1.
Serreze, M. C., Holland, M. M. & Stroeve, J. Perspectives on the Arctic’s shrinking sea-ice cover. Science 315, 1533–1536 (2007).
CAS Article Google Scholar
2.
Screen, J. A. & Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334–1337 (2010).
CAS Article Google Scholar
3.
Dai, A., Luo, D., Song, M. & Liu, J. Arctic amplification is caused by sea-ice loss under increasing CO2. Nat. Commun. 10, 121–133 (2019).
Article CAS Google Scholar
4.
Kim, K. et al. Vertical feedback mechanism of winter Arctic amplification and sea ice loss. Sci. Rep. 9, 1184 (2019).
Article CAS Google Scholar
5.
Loeb, V. et al. Effects of sea-ice extent and krill or salp dominance on the Antarctic food web. Nature 387, 897–900 (1997).
CAS Article Google Scholar
6.
Mundy, C. J. et al. Contribution of under-ice primary production to an ice-edge upwelling phytoplankton bloom in the Canadian Beaufort Sea. Geophys. Res. Lett. 36, L17601 (2009).
Article Google Scholar
7.
Sévellec, F., Fedorov, A. V. & Liu, W. Arctic sea-ice decline weakens the Atlantic Meridional Overturning Circulation. Nat. Clim. Chang. 7, 604–610 (2017).
Article Google Scholar
8.
Stroeve, J., Holland, M. M., Meier, W., Scambos, T. & Serreze, M. Arctic sea ice decline: faster than forecast. Geophys. Res. Lett. 34, L09501 (2007).
Article Google Scholar
9.
Routson, C. C. et al. Mid-latitude net precipitation decreased with Arctic warming during the Holocene. Nature 568, 83–87 (2019).
CAS Article Google Scholar
10.
Parkinson, C. L. & Cavalieri, D. J. Arctic sea ice variability and trends, 1979–2006. J. Geophys. Res. 113, C07003 (2008).
Article Google Scholar
11.
Stroeve, J. C. et al. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett. 39, L16502 (2012).
Article Google Scholar
12.
Matsumura, S. & Kosaka, Y. Arctic–Eurasian climate linkage induced by tropical ocean variability. Nat. Commun. 10, 1–8 (2019).
CAS Article Google Scholar
13.
Kaufman, D. S. et al. Holocene thermal maximum in the western Arctic (0-180°W). Quat. Sci. Rev. 23, 529–560 (2004).
Article Google Scholar
14.
Holmes, R. M. et al. A circumpolar perspective on fluvial sediment flux to the Arctic ocean. Global Biogeochem. Cycles 16, 1098 (2002).
Article CAS Google Scholar
15.
Duk-Rodkin, A. & Hughes, O. L. Tertiary-quaternary drainage of the pre-glacial Mackenzie basin. Quat. Int. 22–23, 221–241 (1994).
Article Google Scholar
16.
McManus, J. F., Francois, R., Gherardl, J. M., Keigwin, L. & Drown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837 (2004).
CAS Article Google Scholar
17.
Peltier, W. R., Vettoretti, G. & Stastna, M. Atlantic meridional overturning and climate response to Arctic Ocean freshening. Geophys. Res. Lett. 33, L06713 (2006).
Google Scholar
18.
Broecker, W. S. et al. Routing of meltwater from the Laurentide Ice Sheet during the Younger Dryas cold episode. Nature 341, 318–321 (1989).
Article Google Scholar
19.
Keigwin, L. D. et al. Deglacial floods in the Beaufort Sea preceded Younger Dryas cooling. Nat. Geosci. 11, 599–604 (2018).
CAS Article Google Scholar
20.
Leydet, D. J. et al. Opening of glacial Lake Agassiz’s eastern outlets by the start of the Younger Dryas cold period. Geology 46, 155–158 (2018).
CAS Article Google Scholar
21.
Fisher, T. G. & Lowell, T. V. Testing northwest drainage from Lake Agassiz using extant ice margin and strandline data. Quat. Int. 260, 106–114 (2012).
Article Google Scholar
22.
Tarasov, L. & Peltier, W. R. Arctic freshwater forcing of the Younger Dryas cold reversal. Nature 435, 662–665 (2005).
CAS Article Google Scholar
23.
Murton, J. B., Bateman, M. D., Dallimore, S. R., Teller, J. T. & Yang, Z. Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean. Nature 464, 740–743 (2010).
