More stories

  • in

    Effect of incorporating bone char with sulfur or humic acid on phosphorus availability and spinach growth in calcareous sandy soil

    AbstractThis study investigated the effects of applying modified bone char by sulfur (MBC) with humic acid and co-applying bone char (BC) with sulfur (S) or humic acid (HA) on chemical properties, phosphorus (P) availability, and spinach growth in calcareous sandy soil. This pot experiment has twelve treatments: Control (CK), bone + S (BS), bone + HA (BHA), BC + S (BCS), BC + HA (BCHA), MBC, MBC + HA (MBCHA), acidified BC with 0.1 N H2SO4 (0.1ABC), acidified BC with 1 N H2SO4 (1ABC), rock phosphate (RP), RP + S (RPS), and RP + HA (RPHA). The B, BC, MBC, 0.1ABC, 1ABC, and RP were added at 300 mg P kg− 1 soil doses. Spinach was grown in this experiment. Applying all treatments significantly increased soil phosphorus availability. Available phosphorus increased from 11.61 mg kg− 1 (CK) to 19.70, 19.76, 21.82, 22.25, 22.45, 26.09, 19.58, 21.01, 15.26, 18.95, and 17.77 mg kg− 1 for BS, BHA, BCS, BCHA, MBC, MBCHA, 0.1ABC, 1ABC, RP, RPS, and RPHA, respectively. The effectiveness of the treatments in this study on the available phosphorus improvement was in the order of MBCHA > MBC > BCHA > BCS > 1ABC > BHA > BS > 0.1ABC > RPS > RPHA > RP > control. Compared to the control treatment, applying BHA, BCS, BCHA, MBC, MBCHA, 1ABC, RPS, and RPHA to the soil significantly increased the fresh shoot of the spinach plant. Fresh shoot of spinach increased from 46.02 g pot− 1 for CK to 54.41, 54.36, 56.94, 50.39, 51.91, 48.83, 54.24, and 49.52 g pot− 1 for BHA, BCS, BCHA, MBC, MBCHA, 1ABC, RPS, and RPHA, respectively. The effectiveness of treatments in improving the fresh weight of spinach was in the order of BCHA > BHA ≈ BCS > RPS > MBCHA > MBC > RPHA > 1ABC > control > RP > BS > 0.1ABC. Our results concluded that co-applying bone char with sulfur is optimal for enhancing soil quality indicators and improving fresh and dry shoots of spinach. Due to its cheaper price, it is preferable to add sulfur with bone char rather than humic acid.

    Similar content being viewed by others

    Optimizing phosphorus released in calcareous soil amended with bone char and bone ash using response surface methodology and desirability function

    Article
    Open access
    18 August 2025

    Minimization of cadmium toxicity and improvement in growth and biochemical attributes of spinach by using acidified biochar

    Article
    Open access
    18 February 2025

    Alleviation of soil acidification and modification of soil bacterial community by biochar derived from water hyacinth Eichhornia crassipes

    Article
    Open access
    09 January 2023

    Data availability

    The datasets used or analyzed during the current study are available from the corresponding author upon reasonable request.
    Abbreviations0.1ABC:
    Acidified BC with 0.1 N H2SO4
    1ABC:
    Aacidified BC with 1 N H2SO4
    B:
    Bone
    BHA:
    Bone + humic acid
    BS:
    Bone + sulfur
    BC:
    Bone char
    BCHA:
    Bone char + humic acid
    BCS:
    Bone char + sulfur
    C:
    Carbon
    Ca:
    Calcium
    CaCO3
    :
    Calcium carbonate
    CK:
    Control
    Cl:
    Chloride
    EC:
    Electrical conductivity
    H:
    Hydrogen
    H2O2
    :
    Hydrogen peroxide
    H2SO4
    :
    Sulfuric Acid
    ha:
    Hectare
    HA:
    Humic acid
    HCl:
    Hydrochloric acid
    HCO3
    :
    Bicarbonate
    K:
    Potassium
    MBC:
    Modified bone char
    MBCHA:
    Modified bone char + humic acid
    Mg:
    Magnesium
    N:
    Nitrogen
    Na:
    Sodium
    NaOH:
    Sodium hydroxide
    O.M:
    Organic matter
    P:
    Phosphorus
    p:
    Probability
    RP:
    Rock phosphate
    RPHA:
    Rock phosphate + humic acid
    RPS:
    Rock phosphate + sulfur
    S:
    Sulfur
    SO4
    :
    Sulfate
    ReferencesTshikalange, B., Ololade, O., Jonas, C. & Bello, Z. A. Effectiveness of cattle Dung biogas digestate on spinach growth and nutrient uptake. Heliyon 8, e09195. https://doi.org/10.1016/j.heliyon.2022.e09195 (2022).
    Google Scholar 
    Yavuz, D. et al. The effect of irrigation water salinity on the morph-physiological and biochemical properties of spinach under deficit irrigation conditions. Sci. Hortic. 304, 111272. https://doi.org/10.1016/j.scienta.2022.111272 (2022).
    Google Scholar 
    Toledo, M. E. A., Ueda, Y., Imahori, Y. & Ayaki, M. L-ascorbic acid metabolism in spinach (Spinacia Oleracea L.) during postharvest storage in light and dark. Postharvest. Biol. Technol. 28, 47–57. https://doi.org/10.1016/S0925-5214(02)00121-7 (2003).
    Google Scholar 
    Ismail, A., Marjan, Z. M. & Foong, C. W. Total antioxidant activity and phenolic content in selected vegetables. J. Food Chem. 87, 581–586. https://doi.org/10.1016/j.foodchem.2004.01.010 (2004).
    Google Scholar 
    Miri, S. M. & Roughani, A. Spinach: an important green leafy vegetable and medicinal herb. The 2nd International Conference on Medicinal Plants, Organic Farming, Natural and Pharmaceutical Ingredients, Iran; Moshad: 13–14 February. (2019).Kiran, R. S., Bathool, S., Geetha, K., Sharma, G. S. & Rao, T. R. A review on spinacia Oleracea. Indian J. Res. 12, 90–92 (2023).
    Google Scholar 
    Zhu, J., Li, M. & Whelan, M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: a review. Sci. Total Environ. 612, 522–537. https://doi.org/10.1016/j.scitotenv.2017.08.095 (2018).Gupta, D. K., Chatterjee, S., Datta, S., Veer, V. & Walther, C. Role of phosphate fertilizers in heavy metal uptake and detoxification of toxic metals. Chemosphere 108, 134–144. https://doi.org/10.1016/j.chemosphere.2014.01.030 (2014).
    Google Scholar 
    Li, B., Boiarkina, I., Young, B., Yu, W. & Singhal, N. Prediction of future phosphate rock: A demand based model. J. Environ. Inf. 31, 41–53. https://doi.org/10.3808/jei.201700364 (2018).
    Google Scholar 
    Attallah, M. F., Metwally, S. S., Moussa, S. I. & Soliman, M. A. Environmental impact assessment of phosphate fertilizers and phosphogypsum waste: elemental and radiological effects. Mierochem. J. 146, 789–797 (2019).
    Google Scholar 
    Mozhiarasi, V. & Natarajan, T. S. Slaughterhouse and poultry wastes: management practices, feedstocks for renewable energy production, and recovery of value added products. Biomass Conv. Bioref.. https://doi.org/10.1007/s13399-022-02352-0 (2022).
    Google Scholar 
    Piccirillo, C. Preparation, characterisation and applications of bone char, a food waste-derived sustainable material: A review. J. Environ. Manag. 339, 117896. https://doi.org/10.1016/j.jenvman.2023.117896 (2023).
    Google Scholar 
    Heyl, K., Garske, B. & Ekardt, F. Using bone Char as phosphate recycling fertiliser: an analysis of the new EU fertilising products regulation. Environ. Sci. Europe. 35, 1–13. https://doi.org/10.1186/s12302-023-00819-z (2023).
    Google Scholar 
    Boskey, A. L. Mineralization of bones and teeth. Elements 3, 385–391. https://doi.org/10.2113/GSELEMENTS.3.6.385 (2007).
    Google Scholar 
    Simons, A., Solomon, D., Chibssa, W., Blalock, G. & Lehmann, J. Filling the phosphorus fertilizer gap in developing countries. Nat. Geosci. 7, 3. https://doi.org/10.1038/ngeo2049 (2014).
    Google Scholar 
    Amin, A. A. & Sulfur Na2-EDTA and their mixture effects on phosphorus release from cow bone Char in P-poor sandy soil. Environ. Technol. Innov. 17, 100636. https://doi.org/10.1016/j.eti.2020.100636 (2020).
    Google Scholar 
    Amin, A. A. Enhancement of releasing phosphorus from bone Char in calcareous sandy soil under applying different levels of water salinity. J. Soil. Sci. Plant. Nutr. 21, 476–486. https://doi.org/10.1007/s42729-020-00376-x (2021).
    Google Scholar 
    Glæsner, N., Hansen, H. C. B., Hu, Y., Bekiaris, G. & Bruun, S. Low crystalline apatite in bone Char produced at low temperature ameliorates phosphorus-deficient soils. Chemosphere 223, 723–730. https://doi.org/10.1016/j.chemosphere.2019.02.048 (2019).
    Google Scholar 
    Siebers, N. & Leinweber, P. Bone char-a clean and renewable fertilizer with cadmium immobilizing capability. J. Environ. Qual. 42, 405–411. https://doi.org/10.2134/jeq2012.0363 (2013).
    Google Scholar 
    Vassilev, N., Martos, E., Mendes, G., Martos, V. & Vassileva, M. Biochar of animal origin: a sustainable solution to the global problem of high-grade rock phosphate scarcity? J. Sci. Food Agric. 93, 1799–1804. https://doi.org/10.1002/jsfa.6130 (2013).
    Google Scholar 
    Miao, C. & Zeller, V. Nutrient circularity from waste to fertilizer: A perspective from LCA studies. Sci. Total Environ. 965, 178623. https://doi.org/10.1016/j.scitotenv.2025.178623 (2025).
    Google Scholar 
    Biswas, P. P. et al. Systematic changes of bone hydroxyapatite along a charring temperature gradient: an integrative study with dissolution behavior. Sci. Total Environ. 766, 142601. https://doi.org/10.1016/j.scitotenv.2020.142601 (2021).
    Google Scholar 
    Amin, A. A. Effects of pyrolysis temperatures on bone Char Characterization and its releasing phosphorus in sandy soil. Arch. Agron. Soil. Sci. 69, 304–313. https://doi.org/10.1080/03650340.2021.1988940 (2023).
    Google Scholar 
    Kroetsch, D. & Wang, C. Particle size distribution in Soil Sampling and Methods of Analysis (eds Carter, M. R. & Gregorich, E. G.) 713–726 (Boca Raton, CRC, (2008).
    Google Scholar 
    Pansu, M. & Gautheyrou, J. Handbook of Soil Analysis (Springer, 2006).Skjemstad, J. O., Baldock, J. A. & Total and organic carbon in Soil sampling and methods of analysis (eds. Carter, M. R. & Gregorich, E. G.) 225–237Boca Raton, CRC Press, (2008).Jackson, M. L. Soil Chemical analysis. (New Delhi (Prentice-Hall of India Private Limited, 1973).Baruah, T. C., Barthakur, H. & India P. A textbook of soil analysis. (New Delhi, Vikas Publishing House PVT LTD, (1997).Nagornyy, V. D. Soil and Plant Laboratory Analysis (Moscow, Peoples’ Friendship University of Russia, 2013).Keeney, D. R. & Nelson, D. W. Madison SSSA,. Nitrogen-inorganic forms In Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, Agronomy Series No 9, ASA, 2nd edn (ed. Page, A. L.) 643–698 (1982).Olsen, S. R., Cole, C. V., Watanabe, F. S. & Dean, L. A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. (Circular/United States Department of Agriculture, No. 939,1954).Grimshaw, H. M. Analysis of soils in Chemical Analysis of Ecological Materials, 2nd edn (ed. Allen, 7–45 (Blackwell, Oxford, (1989).
    Google Scholar 
    Parkinson, J. A. & Allen, S. E. A wet oxidation procedure for the determination of nitrogen and mineral nutrients in biological material. Commun. Soil. Sci. Plant. Anal. 6, 1–11. https://doi.org/10.1080/00103627509366539 (1975).
    Google Scholar 
    Amin, A. A. & Eissa, M. A. Biochar effects on nitrogen and phosphorus use efficiencies of zucchini plants grown in a calcareous sandy soil. J. Soil. Sci. Plant. Nutr. 17, 912–921. https://doi.org/10.4067/S0718-95162017000400006 (2017).
    Google Scholar 
    Baligar, V., Fageria, N. & He, Z. Nutrient use efficiency in plants. Commun. Soil. Sci. Plant. Anal. 32, 921–950. https://doi.org/10.1081/CSS-100104098 (2001).
    Google Scholar 
    Li, S. et al. Phosphorus fertilizer management for high yields in intensive winter wheat-summer maize rotation system: integrating phosphorus budget and soil available phosphorus. Field Crops Res. 313, 109410. https://doi.org/10.1016/j.fcr.2024.109410 (2024).
    Google Scholar 
    Zimmer, D., Panten, K., Frank, M., Springer, A. & Leinweber, P. Sulfur-enriched bone Char as alternative P fertilizer: Spectroscopic, wet Chemical, and yield response evaluation. Agriculture 9, 21. https://doi.org/10.3390/agriculture9010021 (2019).
    Google Scholar 
    Amin, A. A. Availability and transformations of phosphorus in calcareous sandy soil affected by farmyard manure and elemental sulfur applications. Alex Sci. Exch. J. 39, 98–111. https://doi.org/10.21608/ASEJAIQJSAE.2018.5795 (2018).
    Google Scholar 
    Soaud, A. A. et al. Effects of elemental sulfur, phosphorus, micronutrients and paracoccus versutus on nutrient availability of calcareous soils. Aust J. Crop Sci. 5, 554–561 (2011).
    Google Scholar 
    Jaggi, R. C., Aulakh, M. S. & Sharma, A. R. Impacts of elemental S applied under various temperature and moisture regimes on pH and available P in acidic, neutral and alkaline soils. Biol. Fertil. Soils. 41, 52–58. https://doi.org/10.1007/s00374-004-0792-9 (2005).
    Google Scholar 
    Ampong, K., Thilakaranthna, M. S. & Gorim, L. Y. Understanding the role of humic acids on crop performance and soil health. Front. Agron. 4, 848621. https://doi.org/10.3389/fagro.2022.848621 (2022).
    Google Scholar 
    Li, Y. et al. Humic acid fertilizer improved soil properties and soil microbial diversity of continuous cropping peanut: A three-year experiment. Sci. Rep. 9, 1–9. https://doi.org/10.1038/s41598-019-48620-4 (2019).
    Google Scholar 
    Penn, C. J. & Camberato, J. J. A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture 9, 120. https://doi.org/10.3390/agriculture9060120 (2019).
    Google Scholar 
    Yang, Z. et al. Elemental sulfur oxidation by Thiobacillus spp. And aerobic heterotrophic sulfur-oxidizing bacteria. Pedosphere 20, 71–79. https://doi.org/10.1016/S1002-0160(09)60284-8 (2010).
    Google Scholar 
    Cifuentes, F. R. & Lindemann, W. C. Organic matter stimulation of elemental sulfur oxidation in a calcareous soil. Soil. Sci. Soc. Am. J. 57, 727–731. https://doi.org/10.2136/sssaj1993.03615995005700030017x (1993).
    Google Scholar 
    Wakweya, T. et al. Long-term effects of bone Char and lignocellulosic biochar-based soil amendments on phosphorus adsorption–desorption and crop yield in low-input acidic soils. Soil. Use Manage. 38, 703–713. https://doi.org/10.1111/sum.12757 (2022).
    Google Scholar 
    Jia, H. et al. Effects of different forms of sulfur on plant growth and soil properties in cadmium-contaminated soils. J. Soil. Sci. Plant. Nutr. 24, 2706–2721. https://doi.org/10.1007/s42729-024-01695-z (2024).
    Google Scholar 
    Kulczycki, G. The effect of elemental sulfur fertilization on plant yields and soil properties. Adv. Agron. 167, 105–181. https://doi.org/10.1016/bs.agron.2020.12.003 (2020).
    Google Scholar 
    El-Fahdawi, W. A. T., Ahmed, F. W. & Cheyed, S. H. Effect of agricultural sulfur on availability of NPK in soil, growth and yield of corn (Zea Mays L). Indian J. Ecol. 47, 200–205 (2020).
    Google Scholar 
    Warren, G. P., Robinson, J. S. & Someus, E. Dissolution of phosphorus from animal bone Char in 12 soils. Nutr. Cycl. Agroecosyst. 84, 167–178. https://doi.org/10.1007/s10705-008-9235-6 (2009).
    Google Scholar 
    Wahba, M. M., Bahna, F. L. & Amal, M. A. Improving the availability of phosphorus from rock phosphate in calcareous soils by natural materials. Bioscience Res. 15, 1796–1804 (2018).
    Google Scholar 
    El Refaey, A. A., Mohamed, N. A., Mostafa, H. E. & Gouda, N. A. Performance of fast and slow phosphorus release from nano-bone Char. Egypt. J. Soil. Sci. 62, 223–235. https://doi.org/10.21608/ejss.2022.151212.1519 (2022).
    Google Scholar 
    El-Kholy, A. M., Ali, O. M., El-Sikhry, E. M. & Mohamed, A. I. Effect of sulphur application on the availability of some nutrients in Egyptian soils. Egypt. J. Soil. Sci. 53, 361–377. https://doi.org/10.21608/ejss.2013.173 (2013).
    Google Scholar 
    Du, Z. et al. Movement of phosphorus in a calcareous soil as affected by humic acid. Pedosphere 23, 229–235. https://doi.org/10.1016/S1002-0160(13)60011-9 (2013).
    Google Scholar 
    Wang, X. J., Wang, Z. Q. & Li, S. G. The effect of humic acids on the availability of phosphorus fertilizers in alkaline soils. Soil. Use Manage. 11, 99–102. https://doi.org/10.1111/j.1475-2743.1995.tb00504.x (1995).
    Google Scholar 
    Jing, J. et al. Combining humic acid with phosphate fertilizer affects humic acid structure and its stimulating efficacy on the growth and nutrient uptake of maize seedlings. Sci. Rep. 10, 1–10. https://doi.org/10.1038/s41598-020-74349-6 (2020).
    Google Scholar 
    Yang, F. et al. Synthetic humic acids solubilize otherwise insoluble phosphates to improve soil fertility. Commun. Angew Chem. Int. Ed. 58, 18813–18816. https://doi.org/10.1002/anie.201911060 (2019).
    Google Scholar 
    Xiong, Q. et al. The effective combination of humic acid phosphate fertilizer regulating the form transformation of phosphorus and the chemical and microbial mechanism of its phosphorus availability. Agronomy 13, 1581. https://doi.org/10.3390/agronomy13061581 (2023).
    Google Scholar 
    Bayata, A. & Mulatu, G. Effect of bone Char application on soil quality, soil enzyme and in enhancing crop yield in agriculture: A review. Am. J. Chem. Eng. 12, 13–28. https://doi.org/10.11648/j.ajche.20241202.11 (2024).
    Google Scholar 
    Azeem, M. et al. Effects of sheep bone Biochar on soil quality, maize growth, and fractionation and phytoavailability of cd and Zn in a mining-contaminated soil. Chemosphere 282, 131016. https://doi.org/10.1016/j.chemosphere.2021.131016 (2021).
    Google Scholar 
    Ayas, H. & Gulser, F. The effects of sulfur and humic acid on yield components and macronutrient contents of spinach (Spinacia Oleracea Var. Spinoza). J. Biol. Sci. 5, 801–804 (2005). https://scialert.net/abstract/?doi=jbs.2005.801.804
    Google Scholar 
    Singh, D. P., Gulpadiya, V. K., Chauhan, R. S. & Singh, S. P. Effect of sulphur on productivity, economics and nutrient uptake in spinach. Annals Plant. Soil. Res. 17, 29–32 (2015).
    Google Scholar 
    Alsudays, I. M. et al. Applications of humic and fulvic acid under saline soil conditions to improve growth and yield in barley. BMC Plant. Biol. 24, 191. https://doi.org/10.1186/s12870-024-04863-6 (2024).
    Google Scholar 
    Sun, S. et al. Evidence for phosphorus cycling parity in nodulating and non-nodulating N2-fixing pioneer plant species in glacial primary succession. Funct. Ecol. 39, 985–1000. https://doi.org/10.1111/1365-2435.70023 (2025).
    Google Scholar 
    Jalpa, L., Mylavarapu, R. S., Hochmuth, G. J., Wright, A. L. & van Santen, E. Apparent recovery and efficiency of nitrogen fertilization in tomato grown on sandy soils. HortTechnology 30, 204–211. https://doi.org/10.21273/HORTTECH04480-19 (2020).
    Google Scholar 
    Assefa, S., Haile, W. & Tena, W. Effects of phosphorus and sulfur on yield and nutrient uptake of wheat (Triticum aestivum L.) on vertisols, North central. Ethiopia Heliyon. 7, e06614. https://doi.org/10.1016/j.heliyon.2021.e06614 (2021).
    Google Scholar 
    Liu, D. et al. The crop phosphorus uptake, use efficiency, and budget under long-term manure and fertilizer application in a rice–wheat planting system. Agriculture 14, 1393. https://doi.org/10.3390/agriculture14081393 (2024).
    Google Scholar 
    Zicker, T., von Tucher, S., Kavka, M. & Eichler-Löbermann, B. Soil test phosphorus as affected by phosphorus budgets in two long-term field experiments in Germany. Field Crops Res. 218, 158–170. https://doi.org/10.1016/j.fcr.2018.01.008 (2018).
    Google Scholar 
    Cao, N. et al. Change in soil available phosphorus in relation to the phosphorus budget in China. Nutr. Cycl. Agroecosyst. 94, 161–170. https://doi.org/10.1007/s10705-012-9530-0 (2012).
    Google Scholar 
    Castro, G. F. et al. Bone char: characterization and agronomic application as an alternative source of phosphorus. Rev. Bras. Cienc. Solo. 48, e0230165. https://doi.org/10.36783/18069657rbcs20230165 (2024).
    Google Scholar 
    Jia, Y., Siebers, N., Panten, K. & Kruse, J. Fate and availability of phosphorus from bone Char with and without sulfur modification in soil size fractions after five-year field fertilizations. Soil. Tillage Res. 231, 105720. https://doi.org/10.1016/j.still.2023.105720 (2023).
    Google Scholar 
    Siebers, N., Godlinski, F. & Leinweber, P. The phosphorus fertilizer value of bone char for potatoes, wheat, and onions: First results. Landbauforsch vTI Agric. For. Res. 62, 59–64. https://d-nb.info/10238 (2012).Download referencesFundingOpen access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB).Author informationAuthors and AffiliationsSoils and Water Department, Faculty of Agriculture, Assiut University, Assiut, 71526, EgyptAbdallah M. Barakat, Adel R. A. Usman, Abu El-Eyuoon Abu Zied Amin & Nadia M. K. RoshdyAuthorsAbdallah M. BarakatView author publicationsSearch author on:PubMed Google ScholarAdel R. A. UsmanView author publicationsSearch author on:PubMed Google ScholarAbu El-Eyuoon Abu Zied AminView author publicationsSearch author on:PubMed Google ScholarNadia M. K. RoshdyView author publicationsSearch author on:PubMed Google ScholarContributionsAbu El-Eyuoon Abu Zied Amin and Adel R.A. Usman conceived the idea and designed the experiment. Abdallah M. Barakat performed the experiment, collected, and analyzed the data. Abu El-Eyuoon Abu Zied Amin and Abdallah M. Barakat wrote the manuscript. The results of this study are discussed by Abu El-Eyuoon Abu Zied Amin. Adel R.A. Usman and Nadia M. K. Roshdy revised the manuscript. All the authors have read and approved the final manuscript.Corresponding authorCorrespondence to
    Abu El-Eyuoon Abu Zied Amin.Ethics declarations

    Competing interests
    The authors declare no competing interests.

