, A. M., Zoomer, H. R. & Verhoef, H. A. Presence of Nitrosospira cluster 2 bacteria corresponds to N transformation rates in nine acid Scots pine forest soils. FEMS Microbiol. Ecol. 53, 473–481. https://doi.org/10.1016/j.femsec.2005.02.002 (2005).
    CAS  Article  PubMed  Google Scholar 

    64.
    Stephen, J. R., McCaig, A. E., Smith, Z., Prosser, J. I. & Embley, T. M. Molecular diversity of soil and marine 16S rRNA gene sequences related to beta-subgroup ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 62, 4147–4154 (1996).
    CAS  Article  Google Scholar 

    65.
    Phillips, C. J., Smith, Z., Embley, T. M. & Prosser, J. I. Phylogenetic differences between particle-associated and planktonic ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in the Northwestern Mediterranean Sea. Appl. Environ. Microbiol. 65, 779–786 (1999).
    CAS  Article  Google Scholar 

    66.
    Bano, N. & Hollibaugh, J. T. Diversity and distribution of DNA sequences with affinity to ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in the Arctic Ocean. Appl. Environ. Microbiol. 66, 1960–1969 (2000).
    CAS  Article  Google Scholar 

    67.
    McCaig, A. E., Embley, T. M. & Prosser, J. I. Molecular analysis of enrichment cultures of marine ammonia oxidisers. FEMS Microbiol. Lett. 120, 363–367 (1994).
    CAS  Article  Google Scholar 

    68.
    Nicolaisen, M. H. & Ramsing, N. B. Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J. Microbiol. Methods 50, 189–203 (2002).
    CAS  Article  Google Scholar 

    69.
    Freitag, T. E., Chang, L. & Prosser, J. I. Changes in the community structure and activity of betaproteobacterial ammonia-oxidizing sediment bacteria along a freshwater-marine gradient. Environ. Microbiol. 8, 684–696. https://doi.org/10.1111/j.1462-2920.2005.00947.x (2006).
    CAS  Article  PubMed  Google Scholar 

    70.
    Wankel, S. D., Mosier, A. C., Hansel, C. M., Paytan, A. & Francis, C. A. Spatial variability in nitrification rates and ammonia-oxidizing microbial communities in the agriculturally impacted Elkhorn Slough estuary, California. Appl. Environ. Microbiol. 77, 269–280. https://doi.org/10.1128/aem.01318-10 (2011).
    CAS  Article  PubMed  Google Scholar 

    71.
    Jacob, J., Sanders, T. & Dähnke, K. Nitrite consumption and associated isotope changes during a river flood event. Biogeosciences 13, 5649–5659. https://doi.org/10.5194/bg-13-5649-2016 (2016).
    ADS  CAS  Article  Google Scholar 

    72.
    Voynova, Y. G., Brix, H., Petersen, W., Weigelt-Krenz, S. & Scharfe, M. Extreme flood impact on estuarine and coastal biogeochemistry: The 2013 Elbe flood. Biogeosciences 14, 541–557. https://doi.org/10.5194/bg-14-541-2017 (2017).
    ADS  CAS  Article  Google Scholar 

    73.
    Pommerening-Röser, A., Rath, G. & Koops, H. P. Phylogenetic diversity within the genus Nitrosomonas. Syst. Appl. Microbiol. 19, 344–351. https://doi.org/10.1016/S0723-2020(96)80061-0 (1996).
    Article  Google Scholar 

    74.
    Nacke, H. et al. Links between seawater flooding, soil ammonia oxidiser communities and their response to changes in salinity. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fix144 (2017).
    Article  PubMed  Google Scholar 

    75.
    Laanbroek, H. J., Keijzer, R. M., Verhoeven, J. T. & Whigham, D. F. The distribution of ammonia-oxidizing betaproteobacteria in stands of black mangroves (Avicennia germinans). Front. Microbiol. 3, 153. https://doi.org/10.3389/fmicb.2012.00153 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    76.
    Juretschko, S. et al. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl. Environ. Microbiol. 64, 3042–3051 (1998).
    CAS  Article  Google Scholar 

    77.
    Daims, H. et al. Nitrification in sequencing biofilm batch reactors: Lessons from molecular approaches. Water Sci. Technol. 43, 9–18 (2001).
    ADS  CAS  Article  Google Scholar  More

  • in

    Viral metagenomes of Lake Soyang, the largest freshwater lake in South Korea

    1.
    Dion, M. B., Oechslin, F. & Moineau, S. Phage diversity, genomics and phylogeny. Nat. Rev. Microbiol. 18, 125–138 (2020).
    CAS  Article  Google Scholar 
    2.
    Steen, A. D. et al. High proportions of bacteria and archaea across most biomes remain uncultured. ISME J. 13, 3126–3130 (2019).
    Article  Google Scholar 

    3.
    Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature. 537, 689–693 (2016).
    CAS  Article  Google Scholar 

    4.
    Okazaki, Y., Nishimura, Y., Yoshida, T., Ogata, H. & Nakano, S.-i Genome-resolved viral and cellular metagenomes revealed potential key virus-host interactions in a deep freshwater lake. Environ. Microbiol. 21, 4740–4754 (2019).
    CAS  Article  Google Scholar 

    5.
    Williamson, K. E., Fuhrmann, J. J., Wommack, K. E. & Radosevich, M. Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annu.Rev. Virol. 4, 201–219 (2017).
    CAS  Article  Google Scholar 

    6.
    Yutin, N. et al. Discovery of an expansive bacteriophage family that includes the most abundant viruses from the human gut. Nat. Microbiol. 3, 38–46 (2018).
    CAS  Article  Google Scholar 

    7.
    Davison, M., Treangen, T. J., Koren, S., Pop, M. & Bhaya, D. Diversity in a polymicrobial community revealed by analysis of viromes, endolysins and CRISPR spacers. PLoS One. 11, e0160574 (2016).
    Article  Google Scholar 

    8.
    Paez-Espino, D. et al. Uncovering earth’s virome. Nature. 536, 425–430 (2016).
    ADS  CAS  Article  Google Scholar 

    9.
    Ghai, R., Mehrshad, M., Mizuno, C. M. & Rodriguez-Valera, F. Metagenomic recovery of phage genomes of uncultured freshwater actinobacteria. ISME J. 11, 304–308 (2017).
    CAS  Article  Google Scholar 

    10.
    Kavagutti, V. S., Andrei, A.-Ş., Mehrshad, M., Salcher, M. M. & Ghai, R. Phage-centric ecological interactions in aquatic ecosystems revealed through ultra-deep metagenomics. Microbiome. 7, 135 (2019).
    Article  Google Scholar 

    11.
    Balcazar, J. L. Bacteriophages as vehicles for antibiotic resistance genes in the environment. PLoS Pathog. 10, e1004219 (2014).
    Article  Google Scholar 

    12.
    Moon, K. et al. Freshwater viral metagenome reveals novel and functional phage-borne antibiotic resistance genes. Microbiome. 8, 75 (2020).
    Article  Google Scholar 