CAS Article Google Scholar
24.
Fisher, T. G., Waterson, N., Lowell, T. V. & Hajdas, I. Deglaciation ages and meltwater routing in the Fort McMurray region, northeastern Alberta and northwestern Saskatchewan, Canada. Quat. Sci. Rev. 28, 1608–1624 (2009).
Article Google Scholar
25.
Fisher, T. G., Smith, D. G. & Andrews, J. T. Preboreal oscillation caused by a glacial Lake Agassiz flood. Quat. Sci. Rev. 21, 873–878 (2002).
Article Google Scholar
26.
Jin, Y. K. ARA04C cruise report: barrow, US—Beaufort Sea, CAN—Nome, US 6-24 September 2013 (Korea Polar Research Institute, Incheon, 2013).
27.
Gamboa, A., Montero-Serrano, J. -C., St-Onge, G., Rochon, A. & Desiage, P. -A. Mineralogical, geochemical, and magnetic signatures of surface sediments from the Canadian Beaufort Shelf and Amundsen Gulf (Canadian Arctic). Geochem. Geophys. Geosyst. 18, 488–512 (2017).
CAS Article Google Scholar
28.
Belt, S. T. et al. A novel chemical fossil of palaeo sea ice: IP25. Org. Geochem. 38, 16–27 (2007).
CAS Article Google Scholar
29.
Brown, T. A., Belt, S. T., Tatarek, A. & Mundy, C. J. Source identification of the Arctic sea ice proxy IP 25. Nat. Commun. 5, 4197 (2014).
CAS Article Google Scholar
30.
Müller, J. et al. Towards quantitative sea ice reconstructions in the northern North Atlantic: a combined biomarker and numerical modelling approach. Earth Planet. Sci. Lett. 306, 137–148 (2011).
Article CAS Google Scholar
31.
Smik, L., Cabedo-Sanz, P. & Belt, S. T. Semi-quantitative estimates of paleo Arctic sea ice concentration based on source-specific highly branched isoprenoid alkenes: A further development of the PIP25 index. Org. Geochem. 92, 63–69 (2016).
CAS Article Google Scholar
32.
Lü, X. et al. Hydroxylated isoprenoid GDGTs in Chinese coastal seas and their potential as a paleotemperature proxy for mid-to-low latitude marginal seas. Org. Geochem. 89, 31–43 (2015).
Article CAS Google Scholar
33.
Volkman, J. K. A review of sterol markers for marine and terrigenous organic matter. Org. Geochem. 9, 83–99 (1986).
CAS Article Google Scholar
34.
Fahl, K. & Stein, R. Biomarkers as organic-carbon-source and environmental indicators in the late quaternary Arctic Ocean: problems and perspectives. Mar. Chem. 63, 293–309 (1999).
CAS Article Google Scholar
35.
Fahl, K. & Stein, R. Modern seasonal variability and deglacial/Holocene change of central Arctic Ocean sea-ice cover: new insights from biomarker proxy records. Earth Planet. Sci. Lett. 351, 123–133 (2012).
Article CAS Google Scholar
36.
Rampen, S. W., Abbas, B. A., Schouten, S. & Damsté, J. S. S. A comprehensive study of sterols in marine diatoms (Bacillariophyta): implications for their use as tracers for diatom productivity. Limnol. Oceanogr. 55, 91–105 (2010).
CAS Article Google Scholar
37.
Hopmans, E. C. et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet. Sci. Lett. 224, 107–116 (2004).
CAS Article Google Scholar
38.
Weijers, J. W. H., Schouten, S., van den Donker, J. C., Hopmans, E. C. & Sinninghe Damsté, J. S. Environmental controls on bacterial tetraether membrane lipid distribution in soils. Geochim. Cosmochim. Acta 71, 703–713 (2007).
CAS Article Google Scholar
39.
Blaga, C. I. et al. Branched glycerol dialkyl glycerol tetraethers in lake sediments: can they be used as temperature and pH proxies? Org. Geochem. 41, 1225–1234 (2010).
CAS Article Google Scholar
40.
De Jonge, C. et al. In situ produced branched glycerol dialkyl glycerol tetraethers in suspended particulate matter from the Yenisei River, Eastern Siberia. Geochim. Cosmochim. Acta 125, 476–491 (2014).
Article CAS Google Scholar
41.
