More stories

  • in

    The genetic diversity and differentiation of mussels with complex life cycles and relations to host fish migratory traits and densities

    1.
    Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–9013 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Dudaniec, R. Y. & Tesson, S. V. M. Applying landscape genetics to the microbial world. Mol. Ecol. 25, 3266–3275 (2016).
    PubMed  Article  Google Scholar 

    3.
    Froufe, E. et al. Phylogeny, phylogeography, and evolution in the Mediterranean region: News from a freshwater mussel (Potomida, Unionida). Mol. Phyl. Evol. 100, 322–332 (2016).
    Article  Google Scholar 

    4.
    Simmons, L., Mathieson, M. T., Lamont, R. W. & Shapcott, A. Genetic diversity of endangered orchid Phaius australis across a fragmented Australian landscape. Conserv. Genet. 19, 451–465 (2018).
    CAS  Article  Google Scholar 

    5.
    Chong, J. P. & Roe, K. J. A comparison of genetic diversity and population structure of the endangered scaleshell mussel (Leptodea leptodon), the fragile papershell (Leptodea fragilis) and their host-fish the freshwater drum (Aplodinotus grunniens). Conserv. Genet. 19(2), 425–437 (2018).
    Article  Google Scholar 

    6.
    Berg, D. J., Christian, A. D. & Guttman, S. I. Population genetic structure of three freshwater mussel (Unionidae) species within a small stream system: significant variation at local spatial scales. Freshw. Biol. 52, 1427–1439 (2007).
    Article  Google Scholar 

    7.
    Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1996).
    CAS  PubMed  PubMed Central  Google Scholar 

    8.
    Elderkin, C. L., Christian, A. D., Vaughn, C. C., Metcalfe-Smith, J. L. & Berg, D. J. Population genetics of the freshwater mussel, Amblema plicata (Say 1817) (Bivalvia: Unionidae): evidence of high dispersal and post-glacial colonization. Conserv. Genet. 8, 355–372 (2007).
    CAS  Article  Google Scholar 

    9.
    Mazé-Guilmo, E., Blanchet, S., McCoy, K. D. & Loot, G. Host dispersal as the driver of parasite genetic structure: a paradigm lost?. Ecol. Lett. 19, 336–347 (2016).
    PubMed  Article  Google Scholar 

    10.
    Karlsson, S., Larsen, B. M. & Hindar, K. Host-dependent genetic variation in freshwater pearl mussel (Margaritifera margaritifera L.). Hydrobiologia 735, 179–190 (2014).
    Article  Google Scholar 

    11.
    Östergren, J. & Nilsson, J. Importance of life-history and landscape characteristics for genetic structure and genetic diversity of brown trout (Salmo trutta L.). Ecol. Freshw. Fish 21, 119–133 (2012).
    Article  Google Scholar 

    12.
    Hendry, A. P. et al. Evolutionary principles and their practical application. Evol. Appl. 4, 159–183 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    13.
    Strayer, D. L. et al. Changing perspectives on pearly mussels, North America’s most imperiled animals. Bioscience 54, 429–439 (2004).
    Article  Google Scholar 

    14.
    Geist, J. et al. Genetic structure of Irish freshwater pearl mussels (Margaritifera margaritifera and Margaritifera durrovensis): Validity of subspecies, roles of host fish, and conservation implications. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 923–933 (2018).
    Article  Google Scholar 

    15.
    Arvidsson, B. L., Karlsson, J. & Österling, M. E. Recruitment of the threatened mussel Margaritifera margaritifera in relation to mussel population size, mussel density and host density. Aquat. Conserv. Mar. Freshw. Ecosyst. 22, 526–532 (2012).
    Article  Google Scholar 

    16.
    Young, M. & Williams, J. The reproductive biology of the freshwater pearl mussel Margaritifera margaritifera (Linn.) in Scotland 1 Field studies. Arch. Hydrobiol. 99, 405–422 (1984).
    Google Scholar 

    17.
    Hastie, L. C. & Young, M. R. Freshwater pearl mussel (Margaritifera margaritifera) glochidiosis in wild and farmed salmonid stocks in Scotland. Hydrobiologia 445, 109–119 (2001).
    Article  Google Scholar 

    18.
    Salonen, J. K. et al. Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) differ in their suitability as hosts for the endangered freshwater pearl mussel (Margaritifera margaritifera) in northern Fennoscandian rivers. Freshw. Biol. 62, 1346–1358 (2017).
    Article  Google Scholar 

    19.
    Österling, E. M. & Söderberg, H. Sea-trout habitat fragmentation affects threatened freshwater pearl mussel. Biol. Conserv. 186, 197–203 (2015).
    Article  Google Scholar 

    20.
    Taeubert, E. & Geist, J. The relationship between the freshwater pearl mussel (Margaritifera margaritifera) and its hosts. Biol. Bull. 44, 67–73 (2017).
    Article  Google Scholar 

    21.
    Stoeckle, B. C. et al. Strong genetic differentiation and low genetic diversity of the freshwater pearl mussel (Margaritifera margaritifera L.) in the southwestern European distribution range. Conserv. Genet. 18, 147–157 (2017).
    Article  Google Scholar 

    22.
    Mathias, P. T., Hoffman, J. R., Wilson, C. C. & Zanatta, D. T. Signature of postglacial colonization on contemporary genetic structure and diversity of Quadrula quadrula (Bivalvia: Unionidae). Hydrobiologia 810, 207–225 (2018).
    CAS  Article  Google Scholar 

    23.
    implications for conservation and management. Geist, J. & Kuehn, R. Genetic diversity and differentiation of central European freshwater pearl mussel (Margaritifera margaritifera L.) populations. Mol. Ecol. 14, 425–439 (2005).
    Google Scholar 

    24.
    Wacker, S., Larsen, B. M., Karlsson, S. & Hindar, K. Host specificity drives genetic structure in a freshwater mussel. Sci. Reports 9, 10409 (2019).
    ADS  Google Scholar 

    25.
    Geist, J. & Kuehn, R. Host-parasite interactions in oligotrophic stream ecosystems: The roles of life history strategy and ecological niche. Mol. Ecol. 17, 997–1008 (2008).
    PubMed  Article  Google Scholar 

    26.
    Naimo, T. J., Damschen, E. D., Rada, R. G. & Monroe, E. M. Nonlethal evaluation of the physiological health of unionid mussels: methods for biopsy and glycogen analysis. J. North Am. Benth. Soc. 17, 121–128 (1998).
    Article  Google Scholar 

    27.
    Geist, J., Rottmann, O., Schroder, W. & Kuhn, R. Development of microsatellite markers for the endangered freshwater pearl mussel Margaritifera margaritifera L. (Bivalvia : Unionoidea). Mol. Ecol. Notes3, 444–446 (2003).

    28.
    Raymond, M. & Rousset, F. An exact test for population differentiation. Evolution 49, 1280–1283 (1995).
    PubMed  Article  Google Scholar 

    29.
    Raymond, M. & Rousset, F. GENEPOP (version 1.2)—population genetics software for exact tests and ecumenicism. J Heredity 86, 248–249 (1995).
    Article  Google Scholar 

    30.
    Van Oosterhout, C., Hutchinson, W. F., Wilis, D. P. M. & Shipley, P. micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).
    Article  CAS  Google Scholar 

    31.
    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).
    CAS  PubMed  Google Scholar 

    32.
    Goudet, J. FSTAT (Version 1.2): a computer program to calculate F-statistics. J. Heredity 86, 485–486 (1995).
    Article  Google Scholar 

    33.
    Takezaki, N., Nei, M. & Tamura, K. POPTREE2: software for constructing population trees from allele frequency data and computing other population statistics with windows interface. Mol. Biol. Evol. 27, 747–752 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    34.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    35.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).
    CAS  PubMed  Article  Google Scholar 

    36.
    Earl, D. A. & von Holdt, B. M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Res. 4, 359–361 (2012).
    Article  Google Scholar 

    37.
    Jombart, T. Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).
    CAS  PubMed  Article  Google Scholar 

    38.
    Jombart, T. & Ahmed, I. Adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Res. 10, 564–567 (2010).
    Article  Google Scholar 

    40.
    Di Rienzo, A. et al. Mutational processes of simple-sequence repeat loci in human populations. Proc. Nat. Acad. Sci. USA 91, 3166–3170 (1994).
    ADS  PubMed  Article  Google Scholar 

    41.
    Piry, S., Luikart, G. & Cornuet, J.-M. Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J. Heredity 90, 502–503 (1999).
    Article  Google Scholar 

    42.
    Wilson, G. A. & Rannala, B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163, 1177–1191 (2003).
    PubMed  PubMed Central  Google Scholar 

    43.
    Moritz, C., Lavery, S. & Slade, R. Using allele frequency and phylogeny to define units for conservation and management. Am. Fish. Soc. Symp. 17, 249–262 (1995).
    Google Scholar 

    44.
    Zanatta, D. T. et al. High genetic diversity and low differentiation in North American Margaritifera margaritifera (Bivalvia: Unionida: Margaritiferidae). Biol. J. Linn. Soc. 123, 850–863 (2018).
    Article  Google Scholar 

    45.
    Geist, J., Söderberg, H., Karlberg, A. & Kuehn, R. Drainage-independent genetic structure and high genetic diversity of endangered freshwater pearl mussels (Margaritifera margaritifera) in northern Europe. Conserv. Gen. 11, 1339–1350 (2010).
    Article  Google Scholar 

    46.
    Cortey, M., Vera, M., Pla, C. & Garcia-Marin, J.-L. Northern and Southern expansions of Atlantic brown trout (Salmo trutta) populations during the Pleistocene. Biol. J. Linn. Soc. 97, 904–917 (2009).
    Article  Google Scholar 

    47.
    Schwalb, A. N., Garvie, M. & Ackerman, J. D. Dispersion of freshwater mussel larvae in a lowland river. Limnol. Oceanogr. 55, 628–638 (2010).
    ADS  Article  Google Scholar 

    48.
    Schwalb, A. N., Cottenie, K., Poos, M. S. & Ackerman, J. D. Dispersal limitation of unionid mussels and implications for their conservation. Freshw. Biol. 56, 1509–1518 (2011).
    Article  Google Scholar 

    49.
    Terui, A. et al. Dispersal of larvae of Margaritifera laevis by its host fish. Freshw. Sci. 33, 112–123 (2014).
    Article  Google Scholar 

    50.
    Frankham, R. Relationship of genetic variation to population size in wildlife. Conserv. Biol 10(6), 1500–1508 (1996).
    Article  Google Scholar 

    51.
    Leimu, R., Mutikainen, P., Koricheva, J. & Fischer, M. How general are positive relationships between plant population size, fitness and genetic variation?. J. Ecol. 94(5), 942–952 (2006).
    Article  Google Scholar 

    52.
    Lopes-Lima, M. et al. Conservation status of freshwater mussels in Europe: state of the art and future challenges. Biol. Rev. 92, 572–607 (2017).
    PubMed  Article  Google Scholar 

    53.
    Gum, B., Lange, M. & Geist, J. A critical reflection on the success of rearing and culturing juvenile freshwater mussels with a focus on the endangered freshwater pearl mussel (Margaritifera margaritifera L.). Aquat. Conserv. Mar. Freshw. Ecosyst. 21, 743–751 (2011).
    Article  Google Scholar 

    54.
    Geist, J. Strategies for the conservation of endangered freshwater pearl mussels (Margaritifera margaritifera L.): a synthesis of conservation genetics and ecology. Hydrobiologia 644, 69–88 (2010).
    Article  Google Scholar 

    55.
    Schneider, L. D., Anders Nilsson, P., Höjesjö, J. & Österling, E. M. Local adaptation studies and conservation: parasite–host interactions between the endangered freshwater mussel Unio crassus and its host fish. Aquat. Conserv. Mar. Freshwater Ecosyst. 27, 1261–1269 (2017).
    Article  Google Scholar 

    56.
    Taeubert, J.-E., Denic, M., Gum, B., Lange, M. & Geist, J. Suitability of different salmonid strains as hosts for the endangered freshwater pearl mussel (Margaritifera margaritifera L.). Aquat. Conserv. Mar. Freshw. Ecosyst. 20, 728–734 (2010).
    Article  Google Scholar 

    57.
    Österling, M. E. & Larsen, B. M. Impact of origin and condition of host fish (Salmo trutta) on parasitic larvae of Margaritifera margaritifera. Aquat. Conserv. Mar. Freshw. Ecosyst. 23, 564–570 (2013).
    Article  Google Scholar  More

  • in

    Prebiotic effects of yeast mannan, which selectively promotes Bacteroides thetaiotaomicron and Bacteroides ovatus in a human colonic microbiota model

    1.
    Liu, H. Z., Liu, L., Hui, H. & Wang, Q. Structural characterization and antineoplastic activity of Saccharomyces cerevisiae mannoprotein. Int. J. Food Prop. 18, 359–371 (2015).
    CAS  Google Scholar 
    2.
    Kocourek, J. & Ballou, C. E. Method for fingerprinting yeast cell wall mannans. J. Bacteriol. 100, 1175–1181 (1969).
    CAS  PubMed  PubMed Central  Google Scholar 

    3.
    Scheller, H. V. & Ulvskov, P. Hemicelluloses. Annu. Rev. Plant Biol. 61, 263–289 (2010).
    CAS  PubMed  Google Scholar 