    13.
    Weathers, K. C. et al. The global lake ecological observatory network (GLEON): the evolution of grassroots network science. Limnol. Oceanogr. Bull. 22, 71–73 (2013).
    Article  Google Scholar 

    14.
    Kim, B., Choi, K., Kim, C., Lee, U.-H. & Kim, Y.-H. Effects of the summer monsoon on the distribution and loading of organic carbon in a deep reservoir, Lake Soyang, Korea. Water Res. 34, 3495–3504 (2000).
    CAS  Article  Google Scholar 

    15.
    Moon, K., Kang, I., Kim, S., Kim, S.-J. & Cho, J.-C. Genomic and ecological study of two distinctive freshwater bacteriophages infecting a Comamonadaceae bacterium. Sci. Rep. 8, 7989 (2018).
    ADS  Article  Google Scholar 

    16.
    Moon, K., Kang, I., Kim, S., Cho, J.-C. & Kim, S.-J. Complete genome sequence of bacteriophage P26218 infecting Rhodoferax sp. strain IMCC26218. Stand. Genomic. Sci. 10, 111 (2015).
    Article  Google Scholar 

    17.
    Park, M., Song, J., Nam, G. G. & Cho, J.-C. Rhodoferax lacus sp. nov., isolated from a large freshwater lake. Int. J. Syst. Evol. Microbiol. 69, 3135–3140 (2019).
    Article  Google Scholar 

    18.
    Joung, Y. et al. Lacihabitans soyangensis gen. nov., sp. nov., a new member of the family Cytophagaceae, isolated from a freshwater reservoir. Int. J. Syst. Evol. Microbiol. 64, 3188–3194 (2014).
    CAS  Article  Google Scholar 

    19.
    Moon, K., Kang, I., Kim, S., Kim, S.-J. & Cho, J.-C. Genome characteristics and environmental distribution of the first phage that infects the LD28 clade, a freshwater methylotrophic bacterial group. Environ. Microbiol. 19, 4714–4727 (2017).
    CAS  Article  Google Scholar 

    20.
    Kim, S., Kang, I., Seo, J.-H. & Cho, J.-C. Culturing the ubiquitous freshwater actinobacterial acI lineage by supplying a biochemical ‘helper’ catalase. ISME J. 13, 2252–2263 (2019).
    CAS  Article  Google Scholar 

    21.
    Meyer, F. et al. The metagenomic RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9, 386 (2008).
    CAS  Article  Google Scholar 

    22.
    Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: mining viral signal from microbial genomic data. PeerJ. 3, e985 (2015).
    Article  Google Scholar 

    23.
    John, S. G. et al. A simple and efficient method for concentration of ocean viruses by chemical flocculation. Environ. Microbiol. Rep. 3, 195–202 (2011).
    CAS  Article  Google Scholar 

    24.
    Moon, K. Ecological and genomic study on freshwater bacteriophages. (Seoul National University, 2018).

    25.
    Hurwitz, B. L., Deng, L., Poulos, B. T. & Sullivan, M. B. Evaluation of methods to concentrate and purify ocean virus communities through comparative, replicated metagenomics. Environ. Microbiol. 15, 1428–1440 (2013).
    CAS  Article  Google Scholar 

    26.
    Thurber, R. V., Haynes, M., Breitbart, M., Wegley, L. & Rohwer, F. Laboratory procedures to generate viral metagenomes. Nat. Protoc. 4, 470–483 (2009).
    CAS  Article  Google Scholar 

    27.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 30, 2114–2120 (2014).
    CAS  Article  Google Scholar 

    28.
    Zolfo, M. et al. Detecting contamination in viromes using ViromeQC. Nat. Biotechnol. 37, 1408–1412 (2019).
    CAS  Article  Google Scholar 

    29.
    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).
    MathSciNet  CAS  Article  Google Scholar 

    30.
    Moon, K., Kang, I. & Cho, J.-C. Viral metagenome of Lake Soyang. European Nucleotide Archieve https://identifiers.org/ncbi/bioproject:PRJEB15535 (2018).

    31.
    Moon, K., Kang, I. & Cho, J.-C. Viral metagenome of Lake Soyang. MG-RAST http://www.mg-rast.org/linkin.cgi?project=mgp13279 (2020).

    32.
    Moon, K., Kang, I. & Cho, J.-C. Freshwater viral communities from Lake Soyang, Gangwon-do, South Korea. Joint Genome Institute IMG/MER https://gold.jgi.doe.gov/study?id=Gs0118096 (2020).

    33.
    Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).
    Article  Google Scholar  More

  • in

    Life-history strategies of soil microbial communities in an arid ecosystem

    1.
    Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.
    CAS  PubMed  Article  Google Scholar 
    2.
    Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA. 1998;95:6578–83.
    CAS  PubMed  Article  Google Scholar 

    3.
    Bardgett RD, van der Putten WH. Belowground biodiversity and ecosystem functioning. Nature. 2014;515:505–11.
    CAS  PubMed  Article  Google Scholar 

    4.
    Green JL, Bohannan BJM, Whitaker RJ. Microbial biogeography: from taxonomy to traits. Science. 2008;320:1039–43.
    CAS  PubMed  Article  Google Scholar 

    5.
    Martiny JBH, Jones SE, Lennon JT, Martiny AC. Microbiomes in light of traits: a phylogenetic perspective. Science. 2015;350:aac9323.
    PubMed  Article  CAS  Google Scholar 

    6.
    Koch AL. Oligotrophs versus copiotrophs. BioEssays. 2001;23:657–61.
    CAS  PubMed  Article  Google Scholar 

    7.
    Fierer N, Bradford MA, Jackson RB. Toward an ecological classification of soil bacteria. Ecology. 2007;88:1354–64.
    PubMed  Article  Google Scholar 

    8.
    Ho A, Di Lonardo DP, Bodelier PLE. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiol Ecol. 2017;93:fix006.
    Article  CAS  Google Scholar 

    9.
    Klappenbach JA, Dunbar JM, Schmidt TM. rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol. 2000;66:1328–33.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Roller BRK, Stoddard SF, Schmidt TM. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat Microbiol. 2016;1:1–7.
    Article  CAS  Google Scholar 

    11.
    Botzman M, Margalit H. Variation in global codon usage bias among prokaryotic organisms is associated with their lifestyles. Genome Biol. 2011;12:R109.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Vieira-Silva S, Rocha EPC. The systemic imprint of growth and its uses in ecological (meta)genomics. PLoS Genet. 2010;6:e1000808.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    13.
    Pereira-Flores E, Glöckner FO, Fernandez-Guerra A. Fast and accurate average genome size and 16S rRNA gene average copy number computation in metagenomic data. BMC Bioinforma. 2019;20:453.
    Article  CAS  Google Scholar 

    14.
    Lauro FM, McDougald D, Thomas T, Williams TJ, Egan S, Rice S, et al. The genomic basis of trophic strategy in marine bacteria. Proc Natl Acad Sci USA. 2009;106:15527–33.
    CAS  PubMed  Article  Google Scholar 