    Ethics approval and consent to participate
    All methods, experimental research, and pot studies on plants complied with relevant institutional, national, and international guidelines and legislation.

    Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions
    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
    Reprints and permissionsAbout this articleCite this articleBarakat, A.M., Usman, A.R.A., Amin, A.EE.A.Z. et al. Effect of incorporating bone char with sulfur or humic acid on phosphorus availability and spinach growth in calcareous sandy soil.
    Sci Rep (2025). https://doi.org/10.1038/s41598-025-29041-yDownload citationReceived: 14 August 2025Accepted: 13 November 2025Published: 26 December 2025DOI: https://doi.org/10.1038/s41598-025-29041-yShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy shareable link to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative
    KeywordsBone charHumic acidModified bone charSpinachSulfurSustainable agriculture More

  • in

    Exposure to 5G-NR electromagnetic fields affects larval development of Aedes aegypti mosquito

    AbstractTelecommunication networks, including 5G New Radio (5G-NR), emit these fields and consequently expose many insects. To quantify the potential effect of RF-EMF exposure on insects, a study was designed examining the development of the Aedes aegypti mosquito, a major vector of dengue and other pathogens, as model organism exposed to RF-EMFs at 3.6 GHz. A custom exposure setup, a reverberation chamber, was designed, built, and characterized. Numerical simulations made it possible to calculate doses received by the larvae during the exposure. Larvae were reared on two feeding regimes, differing in nutritional value, and exposed for 5 days. At an RF exposure level of 46.2 V/m and absorbed power of 1.2 (upmu)W, a slower development occurred, especially for weakened larvae. At an RF exposure level of 182.6 V/m and 18.7 (upmu)W absorbed power, dielectric heating changed development timing and adult size.

    Data availability

    The datasets used and/or analysed during the current study available from the corresponding author on reasonable request. The 3D model generated and/or analysed during the current study is available in the Zenodo repository, https://doi.org/10.5281/zenodo.13881907.
    ReferencesKraemer, M. U. et al. Past and future spread of the arbovirus vectors aedes aegypti and aedes albopictus. Nat. Microbiol. 4, 854–863 (2019).
    Google Scholar 
    Lahondère, C. et al. The olfactory basis of orchid pollination by mosquitoes. Proc. Natl. Acad. Sci. 117, 708–716 (2020).
    Google Scholar 
    Collins, C., Bonds, J., Quinlan, M. & Mumford, J. Effects of the removal or reduction in density of the malaria mosquito, anopheles gambiae sl, on interacting predators and competitors in local ecosystems. Med. Vet. Entomol. 33, 1–15 (2019).
    Google Scholar 
    Thielens, A. et al. Exposure of insects to radio-frequency electromagnetic fields from 2 to 120 ghz. Sci. Rep. 8, 3924 (2018).
    Google Scholar 
    Herssens, H., Toribio, D., De Borre, E. & Thielens, A. Whole-body averaged absorbed power in insects exposed to far-field radio frequency electromagnetic fields. IEEE Trans. Antennas Propag. 70, 11070–11078 (2022).
    Google Scholar 
    De Boose, P. et al. Numerical dosimetry of calliphora vomitoria pupae under radio-frequency electromagnetic exposure. In 2024 4th URSI Atlantic Radio Science Meeting (AT-RASC), 1–4 (IEEE, 2024).Jeladze, V., Shoshiashvili, L. & Partsvania, B. An investigation into the impact of 5g emfs on a honey bee. In 2022 IEEE 2nd Ukrainian Microwave Week (UkrMW), 477–481 (IEEE, 2022).Thill, A., Cammaerts, M.-C. & Balmori, A. Biological effects of electromagnetic fields on insects: a systematic review and meta-analysis. Rev. Environ. Health 39(4), 853–869 (2023).Wang, Y. et al. 3.5-ghz radiofrequency electromagnetic radiation promotes the development of drosophila melanogaster. Environ. Pollut. 294, 118646 (2022).De Paepe, S., De Borre, E., Toribio Carvajal, D., Bell, D. & Thielens, A. Pilot study of a new methodology to study the development of the blue bottle fly (calliphora vomitoria) under exposure to radio-frequency electromagnetic fields at 5.4 ghz. Int. J. Radiat. Biol. 99, 1439–1455 (2023).Odemer, R. & Odemer, F. Effects of radiofrequency electromagnetic radiation (rf-emf) on honey bee queen development and mating success. Sci. Total Environ. 661, 553–562 (2019).
    Google Scholar 
    El-Didamony, S. E. & Osman, A. Influence of 50 hz electromagnetic frequency on oxidative stress and morphological characteristics in mosquito-borne filariasis culex pipiens. J. Asia-Pac. Entomol. 24, 1134–1143 (2021).
    Google Scholar 
    Mohamad, E. A., Elfky, A. A., El-Gebaly, R. H. & Afify, A. Study the change in the mosquito larvae (culex pipiens) in water treated with short pulses electric filed. Electromagn. Biol. Med. 41, 80–92 (2022).
    Google Scholar 
    Poh, A. H. et al. Effects of low-powered rf sweep between 0.01-20 ghz on female aedes aegypti mosquitoes: A collective behaviour analysis. Plos one 12, e0178766 (2017).Nik Abdull Halim, N. M. H. et al. The impact of radiofrequency exposure on aedes aegypti (diptera: Culicidae) development. Plos one 19, e0298738 (2024).Dom, N. C., Dapari, R., Halim, N. M. H. N. A. & Rahman, A. T. A. Combined effects of constant temperature and radio frequency exposure on aedes mosquito development. Sci. Rep. 15, 30571 (2025).
    Google Scholar 
    Couret, J., Dotson, E. & Benedict, M. Q. Temperature, larval diet, and density effects on development rate and survival of aedes aegypti (diptera: Culicidae). Plos one 9, e87468 (2014).
    Google Scholar 
    Farjana, T., Tuno, N. & Higa, Y. Effects of temperature and diet on development and interspecies competition in aedes aegypti and aedes albopictus. Med. Vet. Entomol. 26, 210–217 (2012).
    Google Scholar 
    Briegel, H. et al. Aedes aegypti: size, reserves, survival, and flight potential. J. Vector Ecol. 26, 21–31 (2001).
    Google Scholar 
    Hirata, A., Asano, T. & Fujiwara, O. Fdtd analysis of human body-core temperature elevation due to rf far-field energy prescribed in the icnirp guidelines. Phys. Med. Biol. 52, 5013 (2007).
    Google Scholar 
    Tun-Lin, W., Burkot, T. & Kay, B. Effects of temperature and larval diet on development rates and survival of the dengue vector aedes aegypti in north queensland, australia. Med. Vet. Entomol. 14, 31–37 (2000).
    Google Scholar 
    Mpho, M., Callaghan, A. & Holloway, G. Temperature and genotypic effects on life history and fluctuating asymmetry in a field strain of culex pipiens. Heredity 88, 307–312 (2002).
    Google Scholar 
    Hill, D. A. Electromagnetic theory of reverberation chambers. National Institute of Standards and Technology 1–55 (1998).Andrieu, G., Ticaud, N., Lescoat, F. & Trougnou, L. Fast and accurate assessment of the “well stirred condition’’ of a reverberation chamber from (s_{11}) measurements. IEEE Trans. Electromagn. Compat. 61, 974–982 (2018).
    Google Scholar 
    Orlacchio, R. et al. A novel reverberation chamber for in vitro bioelectromagnetic experiments at 3.5 ghz. IEEE Trans. Electromagn. Compat. 65, 39–50 (2022).Capstick, M. H. et al. A radio frequency radiation exposure system for rodents based on reverberation chambers. IEEE Trans. Electromagn. Compat. 59, 1041–1052 (2017).
    Google Scholar 
    Thielens, A., Greco, M. K., Verloock, L., Martens, L. & Joseph, W. Radio-frequency electromagnetic field exposure of western honey bees. Sci. Rep. 10, 461 (2020).
    Google Scholar 
    De Borre, E. et al. Radio-frequency exposure of the yellow fever mosquito (a. aegypti) from 2 to 240 ghz. PLoS Comput. Biol. 17, e1009460 (2021).Wu, T. et al. Whole-body new-born and young rats’ exposure assessment in a reverberating chamber operating at 2.4 ghz. Phys. Med. Biol. 55, 1619 (2010).Ito, R. et al. Quantification of exposure level in a reverberation chamber for a large-scale animal study. IEEE J. Microw. 2, 522–532 (2022).
    Google Scholar 
    Shi, J. et al. Quantification and verification of whole-body-average sars in small animals exposed to electromagnetic fields inside reverberation chamber. IEICE Trans. Commun. 97, 2184–2191 (2014).
    Google Scholar 
    Yousaf, J. et al. Characterization of reverberation chamber-a comprehensive review. IEEE Access 8, 226591–226608 (2020).
    Google Scholar 
    Hallbjörner, P. A model for the number of independent samples in reverberation chambers. Microw. Opt. Technol. Lett. 33, 25–28 (2002).
    Google Scholar 
    Pfennig, S. & Krauthäuser, H. G. Comparison of methods for determining the number of independent stirrer positions in reverberation chambers. In 2013 International Symposium on Electromagnetic Compatibility, 431–436 (IEEE, 2013).International Electrotechnical Commission. Electromagnetic compatibility (EMC) – part 4-21: Testing and measurement techniques – reverberation chamber test methods (standards). IEC 61000-4-21 (2011).Kostas, J. G. & Boverie, B. Statistical model for a mode-stirred chamber. IEEE Trans. Electromagn. Compat. 33, 366–370 (1991).
    Google Scholar 
    Stephens, M. A. Edf statistics for goodness of fit and some comparisons. J. Am. Stat. Assoc. 69, 730–737 (1974).
    Google Scholar 
    Lemoine, C., Besnier, P. & Drissi, M. Estimating the effective sample size to select independent measurements in a reverberation chamber. IEEE Trans. Electromagn. Compat. 50, 227–236 (2008).
    Google Scholar 
    Lundén, O. & Backstrom, M. Stirrer efficiency in foa reverberation chambers. evaluation of correlation coefficients and chi-squared tests. In IEEE International Symposium on Electromagnetic Compatibility. Symposium Record (Cat. No. 00CH37016), vol. 1, 11–16 (IEEE, 2000).Lemoine, C., Besnier, P. & Drissi, M. Investigation of reverberation chamber measurements through high-power goodness-of-fit tests. IEEE Trans. Electromagn. Compat. 49, 745–755 (2007).
    Google Scholar 
    Bar, A. & Andrew, J. Morphology and morphometry of aedes aegypti larvae. Ann. Res. Rev. Bio. 3, 1–21 (2013).
    Google Scholar 
    Lehnebach, R. et al. High-resolution x-ray computed tomography: a new workflow for the analysis of xylogenesis and intra-seasonal wood biomass production. Front. Plant Sci. 12, 698640 (2021).
    Google Scholar 
    Hill, D. A. Plane wave integral representation for fields in reverberation chambers. IEEE Trans. Electromagn. Compat. 40, 209–217 (1998).
    Google Scholar 
    Bakker, J., Paulides, M., Christ, A., Kuster, N. & van Rhoon, G. C. Assessment of induced sar in children exposed to electromagnetic plane waves between 10 mhz and 5.6 ghz. Phys. Med. Biol. 55, 3115 (2010).Massa, R. et al. Wide band permittivity measurements of palm (phoenix canariensis) and rhynchophorus ferrugineus (coleoptera curculionidae) for rf pest control. J. Microw. Power Electromagn. Energy 48, 158–169 (2014).
    Google Scholar 
    Hand, J. Modelling the interaction of electromagnetic fields (10 mhz-10 ghz) with the human body: methods and applications. Phys. Med. Biol. 53, R243 (2008).
    Google Scholar 
    International Commission on Non-Ionizing Radiation Protection and others. Guidelines for limiting exposure to electromagnetic fields (100 khz to 300 ghz). Health Phys. 118, 483–524 (2020).
    Google Scholar 
    Steinwascher, K. Competition and growth among aedes aegypti larvae: Effects of distributing food inputs over time. PloS one 15, e0234676 (2020).
    Google Scholar 
    Imam, H. et al. The basic rules and methods of mosquito rearing (aedes aegypti). Trop. Parasitol. 4, 53–55 (2014).
    Google Scholar 
    Carvajal-Lago, L., Ruiz-López, M. J., Figuerola, J. & Martínez-de la Puente, J. Implications of diet on mosquito life history traits and pathogen transmission. Environ. Res. 195, 110893 (2021).Arnaut, L. R. Sampling distributions of random electromagnetic fields in mesoscopic or dynamical systems. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80, 036601 (2009).
    Google Scholar 
    Krauthauser, H. G. Number of samples required to meet a field inhomogeneity limit with given confidence in reverberation chambers. IEEE Trans. Electromagn. Compat. 54, 968–975 (2012).
    Google Scholar 
    Le Bars, L. et al. Geometry and loading effects on performances of mode-stirred reverberation chambers: an experimental study. In 2019 International Symposium on Electromagnetic Compatibility-EMC EUROPE, 163–168 (IEEE, 2019).Jeon, S. et al. Field uniformity assessment of a reverberation chamber for a large-scale animal study. IEEE Access 9, 146471–146477 (2021).
    Google Scholar 
    Senic, D., Remley, K. A., Becker, M. G. & Holloway, C. L. Spatial uniformity study in a loaded reverberation chamber at millimeter-wave frequencies. In 2018 IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity (EMC, SI & PI), 467–472 (IEEE, 2018).Mpho, M., Callaghan, A. & Holloway, G. J. Effects of temperature and genetic stress on life history and fluctuating wing asymmetry in culex pipiens mosquitoes. Eur. J. Entomol. 99, 405–412 (2002).
    Google Scholar 
    Souza, R. S. et al. Microorganism-based larval diets affect mosquito development, size and nutritional reserves in the yellow fever mosquito aedes aegypti (diptera: Culicidae). Front. Physiol. 10, 152 (2019).
    Google Scholar 
    Nijhout, H. F., Roff, D. A. & Davidowitz, G. Conflicting processes in the evolution of body size and development time. Philos. Trans. R. Soc. B: Biol. Sci. 365, 567–575 (2010).
    Google Scholar 
    Zhu, J. & Noriega, F. The role of juvenile hormone in mosquito development and reproduction. Adv. Insect Physiol. 51, 93–113 (Elsevier, 2016).Chambers, G. & Klowden, M. Correlation of nutritional reserves with a critical weight for pupation in larval aedes aegypti mosquitoes. J. Am. Mosq. Control Assoc. 6, 394–399 (1990).
    Google Scholar 
    Sasmita, H. I., Tu, W.-C., Bong, L.-J. & Neoh, K.-B. Effects of larval diets and temperature regimes on life history traits, energy reserves and temperature tolerance of male aedes aegypti (diptera: Culicidae): optimizing rearing techniques for the sterile insect programmes. Parasites & vectors 12, 1–16 (2019).
    Google Scholar 
    Maciel-de Freitas, R., Codeço, C. & Lourenço-de Oliveira, R. Body size-associated survival and dispersal rates of aedes aegypti in rio de janeiro. Med. Vet. Entomol. 21, 284–292 (2007).Mohammed, A. & Chadee, D. D. Effects of different temperature regimens on the development of aedes aegypti (l.)(diptera: Culicidae) mosquitoes. Acta tropica 119, 38–43 (2011).Couret, J. & Benedict, M. Q. A meta-analysis of the factors influencing development rate variation in aedes aegypti (diptera: Culicidae). BMC ecology 14, 1–15 (2014).
    Google Scholar 
    Padmanabha, H. et al. An eco-physiological model of the impact of temperature on aedes aegypti life history traits. J. Insect Physiol. 58, 1597–1608 (2012).
    Google Scholar 
    Reinhold, J. M., Lazzari, C. R. & Lahondère, C. Effects of the environmental temperature on aedes aegypti and aedes albopictus mosquitoes: a review. Insects 9, 158 (2018).
    Google Scholar 
    Atli, E. & Ünlü, H. The effects of microwave frequency electromagnetic fields on the development of drosophila melanogaster. Int. J. Radiat. Biol. 82, 435–441 (2006).
    Google Scholar 
    Kadoum, A., Ball, H. & Nelson, S. Morphological abnormalities resulting from radiofrequency treatment of larvae of tenebrio molitor. Ann. Entomol. Soc. Am. 60, 889–903 (1967).
    Google Scholar 
    Toribio, D., Joseph, W. & Thielens, A. Near field radio frequency electromagnetic field exposure of a western honey bee. IEEE Trans. Antennas Propag. 70, 1320–1327 (2021).
    Google Scholar 
    Download referencesAcknowledgementsThis work was funded by the FWO under grant agreement no. G033220N (A.T.). Ghent University Special Research Fund is acknowledged for the financial support through projects BOF.EXP.2017.0007 and BOF.COR.2022.008 (M.N.B.) and through grant BOF.CDV.2024.0064.01 (E.D.).Author informationAuthors and AffiliationsDepartment of Information Technology, Ghent University – Imec, Ghent, 9000, BelgiumEline De BorreSwiss Tropical and Public Health Institute, Allschwil, 4123, SwitzerlandCharles De Massia & Pie MüllerUniversity of Basel, Basel, 4001, SwitzerlandCharles De Massia & Pie MüllerCentre for Xray Tomography (UGCT), Department of Physics and Astronomy, Ghent University, Ghent, 9000, BelgiumMatthieu N. BoonePhotonics Initiative, Advanced Science and Research Center, The Graduate Center of the City University of New York, New York, 10030, USAArno ThielensAuthorsEline De BorreView author publicationsSearch author on:PubMed Google ScholarCharles De MassiaView author publicationsSearch author on:PubMed Google ScholarMatthieu N. BooneView author publicationsSearch author on:PubMed Google ScholarPie MüllerView author publicationsSearch author on:PubMed Google ScholarArno ThielensView author publicationsSearch author on:PubMed Google ScholarContributionsE.D., C.D., P.M., A.T. conceived the experiments, E.D. and C.D. conducted the experiments, E.D. and C.D. analysed the experimental results, E.D. conducted the simulations and characterized the RC, M.N.B. scanned the insect and created the 3D model. E.D. wrote the main manuscript text, all authors reviewed the manuscript.Corresponding authorsCorrespondence to
    Eline De Borre or Arno Thielens.Ethics declarations

    Competing interests
    The authors declare no competing interests.

    Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Electronic supplementary materialBelow is the link to the electronic supplementary material.Supplementary Material 1Rights and permissions
    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
    Reprints and permissionsAbout this articleCite this articleDe Borre, E., De Massia, C., Boone, M.N. et al. Exposure to 5G-NR electromagnetic fields affects larval development of Aedes aegypti mosquito.
    Sci Rep (2025). https://doi.org/10.1038/s41598-025-32816-yDownload citationReceived: 26 November 2024Accepted: 12 December 2025Published: 25 December 2025DOI: https://doi.org/10.1038/s41598-025-32816-yShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy shareable link to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative
    KeywordsYellow fever mosquitoRadio-frequencyElectromagnetic ExposureReverberation ChamberInsect Development5G More

  • in

    Transcriptional responses in feeder time-trained foragers suggest diverse interactions between the circadian clock and mushroom bodies in honey bees

    Abstract

    A hundred years ago Karl von Frisch and his students demonstrated that honey bees use time-memory to schedule their daily foraging flights. However, till today little is known about molecular processes and functional interactions between memory centers and the circadian clock underlying the capability to form time-memories in animals. Combining feeder time-training of foragers with time-series RNA sequencing and RNAscope labeling revealed molecular features associated with the expectation of foraging activity: (i) anticipatory activation of the transcription factor Egr1 and the receptor for pigment dispersing factor (pdfr) in the small-type Kenyon cells (KCs), (ii) synchronized peak-expression of more than 850 genes including Egr1 downstream genes and well-known memory-related genes during training time, and (iii) groups of KCs and cells associated with the central complex co-expressing per and cry2. With respect to earlier studies characterizing behavioral correlates of time-memory, we speculate that anticipatory initiation of physiological and transcriptional activity in the small-type KCs might function in preparing the worker bee for its foraging activity including reactivation and reconsolidation of foraging related memories. The expression of clock genes in addition to pdfr in KCs suggests an unexpected complexity of functional interactions between memory centers and the clock in honey bees.