Zhang, Z., Metzger, P. & Sachs, J. P. Co-occurrence of long chain diols, keto-ols, hydroxy acids and keto acids in recent sediments of Lake El Junco, Galápagos Islands. Org. Geochem. 42, 823–837 (2011).
CAS Article Google Scholar
42.
de Bar, M. W. et al. Constraints on the application of long chain diol proxies in the Iberian Atlantic margin. Org. Geochem. 101, 184–195 (2016).
Article CAS Google Scholar
43.
Lattaud, J. et al. The C32 alkane-1,15-diol as a proxy of late Quaternary riverine input in coastal margins. Clim. Past 13, 1049–1061 (2017).
Article Google Scholar
44.
Lattaud, J. et al. The C32 alkane-1,15-diol as a tracer for riverine input in coastal seas. Geochim. Cosmochim. Acta 202, 146–158 (2017).
CAS Article Google Scholar
45.
Pico, T., Mitrovica, J. X. & Mix, A. C. Sea level fingerprinting of the Bering Strait flooding history detects the source of the Younger Dryas climate event. Sci. Adv. 6, eaay2935 (2020).
CAS Article Google Scholar
46.
Jakobsson, M. et al. Post-glacial flooding of the Bering Land Bridge dated to 11 cal ka BP based on new geophysical and sediment records. Clim. Past 13, 991–1005 (2017).
Article Google Scholar
47.
Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).
Article Google Scholar
48.
Niebauer, H. J. & Alexander, V. Oceanographic frontal structure and biological production at an ice edge. Cont. Shelf Res. 4, 367–388 (1985).
Article Google Scholar
49.
Smith, W. O. & Nelson, D. M. Phytoplankton bloom produced by a receding ice edge in the Ross Sea: spatial coherence with the density field. Science. 227, 163–166 (1985).
CAS Article Google Scholar
50.
Ackley, S. F. & Sullivan, C. W. Physical controls on the development and characteristics of Antarctic sea ice biological communities-a review and synthesis. Deep Sea Res. I 41, 1583–1604 (1994).
Article Google Scholar
51.
Strass, V. H. & Nöthig, E. M. Seasonal shifts in ice edge phytoplankton blooms in the Barents Sea related to the water column stability. Polar Biol. 16, 409–422 (1996).
Article Google Scholar
52.
Collins, L. G. et al. Evaluating highly branched isoprenoid (HBI) biomarkers as a novel Antarctic sea-ice proxy in deep ocean glacial age sediments. Quat. Sci. Rev. 79, 87–98 (2013).
Article Google Scholar
53.
Belt, S. T. et al. Identification of paleo Arctic winter sea ice limits and the marginal ice zone: optimised biomarker-based reconstructions of late Quaternary Arctic sea ice. Earth Planet. Sci. Lett. 431, 127–139 (2015).
CAS Article Google Scholar
54.
Smik, L., Belt, S. T., Lieser, J. L., Armand, L. K. & Leventer, A. Distributions of highly branched isoprenoid alkenes and other algal lipids in surface waters from East Antarctica: further insights for biomarker-based paleo sea-ice reconstruction. Org. Geochem. 95, 71–80 (2016).
CAS Article Google Scholar
55.
Ribeiro, S. et al. Sea ice and primary production proxies in surface sediments from a High Arctic Greenland fjord: spatial distribution and implications for palaeoenvironmental studies. Ambio 46, 106–118 (2017).
CAS Article Google Scholar
56.
Wagner, A., Lohmann, G. & Prange, M. Arctic river discharge trends since 7ka BP. Glob. Planet. Change 79, 48–60 (2011).
Article Google Scholar
57.
North Greenland Ice Core Project Members. High resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147–151 (2004).
Article CAS Google Scholar
58.
Broecker, W. S. Was the Younger Dryas triggered by a flood? Science 312, 1146–1148 (2006).
CAS Article Google Scholar
59.
Not, C. & Hillaire-Marcel, C. Enhanced sea-ice export from the Arctic during the Younger Dryas. Nat. Commun. 3, 1–5 (2012).
Article CAS Google Scholar
60.
Fagel, N., Not, C., Gueibe, J., Mattielli, N. & Bazhenova, E. Late Quaternary evolution of sediment provenances in the Central Arctic Ocean: mineral assemblage, trace element composition and Nd and Pb isotope fingerprints of detrital fraction from the Northern Mendeleev Ridge. Quat. Sci. Rev. 92, 140–154 (2014).
