Coexisting with sharks: a novel, socially acceptable and non-lethal shark mitigation approach
1.
 Thirgood, S., Woodroffe, R. & Rabinowitz, A. The impact of human–wildlife conflict on human lives and livelihoods. In People and Wildlife, Conflict or Co-existence? Conservation Biology (eds Rabinowitz, A. et al.) 13–26 (Cambridge University Press, Cambridge, 2005).
 Google Scholar 
 2.
 Nyhus, P. J. Human-wildlife conflict and coexistence. Annu. Rev. Environ. Resour. 41, 143–171. https://doi.org/10.1146/annurev-environ-110615-085634 (2016).
 Article  Google Scholar 
3.
 Curtis, T. et al. Responding to the risk of white shark attack: updated statistics, prevention, control methods, and recommendations. In Global Perspectives on the Biology and Life History of the White SharkEdition: First edition, pp 477–509 (ed. Domeier, M. L.) (CRC Press Taylor and Francis, Boca Raton, FL, 2012).
 Google Scholar 
4.
 Sillero-Zubiri, C. et al. (eds) Canids: Foxes, Wolves, Jackals, and Dogs: Status Survey and Conservation Action Plan 430 (Gland, Cambridge, 2004).
 Google Scholar 
5.
 Soulé, M. The, “New Conservation”. Conserv. Biol. 27, 895–897. https://doi.org/10.1111/cobi.12147 (2013).
 Article  PubMed  Google Scholar 
6.
 Gibbs, L. & Warren, A. Transforming shark hazard policy: learning from ocean-users and shark encounter in Western Australia. Mar. Policy 58, 116–124. https://doi.org/10.1016/j.marpol.2015.04.014 (2015).
 Article  Google Scholar 
7.
 McCagh, C., Sneddon, J. & Blache, D. Killing sharks: the media’s role in public and political response to fatal human–shark interactions. Mar. Policy 62, 271–278. https://doi.org/10.1016/j.marpol.2015.09.016 (2015).
 Article  Google Scholar 
8.
 McPhee, D. Unprovoked shark bites: are they becoming more prevalent?. Coast. Manag. 42, 478–492 (2014).
 Article  Google Scholar 
9.
 Chapman, B. K. & McPhee, D. Global shark attack hotspots: identifying underlying factors behind increased unprovoked shark bite incidence. Ocean Coast. Manag. 133, 72–84. https://doi.org/10.1016/j.ocecoaman.2016.09.010 (2016).
 Article  Google Scholar 
10.
 Lagabrielle, E. et al. Environmental and anthropogenic factors affecting the increasing occurrence of shark-human interactions around a fast-developing Indian Ocean island. Sci. Rep. 8, 3676. https://doi.org/10.1038/s41598-018-21553-0 (2018).
 ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 
11.
 Stevens, J. D., Bonfil, R., Dulvy, N. K. & Walker, P. A. The effects of fishing on sharks, rays, and chimaeras (chondrichthyans), and the implications for marine ecosystems. ICES J. Mar. Sci. 57, 476–494. https://doi.org/10.1006/jmsc.2000.0724 (2000).
 Article  Google Scholar 
12.
 Roff, G., Brown, C. J., Priest, M. A. & Mumby, P. J. Decline of coastal apex shark populations over the past half century. Commun. Biol. 1, 223. https://doi.org/10.1038/s42003-018-0233-1 (2018).
 Article  PubMed  PubMed Central  Google Scholar 
13.
 Gibbs, L. et al. Effects and effectiveness of lethal shark hazard management: the Shark Meshing (Bather Protection) Program, NSW, Australia. People Nat. 2, 189–203. https://doi.org/10.1002/pan3.10063 (2020).
 Article  Google Scholar 
14.
 Berkes, F., Folke, C. & Colding, J. Linking Social and Ecological Systems: Management Practices and Social Mechanisms for Building Resilience (Cambridge University Press, Cambridge, 1998).
 Google Scholar 
15.
 Green, M., Ganassin, C. & Reid, D. D. Report into the NSW Shark Meshing (Bather Protection) Program: Incorporating a Review of the Existing Program and Environmental Assessment/NSW Dept of Primary Industries (Department of Primary Industries DPI Fisheries Conservation and Aquaculture Branch, Orange, NSW, 2009).