    Data availability

    The RNA-seq data generated and/or analyzed during the current study have been deposited in the Gene Expression Omnibus (GEO) under the Accession Number GSE263576.
    ReferencesBeling, I. Über Das Zeitgedӓchtnis der Bienen. Z. F Vergl Physiologie. 9, 259–338. https://doi.org/10.1007/BF00340159 (1929).
    Google Scholar 
    Krebs, J. R. & Biebach, H. Time-Place Learning by Garden Warblers (Sylvia borin): Route or Map? Ethology 83, 248–256. (1989). https://doi.org/10.1111/j.1439-0310.1989.tb00532.xVan Der Zee, E. A. et al. Circadian Time-Place learning in mice depends on cry genes. Curr. Biol. 18, 844–848. https://doi.org/10.1016/j.cub.2008.04.077 (2008).
    Google Scholar 
    Chouhan, N. S., Wolf, R., Helfrich-Förster, C. & Heisenberg, M. Flies remember the time of day. Curr. Biol. 25, 1619–1624. https://doi.org/10.1016/j.cub.2015.04.032 (2015).
    Google Scholar 
    Sharma, V. K. Adaptive significance of circadian clocks. Chronobiol. Int. 20, 901–919. https://doi.org/10.1081/CBI-120026099 (2003).
    Google Scholar 
    Wahl, O. Neue untersuchungen über Das Zeitgedächtnis der Bienen. Z. F Vergl Physiologie. 16, 529–589. https://doi.org/10.1007/BF00338333 (1932).
    Google Scholar 
    Pahl, M., Zhu, H., Pix, W., Tautz, J. & Zhang, S. Circadian timed episodic-like memory – a bee knows what to do when,and also where. J. Exp. Biol. 210, 3559–3567. https://doi.org/10.1242/jeb.005488 (2007).
    Google Scholar 
    Kleber, E. Hat Das Zeitgedächtnis der Bienen biologische bedeutung ? Z. Vergl Physiol. 22, 221–262. https://doi.org/10.1007/BF00586500 (1935).
    Google Scholar 
    Koltermann, R. Periodicity in the activity and learning performance of the honeybee. In Experimental Analysis of Insect Behavior (Springer Berlin), 218–227. (1974).Page, T. L. Circadian regulation of learning and memory. Curr. Opin. Insect Sci. 7, 87–91. https://doi.org/10.1016/j.cois.2014.12.001 (2015).
    Google Scholar 
    Gallistel, C. R. The Organization of Learning (The MIT Press) 1990.Flyer-Adams, J. G. et al. Regulation of olfactory associative memory by the circadian clock output signal Pigment-Dispersing factor (PDF). J. Neurosci. 40, 9066–9077. https://doi.org/10.1523/JNEUROSCI.0782-20.2020 (2020).
    Google Scholar 
    Shah, A., Jain, R. & Brockmann, A. Egr-1: A candidate transcription factor involved in molecular processes underlying Time-Memory. Front. Psychol. 9, 865. https://doi.org/10.3389/fpsyg.2018.00865 (2018).
    Google Scholar 
    Beer, K. & Helfrich-Förster, C. Model and Non-model insects in chronobiology. Front. Behav. Neurosci. 14, 601676. https://doi.org/10.3389/fnbeh.2020.601676 (2020).
    Google Scholar 
    Van Nest, B. N., Otto, M. W. & Moore, D. High experience levels delay recruitment but promote simultaneous time-memories in honey bee foragers. J. Experimental Biology Jeb. 187336. https://doi.org/10.1242/jeb.187336 (2018).Singh, A. S., Shah, A. & Brockmann, A. Honey bee foraging induces upregulation of early growth response protein 1, hormone receptor 38 and candidate downstream genes of the ecdysteroid signalling pathway: Honey bee foraging upregulates Egr-1 and Hr38 genes. Insect Mol. Biol.. 27, 90–98. (2018). https://doi.org/10.1111/imb.12350Yap, E. L. & Greenberg, M. E. Activity-Regulated Transcription: Bridging the Gap between Neural Activity and Behavior. Neuron 100, 330–348. (2018). https://doi.org/10.1016/j.neuron.2018.10.013Khamis, A. M. et al. Insights into the transcriptional architecture of behavioral plasticity in the honey bee apis mellifera. Sci. Rep. 5, 11136. https://doi.org/10.1038/srep11136 (2015).
    Google Scholar 
    Alberini, C. M. & Kandel, E. R. The regulation of transcription in memory consolidation. Cold Spring Harb Perspect. Biol. 7, a021741. https://doi.org/10.1101/cshperspect.a021741 (2015).
    Google Scholar 
    Chandrasekaran, S. et al. Behavior-specific changes in transcriptional modules lead to distinct and predictable neurogenomic states. Proc. Natl. Acad. Sci. U.S.A. 108, 18020–18025. https://doi.org/10.1073/pnas.1114093108 (2011).Jones, S. G., Nixon, K. C. J., Chubak, M. C. & Kramer, J. M. Mushroom Body Specific Transcriptome Analysis Reveals Dynamic Regulation of Learning and Memory Genes After Acquisition of Long-Term Courtship Memory in Drosophila. G3 Genes|Genomes|Genetics 8, 3433–3446. https://doi.org/10.1534/g3.118.200560 (2018).Shih, M. F. M., Davis, F. P., Henry, G. L. & Dubnau, J. Nuclear Transcriptomes of the Seven Neuronal Cell Types That Constitute the Drosophila Mushroom Bodies. G3 Genes|Genomes|Genetics 9, 81–94. https://doi.org/10.1534/g3.118.200726 (2019).Suenami, S., Oya, S., Kohno, H. & Kubo, T. Kenyon cell Subtypes/Populations in the honeybee mushroom bodies: possible function based on their gene expression Profiles, Differentiation, possible Evolution, and application of genome editing. Front. Psychol. 9, 1717. https://doi.org/10.3389/fpsyg.2018.01717 (2018).
    Google Scholar 
    Kandel, E. R., Koester, J., Mack, S. & Siegelbaum, S. (eds) Principles of Neural Science Sixth Edition (McGraw Hill), 2021).Hamilton, W. B. et al. Dynamic lineage priming is driven via direct enhancer regulation by ERK. Nature 575, 355–360. https://doi.org/10.1038/s41586-019-1732-z (2019).
    Google Scholar 
    Kornhauser, J. M., Nelson, D. E., Mayo, K. E. & Takahashi, J. S. Regulation of Jun -B messenger RNA and AP-1 activity by light and a circadian clock. Science 255, 1581–1584. https://doi.org/10.1126/science.1549784 (1992).
    Google Scholar 
    Jagannath, A. et al. The multiple roles of salt-inducible kinases in regulating physiology. Physiol. Rev. 103, 2231–2269. https://doi.org/10.1152/physrev.00023.2022 (2023).
    Google Scholar 
    Hirayama, J., Cardone, L., Doi, M. & Sassone-Corsi, P. Common pathways in circadian and cell cycle clocks: Light-dependent activation of Fos/AP-1 in zebrafish controls CRY-1a and WEE-1. Proc. Natl. Acad. Sci. U.S.A. 102, 10194–10199. https://doi.org/10.1073/pnas.0502610102 (2005).Iino, S. et al. Neural activity mapping of bumble bee (Bombus ignitus) brains during foraging flight using immediate early genes. Sci. Rep. 10, 7887. https://doi.org/10.1038/s41598-020-64701-1 (2020).
    Google Scholar 
    Kaneko, K., Suenami, S. & Kubo, T. Gene expression profiles and neural activities of Kenyon cell subtypes in the honeybee brain: identification of novel ‘middle-type’ Kenyon cells. Zool. Lett. 2, 14. https://doi.org/10.1186/s40851-016-0051-6 (2016).Kumar, S. et al. An ecdysone-responsive nuclear receptor regulates circadian rhythms in drosophila. Nat. Commun. 5, 5697. https://doi.org/10.1038/ncomms6697 (2014).
    Google Scholar 
    Scheiner, R. et al. Learning, gustatory responsiveness and tyramine differences across nurse and forager honeybees. J. Experimental Biology Jeb. 152496. https://doi.org/10.1242/jeb.152496 (2017).Peng, T., Derstroff, D., Maus, L., Bauer, T. & Grüter, C. Forager age and foraging state, but not cumulative foraging activity, affect biogenic amine receptor gene expression in the honeybee mushroom bodies. Genes Brain Behav. 20, e12722. https://doi.org/10.1111/gbb.12722 (2021).
    Google Scholar 
    Kandel, E. R., Dudai, Y. & Mayford, M. R. Learning and Memory (Cold Spring Harbor Laboratory Press), 2016).Galizia, C. G., Eisenhardt, D. & Giurfa, M. (eds) Honeybee Neurobiology and Behavior: A Tribute to Randolf Menzel (Springer Netherlands) https://doi.org/10.1007/978-94-007-2099-2 (2012).Kuwabara, T., Kohno, H., Hatakeyama, M. & Kubo, T. Evolutionary dynamics of mushroom body Kenyon cell types in hymenopteran brains from multifunctional type to functionally specialized types. Sci. Adv. 9, eadd4201. https://doi.org/10.1126/sciadv.add4201 (2023).
    Google Scholar 
    Rubin, E. B. et al. Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee (Apis mellifera) and shed new light on the molecular evolution of the circadian clock. Genome Res. 16, 1352–1365. https://doi.org/10.1101/gr.5094806 (2006).
    Google Scholar 
    Ma, D. et al. A transcriptomic taxonomy of Drosophila circadian neurons around the clock. eLife 10, e63056. https://doi.org/10.7554/eLife.63056 (2021).Barber, A. F., Fong, S. Y., Kolesnik, A., Fetchko, M. & Sehgal, A. Drosophila clock cells use multiple mechanisms to transmit time-of-day signals in the brain. Proc. Natl. Acad. Sci. U.S.A. 118, e2019826118. https://doi.org/10.1073/pnas.2019826118 (2021).Naeger, N. L. et al. Neurogenomic signatures of Spatiotemporal memories in time-trained forager honey bees. J. Exp. Biol. 214, 979–987. https://doi.org/10.1242/jeb.053421 (2011).
    Google Scholar 
    Moore, D., Siegfried, D., Wilson, R. & Rankin, M. A. The influence of time of day on the foraging behavior of the Honeybee, apis mellifera. J. Biol. Rhythms. 4, 305–325. https://doi.org/10.1177/074873048900400301 (1989).
    Google Scholar 
    Gronenberg, W. Subdivisions of hymenopteran mushroom body Calyces by their afferent supply. J. Comp. Neurol. 435, 474–489. https://doi.org/10.1002/cne.1045 (2001).
    Google Scholar 
    Heinze, S. & Homberg, U. Maplike representation of celestial E -Vector orientations in the brain of an insect. Science 315, 995–997. https://doi.org/10.1126/science.1135531 (2007).
    Google Scholar 
    Brockmann, A. & Robinson, G. E. Central projections of sensory systems involved in honey bee dance Language communication. Brain Behav. Evol. 70, 125–136. https://doi.org/10.1159/000102974 (2007).
    Google Scholar 
    Hensgen, R., England, L., Homberg, U. & Pfeiffer, K. Neuroarchitecture of the central complex in the brain of the honeybee: neuronal cell types. J. Comp. Neurol. 529, 159–186. https://doi.org/10.1002/cne.24941 (2021).
    Google Scholar 
    Fuchikawa, T. et al. Neuronal circadian clock protein oscillations are similar in behaviourally rhythmic forager honeybees and in arrhythmic nurses. Open. Biol. 7, 170047. https://doi.org/10.1098/rsob.170047 (2017).
    Google Scholar 
    Seeley, T. D. The Wisdom of the Hive: the Social Physiology of Honey Bee Colonies (Harvard Univ. Press), 1995).Reinhard, J., Srinivasan, M. V. & Zhang, S. Scent-triggered navigation in honeybees. Nature 427, 411–411. https://doi.org/10.1038/427411a (2004).
    Google Scholar 
    Herrero, A. et al. Coupling neuropeptide levels to structural plasticity in drosophila clock neurons. Curr. Biol. 30, 3154–3166e4. https://doi.org/10.1016/j.cub.2020.06.009 (2020).
    Google Scholar 
    Frisch, B. & Aschoff, J. Circadian rhythms in honeybees: entrainment by feeding cycles. Physiol. Entomol. 12, 41–49. https://doi.org/10.1111/j.1365-3032.1987.tb00722.x (1987).
    Google Scholar 
    Jain, R. & Brockmann, A. Time-restricted foraging under natural light/dark condition shifts the molecular clock in the honey bee, Apis mellifera. Chronobiol. Int. 35, 1723–1734. https://doi.org/10.1080/07420528.2018.1509867 (2018).
    Google Scholar 
    Machado Almeida, P., Lago Solis, B., Stickley, L., Feidler, A. & Nagoshi, E. Neurofibromin 1 in mushroom body neurons mediates circadian wake drive through activating cAMP–PKA signaling. Nat. Commun. 12, 5758. https://doi.org/10.1038/s41467-021-26031-2 (2021).
    Google Scholar 
    Hasegawa, S. et al. Hippocampal clock regulates memory retrieval via dopamine and PKA-induced GluA1 phosphorylation. Nat. Commun. 10, 5766. https://doi.org/10.1038/s41467-019-13554-y (2019).
    Google Scholar 
    Lehmann, M., Gustav, D. & Galizia, C. G. The early bee catches the flower – circadian rhythmicity influences learning performance in honey bees, apis mellifera. Behav. Ecol. Sociobiol. 65, 205–215. https://doi.org/10.1007/s00265-010-1026-9 (2011).
    Google Scholar 
    Shieh, K. R. Distribution of the rhythm-related genes rPERIOD1, rPERIOD2, and rCLOCK, in the rat brain. Neuroscience 118, 831–843. https://doi.org/10.1016/S0306-4522(03)00004-6 (2003).
    Google Scholar 
    Houl, J. H., Yu, W., Dudek, S. M. & Hardin, P. E. Drosophila CLOCK is constitutively expressed in circadian oscillator and Non-Oscillator cells. J. Biol. Rhythms. 21, 93–103. https://doi.org/10.1177/0748730405283697 (2006).
    Google Scholar 
    Smies, C. W., Bodinayake, K. K. & Kwapis, J. L. Time to learn: the role of the molecular circadian clock in learning and memory. Neurobiol. Learn. Mem. 193, 107651. https://doi.org/10.1016/j.nlm.2022.107651 (2022).
    Google Scholar 
    Gerstner, J. R. & Yin, J. C. P. Circadian rhythms and memory formation. Nat. Rev. Neurosci. 11, 577–588. https://doi.org/10.1038/nrn2881 (2010).
    Google Scholar 
    Lehr, A. B., McDonald, R. J., Thorpe, C. M., Tetzlaff, C. & Deibel, S. H. A local circadian clock for memory? Neurosci. Biobehav. Rev.. 127, 946–957. https://doi.org/10.1016/j.neubiorev.2020.11.032 (2021).
    Google Scholar 
    Homberg, U. In search of the Sky compass in the insect brain. Naturwissenschaften 91, 199–208. https://doi.org/10.1007/s00114-004-0525-9 (2004).
    Google Scholar 
    Zhu, H. et al. Cryptochromes define a novel circadian clock mechanism in monarch butterflies that May underlie sun compass navigation. PLoS Biol. 6, e4. https://doi.org/10.1371/journal.pbio.0060004 (2008).
    Google Scholar 
    Wahl, O. Beitrag Zur Frage der biologischen bedeutung des Zeitgedächtnisses der Bienen. Z. F Vergl Physiologie. 18, 709–717. https://doi.org/10.1007/BF00338365 (1933).
    Google Scholar 
    Farris, S. M. Evolution of complex higher brain centers and behaviors: behavioral correlates of mushroom body elaboration in insects. Brain Behav. Evol. 82, 9–18. https://doi.org/10.1159/000352057 (2013).
    Google Scholar 
    Couto, A. et al. Rapid expansion and visual specialisation of learning and memory centres in the brains of Heliconiini butterflies. Nat. Commun. 14, 4024. https://doi.org/10.1038/s41467-023-39618-8 (2023).
    Google Scholar 
    Buehlmann, C. et al. Mushroom bodies are required for learned visual Navigation, but not for innate visual Behavior, in ants. Curr. Biol. 30, 3438–3443e2. https://doi.org/10.1016/j.cub.2020.07.013 (2020).
    Google Scholar 
    Moore, D. & Doherty, P. Acquisition of a time-memory in forager honey bees. J. Comp. Physiol. A. 195, 741–751. https://doi.org/10.1007/s00359-009-0450-7 (2009).
    Google Scholar 
    Eban-Rothschild, A. D. & Bloch, G. Differences in the sleep architecture of forager and young honeybees(Apis mellifera). J. Exp. Biol. 211, 2408–2416. https://doi.org/10.1242/jeb.016915 (2008).
    Google Scholar 
    Wheeler, M. M., Ament, S. A., Rodriguez-Zas, S. L., Southey, B. & Robinson, G. E. Diet and endocrine effects on behavioral maturation-related gene expression in the Pars intercerebralis of the honey bee brain. J. Exp. Biol. Jeb. 119420. https://doi.org/10.1242/jeb.119420 (2015).Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).
    Google Scholar 
    Andrews, S. FastQC: A quality control tool for high throughput sequence data. Online. (2010).Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21. https://doi.org/10.1093/bioinformatics/bts635 (2013).
    Google Scholar 
    Liao, Y., Smyth, G. K. & Shi, W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930. https://doi.org/10.1093/bioinformatics/btt656 (2014).
    Google Scholar 
    Love, M. I., Huber, W. & Anders, S. Moderated Estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. https://doi.org/10.1186/s13059-014-0550-8 (2014).
    Google Scholar 
    Wu, G., Anafi, R. C., Hughes, M. E., Kornacker, K. & Hogenesch, J. B. MetaCycle: an integrated R package to evaluate periodicity in large scale data. Bioinformatics 32, 3351–3353. https://doi.org/10.1093/bioinformatics/btw405 (2016).
    Google Scholar 
    Ge, S. X., Jung, D. & Yao, R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36, 2628–2629. https://doi.org/10.1093/bioinformatics/btz931 (2020).
    Google Scholar 
    Poulopoulos, A. et al. Subcellular transcriptomes and proteomes of developing axon projections in the cerebral cortex. Nature 565, 356–360. https://doi.org/10.1038/s41586-018-0847-y (2019).
    Google Scholar 
    Pharris, M. C. et al. An automated workflow for quantifying RNA transcripts in individual cells in large data-sets. MethodsX 4, 279–288. https://doi.org/10.1016/j.mex.2017.08.002 (2017).
    Google Scholar 
    Moore, D. Honey bee circadian clocks: behavioral control from individual workers to whole-colony rhythms. J. Insect. Physiol. 47, 843–857. https://doi.org/10.1016/S0022-1910(01)00057-9 (2001).
    Google Scholar 
    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 9, 676–682. https://doi.org/10.1038/nmeth.2019 (2012).
    Google Scholar 
    Download referencesAcknowledgementsWe thank Gene E. Robinson, Wulfila Gronenberg, and Charlotte Helfrich-Förster for their comments on an earlier version of the manuscript. We also thank the Next Generation Genomics Facility at NCBS, particularly Awadhesh Pandit for assisting with the RNA-seq run. We are grateful to the Central Imaging and Flow Cytometry Facility (CIFF) and the instrumentation team at NCBS for their support. We acknowledge the technical advice and support from Zeiss Microscopy team and Advanced Cell Diagnostics (ACD). Further, we thank Dimple Notani and Sheeba Vasu for their advice and Abhishek Bhattacharya for support in maintaining access to experimental facilities. We are thankful to Lukumoni Das, Sukrithi N Venu and Sripriya Bulusu for helping with the behavioral experiments.FundingOpen access funding provided by Department of Atomic Energy. This study was supported by funding to TR (TIFR graduate student fellowship), NCBS-TIFR institutional funds to AB (No. P4167 and N1158) and the Department of Atomic Energy, Government of India (No. 12-R&D-TFR-5.04–0800 and 12-R&D-TFR-5.04–0900).Author informationAuthors and AffiliationsNational Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, IndiaTiyasa Roy & Axel BrockmannAix-Marseille Université – CNRS UMR 7283, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille, FranceRikesh JainAuthorsTiyasa RoyView author publicationsSearch author on:PubMed Google ScholarRikesh JainView author publicationsSearch author on:PubMed Google ScholarAxel BrockmannView author publicationsSearch author on:PubMed Google ScholarContributionsConceptualization: T.R., A.B.; Methodology: T.R., A.B.; Investigation: T.R.; Visualization: T.R., R.J., A.B.; Formal analysis: T.R., R.J., A.B.; Funding acquisition: A.B.; Supervision: A.B.; Writing-original draft: T.R., A.B.; Writing-review and editing: T.R., A.B.Corresponding authorsCorrespondence to
    Tiyasa Roy or Axel Brockmann.Ethics declarations

    Competing interests
    The authors declare no competing interests.

    Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary InformationBelow is the link to the electronic supplementary material.Supplementary Material 1Supplementary Material 2Supplementary Material 3Supplementary Material 4Supplementary Material 5Supplementary Material 6Rights and permissions
    Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
    Reprints and permissionsAbout this articleCite this articleRoy, T., Jain, R. & Brockmann, A. Transcriptional responses in feeder time-trained foragers suggest diverse interactions between the circadian clock and mushroom bodies in honey bees.
    Sci Rep (2025). https://doi.org/10.1038/s41598-025-31775-8Download citationReceived: 30 July 2025Accepted: 05 December 2025Published: 25 December 2025DOI: https://doi.org/10.1038/s41598-025-31775-8Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy shareable link to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative
    KeywordsTime-memoryCircadian clockMushroom bodiesKenyon cellsCentral complexTime-series RNA sequencingRNAscope labelingHoney bees More

  • in

    Wildfire-Induced alterations in soil physical, chemical, and micromorphological properties in forest ecosystems of Yunnan, Southwestern China

    AbstractWildfire is a major ecological disturbance with profound implications for forest ecosystems, particularly through its effects on soil quality and structure. This study examined the impacts of a severe wildfire (2019) on soil physical, chemical, and micromorphological properties in a mountainous forest region of Yunnan Province, southwestern China. Soil samples were collected from post-fire and adjacent control sites at three depths (0–5, 5–15, and 15–30 cm) and analyzed using a factorial design. Results indicated that the most pronounced fire-induced alterations occurred in the surface layer (0–5 cm). Post-fire soils exhibited increased sand content but reduced clay content, porosity, and field capacity. Chemically, wildfire increased soil pH while reducing electrical conductivity (EC), soil organic carbon (SOC), available phosphorus (AP), and available potassium (AK) in the surface horizon, with limited changes in deeper layers. Micromorphological observations revealed modified aggregate structures, carbonized root fragments, dispersed fungal hyphae, and an abundance of charcoal particles, reflecting both physical and biological disturbances. The soil mass fractal dimension (D) also increased in post-fire soils, indicating greater structural fragmentation and aggregate breakdown. This increase in D is consistent with the observed decreases in porosity and aggregate stability, reflecting a more heterogeneous and degraded pore network. These findings demonstrate that wildfire predominantly affects surface soil horizons, altering infiltration capacity, nutrient dynamics, and microbial activity. Integrating physical, chemical, and micromorphological assessments offers a more comprehensive perspective on fire-induced soil changes, and may provide a useful foundation for post-fire management strategies aimed at supporting the resilience of forest ecosystems under increasing wildfire frequency and intensity.