Article Google Scholar
61.
Scott, D. B., Schell, T., St-Onge, G., Rochon, A. & Blasco, S. Foraminiferal assemblage changes over the last 15,000 years on the Mackenzie-Beaufort Sea Slope and Amundsen Gulf, Canada: implications for past sea ice conditions. Paleoceanography 24, PA2219 (2009).
Article Google Scholar
62.
Keigwin, L. D., Donnelly, J. P., Cook, M. S., Driscoll, N. W. & Brigham-Grette, J. Rapid sea-level rise and Holocene climate in the Chukchi Sea. Geology 34, 861–864 (2006).
Article Google Scholar
63.
Hill, J. C. & Driscoll, N. W. Paleodrainage on the Chukchi shelf reveals sea level history and meltwater discharge. Mar. Geol. 254, 129–151 (2008).
CAS Article Google Scholar
64.
England, J. H. & Furze, M. F. A. New evidence from the western Canadian Arctic Archipelago for the resubmergence of Bering Strait. Quat. Res. 70, 60–67 (2008).
CAS Article Google Scholar
65.
Dyke, A. S. & Savelle, J. M. Holocene history of the Bering Sea bowhead whale (Balaena mysticetus) in its Beaufort Sea summer grounds off Southwestern Victoria Island, Western Canadian Arctic. Quat. Res. 55, 371–379 (2001).
Article Google Scholar
66.
Dyke, A. S., Dale, J. E. & McNeely, R. N. Marine molluscs as indicators of environmental change in glaciated North America and greenland during the last 18 000 Years. Geogr. Phys. Quat. 50, 125–184 (1996).
Google Scholar
67.
Belt, S. T., Smik, L., Köseoglu, D., Knies, J. & Husum, K. A novel biomarker-based proxy for the spring phytoplankton bloom in Arctic and sub-arctic settings–HBI T25. Earth Planet. Sci. Lett. 523, 115703 (2019).
CAS Article Google Scholar
68.
Fietz, S., Huguet, C., Rueda, G., Hambach, B. & Rosell-Melé, A. Hydroxylated isoprenoidal GDGTs in the Nordic Seas. Mar. Chem. 152, 1–10 (2013).
CAS Article Google Scholar
69.
Klotsko, S., Driscoll, N. & Keigwin, L. Multiple meltwater discharge and ice rafting events recorded in the deglacial sediments along the Beaufort Margin, Arctic Ocean. Quat. Sci. Rev. 203, 185–208 (2019).
Article Google Scholar
70.
Sachs, J. P. et al. An Arctic Ocean paleosalinity proxy from δ2H of palmitic acid provides evidence for deglacial Mackenzie River flood events. Quat. Sci. Rev. 198, 76–90 (2018).
Article Google Scholar
71.
Spielhagen, R. F., Erlenkeuser, H. & Siegert, C. History of freshwater runoff across the Laptev Sea (Arctic) during the last deglaciation. Glob. Planet. Change 48, 187–207 (2005).
Article Google Scholar
72.
Nørgaard-pedersen, N. et al. Arctic Ocean during the Last Glacial Maximum: Atlantic and polar domains of surface water mass distribution and ice cover. Paleoceanography 18, 1–19 (2003).
Article Google Scholar
73.
Stein, R. et al. The last deglaciation event in the eastern central Arctic. Ocean Sci. 264, 692–696 (1994).
CAS Google Scholar
74.
Poore, R. Z., Osterman, L., Hole, W. & Hole, W. Late Pleistocene and Holocene meltwater events in the western Arctic Ocean. Geology 27, 759–762 (1999).
CAS Article Google Scholar
75.
Stein, R., Fahl, K. & Müller, J. Proxy reconstruction of Cenozoic Arctic Ocean sea ice history–from IRD to IP25. Polarforschung 82, 37–71 (2012).
Google Scholar
76.
Häggi, C. et al. Modern and late Pleistocene particulate organic carbon transport by the Amazon River: Insights from long-chain alkyl diols. Geochim. Cosmochim. Acta 262, 1–19 (2019).
Article CAS Google Scholar
77.
Breckenridge, A. The Tintah-Campbell gap and implications for glacial Lake Agassiz drainage during the Younger Dryas cold interval. Quat. Sci. Rev. 117, 124–134 (2015).