    4.
    Jin, X., Zhang, M., Cao, G. F. & Yang, Y. F. Saccharomyces cerevisiae mannan induces sheep beta-defensin-1 expression via Dectin-2-Syk-p38 pathways in ovine ruminal epithelial cells. Vet. Res. (Faisalabad) 50, 8 (2019).
    Google Scholar 

    5.
    Michael, C. F. et al. Airway epithelial repair by a prebiotic mannan derived from Saccharomyces cerevisiae. J. Immunol. Res. 2017, 8903982 (2017).
    PubMed  PubMed Central  Google Scholar 

    6.
    Lew, D. B. et al. Beneficial effects of prebiotic Saccharomyces cerevisiae mannan on allergic asthma mouse models. J. Immunol. Res. 2017, 3432701 (2017).
    PubMed  PubMed Central  Google Scholar 

    7.
    Cuskin, F. et al. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature 517, 165–169 (2015).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    8.
    Flint, H. J., Scott, K. P., Louis, P. & Duncan, S. H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 9, 577–589 (2012).
    CAS  PubMed  Google Scholar 

    9.
    Cani, P. D. et al. Microbial regulation of organismal energy homeostasis. Nat. Metab. 1, 34–46 (2019).
    CAS  PubMed  Google Scholar 

    10.
    Hooper, L. V. & Macpherson, A. J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol. 10, 159–169 (2010).
    CAS  PubMed  Google Scholar 

    11.
    Pickard, J. M., Zeng, M. Y., Caruso, R. & Núñez, G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev. 279, 70–89 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    12.
    Arora, T. & Bäckhed, F. The gut microbiota and metabolic disease: Current understanding and future perspectives. J. Intern. Med. 280, 339–349 (2016).
    CAS  PubMed  Google Scholar 

    13.
    Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    14.
    Wong, S. H. & Yu, J. Gut microbiota in colorectal cancer: Mechanisms of action and clinical applications. Nat. Rev. Gastroenterol. Hepatol. 16, 690–704 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    15.
    Vogt, N. M. et al. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 7, 13537 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    16.
    The Human Microbiome Project Consortium. Structure, function, and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).
    ADS  PubMed Central  Google Scholar 

    17.
    Bolam, D. N. & Koropatkin, N. M. Glycan recognition by the Bacteroidetes Sus-like systems. Curr. Opin. Struct. Biol. 22, 563–569 (2012).
    CAS  PubMed  Google Scholar 

    18.
    Foley, M. H., Cockburn, D. W. & Koropatkin, N. M. The Sus operon: A model system for starch uptake by the human gut Bacteroidetes. Cell. Mol. Life. Sci. 73, 2603–2617 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    19.
    Bågenholm, V. et al. Galactomannan catabolism conferred by a polysaccharide utilization locus of Bacteroides ovatus. J. Biol. Chem. 292, 229–243 (2017).
    PubMed  Google Scholar 

    20.
    Martens, E. C., Koropatkin, N. M., Smith, T. J. & Gordon, J. I. Complex glycan catabolism by the human gut microbiota: The Bacteroidetes Sus-like paradigm. J. Biol. Chem. 284, 24673–24677 (2009).
    CAS  PubMed  PubMed Central  Google Scholar 

    21.
    Larsbrink, J. et al. A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes. Nature 506, 498–502 (2014).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    22.
    Martens, E. C. et al. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 9, e1001221 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Rakoff-Nahoum, S., Foster, K. R. & Comstock, L. E. The evolution of cooperation within the gut microbiota. Nature 533, 255–259 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    24.
    Flint, H. J., Bayer, E. A., Rincon, M. T., Lamed, R. & White, B. A. Polysaccharide utilization by gut bacteria: Potential for new insights from genomic analysis. Nat. Rev. Microbiol. 6, 121–131 (2008).
    CAS  PubMed  Google Scholar 

    25.
    Koropatkin, N. M., Cameron, E. A. & Martens, E. C. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 10, 323–335 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    26.
    Varyukhina, S. et al. Glycan-modifying bacteria-derived soluble factors from Bacteroides thetaiotaomicron and Lactobacillus casei inhibit rotavirus infection in human intestinal cells. Microbes Infect. 14, 273–278 (2012).
    CAS  PubMed  Google Scholar 

    27.
    López-Boado, Y. S. et al. Bacterial exposure induces and activates matrilysin in mucosal epithelial cells. J. Cell Biol. 148, 1305–1315 (2000).
    PubMed  PubMed Central  Google Scholar 

    28.
    Delday, M., Mulder, I., Logan, E. T. & Grant, G. Bacteroides thetaiotaomicron ameliorates colon inflammation in preclinical models of Crohn’s disease. Inflamm. Bowel Dis. 25, 85–96 (2019).
    PubMed  Google Scholar 

    29.
    Hansen, R. et al. A phase I randomized, double-blind, placebo-controlled study to assess the safety and tolerability of (Thetanix) Bacteroides thetaiotaomicron in adolescents with stable Crohn’s disease. https://www.4dpharmaplc.com/application/files/1815/5824/8886/Thetanix_DDW_poster_2019.pdf. Accessed 15 July 2020 (2019).

    30.
    Salyers, A. A., Vercellotti, J. R., West, S. E. & Wilkins, T. D. Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon. Appl. Environ. Microbiol. 33, 319–322 (1977).
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Rawi, M. H., Zaman, S. A., Pa’ee, K. F., Leong, S. S. & Sarbini, S. R. Prebiotics metabolism by gut-isolated probiotics. J. Food Sci. Technol. 57, 1–14 (2020).
    Google Scholar 

    32.
    Oba, S. et al. Yeast mannan increases Bacteroides thetaiotaomicron abundance and suppresses putrefactive compound production in in vitro fecal microbiota fermentation. Biosci. Biotechnol. Biochem. 84, 2174–2178 (2020).
    CAS  PubMed  Google Scholar 

    33.
    Sasaki, D. et al. Low amounts of dietary fibre increase in vitro production of short-chain fatty acids without changing human colonic microbiota structure. Sci. Rep. 8, 435 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    34.
    Takagi, R. et al. A single-batch fermentation system to simulate human colonic microbiota for high-throughput evaluation of prebiotics. PLoS ONE 11, e0160533 (2016).
    PubMed  PubMed Central  Google Scholar 

    35.
    Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).
    PubMed  PubMed Central  Google Scholar 

    36.
    Wexler, H. M. Bacteroides: The good, the bad, and the nitty-gritty. Clin. Microbiol. Rev. 20, 593–621 (2007).
    CAS  PubMed  PubMed Central  Google Scholar 

    37.
    Tong, J., Liu, C., Summanen, P., Xu, H. & Finegold, S. M. Application of quantitative real-time PCR for rapid identification of Bacteroides fragilis group and related organisms in human wound samples. Anaerobe 17, 64–68 (2011).
    CAS  PubMed  Google Scholar 

    38.
    Slavin, J. Fiber and prebiotics: Mechanisms and health benefits. Nutrients 5, 1417–1435 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    39.
    Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).
    CAS  PubMed  Google Scholar 

    40.
    den Besten, G. et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54, 2325–2340 (2013).
    Google Scholar 

    41.
    Gibson, G. R. et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14, 491–502 (2017).
    PubMed  Google Scholar 

    42.
    Holscher, H. D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 8, 172–184 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    43.
    Chang, C. J. et al. Next generation probiotics in disease amelioration. J. Food Drug Anal. 27, 615–622 (2019).
    CAS  PubMed  Google Scholar 

    44.
    Tan, H. et al. Pilot safety evaluation of a novel strain of Bacteroides ovatus. Front. Genet. 9, 539 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    45.
    Tzianabos, A. O., Onderdonk, A. B., Rosner, B., Cisneros, R. L. & Kasper, D. L. Structural features of polysaccharides that induce intra-abdominal abscesses. Science 262, 416–419 (1993).
    ADS  CAS  PubMed  Google Scholar 

    46.
    Bamba, T., Matsuda, H., Endo, M. & Fujiyama, Y. The pathogenic role of Bacteroides vulgatus in patients with ulcerative colitis. J Gastroenterol. 30(Suppl 8), 45–47 (1995).
    PubMed  Google Scholar 

    47.
    Ulsemer, P. et al. Specific humoral immune response to the Thomsen-Friedenreich tumor antigen (CD176) in mice after vaccination with the commensal bacterium Bacteroides ovatus D-6. Cancer Immunol. Immunother. 62, 875–887 (2013).
    CAS  PubMed  Google Scholar 

    48.
    Tan, H., Zhao, J., Zhang, H., Zhai, Q. & Chen, W. Novel strains of Bacteroides fragilis and Bacteroides ovatus alleviate the LPS-induced inflammation in mice. Appl. Microbiol. Biotechnol. 103, 2353–2365 (2019).
    CAS  PubMed  Google Scholar 

    49.
    Luis, A. S. et al. Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Nat. Microbiol. 3, 210–219 (2018).
    CAS  PubMed  Google Scholar 

    50.
    Rakoff-Nahoum, S., Coyne, M. J. & Comstock, L. E. An ecological network of polysaccharide utilization among human intestinal symbionts. Curr. Biol. 24, 40–49 (2014).
    CAS  PubMed  Google Scholar 

    51.
    Rogowski, A. et al. Glycan complexity dictates microbial resource allocation in the large intestine. Nat. Commun. 6, 7481 (2015).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    52.
    Le Poul, E. et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 278, 25481–25489 (2003).
    PubMed  Google Scholar 

    53.
    Okubo, T. et al. Effects of partially hydrolyzed guar gum intake on human intestinal microflora and its metabolism. Biosci. Biotechnol. Biochem. 58, 1364–1369 (1994).
    CAS  Google Scholar 

    54.
    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).
    CAS  PubMed  Google Scholar 

    55.
    Magoč, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).
    PubMed  PubMed Central  Google Scholar 

    56.
    Li, W., Fu, L., Niu, B., Wu, S. & Wooley, J. Ultrafast clustering algorithms for metagenomic sequence analysis. Brief. Bioinform. 13, 656–668 (2012).
    PubMed  PubMed Central  Google Scholar 

    57.
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
    CAS  Google Scholar 

    58.
    Maidak, B. L. et al. The RDP-II (ribosomal database project). Nucleic Acids Res. 29, 173–174 (2001).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    59.
    Lozupone, C. & Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).
    CAS  PubMed  PubMed Central  Google Scholar 

    60.
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    61.
    Furet, J. P. et al. Comparative assessment of human and farm animal faecal microbiota using real-time quantitative PCR. FEMS Microbiol. Ecol. 68, 351–362 (2009).
    CAS  PubMed  Google Scholar 

    62.
    Goubet, F., Jackson, P., Deery, M. J. & Dupree, P. Polysaccharide analysis using carbohydrate gel electrophoresis: A method to study plant cell wall polysaccharides and polysaccharide hydrolases. Anal. Biochem. 300, 53–68 (2002).
    CAS  PubMed  Google Scholar 

    63.
    Terrapon, N. et al. PULDB: The expanded database of polysaccharide utilization loci. Nucleic Acids Res. 46, D677–D683 (2018).
    CAS  PubMed  Google Scholar  More

  • in

    Different types of agricultural land use drive distinct soil bacterial communities

    1.
    Marschner, P., Crowley, D. & Yang, C. H. Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant Soil 261, 199–208 (2004).
    CAS  Article  Google Scholar 
    2.
    Osler, G. H. R. & Sommerkorn, M. Toward a complete soil C and N cycle: Incorporating the soil fauna. Ecology 88, 1611–1621 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    3.
    Kennedy, A. C. Bacterial diversity in agroecosystems. Agric. Ecosyst. Environ. 74, 65–76 (1999).
    Article  Google Scholar 

    4.
    Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    van der Heijden, M. G. A., Bardgett, R. D. & van Straalen, N. M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    6.
    Drenovsky, R. E., Steenwerth, K. L., Jackson, L. E. & Scow, K. M. Land use and climatic factors structure regional patterns in soil microbial communities. Glob. Ecol. Biogeogr. 19, 27–39 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    7.
    Ma, B. et al. Distinct biogeographic patterns for archaea, bacteria, and fungi along the vegetation gradient at the continental scale in Eastern China. mSystems 2, e00174-e1116 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Wang, X. B. et al. Habitat-specific patterns and drivers of bacterial beta-diversity in China’s drylands. ISME J. 11, 1345–1358 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    9.
    Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Singh, J. S., Pandey, V. C. & Singh, D. P. Efficient soil microorganisms: A new dimension for sustainable agriculture and environmental development. Agric. Ecosyst. Environ. 140, 339–353 (2011).
    Article  Google Scholar 

    11.
    Verhulst, N. et al. Soil quality as affected by tillage-residue management in a wheat-maize irrigated bed planting system. Plant Soil 340, 453–466 (2011).
    CAS  Article  Google Scholar 

    12.
    Aziz, I., Mahmood, T. & Islam, K. R. Effect of long term no-till and conventional tillage practices on soil quality. Soil Tillage Res. 131, 28–35 (2013).
    Article  Google Scholar 

    13.
    Navarro-Noya, Y. E. et al. Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem. Soil Biol. Biochem. 65, 86–95 (2013).
    CAS  Article  Google Scholar 