    15.
    Wyman SK, Avila-Herrera A, Nayfach S, Pollard KS. A most wanted list of conserved microbial protein families with no known domains. PLoS ONE. 2018;13:e0205749.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    16.
    Galand PE, Pereira O, Hochart C, Auguet JC, Debroas D. A strong link between marine microbial community composition and function challenges the idea of functional redundancy. ISME J. 2018;12:2470–8.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457–62.
    CAS  PubMed  Article  Google Scholar 

    18.
    Steen AD, Crits-Christoph A, Carini P, DeAngelis KM, Fierer N, Lloyd KG, et al. High proportions of bacteria and archaea across most biomes remain uncultured. ISME J. 2019;13:3126–30.
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, et al. A global atlas of the dominant bacteria found in soil. Science. 2018;359:320–5.
    CAS  PubMed  Article  Google Scholar 

    20.
    Jaroszewski L, Li Z, Krishna SS, Bakolitsa C, Wooley J, Deacon AM, et al. Exploration of uncharted regions of the protein universe. PLoS Biol. 2009;7:e1000205.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    21.
    Giovannoni S, Stingl U. The importance of culturing bacterioplankton in the ‘omics’ age. Nat Rev Microbiol. 2007;5:820–6.
    CAS  PubMed  Article  Google Scholar 

    22.
    Barberán A, Caceres Velazquez H, Jones S, Fierer N. Hiding in plain sight: Mining bacterial species records for phenotypic trait information. mSphere. 2017;2:e00237–17.
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Aguiar MR, Sala OE. Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends Ecol Evol. 1999;14:273–7.
    CAS  PubMed  Article  Google Scholar 

    24.
    Schlesinger WH, Raikes JA, Hartley AE, Cross AF. On the spatial pattern of soil nutrients in desert ecosystems. Ecology. 1996;77:364–74.
    Article  Google Scholar 

    25.
    Maestre FT, Bautista S, Cortina J, Bellot J. Potential for using facilitation by grasses to establish shrubs on a semiarid degraded steppe. Ecol Appl. 2001;11:1641–55.
    Article  Google Scholar 

    26.
    Butterfield BJ, Betancourt JL, Turner RM, Briggs JM. Facilitation drives 65 years of vegetation change in the Sonoran Desert. Ecology. 2010;91:1132–9.
    PubMed  Article  Google Scholar 

    27.
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–2.
    Article  Google Scholar 

    29.
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.
    CAS  PubMed  Article  Google Scholar 

    31.
    Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.
    Article  CAS  Google Scholar 

    32.
    Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol. 2017;35:1026–8.
    CAS  PubMed  Article  Google Scholar 

    33.
    Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1754–60.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.
    CAS  PubMed  Article  Google Scholar 

    35.
    Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–22.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309–14.
    CAS  PubMed  Article  Google Scholar 

    37.
    Novembre JA. Accounting for background nucleotide composition when measuring codon usage bias. Mol Biol Evol. 2002;19:1390–4.
    CAS  PubMed  Article  Google Scholar 

    38.
    Vieira-Silva S, Falony G, Darzi Y, Lima-Mendez G, Yunta RG, Okuda S, et al. Species–function relationships shape ecological properties of the human gut microbiome. Nat Microbiol. 2016;1:1–8.
    Article  CAS  Google Scholar 

    39.
    Barberán A, Fenández-Guerra A, Bohannan BJ, Casamayor EO. Exploration of community traits as ecological markers in microbial metagenomes. Mol Ecol. 2012;21:1909–17.
    PubMed  Article  CAS  Google Scholar 

    40.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2018. https://www.R-project.org/.

    41.
    Nakagawa S, Schielzeth H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol. 2013;4:133–42.
    Article  Google Scholar 

    42.
    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    43.
    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300.
    Google Scholar 

    44.
    Goberna M, Navarro‐Cano JA, Valiente‐Banuet A, García C, Verdú M. Abiotic stress tolerance and competition‐related traits underlie phylogenetic clustering in soil bacterial communities. Ecol Lett. 2014;17:1191–201.
    PubMed  Article  Google Scholar 

    45.
    Rodríguez-Echeverría S, Lozano YM, Bardgett RD. Influence of soil microbiota in nurse plant systems. Funct Ecol. 2016;30:30–40.
    Article  Google Scholar 

    46.
    Yahdjian L, Gherardi L, Sala OE. Nitrogen limitation in arid-subhumid ecosystems: a meta-analysis of fertilization studies. J Arid Environ. 2011;75:675–80.
    Article  Google Scholar 

    47.
    Giovannoni SJ, Thrash JC, Temperton B. Implications of streamlining theory for microbial ecology. ISME J. 2014;8:1553–65.
    PubMed  PubMed Central  Article  Google Scholar 

    48.
    Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL, et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Natl Acad Sci USA. 2015;112:10967–72.
    CAS  PubMed  Article  Google Scholar 

    49.
    Musto H, Naya H, Zavala A, Romero H, Alvarez-Valı́n F, Bernardi G. Correlations between genomic GC levels and optimal growth temperatures in prokaryotes. FEBS Lett. 2004;573:73–7.
    CAS  PubMed  Article  Google Scholar 

    50.
    Yakovchuk P, Protozanova E, Frank-Kamenetskii MD. Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res. 2006;34:564–74.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Neilson JW, Quade J, Ortiz M, Nelson WM, Legatzki A, Tian F, et al. Life at the hyperarid margin: novel bacterial diversity in arid soils of the Atacama Desert, Chile. Extremophiles. 2012;16:553–66.
    PubMed  Article  Google Scholar 

    52.
    Lajoie G, Kembel SW. Making the most of trait-based approaches for microbial ecology. Trends Microbiol. 2019;27:814–23.
    CAS  PubMed  Article  Google Scholar 

    53.
    Reich PB. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. J Ecol. 2014;102:275–301.
    Article  Google Scholar 

    54.
    Nemergut DR, Knelman JE, Ferrenberg S, Bilinski T, Melbourne B, Jiang L, et al. Decreases in average bacterial community rRNA operon copy number during succession. ISME J. 2016;10:1147–56.
    CAS  PubMed  Article  Google Scholar 

    55.
    Ortiz-Álvarez R, Fierer N, de Los Ríos A, Casamayor EO, Barberán A. Consistent changes in the taxonomic structure and functional attributes of bacterial communities during primary succession. ISME J. 2018;12:1658–67.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    56.
    Song H-K, Song W, Kim M, Tripathi BM, Kim H, Jablonski P, et al. Bacterial strategies along nutrient and time gradients, revealed by metagenomic analysis of laboratory microcosms. FEMS Microbiol Ecol. 2017;93:fix114.
    Article  CAS  Google Scholar 

    57.
    Ferenci T. Trade-off mechanisms shaping the diversity of bacteria. Trends Microbiol. 2016;24:209–23.
    CAS  PubMed  Article  Google Scholar 

