Using machine learning to understand the implications of meteorological conditions for fish kills
1.
Burkholder, J. M., Mallin, M. A. & Glasgow, J. H. B. Fish kills, bottom-water hypoxia, and the toxic Pfiesteria complex in the Neuse River and Estuary. Mar. Ecol. Prog. Ser. 179, 301–310. https://doi.org/10.3354/meps179301 (1999).
ADS Article Google Scholar
2.
Ochumba, P. B. O. Massive fish kills within the Nyanza Gulf of Lake Victoria, Kenya. Hydrobiologia 208, 93–99. https://doi.org/10.1007/BF00008448 (1990).
Article Google Scholar
3.
Thronson, A. & Quigg, A. Fifty-five years of fish kills in Coastal Texas. Estuaries Coasts 31, 802–813. https://doi.org/10.1007/s12237-008-9056-5 (2008).
CAS Article Google Scholar
4.
Wang, C. H., Hsu, C. C., Tzeng, W. N., You, C. F. & Chang, C. W. Origin of the mass mortality of the flathead grey mullet (Mugil cephalus) in the Tanshui River, northern Taiwan, as indicated by otolith elemental signatures. Mar. Pollut. Bull. 62, 1809–1813. https://doi.org/10.1016/j.marpolbul.2011.05.011 (2011).
CAS Article PubMed Google Scholar
5.
Yñiguez, A. T. & Ottong, Z. J. Predicting fish kills and toxic blooms in an intensive mariculture site in the Philippines using a machine learning model. Sci. Total Environ. 707, 136173. https://doi.org/10.1016/j.scitotenv.2019.136173 (2020).
ADS CAS Article Google Scholar
6.
La, V. T. & Cooke, S. J. Advancing the Science and Practice of Fish Kill Investigations. Rev. Fish. Sci. 19, 21–33. https://doi.org/10.1080/10641262.2010.531793 (2011).
Article Google Scholar
7.
Epaphras, A. M., Gereta, E., Lejora, I. A. & Mtahiko, M. G. G. The importance of shading by riparian vegetation and wetlands in fish survival in stagnant water holes, Great Ruaha River, Tanzania. Wetl. Ecol. Manag. 15, 329–333. https://doi.org/10.1007/s11273-007-9033-y (2007).
Article Google Scholar
8.
Peña, M. A., Katsev, S., Oguz, T. & Gilbert, D. Modeling dissolved oxygen dynamics and hypoxia. Biogeosciences 7, 933–957. https://doi.org/10.5194/bg-7-933-2010 (2010).
ADS Article Google Scholar
9.
Ekau, W., Auel, H., Pörtner, H. O. & Gilbert, D. Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish). Biogeosciences 7, 1669–1699. https://doi.org/10.5194/bg-7-1669-2010 (2010).
ADS CAS Article Google Scholar
10.
Levin, L. A. et al. Effects of natural and human-induced hypoxia on coastal benthos. Biogeosciences 6, 2063–2098. https://doi.org/10.5194/bg-6-2063-2009 (2009).
ADS CAS Article Google Scholar
11.
Tyler, R. M., Brady, D. C. & Targett, T. E. Temporal and spatial dynamics of diel-cycling hypoxia in estuarine tributaries. Estuaries Coasts 32, 123–145. https://doi.org/10.1007/s12237-008-9108-x (2009).
CAS Article Google Scholar
12.
Townsend, S. A. & Edwards, C. A. A fish kill event, hypoxia and other limnological impacts associated with early wet season flow into a lake on the Mary River floodplain, tropical northern Australia. Lakes Reserv. Res. Manag. 8, 169–176. https://doi.org/10.1111/j.1440-1770.2003.00222.x (2003).
Article Google Scholar
13.
Evans, M. A. & Scavia, D. Forecasting hypoxia in the Chesapeake Bay and Gulf of Mexico: model accuracy, precision, and sensitivity to ecosystem change. Environ. Res. Lett. 6, 015001. https://doi.org/10.1088/1748-9326/6/1/015001 (2011).
ADS CAS Article Google Scholar
14.
Yang, C. P., Lung, W. S., Liu, J. H. & Hsiao, W. P. Establishment and application of water quality model of hypoxic stream. J. Taiwan Agric. Eng. 55, 27–39. https://doi.org/10.29974/JTAE.200903.0004 (2009).
Article Google Scholar
15.
Nelson, N. G., Muñoz-Carpena, R., Neale, P. J., Tzortziou, M. & Megonigal, J. P. Temporal variability in the importance of hydrologic, biotic, and climatic descriptors of dissolved oxygen dynamics in a shallow tidal-marsh creek. Water Resour. Res. 53, 7103–7120. https://doi.org/10.1002/2016wr020196 (2017).
ADS CAS Article Google Scholar
16.