    14.
    Meriles, J. M. et al. Soil microbial communities under different soybean cropping systems: Characterization of microbial population dynamics, soil microbial activity, microbial biomass, and fatty acid profiles. Soil Tillage Res. 103, 271–281 (2009).
    Article  Google Scholar 

    15.
    Chaudhry, V., Rehman, A., Mishra, A., Chauhan, P. S. & Nautiyal, C. S. Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments. Microb. Ecol. 64, 450–460 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    16.
    Hartmann, M., Frey, B., Mayer, J., Mader, P. & Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 9, 1177–1194 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    17.
    Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA. 103, 626–631 (2006).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Bartram, A. K. et al. Exploring links between pH and bacterial community composition in soils from the Craibstone experimental farm. FEMS Microbiol. Ecol. 87, 403–415 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Min, W. et al. Response of soil microbial community and diversity to increasing water salinity and nitrogen fertilization rate in an arid soil. Acta Agric. Scand. B Soil Plant Sci. 66, 117–126 (2016).
    CAS  Google Scholar 

    20.
    Lauber, C. L., Strickland, M. S., Bradford, M. A. & Fierer, N. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol. Biochem. 40, 2407–2415 (2008).
    CAS  Article  Google Scholar 

    21.
    Lozupone, C. A. & Knight, R. Global patterns in bacterial diversity. Proc. Natl. Acad. Sci. USA. 104, 11436–11440 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Zhang, X.-Y., Sui, Y.-Y., Zhang, X.-D., Meng, K. & Herbert, S. J. Spatial variability of nutrient properties in black soil of Northeast China. Pedosphere 17, 19–29 (2007).
    Article  Google Scholar 

    23.
    Griffiths, R. I. et al. The bacterial biogeography of British soils. Environ. Microbiol. 13, 1642–1654 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    24.
    Liu, J. et al. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China. Soil Biol. Biochem. 70, 113–122 (2014).
    CAS  Article  Google Scholar 

    25.
    Kim, M. et al. Highly heterogeneous soil bacterial communities around Terra Nova Bay of northern Victoria, Land Antarctica. PLoS ONE 10, e0119966 (2015).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    26.
    Hermans, S. M. et al. Bacteria as emerging indicators of soil condition. Appl. Environ. Microbiol. 83, e02826-e12816 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Barberan, A., Bates, S. T., Casamayor, E. O. & Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 6, 343–351 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Faust, K. & Raes, J. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    van der Heijden, M. G. & Hartmann, M. Networking in the plant microbiome. PLoS Biol. 14, e1002378 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    30.
    Shi, S. et al. The interconnected rhizosphere: High network complexity dominates rhizosphere assemblages. Ecol. Lett. 19, 926–936 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    31.
    Kim, J. M. et al. Soil pH and electrical conductivity are key edaphic factors shaping bacterial communities of greenhouse soils in Korea. J. Microbiol. 54, 838–845 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Tripathi, B. et al. Spatial scaling effects on soil bacterial communities in Malaysian tropical forests. Microb. Ecol. 68, 247–258 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    33.
    Feng, M. et al. Interpreting distance-decay pattern of soil bacteria via quantifying the assembly processes at multiple spatial scales. MicrobiologyOpen 8, e00851 (2019).
    PubMed  PubMed Central  Google Scholar 

    34.
    Morlon, H. et al. A general framework for the distance-decay of similarity in ecological communities. Ecol. Lett. 11, 904–917 (2008).
    PubMed  PubMed Central  Article  Google Scholar 

    35.
    Figuerola, E. L. M. et al. Bacterial indicator of agricultural management for soil under no-till crop production. PLoS ONE 7, e51075 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Jimenez-Bueno, N. G. et al. Bacterial indicator taxa in soils under different long-term agricultural management. J. Appl. Microbiol. 120, 921–933 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Liesack, W., Schnell, S. & Revsbech, N. P. Microbiology of flooded rice paddies. FEMS Microbiol. Rev. 24, 625–645 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Kang, S. S. et al. Status and change in chemical properties of polytunnel soil in Korea from 2000 to 2012. Korean J. Soil Sci. Fertil. 46, 641–646 (2013).
    CAS  Article  Google Scholar 

    39.
    Handley, K. M. et al. High-density PhyloChip profiling of stimulated aquifer microbial communities reveals a complex response to acetate amendment. FEMS Microbiol. Ecol. 81, 188–204 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Ma, J. C., Ibekwe, A. M., Yang, C. H. & Crowley, D. E. Bacterial diversity and composition in major fresh produce growing soils affected by physiochemical properties and geographic locations. Sci. Total Environ. 563, 199–209 (2016).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    41.
    Reich, P. B. et al. Linking litter calcium, earthworms and soil properties: A common garden test with 14 tree species. Ecol. Lett. 8, 811–818 (2005).
    Article  Google Scholar 

    42.
    Sridevi, G. et al. Soil bacterial communities of a calcium-supplemented and a reference watershed at the Hubbard Brook experimental forest (HBEF), New Hampshire, USA. FEMS Microbiol. Ecol. 79, 728–740 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Singh, D., Shi, L. & Adams, J. M. Bacterial diversity in the mountains of South-West China: Climate dominates over soil parameters. J. Microbiol. 51, 439–447 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    44.
    Miethling, R., Wieland, G., Backhaus, H. & Tebbe, C. C. Variation of microbial rhizosphere communities in response to crop secies, soil origin, and inoculation with Sinorhizobium meliloti L33. Microb. Ecol. 40, 43–56 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    De Caceres, M. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3566–3574 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    46.
    Oyaizu, H., Debrunner-Vossbrinck, B., Mandelco, L., Studier, J. A. & Woese, C. R. The green non-sulfur bacteria: A deep branching in the eubacterial line of descent. Syst. Appl. Microbiol. 9, 47–53 (1987).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Rappe, M. S. & Giovannoni, S. J. The uncultured microbial majority. Annu. Rev. Microbiol. 57, 369–394 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Krzmarzick, M. J. et al. Natural niche for organohalide-respiring Chloroflexi. Appl. Environ. Microbiol. 78, 393–401 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Speirs, L. B. M., Rice, D. T. F., Petrovski, S. & Seviour, R. J. The phylogeny, biodiversity, and ecology of the chloroflexi in activated sludge. Front. Microbiol.10 (2019).

    50.
    Janssen, P. H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72, 1719–1728 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Will, C. et al. Horizon-specific bacterial community composition of German grassland soils, as revealed by pyrosequencing-based analysis of 16S rRNA genes. Appl. Environ. Microbiol. 76, 6751–6759 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Costello, E. K. & Schmidt, S. K. Microbial diversity in alpine tundra wet meadow soil: novel Chloroflexi from a cold, water-saturated environment. Environ. Microbiol. 8, 1471–1486 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Lee, H. J., Jeong, S. E., Kim, P. J., Madsen, E. & Jeon, C. O. High resolution depth distribution of Bacteria, Archaea, methanotrophs, and methanogens in the bulk and rhizosphere soils of a flooded rice paddy. Front. Microbiol. 6, 639 (2015).
    PubMed  PubMed Central  Google Scholar 

    54.
    Ahn, J. H. et al. Dynamics of bacterial communities in rice field soils as affected by different long-term fertilization practices. J. Microbiol. 54, 724–731 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Hernández, M., Conrad, R., Klose, M., Ma, K. & Lu, Y. Structure and function of methanogenic microbial communities in soils from flooded rice and upland soybean fields from Sanjiang plain NE China. Soil Biol. Biochem. 105, 81–91 (2017).
    Article  CAS  Google Scholar 

    56.
    Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    57.
    Jones, R. T. et al. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J. 3, 442–453 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Navarrete, A. A. et al. Differential response of Acidobacteria subgroups to forest-to-pasture conversion and their biogeographic patterns in the western Brazilian Amazon. Front. Microbiol. 6, 1443 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    59.
    Leff, J. W. et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl. Acad. Sci. USA. 112, 10967–10972 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    60.
    Trivedi, P., Delgado-Baquerizo, M., Anderson, I. C. & Singh, B. K. Response of soil properties and microbial communities to agriculture: Implications for primary productivity and soil health indicators. Front. Plant Sci. 7, 990 (2016).
    PubMed  PubMed Central  Google Scholar 

    61.
    Radhakrishnan, R., Hashem, A. & Abd Allah, E. F. Bacillus: A biological tool for crop improvement through bio-molecular changes in adverse environments. Front. Physiol. 8, 667 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    62.
    Pujalte, M. J., Lucena, T., Ruvira, M. A., Arahal, D. R. & Macián, M. C. The Family Rhodobacteraceae. In The Prokaryotes (eds Rosenberg, E. et al.) 439–512 (Springer, Berlin, 2014).
    Google Scholar 

    63.
    Baldani, J. I. et al. The Family Rhodospirillaceae. In The Prokaryotes (eds Rosenberg, E. et al.) 533–618 (Springer, Berlin, 2014).
    Google Scholar 

    64.
    Karimi, B. et al. Biogeography of soil bacterial networks along a gradient of cropping intensity. Sci. Rep. 9, 3812 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    65.
    Hartman, K. et al. Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome 6, 14 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    66.
    Nielsen, M. N. & Winding, A. Microorganisms as indicators of soil health. National Environmental Research Institute, Denmark, Technical Report no. 388 (2002).

    67.
    Allison, L. E. Organic carbon in Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties (ed Black, C. A.) 1367–1378 (American Society of Agronomy, 1965).

    68.
    National Institute of Agricultural Science and Technology (NIAST). Methods of analysis of soil and plant. (NIAST, 2000)

    69.
    Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    71.
    R Core Team. R: a language and environment for statistical computing. https://www.R-project.org/ (2016).

    72.
    Dray, S. et al. Community ecology in the age of multivariate multiscale spatial analysis. Ecol. Monogr. 82, 257–275 (2012).
    Article  Google Scholar 

    73.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R Stat. Soc. Series B Stat. Methodol. 57, 289–300 (1995).
    MathSciNet  MATH  Google Scholar 

    74.
    Ogle, D. H. FSA: Fisheries stock analysis. R package version 0.8.13. (2017).

    75.
    Bastian, M., Heymann, S. & Jacomy, M. Gephi: an open source software for exploring and manipulating networks. International AAAI Conference on Weblogs and Social Media (2009).

    76.
    Deng, Y. et al. Molecular ecological network analyses. BMC Bioinform. 13, 113 (2012).
    Article  Google Scholar  More

  • in

    Experimentally-validated correlation analysis reveals new anaerobic methane oxidation partnerships with consortium-level heterogeneity in diazotrophy

    1.
    Knittel K, Boetius A. Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol. 2009;63:311–34.
    CAS  PubMed  Article  Google Scholar 
    2.
    Reeburgh WS. Oceanic Methane Biogeochemistry. Chem Rev. 2007;107:486–513.
    CAS  PubMed  Article  Google Scholar 

    3.
    Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science. 2001;293:484–7.
    CAS  PubMed  Article  Google Scholar 

    4.
    Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature. 2000;407:623.
    CAS  PubMed  Article  Google Scholar 

    5.
    McGlynn SE, Chadwick GL, Kempes CP, Orphan VJ. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature. 2015;526:531–5.
    CAS  PubMed  Article  Google Scholar 

    6.
    Scheller S, Yu H, Chadwick GL, McGlynn SE, Orphan VJ. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science. 2016;351:703–7.
    CAS  PubMed  Article  Google Scholar 

    7.
    Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, Boetius A. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature. 2015;526:587–90.
    CAS  PubMed  Article  Google Scholar 

    8.
    Dekas AE, Connon SA, Chadwick GL, Trembath-Reichert E, Orphan VJ. Activity and interactions of methane seep microorganisms assessed by parallel transcription and FISH-NanoSIMS analyses. ISME J. 2016;10:678–92.
    CAS  PubMed  Article  Google Scholar 

    9.
    Dekas AE, Poretsky RS, Orphan VJ. Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia. Science. 2009;326:422–6.
    CAS  PubMed  Article  Google Scholar 

    10.
    Dekas AE, Chadwick GL, Bowles MW, Joye SB, Orphan VJ. Spatial distribution of nitrogen fixation in methane seep sediment and the role of the ANME archaea. Environ Microbiol. 2014;16:3012–29.
    CAS  PubMed  Article  Google Scholar 

    11.
    Orphan VJ, Turk KA, Green AM, House CH. Patterns of 15N assimilation and growth of methanotrophic ANME-2 archaea and sulfate-reducing bacteria within structured syntrophic consortia revealed by FISH-SIMS. Environ Microbiol. 2009;11:1777–91.
    CAS  PubMed  Article  Google Scholar 

    12.
    Evans PN, Boyd JA, Leu AO, Woodcroft BJ, Parks DH, Hugenholtz P, et al. An evolving view of methane metabolism in the Archaea. Nat Rev Microbiol. 2019;17:219–32.
    CAS  PubMed  Article  Google Scholar 

    13.
    Krukenberg V, Riedel D, Gruber‐Vodicka HR, Buttigieg PL, Tegetmeyer HE, Boetius A, et al. Gene expression and ultrastructure of meso- and thermophilic methanotrophic consortia. Environ Microbiol. 2018;20:1651–66.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    14.
    Skennerton CT, Chourey K, Iyer R, Hettich RL, Tyson GW, Orphan VJ. Methane-fueled syntrophy through extracellular electron transfer: uncovering the genomic traits conserved within diverse bacterial partners of anaerobic methanotrophic archaea. mBio. 2017;8:e00530–17.
    PubMed  PubMed Central  Google Scholar 