    Data availability

    The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
    ReferencesSouza-Alonso, P. et al. Fire enhances changes in phosphorus (P) dynamics determining potential post-fire soil recovery in mediterranean woodlands. Sci. Rep. 14, 21718. https://doi.org/10.1038/s41598-024-72361-8 (2024).
    Google Scholar 
    García Matallana, R., Lucas-Borja, M. E., Gómez-Sánchez, M. E., Uddin, S. M. M. & Zema, D. A. Post-fire restoration effectiveness using two soil Preparation techniques and different shrubs species in pine forests of South-Eastern Spain. Ecol. Eng. 178, 106579. https://doi.org/10.1016/j.ecoleng.2022.106579 (2022).
    Google Scholar 
    Huisman, H., Peeters, H., de Kort, J. W. & Smits, J. Some first observations on ant-nest morphology and micromorphology, the effects of wildfires, and their implications for the Understanding of archaeological features. J. Archaeol. Sci. 170, 106056. https://doi.org/10.1016/j.jas.2024.106056 (2024).
    Google Scholar 
    McKenna, P. B. et al. Vegetation recovery of rehabilitated pasture at three coal mine sites following fire disturbance. Ecol. Eng. 209, 107383. https://doi.org/10.1016/j.ecoleng.2024.107383 (2024).
    Google Scholar 
    Khosravi Aqdam, K., Rezapour, S., Asadzadeh, F. & Nouri, A. An integrated approach for estimating soil health: incorporating digital elevation models and remote sensing of vegetation. Comput. Electron. Agric. 210, 107922. https://doi.org/10.1016/j.compag.2023.107922 (2023).
    Google Scholar 
    Faramarzi, S. E., Pazira, E., Masihabadi, M. H., Torkashvand, M., Motamedvaziri, B. & A. & Modeling and estimating the Spatial distribution of soil organic matter content in irrigated lands. Int. J. Environ. Sci. Technol. 19, 7399–7410. https://doi.org/10.1007/s13762-022-03909-2 (2022).
    Google Scholar 
    Siyum, Z. G. Tropical dry forest dynamics in the context of climate change: syntheses of drivers, gaps, and management perspectives. Ecol. Processes. 9, 25. https://doi.org/10.1186/s13717-020-00229-6 (2020).
    Google Scholar 
    Keenan, R. J. Climate change impacts and adaptation in forest management: a review. Ann. For. Sci. 72, 145–167. https://doi.org/10.1007/s13595-014-0446-5 (2015).
    Google Scholar 
    Marfella, L. et al. Long-term impact of wildfire on soil physical, chemical and biological properties within a pine forest. Eur. J. For. Res. 143, 1379–1399. https://doi.org/10.1007/s10342-024-01696-8 (2024).
    Google Scholar 
    Khosravi Aqdam, K., Asadzadeh, F., Rezapour, S. & Nouri, A. Comparative assessment of soil fertility across varying elevations. Environ. Monit. Assess. 195, 1007. https://doi.org/10.1007/s10661-023-11610-1 (2023).
    Google Scholar 
    Zhou, G. et al. Fire-driven disruptions of global soil biochemical relationships. Nat. Commun. 16, 1190. https://doi.org/10.1038/s41467-025-56598-z (2025).
    Google Scholar 
    Agbeshie, A. A. & Awuah, R. Impact of fire-burn on soil geochemical, microbial biomass and carbon stocks in a dry tropical forest ecosystem. Int. J. Environ. Sci. Technol. 22, 4891–4904. https://doi.org/10.1007/s13762-024-05932-x (2025).
    Google Scholar 
    Oliva, M. et al. The complex impacts of fire on soil ecosystems: insights from the 2021 Aspromonte National park wildfire. J. Forestry Res. 36, 68. https://doi.org/10.1007/s11676-025-01864-5 (2025).
    Google Scholar 
    Dianati, A., Rasouli-Sadaghiani, M. H., Asadzadeh, F. & Sepehr, E. Khosravi Aqdam, K. A PCA-based standardized spectral index from Sentinel-2 for modeling soil macronutrients in the Miandoab region, Iran. Sci. Rep. 15, 41023. https://doi.org/10.1038/s41598-025-25034-z (2025).
    Google Scholar 
    Yang, M. et al. Effect of fire and post-fire management on soil microbial communities in a lower subtropical forest ecosystem after a mountain fire. J. Environ. Manage. 351, 119885. https://doi.org/10.1016/j.jenvman.2023.119885 (2024).
    Google Scholar 
    Jia, W., Shu, Y., Zhao, P., Zhou, M. & Yue, Y. Effects of fire intensity on soil microbial diversity and nitrogen cycling functional genes in forests (Northeast China). Frontiers in Microbiology Volume 16– (2025). https://doi.org/10.3389/fmicb.2025.1615520 (2025).Chebykina, E. & Abakumov, E. In in Advances in Understanding Soil Degradation (eds Saljnikov, E. et al.) 687–700 (Springer International Publishing, 2022). https://doi.org/10.1007/978-3-030-85682-3_31.Tomé, L. et al. Fuel sources, natural vegetation and subsistence at a high-altitude aboriginal settlement in Tenerife, Canary islands: microcontextual Geoarchaeological data from Roques de García rockshelter. Archaeol. Anthropol. Sci. 14, 195. https://doi.org/10.1007/s12520-022-01661-9 (2022).
    Google Scholar 
    Fernández-Martínez, M. & Sánchez-Granero, M. A. Fractal dimension for fractal structures. Topol. Its Appl. 163, 93–111. https://doi.org/10.1016/j.topol.2013.10.010 (2014).
    Google Scholar 
    Mataix-Solera, J., Cerdà, A., Arcenegui, V., Jordán, A. & Zavala, L. M. Fire effects on soil aggregation: A review. Earth Sci. Rev. 109, 44–60. https://doi.org/10.1016/j.earscirev.2011.08.002 (2011).
    Google Scholar 
    Hueso-González, P., Martínez-Murillo, J. F. & Ruiz-Sinoga, J. D. Prescribed fire impacts on soil properties, overland flow and sediment transport in a mediterranean forest: A 5 year study. Sci. Total Environ. 636, 1480–1489. https://doi.org/10.1016/j.scitotenv.2018.05.004 (2018).
    Google Scholar 
    Alogaidi, M. A. H., Asadzadeh, F., Rezapour, S., Khosravi Aqdam, K. & Shabani, F. A quantitative evaluation of landscape patterns’ impact on soil quality: A Regional-Scale case study. Earth Syst. Environ. 9, 1021–1036. https://doi.org/10.1007/s41748-024-00565-z (2025).
    Google Scholar 
    Zema, D. A. et al. Predicting the hydrological response of a forest after wildfire and soil treatments using an artificial neural network. Comput. Electron. Agric. 170, 105280. https://doi.org/10.1016/j.compag.2020.105280 (2020).
    Google Scholar 
    Ye, P., Zhang, G. & Wu, J. Hotspots and conservation gaps: A case study of key higher plant species from Northwest Yunnan, China. Global Ecol. Conserv. 23, e01005. https://doi.org/10.1016/j.gecco.2020.e01005 (2020).
    Google Scholar 
    Yu, H., Wang, L. & Yang, M. Zonal Patterns of Meteorological Drought on the Yunnan-Guizhou Plateau, China. Frontiers in Environmental Science Volume 9– (2021). https://doi.org/10.3389/fenvs.2021.722285 (2021).Bouyoucos, G. J. Hydrometer method improved for making particle size analyses of soils. Agron. J. 54, 464–465. https://doi.org/10.2134/agronj1962.00021962005400050028x (1962).
    Google Scholar 
    USDA-NRCS. Soil survey laboratory methods manual. Soil Surv. investigations report 42 (2004).Blake, G. & Hartge, K. Bulk density in methods of soil analysis. Methods of soil analysis: Part (1965).Chapman, H. D. Methods Soil. Anal. Agron. Monogr. 891–901 (1965).Nelson, D. W. & Sommers, L. E. Methods Soil. Anal. 539–579 (1982).Bremner, J. M. in Methods of Soil Analysis SSSA Book Series, 1085–1121 (1996).Olsen, S. R. & Sommers, L. E. Methods Soil. Anal. Agron. Monogr. 403–430 (1982).Rhoades, J. D. Methods of Soil Analysis. SSSA Book. Ser. 417–435 (1996).Thomas, G. W. in Methods of soil analysis. SSSA Book. Ser. 475–490 (1996).Murphy, C. P. Thin section preparation of soils and sediments. (1986).Bullock, P., Fedoroff, N., Jongerius, A., Stoops, G. & Tursina, T. Handbook for soil thin section description (WolverhamptonWaine Research, 1985).Glab, T. Application of image analysis for soil macropore characterization according to pore diameter. International agrophysics 21 (2007).Blazejewski, G. A., Stolt, M. H., Gold, A. J. & Groffman, P. M. Macro- and micromorphology of subsurface carbon in riparian zone soils. Soil Sci. Soc. Am. J. 69, 1320–1329. https://doi.org/10.2136/sssaj2004.0145 (2005).
    Google Scholar 
    Su, W. H., Shi, Z., Zhou, R., Zhao, Y. J. & Zhang, G. F. The role of fire in the central Yunnan plateau ecosystem, Southwestern China. For. Ecol. Manag. 356, 22–30. https://doi.org/10.1016/j.foreco.2015.05.015 (2015).
    Google Scholar 
    Deng, X. et al. Predicting dynamics of wildfire regimes in Yunnan, China. Discover Appl. Sci. 6, 99. https://doi.org/10.1007/s42452-024-05743-2 (2024).
    Google Scholar 
    Fox, D. M., Darboux, F. & Carrega, P. Effects of fire-induced water repellency on soil aggregate stability, Splash erosion, and saturated hydraulic conductivity for different size fractions. Hydrol. Process. 21, 2377–2384. https://doi.org/10.1002/hyp.6758 (2007).
    Google Scholar 
    Albalasmeh, A. A., Berli, M., Shafer, D. S. & Ghezzehei, T. A. Degradation of moist soil aggregates by rapid temperature rise under low intensity fire. Plant. Soil. 362, 335–344. https://doi.org/10.1007/s11104-012-1408-z (2013).
    Google Scholar 
    Granged, A. J. P., Jordán, A., Zavala, L. M. & Bárcenas, G. Fire-induced changes in soil water repellency increased fingered flow and runoff rates following the 2004 Huelva wildfire. Hydrol. Process. 25, 1614–1629. https://doi.org/10.1002/hyp.7923 (2011).
    Google Scholar 
    Stoof, C. R., Moore, D., Ritsema, C. J. & Dekker, L. W. Natural and Fire-Induced soil water repellency in a Portuguese shrubland. Soil Sci. Soc. Am. J. 75, 2283–2295. https://doi.org/10.2136/sssaj2011.0046 (2011).
    Google Scholar 
    Cheng, G. et al. Fire differentially affects soil properties of forests and grasslands: A global meta-analysis. CATENA 255, 109031. https://doi.org/10.1016/j.catena.2025.109031 (2025).
    Google Scholar 
    Long, Y., Chen, J., Xiao, Y. & Peng, Y. Granular soil particle breakage prediction model based on population evolution theory. Sci. Rep. 15, 13161. https://doi.org/10.1038/s41598-025-92057-x (2025).
    Google Scholar 
    Stoops, G. The fabric of soil micromorphological research in the 20th century — A bibliometric analysis. Geoderma 213, 193–202. https://doi.org/10.1016/j.geoderma.2013.08.017 (2014).
    Google Scholar 
    Plotnikova, O. O. et al. Micromorphometric parameters of aggregates of uneroded and severely eroded arable chernozems: A case study in Kursk Oblast. Eurasian Soil. Sci. 58, 83. https://doi.org/10.1134/S1064229324604451 (2025).
    Google Scholar 
    Yu, K. & DeLaune, R. D. A modified soil diffusion chamber for gas profile analysis. Soil Sci. Soc. Am. J. 70, 1237–1241. https://doi.org/10.2136/sssaj2005.0332N (2006).
    Google Scholar 
    Ruth, B., Grundmann, S. & Schroll, R. Simulation of exterior conditions in permanently closed soil chambers by controlling air Flow, soil water Content, and temperature. Water Air Soil Pollut. Focus. 8, 243–250. https://doi.org/10.1007/s11267-007-9162-6 (2008).
    Google Scholar 
    Hirmas, D. R., Giménez, D., Subroy, V. & Platt, B. F. Fractal distribution of mass from the millimeter- to decimeter-scale in two soils under native and restored tallgrass prairie. Geoderma 207–208, 121–130. https://doi.org/10.1016/j.geoderma.2013.05.009 (2013).
    Google Scholar 
    Wang, Z., Hasi, E., Han, X. & Qingda, M. Fractal characterization of soil particle size distribution under different land use patterns on the North slope of Wula mountain in China. J. Soils Sediments. 24, 1148–1164. https://doi.org/10.1007/s11368-024-03722-z (2024).
    Google Scholar 
    Download referencesFundingNo funding was obtained for this study.Author informationAuthors and AffiliationsSchool of Atmosphere and Remote Sensing, Wuxi University, Wuxi, Jiangsu, 214105, ChinaYongchao DuanSchool of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, ChinaZhibin LiuAuthorsYongchao DuanView author publicationsSearch author on:PubMed Google ScholarZhibin LiuView author publicationsSearch author on:PubMed Google ScholarContributionsYongchao Duan, Conceptualization, Formal analysis, Investigation, data curation, Methodology, Software, writing – original draft, writing – review & editing; Zhibin Liu, Formal analysis, Investigation, data curation, Methodology, Software, writing – review & editing.Corresponding authorCorrespondence to
    Zhibin Liu.Ethics declarations

    Competing interests
    The authors declare no competing interests.

    Ethics approval
    All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

    Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions
    Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
    Reprints and permissionsAbout this articleCite this articleDuan, Y., Liu, Z. Wildfire-Induced alterations in soil physical, chemical, and micromorphological properties in forest ecosystems of Yunnan, Southwestern China.
    Sci Rep (2025). https://doi.org/10.1038/s41598-025-33913-8Download citationReceived: 18 October 2025Accepted: 23 December 2025Published: 25 December 2025DOI: https://doi.org/10.1038/s41598-025-33913-8Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy shareable link to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative
    KeywordsFractal dimensionMicromorphologyPost-fireSoil properties More

  • in

    Physicochemical characteristics and microbial community analysis of a wetland system treating acid mine drainage

    AbstractThe elevated heavy metal concentrations and acidic pH conditions characteristic of Acid Mine Drainage (AMD) pose significant environmental challenges, necessitating the development of effective remediation strategies. This study systematically evaluated the performance of a surface-flow constructed wetland system in Ma’anshan, China, for AMD treatment through comprehensive physicochemical characterization and microbial community analysis. The multi-stage wetland system, comprising four interconnected units vegetated with Phragmites australis, Typha angustifolia, and Arundo donax, was monitored for water quality parameters, sediment characteristics, and microbial diversity. Results demonstrated significant improvements in water quality, with pH increasing from 5.18 to 7.41 and substantial removal efficiencies observed for heavy metals: complete (100.00%) removal of Fe, 92.00% removal of Zn, 61.80% removal of Mn, and 63.60% removal of chemical oxygen demand (COD). Sequential extraction analysis revealed that residual fractions constituted the predominant form of sediment-bound heavy metals (65.70%-70.20% for Fe). Proteobacteria make up 58% of the microbial community. Sulfuricurvum combines denitrification and sulfide oxidation, while SRB like Desulfuromonas convert sulfate to sulfide. Nitrospinae oxidizes ammonia to nitrate, Thaumarchaeota oxidizes ammonia to nitrite, and Parkl vularcula facilitates denitrification. In order to maintain cycles and support wetland function and AMD treatment, hydrolytic bacteria break down organic materials. These findings establish the effectiveness of constructed wetlands (CWS) in AMD remediation through synergistic phytoremediation and microbial metabolic processes, offering an ecologically sustainable approach for the restoration of mining-impacted areas.

    Similar content being viewed by others

    Effects of acid mine drainage on microbial community development and physicochemical properties of mine contaminated sites in Southwest China

    Article
    Open access
    01 July 2025

    Demystifying the impacts of anthropogenic activities on physicochemical characteristics of soil in four wetlands of Kashmir Valley, India

    Article
    Open access
    21 October 2025

    Microbial carbon, sulfur, iron, and nitrogen cycling linked to the potential remediation of a meromictic acidic pit lake