Ouellet, V., Mingelbier, M., Saint-Hilaire, A. & Morin, J. Frequency analysis as a tool for assessing adverse conditions during a massive fish kill in the St. Lawrence River, Canada. Water Qual. Res. J. 45, 47–57. https://doi.org/10.2166/wqrj.2010.006 (2010).
CAS Article Google Scholar
17.
Chin, D. A. Water-Quality Engineering in Natural Systems: Fate and Transport Processes in the Water Environment (Wiley, New York, 2013).
Google Scholar
18.
Carpenter, J. H. New measurements of oxygen solubility in pure and natural water. Limnol. Oceanogr. 11, 264–277. https://doi.org/10.4319/lo.1966.11.2.0264 (1966).
ADS CAS Article Google Scholar
19.
Gameson, A. L. H. & Robertsonn, K. G. The solubility of oxygen in pure water and sea-water. J. Appl. Chem. 5, 502. https://doi.org/10.1002/jctb.5010050909 (1955).
CAS Article Google Scholar
20.
Liss, P. S. Processes of gas exchange across an air-water interface. Deep-Sea Res. Oceanogr. Abstr. 20, 221–238. https://doi.org/10.1016/0011-7471(73)90013-2 (1973).
ADS CAS Article Google Scholar
21.
Marino, R. & Howarth, R. W. Atmospheric oxygen exchange in the Hudson River. Estuaries 16, 433–445. https://doi.org/10.2307/1352591 (1993).
CAS Article Google Scholar
22.
Loucks, D. P. & van Beek, E. Water Resources Systems Planning and Management: An Introduction to Methods, Models and Applications (UNESCO, Paris, 2005).
Google Scholar
23.
Lucas, M. C. & Baras, E. Methods for studying spatial behaviour of freshwater fishes in the natural environment. Fish Fish. 1, 283–316. https://doi.org/10.1046/j.1467-2979.2000.00028.x (2000).
Article Google Scholar
24.
Roscoe, R. W. & Hinch, S. G. Effectiveness monitoring of fish passage facilities: historical trends, geographic patterns and future directions. Fish Fish. 11, 12–33. https://doi.org/10.1111/j.1467-2979.2009.00333.x (2010).
Article Google Scholar
25.
Townsend, S. A., Boland, K. T. & Wrigley, T. J. Factors contributing to a fish kill in the Australian wet/dry tropics. Water Res. 26, 1039–1044. https://doi.org/10.1016/0043-1354(92)90139-U (1992).
CAS Article Google Scholar
26.
Cheng, S. T., Hwang, G. W., Chen, C. P., Hou, W. S. & Hsieh, H. L. An integrated modeling approach to evaluate the performance of an oxygen enhancement device in the Hwajiang wetland, Taiwan. Ecol. Eng. 42, 244–248. https://doi.org/10.1016/j.ecoleng.2012.02.011 (2012).
Article Google Scholar
27.
Nakamura, Y. & Stefan, H. G. Effect of flow velocity on sediment oxygen demand: theory. J. Environ. Eng. 120, 996–1016. https://doi.org/10.1061/(ASCE)0733-9372(1994)120:5(996) (1994).
CAS Article Google Scholar
28.
Welcomme, R. L. Fisheries Ecology of Floodplain Rivers (Longman, Harlow, 1979).
Google Scholar
29.
Hsu, H. H. & Chen, C. T. Observed and projected climate change in Taiwan. Meteorol. Atmos. Phys. 79, 87–104. https://doi.org/10.1007/s703-002-8230-x (2002).
ADS Article Google Scholar
30.
Yu, P. S., Yang, T. C. & Wu, C. K. Impact of climate change on water resources in southern Taiwan. J. Hydrol. 260, 161–175. https://doi.org/10.1016/S0022-1694(01)00614-X (2002).
ADS Article Google Scholar
31.
Huang, W. C., Chiang, Y., Wu, R. Y., Lee, J. L. & Lin, S. H. The impact of climate change on rainfall frequency in Taiwan. Terr. Atmos. Ocean. Sci. https://doi.org/10.3319/TAO.2012.05.03.04(WMH) (2012).
Article Google Scholar
32.
IPCC, Working Groups I, II and III to the Fifth Assessment Report.Climate Change 2014: Synthesis Report (2014).
33.
Seneviratne, S. I. et al. Changes in climate extremes and their impacts on the natural physical environment. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field C.B. et al.) 109–230 (A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC), 2012).
34.
Altieri, A. H. & Gedan, K. B. Climate change and dead zones. Glob. Change Biol. 21, 1395–1406. https://doi.org/10.1111/gcb.12754 (2015).
ADS Article Google Scholar
35.
Kuo, C. W. & Lee, C. T. Trend analysis of water quality in the upper watershed of the Feitsui reservoir. J. Geogr. Sci. 38, 111–128 (2004).
Google Scholar
36.