    15.
    Schreiber L, Holler T, Knittel K, Meyerdierks A, Amann R. Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade. Environ Microbiol. 2010;12:2327–40.
    CAS  PubMed  Google Scholar 

    16.
    Green-Saxena A, Dekas AE, Dalleska NF, Orphan VJ. Nitrate-based niche differentiation by distinct sulfate-reducing bacteria involved in the anaerobic oxidation of methane. ISME J. 2014;8:150–63.
    CAS  PubMed  Article  Google Scholar 

    17.
    Hinrichs K-U, Hayes JM, Sylva SP, Brewer PG, DeLong EF. Methane-consuming archaebacteria in marine sediments. Nature. 1999;398:802.
    CAS  PubMed  Article  Google Scholar 

    18.
    Hallam SJ, Girguis PR, Preston CM, Richardson PM, DeLong EF. Identification of methyl coenzyme M Reductase A (mcrA) genes associated with methane-oxidizing archaea. Appl Environ Microbiol. 2003;69:5483–91.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Michaelis W, Seifert R, Nauhaus K, Treude T, Thiel V, Blumenberg M, et al. Microbial reefs in the black sea fueled by anaerobic oxidation of methane. Science. 2002;297:1013–5.
    CAS  PubMed  Article  Google Scholar 

    20.
    Knittel K, Lösekann T, Boetius A, Kort R, Amann R. Diversity and distribution of methanotrophic archaea at cold seeps. Appl Environ Microbiol. 2005;71:467–79.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Orphan VJ, Hinrichs K-U, Ussler W, Paull CK, Taylor LT, Sylva SP, et al. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl Environ Microbiol. 2001;67:1922–34.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc Natl Acad Sci. 2002;99:7663–8.
    CAS  PubMed  Article  Google Scholar 

    23.
    Raghoebarsing AA, Pol A, Pas-Schoonen KT, van de, Smolders AJP, Ettwig KF, Rijpstra WIC, et al. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature. 2006;440:918.
    CAS  PubMed  Article  Google Scholar 

    24.
    Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature. 2013;500:567–70.
    CAS  PubMed  Article  Google Scholar 

    25.
    Niemann H, Lösekann T, Beer D, de, Elvert M, Nadalig T, Knittel K, et al. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature. 2006;443:854.
    CAS  PubMed  Article  Google Scholar 

    26.
    Lösekann T, Knittel K, Nadalig T, Fuchs B, Niemann H, Boetius A, et al. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Appl Environ Microbiol. 2007;73:3348–62.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    27.
    Manz W, Eisenbrecher M, Neu TR, Szewzyk U. Abundance and spatial organization of gram-negative sulfate-reducing bacteria in activated sludge investigated by in situ probing with specific 16S rRNA targeted oligonucleotides. FEMS Microbiol Ecol. 1998;25:43–61.
    CAS  Article  Google Scholar 

    28.
    Nauhaus K, Albrecht M, Elvert M, Boetius A, Widdel F. In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environ Microbiol. 2007;9:187–96.
    CAS  PubMed  Article  Google Scholar 

    29.
    Pernthaler A, Dekas AE, Brown CT, Goffredi SK, Embaye T, Orphan VJ. Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proc Natl Acad Sci USA. 2008;105:7052–7.
    CAS  PubMed  Article  Google Scholar 

    30.
    Vigneron A, Cruaud P, Pignet P, Caprais J-C, Cambon-Bonavita M-A, Godfroy A, et al. Archaeal and anaerobic methane oxidizer communities in the Sonora Margin cold seeps, Guaymas Basin (Gulf of California). ISME J. 2013;7:1595–608.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    McGlynn SE, Chadwick GL, O’Neill A, Mackey M, Thor A, Deerinck TJ, et al. Subgroup characteristics of marine methane-oxidizing ANME-2 archaea and their syntrophic partners as revealed by integrated multimodal analytical microscopy. Appl Environ Microbiol. 2018;84:e00399–18.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Treude T, Krüger M, Boetius A, Jørgensen BB. Environmental control on anaerobic oxidation of methane in the gassy sediments of Eckernförde Bay (German Baltic). Limnol Oceanogr. 2005;50:1771–86.
    CAS  Article  Google Scholar 

    33.
    Girguis PR, Orphan VJ, Hallam SJ, DeLong EF. Growth and methane oxidation rates of anaerobic methanotrophic archaea in a continuous-flow bioreactor. Appl Environ Microbiol. 2003;69:5472–82.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Kleindienst S, Ramette A, Amann R, Knittel K. Distribution and in situ abundance of sulfate-reducing bacteria in diverse marine hydrocarbon seep sediments. Environ Microbiol. 2012;14:2689–710.
    CAS  PubMed  Article  Google Scholar 

    35.
    Holler T, Widdel F, Knittel K, Amann R, Kellermann MY, Hinrichs K-U, et al. Thermophilic anaerobic oxidation of methane by marine microbial consortia. ISME J. 2011;5:1946–56.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Loy A, Lehner A, Lee N, Adamczyk J, Meier H, Ernst J, et al. Oligonucleotide Microarray for 16S rRNA Gene-Based Detection of All Recognized Lineages of Sulfate-Reducing Prokaryotes in the Environment. Appl Environ Microbiol. 2002;68:5064–81.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Trembath-Reichert E, Case DH, Orphan VJ. Characterization of microbial associations with methanotrophic archaea and sulfate-reducing bacteria through statistical comparison of nested Magneto-FISH enrichments. PeerJ. 2016;4:e1913.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    38.
    Trembath-Reichert E, Green-Saxena A, Orphan VJ. Chapter Two—whole cell immunomagnetic enrichment of environmental microbial consortia using rRNA-targeted magneto-FISH. In: DeLong EF (eds). Methods in Enzymology. (Academic Press, San Diego, 2013) pp 21–44.

    39.
    Hatzenpichler R, Connon SA, Goudeau D, Malmstrom RR, Woyke T, Orphan VJ. Visualizing in situ translational activity for identifying and sorting slow-growing archaeal−bacterial consortia. Proc Natl Acad Sci. 2016;113:E4069–78.
    CAS  PubMed  Article  Google Scholar 

    40.
    Degnan PH, Ochman H. Illumina-based analysis of microbial community diversity. ISME J. 2012;6:183–94.
    CAS  PubMed  Article  Google Scholar 

    41.
    Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLOS Comput Biol. 2012;8:e1002687.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLOS Comput Biol. 2015;11:e1004226.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    43.
    Schwager E, Mallick H, Ventz S, Huttenhower C. A Bayesian method for detecting pairwise associations in compositional data. PLOS Comput Biol. 2017;13:e1005852.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    44.
    Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F, et al. Determinants of community structure in the global plankton interactome. Science. 2015;348:1–9.
    Article  CAS  Google Scholar 

    45.
    Bohrmann G, Heeschen K, Jung C, Weinrebe W, Baranov B, Cailleau B, et al. Widespread fluid expulsion along the seafloor of the Costa Rica convergent margin. Terra Nova. 2002;14:69–79.
    Article  Google Scholar 

    46.
    Mau S, Sahling H, Rehder G, Suess E, Linke P, Soeding E. Estimates of methane output from mud extrusions at the erosive convergent margin off Costa Rica. Mar Geol. 2006;225:129–44.
    CAS  Article  Google Scholar 

    47.
    Sahling H, Masson DG, Ranero CR, Hühnerbach V, Weinrebe W, Klaucke I, et al. Fluid seepage at the continental margin offshore Costa Rica and southern Nicaragua. Geochem Geophys Geosyst. 2008;9:1–22.
    Article  Google Scholar 

    48.
    Glass JB, Yu H, Steele JA, Dawson KS, Sun S, Chourey K, et al. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulphidic marine sediments. Environ Microbiol. 2014;16:1592–611.
    CAS  PubMed  Article  Google Scholar 

    49.
    Case DH, Pasulka AL, Marlow JJ, Grupe BM, Levin LA, Orphan VJ. Methane seep carbonates host distinct, diverse, and dynamic microbial assemblages. mBio. 2015;6:1–12.
    CAS  Article  Google Scholar 

    50.
    Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.
    CAS  PubMed  Article  Google Scholar 

    51.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Mason OU, Case DH, Naehr TH, Lee RW, Thomas RB, Bailey JV, et al. Comparison of archaeal and bacterial diversity in methane seep carbonate nodules and host sediments, Eel River Basin and Hydrate Ridge, USA. Micro Ecol. 2015;70:766–84.
    CAS  Article  Google Scholar 

    53.
    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.
    CAS  Article  Google Scholar 

    54.
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.
    CAS  PubMed  Article  Google Scholar 

    55.
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Towns J, Cockerill T, Dahan M, Foster I, Gaither K, Grimshaw A, et al. XSEDE: accelerating scientific discovery. Comput Sci Eng. 2014;16:62–74.
    Article  CAS  Google Scholar 

    57.
    Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the 2010 Gateway Computing Environments Workshop (GCE). (San Diego Supercomputing Center, San Diego, 2010) pp 1–8.

    58.
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3:e1319.
    PubMed  PubMed Central  Article  Google Scholar 

    60.
    Campbell BJ, Yu L, Heidelberg JF, Kirchman DL. Activity of abundant and rare bacteria in a coastal ocean. Proc Natl Acad Sci. 2011;108:12776–81.
    CAS  PubMed  Article  Google Scholar 

    61.
    Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, et al. ARB: a software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Daims H, Stoecker K, Wagner M, Stoecker K, Wagner M. Fluorescence in situ hybridization for the detection of prokaryotes. Mol Microbial Ecol. https://www.taylorfrancis.com/. Accessed 15 Jul 2019.

    64.
    Glöckner FO, Fuchs BM, Amann R. Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol. 1999;65:3721–6.
    PubMed  PubMed Central  Article  Google Scholar 

    65.
    Dirks RM, Pierce NA. Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci. 2004;101:15275–8.
    CAS  PubMed  Article  Google Scholar 

    66.
    Choi HMT, Beck VA, Pierce NA. Next-generation in situ hybridization chain reaction: higher gain, lower cost, greater durability. ACS Nano. 2014;8:4284–94.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    67.
    Yamaguchi T, Kawakami S, Hatamoto M, Imachi H, Takahashi M, Araki N, et al. In situ DNA-hybridization chain reaction (HCR): a facilitated in situ HCR system for the detection of environmental microorganisms. Environ Microbiol. 2015;17:2532–41.
    CAS  PubMed  Article  Google Scholar 

    68.
    Choi HMT, Schwarzkopf M, Fornace ME, Acharya A, Artavanis G, Stegmaier J, et al. Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust. Development. 2018;145:1–10.
    Article  CAS  Google Scholar 

    69.
    Bolte S, Cordelières FP. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc. 2006;224:213–32.
    CAS  PubMed  Article  Google Scholar 

    70.
    Dabundo R, Lehmann MF, Treibergs L, Tobias CR, Altabet MA, Moisander PA, Granger J. The contamination of commercial 15N2 gas stocks with 15N-labeled nitrate and ammonium and consequences for nitrogen fixation measurements. PLoS ONE. 2014;9:e110335.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    71.
    Cline JD. Spectrophotometric determination of hydrogen sulfide in natural waters1. Limnol Oceanogr. 1969;14:454–8.
    CAS  Article  Google Scholar 

    72.
    Dekas AE, Orphan VJ. Chapter Twelve—identification of diazotrophic microorganisms in marine sediment via fluorescence in situ hybridization coupled to nanoscale secondary ion mass spectrometry (FISH-NanoSIMS). In: Klotz MG, editor. Methods in enzymology. Academic Press; 2011. p 281–305.