    Article

    19 September 2022

    Data availability

    All data generated or analysed during this study are included in this published article.
    References Xu, S. et al. Biogenic iron mineral formation and the fate of arsenic driven by its coupling with ferrous iron in acid mine drainage environment. J. Hazard. Mater. 485 (1-136940.11), 136940 (2024).
    Google Scholar 
    Skousen, J. G., Ziemkiewicz, P. F. & Mcdonald, L. M. Acid mine drainage formation, control and treatment: approaches and strategies – ScienceDirect. Extractive Industries Soc. 6 (1), 241–249 (2019).
    Google Scholar 
    Karagüzel, C. et al. Prediction of acid mine drainage potential of dump sites by using static tests: an application on lignite mine. Arab. J. Geosci. 20, 12517. https://doi.org/10.1007/s12517-020-06220-x (2020).
    Google Scholar 
    Okeleji, O. A. & Ioannidou, V. G. Seasonal variation of iron removal in coal mine water discharge lagoons and constructed wetlands. Environ. Process. 12(2), 40710. https://doi.org/10.1007/s40710-025-00768-0 (2025).
    Google Scholar 
    Wei, X., Chen, H., Zhu, F. & Li, J. Microbial community structure in an uranium-rich acid mine drainage site: implication for the biogeochemical release of uranium. Front. Microbio 15, 1412599. https://doi.org/10.3389/fmicb.2024.1412599 (2024).
    Google Scholar 
    Ighalo, J. O. et al. A review of treatment technologies for the mitigation of the toxic environmental effects of acid mine drainage (AMD).Transactions of the institution of chemical engineers. Process Saf. Environ. Prot. Part. B, 157–168 (2022).Sekarjannah, F. A., Mansur, I. & Abidin, Z. Selection of organic materials potentially used to enhance bioremediation of acid mine drainage[J]. J. Degraded Min. Lands Manage. 3, 83–94 (2021).
    Google Scholar 
    Pines Pozo, M. T. et al. Metal recovery from wastes: A review of recent advances in the use of bioelectrochemical systems. Appl. Sci. 15.3, 2076–3417 (2025).
    Google Scholar 
    Li, X. et al. Suppressive effects of ferric-catecholate complexes on pyrite oxidation. Chemosphere 214, 70–78 (2019).
    Google Scholar 
    Hennebel, T., Boon, N., Maes, S. & Lenz, M. Biotechnologies for critical Raw material recovery from primary and secondary sources: r&d priorities and future perspectives. N Biotechno. 32, 121–127 (2015).
    Google Scholar 
    Fenwu, L., Xingxing, Q., Lixiang, Z. & Jian, Z. Migration and fate of acid mine drainage pollutants in calcareous soil. Int. J. environ. res. public. Health. 1759, 15–23 (2018).
    Google Scholar 
    Sun, H. et al. Nutrient limitations on primary productivity and phosphorus removal by biological carbon pumps in dammed karst rivers: Implications for eutrophication control. J. Hydrol. 607, 127480. https://doi.org/10.1016/j.jhydrol.2022.127480 (2022).
    Google Scholar 
    Zhong, J. et al. Biooxidation of arsenopyrite during the coalescence of iron and sulfur oxidizing microbial communities. Environ. Earth Sci. 84, 429–444 (2025).
    Google Scholar 
    Tabelin, C. B. et al. Acid mine drainage formation and arsenic mobility under strongly acidic conditions: importance of soluble phases, iron oxyhydroxides/oxides and nature of oxidation layer on pyrite. J. Hazard. Mater. 399, 122844 (2020).
    Google Scholar 
    Tabelin, C. B., Veerawattananun, S., Ito, M., Hiroyoshi, N. & Igarashi T.Pyrite oxidation in the presence of hematite and alumina: I. Batch leaching experiments and kinetic modeling calculations. Sci. Total Environ. 580, 687–698 (2017).
    Google Scholar 
    Papirio, S., Villa-Gomez, D. K., Esposito, G., Pirozzi, F. & Lens, P. N. L. Acid mine drainage treatment in fluidized-bed bioreactors by sulfate-reducing bacteria: a critical review. Environ. Sci. Tech. 43, 2545–2580 (2013).
    Google Scholar 
    Fan, N., Shu, Y., Xu, Z. & Zhao, D. Research progress of acid mine wastewater treatment bybioremediation method with sulfate reducingbacteriaas the core. Fresenius Environ. Bull. 7, 30–41 (2021).
    Google Scholar 
    Pat-Espadas, A. et al. Review of constructed wetlands for acid mine drainage treatment. Water 11, 211–236 (2018).
    Google Scholar 
    Igarashi, T. et al. The two-step neutralization ferrite-formation process for sustainable acid mine drainage treatment: removal of copper, zinc and arsenic, and the influence of coexisting ions on ferritization. Sci. Total Environ. 715, 1368771–13687712 (2020).
    Google Scholar 
    Pocaan, J. et al. A mixed media approach using locally available neutralizing materials for the passive treatment of acid mine drainage. Heliyon 11(3), 41984. https://doi.org/10.1016/j.heliyon.2025.e41984 (2025).
    Google Scholar 
    Jabbar, K. A. et al. Development of Artificial Geochemical Filter to Treat Acid Mine Drainage for Safe Disposal of Mine Water in Salt Range Portion of Indus Basin—A Lab to Pilot Scale Study. Sustainability 14(13), 7693. https://doi.org/10.3390/su14137693 (2022).
    Google Scholar 
    Rapilly, M. et al. Impacts of acid mine drainage remediation in the largest gold mine of Latin America on natural water bodies in the Dominican Republic. Environ. Sci. Pollut R. 32.3, 1272–1292 (2025).
    Google Scholar 
    Wibowo, Y. G., Wijaya, C., Halomoan, P., Yudhoyono, A. & Safri, M. Constructed wetlands for treatment of acid mine drainage: A review. Jurnal Presipitasi: Media Komunikasi dan. Pengembangan Teknik Lingkungan. 19 (2), 436–450 (2022).
    Google Scholar 
    Pat-Espadas, A. M., Portales, L., Amabilis-Sosa, R. & Gómez, L. E. Review of Constructed Wetlands for Acid Mine Drainage Treatment. Water 10(11), 1685. https://doi.org/10.3390/w10111685 (2018).
    Google Scholar 
    Soda, S. & Nguyen, T. T. Classification of Mine Drainages in Japan Based on Water Quality: Consideration for Constructed Wetland Treatments. Water 15(7), 1258. https://doi.org/10.3390/w15071258 (2023).
    Google Scholar 
    Hu, X. et al. Continuous and effective treatment of heavy metal in acid mine drainage based on reducing barrier system: A case study in North China. J. Hazard. Mater. Adv. 8, 100152. https://doi.org/10.1016/j.hazadv.2022.100152 (2022).
    Google Scholar 
    Charity, E. B. C. & Bolutife, M. J. Transmission of antibiotic-resistant bacteria through laptop keyboard among students of a tertiary institution in Lagos, Nigeria and the associated risk factors. Bio Res. 22(2), 4314. https://doi.org/10.4314/br.v22i2.5 (2024).
    Google Scholar 
    Salihu, M. M., Musa, M. A., Ibrahim, A. G., Usman, J. & Salisu, A. S. Weight and structural considerations of potential green roof growth: media compositions for the Nigerian Building industry. Archit. Papers Fac. Archit. Des. STU. 29.2, 24–29 (2024).
    Google Scholar 
    Huang, Y. et al. Key factors governing microbial community in extremely acidic mine drainage (ph < 3). Front. Microbiol. 12, 761579. https://doi.org/10.3389/fmicb.2021.761579 (2021).
    Google Scholar 
    Khan, S. et al. Phytoremediation Prospects for Restoration of Contamination in the Natural Ecosystems. Water 15(8), 1498. https://doi.org/10.1007/s12517-020-06220-x (2023).
    Google Scholar 
    Jin, D. C., Wang, X. M., Liu, L. L., Liang, J. R. & Zhou, L. X. A novel approach for treating acid mine drainage through forming schwertmannite driven by a mixed culture of Acidiphilium multivorum and Acidithiobacillus ferrooxidans prior to lime neutralization. J. Hazard. Mater. 400, 123108. https://doi.org/10.1016/j.jhazmat.2020.123108 (2020).
    Google Scholar 
    Song, Y. W. et al. A novel approach for treating acid mine drainage by forming schwertmannite driven by a combination of biooxidation and electroreduction before lime neutralization. Water Res. 221, 118748. https://doi.org/10.1016/j.watres.2022.118748 (2022).
    Google Scholar 
    Sun, R., Zhang, L., Wang, X., Ou, C. & Jiang, F. Elemental sulfur-driven sulfidogenic process under highly acidic conditions for sulfate-rich acid mine drainage treatment: performance and microbial community analysis. Water Res. 185, 116230. https://doi.org/10.1016/j.watres.2020.116230 (2020).
    Google Scholar 
    Zeng, Q., Hao, T. W., Mackey, H. R., van Loosdrecht, M. C. M. & Chen, G. H. Recent advances in dissimilatory sulfate reduction: from metabolic study to application. Water Res. 150, 162–181 (2019).
    Google Scholar 
    Niu, S., Fang, Q., Yu, J. & Wu, J. Heavy metals present in the soils from extremely large opencast iron mine Pit. Bull. Environ. Contam. Toxicol. 107, 984–989 (2021).
    Google Scholar 
    Guo, J., Xuan, F. Q., Li, D. M., Wang, J. Q. & Zhang, B. C. A. Variations of Soil Chemical Properties and Microbial Community around the Acid Reservoir in the Mining Area. Sustainability 14, 10746. https://doi.org/10.3390/su141710746 (2022).
    Google Scholar 
    Wu, F., Liu, J. & He, S. Effect of operating parameters of surface flow constructed wetland on nitrogen and phosphorus removal and sensory quality of river water. CET J. – Chem. Eng. Trans. 83, 313–330 (2021).
    Google Scholar 
    Song, X., Ehde, P. M. & Weisner, S. E. B. Effects of water depth and phosphorusavailability on nitrogen removal in agricultural wetlands. Water 11, 2626. https://doi.org/10.3390/w11122626 (2019).
    Google Scholar 
    Patyal, V., Jaspal, D. & Khare, K. Performance enhancement of constructed wetlands for wastewater remediation by modifications and integration of technologies: a review. Environ. Prog Sustain. Energy 42, 13951. https://doi.org/10.1002/ep.13951 (2023).
    Google Scholar 
    Shelef, O., Golan-Goldhirsh, A., Gendler, T. & Rachmilevitch, S. Physiological parameters of plants as indicators of water quality in a constructed wetland. Environ. Sci. Pollution Res. 18, 1234–1242 (2011).
    Google Scholar 
    Yang, Y., Kim, J., Chung, J. O., Roh, J. H. & Hong, Y. D. Variations in the composition of tea leaves and soil microbial community. Biol. Fert Soils. 58, 167–179 (2022).
    Google Scholar 
    Voelkner, A., Holthusen, D. & Horn, R. Determination of soil dispersion caused by anaerobic digestates: interferences of pH and soil charge with regard to soil texture and water content. J. SOIL. SEDIMENT. 15, 1491–1499 (2015).
    Google Scholar 
    Pansu, M. & Gautheyrou, J. Handbook of soil analysis: mineralogical, organic and inorganic methods. Int. J. Cancer, (2006).Tessier, A., Campbell, P. G. C. & Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51, 844–851 (1979).
    Google Scholar 
    Muyzer, G., Dewaal, E. C. & Uitterlinden, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700 (1993).
    Google Scholar 
    Daghio, M. et al. Anodes stimulate anaerobic toluene degradation via sulfur cycling in marine sediments. Appl. Environ. Microbiol. 23, 297–307 (2015).
    Google Scholar 
    Ighalo, J. O. et al. A review of treatment technologies for the mitigation of the toxic environmental effects of acid mine drainage (AMD). Process. Saf. Environ. 157, 37–58 (2022).
    Google Scholar 
    Christel, S., Yu, C., Wu, X., Josefsson, S. & Dopson, M. Comparison of boreal acid sulfate sediment microbial communities in oxidative and reductive environments. Res. Microbiol. 170 (6–7), 288–295 (2019).
    Google Scholar 
    Oksana, C., Peter, K., Naomi, S. W., Gerhard, S. & Kay K.Microbial nitrogen transformation in constructed wetlands treating contaminated groundwater. Environ. SciPollution Res. https://doi.org/10.1007/s11356-014-3575-3 (2015).
    Google Scholar 
    Mohamed, A., El-Shatoury, S., Aboulfotoh, A., El-Rahem, K. A. A. & Shahawy, A. E. Synergistic effects (adsorption and biodegradation) of streptomyces hydrogenans immobilization on nano-reed biochar for further application in upflow anaerobic sludge blanket. RSC Adv. 14, 19. https://doi.org/10.1039/D4RA02864C (2024).
    Google Scholar 
    Kartal, L., En, A. & Timur, S. The removal of heavy metals from refinery effluents by sulfide precipitation. Acta Montanist. Slovaca. 28 (1), 214–231 (2023).
    Google Scholar 
    Gibert, O., Pablo, J. D., José, L. C. & Ayora, C. Municipal compost-based mixture for acid mine drainage bioremediation: metal retention mechanisms. Appl. Geochem. 20 (9), 1648–1657 (2005).
    Google Scholar 
    Wang, E. et al. Low carbon loss from Long-Term Manure-Applied soil during abrupt warming is realized through soil and Microbiome interplay. Environ. Sci. Technol. 58 (22), 9658–9668 (2024).
    Google Scholar 
    Zhang, W., Zhang, I. & Deng, J. Comparison of retention and output of sulfur in limestone soil and yellow soil and their responses to acid deposition in a small karst catchment of Guizhou Province, Southwest China. Environ. Sci. Pollut R 28, 60993–61007 (2021).
    Google Scholar 
    Shamshuddin, J., Muhrizal, S., Fauziah, I. & Husni, M. H. A. Effects of adding organic materials to an acid sulfate soil on the growth of cocoa (Theobroma Cacao L.) seedlings. Sci. Total Environ. 323 (1/3), 33–45 (2004).
    Google Scholar 
    Fu, Q. et al. How does triclocarban affect sulfur transformation in anaerobic Systems?[J]. Environ. Sci. Technol. 58 (40), 959–969 (2024).
    Google Scholar 
    Pantoja, L. & Garelick, H. A critical review of the quantification, analysis and detection of radionuclides in the environment using diffusive gradients in thin films (DGT): advances and perspectives. Pure Appl. Chem. 96 (7), 2023–0809 (2024).
    Google Scholar 
    Liu, J., Wang, H., Liu, R., Wang, S. & Liu, Y. Sequential Spectral-Spatial feature Convolution network with Self-Attention for remote sensing hyperspectral image classification. IEEE T Geosci. Remote. 63, 1–15 (2025).
    Google Scholar 
    Li, Y. F., Yang, Y. F., Wang, Y. Y., Liu, W. J. & Zhang, P. J. Characteristics of soil iron forms in wetlands with hvarious restoration ages around the Caizi lake, Anhui Province. Acta Sci. Circum. 35 (10), 3234–3241 (2015).
    Google Scholar 
    Dai, W. et al. Structural and property analysis of different components in coal liquefaction residue raffinate based on density separation. Chem. Eng. Res. Des. 214, 144–153 (2025).
    Google Scholar 
    Martinez, C. E. & Motto, H. L. Solubility of lead, zinc and copper added to mineral soils. Environ. Pollut. 107 (1), 153–158 (2000).
    Google Scholar 
    Liu, X. L. et al. Long-term effects of Biochar addition and straw return on N 2 O fluxes and the related functional gene abundances under wheat-maize rotation system in the North China plain. Appl. Soil. Ecol. 135, 44–55 (2019).
    Google Scholar 
    Liu, C., Liu, W. S., Ent, A., Morel, J. L. & Qiu, R. L. Simultaneous hyperaccumulation of rare Earth elements, manganese and aluminum in phytolacca Americana in response to soil properties. Chemosphere 282, 1310961–1310969 (2021).
    Google Scholar 
    Stumn, M. Aquatic chemistry[M] (Academic Internet, 2007).Sirous, S. & Mahboub, S. The status of chemical forms of iron and manganese in various orders of calcareous soils and their relationship with some physicochemical and mineralogical properties. Commun. Soil. Sci. Plan. 15, 2054–2068 (2020).
    Google Scholar 
    Ali, Q. et al. Self-assembled crown ether (15cr5) with alkaline earth metals to stimulate nonlinear optical properties: the comprehensive study by silico technique. Comput. Theor. Chem. 1236, 114611. https://doi.org/10.1016/j.comptc.2024.114611 (2024).
    Google Scholar 
    Zhang, Y. L. et al. Treating synthetic mine leaching wastewater by sulfate-reducingbacteria with sugarcane Bagasse as carbon source. Chin. J. Environ. Eng. 10 (5), 2355–2360 (2016).
    Google Scholar 
    Wu, S. C., Luo, Y. M., Cheung, K. C. & Wong, M. H. Influence of bacteria on Pb and Zn speciation, mobility and bioavailability in soil: A laboratory study. Environ. Pollut. 144 (3), 765–773 (2006).
    Google Scholar 
    Brallier, S., Harrison, R. B., Henry, C. L. & Xue, D. S. Liming effects on availability of Cd, Cu, Ni and Zn in a soil amended with sewage sludge 16 years previously[J]. Water Air Soil. Pollut. 86, 195–206 (1996).
    Google Scholar 
    Lukovic, J. et al. Quantitative assessment of effects of cadmium on the histological structure of Poplar and Willow Leaves[J]. Water Air Soil. Pollution. 223, 2979–2993 (2012).
    Google Scholar 
    Zhang, X. et al. Multi-stage hybrid subsurface flow constructed wetlands for treating piggery and dairy wastewater in cold climate. Environ. Technol. 38 (1–4), 183–191 (2016).
    Google Scholar 
    Kraková, L. et al. Investigation of bacterial and archaeal communities: novel protocols using modern sequencing by illumina miseq and traditional DGGE-cloning. Extrem Life Extrem Cond. 20, 795–808 (2016).
    Google Scholar 
    Zhong, F. et al. Bacterial community analysis by PCR-DGGE and 454-pyrosequencing of horizontal subsurface flow constructed wetlands with front aeration. Appl. Microbiol. Biotechnol. 99 (3), 1499–1512 (2015).
    Google Scholar 
    Retka, J. et al. The Use of Mining Waste Materials for the Treatment ofA cid and Alkaline Mine Wastewater. Minerals. 10(12), 1061 (2020). https://doi.org/10.3390/min10121061Di, L., Li, Y., Nie, L., Wang, S. & Kong, F. Influence of plant radial oxygen loss in constructed wetland combined with microbial fuel cell on nitrobenzene removal from aqueous solution. J. Hazard Mater. 394, 122542 (2020). https://doi.org/10.1016/j.jhazmat.2020.122542Wang, Q. et al. Sulfate removal performance and co-occurrence patterns of microbial community in constructed wetlands treating saline wastewater. J. Water Process Eng. 43, 102266: 10.1016/j.jwpe.2021.102266 (2021).Villegas-Plazas, M., Sanabria, J. & Junca, H. A composite taxonomical and functional framework of microbiomes under acid mine drainage bioremediation systems. J. Environ. Manage. 251, 109581. https://doi.org/10.1016/j.jenvman.2019.109581 (2019).
    Google Scholar 
    Aoyagi, T. et al. Hydraulic retention time and pH affect the performance and microbial communities of passive bioreactors for treatment of acid mine drainage. AMB Express 7, 42. https://doi.org/10.1186/s13568-017-0440-z (2017).
    Google Scholar 
    Cho, S. L. et al. Lactococcus Chungangensis sp. nov., a lactic Acidbacterium isolated Fom activated sludge foam. Int. Jounal SystematicEvolutionary Microbiol. 58 (8), 1844–1849 (2008).
    Google Scholar 
    Daims, H., Lücker, S. & Wagner, M. A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends Microbiol. 24, 699–712 (2016).
    Google Scholar 
    Juottonen, H. Disentangling the effects of methanogen community and environment on peatland greenhouse gas production by a reciprocal transplant experiment. Funct. Ecol. 34 (6), 1268–1279 (2020).
    Google Scholar 
    Thongbunrod, N. & Chaiprasert, P. Efficient methane production from agro-industrial residues using anaerobic fungal-rich consortia. World J. Microb. Biot. 40 (8), 50–57 (2024).
    Google Scholar 
    Qiu, M. H., Zhang, R. F., Xue, S. S. & Shen, Q. R. Application of bio-organic fertilizer can control fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil. BIOL. FERT SOILS. 48 (7), 807–816 (2012).
    Google Scholar 
    Lena, S., Ekberg, A., Mastepanov, M. & Torben, R. C. The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Global Change Biol. 9 (8), 1185–1192 (2010).
    Google Scholar 
    Vinson, D. S. et al. Microbial methane from in situ biodegradation of coal and shale: A review and Reevaluation of hydrogen and carbon isotope signatures. Chem. Geol. 453, 128–145 (2017).
    Google Scholar 
    Bao, J. et al. Nature AND nurture: enabling formate-dependent growth in methanosarcina acetivorans. FEBS J. 292, 2251–2271 (2025).
    Google Scholar 
    Wang, C. et al. An additive effect of elevated atmospheric CO 2 and rising temperature on methane emissions related to methanogenic community in rice paddies. Agr Ecosyst. Environ. 257, 165–174 (2018).
    Google Scholar 
    Kong, X., Chen, J. & Zhang, Z. Y. When polyethylene terephthalate microplastics Meet perfluorooctane sulfonate in thermophilic biogas upgrading system: their effect on methanogenesis. J. Hazard. Mater. 466 (15), 1336261–13362610 (2024).
    Google Scholar 
    Oladele, P., Ngo, J., Chang, T. & Johnson, T. A. Temporal dynamics of fecal microbiota community succession in broiler chickens, calves, and piglets under aerobic exposure. Microbiol. Spectr. 12 (6), 04084–04023. https://doi.org/10.1128/spectrum.04084-23 (2024).
    Google Scholar 
    Quiros, C., Herrero, M., Garcia, L. A. & Diaz, M. Application of flow cytometry to segregated kinetic modeling based on the physiological States of microorganisms. Appl. Environ. Microb. 73 (12), 3993–4000 (2007).
    Google Scholar 
    Silva, C. C. et al. Investigation of bacterial diversity in membrane bioreactor and conventional activated sludge processes from petroleum refineries using phylogenetic and statistical approaches. J. Microb. Biot. 20 (3), 447–459 (2010).
    Google Scholar 
    Zhang, Z., Li, J., Ren, Z., Li, H. & Zhang, X. Carbothermal synthesis of sulfurized nano zero-valent iron from sulfate-reducing bacteria biomass for mercury removal: The first application of biomass sulfur source. Sci. Total Environ. 931, 172846. https://doi.org/10.1016/j.jece.2019.103537 (2024).
    Google Scholar 
    Izadi, P. & Schrder, U. What is the Role of Individual Species within Bidirectional Electroactive Microbial Biofilms: A Case Study on Desulfarculus baarsii and Desulfurivibrio alkaliphilus[J]. Chem. Electro Chem. 9, 2. https://doi.org/10.1002/celc.202101116 (2022).
    Google Scholar 
    Ahmed, M., Saup, C. M., Wilkins, M. J. & Lin, L. S. Continuous Ferric Iron-dosed Anaerobic Wastewater Treatment: Treatment Performance, Sludge Characteristics, and Microbial Composition. J. Environ Chem. Engineer 8, 103537. https://doi.org/10.1016/j.jece.2019.103537 (2019).
    Google Scholar 
    Petrova, D., Koopman, S. J., Ballester, J. & Rodo, X. Improving the long-lead predictability of El Nio using a novel forecasting scheme based on a dynamic components model. Clim. Dynam. 48 (3–4), 1–28 (2017).
    Google Scholar 
    Wang, Y. Peracetic acid (PAA)-based pretreatment effectively improves medium-chain fatty acids (MCFAs) production from sewage sludge. Environ. Sci. Ecotechnology 20, 100355. https://doi.org/10.1016/j.ese.2023.100355 (2024).
    Google Scholar 
    Gilberto et al. Methane production and conductive materials: a critical review. Environ. Sci. Technol. 52 (18), 10241–10253 (2018).
    Google Scholar 
    Maisch, M. et al. Contribution of microaerophilic Iron(Ⅱ)-Oxidizers to Iron(Ⅲ) mineral formation. Environ. Sci. Technol. 53 (14), 8197–8204 (2019).
    Google Scholar 
    Bloomfield, C. J. The oxidation of iron sulphides in soils in relation to the formation of acid sulphate soils, and of ochre deposits in field drains. Eur. J. Soil. Sci. 23 (1), 1–16 (2006).
    Google Scholar 
    Woodward, K. B. & Hofstra, D. Rhizosphere metabolism and its effect on phosphorus pools in the root zone of a submerged macrophyte, Isoetes kirkii. Sci. Total Environ. 809, 151087. https://doi.org/10.1016/j.scitotenv.2021.151087 (2022).
    Google Scholar 
    Oko, B. J., Tao, Y. & Stuckey, D. C. Dynamics of two methanogenic microbiomes incubated in polycyclic aromatic hydrocarbons, naphthenic acids, and oil field produced water. Biotechnol. Biofuels 10(1), 123. https://doi.org/10.1186/s13068-017-0812-2 (2017).
    Google Scholar 
    Forget, P. The bacterial nitrate reductases. Solubilization, purification and properties of the enzyme A of Escherichia coli K 12. Eur. J. Biochem. 42 (2), 325–332 (2010).
    Google Scholar 
    Snoeyenbos-West, O. L., Nevin, K. P., Anderson, R. T. & Lovley, D. R. Enrichment of geobacter species in response to stimulation of fe(iii) reduction in sandy aquifer sediments. Micro Ecol. 39 (2), 153–167 (2000).
    Google Scholar 
    Download referencesFundingThis research work was supported by the Natural Science Foundation of Anhui Province (2023AH04019, 2024AH0509086, 2024AH040132) and the University Natural Science Foundation (2024xjyq02).Author informationAuthors and AffiliationsSchool of Environment and Life Health, Anhui University of Applied Technology, Hefei, 230009, Anhui Province, P. R. ChinaJing Guo, Lei Cheng, Miao Yang & Zhenli WangAuthorsJing GuoView author publicationsSearch author on:PubMed Google ScholarLei ChengView author publicationsSearch author on:PubMed Google ScholarMiao YangView author publicationsSearch author on:PubMed Google ScholarZhenli WangView author publicationsSearch author on:PubMed Google ScholarContributionsJing Guo.Lei Cheng and Miao Yang wrote the main manuscript text and Zhenli Wang prepared Figs. 3 and 4. All authors reviewed the manuscript.Corresponding authorsCorrespondence to
    Jing Guo or Zhenli Wang.Ethics declarations

    Competing interests
    The authors declare no competing interests.

    Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions
    Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
    Reprints and permissionsAbout this articleCite this articleGuo, J., Cheng, L., Yang, M. et al. Physicochemical characteristics and microbial community analysis of a wetland system treating acid mine drainage.
    Sci Rep (2025). https://doi.org/10.1038/s41598-025-33303-0Download citationReceived: 30 August 2025Accepted: 17 December 2025Published: 25 December 2025DOI: https://doi.org/10.1038/s41598-025-33303-0Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy shareable link to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative
    KeywordsAcid mine drainageConstructed wetlandsHeavy-metal removalMicrobial remediationPhytoremediation More

  • in

    Species richness and Spatial distribution of three Pieridae subfamilies across mainland China under past and future climates

    AbstractThe family Pieridae (Lepidoptera: Pieridae) is known for its ecological and conservation significance; however, little is known about its spatial distribution pattern and climate vulnerability in mainland China, complicating the formulation of effective conservation strategies. Pierinae and Coliadinae are widely distributed across most parts of the research zone, especially in the southern regions. Conversely, Dismorphiinae is mainly distributed in the west-central and northeastern parts. Pierinae and Coliadinae flourished over a wider range of elevations in open environments with warmer and more humid habitats, whereas Dismorphiinae is restricted to a narrow elevation range in forested areas with cooler and drier habitats. Therefore, it was necessary to study their distribution patterns separately. The MaxEnt model was applied to analyze the influence of bioclimatic variables on their distribution throughout three historical eras: the Last Interglacial (LIG), the Last Glacial Maximum (LGM), and the Current (1970–2000). Pierinae and Coliadinae showed a uniform increase in overall highly suitable habitats, while Dismorphiinae showed an initial increase and then a decrease. Due to global warming, all three subfamilies might experience contraction in highly suitable habitats. Most Pieridae species are projected to experience shrinkage in highly suitable habitats, leading to decreased species diversity. These findings highlight divergent historical distribution patterns and habitat preferences among Pieridae subfamilies, yet project a shared vulnerability to future habitat contraction under climate warming.