Turner, R. E., Rabalais, N. N., Swenson, E. M., Kasprzak, M. & Romaire, T. Summer hypoxia in the northern Gulf of Mexico and its prediction from 1978 to 1995. Mar. Environ. Res. 59, 65–77. https://doi.org/10.1016/j.marenvres.2003.09.002 (2005).
CAS Article PubMed Google Scholar
37.
Urbina, W. A. & Glover, C. N. Relationship between fish size and metabolic rate in the oxyconforming inanga Galaxias maculatus reveals size-dependent strategies to withstand hypoxia. Physiol. Biochem. Zool. 86, 740–749. https://doi.org/10.1086/673727 (2013).
Article PubMed Google Scholar
38.
Brett, J. R. & Groves, T. D. D. Physiological energetics. In Fish Physiology (eds Hoar, W. S. et al.) 279–352 (Academic Press, Cambridge, 1979).
Google Scholar
39.
Chang, C. W., Tzeng, W. N. & Lee, Y. C. Recruitment and hatching dates of grey-mullet (Mugil cephalus L.) juveniles in the Tanshui estuary of northwest Taiwan. Zool. Stud. 39, 99–106 (2000).
Google Scholar
40.
Young, J. L. et al. Integrating physiology and life history to improve fisheries management and conservation. Fish Fish. 7, 262–283. https://doi.org/10.1111/j.1467-2979.2006.00225.x (2006).
Article Google Scholar
41.
Hamilton, P. B. et al. Population-level consequences for wild fish exposed to sublethal concentrations of chemicals—a critical review. Fish Fish. 17, 545–566. https://doi.org/10.1111/faf.12125 (2016).
Article Google Scholar
42.
Cheng, S. T., Herricks, E. E., Tsai, W. P. & Chang, F. J. Assessing the natural and anthropogenic influences on basin-wide fish species richness. Sci. Total Environ. 572, 825–836. https://doi.org/10.1016/j.scitotenv.2016.07.120 (2016).
ADS CAS Article PubMed Google Scholar
43.
Radinger, J. et al. Effective monitoring of freshwater fish. Fish Fish. 20, 729–747. https://doi.org/10.1111/faf.12373 (2019).
Article Google Scholar
44.
Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J. & Kolehmainen, M. Methods for imputation of missing values in air quality data sets. Atmos. Environ. 38, 2895–2907. https://doi.org/10.1016/j.atmosenv.2004.02.026 (2004).
ADS CAS Article Google Scholar
45.
Cheng, S. T., Tsai, W. P., Yu, T. C., Herricks, E. E. & Chang, F. J. Signals of stream fish homogenization revealed by AI-based clusters. Sci. Rep. 8, 15960. https://doi.org/10.1038/s41598-018-34313-x (2018).
ADS CAS Article PubMed PubMed Central Google Scholar
46.
Kohonen, T. Essentials of the self-organizing map. Neural Netw. 37, 52–65. https://doi.org/10.1016/j.neunet.2012.09.018 (2013).
Article PubMed Google Scholar
47.
Kohonen, T. The self-organizing map. Proc. IEEE 78, 1464–1480. https://doi.org/10.1109/5.58325 (1990).
Article Google Scholar
48.
Kohonen, T. et al. Self organization of a massive document collection. IEEE Trans. Neural Netw. 11, 574–585. https://doi.org/10.1109/72.846729 (2000).
CAS Article PubMed Google Scholar
49.
Tsai, W. P., Huang, S. P., Cheng, S. T., Shao, K. T. & Chang, F. J. A data-mining framework for exploring the multi-relation between fish species and water quality through self-organizing map. Sci. Total Environ. 579, 474–483. https://doi.org/10.1016/j.scitotenv.2016.11.071 (2017).
ADS CAS Article PubMed Google Scholar
50.
Wehrens, R. & Buydens, L. M. C. Self- and super-organizing maps in R: the kohonen package. J. Stat. Softw. 21, 1–19. https://doi.org/10.18637/jss.v021.i05 (2007).
Article Google Scholar
51.
Kirt, T., Vainik, E. & Võhandu, L. A method for comparing self-organizing maps: case studies of banking and linguistic data. In Proceedings of Eleventh East-European Conference on Advances in Databases and Information Systems (eds Ioannidis, Y., Novikov, B. & Rachev, B.) 107–115 (Technical University of Varna, Levski, 2007).
Google Scholar
52.
Kohonen, T. Self-Organizing Maps 3rd edn. (Springer, New York, 2001).
Google Scholar
53.
Kalteh, A. M., Hjorth, P. & Berndtsson, R. Review of the self-organizing map (SOM) approach in water resources: Analysis, modelling and application. Environ. Model. Softw. 23, 835–845. https://doi.org/10.1016/j.envsoft.2007.10.001 (2008).
Article Google Scholar More