    58.
    Gray DA, Dugar G, Gamba P, Strahl H, Jonker MJ, Hamoen LW. Extreme slow growth as alternative strategy to survive deep starvation in bacteria. Nat Commun. 2019;10:890.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    59.
    Trivedi P, Anderson IC, Singh BK. Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction. Trends Microbiol. 2013;21:641–51.
    CAS  PubMed  Article  Google Scholar 

    60.
    Müller DB, Vogel C, Bai Y, Vorholt JA. The plant microbiota: systems-level insights and perspectives. Annu Rev Genet. 2016;50:211–34.
    PubMed  Article  CAS  Google Scholar 

    61.
    Brewer TE, Aronson EL, Arogyaswamy K, Billings SA, Botthoff JK, Campbell AN, et al. Ecological and genomic attributes of novel bacterial taxa that thrive in subsurface soil horizons. MBio. 2019;10:e01318–19.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Price MN, Wetmore KM, Waters RJ, Callaghan M, Ray J, Liu H, et al. Mutant phenotypes for thousands of bacterial genes of unknown function. Nature. 2018;557:503–9.
    CAS  PubMed  Article  Google Scholar 

    63.
    Stewart EJ. Growing unculturable bacteria. J Bacteriol. 2012;194:4151–60.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    64.
    Pascual-García A, Bell T. Community-level signatures of ecological succession in natural bacterial communities. Nat Commun. 2020;11:1–1.
    Article  CAS  Google Scholar  More

  • in

    Study on the spatial-temporal variation in evapotranspiration in China from 1948 to 2018

    Trend analysis of the ET from 1948 to 2018
    To reveal the ET trend in the 71 years from 1948 to 2018 in the study area, we extracted the ET in the study area throughout this period from the GLDAS data, calculated the Z value of each pixel throughout this period with the TFPW-MK test method, and generated an ET change trend distribution map with the Z value of each pixel.
    First, we adopt the annual ET of each pixel as the statistical value to establish the 71-year time series. The trend of each pixel from 1948 to 2018 is analysed to examine the general trend of the ET in China and its spatial distribution characteristics. Then, we select the ET of each pixel in each month from January to December as the statistical value, establish 12-month time series over the 71-year study period, and analyse the trend in each month over the 71 years from January to December to examine the influence of the month on the ET change trend in China.
    Trend analysis of the ET over the years
    First, we analyse the annual ET trend of each pixel throughout this period, and Fig. 1 shows the distribution of the Z value reflecting this trend.
    According to the obtained statistics, there are approximately 15258 pixels in the study area, of which 13662 pixels exhibit Z values larger than 0, accounting for approximately 89.5% of all pixels. The other pixels with Z values smaller than 0 account for approximately 10.5% of all pixels. This shows that the overall trend in most regions of China since 1948 is an increasing trend, and only a small part exhibits a decreasing trend. Figure 1 shows that the regions where ET has significantly decreased are distributed across parts of Western China and the two islands in southern China, while the ET in most other regions exhibits a relatively significant growth trend.
    Figure 1 shows that the ET change trend in Western China is quite different. The change trends in most areas are consistent with the overall ET change trend in China, showing a significant upward trend. The ET in a small part of the area (the red area in the figure), namely, the western Qiangtang Plateau and its surrounding areas, exhibits a significant downward trend. The Qiangtang Plateau is the main body of the Qinghai-Tibet Plateau in southwestern China. Most of the plateau is above 4600 metres above sea level. It is a typical area with very harsh climate conditions and an extremely fragile ecological environment in China. The environmental characteristics are mainly exemplified by a dry and cold climate, windy conditions, and abundant surface sand areas, sparse vegetation and a low ecological capacity49. Since the 1950s, the western Qiangtang Plateau has increasingly become arid with global changes50, and the precipitation in the southern surrounding area has decreased significantly51.These factors together led to the most obvious ET decreasing trend on the western Qiangtang Plateau and its surrounding areas in Southwest China. The reason for the significant increase in ET in Western China is basically the same as the reason for the increase in ET in the other parts of China, namely, climate change and human activities. Climate change is mainly due to the increase in precipitation17 and the increase in warming and aridification in most parts of China, which has greatly increased the temperature and relative humidity52. However, the increase in human activities is primarily caused by the fact that since 2000, the state has heavily invested in ecological restoration and has successively implemented a number of major ecological environmental protection and construction projects, such as returning farmland to forestland and grassland, returning grazing land to grassland, natural forest protection, and forest system protection projects. With the implementation of the above ecological projects, the vegetation conditions in certain areas have been improved53, and the areas where the ET has notably increased are mainly located in areas with a high vegetation cover54.
    Figure 1

    Spatial-temporal trend of the ET in China from 1948 to 2018.

    Full size image

    When the absolute Z value is greater than or equal to 2.32, the confidence level is 99%, and when it is greater than 1.64 but less than 2.32, the confidence level is 95%. When the absolute Z value is greater than 1.28 but less than 1.64, the confidence level is 90%. Table 1 lists the proportion of the number of pixels in each distribution interval of the Z value. The Z value in 63% of all pixels is greater than 2.32, and the areas covered by these pixels have a 99% chance of exhibiting an increasing trend. Analogously, the areas with Z values greater than 1.28, accounting for 89.7% of all pixels, have a 90% chance of exhibiting an increasing trend. All of these statistics indicate that in China, the ET in most regions exhibits a very obvious increasing trend.
    Table 1 Confidence level of the Z value and pixel proportion.
    Full size table

    Variation trend of ET with the different months
    From January to December, solar radiation changes with the time, temperature, precipitation and other meteorological elements, and ET also changes over time55. To reveal the ET trend with the month, we calculated the ET trend of each pixel throughout the 71-year period from January to December. Figure 2 shows a distribution map of the Z value reflecting this trend.
    Figure 2 reveals that the ET trend in China varies greatly with the change in months, and many regions show the most or least obvious increasing trend (or decreasing trend) at different times. The details are as follows:
    (1)
    In Northeast China, especially the Middle-Lower Yangtze Plain and the eastern Tibetan Plateau, the ET increasing trend is the most obvious in April and the least obvious in January and December.

    (2)
    On the North China Plain, the ET increasing trend is the most obvious in March, and the ET decreasing trend is the most obvious in November and December.

    (3)
    On the Yunnan-Guizhou Plateau and Chiang-nan Hilly Region, ET increased the most from June to August and decreased the most in January.

    (4)
    The increasing trend on the Inner Mongolia Plateau is the most obvious in February and March and the least obvious in August.

    (5)
    Compared to the other months, the increasing trend on the western Tibetan Plateau from May to September is more obvious. However, the annual ET increasing trend is not obvious, but the decreasing trend is very obvious.

    (6)
    The decreasing trend in January and December in Northwest China is obvious, and the increasing trend in the other months is obvious.