    73.
    Polerecky L, Adam B, Milucka J, Musat N, Vagner T, Kuypers MMM. Look@NanoSIMS-a tool for the analysis of nanoSIMS data in environmental microbiology. Environ Microbiol. 2012;14:1009–23.
    CAS  PubMed  Article  Google Scholar 

    74.
    Berry D, Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol. 2014;5:1–14.
    Article  Google Scholar 

    75.
    David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.
    CAS  Article  Google Scholar 

    76.
    Leone V, Gibbons SM, Martinez K, Hutchison AL, Huang EY, Cham CM, et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe. 2015;17:681–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    77.
    Ruff SE, Biddle JF, Teske AP, Knittel K, Boetius A, Ramette A. Global dispersion and local diversification of the methane seep microbiome. Proc Natl Acad Sci. 2015;112:4015–20.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    78.
    Fruchterman TMJ, Reingold EM. Graph drawing by force-directed placement. Softw Pr Exp. 1991;21:1129–64.
    Article  Google Scholar 

    79.
    Moody J, White DR. Structural cohesion and embeddedness: a hierarchical concept of social groups. Am Socio Rev. 2003;68:103–27.
    Article  Google Scholar 

    80.
    Gu Z, Gu L, Eils R, Schlesner M, Brors B. Circlize implements and enhances circular visualization in R. Bioinformatics. 2014;30:2811–2.
    CAS  PubMed  Article  Google Scholar 

    81.
    Nikolakakis K, Lehnert E, McFall-Ngai MJ, Ruby EG. Use of hybridization chain reaction-fluorescent in situ hybridization to track gene expression by both partners during initiation of symbiosis. Appl Environ Microbiol. 2015;81:4728–35.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    82.
    DePas WH, Starwalt-Lee R, Sambeek LV, Kumar SR, Gradinaru V, Newman DK. Exposing the three-dimensional biogeography and metabolic states of pathogens in cystic fibrosis sputum via hydrogel embedding, clearing, and rRNA Labeling. mBio. 2016;7:1–11.
    Article  Google Scholar 

    83.
    Imachi H, Nobu MK, Nakahara N, Morono Y, Ogawara M, Takaki Y, et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature. 2020;577:519–25.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    84.
    Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are compositional: and this is not optional. Front Microbiol. 2017;8:1–6.
    Article  Google Scholar 

    85.
    Sampayo EM, Ridgway T, Bongaerts P, Hoegh-Guldberg O. Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc Natl Acad Sci. 2008;105:10444–9.
    CAS  PubMed  Article  Google Scholar 

    86.
    Parkinson JE, Baumgarten S, Michell CT, Baums IB, LaJeunesse TC, Voolstra CR. Gene expression variation resolves species and individual strains among coral-associated dinoflagellates within the genus symbiodinium. Genome Biol Evol. 2016;8:665–80.
    PubMed  PubMed Central  Article  Google Scholar 

    87.
    Barshis DJ, Ladner JT, Oliver TA, Palumbi SR. Lineage-specific transcriptional profiles of Symbiodinium spp. unaltered by heat stress in a coral host. Mol Biol Evol. 2014;31:1343–52.
    CAS  PubMed  Article  Google Scholar 

    88.
    Kapili BJ, Barnett SE, Buckley DH, Dekas AE. Evidence for phylogenetically and catabolically diverse active diazotrophs in deep-sea sediment. ISME J. 2020;14:971–83.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    89.
    Klawonn I, Eichner MJ, Wilson ST, Moradi N, Thamdrup B, Kümmel S, et al. Distinct nitrogen cycling and steep chemical gradients in Trichodesmium colonies. ISME J. 2020;14:399–412.
    CAS  PubMed  Article  Google Scholar 

    90.
    Petroff AP, Wu T-D, Liang B, Mui J, Guerquin-Kern J-L, Vali H, et al. Reaction–diffusion model of nutrient uptake in a biofilm: Theory and experiment. J Theor Biol. 2011;289:90–5.
    CAS  PubMed  Article  Google Scholar 

    91.
    Dekas AE, Fike DA, Chadwick GL, Green‐Saxena A, Fortney J, Connon SA, et al. Widespread nitrogen fixation in sediments from diverse deep-sea sites of elevated carbon loading. Environ Microbiol. 2018;20:4281–96.
    CAS  PubMed  Article  Google Scholar 

    92.
    Knapp AN. The sensitivity of marine N2 fixation to dissolved inorganic nitrogen. Front Microbiol. 2012;3:1–14.
    Google Scholar 

    93.
    Bertics VJ, Löscher CR, Salonen I, Dale AW, Gier J, Schmitz RA, et al. Occurrence of benthic microbial nitrogen fixation coupled to sulfate reduction in the seasonally hypoxic Eckernförde Bay, Baltic Sea. Biogeosciences. 2013;10:1243–58.
    CAS  Article  Google Scholar 

    94.
    Gier J, Sommer S, Löscher CR, Dale AW, Schmitz RA, Treude T. Nitrogen fixation in sediments along a depth transect through the Peruvian oxygen minimum zone. Biogeosciences. 2016;13:4065–80.
    CAS  Article  Google Scholar 

    95.
    Ackermann M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol. 2015;13:497–508.
    CAS  PubMed  Article  Google Scholar 

    96.
    Schreiber F, Littmann S, Lavik G, Escrig S, Meibom A, Kuypers MMM, et al. Phenotypic heterogeneity driven by nutrient limitation promotes growth in fluctuating environments. Nat Microbiol. 2016;1:1–7.
    Article  CAS  Google Scholar 

    97.
    Masuda T, Inomura K, Takahata N, Shiozaki T, Yuji S. Heterogeneous nitrogen fixation rates confer energetic advantage and expanded ecological niche of unicellular diazotroph populations. Commun Biol. 2020;3:1–12.
    Article  CAS  Google Scholar 

    98.
    Raymond J, Siefert JL, Staples CR, Blankenship RE. The natural history of nitrogen fixation. Mol Biol Evol. 2004;21:541–54.
    CAS  PubMed  Article  Google Scholar  More

  • in

    Coexisting with sharks: a novel, socially acceptable and non-lethal shark mitigation approach

    1.
    Thirgood, S., Woodroffe, R. & Rabinowitz, A. The impact of human–wildlife conflict on human lives and livelihoods. In People and Wildlife, Conflict or Co-existence? Conservation Biology (eds Rabinowitz, A. et al.) 13–26 (Cambridge University Press, Cambridge, 2005).
    Google Scholar 
    2.
    Nyhus, P. J. Human-wildlife conflict and coexistence. Annu. Rev. Environ. Resour. 41, 143–171. https://doi.org/10.1146/annurev-environ-110615-085634 (2016).
    Article  Google Scholar 

    3.
    Curtis, T. et al. Responding to the risk of white shark attack: updated statistics, prevention, control methods, and recommendations. In Global Perspectives on the Biology and Life History of the White SharkEdition: First edition, pp 477–509 (ed. Domeier, M. L.) (CRC Press Taylor and Francis, Boca Raton, FL, 2012).
    Google Scholar 

    4.
    Sillero-Zubiri, C. et al. (eds) Canids: Foxes, Wolves, Jackals, and Dogs: Status Survey and Conservation Action Plan 430 (Gland, Cambridge, 2004).
    Google Scholar 

    5.
    Soulé, M. The, “New Conservation”. Conserv. Biol. 27, 895–897. https://doi.org/10.1111/cobi.12147 (2013).
    Article  PubMed  Google Scholar 

    6.
    Gibbs, L. & Warren, A. Transforming shark hazard policy: learning from ocean-users and shark encounter in Western Australia. Mar. Policy 58, 116–124. https://doi.org/10.1016/j.marpol.2015.04.014 (2015).
    Article  Google Scholar 

    7.
    McCagh, C., Sneddon, J. & Blache, D. Killing sharks: the media’s role in public and political response to fatal human–shark interactions. Mar. Policy 62, 271–278. https://doi.org/10.1016/j.marpol.2015.09.016 (2015).
    Article  Google Scholar 

    8.
    McPhee, D. Unprovoked shark bites: are they becoming more prevalent?. Coast. Manag. 42, 478–492 (2014).
    Article  Google Scholar 

    9.
    Chapman, B. K. & McPhee, D. Global shark attack hotspots: identifying underlying factors behind increased unprovoked shark bite incidence. Ocean Coast. Manag. 133, 72–84. https://doi.org/10.1016/j.ocecoaman.2016.09.010 (2016).
    Article  Google Scholar 

    10.
    Lagabrielle, E. et al. Environmental and anthropogenic factors affecting the increasing occurrence of shark-human interactions around a fast-developing Indian Ocean island. Sci. Rep. 8, 3676. https://doi.org/10.1038/s41598-018-21553-0 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    11.
    Stevens, J. D., Bonfil, R., Dulvy, N. K. & Walker, P. A. The effects of fishing on sharks, rays, and chimaeras (chondrichthyans), and the implications for marine ecosystems. ICES J. Mar. Sci. 57, 476–494. https://doi.org/10.1006/jmsc.2000.0724 (2000).
    Article  Google Scholar 

    12.
    Roff, G., Brown, C. J., Priest, M. A. & Mumby, P. J. Decline of coastal apex shark populations over the past half century. Commun. Biol. 1, 223. https://doi.org/10.1038/s42003-018-0233-1 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    13.
    Gibbs, L. et al. Effects and effectiveness of lethal shark hazard management: the Shark Meshing (Bather Protection) Program, NSW, Australia. People Nat. 2, 189–203. https://doi.org/10.1002/pan3.10063 (2020).
    Article  Google Scholar 

    14.
    Berkes, F., Folke, C. & Colding, J. Linking Social and Ecological Systems: Management Practices and Social Mechanisms for Building Resilience (Cambridge University Press, Cambridge, 1998).
    Google Scholar 

    15.
    Green, M., Ganassin, C. & Reid, D. D. Report into the NSW Shark Meshing (Bather Protection) Program: Incorporating a Review of the Existing Program and Environmental Assessment/NSW Dept of Primary Industries (Department of Primary Industries DPI Fisheries Conservation and Aquaculture Branch, Orange, NSW, 2009).
    Google Scholar 

    16.
    Cliff, G. & Dudley, S. F. J. Reducing the environmental impact of shark-control programs: a case study from KwaZulu-Natal, South Africa. Mar. Freshw. Res. 62, 700–709. https://doi.org/10.1071/MF10182 (2011).
    CAS  Article  Google Scholar 

    17.
    Holland, K. N., Wetherbee, B. M., Lowe, C. G. & Meyer, C. G. Movements of tiger sharks (Galeocerdo cuvier) in coastal Hawaiian waters. Mar. Biol. 134, 665–673. https://doi.org/10.1007/s002270050582 (1999).
    Article  Google Scholar 

    18.
    Wetherbee, B., Lowe, C. & Crow, G. A review of shark control in Hawaii with recommendations for future research. Pac. Sci. 48, 95–115 (1994).
    Google Scholar 

    19.
    Neff, C. L. & Yang, J. Y. H. Shark bites and public attitudes: policy implications from the first before and after shark bite survey. Mar. Policy 38, 545–547. https://doi.org/10.1016/j.marpol.2012.06.017 (2013).
    Article  Google Scholar 

    20.
    McPhee, D. P. Likely Effectiveness of Netting or Other Capture Programs as a Shark Hazard Mitigation Strategy Under Western Australian Conditions (Western Australia Department of Fisheries, Perth, 2012).
    Google Scholar 

    21.
    Lemahieu, A. et al. Human-shark interactions: The case study of Reunion island in the south-west Indian Ocean. Ocean Coast. Manag. 136, 73–82. https://doi.org/10.1016/j.ocecoaman.2016.11.020 (2017).
    Article  Google Scholar 

    22.
    Simmons, P. & Mehmet, M. I. Shark management strategy policy considerations: Community preferences, reasoning and speculations. Mar. Policy 96, 111–119. https://doi.org/10.1016/j.marpol.2018.08.010 (2018).
    Article  Google Scholar 

    23.
    Robbins, W. D., Peddemors, V. M., Kennelly, S. J. & Ives, M. C. Experimental evaluation of shark detection rates by aerial observers. PLoS ONE 9, e83456. https://doi.org/10.1371/journal.pone.0083456 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    24.
    Kock, A. A. et al. Shark spotters: a pioneering shark safety program in Cape Town, South Africa. In Global Perspectives on the Biology and Life History of the Great White Shark (ed. Domeier, M.) 447–466 (CRC Press, Boca Raton, FL, 2012).
    Google Scholar 

    25.
    Engelbrecht, T., Kock, A., Waries, S. & O’Riain, M. J. Shark spotters: successfully reducing spatial overlap between white sharks (Carcharodon carcharias) and recreational water users in False Bay, South Africa. PLoS ONE 12, e0185335. https://doi.org/10.1371/journal.pone.0185335 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    26.
    Stokes, D. et al. Beach-user perceptions and attitudes towards drone surveillance as a shark-bite mitigation tool. Mar. Policy 120, 104127. https://doi.org/10.1016/j.marpol.2020.104127 (2020).
    Article  Google Scholar 

    27.
    Colefax, A. P., Butcher, P. A. & Kelaher, B. P. The potential for unmanned aerial vehicles (UAVs) to conduct marine fauna surveys in place of manned aircraft. ICES J. Mar. Sci. 75, 1–8. https://doi.org/10.1093/icesjms/fsx100 (2018).
    Article  Google Scholar 

    28.
    Carter, N. H. & Linnell, J. D. C. Co-adaptation is key to coexisting with large carnivores. Trends Ecol. Evol. 31, 575–578. https://doi.org/10.1016/j.tree.2016.05.006 (2016).
    Article  PubMed  Google Scholar 

    29.
    Althoff, W. F. Sky Ships: A History of the Airship in the United States Navy. Vol. 25th anniversary edition (The Naval Institute Press, Annapolis, 2016).
    Google Scholar 

    30.
    Hain, J. H. W. Lighter-than-air platforms (blimps and aerostats) for oceanographic and atmospheric research and monitoring in OCEANS 2000 MTS/IEEE Conference and Exhibition.1933–1936.