 Google Scholar 
16.
 Cliff, G. & Dudley, S. F. J. Reducing the environmental impact of shark-control programs: a case study from KwaZulu-Natal, South Africa. Mar. Freshw. Res. 62, 700–709. https://doi.org/10.1071/MF10182 (2011).
 CAS  Article  Google Scholar 
17.
 Holland, K. N., Wetherbee, B. M., Lowe, C. G. & Meyer, C. G. Movements of tiger sharks (Galeocerdo cuvier) in coastal Hawaiian waters. Mar. Biol. 134, 665–673. https://doi.org/10.1007/s002270050582 (1999).
 Article  Google Scholar 
18.
 Wetherbee, B., Lowe, C. & Crow, G. A review of shark control in Hawaii with recommendations for future research. Pac. Sci. 48, 95–115 (1994).
 Google Scholar 
19.
 Neff, C. L. & Yang, J. Y. H. Shark bites and public attitudes: policy implications from the first before and after shark bite survey. Mar. Policy 38, 545–547. https://doi.org/10.1016/j.marpol.2012.06.017 (2013).
 Article  Google Scholar 
20.
 McPhee, D. P. Likely Effectiveness of Netting or Other Capture Programs as a Shark Hazard Mitigation Strategy Under Western Australian Conditions (Western Australia Department of Fisheries, Perth, 2012).
 Google Scholar 
21.
 Lemahieu, A. et al. Human-shark interactions: The case study of Reunion island in the south-west Indian Ocean. Ocean Coast. Manag. 136, 73–82. https://doi.org/10.1016/j.ocecoaman.2016.11.020 (2017).
 Article  Google Scholar 
22.
 Simmons, P. & Mehmet, M. I. Shark management strategy policy considerations: Community preferences, reasoning and speculations. Mar. Policy 96, 111–119. https://doi.org/10.1016/j.marpol.2018.08.010 (2018).
 Article  Google Scholar 
23.
 Robbins, W. D., Peddemors, V. M., Kennelly, S. J. & Ives, M. C. Experimental evaluation of shark detection rates by aerial observers. PLoS ONE 9, e83456. https://doi.org/10.1371/journal.pone.0083456 (2014).
 ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 
24.
 Kock, A. A. et al. Shark spotters: a pioneering shark safety program in Cape Town, South Africa. In Global Perspectives on the Biology and Life History of the Great White Shark (ed. Domeier, M.) 447–466 (CRC Press, Boca Raton, FL, 2012).
 Google Scholar 
25.
 Engelbrecht, T., Kock, A., Waries, S. & O’Riain, M. J. Shark spotters: successfully reducing spatial overlap between white sharks (Carcharodon carcharias) and recreational water users in False Bay, South Africa. PLoS ONE 12, e0185335. https://doi.org/10.1371/journal.pone.0185335 (2017).
 CAS  Article  PubMed  PubMed Central  Google Scholar 
26.
 Stokes, D. et al. Beach-user perceptions and attitudes towards drone surveillance as a shark-bite mitigation tool. Mar. Policy 120, 104127. https://doi.org/10.1016/j.marpol.2020.104127 (2020).
 Article  Google Scholar 
27.
 Colefax, A. P., Butcher, P. A. & Kelaher, B. P. The potential for unmanned aerial vehicles (UAVs) to conduct marine fauna surveys in place of manned aircraft. ICES J. Mar. Sci. 75, 1–8. https://doi.org/10.1093/icesjms/fsx100 (2018).
 Article  Google Scholar 
28.
 Carter, N. H. & Linnell, J. D. C. Co-adaptation is key to coexisting with large carnivores. Trends Ecol. Evol. 31, 575–578. https://doi.org/10.1016/j.tree.2016.05.006 (2016).
 Article  PubMed  Google Scholar 
29.
 Althoff, W. F. Sky Ships: A History of the Airship in the United States Navy. Vol. 25th anniversary edition (The Naval Institute Press, Annapolis, 2016).
 Google Scholar 
30.