    (7)
    The annual ET trend in the Tarim Basin and its surrounding areas is an obvious increasing trend. However, the ET trends in the east and west of the Tarim Basin are obviously different. In August and September, the west of the Tarim Basin reaches the maximum value of the ET trend, while the east of the Tarim Basin exhibits the most obvious decreasing trend.

    In general, the ET trend in Northeast China varies greatly from month to month. The ET in most areas of Northeast China mainly increases from March to October, while the ET mainly decreases from December to February. This is related to the concentrated distribution of the forest areas in the Greater Khingan Mountains and Changbai Mountains in Northeast China. The ET in forest ecosystems is the highest. From March to October every year, plants are subject to the growing season, the vegetation is lush, transpiration and evaporation occur vigorously, and ET is on the rise. From December to February of the following year, plants are in the declining or non-growing season. Moreover, due to the low temperature, energy and stomatal conductance levels, the ET values reveal a downward trend54.
    The variation trend of the ET in southern China, northwestern China, and northern China is also relatively obvious. The ET from June to August mainly reveals an upward trend, and the ET mainly shows a downward trend from September to May of the following year. This is mainly related to the temperature and precipitation. Between June and August, the temperature and precipitation increase, and the ET is also very notable; from September to May of the following year, the temperature drops, and the precipitation and ET also decrease56.
    However, the ET in most parts of Southwest China exhibits a downward trend in almost all months, but it is also observed that the area with a decreasing trend in winter is relatively large, while that in summer is relatively small. The main reason why the ET in each month decreases is that this region is located on the Qiangtang Plateau, an alpine and cold region with an altitude higher than 4600 metres, which has a unique natural environment and climatic conditions51. Drought and precipitation reduction are the leading factors of the ET decrease50,51, , and the ET throughout the whole year mostly presents a downward trend. Moreover, the monthly changes in the climate of the Qiangtang Plateau are very obvious, with distinct cold and wet seasons. Generally, the period from May to September is the warm, rainy and less windy season, but the period from October to April of the following year is the cold, dry, and windy season50, and the area with an ET decreasing trend from May to September shrinks, while the area with an ET decreasing trend from October to April expands.
    Figure 2

    Spatial-temporal trend of the monthly ET in China from 1948 to 2018.

    Full size image

    According to the monthly change trend, we calculated the proportion of the number of pixels with an increasing trend, i.e., those pixels with Z values greater than 0. Figure 3 shows the calculation results. The figure shows the ET trend in China with the change in months.
    Figure 3 shows that in January, only 57.95% of the study area exhibited an increasing trend, which quickly increased to over 76.0% in February, reaching a maximum value in May, after which it began to decrease. However, the area increased in September, rising to 81.81%, and then continued to decrease, until it reached a minimum value in December, similar to January. On the whole, the proportion of (Z >0) from January to December was ( >50%), and all months of the year were dominated by a growth trend, and from January to May, the pixels with (Z >0) increased, with a total increase of 29.65%. The growth rate was the highest from January to February, with a total increase of 18.05%, accounting for 60.88% of the increase, indicating that the area where the ET was on the rise from January to February exhibited the fastest growth, and the number of pixels with (Z >0) reached a maximum value of 87.60% in May, after which it decreased. There was a small fluctuation in the middle of September, but an overall decrease was still observed, and the rate of decrease increased, with a total decrease of 30%, reaching a minimum value of 57.60% in December, which was still higher than 50%. From Fig. 3,we can deduce that the number of pixels with an increasing trend in the study area was the largest in May and the smallest in December and January. In particular, the region in the study area with an increasing trend was the largest in May and the smallest in December. In all months of the year, more than half of the pixels exhibited an increasing trend, which also indicates that in regard to the study area, the annual ET trend was still dominated by an increasing trend, which is consistent with the finding from Fig. 1.
    Figure 3

    Proportion of pixels with an increasing trend over the 12 months.

    Full size image

    Figure 2 does not directly show the monthly fluctuation in the ET trend of each pixel from January to December. Standard deviation analysis of the 12 subgraphs of Fig. 2 is conducted, and Fig. 4 is obtained. The standard deviation can be adopted to analyse the dispersion of the Z value of each pixel from January to December, and based on Fig. 4 we can determine the monthly fluctuation in the ET trend.
    Figure 4

    Standard deviation distribution of the monthly ET trend in China.

    Full size image

    Figure 4 shows that in the dark blue parts, i.e., in Northeast China, West China, Northwest China and South China , a large variation occurs, especially in the border area of Northeast China and a small number of pixels in Northwest China, where the standard deviation exceeds 4.5, indicating that the ET trend in these regions is greatly affected by the months. In regard to the light blue parts of the map, such as the northwest Tarim Basin, Tianshan Mountains and its surrounding areas, east Tibet Plateau and middle Inner Mongolia Plateau, the impact of the month is relatively small.
    Coefficient of variation analysis
    Through statistical analysis of the ET CV in time and space, the dispersion of ET in time and space can be analysed, and the stability of the ET fluctuation in time and space can then be determined.
    Spatial distribution of the time series CV of ET
    The time series CV of ET from 1948 to 2018 is calculated for each pixel, and Fig. 5 is obtained.
    Figure 5

    Spatial distribution of the time series CV of ET.

    Full size image

    Figure 5 shows that the ET CV of each pixel in China from 1948 to 2018 shows a trend of gradually decreasing from northwest to southeast. The ET in northern China is more discrete than that in the south, and the ET in the west is more discrete than that in the east. The higher the dispersion degree is, the more unstable the ET in these regions is over the 71-year period. The lower the dispersion degree is, the more stable the change in ET is.
    In summary, from 1948 to 2018, the variation in ET in northern China was more severe than that in southern China, and the variation in ET in Western China was more severe than that in eastern China. The ET in the surrounding areas of the Tarim Basin in northwestern China revealed the most dramatic changes, and the ET changes in most parts of East China remained the most stable.
    Time fluctuation in the spatial distribution CV of ET
    From 1948 to 2018, the CV of the yearly ET spatial distribution in the study area was calculated to analyse the fluctuation in the ET spatial variation over time. Figure 6 shows a linear graph based on the 71 CV yearly values, from which we can observe the changes in the spatial variation from 1948 to 2018. Moreover, we also calculated the SD and mean from 1948 to 2018. To facilitate a comparison of the change trends of the SD and mean with the change trend of the CV, we mapped the SD and mean to the range of the CV, [0.55, 0.67], and accordingly plotted a line graph of the SD and mean.
    Figure 6

    Time fluctuation in the spatial distribution CV of ET.