    31.
    Hodgson, A. BLIMP-CAM: aerial video observations of marine mammals. Mar. Technol. Soc. J. 41, 39–43 (2007).
    Article  Google Scholar 

    32.
    Nosal, A. P. et al. Demography and movement patterns of leopard sharks (Triakis semifasciata) aggregating near the head of a submarine canyon along the open coast of southern California, USA. Environ. Biol. Fish. 96, 865–878. https://doi.org/10.1007/s10641-012-0083-5 (2012).
    Article  Google Scholar 

    33.
    Adams, K., Broad, A., Ruiz-García, D. & Davis, A. R. Continuous wildlife monitoring using blimps as an aerial platform: a case study observing marine megafauna. Austral. Zool. 40(3), 407–415. https://doi.org/10.7882/AZ.2020.004 (2020).
    Article  Google Scholar 

    34.
    Sandbrook, C. The social implications of using drones for biodiversity conservation. Ambio 44, 636–647. https://doi.org/10.1007/s13280-015-0714-0 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    35.
    Fox, S. J. The rise of the drones: framework and governance—why risk it!. J. Air Law Commerce 82, 683 (2017).
    Google Scholar 

    36.
    Linchant, J., Lisein, J., Semeki, J., Lejeune, P. & Vermeulen, C. Are unmanned aircraft systems (UASs) the future of wildlife monitoring? A review of accomplishments and challenges. Mammal Rev. 45, 239–252. https://doi.org/10.1111/mam.12046 (2015).
    Article  Google Scholar 

    37.
    Gururatsakul, S., Gibbins, D., Kearney, D. & Lee, I. Shark detection using optical image data from a mobile aerial platform in 2010 25th International Conference of Image and Vision Computing New Zealand. 1–8.

    38.
    Gorkin, R. et al. Sharkeye: real-time autonomous personal shark alerting via aerial surveillance. Drones https://doi.org/10.3390/drones4020018 (2020).
    Article  Google Scholar 

    39.
    Kammler, M. & Schernewski, G. Spatial and temporal analysis of beach tourism using webcam and aerial photographs. Coastline Rep. 2, 121–128 (2004).
    Google Scholar 

    40.
    Moreno, A., Amelung, B. & Santamarta, L. Linking beach recreation to weather conditions: a case study in Zandvoort, Netherlands. Tour. Mar. Environ. 5(2–3), 111–119 (2008).
    Article  Google Scholar 

    41.
    Ryan, L. A., Meeuwig, J. J., Hemmi, J. M., Collin, S. P. & Hart, N. S. It is not just size that matters: shark cruising speeds are species-specific. Mar. Biol. 162, 1307–1318. https://doi.org/10.1007/s00227-015-2670-4 (2015).
    Article  Google Scholar 

    42.
    Butcher, P. et al. Beach safety: can drones provide a platform for sighting sharks?. Wildl. Res. 46, 701–712 (2019).
    Article  Google Scholar 

    43.
    Robbins, W. D., Peddemors, V. M. & Kennelly, S. J. Assessment of shark sighting rates by aerial beach patrols Vol. 38 (NSW Department of Primary Industries Cronulla, NSW Australia, 2012).
    Google Scholar 

    44.
    Westgate, A. J., Koopman, H. N., Siders, Z. A., Wong, S. N. P. & Ronconi, R. A. Population density and abundance of basking sharks Cetorhinus maximus in the lower Bay of Fundy, Canada. Endanger. Species Res. 23, 177–185. https://doi.org/10.3354/esr00567 (2014).
    Article  Google Scholar 

    45.
    Kelaher, B. P., Peddemors, V. M., Hoade, B., Colefax, A. P. & Butcher, P. A. Comparison of sampling precision for nearshore marine wildlife using unmanned and manned aerial surveys. J. Unmanned Veh. Syst. https://doi.org/10.1139/juvs-2018-0023 (2020).
    Article  Google Scholar 

    46.
    Colefax, A. P., Butcher, P. A., Pagendam, D. E. & Kelaher, B. P. Reliability of marine faunal detections in drone-based monitoring. Ocean Coast. Manag. 174, 108–115. https://doi.org/10.1016/j.ocecoaman.2019.03.008 (2019).
    Article  Google Scholar 

    47.
    Pepin-Neff, C. In Sharks: Conservation, Governance and Management (eds Techera, E. J. & Klein, N.) 107–131 (Routledge, Oxon, 2014).
    Google Scholar 

    48.
    Crossley, R., Collins, C. M., Sutton, S. G. & Huveneers, C. Public perception and understanding of shark attack mitigation measures in Australia. Human Dimens. Wildl. 19, 154–165. https://doi.org/10.1080/10871209.2014.844289 (2014).
    Article  Google Scholar 

    49.
    Gray, G. M. E. & Gray, C. A. Beach-user attitudes to shark bite mitigation strategies on coastal beaches; Sydney, Australia. Human Dimens. Wildl. 22, 282–290. https://doi.org/10.1080/10871209.2017.1295491 (2017).
    Article  Google Scholar 

    50.
    Huveneers, C. et al. Effectiveness of five personal shark-bite deterrents for surfers. PeerJ 6, e5554. https://doi.org/10.7717/peerj.5554 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    51.
    Anonymous. Dorsal, https://www.dorsalwatch.com/ (2018).

    52.
    Anonymous. SharkSmart, https://www.sharksmart.nsw.gov.au/ (2018).

    53.
    Anonymous. SharkSmart, https://www.sharksmart.com.au/ (2018).

    54.
    Anonymous. SharkMate, https://digitallivinglab.uow.edu.au/portfolio/sharkmate-app/ (2018).

    55.
    Anonymous. Sharks Spotters, https://sharkspotters.org.za/ (2018).

    56.
    Fretwell, P. T., Staniland, I. J. & Forcada, J. Whales from space: counting southern right whales by satellite. PLoS ONE 9, e88655. https://doi.org/10.1371/journal.pone.0088655 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    57.
    Hodgson, A., Kelly, N. & Peel, D. Unmanned aerial vehicles (UAVs) for surveying marine fauna: a dugong case study. PLoS ONE 8, e79556. https://doi.org/10.1371/journal.pone.0079556 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    58.
    Joyce, K. E., Duce, S., Leahy, S. M., Leon, J. & Maier, S. W. Principles and practice of acquiring drone-based image data in marine environments. Mar. Freshw. Res. https://doi.org/10.1071/mf17380 (2019).
    Article  Google Scholar 

    59.
    Kiszka, J. J. & Heithaus, M. R. Using aerial surveys to investigate the distribution, abundance, and behavior of sharks and rays. In Shark Research: Emerging Technologies and Applications for the Field and Laboratory (eds Carrier, J. C. et al.) (CRC Press, Boca Raton, FL, 2018).
    Google Scholar 

    60.
    R Development Core Team. R: A Language and Environment for Statistical Computing,https://www.R-project.org (2008).

    61.
    Bates, D., Maechler, M. & Bolker, B. lme4: Linear Mixed-Effects Models Using S4 Classes, https://cran.r-project.org/web/packages/lme4/index.html (2012).

    62.
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometric. J. 50(3), 346–363 (2008).
    MathSciNet  Article  Google Scholar 

    63.
    Hothorn, T. Bretz, F., Westfall, P., Heiberger, R. M., Schuetzenmeister, A., Scheibe, S. & Hothorn, M. T. multcomp: Simultaneous Inference in General Parametric Models, https://cran.stat.sfu.ca/web/packages/multcomp/multcomp.pdf (2016).

    64.
    Stanislaw, H. & Todorov, N. Calculation of signal detection theory measures. Behav. Res. Methods Instrum. Comput. 31, 137–149. https://doi.org/10.3758/BF03207704 (1999).
    CAS  Article  PubMed  Google Scholar 

    65.
    Macmillan, N. & Kaplan, H. L. Detection theory analysis of group data. Estimating sensitivity from average hit and false-alarm rates. Psychol. Bull. 98(1), 185 (1985).
    CAS  Article  Google Scholar  More

  • in

    Georgina Mace (1953–2020)

    OBITUARY
    15 October 2020

    Pioneer of biodiversity accounting who overhauled the Red List of threatened species.

    Nathalie Pettorelli

    Nathalie Pettorelli, a senior research fellow, started at the Institute of Zoology, London under Georgina’s directorship; they co-supervised a PhD student at Imperial College London.
    Contact

    Search for this author in:

    Credit: Jussi Puikkonen/KNAW

    Georgina Mace shaped two cornerstones of modern ecology and conservation. One was the global inventory of species threatened with extinction, the International Union for Conservation of Nature (IUCN) Red List. The second was the United Nations Millennium Ecosystem Assessment. One of the sharpest minds of her generation, she strove to document and stem biodiversity loss with analytical rigour and multidisciplinary approaches. She died on 19 September, aged 67.
    Throughout her career, Mace developed tools for evidence-based policymaking. Before her, the Red List was based on nominations from experts rather than data, undermining confidence in its accuracy. She devised criteria to standardize assessments. The Red List is now the most used and trusted source for assessing trends in global biodiversity.
    Mace was born in London in 1953. She studied zoology at the University of Liverpool, UK, before doing a PhD in the 1970s at the University of Sussex in Brighton, UK, where John Maynard Smith was pioneering mathematical approaches to evolutionary ecology. As a postdoc at the Smithsonian Institution in Washington DC, she studied the impacts of inbreeding on captive animals.
    In 1983, she joined the Institute of Zoology, the research arm of the Zoological Society of London, where she remained for 23 years, latterly as director from 2000 to 2006. There, Mace continued to work on the genetic management of zoological collections and small populations. Her findings informed the conservation status of several species, including the western lowland gorilla (Gorilla gorilla gorilla), and highlighted the value of reproductive technology in managing captive populations of endangered species, such as the Arabian oryx (Oryx leucoryx) and Przewalski’s horse (Equus przewalskii). She became increasingly interested in population viability, extinction risk and setting conservation priorities.
    In 1991, this led her, together with US population biologist Russell Lande, to question the IUCN categories of threats and the associated nomination process as being largely subjective. They suggested three categories: critical, endangered and vulnerable. These they defined in terms of the probability of a species becoming extinct within a specific period, such as five years or two generations. They drew up standardized criteria based on population-biology theory. These included, for example, total effective population size, the population trend over the past five years and observed or projected habitat loss. Mace later introduced, among other things, categories for species that are not currently under threat. This work ultimately defined the categories that the IUCN uses now.
    In 2006, Mace became director of the NERC Centre for Population Biology at Imperial College London. There, she worked on the definition of biodiversity targets and assessing species’ vulnerability to climate change. She also studied the link between biodiversity and ecosystem services — the benefits that humans draw from nature, such as carbon sequestration, medicines or waste decomposition.
    From 2012, as founding director of the Centre for Biodiversity and Environment Research at University College London, she developed an interest in natural-capital accounting, the process of calculating the total stocks and flows of natural resources and services in an ecosystem or region. Her blending of economics and ecological theory to define a risk register for natural capital helped to provide an effective focus for monitoring and data gathering. It also contributed to a common understanding of priorities across fields.
    Mace bridged the gaps between genetics, population ecology and macroecology, sub-disciplines in which she regularly supervised students, networked and published. She also demonstrated the importance of conservationists engaging with researchers in other disciplines, such as climate science, economics and social science. She excelled in building consensus, a key step towards evidence-based policy.
    Mace was coordinating lead author for biodiversity on the Millennium Ecosystem Assessment, launched in 2001, which demonstrated that rapidly growing demand for food, fresh water, timber, fibre and fuel resulted in a large and largely irreversible loss in biodiversity. She supported the development of assessments for the biodiversity target of the UN Convention on Biological Diversity in 2010 and, most recently, acted as review editor for the Global Assessment of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. She held similarly pivotal roles at the national level, on UK climate and environmental assessments.
    She broke several glass ceilings. Mace was the first president of the international Society for Conservation Biology from outside North America, and the first female president of the British Ecological Society. Her many awards and honours included a fellowship of the Royal Society and, in 2016, she was made a dame.
    Georgina was a role model: firm but fair, collaborative, reliable, unassuming, approachable — the kind of critical friend we all need. She supported the career progression of numerous ecologists and influenced many more. She’d nominate you for a post even when you didn’t think she had noticed your work; she’d make a witty remark in the middle of a heated discussion. Few knew that she had cancer. Never one to make a fuss about herself, nine days before she died, she published a paper on habitat conversion and biodiversity loss (D. Leclère et al. Nature 585, 551–556; 2020). Her death leaves a void: she will be sorely missed.

    Nature 586, 495 (2020)

    Latest on:

    Biodiversity

    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Related Articles More

  • in

    Global priority areas for ecosystem restoration

    1.
    IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).
    2.
    IPCC. An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes In Terrestrial Ecosystems (SRCCL) (World Meteorological Organization, 2019).