Article Google Scholar
78.
Praetorius, S. et al. The role of Northeast Pacific meltwater events in deglacial climate change. Sci. Adv. 6, eaay2915 (2020).
Article Google Scholar
79.
Boden, P., Fairbanks, G., Wright, D. & Burckle, H. High-resolution stable isotope records from southwest Sweden: the drainage of the Baltic Ice Lake and Younger Dryas ice margin oscillations. Paleoceanography 12, 39–49 (1997).
Article Google Scholar
80.
Schell, T. M., Scott, D. B., Rochon, A. & Blasco, S. Late quaternary paleoceanography and paleo-sea ice conditions in the Mackenzie Trough and Canyon, Beaufort Sea. Can. J. Earth Sci. 45, 1399–1415 (2008).
Article Google Scholar
81.
Andrews, J. T. & Dunhill, G. Early to mid-Holocene Atlantic water influx and deglacial meltwater events, Beaufort Sea slope, Arctic Ocean. Quat. Res. 61, 14–21 (2004).
CAS Article Google Scholar
82.
Winterfeld, M. et al. Deglacial mobilization of pre-aged terrestrial carbon from degrading permafrost. Nat. Commun. 9, 3666 (2018).
Article CAS Google Scholar
83.
Meyer, V. D. et al. Permafrost-carbon mobilization in Beringia caused by deglacial meltwater runoff, sea-level rise and warming. Environ. Res. Lett. 14, 085003 (2019).
CAS Article Google Scholar
84.
Stein, R., Fahl, K., Dittmers, K., Nissen, F. & Stepanets, O. V. Holocene siliciclastic and organic carbon fluxes in the Oh and Yenisei estuaries and the adjacent inner Kara Sea: Quantification, variability, and paleoenvironmental implications. In Siberian River Run-off in the Kara Sea: Characterisation, Quantification, Variability and Environmental Significance 401–432 (Elsevier, Amsterdam, 2003).
85.
Stein, R. & Fahl, K. The Kara Sea: distribution, sources, variability and burial of organic carbon. in The Organic Carbon Cycle in the Arctic Ocean 213–237 (Springer-Verlag, Berlin, 2004). .
86.
Pearce, C. et al. Heinrich 0 on the east Canadian margin: source, distribution, and timing. Paleoceanography 30, 1613–1624 (2015).
Article Google Scholar
87.
Blaauw, M. & Christeny, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6, 457–474 (2011).
Google Scholar
88.
Blaauw, M. & Christen, J. A. Bacon Manual—v2.3.3 (2013).
89.
Reimer, P. J. et al. Intcal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years Cal Bp. Radiocarbon 55, 1869–1887 (2013).
CAS Article Google Scholar
90.
Brown, T. A. & Belt, S. T. Novel tri- and tetra-unsaturated highly branched isoprenoid (HBI) alkenes from the marine diatom Pleurosigma intermedium. Org. Geochem. 91, 120–122 (2016).
CAS Article Google Scholar
91.
Boon, J. J. et al. Black Sea sterol—a molecular fossil for dinoflagellate blooms. Nature 277, 125–127 (1979).
CAS Article Google Scholar
92.
Versteegh, G., Bosch, H. & De Leeuw, J. Potential palaeoenvironmental information of C24 to C36 mid-chain diols, keto-ols and mid-chain hydroxy fatty acids; a critical review. Org. Geochem. 27, 1–13 (1997).
CAS Article Google Scholar
93.
Rampen, S. W. et al. Long chain 1,13- and 1,15-diols as a potential proxy for palaeotemperature reconstruction. Geochim. Cosmochim. Acta 84, 204–216 (2012).
CAS Article Google Scholar
94.
Stein, R. & Macdonald, R. W. The Organic Carbon Cycle in the Arctic Ocean (Springer-Verlag, Berlin, 2004).
95.
Wu, J. et al. Biomarker data of sediment core ARA04C/37, Beaufort Sea, Arctic Ocean. PANGAEA https://doi.org/10.1594/PANGAEA.915048 (2020).
96.
Peltier, W. R., Argus, D. F. & Drummond, R. Space geodesy constrains ice age terminal deglaciation: the global ICE-6G_C (VM5a) model. J. Geophys. Res. Solid Earth 120, 450–487 (2015).
Article Google Scholar More