    Full size image

    In Fig. 6, the yellow solid line is the change curve of the SD over time, and the blue solid line is the variation line of the CV over time. The blue solid line reveals that the change in the spatial distribution CV over time from 1948 to 2018 can be roughly divided into two stages: 1948–2001 and 2002–2018. The red dotted line is the mean value of the CV in each year in the two stages. The following is a description of these two stages:
    The first stage: 1948–2001. During this period, the CV value of ET fluctuated within a high range, ranging from 0.61 to 0.67, and the average value was approximately 0.63, but the fluctuation range in most years was approximately 0.62 to 0.65, and the change was relatively small. Among them, the CV of ET in 1959 and 2000 was relatively small, indicating that the ET in the study area in these two years remained relatively uniform, while the CV in the other years (such as 1951, 1965, and 1986) were relatively large, indicating that the ET in the study area varied greatly in these years. However, on the whole, the CV in each year in this stage was larger than that in the second stage, indicating that the spatial difference in ET in the study area in this stage was large, and the overall ET was uneven.
    The second stage: 2002–2018. Figure 6 shows that the CV began to decrease in 2002, and it decreased to a minimum value of 0.55 in 2003. Thereafter, up to 2018, the value of the CV fluctuated within a low range, ranging from 0.55 to 0.62, with an average value of 0.58, which is a decrease of 0.05 over the first stage value. Although it reached a maximum value of 0.62 in the second stage in 2018, the value was smaller than the average value in the first stage , indicating that the CV in this stage was generally smaller than that in the first stage. Notably, the difference in ET between the various regions in the study area decreased in 2002, and the ET in China became more even. According to the change curve of the average ET, the average ET in China began to increase in 2002. Although fluctuations occurred, the average ET also fluctuated within a relatively high range. This is consistent with the research results of Bing Longfei7, namely, after 2000, the annual ET greatly exceeded the previous ET level. Combined with the decrease in the CV value, this shows that after 2002, the ET in the various regions of China started to increase. The main reason for this result is that the state invested heavily in ecological restoration in 2000 and successively implemented a number of major ecological environmental protection and construction projects, such as returning farmland to forestland and grassland, returning grazing land to grassland, natural forest protection and shelterbelt system projects53. After 2002, good results were achieved, and vegetation conditions were improved, while the regions with a notably increased ET primarily occurred in those regions with an improved vegetation cover54. Therefore, after 2002, the ET in all regions in China began to increase, and the CV began to decrease.
    By comparing the SD line chart and the CV line chart, it is observed that the trend of these two lines in the first stage and the second stage is basically the same, but after the first stage, the CV exhibits a decrease, the SD does not change, and there is an increasing trend after 2002. However, the SD is an absolute indicator. When the sample mean level is different, an absolute difference index cannot be considered in a comparative analysis57, while the CV measures the degree of variation between samples with different units or with a large difference in the mean. Here, the annual average ET value constantly changes, and it is more accurate to adopt the CV to compare the dispersion degree between the different regions within the study area.
    In other words, the annual ET spatial difference within the study area was relatively large from 1948 to 2001, and the annual ET in the study area was very uneven. After 2002, the annual spatial difference decreased, and in 2003, the spatial distribution of the ET in the study area was the most uniform.
    Future trend analysis of ET
    The variation in ET in the study area from 1948 to 2018 has been previously analysed. This section assesses the future ET variation in China, i.e., whether the future ET variation in the study area will follow the trend from 1948 to 2018. This is evaluated with the Hurst index. The value range of the Hurst index is between 0 and 1. If the Hurst index is larger than 0.5, this indicates that the future trend will follow the original trend. The closer the Hurst index is to 1, the stronger the continuity is. If the Hurst index is smaller than 0.5, this indicates that the future trend will contradict the original trend. If the Hurst index is equal to 0.5, this indicates that the future trend is uncertain and not related to the original trend. Figure 7 shows a map of the distribution based on the calculated Hurst index of each pixel.
    Figure 7

    Spatial distribution of the Hurst index from 1948 to 2018.

    Full size image

    According to the calculated Hurst index of each pixel, only 26 pixels in Fig. 7 have a Hurst index smaller than 0.5, no pixels exhibit a Hurst index equal to 0.5, and most of the pixels in the study area reveal a Hurst index larger than 0.5. This implies that in the future, the vast majority of the study area will continue the trend from 1948 to 2018, as shown in Fig. 1. In terms of the possibility of this continuity, the number of pixels with a Hurst index larger than 0.9 accounts for approximately 23.2% of all pixels, and the number of pixels with a Hurst index between 0.8 and 0.9 accounts for approximately 36.8% of all pixels, while the number of pixels with a Hurst larger than 0.8 accounts for approximately 60% of all pixels. These results indicate that it is very possible for these pixels to continue the current trend in the future. Especially in Northeast China, South-Central China and West China, the Hurst index values are all close to 1, and the ET trend in these regions exhibits a notable continuity. For example, according to Fig. 1, it is found that the ET in Northeast China has a strong increasing trend from 1948 to 2018. Combined with the Hurst index analysis results in Northeast China, as shown in Fig. 7, it is concluded that in the future, the ET in Northeast China will increase more than that in the other regions. More

  • in

    Scale-dependent effects of habitat fragmentation on the genetic diversity of Actinidia chinensis populations in China

    1.
    Wu, J. Key concepts and research topics in landscape ecology revisited: 30 years after the Allerton Park workshop. Landsc. Ecol. 28, 1–11 (2013).
    CAS  Article  Google Scholar 
    2.
    Wilson, M. C. et al. Habitat fragmentation and biodiversity conservation: key findings and future challenges. Landsc. Ecol. 31, 219–227 (2016).
    Article  Google Scholar 

    3.
    Leimu, R., Vergeer, P., Angeloni, F. & Ouborg, N. J. Habitat fragmentation, climate change, and inbreeding in plants. Ann. NY Acad. Sci. 1195, 84–98 (2010).
    PubMed  Article  Google Scholar 

    4.
    Young, A., Boyle, T. & Brown, T. The population genetic consequences of habitat fragmentation for plants. Trends Ecol. Evolution 11, 413–418 (1996).
    CAS  Article  Google Scholar 

    5.
    Yuan, N., Comes, H. P., Mao, Y., Qi, X. & Qiu, Y. Genetic effects of recent habitat fragmentation in the Thousand-Island Lake region of southeast China on the distylous herb Hedyotis chrysotricha (Rubiaceae). Am. J. Bot. 99, 1715–1725 (2012).
    PubMed  Article  Google Scholar 

    6.
    MacArthur, R. H. & Wilson, E. O. An equilibrium theory of insular zoogeography. Evolution 17, 373–387 (1963).
    Article  Google Scholar 

    7.
    MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, Princeton, NJ, 1967).

    8.
    Guo, Q. Island biogeography theory: emerging patterns and human effects. Earth Syst. Environ. Sci. 32, 1–5 (2015).
    Google Scholar 

    9.
    Wroblewska, A. High genetic diversity within island-like peripheral populations of Pedicularis sceptrum-carolinum, a species with a northern geographic distribution. Ann. Bot. Fenn. 50, 289–299 (2013).
    Article  Google Scholar 

    10.
    Csergo, A.-M. et al. Genetic structure of peripheral, island-like populations: a case study of Saponaria bellidifolia Sm. (Caryophyllaceae) from the Southeastern Carpathians. Plant Syst. Evol. 278, 33–41 (2009).
    Article  Google Scholar 