 Hain, J. H. W. Lighter-than-air platforms (blimps and aerostats) for oceanographic and atmospheric research and monitoring in OCEANS 2000 MTS/IEEE Conference and Exhibition.1933–1936.
31.
 Hodgson, A. BLIMP-CAM: aerial video observations of marine mammals. Mar. Technol. Soc. J. 41, 39–43 (2007).
 Article  Google Scholar 
32.
 Nosal, A. P. et al. Demography and movement patterns of leopard sharks (Triakis semifasciata) aggregating near the head of a submarine canyon along the open coast of southern California, USA. Environ. Biol. Fish. 96, 865–878. https://doi.org/10.1007/s10641-012-0083-5 (2012).
 Article  Google Scholar 
33.
 Adams, K., Broad, A., Ruiz-García, D. & Davis, A. R. Continuous wildlife monitoring using blimps as an aerial platform: a case study observing marine megafauna. Austral. Zool. 40(3), 407–415. https://doi.org/10.7882/AZ.2020.004 (2020).
 Article  Google Scholar 
34.
 Sandbrook, C. The social implications of using drones for biodiversity conservation. Ambio 44, 636–647. https://doi.org/10.1007/s13280-015-0714-0 (2015).
 Article  PubMed  PubMed Central  Google Scholar 
35.
 Fox, S. J. The rise of the drones: framework and governance—why risk it!. J. Air Law Commerce 82, 683 (2017).
 Google Scholar 
36.
 Linchant, J., Lisein, J., Semeki, J., Lejeune, P. & Vermeulen, C. Are unmanned aircraft systems (UASs) the future of wildlife monitoring? A review of accomplishments and challenges. Mammal Rev. 45, 239–252. https://doi.org/10.1111/mam.12046 (2015).
 Article  Google Scholar 
37.
 Gururatsakul, S., Gibbins, D., Kearney, D. & Lee, I. Shark detection using optical image data from a mobile aerial platform in 2010 25th International Conference of Image and Vision Computing New Zealand. 1–8.
38.
 Gorkin, R. et al. Sharkeye: real-time autonomous personal shark alerting via aerial surveillance. Drones https://doi.org/10.3390/drones4020018 (2020).
 Article  Google Scholar 
39.
 Kammler, M. & Schernewski, G. Spatial and temporal analysis of beach tourism using webcam and aerial photographs. Coastline Rep. 2, 121–128 (2004).
 Google Scholar 
40.
 Moreno, A., Amelung, B. & Santamarta, L. Linking beach recreation to weather conditions: a case study in Zandvoort, Netherlands. Tour. Mar. Environ. 5(2–3), 111–119 (2008).
 Article  Google Scholar 
41.
 Ryan, L. A., Meeuwig, J. J., Hemmi, J. M., Collin, S. P. & Hart, N. S. It is not just size that matters: shark cruising speeds are species-specific. Mar. Biol. 162, 1307–1318. https://doi.org/10.1007/s00227-015-2670-4 (2015).
 Article  Google Scholar 
42.
 Butcher, P. et al. Beach safety: can drones provide a platform for sighting sharks?. Wildl. Res. 46, 701–712 (2019).
 Article  Google Scholar 
43.
 Robbins, W. D., Peddemors, V. M. & Kennelly, S. J. Assessment of shark sighting rates by aerial beach patrols Vol. 38 (NSW Department of Primary Industries Cronulla, NSW Australia, 2012).
 Google Scholar 
44.
 Westgate, A. J., Koopman, H. N., Siders, Z. A., Wong, S. N. P. & Ronconi, R. A. Population density and abundance of basking sharks Cetorhinus maximus in the lower Bay of Fundy, Canada. Endanger. Species Res. 23, 177–185. https://doi.org/10.3354/esr00567 (2014).
 Article  Google Scholar 
45.
 Kelaher, B. P., Peddemors, V. M., Hoade, B., Colefax, A. P. & Butcher, P. A. Comparison of sampling precision for nearshore marine wildlife using unmanned and manned aerial surveys. J. Unmanned Veh. Syst. https://doi.org/10.1139/juvs-2018-0023 (2020).
 Article  Google Scholar 
46.