    Data availability

    The data presented in this study are available on request from both corresponding authors.
    ReferencesWang, W. L. et al. Butterfly Conservation in China: From Science to Action. Insects 11, 661. https://doi.org/10.3390/insects11100661 (2020).Thomas, J. Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Philos. Trans. R Soc. B. 360, 339–357. https://doi.org/10.1098/rstb.2004.1585 (2005).
    Google Scholar 
    Yu, X. T. et al. Species richness of papilionidae butterflies (Lepidoptera: Papilionoidea) in the Hengduan mountains and its future shifts under climate change. Insects 14, 259. https://doi.org/10.3390/insects14030259 (2023).
    Google Scholar 
    Min, W. et al. Species diversity of butterflies in Shimentai nature Reserve, Guangdong. Biodiv Sci. 11, 441–453. https://doi.org/10.17520/biods.2003052 (2003).
    Google Scholar 
    Pollard, E. Temperature, rainfall and butterfly numbers. J. Appl. Ecol. 25, 819–828. https://doi.org/10.2307/2403748 (1988).
    Google Scholar 
    Svancara, L., Abatzoglou, J. & Waterbury, B. Modeling current and future potential distributions of milkweeds and the monarch butterfly in Idaho. Front. ecol. evol. 7, 168. https://doi.org/10.3389/fevo.2019.00168 (2019).
    Google Scholar 
    Minter, M. et al. Past, current, and potential future distributions of unique genetic diversity in a cold-adapted mountain butterfly. Ecol. Evol. 10, 11155–11168. https://doi.org/10.1002/ece3.6755 (2020).
    Google Scholar 
    Parmesan, C. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob. Chang. Biol. 13, 1860–1872. (2007).
    Google Scholar 
    Gibbs, M., Wiklund, C. & Van Dyck, H. Temperature, rainfall and butterfly morphology: does life history theory match the observed pattern? Ecography 34, 336–344. https://doi.org/10.1111/j.1600-0587.2010.06573.x (2010).
    Google Scholar 
    Bartonova, A. et al. Range dynamics of palaearctic steppe species under glacial cycles: the phylogeography of Proterebia Afra (Lepidoptera: nymphalidae: Satyrinae). Biol. J. Linn. Soc. 125, 867–884. https://doi.org/10.1093/biolinnean/bly136 (2018).
    Google Scholar 
    Taberlet, P., Fumagalli, L., Wust-Saucy, A. G. & Cosson, J. F. Comparative phylogeography and postglacial colonization routes in Europe. Mol. Ecol. 7, 453–464. https://doi.org/10.1046/j.1365-294x.1998.00289.x (2002).
    Google Scholar 
    Schoville, S., Stuckey, M. & Roderick, G. Pleistocene origin and population history of a neoendemic alpine butterfly. Mol. Ecol. 20, 1233–1247. https://doi.org/10.1111/j.1365-294X.2011.05003.x (2011).
    Google Scholar 
    Sherpa, S. et al. Population decline at distribution margins: assessing extinction risk in the last glacial relictual but still functional metapopulation of a European butterfly. Divers. Distrib. 28, 271–290. https://doi.org/10.1111/ddi.13460 (2022).
    Google Scholar 
    Kebaili, C., Sherpa, S., Rioux, D. & Després, L. Demographic inferences and Climatic niche modelling shed light on the evolutionary history of the emblematic cold-adapted Apollo butterfly at regional scale. Mol. Ecol. 31, 448–466. https://doi.org/10.1111/mec.16244 (2021).
    Google Scholar 
    Kumar, P. Assessment of impact of climate change on Rhododendrons in Sikkim Himalayas using maxent modelling: limitations and challenges. Biodivers. Conserv. 21, 1251–1266. https://doi.org/10.1007/s10531-012-0279-1 (2012).
    Google Scholar 
    Wu, C. S. & Hsu, Y. F. Butterflies of ChinaVol. 41442–2036 (The Straits Publishing & Distributing Group, 2017).Simon, L. Encyclopedia of Biodiversity. Vol. 1, 943Princeton university, Academic Press, (2013).Powell, J. A., Resh, V. H. & Cardé, R. T. Lepidoptera. In Encyclopedia of Insects 2nd edn (Academic, 2009).Vane-Wright, D. & de Jong, R. The butterflies of sulawesi: annotated checklist for a critical Island fauna. Zool. Verh Leiden. 343, 3–267 (2003).
    Google Scholar 
    Ding, C. & Zhang, Y. L. Phylogenetic relationships of Pieridae (Lepidoptera: Papilionoidea) in China based on seven gene fragments: phylogenetic relationships of Pieridae. Entomol. Sci. 20, 15–23. https://doi.org/10.1111/ens.12214 (2016).
    Google Scholar 
    Opler, P. A. A Field Guide To Western Butterflies 2nd edn (Houghton Mifflin Company, 1998).Brock, J. P. & Kaufman, K. Kaufman Field Guide To Butterflies of North America (Houghton Mifflin Company, 2003).Shapiro, A. M. The biology and zoogeography of the legume-feeding Patagonian-Fuegian white butterfly Tatochila Theodice (Lepidoptera: Pieridae). J. N. Y. Entomol. Soc. 251–260 (1991).Shapiro, A. M., Forister, M. L. & Fordyce, J. A. Extreme high-altitude Asian and Andean Pierid butterflies are not each others’ closest relatives. Arct. Antarct. Alp. Res. 39, 137–142 (2007).
    Google Scholar 
    Shapiro, A. M. Behavioral and ecological observations of Peruvian High-Andean Pierid butterflies (Lepidoptera). Stud. Neotrop. Fauna Environ. 20, 1–13. https://doi.org/10.1080/01650528509360 (1985).
    Google Scholar 
    Shapiro, A. M. Developmental and phenotypic responses to photoperiod and temperature in an Equatorial montane butterfly, Tatochila xanthodice (Lepidoptera: Pieridae). Biotropica 297–301. https://doi.org/10.2307/2387682 (1978).Tshikolovets, V. V., Yakovlev, R. V. & Bálint, Z. The Butterflies of Mongolia (Tshikolovets, 2009).Tshikolovets, V. V., Yakovlev, R. V. & Kosterin, O. E. The Butterflies of Altai, Sayans and Tuva (Tshikolovets, 2009). (South Siberia.Laiho, J. & Ståhls, G. DNA barcodes identify central Asian Colias butterflies (Lepidoptera, Pieridae). Zookeys 30, 175–196. https://doi.org/10.3897/zookeys.365.5879 (2013).
    Google Scholar 
    Yata, O. Butterflies of the South East Asian IslandsVol. 3 (Plapac Co. Ltd., 1985).Leong, J. V. et al. Around the world in 26 million years: diversification and biogeography of Pantropical Grass-Yellow Eurema butterflies (Pieridae: Coliadinae). J. Biogeogr. 52, e15107. https://doi.org/10.1111/jbi.15107 (2025).
    Google Scholar 
    Lukhtanov, V. A. Karyotype evolution and systematics of higher taxa of Pieridae (Lepidoptera) of the world. Ent Obozr. 70, 619–636 (1991).
    Google Scholar 
    Lamas, G. Twenty-five new Neotropical dismorphiinae (Lepidoptera-Pieridae). Rev. Peru Entomol. 44, 17–36 (2004).
    Google Scholar 
    Soberón, J. M., Llorente, J. B. & Oñate, L. The use of specimen-label databases for conservation purposes: an example using Mexican papilionid and Pierid butterflies. Biodivers. Conserv. 9, 1441–1466. https://doi.org/10.1023/A:1008987010383 (2000).
    Google Scholar 
    Zheng, P. China’s Geography142 (China Intercontinental, 2010).Machine, W. Regions of Chinese food-styles/flavors of cooking. (2024). https://web.archive.org/web/20090416203009/http://www.kas.ku.edu:80/service-learning/projects/chinese_food/regional_cuisine. html.Zhu, H. The tropical forests of Southern China and conservation of biodiversity. Bot. Rev. 83, 87–105. https://doi.org/10.1007/s12229-017-9177-2 (2017).
    Google Scholar 
    Wang, Y. et al. Macro-evolutionary dynamics dominated by dispersal promote the formation of regional biodiversity hotspot‐insights from hawkmoths (Lepidoptera: Sphingidae) in South China. Divers. Distrib. 31, e13916. https://doi.org/10.1111/ddi.13916 (2025).
    Google Scholar 
    Forti, L. R. & Szabo, J. K. The iNaturalist platform as a source of data to study amphibians in Brazil. Acad. Bras. Ciênc. 95, e20220828. https://doi.org/10.1590/0001-3765202320220828 (2023).
    Google Scholar 
    Su, J. et al. The distribution pattern and species richness of scorpionflies (Mecoptera: Panorpidae). Insects 14, 332. https://doi.org/10.3390/insects14040332 (2023).
    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km Spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. https://doi.org/10.1002/joc.5086 (2017).
    Google Scholar 
    Chen, Y., Guo, D., Cao, W. & Li, Y. Changes in net primary productivity and factor detection in china’s yellow river basin from 2000 to 2019. Remote Sens. 15, 2798. https://doi.org/10.3390/rs15112798 (2023).
    Google Scholar 
    Bai, W. et al. Analysis of Spatial and Temporal variation of vegetation NPP in Daning river basin and its driving forces. Int. J. Remote Sens. 44, 6194–6218. (2023).
    Google Scholar 
    Wei, T. et al. Package ‘corrplot’. Statistician 56, e24 (2017).
    Google Scholar 
    Moss, R. et al. Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies: IPCC Expert Meeting Report (Noordwijkerhout). http://www.ipcc.ch/pdf/supporting-material/expert-meeting-ts-scenarios.pdf.IP (2008) .John, W. et al. Report of 2.6 Versus 2.9 Watts/m2 RCPP Evaluation Panel (University of Maryland, Joint Global Change Research Institute, 2009).Vilela, B., Villalobos, F. & LetsR A new R package for data handling and analysis in macroecology. Methods Ecol. Evol. 6, 1229–1234. https://doi.org/10.1111/2041-210X.12401 (2015).
    Google Scholar 
    Santana, P. A. Jr, Kumar, L., Da Silva, R. S., Pereira, J. L. & Picanço, M. C. Assessing the impact of climate change on the worldwide distribution of Dalbulus Maidis (DeLong) using maxent. Pest Manag. Sci. 75, 2706–2715. https://doi.org/10.1002/ps.5379 (2019).
    Google Scholar 
    Wei, J., Peng, L., He, Z., Lu, Y. & Wang, F. Potential distribution of two invasive pineapple pests under climate change. Pest Manag. Sci. 76, 1652–1663. https://doi.org/10.1002/ps.5684 (2020).
    Google Scholar 
    Warren, D. L., Wright, A. N., Seifert, S. N. & Shaffer, H. B. Incorporating model complexity and Spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern. Divers. Distrib. 20, 334–343. https://doi.org/10.1111/ddi.12160 (2014).
    Google Scholar 
    Zhou, B. J., Ma, C. L., Gao, C., Han, D. N. & Chai, Y. Impacts of climate change on species distribution patterns of Polyspora sweet in China. Ecol. Evol. 12, e9516. https://doi.org/10.1002/ece3.9516 (2022).
    Google Scholar 
    Yang, X., Kushwaha, S., Saran, S., Xu, J. & Roy, P. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia Adhatoda L. in lesser Himalayan foothills. Ecol. Eng. 51, 83–87. https://doi.org/10.1016/j.ecoleng.2012.12.004 (2013).
    Google Scholar 
    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x (2006).
    Google Scholar 
    Hijmans, R. J. & Elith, J. Spatial distribution models. Vol. 10, (2019).Zhang, X. F., Nizamani, M. M., Jiang, C., Fang, F. Z. & Zhao, K. K. Potential planting regions of Pterocarpus Santalinus (Fabaceae) under current and future climate in China based on maxent modeling. Ecol. Evol. 14, e11409. https://doi.org/10.1002/ece3.11409 (2024).
    Google Scholar 
    Lu, S. et al. Patterns of tree species richness in Southwest China. Environ. Monit. Assess. 193, 97. https://doi.org/10.1007/s10661-021-08872-y (2021).
    Google Scholar 
    Xie, D. et al. Diversity of higher plants in China. J. Syst. Evol. 59, 1111–1123. https://doi.org/10.1111/jse.12758 (2021).
    Google Scholar 
    Ômura, H. Plant secondary metabolites in host selection of butterfly. In Chemical Ecology of Insects. 3–27 (CRC, Boca Raton, Florida, (2018).
    Google Scholar 
    Castro-Gerardino, D. J. & Llorente-Bousquets, J. Comparative exploration of antennae in Pseudopontia, and antennal clubs of the tribes leptideini and dismorphiini (Lepidoptera: Pieridae). Zootaxa 4347, 401–445 (2017).
    Google Scholar 
    Scott, J. A. The Butterflies of North America: A Natural History and Field Guide584 (Stanford University Press, 1992).Shanks, K., Senthilarasu, S., ffrench-Constant, R. H. & Mallick, T. K. White butterflies as solar photovoltaic concentrators. Sci. Rep. 5, 12267. https://doi.org/10.1038/srep12267 (2015).
    Google Scholar 
    Bladon, A. J. et al. How butterflies keep their cool: physical and ecological traits influence thermoregulatory ability and population trends. J. Anim. Ecol. 89, 2440–2450. https://doi.org/10.1111/1365-2656.13319 (2020).
    Google Scholar 
    Lamas, G. The dismorphiinae (Pieridae) of Mexico, central America and the Antilles. Mexi Soc. Lepi. 5, 3–37 (1979).
    Google Scholar 
    Hill, G. M., Kawahara, A. Y., Daniels, J. C., Bateman, C. C. & Scheffers, B. R. Climate change effects on animal ecology: butterflies and moths as a case study. Biol. Rev. 96, 2113–2126. https://doi.org/10.1111/brv.12746 (2021).
    Google Scholar 
    Oberhauser, K. & Peterson, A. Modelling current and future potential wintering distributions of Eastern North American monarch butterflies. Proc. Natl. Acad. Sci. U S A. 100, 14063–14068. https://doi.org/10.1073/pnas.2331584100 (2003).
    Google Scholar 
    Zavaleta, E. S., Shaw, M. R., Chiariello, N. R., Mooney, H. A. & Field, C. B. Additive effects of simulated climate changes, elevated CO2, and nitrogen deposition on grassland diversity. Proc. Natl. Acad. Sci. U S A. 100, 7650–7654. https://doi.org/10.1073/pnas.0932734100 (2003).
    Google Scholar 
    Trotter, R. T., Cobb, N. S. & Whitham, T. G. Arthropod community diversity and trophic structure: a comparison between extremes of plant stress. Ecol. Entomol. 33, 1–11. https://doi.org/10.1111/j.1365-2311.2007.00941.x (2008).
    Google Scholar 
    Kishimoto-Yamada, K. & Itioka, T. Consequences of a severe drought associated with an El Niño-Southern Oscillation on a light-attracted leaf-beetle (Coleoptera, Chrysomelidae) assemblage in Borneo. J. Trop. Ecol. 24, 229–233. https://doi.org/10.1017/S0266467408004811 (2008).
    Google Scholar 
    Nielsen, E. T. & Nielsen, H. T. Temperatures preferred by the Pierid Ascia Monuste L. Ecology 40, 181–185. https://doi.org/10.2307/1930027 (1959).
    Google Scholar 
    Advani, N. K., Parmesan, C. & Singer, M. C. Takeoff temperatures in Melitaea Cinxia butterflies from latitudinal and elevational range limits: A potential adaptation to solar irradiance. Ecol. Entomol. 44, 389–396. https://doi.org/10.1111/een.12714 (2019).
    Google Scholar 
    Hayes, M. P., Hitchcock, G. E., Knock, R. I., Lucas, C. B. H. & Turner, E. C. Temperature and territoriality in the Duke of Burgundy butterfly, Hamearis Lucina. J. Insect Conserv. 23, 739–750. https://doi.org/10.1007/s10841-019-00166-6 (2019).
    Google Scholar 
    Wang, X. et al. Greater impacts from an extreme cold spell on tropical than temperate butterflies in Southern China. Ecosphere 7, e01315. https://doi.org/10.1002/ecs2.1315 (2016).
    Google Scholar 
    Ehrlich, P. R. et al. Extinction, reduction, stability and increase: the responses of checkerspot butterfly (Euphydryas) populations to the California drought. Oecologia 46, 101–105. https://doi.org/10.1007/BF00346973 (1980).
    Google Scholar 
    Huntley, B. et al. Explaining patterns of avian diversity and endemicity: climate and biomes of Southern Africa over the last 140,000 years. J. Biogeogr. 43, 874–886. https://doi.org/10.1111/jbi.12714 (2016).
    Google Scholar 
    Alves, W. F. et al. Connectivity and climate influence diversity–stability relationships across Spatial scales in European butterfly metacommunities. Glob Ecol. Biogeogr. 33, 1–16. https://doi.org/10.1111/geb.13896 (2024).
    Google Scholar 
    Chowdhury, S., Fuller, R. A., Dingle, H., Chapman, J. W. & Zalucki, M. P. Migration in butterflies: a global overview. Biol. Rev. 96, 1462–1483. https://doi.org/10.1111/brv.12714 (2021).
    Google Scholar 
    Kühne, G., Kosuch, J., Hochkirch, A. & Schmitt, T. Extra-Mediterranean glacial refugia in a mediterranean faunal element: the phylogeography of the chalk-hill blue Polyommatus Coridon (Lepidoptera, Lycaenidae). Sci. Rep. 7, 43533. https://doi.org/10.1038/srep43533 (2017).
    Google Scholar 
    Habel, J. C., Lens, L., Rödder, D. & Schmitt, T. From Africa to Europe and back: refugia and range shifts cause high genetic differentiation in the marbled white butterfly Melanargia Galathea. BMC Evol. Biol. 11, 1–15. https://doi.org/10.1186/1471-2148-11-215 (2011).
    Google Scholar 
    Foster, P. The potential negative impacts of global climate change on tropical montane cloud forests. Earth Sci. Rev. 55, 73–106. https://doi.org/10.1016/S0012-8252(01)00056-3 (2001).
    Google Scholar 
    Cannone, N., Sgorbati, S. & Guglielmin, M. Unexpected impacts of climate change on alpine vegetation. Front. Ecol. Environ. 5, 360–364. https://doi.org/10.1890/1540-9295 (2007).
    Google Scholar 
    Wilson, R. J. et al. Changes to the elevational limits and extent of species ranges associated with climate change. Ecol. lett. 8, 1138–1146. https://doi.org/10.1111/j.1461-0248.2005.00824.x (2005).
    Google Scholar 
    Liang, Q. et al. Shifts in plant distributions in response to climate warming in a biodiversity hotspot, the Hengduan mountains. J. Biogeogr. 45, 1334–1344. https://doi.org/10.1111/jbi.13229 (2018).
    Google Scholar 
    Taheri, S., Naimi, B., Rahbek, C. & Araújo, M. B. Improvements in reports of species redistribution under climate change are required. Sci. Adv. 7, eabe1110. https://doi.org/10.1126/sciadv.abe1110 (2021).
    Google Scholar 
    Hu, R. et al. Shifts in bird ranges and conservation priorities in China under climate change. PLoS One. 15, e0240225. https://doi.org/10.1371/journal.pone.0240225 (2020).
    Google Scholar 
    Lamsal, P., Kumar, L., Aryal, A. & Atreya, K. Future climate and habitat distribution of Himalayan musk deer (Moschus chrysogaster). Ecol. Inf. 44, 101–108. https://doi.org/10.1016/j.ecoinf.2018.02.004 (2018).
    Google Scholar 
    Yang, F., Hu, J. & Wu, R. Combining endangered plants and animals as surrogates to identify priority conservation areas in Yunnan, China. Sci. Rep. 6, 30753. https://doi.org/10.1038/srep30753 (2016).
    Google Scholar 
    Ma, F. Z. et al. Progress in construction of China butterfly diversity observation network (China BON-Butterflies). J. Ecol. Rural Environ. 34, 27–36. https://doi.org/10.11934/j.issn.1673-4831.2018.01.004 (2018).
    Google Scholar 
    Chamberlain, S., Barve, V., Mcglinn, D., Oldoni, D., Desmet, P., Geffert, L., & Ram, K. rgbif: Interface to the global biodiversity informationfacility API. R package version 3.7.2. https://CRAN.R-project.org/package=rgbif, (2022).Barve, V. & Hart, E. rinat: Access ‘iNaturalist’ Data Through APIs. R package version 0.1.9. https://docs.ropensci.org/rinat/ (2025)Maclean, I. M. D. & Wilson, R. J. Recent ecological responses to climate change support predictions of high extinction risk. Proc. Natl. Acad. Sci. 108,12337–12342. https://doi.org/10.1073/pnas.1017352108 (2011).Download referencesAcknowledgementsWe would like to express our sincere gratitude to Dr. Rehan Zafar for providing invaluable guidance in the analysis of this study. We also thank Dr. Hashmat Khan and Dr. Haroon Khan for their thoughtful review and constructive feedback on the manuscript.FundingThis work was funded by the National Natural Science Foundation of China (grant number 32471563).Author informationAuthors and AffiliationsCollege of Life Sciences, Northwest University, Xi’an, 710069, People’s Republic of ChinaRiaz Hussain, Panpan Miao, Lianxi Xing & Yuan HuaCollege of Geographical Sciences, Faculty of Geographical Science and Engineering, Henan University, Zhengzhou, 450046, People’s Republic of ChinaAdnanul RehmanXi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an, 710061, People’s Republic of ChinaLijun FangShaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an, 710069, People’s Republic of ChinaLianxi XingKey Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi’an, 710069, People’s Republic of ChinaLianxi XingAuthorsRiaz HussainView author publicationsSearch author on:PubMed Google ScholarPanpan MiaoView author publicationsSearch author on:PubMed Google ScholarAdnanul RehmanView author publicationsSearch author on:PubMed Google ScholarLijun FangView author publicationsSearch author on:PubMed Google ScholarLianxi XingView author publicationsSearch author on:PubMed Google ScholarYuan HuaView author publicationsSearch author on:PubMed Google ScholarContributionsR.H. and Y.H: Conceptualization; R.H, Y.H, L.F, A.R, and P.M: methodology and experiments; R.H. and Y.H: data analysis; R.H: writing—original draft preparation; Y.H, L.F, and A.R: writing—review and editing; R.H: visualization; L.X. and Y.H: supervision; L.X: project administration; L.X: funding acquisition. All authors have read and agreed to the published version of the manuscript.Corresponding authorsCorrespondence to
    Lianxi Xing or Yuan Hua.Ethics declarations

    Competing interests
    The authors declare no competing interests.

    Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary InformationBelow is the link to the electronic supplementary material.Supplementary Material 1Rights and permissions
    Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
    Reprints and permissionsAbout this articleCite this articleHussain, R., Miao, P., Rehman, A. et al. Species richness and Spatial distribution of three Pieridae subfamilies across mainland China under past and future climates.
    Sci Rep (2025). https://doi.org/10.1038/s41598-025-21555-9Download citationReceived: 27 February 2025Accepted: 22 September 2025Published: 25 December 2025DOI: https://doi.org/10.1038/s41598-025-21555-9Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy shareable link to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative
    KeywordsPierinaeColiadinaeDismorphiinaeMaxEnt modelSpecies richnessDistribution patternClimate change More

  • in

    Estimating soil erosion utilizing geospatial method and revised universal soil loss equation (RUSLE) of Abu Ghraibat Watershed, Eastern Misan Governorate, Iraq

    Abstract

    This study examined the synergistic and independent effects of soil properties, vegetation cover, conservation practices, and slope on the spatial distribution characteristics of soil erosion in the Abu-Ghraibat watershed in 2024. Soil samples have been collected and analyzed in the laboratory, along with high-resolution satellite imagery, meteorological data, and digital elevation model (DEM) data. The findings indicate that soil erosion in the Abu-Ghraibat watershed in 2024 was minimal, with a progressively increasing severity from north to south. In the studied area, grassland accounts for over 50% of soil erosion, with regions with vegetation coverage > 30% as the primary contributors, all of which are influenced by slope. Moreover, the enhancement of vegetation in the lower strata of the basin and in grasslands, especially on slopes ranging from 10° to 45°, along with the conversion of sloping woodlands and grasslands into terraces, has proven an effective strategy for mitigating soil erosion in the Abu-Ghraibat watershed. The present study has demonstrated that the RUSLEGIS integrated model may serve as an effective instrument for quantitatively and spatially mapping soil erosion at the watershed level in the Abu-Ghraibat, while accounting for the provision of landscape services.

    Data availability

    Data is available by contacting the corresponding author.
    ReferencesMallick, J. et al. Evaluating soil erosion zones in the Kangsabati river basin using a stacking framework and SHAP model: a comparative study of machine learning approaches. Environ. Sci. Eur. 37 (1), 34 https://doi.org/10.1186/s12302-025-01079-9   (2025).
    Google Scholar 
    Mathewos, M., Wosoro, D. & Wondrade, N. Quantification of soil erosion and sediment yield using the RUSLE model in Boyo watershed, central rift Valley basin of Ethiopia. Heliyon 10 (10), https://doi.org/10.1016/j.heliyon.2024.e31246  (2024).Gao, G., Liang, Y., Liu, J., Dunkerley, D. & Fu, B. A modified RUSLE model to simulate soil erosion under different ecological restoration types in the loess hilly area. Int. Soil. Water Conserv. Res. 12 (2), 258–266 (2024). https://doi.org/10.1016/j.iswcr.2023.08.007
    Google Scholar 
    Getahun, Y. S., Tesfay, F., Kassegne, A. B. & Moges, A. S. Geospatial based soil loss rate and land degradation assessment in Debre Berhan Regio-Politan city, Upper Blue Nile Basin, Central Ethiopia, Geomatics. Nat. Hazards Risk, 15(1), https://doi.org/10.1080/19475705.2024.2359993 (2024).Djoukbala, O. et al. A Geospatial approach-based assessment of soil erosion impacts on the dams silting in the semi-arid region. Geomatics Nat. Hazards Risk. 15 (1). https://doi.org/10.1080/19475705.2024.2375543 (2024).Biswas, S. S. & Pani, P. Estimation of soil erosion using RUSLE and GIS techniques: a case study of Barakar river basin, Jharkhand, India. Model. Earth Syst. Environ. 1 (4). https://doi.org/10.1007/s40808-015-0040-3 (2015).Wei, Z. et al. Bridging spatio-temporal discontinuities in global soil moisture mapping by coupling physics in deep learning. Remote Sens. Environ. 313, 114371. https://doi.org/10.1016/j.rse.2024.114371 (2024).
    Google Scholar 
    Kadam, A., Umrikar, B. N. & Sankhua, R. N. Assessment of Soil Loss using Revised Universal Soil Loss Equation (RUSLE): A Remote Sensing and GIS Approach. Remote Sens. Land. 2 (1), 65–75 . https://doi.org/10.21523/gcj1.18020105 (2018)
    Google Scholar 
    Ahmad Bhat, S. et al. Soil erosion modeling using RUSLE & GIS on micro watershed of J&K. ~ 838 ~ J. Pharmacognosy Phytochemistry. 6, 5 (2017).
    Google Scholar 
    Yuan, S. et al. Dynamic analyses of soil erosion and improved potential combining topography and socio-economic factors on the loess plateau. Ecol. Indic. 160 https://doi.org/10.1016/j.ecolind.2024.111814 (2024).Dash, S. S. & Maity, R. Effect of climate change on soil erosion indicates a dominance of rainfall over LULC changes. J. Hydrol. Reg. Stud. 47 https://doi.org/10.1016/j.ejrh.2023.101373 (2023).Saha, M., Sauda, S. S., Real, H. R. K. & Mahmud, M. Estimation of annual rate and Spatial distribution of soil erosion in the Jamuna basin using RUSLE model: A Geospatial approach. Environ. Challenges. 8, https://doi.org/10.1016/j.envc.2022.100524 (2022).Su, Y., Cui, Y. J., Dupla, J. C. & Canou, J. Soil-water retention behaviour of fine/coarse soil mixture with varying coarse grain contents and fine soil dry densities. Can. Geotech. J. 59 (2), 291–299. https://doi.org/10.1139/cgj-2021-0054 (2022).
    Google Scholar 
    Maaroof, B. F. Fluvial Landforms Classification Using Geospatial Modeling of Al-Jazeera Eastern Region at Misan Governorate, Iraq, Iraqi National. J. Earth Sci. 25 (2), 199–218 https://doi.org/10.33899/earth.2024.146564.1228 (2025).
    Google Scholar 
    Maaroof, B. F. & Kareem, H. H. Geomorphological Analysis of Chemical Weathering Features in Al-Band Hills Area, Eastern of Misan Governorate, Iraq. Iraqi National Journal of Earth Science. 23(1), 67–84 https://doi.org/10.33899/earth.2023.137382.1034 (2023).Maaroof, B. F. Geomorphometric assessment of the river drainage network at al-shakak basin (Iraq). J. Geographical Inst. Jovan Cvijic SASA. 72 (1), 1–13. https://doi.org/10.2298/IJGI2201001M (2022).Al-Hasani, B. et al. Assessing climate change impacts on Rainfall-Runoff in Northern iraq: A case study of Kirkuk Governorate, a Semi-Arid region. In: Handbook of Environmental Chemistry, vol. 136, 93–111. https://doi.org/10.1007/698_2024_1154 (Springer Science and Business Media Deutschland GmbH, 2024)Maaroof, B. F. & Kareem, H. H. Water erosion of the slopes of Tayyar drainage basin in the desert of muthanna in Southern Iraq. Indian J Ecology 47(3), 638–644 (2020).Maaroof, B. et al. Classifying fluvial landforms using Geospatial modeling in al-ashaali watershed, Iraqi Southern desert. Bull. Iraq Nat. History Museum. 18 (3), 739–763. https://doi.org/10.26842/binhm.7.2025.18.3.0739 (2025).Maaroof, B. F., Al-Abdan, R. H. & Kareem, H. H. Geographical assessment of natural resources at Abu-Hadair drainage basin in Al-Salman desert. Indian J Ecology 48(3), 796–801 (2021).Sissakian, V. K. et al. Geomorphology of the Mesopotamian Plain: A Critical Review Geology of Iraq View project Mosul dam View project Geomorphology of the Mesopotamian Plain: A Critical Review, online) Scientific Press International Limited, [Online]. Available: https://www.researchgate.net/publication/339952803 (2020).Ali Al-Zubaydi, J. H. & Al-Turaihi, A. S. Slope stability analysis some selected sites at Bajalia anticline in Missan Governorate, Eastern Iraq. Iraqi J. Sci. 65 (7), 3824–3833. https://doi.org/10.24996/ijs.2024.65.7.22 (2024).
    Google Scholar 
    Sabah, Y. & Yacoub Geomorphology of the Mesopotamian plain: A critical review. J. Earth Sci. Geotech. Eng. 10 (4), 1–25 (2010).
    Google Scholar 
    Yacoub, S. Y. Geomorphology of the mesopotamia plain. Iraqi Bull. Geol. Min.     (4), (2011).Mustafa, M. M. Mineral resources and industrial deposits in the mesopotamia plain. Geology of the Mesopotamia Plain, p. 7-32 (2011).Al-Hasani, B. et al. Integrated geospatial approach for adaptive rainwater harvesting site selection under the impact of climate change. Stoch. Env. Res. Risk Assess. 38 (3), 1009–1033 https://doi.org/10.1007/s00477-023-02611-0 (2024).Maaroof, B. et al. Environmental assessment of Al-Hillah River pollution at Babil Governorate (Iraq). J. Geographical Inst. Jovan Cvijic SASA. 73 (1), 1–16 https://doi.org/10.2298/IJGI2301001M (2023).
    Google Scholar 
    Hasani, B. A. L. et al. Rainwater harvesting site assessment using Geospatial technologies in a Semi-Arid region: toward water sustainability. Water (Basel). 17 (15), 2317 https://doi.org/10.3390/w17152317 (2025).
    Google Scholar 
    Maaroof, B. F. Geomorphological Assessment Using Geoinformatics Applications of the Sloping System of Al-Ashaali Drainage Basin at Iraqi Southern Desert. Iraqi Natl. J. Earth Sci. 22 (1), 38–54 https://doi.org/10.33899/earth.2022.133146.1009 (2022).
    Google Scholar 
    Maaroof, B. F. Quantitative analysis using Geospatial modeling of al-rahimawi watershed’s shape properties in the Iraqi Southern desert. Bull. Iraq Nat. History Museum. 18 (2), 277–295. https://doi.org/10.26842/binhm.7.2024.18.2.0277 (2024).
    Google Scholar 
    Getu, L. A., Nagy, A. & Addis, H. K. Soil loss Estimation and severity mapping using the RUSLE model and GIS in Megech watershed, Ethiopia. Environ. Challenges. 8 https://doi.org/10.1016/j.envc.2022.100560 (2022).Prasannakumar, V., Vijith, H., Abinod, S. & Geetha, N. Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala, India, using revised universal soil loss equation (RUSLE) and geo-information technology. Geosci. Front. 3 (2), 209–215. https://doi.org/10.1016/j.gsf.2011.11.003 (2012).
    Google Scholar 
    Chuenchum, P., Xu, M. & Tang, W. Predicted trends of soil erosion and sediment yield from future land use and climate change scenarios in the Lancang–Mekong River by using the modified RUSLE model. Int. Soil. Water Conserv. Res. 8 (3), 213–227 https://doi.org/10.1016/j.iswcr.2020.06.006 (2020).
    Google Scholar 
    Schmidt, S., Tresch, S. & Meusburger, K. Modification of the RUSLE slope length and steepness factor (LS-factor) based on rainfall experiments at steep alpine grasslands. MethodsX 6, 219–229 https://doi.org/10.1016/j.mex.2019.01.004 (2019).
    Google Scholar 
    Mahgoub, M., Elalfy, E., Soussa, H. & Abdelmonem, Y. Relation between the soil erosion cover management factor and vegetation index in semi-arid basins. Environ. Earth Sci. 83 (10), 337 https://doi.org/10.1007/s12665-024-11593-3 (2024).
    Google Scholar 
    Shekar, P. R. & Mathew, A. GIS-based assessment of soil erosion and sediment yield using the revised universal soil loss equation (RUSLE) model in the Murredu Watershed, Telangana, India. HydroResearch 7, 315–325 https://doi.org/10.1016/j.hydres.2024.05.003 (2024).
    Google Scholar 
    Joshi, P. et al. Himalayan watersheds in Nepal record high soil erosion rates estimated using the RUSLE model and experimental erosion plots. Heliyon 9 (5), https://doi.org/10.1016/j.heliyon.2023.e15800 (2023).Zhang, Y. et al. Dynamic analysis of soil erosion in the affected area of the lower yellow river based on RUSLE model. Heliyon 10 (1). https://doi.org/10.1016/j.heliyon.2023.e23819 (2024).Wiltshire, C. et al. Evaluating erosion risk models in a Scottish catchment using organic carbon fingerprinting. J. Soils Sediments. https://doi.org/10.1007/s11368-024-03850-6 (2024).
    Google Scholar 
    Naipal, V., Reick, C., Pongratz, J. & Van Oost, K. Improving the global applicability of the RUSLE model – Adjustment of the topographical and rainfall erosivity factors. Geosci. Model. Dev. 8 (9), 2893–2913 https://doi.org/10.5194/gmd-8-2893-2015 (2015).
    Google Scholar 
    Terefe, B. et al. Comparative analysis of RUSLE and SWPT for sub-watershed conservation prioritization in the Ayu watershed, Abay basin Ethiopia. Heliyon 10 (15). https://doi.org/10.1016/j.heliyon.2024.e35132 (2024).Olika, G., Fikadu, G. & Gedefa, B. GIS based soil loss assessment using RUSLE model: A case of Horo district, Western Ethiopia. Heliyon 9 (2), https://doi.org/10.1016/j.heliyon.2023.e13313 (2023).Pandey, R., Mehta, D., Kumar, V. & Prakash Pradhan, R. Quantifying soil erosion and soil organic carbon conservation services in Indian forests: A RUSLE-SDR and GIS-based assessment. Ecol. Indic. 163 https://doi.org/10.1016/j.ecolind.2024.112086 (2024).Yan, R., Zhang, X., Yan, S. & Chen, H. Estimating soil erosion response to land use/cover change in a catchment of the Loess Plateau, China. Int. Soil. Water Conserv. Res. 6 (1), 13–22 https://doi.org/10.1016/j.iswcr.2017.12.002 (2018).
    Google Scholar 
    Ganasri, B. P. & Ramesh, H. Assessment of soil erosion by RUSLE model using remote sensing and GIS – A case study of Nethravathi basin. Geosci. Front. 7, 953–961 https://doi.org/10.1016/j.gsf.2015.10.007 (2016).
    Google Scholar 
    Brychta, J., Podhrázská, J. & Šťastná, M. Review of methods of spatio-temporal evaluation of rainfall erosivity and their correct application. https://doi.org/10.1016/j.catena.2022.106454 (Elsevier B V, 2022)Dai, E., Lu, R. & Yin, J. Identifying the effects of landscape pattern on soil conservation services on the Qinghai-Tibet plateau. Glob Ecol. Conserv. 50 https://doi.org/10.1016/j.gecco.2024.e02850 (2024).Sinshaw, B. G. et al. Watershed-based soil erosion and sediment yield modeling in the rib watershed of the upper blue nile Basin, Ethiopia. Energy Nexus. 3 https://doi.org/10.1016/j.nexus.2021.100023 (2021).Talebi, A. & Karimi, Z. Incorporation of management responses in the direction of soil erosion changes from the past to the future based on the RUSLE and DPSIR model. https://doi.org/10.1016/j.indic.2024.100412 (Elsevier B V, 2024)George, J., Kumar, K. S. & Hole, R. M. Geospatial modelling of soil erosion and risk assessment in Indian Himalayan region—A study of Uttarakhand state. Environ. Adv. 4 https://doi.org/10.1016/j.envadv.2021.100039 (2021).Li, P., Xie, Z., Yan, Z., Dong, R. & Tang, L. Assessment of vegetation restoration impacts on soil erosion control services based on a biogeochemical model and RUSLE. J. Hydrol. Reg. Stud. 53 https://doi.org/10.1016/j.ejrh.2024.101830 (2024).Download referencesAcknowledgementsThe authors thank the Department of Applied Geology at the University of Babylon and the Department of Civil Engineering and Built Environment at Liverpool John Moores University for their scientific support throughout this study.FundingOpen access funding provided by Lulea University of Technology.Author informationAuthors and AffiliationsDepartment of Geography, University of Babylon, Hillah, 51001, Babil, IraqBashar F. MaaroofDepartment of General Sciences, University of Misan, Amarah, 62001, Misan, IraqHashim H. KareemDepartment of Applied Geology, University of Babylon, Hillah, 51001, Babil, IraqJaffar H. Al-ZubaydiDepartment of Civil, Environmental, and Natural Resources Engineering, Lulea University of Technology, Lulea, 97187, SwedenNadhir Al-AnsariDepartment of Geography, University of Fayoum, Fayoum, 63511, EgyptMohamed Alkhuzamy AzizDepartment of Geography, University of Wasit, Wasit, 52001, IraqDhia Alden A. AL-QuraishyFaculty of Engineering Technology, Civil Engineering and Built Environment Department, Liverpool John Moores University, Liverpool, L3 5UX, UKBan AL-Hasani, Mawada Abdellatif & Iacopo CarnacinaRemote Sensing Center, University of Mosul, Mosul, 6231, AZ, IraqRayan G. ThannounDepartment of Geology, University of Baghdad, Baghdad, 10001, IraqManal Sh. Al-KubaisiFaculty of Science, Department of Environmental Sustainability, Lakehead University, 500 University Avenue, Orillia, ON, L3V 0B9, CanadaSama S. Al-MaarofiAuthorsBashar F. MaaroofView author publicationsSearch author on:PubMed Google ScholarHashim H. KareemView author publicationsSearch author on:PubMed Google ScholarJaffar H. Al-ZubaydiView author publicationsSearch author on:PubMed Google ScholarNadhir Al-AnsariView author publicationsSearch author on:PubMed Google ScholarMohamed Alkhuzamy AzizView author publicationsSearch author on:PubMed Google ScholarDhia Alden A. AL-QuraishyView author publicationsSearch author on:PubMed Google ScholarBan AL-HasaniView author publicationsSearch author on:PubMed Google ScholarMawada AbdellatifView author publicationsSearch author on:PubMed Google ScholarIacopo CarnacinaView author publicationsSearch author on:PubMed Google ScholarRayan G. ThannounView author publicationsSearch author on:PubMed Google ScholarManal Sh. Al-KubaisiView author publicationsSearch author on:PubMed Google ScholarSama S. Al-MaarofiView author publicationsSearch author on:PubMed Google ScholarContributionsBashar F. Maaroof: Project administration, conceptualization, data curation, formal analysis, investigation, methodology, supervision, validation, visualization, software, writing – original draft. Hashim H. Kareem: Supervise, visualize, methodology, resources, validate, write, review, and edit. Jaffar H. Al-Zubaydi: Supervision, data curation, formal analysis, validation, visualization, methodology, writing – review and editing. Nadhir Al-Ansari: Supervision, data curation, formal analysis, methodology, software, writing, review, and editing. Mohamed Alkhuzamy Aziz: Supervision, data curation, formal analysis, methodology, software, writing, review, and editing. Dhia Alden A. AL-Quraishy: Visualization, data curation, formal analysis, methodology, software, writing, review, and editing. Ban AL-Hasani: Formal analysis, methodology, validation. Mawada Abdellatif: Formal analysis, methodology, validation. Iacopo Carnacina: Formal analysis, methodology, validation. Rayan G. Thannoun: Data curation, formal analysis, methodology, validation. Manal Sh. Al-Kubaisi: Formal analysis, methodology, validation. Sama Al-Maarofi: Formal analysis, methodology, validation.Corresponding authorCorrespondence to
    Nadhir Al-Ansari.Ethics declarations

    Competing interests
    The authors declare no competing interests.

    Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions
    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
    Reprints and permissionsAbout this articleCite this articleMaaroof, B.F., Kareem, H.H., Al-Zubaydi, J.H. et al. Estimating soil erosion utilizing geospatial method and revised universal soil loss equation (RUSLE) of Abu Ghraibat Watershed, Eastern Misan Governorate, Iraq.
    Sci Rep (2025). https://doi.org/10.1038/s41598-025-33403-xDownload citationReceived: 16 July 2025Accepted: 18 December 2025Published: 24 December 2025DOI: https://doi.org/10.1038/s41598-025-33403-xShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy shareable link to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative
    KeywordsGeohazardsSoil degradationGISRUSLEAbu ghraibat watershed More

  • in

    Experimental analysis of roasted and raw turtle butchery and implications for early human cognition and behaviour

    AbstractChelonid exploitation – including tortoises and freshwater turtles – has been increasingly recognised as a significant element of Palaeolithic subsistence in the Mediterranean and Iberian Peninsula. This study offers an experimental assessment of fire’s role in processing these reptiles, contrasting raw and roasted specimens to evaluate impacts on butchery efficiency, surface modifications, skeletal representation and lithic use-wear. The roasting process markedly reduced disarticulation effort and time, irrespective of the operator’s experience. Cut marks and percussion traces were more frequent in raw-processed individuals, while burnt specimens displayed extensive thermal damage, particularly on carapace plates. However, Fourier-Transform Infrared Spectroscopy (FTIR) revealed limited diagnostic potential for low-intensity thermal exposure. Conversely, lithic tools used in processing exhibited macroscopic edge damage and minor polishes, paralleling wear patterns documented in the butchery of other small fauna. These results align with archaeological evidence from multiple Iberian and Mediterranean sites, suggesting a culturally structured practice of in-shell roasting and anatomical disarticulation. The finds highlight fire’s role in labour optimisation and knowledge transmission, supporting broader discussions on small game exploitation and cognitive planning in early human behaviour.