    3.
    Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).
    ADS  Article  Google Scholar 

    4.
    Maron, M., Simmonds, J. S. & Watson, J. E. M. Bold nature retention targets are essential for the global environment agenda. Nat. Ecol. Evol. 2, 1194–1195 (2018).
    Article  Google Scholar 

    5.
    IPBES. The IPBES Assessment Report on Land Degradation and Restoration (IPBES Secretariat, 2018).

    6.
    Bastin, J. F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
    ADS  CAS  Article  Google Scholar 

    7.
    Chazdon, R. & Brancalion, P. Restoring forests as a means to many ends. Science 365, 24–25 (2019).
    ADS  CAS  Article  Google Scholar 

    8.
    Temperton, V. M. et al. Step back from the forest and step up to the Bonn challenge: how a broad ecological perspective can promote successful landscape restoration. Restor. Ecol. 27, 705–719 (2019).
    Google Scholar 

    9.
    Strassburg, B. B. N. et al. Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. Nat. Ecol. Evol. 3, 62–70 (2019).
    Article  Google Scholar 

    10.
    Brancalion, P. H. S. et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 5, eaav3223 (2019).
    ADS  Article  Google Scholar 

    11.
    Mappin, B. et al. Restoration priorities to achieve the global protected area target. Conserv. Lett. 12, e12646 (2019).
    Article  Google Scholar 

    12.
    Brooks, T. M. et al. Global biodiversity conservation priorities. Science 313, 58–61 (2006).
    ADS  CAS  Article  Google Scholar 

    13.
    Joppa, L. N., Visconti, P., Jenkins, C. N. & Pimm, S. L. Achieving the convention on biological diversity’s goals for plant conservation. Science 341, 1100–1103 (2013).
    ADS  CAS  Article  Google Scholar 

    14.
    Montesino Pouzols, F. et al. Global protected area expansion is compromised by projected land-use and parochialism. Nature 516, 383–386 (2014).
    ADS  CAS  Article  Google Scholar 

    15.
    Ando, A., Camm, J., Polasky, S. & Solow, A. Species distributions, land values, and efficient conservation. Science 279, 2126–2128 (1998).
    ADS  CAS  Article  Google Scholar 

    16.
    Naidoo, R. et al. Global mapping of ecosystem services and conservation priorities. Proc. Natl Acad. Sci. USA 105, 9495–9500 (2008).
    ADS  CAS  Article  Google Scholar 

    17.
    Beyer, H. L., Dujardin, Y., Watts, M. E. & Possingham, H. P. Solving conservation planning problems with integer linear programming. Ecol. Modell. 328, 14–22 (2016).
    Article  Google Scholar 

    18.
    Cabeza, M. & Moilanen, A. Design of reserve networks and the persistence of biodiversity. Trends Ecol. Evol. 16, 242–248 (2001).
    CAS  Article  Google Scholar 

    19.
    European Space Agency. Climate Change Initiative (ESA CCI). https://www.esa-landcover-cci.org/?q=node/158 (accessed May 2018).

    20.
    Veldman, J. W. et al. Where tree planting and forest expansion are bad for biodiversity and ecosystem services. Bioscience 65, 1011–1018 (2015).
    Article  Google Scholar 

    21.
    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).
    ADS  CAS  Article  Google Scholar 

    22.
    Strassburg, B. B. N. et al. Impacts of incentives to reduce emissions from deforestation on global species extinctions. Nat. Clim. Chang. 2, 350–355 (2012).
    ADS  CAS  Article  Google Scholar 

    23.
    Strassburg, B. B. N. et al. Moment of truth for the Cerrado hotspot. Nat. Ecol. Evol. 1, 0099 (2017).
    Article  Google Scholar 

    24.
    IUCN. The IUCN Red List of Threatened Species. Version 2019-3 http://www.iucnredlist.org (accessed 10 December 2019).

    25.
    Brooks, T. M. et al. Measuring terrestrial area of habitat (AOH) and its utility for the IUCN Red List. Trends Ecol. Evol. 34, 977–986 (2019).
    Article  Google Scholar 

    26.
    Erb, K.-H. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76 (2018).
    ADS  CAS  Article  Google Scholar 

    27.
    Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. USA 114, 9575–9580 (2017).
    CAS  Article  Google Scholar 

    28.
    IPCC. in Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) 3–24 (World Meteorological Organization, 2018).

    29.
    Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).
    ADS  CAS  Article  Google Scholar 

    30.
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).
    ADS  CAS  Article  Google Scholar 

    31.
    Strassburg, B. B. N. et al. Increasing Agricultural Output While Avoiding Deforestation—A Case Study for Mato Grosso, Brazil (International Institute for Sustainability, 2012).

    32.
    Latawiec, A. E., Strassburg, B. B. N., Brancalion, P. H. S., Rodrigues, R. R. & Gardner, T. Creating space for large-scale restoration in tropical agricultural landscapes. Front. Ecol. Environ. 13, 211–218 (2015).
    Article  Google Scholar 

    33.
    Anderson, C. B. et al. Determining nature’s contributions to achieve the sustainable development goals. Sustain. Sci. 14, 543–547 (2019).
    Article  Google Scholar 

    34.
    Martín-López, B. et al. Nature’s contributions to people in mountains: a review. PLoS ONE 14, e0217847 (2019).
    Article  Google Scholar 

    35.
    Latawiec, A. E., Strassburg, B. B. N., Valentim, J. F., Ramos, F. & Alves-Pinto, H. N. Intensification of cattle ranching production systems: socioeconomic and environmental synergies and risks in Brazil. Animal 8, 1255–1263 (2014).
    CAS  Article  Google Scholar 

    36.
    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).
    ADS  CAS  Article  Google Scholar 

    37.
    Balmford, A. et al. The environmental costs and benefits of high-yield farming. Nat. Sustain. 1, 477–485 (2018).
    Article  Google Scholar 

    38.
    Garnett, T. et al. Sustainable intensification in agriculture: premises and policies. Science 341, 33–34 (2013).
    ADS  CAS  Article  Google Scholar 

    39.
    Erb, K.-H. et al. Exploring the biophysical option space for feeding the world without deforestation. Nat. Commun. 7, 11382 (2016).
    ADS  CAS  Article  Google Scholar 

    40.
    Reyes-García, V. et al. The contributions of Indigenous Peoples and local communities to ecological restoration. Restor. Ecol. 27, 3–8 (2019).
    Article  Google Scholar 

    41.
    Possingham, H. P., Bode, M. & Klein, C. J. Optimal conservation outcomes require both restoration and protection. PLoS Biol. 13, e1002052 (2015).
    Article  Google Scholar 

    42.
    Beresford, A. et al. Minding the protection gap: estimates of species’ range sizes and holes in the protected area network. Anim. Conserv. 14, 114–116 (2011).
    Article  Google Scholar 

    43.
    Rondinini, C. et al. Global habitat suitability models of terrestrial mammals. Phil. Trans. R. Soc. Lond. B 366, 2633–2641 (2011).
    Article  Google Scholar 

    44.
    Di Marco, M. et al. Synergies and trade-offs in achieving global biodiversity targets. Conserv. Biol. 30, 189–195 (2016).
    Article  Google Scholar 

    45.
    Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).
    CAS  Article  Google Scholar 

    46.
    Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, e1001891 (2014).
    Article  Google Scholar 

    47.
    Joppa, L. N. et al. Filling in biodiversity threat gaps. Science 352, 416–418 (2016).
    ADS  CAS  Article  Google Scholar 

    48.
    Knight, A. T., Cowling, R. M. & Campbell, B. M. An operational model for implementing conservation action. Conserv. Biol. 20, 408–419 (2006).
    Article  Google Scholar 

    49.
    Ban, N. C. et al. A social–ecological approach to conservation planning: embedding social considerations. Front. Ecol. Environ. 11, 194–202 (2013).
    Article  Google Scholar 

    50.
    Halpern, B. S. et al. Achieving the triple bottom line in the face of inherent trade-offs among social equity, economic return, and conservation. Proc. Natl Acad. Sci. USA 110, 6229–6234 (2013).
    ADS  CAS  Article  Google Scholar 

    51.
    Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).
    Article  Google Scholar 

    52.
    Robinson, T. P. et al. Mapping the global distribution of livestock. PLoS ONE 9, e96084 (2014).
    ADS  Article  Google Scholar 

    53.
    Gibbs, H. K., Brown, S., Niles, J. O. & Foley, J. A. Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ. Res. Lett. 2, 045023 (2007).
    ADS  Article  Google Scholar 

    54.
    Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Chang. 2, 182–185 (2012).
    ADS  CAS  Article  Google Scholar 

    55.
    Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011).
    ADS  CAS  Article  Google Scholar 

    56.
    Erb, K.-H. et al. A comprehensive global 5 min resolution land-use data set for the year 2000 consistent with national census data. J. Land Use Sci. 2, 191–224 (2007).
    Article  Google Scholar 

    57.
    IPCC. Guidelines for National Greenhouse Gas Inventories (National Greenhouse Gas Inventories Programme, 2006).

    58.
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).
    Article  Google Scholar 

    59.
    Harrell, F. E. Jr et al. Hmisc: Harrell Miscellaneous. R package version 4.1-1. https://cran.r-project.org/web/packages/Hmisc/Hmisc.pdf (2018).

    60.
    Goldewijk, K. K., Beusen, A., Van Drecht, G. & De Vos, M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 20, 73–86 (2011).
    Article  Google Scholar 

    61.
    Fonseca, W. et al. Carbon accumulation in the biomass and soil of different aged secondary forests in the humid tropics of Costa Rica. For. Ecol. Manage. 262, 1400–1408 (2011).
    Article  Google Scholar 

    62.
    Guo, L. B. & Gifford, R. M. Soil carbon stocks and land use change: a meta analysis. Glob. Change Biol. 8, 345–360 (2002).
    ADS  Article  Google Scholar 

    63.
    Yang, Y., Tilman, D., Furey, G. & Lehman, C. Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nat. Commun. 10, 718 (2019).
    ADS  Article  Google Scholar 

    64.
    Mitchard, E. T. et al. Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps. Carbon Balance Manag. 8, 10 (2013).
    Article  Google Scholar 

    65.
    Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).
    Article  Google Scholar 

    66.
    BirdLife International & NatureServe. Bird Species Distribution Maps of the World. Version 2018.1 http://datazone.birdlife.org/species/requestdis (BirdLife International and Handbook of the Birds of the World, 2018).

    67.
    Beresford, A. et al. Poor overlap between the distribution of protected areas and globally threatened birds in Africa. Anim. Conserv. 14, 99–107 (2011).
    Article  Google Scholar 

    68.
    Staude, I. R. et al. Range size predicts the risk of local extinction from habitat loss. Glob. Ecol. Biogeogr. 29, 16–25 (2020).
    Article  Google Scholar 

    69.
    Carrasco, L. R., Webb, E. L., Symes, W. S., Koh, L. P. & Sodhi, N. S. Global economic trade-offs between wild nature and tropical agriculture. PLoS Biol. 15, e2001657 (2017).
    Article  Google Scholar 

    70.
    Naidoo, R & Iwamura, T. Global-scale mapping of economic benefits from agricultural lands: implications for conservation priorities. Biol. Conserv. 140, 40–49 (2007).
    Article  Google Scholar 

    71.
    Polasky, S. et al. Where to put things? Spatial land management to sustain biodiversity and economic returns. Biol. Conserv. 141, 1505–1524 (2008).
    Article  Google Scholar 

    72.
    Sulser, T. B. et al. in Beyond a Middle Income Africa: Transforming African Economies for Sustained Growth with Rising Employment and Incomes (ReSAKSS Annual Trends and Outlook Report 2014 (eds. Badiane, O. et al.) Ch. 2 (International Food Policy Research Institute (IFPRI), 2014).

    73.
    Robinson, S. et al. The International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT): Model Description for Version 3 (IFPRI Discussion Paper 1483) (International Food Policy Research Institute (IFPRI), (2015).

    74.
    IIASA & FAO. Global Agro-ecological Zones (GAEZ v.3.0) (IIASA & FAO, 2012).

    75.
    Hoppe, R. A. Structure and Finances of U.S. Farms: Family Farm Report (EIB-132) (US Department of Agriculture Economic Research Service, 2014).

    76.
    Baležentis, T. et al. Decomposing dynamics in the farm profitability: an application of index decomposition analysis to Lithuanian FADN sample. Sustainability 11, 2861 (2019).
    Article  Google Scholar 

    77.
    Statistic Canada. Table 32-10-0136-01, Farm Operating Revenues and Expenses, Annual. https://open.canada.ca/data/en/dataset/59ca6332-391b-4fdf-bb3a-31e5e45f6bb7 (2008).

    78.
    De Groot, R. S. et al. Benefits of investing in ecosystem restoration. Conserv. Biol. 27, 1286–1293 (2013).
    Article  Google Scholar 

    79.
    International Labour Organization. ILOSTAT database. https://ilostat.ilo.org/data (accessed March 2020).

    80.
    United Nations Statistics Division. UN Comtrade Database. https://comtrade.un.org/ (accessed March 2020).

    81.
    Brancalion, P. H. S. et al. What makes ecosystem restoration expensive? A systematic cost assessment of projects in Brazil. Biol. Conserv. 240, 108274 (2019).
    Article  Google Scholar 

    82.
    Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).
    ADS  CAS  Article  Google Scholar 

    83.
    Mueller, N. D. et al. Declining spatial efficiency of global cropland nitrogen allocation. Glob. Biogeochem. Cycles 31, 245–257 (2017).
    ADS  CAS  Google Scholar 

    84.
    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).
    ADS  CAS  Article  Google Scholar 

    85.
    Hornik, K. et al. SYMPHONY in R, an R interface to the SYMPHONY solver for mixed-integer linear programs. http://R-Forge.R-project.org/projects/rsymphony/ (2019).