 Colefax, A. P., Butcher, P. A., Pagendam, D. E. & Kelaher, B. P. Reliability of marine faunal detections in drone-based monitoring. Ocean Coast. Manag. 174, 108–115. https://doi.org/10.1016/j.ocecoaman.2019.03.008 (2019).
 Article  Google Scholar 
47.
 Pepin-Neff, C. In Sharks: Conservation, Governance and Management (eds Techera, E. J. & Klein, N.) 107–131 (Routledge, Oxon, 2014).
 Google Scholar 
48.
 Crossley, R., Collins, C. M., Sutton, S. G. & Huveneers, C. Public perception and understanding of shark attack mitigation measures in Australia. Human Dimens. Wildl. 19, 154–165. https://doi.org/10.1080/10871209.2014.844289 (2014).
 Article  Google Scholar 
49.
 Gray, G. M. E. & Gray, C. A. Beach-user attitudes to shark bite mitigation strategies on coastal beaches; Sydney, Australia. Human Dimens. Wildl. 22, 282–290. https://doi.org/10.1080/10871209.2017.1295491 (2017).
 Article  Google Scholar 
50.
 Huveneers, C. et al. Effectiveness of five personal shark-bite deterrents for surfers. PeerJ 6, e5554. https://doi.org/10.7717/peerj.5554 (2018).
 Article  PubMed  PubMed Central  Google Scholar 
51.
 Anonymous. Dorsal, https://www.dorsalwatch.com/ (2018).
52.
 Anonymous. SharkSmart, https://www.sharksmart.nsw.gov.au/ (2018).
53.
 Anonymous. SharkSmart, https://www.sharksmart.com.au/ (2018).
54.
 Anonymous. SharkMate, https://digitallivinglab.uow.edu.au/portfolio/sharkmate-app/ (2018).
55.
 Anonymous. Sharks Spotters, https://sharkspotters.org.za/ (2018).
56.
 Fretwell, P. T., Staniland, I. J. & Forcada, J. Whales from space: counting southern right whales by satellite. PLoS ONE 9, e88655. https://doi.org/10.1371/journal.pone.0088655 (2014).
 ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 
57.
 Hodgson, A., Kelly, N. & Peel, D. Unmanned aerial vehicles (UAVs) for surveying marine fauna: a dugong case study. PLoS ONE 8, e79556. https://doi.org/10.1371/journal.pone.0079556 (2013).
 ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 
58.
 Joyce, K. E., Duce, S., Leahy, S. M., Leon, J. & Maier, S. W. Principles and practice of acquiring drone-based image data in marine environments. Mar. Freshw. Res. https://doi.org/10.1071/mf17380 (2019).
 Article  Google Scholar 
59.
 Kiszka, J. J. & Heithaus, M. R. Using aerial surveys to investigate the distribution, abundance, and behavior of sharks and rays. In Shark Research: Emerging Technologies and Applications for the Field and Laboratory (eds Carrier, J. C. et al.) (CRC Press, Boca Raton, FL, 2018).
 Google Scholar 
60.
 R Development Core Team. R: A Language and Environment for Statistical Computing,https://www.R-project.org (2008).
61.
 Bates, D., Maechler, M. & Bolker, B. lme4: Linear Mixed-Effects Models Using S4 Classes, https://cran.r-project.org/web/packages/lme4/index.html (2012).
62.
 Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometric. J. 50(3), 346–363 (2008).
 MathSciNet  Article  Google Scholar 
63.
 Hothorn, T. Bretz, F., Westfall, P., Heiberger, R. M., Schuetzenmeister, A., Scheibe, S. & Hothorn, M. T. multcomp: Simultaneous Inference in General Parametric Models, https://cran.stat.sfu.ca/web/packages/multcomp/multcomp.pdf (2016).
64.
 Stanislaw, H. & Todorov, N. Calculation of signal detection theory measures. Behav. Res. Methods Instrum. Comput. 31, 137–149. https://doi.org/10.3758/BF03207704 (1999).
 CAS  Article  PubMed  Google Scholar 
65.
 Macmillan, N. & Kaplan, H. L. Detection theory analysis of group data. Estimating sensitivity from average hit and false-alarm rates. Psychol. Bull. 98(1), 185 (1985).
 CAS  Article  Google Scholar  More
 