    11.
    Doyle, J. M., Hacking, C. C., Willoughby, J. R., Sundaram, M. & DeWoody, J. A. Mammalian genetic diversity as a function of habitat, body size, trophic class, and conservation status. J. Mammal. 96, 564–572 (2015).
    Article  Google Scholar 

    12.
    Reynolds, R. G. et al. Archipelagic genetics in a widespread Caribbean anole. J. Biogeogr. 44, 2631–2647 (2017).
    Article  Google Scholar 

    13.
    Costanzi, J.-M. & Steifetten, Ø. Island biogeography theory explains the genetic diversity of a fragmented rock ptarmigan (Lagopus muta) population. Ecol. Evol. 9, 3837–3849 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    14.
    Hermansen, T., Minchinton, T. & Ayre, D. Habitat fragmentation leads to reduced pollinator visitation, fruit production and recruitment in urban mangrove forests. Oecologia 185, 221–231 (2017).
    PubMed  Article  Google Scholar 

    15.
    Broeck, A. et al. Dispersal constraints for the conservation of the grassland herb Thymus pulegioides L. in a highly fragmented agricultural landscape. Conserv Genet. 16, 765–776 (2015).
    Article  Google Scholar 

    16.
    Browne, L. & Karubian, J. Habitat loss and fragmentation reduce effective gene flow by disrupting seed dispersal in a neotropical palm. Mol. Ecol. 27, 3055–3069 (2018).
    PubMed  Article  Google Scholar 

    17.
    Bijlsma, R. & Loeschcke, V. Genetic erosion impedes adaptive responses to stressful environments. Evol. Appl. 5, 117–129 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Lienert, J. Habitat fragmentation effects on fitness of plant populations-a review. J. Nat. Conserv. 12, 53–72 (2004).
    Article  Google Scholar 

    19.
    Luquet, E. et al. Genetic erosion in wild populations makes resistance to a pathogen more costly. Evolution 66, 1942–1952 (2012).
    PubMed  Article  Google Scholar 

    20.
    Toczydlowski, R. H. & Waller, D. M. Drift happens: molecular genetic diversity and differentiation among populations of jewelweed (Impatiens capensis Meerb.) reflect fragmentation of floodplain forests. Mol. Ecol. 28, 2459–2475 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    21.
    Jimenez, J. F., Sanchez-Gomez, P., Canovas, J. L., Hensen, I. & Aouissat, M. Influence of natural habitat fragmentation on the genetic structure of Canarian populations of Juniperus turbinata. Silva Fenn. 51, 1–14 (2017).
    Article  Google Scholar 

    22.
    Garciaverdugo, C. et al. Do island plant populations really have lower genetic variation than mainland populations? Effects of selection and distribution range on genetic diversity estimates. Mol. Ecol. 24, 726–741 (2015).
    CAS  Article  Google Scholar 

    23.
    Vandepitte, K., Jacquemyn, H., Roldan-Ruiz, I. & Honnay, O. Landscape genetics of the self-compatible forest herb Geum urbanum: effects of habitat age, fragmentation and local environment. Mol. Ecol. 16, 4171–4179 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Krauss, J. et al. Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol. Lett. 13, 597–605 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    25.
    Heinken, T. & Weber, E. Consequences of habitat fragmentation for plant species: do we know enough? Perspect. Plant Ecol. Syst. 15, 205–216 (2013).
    Article  Google Scholar 

    26.
    Duminil, J. et al. Large-scale pattern of genetic differentiation within African rainforest trees: insights on the roles of ecological gradients and past climate changes on the evolution of Erythrophleum spp (Fabaceae). BMC Evol. Biol. 13, 195- (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    27.
    Yuan, N. et al. A comparative study on genetic effects of artificial and natural habitat fragmentation on Loropetalum chinense (Hamamelidaceae) in Southeast China. Heredity 114, 544 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    28.
    Muyle, A. et al. Dioecy in plants: an evolutionary dead end? Insights from a population genomics study in the Silene genus. Preprint at https://www.biorxiv.org/content/10.1101/414771v1.full (2018).

    29.
    Fuller, M. R. & Doyle, M. W. Gene flow simulations demonstrate resistance of long-lived species to genetic erosion from habitat fragmentation. Conserv Genet. 19, 1439–1448 (2018).
    Article  Google Scholar 

    30.
    Hu, Y. et al. Genetic structuring and recent demographic history of red pandas (Ailurus fulgens) inferred from microsatellite and mitochondrial DNA. Mol. Ecol. 20, 2662–2675 (2011).
    PubMed  Article  Google Scholar 

    31.
    Moore, J. A., Miller, H. C., Daugherty, C. H. & Nelson, N. J. Fine-scale genetic structure of a long-lived reptile reflects recent habitat modification. Mol. Ecol. 17, 4630–4641 (2008).
    CAS  PubMed  Article  Google Scholar 

    32.
    Martínez-López, V., García, C., Zapata, V., Robledano, F. & De la Rúa, P. Intercontinental long-distance seed dispersal across the Mediterranean Basin explains population genetic structure of a bird-dispersed shrub. Mol. Ecol. 29, 1408–1420 (2020).
    PubMed  Article  Google Scholar 

    33.
    Grover, A. & Sharma, P. C. Development and use of molecular markers: past and present. Crit. Rev. Biotechnol. 36, 290–302 (2016).
    CAS  PubMed  Article  Google Scholar 

    34.
    Vieira, M. L. C., Santini, L., Diniz, A. L. & Munhoz, C. D. F. Microsatellite markers: what they mean and why they are so useful. Genet Mol. Biol. 39, 312–328 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    35.
    Selkoe, K. A. & Toonen, R. J. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol. Lett. 9, 615–629 (2006).
    PubMed  Article  Google Scholar 

    36.
    Huang, H. et al. Genetic diversity in the genus Actinidia (in Chinese). Chin. Biodivers. 8, 1–12 (2000).
    CAS  Google Scholar 

    37.
    Logan, D. P. & Xu, X. Germination of kiwifruit, Actinidia chinensis, after passage through Silvereyes, Zosterops lateralis. New Zeal. J. Ecol. 30, 407–411 (2006).
    Google Scholar 

    38.
    Costa, G., Testolin, R. & Vizzotto, G. Kiwifruit pollination: an unbiased estimate of wind and bee contribution. N. Zeal J. Crop Hort. 21, 189–195 (1993).
    Article  Google Scholar 

    39.
    Huang, H. The Genus Actinidia, A World Monograph (Science Press, Beijing, 2014).

    40.
    Lv, K. et al. Habitat fragmentation influences gene structure and gene differentiation among the Loxoblemmus aomoriensis populations in the Thousand Island Lake. Mitochondrial DNA A 29, 222–227 (2017).
    Article  CAS  Google Scholar 

    41.
    Liu, Y. F. et al. Rapid radiations of both kiwifruit hybrid lineages and their parents shed light on a two-layer mode of species diversification. N. Phytol. 215, 877–890 (2017).
    CAS  Article  Google Scholar 