    Data availability

    The datasets generated during and/or analysed during the current study are available in the CORA repository and can be accessed through the following links https:/dataverse.csuc.cat/dataset.xhtml?persistentId = doi%3A10.34810%2Fdata2413 and https:/dataverse.csuc.cat/dataset.xhtml?persistentId = doi%3A10.34810%2Fdata2412 Our study does not involve human participants in the usual sense. All individuals who appear in the images are the authors of the study and no other identifiable persons or patient data are included. For this reason, we consider a formal informed-consent statement from study participants not applicable. All authors explicitly agree to the publication of these images and any associated information in an online open-access format.
    ReferencesBiton, R., Sharon, G., Oron, M., Steiner, T. & Rabinovich, R. Freshwater turtle or tortoise? The exploitation of testudines at the Mousterian site of Nahal mahanayeem outlet, hula valley, israel. J. Archaeol. Sci. Rep. 14, 409–419. https://doi.org/10.1016/j.jasrep.2017.05.058 (2017).
    Google Scholar 
    Blasco, R. et al. The earliest evidence for human consumption of tortoises in the european early pleistocene from sima del elefante, sierra de atapuerca, spain. J. Hum. Evol. 61, 503–509. https://doi.org/10.1016/j.jhevol.2011.06.002 (2011).
    Google Scholar 
    Boneta I. Chelonians in the Iberian Peninsula Archaeological Record: Approximation to its study from the ensemble of the Chalcolithic site of Camino de las Yeseras. Unpublished PhD thesis submitted to Universidad Autónoma de Madrid, (Spain, 2022).Martin, L., Edwards, Y. & Garrard, A. Broad spectrum or specialised activity? Birds and tortoises at the epipalaeolithic site of wadi jilat 22 in the eastern jordan steppe. Antiquity 87, 649–665. https://doi.org/10.1017/S0003598X00049371 (2013).
    Google Scholar 
    Morales, J. V. & Sanchis, A. The quaternary fossil record of the genus Testudo in the Iberian Peninsula. Archaeological implications and diachronic distribution in the western Mediterranean. J. Archaeol. Sci. 36, 1152–1162. https://doi.org/10.1016/j.jas.2008.12.019 (2009).
    Google Scholar 
    Moya, R., Sanchis, A. & Fernández-López, J. Freshwater turtles and mesolithic human subsistence: Taxonomic and taphonomic study of the assemblages from El Collado (Oliva, Eastern Iberian Peninsula). J. Archaeol. Sci. Rep. 66, 105234. https://doi.org/10.1016/j.jasrep.2025.105234 (2025).
    Google Scholar 
    Real, C. et al. Abrigo de la quebrada level IV (Valencia, Spain): Interpreting a middle palaeolithic palimpsest from a zooarchaeological and lithic perspective. J. Paleolit. Archaeol. 3, 187–224. https://doi.org/10.1007/s41982-018-0012-z (2020).
    Google Scholar 
    Real, C. et al. Estudio de la fauna del nivel IV del Abrigo de la Quebrada y su aportación al conocimiento de la economía y el comportamiento humano en el Paleolítico medio de la vertiente Mediterránea Ibérica. Spal 28(2), 17–49. https://doi.org/10.12795/spal.2019.i28.13 (2019).
    Google Scholar 
    Sanchis, A., Morales, J.V., Pérez, L.J., Hernández, C.M., Galván, B. La tortuga mediterránea en yacimientos valencianos del Paleolítico medio: Distribución, origen de las acumulaciones y nuevos datos procedentes del Abric del Pastor (Alcoi, Alacant). In Preses petites i grups humans en el passat. II Jornades d’arqueozologia del Museu de Prehistòria de València. València: Museu de Prehistòria de València, pp. 97-120 (2015).Blasco, R. et al. Tortoises as a dietary supplement: A view from the middle pleistocene site of qesem cave, israel. Quatern. Sci. Rev. 133, 165–182. https://doi.org/10.1016/j.quascirev.2015.12.006 (2016).
    Google Scholar 
    Nabais, M. & Zilhão, J. The consumption of tortoise among Last Interglacial Iberian Neanderthals. Quatern. Sci. Rev. 217, 225–246. https://doi.org/10.1016/j.quascirev.2019.03.024 (2019).
    Google Scholar 
    Speth, J. D. & Tchernov, E. Middle Paleolithic Tortoise Use at Kebara Cave (Israel). J. Archaeol. Sci. 29, 471–483. https://doi.org/10.1006/jasc.2001.0740 (2002).
    Google Scholar 
    Stiner M. The Faunas of the Hayonim Cave Israel A 20.000-Year Record of Paleolithic Diet, Demography and Society. In Peabody Museum of Archaeology and Ethnology. (Harvard University, Cambridge, Massachusetts, 2005)Munro, N. D. & Grosman, L. Early evidence (ca. 12,000 B.P.) for feasting at a burial cave in Israel. Proc. Natl. Acad. Sci. U.S.A. 107, 15362–15366. https://doi.org/10.1073/pnas.1001809107 (2010).
    Google Scholar 
    Radu, V., Mărgărit, M., Voinea, V., Boroneant, A. & Dulama, I. D. Processing the Testudo carapace in prehistoric romania (8th and 5th millennia BC). Archaeol. Anthropol. Sci. 14, 60. https://doi.org/10.1007/s12520-022-01523-4 (2022).
    Google Scholar 
    Barkai, R., Rosell, J., Blasco, R. & Gopher, A. Fire for a reason: barbecue at middle pleistocene qesem Cave, israel. Curr. Anthropol. 58, S314–S328. https://doi.org/10.1086/691211 (2017).
    Google Scholar 
    Angelucci, D. E., Nabais, M. & Zilhão, J. Formation processes, fire use, and patterns of human occupation across the Middle Palaeolithic (MIS 5a–5b) of gruta da oliveira (Almonda karst system, Torres Novas, Portugal). PLoS ONE 18, e0292075. https://doi.org/10.1371/journal.pone.0292075 (2023).
    Google Scholar 
    MacDonald, K., Scherjon, F., Van Veen, E., Vaesen, K. & Roebroeks, W. Middle Pleistocene fire use: The first signal of widespread cultural diffusion in human evolution. Proc. Natl. Acad. Sci. U.S.A. 118, e2101108118. https://doi.org/10.1073/pnas.2101108118 (2021).
    Google Scholar 
    Roebroeks, W. & Villa, P. On the earliest evidence for habitual use of fire in Europe. Proc. Natl. Acad. Sci. U.S.A. 108, 5209–5214. https://doi.org/10.1073/pnas.1018116108 (2011).
    Google Scholar 
    Blasco, R. Human consumption of tortoises at Level IV of Bolomor Cave (Valencia, Spain). J. Archaeol. Sci. 35, 2839–2848. https://doi.org/10.1016/j.jas.2008.05.013 (2008).
    Google Scholar 
    Boneta, I., Pérez-García, A. & Liesau, C. Chelonians from the middle palaeolithic site of mealhada (Coimbra, Portugal): An update. Diversity 15, 243. https://doi.org/10.3390/d15020243 (2023).
    Google Scholar 
    Rhodin, A.G.J., Iverson, J.B., Bour, R., Fritz, U., Georges, A., Shaffer, H.B., van Dijk P.P. Turtles of the world: Annotated checklist and atlas of taxonomy, synonymy, distribution, and conservation status. In Conservation Biology of Freshwater Turtles and Tortoises: A Compilation Project of the IUCN/SSC Tortoise and Freshwater Turtle Specialist Group Chelonian Research Monographs 9th edn, Vol. 8 (Eds. Rhodin, A.G.J., Iverson, J.B., van Dijk, P.P., Stanford, C.B., Goode, E.V., Buhlmann, K.A., & Mittermeier, R.A.) 1–472 (2021).Nicholson, R. A morphological investigation of burnt animal bone and an evaluation of its utility in archaeology. J. Archaeol. Sci. 20, 411–428. https://doi.org/10.1006/jasc.1993.1025 (1993).
    Google Scholar 
    Shipman, P., Foster, G. & Schoeninger, M. Burnt bones and teeth: An experimental study of color, morphology, crystal structure and shrinkage. J. Archaeol. Sci. 11, 307–325. https://doi.org/10.1016/0305-4403(84)90013-X (1984).
    Google Scholar 
    Simonsen, K. P., Rasmussen, A. R., Mathisen, P., Petersen, H. & Borup, F. A fast preparation of skeletal materials using enzyme maceration. J. Forensic Sci. 56, 480–484. https://doi.org/10.1111/j.1556-4029.2010.01668.x (2011).
    Google Scholar 
    Kamminga, J. The Nature of Use Polish and Abrasive Smoothing on Stone Tools. In Lithic Use-wear Analysis (ed. Hayden, B.) 143–158 (Academic Press, 1979).
    Google Scholar 
    Keeley, L. H. Experimental Determination of Stone Tool Uses (University of Chicago Press, 1980).
    Google Scholar 
    Plisson, H. Etude fonctionnelle d’outillages lithiques prehistoriques par l’analyse des micro-usures: Recherche méthodologique et archéologique. PhD thesis, Université Paris I (1985).Tringham, R., Cooper, G., Odell, G., Voytek, B. & Whitman, A. Experimentation in the formation of edge damage: A new approach to lithic analysis. J. Field Archeol. 1, 171–196. https://doi.org/10.1179/jfa.1974.1.1-2.171 (1974).
    Google Scholar 
    Andrefsky W. Lithics: Macroscopic approaches to analysis. In 2nd edition (Cambridge University Press, 2005).Claud, E. et al. Le référentiel des outils lithiques. Palethnologie. https://doi.org/10.4000/palethnologie.5142 (2019).
    Google Scholar 
    Claud, E. et al. The practices used by the neanderthals in the acquisition and exploitation of plant and animal resources and the function of the sites studied: Summary and discussion. Palethnologie https://doi.org/10.4000/palethnologie.4179 (2019).
    Google Scholar 
    McPherron, S. et al. An experimental assessment of the influences on edge damage to lithic artifacts: a consideration of edge angle, substrate grain size, raw material properties, and exposed face. J. Archaeol. Sci. 49, 70–82. https://doi.org/10.1016/j.jas.2014.04.003 (2014).
    Google Scholar 
    González Urquijo, J. E. & Ibáñez Estévez, J. J. Metodologia de análisis functional de instrumentos tallados en sílex (Universidad de Deusto, 1994).
    Google Scholar 
    Semenov, S. A. Prehistoric Technology: An Experimental Study of the Oldest Tools and Artefacts from Traces of Manufacture and Wear (Cory, Adams & Mackay, London, 1964).
    Google Scholar 
    Costamagno, S., Claud, E., Thiébaut, C., Chacón, M. & Soulier, M. C. L’exploitation des ressources végétales et animales au paléolithique: quels outils méthodologiques pour quelles questions?. Palethnologie https://doi.org/10.4000/palethnologie.3866 (2019).
    Google Scholar 
    Greiner, M. et al. Bone incineration: An experimental study on mineral structure, colour and crystalline state. J. Archaeol. Sci. Rep. 25, 507–518. https://doi.org/10.1016/j.jasrep.2019.05.009 (2019).
    Google Scholar 
    Lebon, M. et al. New parameters for the characterization of diagenetic alterations and heat-induced changes of fossil bone mineral using Fourier transform infrared spectrometry. J. Archaeol. Sci. 37, 2265–2276. https://doi.org/10.1016/j.jas.2010.03.024 (2010).
    Google Scholar 
    Jia, X. & Sit, M. M. Laminated tortoise scepter. Gems Gemology 52, 419–420 (2016).
    Google Scholar 
    Alashwal, B.Y., Gupta, A., Husain, M.S.B., Characterization of dehydrated keratin protein extracted from chicken feather. In IOP Conference Series: Materials Science and Engeneering, 702 012033 https://doi.org/10.1088/1757-899X/702/1/012033 (2019).Hainschwang, T. & Leggio, L. The characterization of tortoise shell and its imitations. Gem. Gemol. 42, 36–52 (2006).
    Google Scholar 
    Hua, K. et al. Assessment of the defatting efficacy of mechanical and chemical treatment for allograft cancellous bone and its effects on biomechanics properties of bone. Orthop. Surg. 12, 617–630. https://doi.org/10.1111/os.12639 (2020).
    Google Scholar 
    Mattiello, S. et al. Physico-Chemical characterization of keratin from wool and chicken feathers extracted using refined chemical methods. Polymers (Basel) 15, 181. https://doi.org/10.3390/polym15010181 (2022).
    Google Scholar 
    Scaggion, C. et al. An FTIR-based model for the diagenetic alteration of archaeological bones. J. Archaeol. Sci. 161, 105900. https://doi.org/10.1016/j.jas.2023.105900 (2024).
    Google Scholar 
    Koon, H. E. C., Nicholson, R. A. & Collins, M. J. A practical approach to the identification of low temperature heated bone using TEM. J. Archaeol. Sci. 30, 1393–1399. https://doi.org/10.1016/S0305-4403(03)00034-7 (2003).
    Google Scholar 
    Mamede, A. et al. The potential of bioapatite hydroxyls for research on archaeological burned bone. Anal. Chem. https://doi.org/10.1021/acs.analchem.8b02868 (2018).
    Google Scholar 
    Alibardi, L. & Toni, M. Skin structure and cornification proteins in the soft-shelled turtle Trionyx spiniferus. Zoology (Jena) 109, 182–195. https://doi.org/10.1016/j.zool.2005.11.005 (2006).
    Google Scholar 
    Rosa, J. et al. The effects of exogenous substances on the color of heated bones. Am. J. Biol. Anthropol. 184, e24905. https://doi.org/10.1002/ajpa.24905 (2024).
    Google Scholar 
    Asaikkutti, A., Bhavan, P. S., Vimala, K., Karthik, M. & Cheruparambath, P. Dietary supplementation of green synthesized manganese-oxide nanoparticles and its effect on growth performance, muscle composition and digestive enzyme activities of the giant freshwater prawn Macrobrachium rosenbergii. J. Trace Elem. Med. Biol. 35, 7–17. https://doi.org/10.1016/j.jtemb.2016.01.005 (2016).
    Google Scholar 
    Meza, E., Ferreira, L M. Agencia Indígena y Colonialismo Una arqueología de contacto sobre la producción de aceite de tortuga en el Orinoco Medio, Venezuela (siglos XVIII y XIX). Amazônica: Revista de Antropologia 7 377 402 (2015).Guevara Chumacero, M., Pichardo Fragoso, A. & Martínez, Cornelio M. La tortuga en tabasco: comida, identidad y representación. Estud. De Cultura Maya 49(97), 122. https://doi.org/10.19130/iifl.ecm.2017.49.758 (2016).
    Google Scholar 
    Ferronato, B. & Georges, A. Distribution of freshwater turtle rock art and archaeological sites in australia: A glimpse into aboriginal use of chelonians. Herpetol. Conserv. Biol. 18, 374–391 (2023).
    Google Scholar 
    Sudiana, I.G. N., Ardika, I. W., Parimartha, I. G., Titib, I. M. Exploitation and protection of turtles at Serangan and Tanjung Benoa villages South Bali in the perspective of cultural studies. E-J. Cult. Stud. ISSN 2338–2449. Available at: https://ojs.unud.ac.id/index.php/ecs/article/view/3577 (2012).Susilo, E., Isdianto, A., Parawangsa, I. N. Y., Fathah, A. L. & Putri, B. M. Balancing tradition and conservation: The use of turtles in Balinese ceremonies and its environmental implications. Int. J. Environ. Impact. 7, 233–243. https://doi.org/10.18280/ijei.070208 (2024).
    Google Scholar 
    Charnov, E. L. Optimal foraging, the marginal value theorem. Theor. Popul. Biol. 9, 129–136. https://doi.org/10.1016/0040-5809(76)90040-X (1976).
    Google Scholar 
    Stephens, D. W. & Krebs, J. R. Foraging Theory Monographies in Behaviour and Ecology (Princeton University Press, 1987).
    Google Scholar 
    Stiner, M. Thirty years on the “Broad Spectrum Revolution” and paleolithic demography. PNAS 98, 6993–6996. https://doi.org/10.1073/pnas.121176198 (2001).
    Google Scholar 
    Stiner, M. & Munro, N. Approaches to prehistoric diet breadth, demography, and prey ranking systems in time and space. J. Archaeol. Method. Theor. 9, 181–214. https://doi.org/10.1023/A:1016530308865 (2002).
    Google Scholar 
    Stiner, M. C., Munro, N. D., Surovell, T. A., Tchernov, E. & Bar-Yosef, O. Paleolithic population growth pulses evidenced by small animal exploitation. Science 283, 190–194. https://doi.org/10.1126/science.283.5399.190 (1999).
    Google Scholar 
    Laland, K., Matthews, B. & Feldman, M. W. Ahn introduction to niche construction theory. Evol. Ecol. 30, 191–202. https://doi.org/10.1007/s10682-016-9821-z (2016).
    Google Scholar 
    Odling-Smee, F. J., Laland, K. N., Feldman, M. W., Niche construction: The neglected process in evolution. In Monographies in Population Biology Vol. 37 (Princeton University Press 2003).Zeder, M. The broad spectrum revolution at 40: Resource diversity, intensification, and an alternative to optimal foraging explanations. J. Anthropol. Archaeol. 31, 241–264. https://doi.org/10.1016/j.jaa.2012.03.003 (2012).
    Google Scholar 
    Quintanilha, L. et al. Carcass traits of amazon turtles (Podocnemis Expansa) reared in captivity in Brazil. Int. J. Plant Anim. Environ. Sci. 3, 60–67 (2013).
    Google Scholar 
    Sorensen, A. C., Claud, E. & Soressi, M. Neanderal fire-making technology inferred from microwear analysis. Sci. Rep. 8, 10065. https://doi.org/10.1038/s41598-018-28342-9 (2018).
    Google Scholar 
    Stout, D. & Khreisheh, N. Skill learning and human brain evolution: An experimental approach. Camb. Archaeol. J. 25, 867–875. https://doi.org/10.1017/S0959774315000359 (2015).
    Google Scholar 
    Gowlett, J. The discovery of fire by humans: A long and convoluted process. Philos. Trans. Royal Soc. B: Biol. Sci. https://doi.org/10.1098/rstb.2015.0164 (2016).
    Google Scholar 
    Lew-Levy, S., Reckin, R., Lavi, N., Cristóbal-Azkarate, J. & Ellis-Davies, K. How do hunter-gatherer children learn subsistence skills? A meta-ethnographic review. Hum. Nat. 28, 367–394. https://doi.org/10.1007/s12110-017-9302-2 (2017).
    Google Scholar 
    MacDonald, K. Cross-cultural comparison of learning in human hunting. Hum. Nat. 18, 386–402. https://doi.org/10.1007/s12110-007-9019-8 (2007).
    Google Scholar 
    Benson-Amram, S., Dantzer, B., Stricker, G., Swanson, E. & Holekamp, K. Brain size predicts problem-solving ability in mammalian carnivores. Proc. Natl. Acad. Sci. 113, 2532–2537. https://doi.org/10.1073/pnas.1505913113 (2016).
    Google Scholar 
    Download referencesAcknowledgementsWe acknowledge the use of the Vertebrate Reference Collection (Osteoteca) of the Archaeosciences Laboratory of the Património Cultural I.P, in Lisbon, Portugal. We also extend our gratitude to the PRISC infrastructure (Portuguese Research Infrastructure of Scientific Collections) for their support.FundingFinancial support has been provided by the research project “PALAEO.WEST.IBERIA – Contrasting Dietary Patterns and Adaptive Responses among Modern Humans, Neanderthals and Pre-Neanderthals in the Atlantic Façade of Iberia” funded through the Fundação para a Ciência e a Tecnologia (FCT) Scientific Research and Technological Development (IC&DT) call across all scientific domains, Call Reference MPr-2023–12, project number 2023.16301.ICDT. This research was also funded by Mariana Nabais’ postdoc contract for project “SMALLPREY – Neanderthal and Anatomically Modern Human interactions with small prey in Atlantic Iberia throughout the changing environments of the Pleistocene”, as part of the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101034349, and from the State Research Agency of the Spanish Ministry of Science and Innovation through the Program Maria de Maeztu Unit of Excellence (CEX2019-000945-M). Additional support has been given by Portuguese funds through FCT – Fundação para a Ciência e a Tecnologia in the framework of the project “UID/00698/2025 (doi.org/https://doi.org/10.54499/UID/00698/2025): Centre for Archaeology. University of Lisbon”. Ruth Blasco develops her work within the project PID 2022-138590NB-C41 funded by MCIN/AEI/https://doi.org/10.13039/501100011033/FEDER, UE and the projects 2021-SGR-01237 and CLT009/22/000045 funded by the Generalitat de Catalunya. Ruth Blasco is supported by a Ramon y Cajal research contract by the Spanish Ministry of Science and Innovation (RYC 2019–026386-I). Valentina Lubrano is beneficiary of a FCT Doctoral Grant (reference: 2021.05263.BD). Anna Rufà is currently a beneficiary of a CEEC – 3rd Edition research contract promoted by the Portuguese FCT (reference: 2020. 00877.CEECIND) and her research is also funded in part by the Fundação para a Ciência e Tecnologia, I.P. (FCT, https://ror.org/00snfqn589) under the grant UID/0421. Mariana Nabais, Ruth Blasco, Valentina Lubrano and Anna Rufà also participate in the Spanish MICINN project NEANDIVERSITY2, PID2022-138590NB-C41.Author informationAuthors and AffiliationsUNIARQ – Centre for Archaeology, University of Lisbon, Lisbon, PortugalMariana Nabais & Marina IgrejaSWAD – South-West Archaeology Digs, Moura, PortugalMariana NabaisIPHES-CERCA – Catalan Institute of Human Palaeoecology and Social Evolution, Tarragona, SpainRuth BlascoDepartment of History and Art History, Área de Prehistòria, Rovira i Virgili University, Tarragona, SpainRuth BlascoAutónoma University of Madrid, Madrid, SpainIratxe BonetaArqueozoo S.L, Madrid, SpainIratxe BonetaLARC – Archaeosciences Laboratory (LARC), Património Cultural I.P, Lisbon, PortugalDavid Gonçalves & Marina IgrejaResearch Centre for Anthropology and Health, Department of Life Sciences, University of Coimbra, Coimbra, PortugalDavid GonçalvesCentre for Functional Ecology, Laboratory of Forensic Anthropology, Department of Life Sciences, University of Coimbra, Coimbra, PortugalDavid GonçalvesCIBIO – Research Centre in Biodiversity and Genetic Resources, University of Porto, Porto, PortugalMarina IgrejaICArEHB – Interdisciplinary Center for Archaeology and the Evolution of Human Behaviour, University of Algarve, Faro, PortugalValentina Lubrano & Anna RufàPACEA UMR 5199, University of Bordeaux, Bordeaux, FranceAnna RufàAuthorsMariana NabaisView author publicationsSearch author on:PubMed Google ScholarRuth BlascoView author publicationsSearch author on:PubMed Google ScholarIratxe BonetaView author publicationsSearch author on:PubMed Google ScholarDavid GonçalvesView author publicationsSearch author on:PubMed Google ScholarMarina IgrejaView author publicationsSearch author on:PubMed Google ScholarValentina LubranoView author publicationsSearch author on:PubMed Google ScholarAnna RufàView author publicationsSearch author on:PubMed Google ScholarContributionsConceptualisation: MN Data curation: MN Formal analysis: MN, MI, DG Funding acquisition: MN, AR, RB Investigation: MN, MI, DG Methodology: MN, IB, MI, DG Resources: MN, AR, MI, DG Visualisation: MN, MI, DG Writing – original draft: MN, MI, DG Writing – review & editing: MN, AR, IB, MI, VL, RB, DG.Corresponding authorCorrespondence to
    Mariana Nabais.Ethics declarations

    Competing interests
    The authors declare no competing interests.

    Informed consent
    Our study does not involve human participants in the usual sense. All individuals who appear in the images are the authors of the study and no other identifiable persons or patient data are included. For this reason, we consider a formal informed-consent statement from study participants not applicable. All authors explicitly agree to the publication of these images and any associated information in an online open-access format.

    Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary InformationSupplementary Information 1.Supplementary Information 2.Supplementary Information 3.Supplementary Information 4.Rights and permissions
    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
    Reprints and permissionsAbout this articleCite this articleNabais, M., Blasco, R., Boneta, I. et al. Experimental analysis of roasted and raw turtle butchery and implications for early human cognition and behaviour.
    Sci Rep (2025). https://doi.org/10.1038/s41598-025-31738-zDownload citationReceived: 03 July 2025Accepted: 04 December 2025Published: 24 December 2025DOI: https://doi.org/10.1038/s41598-025-31738-zShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy shareable link to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative
    KeywordsExperimental archaeologyTaphonomySubsistence strategiesLithic use-wearFTIRChelonids More