    86.
    Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).
    Article  Google Scholar  More

  • in

    Strategies to revise agrosystems and breeding to control Fusarium wilt of banana

    1.
    García-Bastidas, F. et al. First report of Fusarium wilt tropical race 4 in Cavendish bananas caused by Fusarium odoratissimum in Colombia. Plant Dis. 104, 994 (2020).
    Google Scholar 
    2.
    FAOSTAT Crops (Food and Agriculture Organization of the United Nations, 2020); http://www.fao.org/faostat/en/#data/QC

    3.
    Varma, V. & Bebber, D. P. Climate change impacts on banana yields around the world. Nat. Clim. Change 9, 752–757 (2019).
    ADS  Google Scholar 

    4.
    Simmonds, N. W. & Shepherd, K. The taxonomy and origins of the cultivated bananas. J. Linn. Soc. Bot. 55, 302–312 (1955).
    Google Scholar 

    5.
    Gold, C. S., Kiggundu, A., Abera, A. M. K. & Karamura, D. Diversity, distribution and farmer preference of Musa cultivars in Uganda. Exp. Agric. 38, 39–50 (2002).
    Google Scholar 

    6.
    Gambart, C. et al. Impact and opportunities of agroecological intensification strategies on farm performance: a case study of banana-based systems in central and south-western Uganda. Front. Sustain. Food Syst. 23, 87 (2020).
    Google Scholar 

    7.
    Wielemaker, F. in Achieving Sustainable Cultivation of Bananas. Volume 1: Cultivation Techniques (eds Kema, G. H. J. & Drenth, A.) Ch. 15 (Burleigh Dodds Science Publishing, 2018).

    8.
    Ordonez, N. et al. Worse comes to worst: bananas and Panama disease—when plant and pathogen clones meet. PLOS Pathog. 11, e1005197 (2015).
    PubMed  PubMed Central  Google Scholar 

    9.
    Ndayihanzamaso, P. et al. The development of a multiplex PCR assay for the detection of Fusarium oxysporum f. sp. cubense lineage VI strains in East and Central Africa. Eur. J. Plant Pathol. https://doi.org/10.1007/s10658-020-02092-9 (2020).

    10.
    Soluri, J. Accounting for taste: export bananas, mass markets, and Panama disease. Environ. Hist. 7, 386–410 (2002).
    Google Scholar 

    11.
    Stover, R. H. Disease management strategies and the survival of the banana industry. Annu. Rev. Phytopathol. 24, 83–91 (1986).
    Google Scholar 

    12.
    Bubici, G., Kaushal, M., Prigigallo, M. I., Gómez-Lama Cabanás, C. & Mercado-Blanco, J. Biological control agents against Fusarium wilt of banana. Front. Microbiol. 10, 616 (2019).
    PubMed  PubMed Central  Google Scholar 

    13.
    Kaushal, M., Mahuku, G. & Swennen, R. Metagenomic insights of the root colonizing microbiome associated with symptomatic and non-symptomatic bananas in Fusarium wilt infected fields. Plants. 9, 263 (2020).
    CAS  PubMed Central  Google Scholar 

    14.
    Mollot, G., Tixier, P., Lescourret, F., Quilici, S. & Duyck, P. F. New primary resource increases predation on a pest in a banana agroecosystem. Agric. For. Entomol. 14, 317–323 (2012).
    Google Scholar 

    15.
    Djigal, D. et al. Cover crops alter the soil nematode food web in banana agroecosystems. Soil Biol. Biochem. 48, 142–150 (2012).
    CAS  Google Scholar 

    16.
    Karangwa, P. et al. Genetic Diversity of Fusarium oxysporum f. sp. cubense in East and Central Africa. Plant Dis. 102, 552–560 (2018).
    CAS  PubMed  Google Scholar 

    17.
    Jassogne, L. et al. in Banana Systems in the Humid Highlands of Sub-Saharan Africa (eds Blomme, G. et al.) 144–149 (CABI, 2013).

    18.
    Norgrove, L. & Hauser, S. Yield of plantain under different tree densities and ‘slash and mulch’ versus ‘slash and burn’ management in a agrisilvicultural system in southern Cameroon. Field Crops Res. 78, 185–195 (2002).
    Google Scholar 

    19.
    Zhu, Y. et al. Genetic diversity and disease control in rice. Nature 406, 718–722 (2000).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    20.
    Deltour, P. et al. Disease suppressiveness to Fusarium wilt of banana in an agroforestry system: influence of soil characteristics and plant community. Agric. Ecosyst. Environ. 239, 173–181 (2017).
    Google Scholar 

    21.
    Zhu, S. & Morel, J.-B. Molecular mechanisms underlying microbial disease control in intercropping. Mol. Plant Microbe Interact. 32, 20–24 (2019).
    CAS  PubMed  Google Scholar 

    22.
    Wei, Z. et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci. Adv. 5, eaaw0759 (2019).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Yu, K., Pieterse, C. M. J., Bakker, P. A. H. M. & Berendsen, R. L. Beneficial microbes going underground of root immunity. Plant Cell Environ. 42, 2860–2870 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    24.
    Morella, N. M. et al. Successive passaging of a plant-associated microbiome reveals robust habitat and host genotype-dependent selection. Proc. Natl Acad. Sci. USA 117, 1148–1159 (2020).
    CAS  PubMed  Google Scholar 

    25.
    Wille, L., Messmer, M. M., Studer, B. & Hohmann, P. Insights to plant-microbe interactions provide opportunities to improve resistance breeding against root diseases in grain legumes. Plant Cell Environ. 42, 20–40 (2019).
    CAS  PubMed  Google Scholar 

    26.
    Christelová, P. et al. Molecular and cytological characterization of the global Musa germplasm collection provides insights into the treasure of banana diversity. Biodivers. Conserv. 26, 801–824 (2016).
    Google Scholar 

    27.
    Ortiz, R. & Swennen, R. From crossbreeding to biotechnology-facilitated improvement of banana and plantain. Biotechnol. Adv. 32, 158–169 (2014).
    CAS  PubMed  Google Scholar 

    28.
    Zuo, C. et al. Germplasm screening of Musa spp. for resistance to Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4). Eur. J. Plant Pathol. 151, 723–734 (2018).
    Google Scholar 

    29.
    Chen, Y. F. et al. Fusarium wilt-resistant lines of Brazil banana (Musa spp., AAA) obtained by EMS-induced mutation in a micro-cross-section cultural system. Plant Pathol. 62, 112–119 (2013).
    CAS  Google Scholar 

    30.
    Dale, J. et al. Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4. Nat. Commun. 8, 1496 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    31.
    McFadden, B. R. The unknowns and possible implications of mandatory labeling. Trends Biotechnol. 35, 1–3 (2017).
    CAS  PubMed  Google Scholar 

    32.
    Cheng, K., Wang, Y., Zhang, R., Zhang, H. & Gao, C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 70, 667–697 (2019).
    Google Scholar 

    33.
    Zaidi, S. S. -E. -A. et al. New plant breeding technologies for food security. Science 363, 1390–1391 (2019).
    ADS  CAS  PubMed  Google Scholar 

    34.
    Zhang, Y., Pribil, M., Palmgren, M. & Gao, C. A CRISPR way for accelerating improvement of food crops. Nat. Food 1, 200–205 (2020).
    Google Scholar 

    35.
    Ntui, V. O., Tripathi, J. N. & Tripathi, L. Robust CRISPR/Cas9 mediated genome editing tool for banana and plantain (Musa spp.). Curr. Plant Biol. 21, 100128 (2020).
    Google Scholar 

    36.
    Shao, X. et al. Using CRISPR/Cas9 genome editing system to create MaGA20ox2 gene-modified semi-dwarf banana. Plant Biotechnol. J. 18, 17–19 (2019).
    PubMed  PubMed Central  Google Scholar 

    37.
    Kaur, N. et al. CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali genome. Funct. Integr. Genomics 18, 89–99 (2018).
    CAS  PubMed  Google Scholar 

    38.
    Naim, F. et al. Gene editing the phytoene desaturase alleles of Cavendish banana using CRISPR/Cas9. Transgenic Res. 27, 451–460 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    39.
    Klimyuk, V. I. et al. A chromodomain protein encoded by the Arabidopsis CAO gene is a plant-specific component of the chloroplast signal recognition particle pathway that is involved in LHCP targeting. Plant Cell 11, 87–99 (1999).
    CAS  PubMed  PubMed Central  Google Scholar 

    40.
    Zhang, Y., Malzahn, A. A., Sretenovic, S. & Qi, Y. The emerging and uncultivated potential of CRISPR technology in plant science. Nat. Plants 5, 778–794 (2019).
    PubMed  Google Scholar 

    41.
    Strosse, H. et al. Development of embryogenic cell suspensions from shoot meristematic tissue in bananas and plantains (Musa spp.). Plant Sci. 170, 104–112

    42.
    Escalant, J. V. & Teisson, C. Somatic embryogenesis and plants from immature zygotic embryos of species Musa acuminata and Musa balbisiana. Plant Cell Rep. 7, 181–186 (1989).
    Google Scholar 

    43.
    Kelliher, T. et al. One-step genome editing of elite crop germplasm during haploid induction. Nat. Biotechnol. 37, 287–292 (2019).
    CAS  PubMed  Google Scholar 

    44.
    Jacquier, N. M. A. et al. Puzzling out plant reproduction by haploid induction for innovations in plant breeding. Nat. Plants 6, 610–619 (2020).
    PubMed  Google Scholar 

    45.
    Veillet, F. et al. Transgene-free genome editing in tomato and potato plants using Agrobacterium-mediated delivery of a CRISPR / Cas9 cytidine base editor. Int. J. Mol. Sci. 20, 402 (2019).
    PubMed Central  Google Scholar 

    46.
    Demirer, G. S. et al. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat. Nanotechnol. 14, 456–464 (2019).
    ADS  CAS  PubMed  Google Scholar 

    47.
    Svitashev, S. et al. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat. Commun. 16, 13274 (2016).
    ADS  Google Scholar 

    48.
    Zhang, Y. et al. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat. Commun. 7, 12617 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    49.
    Woo, J. W. et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat. Biotechnol. 33, 1162–1164 (2015).
    CAS  PubMed  Google Scholar 

    50.
    Sági, L. et al. Genetic transformation of banana and plantain (Musa spp.) via particle bombardment. Nat. Biotechnol. 13, 481–485 (1995).
    Google Scholar 

    51.
    Sági, L., Remy, S., Panis, B., Swennen, R. & Volckaert, G. Transient gene expression in electroporated banana (Musa spp., cv. ‘Bluggoe’, ABB group) protoplasts isolated from regenerable embryogenetic cell suspensions. Plant Cell Rep. 13, 262–266 (1994).
    PubMed  Google Scholar 

    52.
    Oh, T. J. et al. Genomic changes associated with somaclonal variation in banana (Musa spp.). Physiol. Plant. 129, 766–74 (2007).
    CAS  Google Scholar 

    53.
    Lowe, K. et al. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 28, 1998–2015 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    54.
    Panis, B., Withers, L. & De Langhe, E. Cryopreservation of Musa suspension cultures and subsequent regeneration of plants. Cryo Lett. 11, 337–350 (1990).
    Google Scholar 

    55.
    Ghosh, S. et al. Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat. Protoc. 13, 2944–2963 (2018).
    CAS  PubMed  Google Scholar 

    56.
    Arinaitwe, I. K. et al. Evaluation of banana germplasm and genetic analysis of an F1 population for resistance to Fusarium oxysporum f. sp. cubense race 1. Euphytica 215, 175 (2019).
    PubMed  PubMed Central  Google Scholar 

    57.
    Sun, J. et al. Comparative transcriptome analysis reveals resistance-related genes and pathways in Musa acuminata banana ‘Guijiao 9’ in response to Fusarium wilt. Plant Physiol. Biochem. 141, 83–94 (2019).
    CAS  PubMed  Google Scholar 

    58.
    Zhang, L. et al. Transcriptomic analysis of resistant and susceptible banana corms in response to infection by Fusarium oxysporum f. sp. cubense tropical race 4. Sci. Rep. 9, 8199 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    59.
    Li, C. et al. Analysis of banana transcriptome and global gene expression profiles in banana roots in response to infection by race 1 and tropical race 4 of Fusarium oxysporum f. sp. cubense. BMC Genom. 14, 851 (2013).
    Google Scholar 

    60.
    Chatterjee, M. et al. Analysis of root proteome unravels differential molecular responses during compatible and incompatible interaction between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceri Race1 (Foc1). BMC Genom. 15, 949 (2015).
    Google Scholar 

    61.
    Shen, Y. & Diener, A. C. Arabidopsis thaliana RESISTANCE TO FUSARIUM OXYSPORUM 2 implicates tyrosine-sulfated peptide signaling in susceptibility and resistance to root infection. PLOS Genet. 9, e1003525 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    62.
    D’Hont, A., Denoeud, F. & Aury, J. et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488, 213–217 (2012).
    ADS  PubMed  Google Scholar 

    63.
    Côte, F. et al. Agro-ecological intensification in banana and plantain (Musa spp.): an approach to develop more sustainable cropping systems for both smallholder farmers and large-scale commercial producers. Acta Hortic. 879, 457–463 (2010).
    Google Scholar 

    64.
    Tixier, P., Malezieux, E. & Dorel, M. SIMBA-POP: a cohort population model for long-term simulation of banana crop harvest. Ecol. Model. 180, 407–417 (2004).
    Google Scholar 

    65.
    Carvajal-Yepes, M. et al. A global surveillance system for crop diseases. Science 364, 1237–1239 (2019).
    ADS  CAS  PubMed  Google Scholar  More