    42.
    Huang, W. G., Cipriani, G., Morgante, M. & Testolin, R. Microsatellite DNA in Actinidia chinensis: isolation, characterisation, and homology in related species. Theor. Appl. Genet. 97, 1269–1278 (1998).
    CAS  Article  Google Scholar 

    43.
    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).
    Article  CAS  Google Scholar 

    44.
    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    45.
    Peakall, R. & Smouse, P. E. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).
    Article  Google Scholar 

    46.
    Pallant, J. SPSS survival manual: a step by step guide to data analysis using SPSS. Aust. N.Z. J. Public Health 37, 597–598 (2013).
    Google Scholar 

    47.
    Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).
    CAS  PubMed  PubMed Central  Google Scholar 

    48.
    Smouse, P. E., Long, J. C. & Sokal, R. R. Multiple regression and correlation extensions of the mantel test of matrix correspondence. Syst. Biol. 35, 627–632 (1986).
    Google Scholar 

    49.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    50.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Earl, D. & Vonholdt, B. M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).
    Article  Google Scholar 

    52.
    Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1996).
    CAS  PubMed  PubMed Central  Google Scholar 

    55.
    Di Rienzo, A. et al. Mutational processes of simple-sequence repeat loci in human populations. Proc. Natl Acad. Sci. USA 91, 3166–3170 (1994).
    PubMed  Article  PubMed Central  Google Scholar 

    56.
    Wang, S. et al. Population size and time since island isolation determine genetic diversity loss in insular frog populations. Mol. Ecol. 23, 637–648 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    57.
    Luikart, G., Allendorf, F., Cornuet, J. & Sherwin, W. Distortion of allele frequency distributions provides a test for recent population bottlenecks. J. Hered. 89, 238–247 (1998).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Cornuet, J.-M. et al. DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30, 1187–1189 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Ewers, R. M. & Didham, R. K. The effect of fragment shape and species’ sensitivity to habitat edges on animal population size. Conserv Biol. 21, 926–936 (2007).
    PubMed  Article  Google Scholar 

    60.
    Ortego, J., Bonal, R. & Munoz, A. Genetic consequences of habitat fragmentation in long-lived tree species: the case of the Mediterranean holm oak (Quercus ilex, L.). J. Hered. 101, 717–726 (2010).
    CAS  PubMed  Article  Google Scholar 

    61.
    Fletcher, J. R. J. et al. Is habitat fragmentation good for biodiversity? Biol. Conserv 226, 9–15 (2018).
    Article  Google Scholar 

    62.
    Fattorini, S., Borges, P. A. V., Dapporto, L. & Strona, G. What can the parameters of the species-area relationship (SAR) tell us? Insights from Mediterranean islands. J. Biogeogr. 44, 1018–1028 (2017).
    Article  Google Scholar 

    63.
    Matthews, T. J. et al. Island species-area relationships and species accumulation curves are not equivalent: an analysis of habitat island datasets. Global Ecol. Biogeogr. 25, 607–618 (2016).
    Article  Google Scholar 

    64.
    Matthews, T., Cottee-Jones, H., Whittaker, R. & Brotons, L. Habitat fragmentation and the species-area relationship: a focus on total species richness obscures the impact of habitat loss on habitat specialists. Divers Distrib. 20, 1136–1146 (2014).
    Article  Google Scholar 

    65.
    McGlaughlin, M. E. et al. Do the island biogeography predictions of MacArthur and Wilson hold when examining genetic diversity on the near mainland California Channel Islands? Examples from endemic Acmispon (Fabaceae). Bot. J. Linn. Soc. 174, 289–304 (2014).
    Article  Google Scholar 

    66.
    Jangjoo, M., Matter, S. F., Roland, J. & Keyghobadi, N. Connectivity rescues genetic diversity after a demographic bottleneck in a butterfly population network. Proc. Natl Acad. Sci. USA 113, 10914–10919 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    Reisch, C. et al. Genetic diversity of calcareous grassland plant species depends on historical landscape configuration. BMC Ecol. 17, 1–13 (2017).
    Article  Google Scholar 

    68.
    Bottin, L. et al. Genetic diversity and population structure of an insular tree, Santalum austrocaledonicum in New Caledonian archipelago. Mol. Ecol. 14, 1979–1989 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    69.
    Breed, M. F. et al. Mating patterns and pollinator mobility are critical traits in forest fragmentation genetics. Heredity 115, 108–114 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Llorens, T. M., Byrne, M., Yates, C. J., Nistelberger, H. M. & Coates, D. J. Evaluating the influence of different aspects of habitat fragmentation on mating patterns and pollen dispersal in the bird-pollinated Banksia sphaerocarpa var.caesia. Mol. Ecol. 21, 314–328 (2012).
    CAS  PubMed  Article  Google Scholar 

    71.
    Rosche, C. et al. Sex ratio rather than population size affects genetic diversity in Antennaria dioica. Plant Biol. 20, 789–796 (2018).
    CAS  PubMed  Article  Google Scholar 

    72.
    Liu, Y., Li, D., Yan, L. & Huang, H. The microgeographical patterns of morphological and molecular variation of a mixed ploidy population in the species complex Actinidia chinensis. PLoS ONE 10, e0117596 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    73.
    Guijun, Y., Ferguson, A. R. & McNeilage, M. A. Ploidy races in Actinidia chinensis. Euphytica 78, 175–183 (1994).
    Article  Google Scholar 

    74.
    Chat, J., Jáuregui, B., Petit, R. J. & Nadot, S. Reticulate evolution in kiwifruit (Actinidia, Actinidiaceae) identified by comparing their maternal and paternal phylogenies. Am. J. Bot. 91, 736–747 (2004).
    CAS  PubMed  Article  Google Scholar 

    75.
    Crowhurst, R. N. et al. Analysis of expressed sequence tags from Actinidia: applications of a cross species EST database for gene discovery in the areas of flavor, health, color and ripening. BMC Genomics 9, 351 (2008).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    76.
    Zheng, Y. Q., Li, Z. Z. & Huang, H. W. Preliminary study on SSR analysis in kiwifruit cultivars. J. WH Bot. Res. 21, 444–448 (2003).
    Google Scholar 

    77.
    Llorens, T. M., Ayre, D. J. & Whelan, R. J. Anthropogenic fragmentation may not alter pre-existing patterns of genetic diversity and differentiation in perennial shrubs. Mol. Ecol. 27, 1541–1555 (2018).
    PubMed  Article  Google Scholar 

    78.
    Van de Peer, Y., Mizrachi, E. & Marchal, K. The evolutionary significance of polyploidy. Nat. Rev. Genet. 18, 411–424 (2017).
    PubMed  Article  CAS  Google Scholar 

    79.
    Bommarco, R., Lindborg, R., Marini, L. & Ockinger, E. Extinction debt for plants and flower-visiting insects in landscapes with contrasting land use history. Divers. Distrib. 20, 591–599 (2014).
    Article  Google Scholar  More