1.
Chang, L. L. Y. Carbonates. In Non-silicates: Sulphates, carbonates, phosphates, halides 5B, 95–288 (The Geological Society, New York, 1998).
2.
Hazen, R. M., Downs, R. T., Jones, A. P. & Kah, L. Carbon mineralogy and crystal chemistry. Rev. Miner. Geochem. 75, 7–46 (2013).
CAS Article Google Scholar
3.
Martin, J. B. Carbonate minerals in the global carbon cycle. Chem. Geol. 449, 58–72 (2017).
ADS CAS Article Google Scholar
4.
Curti, E. Coprecipitation of radionuclides with calcite: estimation of partition coefficients based on a review of laboratory investigations and geochemical data. Appl. Geochem. 14, 433–445 (1999).
CAS Article Google Scholar
5.
Stipp, S. L. S., Christensen, J. T., Lakshtanov, L. Z., Baker, J. A. & Waight, T. E. Rare earth element (REE) incorporation in natural calcite: upper limits for actinide uptake in a secondary phase. Radiochim. Acta 94, 523–528 (2006).
CAS Article Google Scholar
6.
Olsson, J., Stipp, S. L. S., Makovicky, E. & Gislason, S. R. Metal scavenging by calcium carbonate at the Eyjafjallajökull volcano: a carbon capture and storage analogue. Chem. Geol. 384, 135–148 (2014).
ADS CAS Article Google Scholar
7.
Drake, H. et al. Incorporation of metals into calcite in a deep anoxic granite aquifer. Environ. Sci. Technol. 52, 493–502 (2018).
ADS CAS PubMed Article Google Scholar
8.
Chi, J., Zhang, W., Wang, L. & Putnis, C. V. Direct observations of the occlusion of soil organic matter within calcite. Environ. Sci. Technol. 53, 8097–8104 (2019).
ADS CAS PubMed Article Google Scholar
9.
Ware, J. R., Smith, S. V. & Reaka-Kudla, M. L. Coral reefs: sources or sinks of atmospheric CO2?. Coral Reefs 11, 127–130 (1992).
ADS Article Google Scholar
10.
Kelemen, P. B. & Matter, J. In situ carbonation of peridotite for CO2 storage. Proc. Natl. Acad. Sci. USA 105, 17295–17300 (2008).
ADS CAS Article Google Scholar
11.
Kunhikrishnan, A. et al. Functional relationships of soil acidification, liming, and greenhouse gas flux. Adv. Agron. 139, 1–71 (2016).
Article Google Scholar
12.
Holland, J. E. et al. Liming impacts on soils, crops and biodiversity in the UK: a review. Sci. Total Environ. 610–611, 316–332 (2018).
ADS PubMed Article CAS Google Scholar
13.
McBride, M. B. Reactions controlling heavy metal solubility in soils. Advances in Soil Science 10th edn. (Springer, New York, 1989).
Google Scholar
14.
Lee, S. H., Lee, J. S., Jeong Choi, Y. & Kim, J. G. In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments. Chemosphere 77, 1069–1075 (2009).
ADS CAS PubMed Article Google Scholar
15.
Phillips, A. J. et al. Engineered applications of ureolytic biomineralization: a review. Biofouling 29, 715–733 (2013).
CAS PubMed Article Google Scholar
16.
Kumari, D. et al. Microbially-induced carbonate precipitation for immobilization of toxic metals. Adv. Appl. Microbiol. 94, 79–108 (2016).
CAS PubMed Article Google Scholar
17.
Gat, D., Ronen, Z. & Tsesarsky, M. Long-term sustainability of microbial-induced CaCO3 precipitation in aqueous media. Chemosphere 184, 524–531 (2017).
ADS CAS PubMed Article Google Scholar
18.
Guo, J. H. et al. Significant acidification in major chinese croplands. Science 327, 1008–1010 (2010).
ADS CAS PubMed Article Google Scholar
19.
Rice, K. C. & Herman, J. S. Acidification of earth: an assessment across mechanisms and scales. Appl. Geochem. 27, 1–14 (2012).
CAS Article Google Scholar
20.
Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: the other CO2 problem. Ann. Rev. Mar. Sci. 1, 169–192 (2009).
PubMed Article Google Scholar
21.
Feely, R. A. et al. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305, 362–366 (2004).
ADS CAS PubMed Article Google Scholar
22.
Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).
ADS CAS PubMed Article Google Scholar
23.
Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).
ADS CAS PubMed Article Google Scholar
24.
Sulpis, O. et al. Current CaCO3 dissolution at the seafloor caused by anthropogenic CO2. Proc. Natl. Acad. Sci. USA. 115, 11700–11705 (2018).
ADS CAS PubMed Article Google Scholar
25.
Kopáček, J. et al. Climate change increasing calcium and magnesium leaching from granitic alpine catchments. Environ. Sci. Technol. 51, 159–166 (2017).
ADS PubMed Article CAS Google Scholar
26.
Weyhenmeyer, G. A. et al. Widespread diminishing anthropogenic effects on calcium in freshwaters. Sci. Rep. 9, 1–10 (2019).
CAS Article Google Scholar
27.
Kirsch, K., Navarre-Sitchler, A. K., Wunsch, A. & McCray, J. E. Metal release from sandstones under experimentally and numerically simulated CO2 leakage conditions. Environ. Sci. Technol. 48, 1436–1442 (2014).
ADS CAS PubMed Article Google Scholar
28.
Wunsch, A., Navarre-Sitchler, A. K., Moore, J. & McCray, J. E. Metal release from limestones at high partial-pressures of CO2. Chem. Geol. 363, 40–55 (2014).
ADS CAS Article Google Scholar
29.
Palmer, M. R. & Edmond, J. M. Uranium in river water. Geochim. Cosmochim. Acta 57, 4947–4955 (1993).
ADS CAS Article Google Scholar
30.
Edmond, J. M. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science 258, 1594–1597 (1992).
ADS CAS PubMed Article Google Scholar
31.
Quezada-Hinojosa, R. P., Matera, V., Adatte, T., Rambeau, C. & Föllmi, K. B. Cadmium distribution in soils covering Jurassic oolitic limestone with high Cd contents in the Swiss Jura. Geoderma 150, 287–301 (2009).
ADS CAS Article Google Scholar
32.
Rambeau, C. M. C. et al. High cadmium concentrations in Jurassic limestone as the cause for elevated cadmium levels in deriving soils: a case study in Lower Burgundy, France. Environ. Earth Sci. 61, 1573–1585 (2010).
CAS Article Google Scholar
33.
Wen, Y., Li, W., Yang, Z., Zhang, Q. & Ji, J. Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region, Southwestern China. Chemosphere 245, 125620 (2020).
ADS CAS PubMed Article PubMed Central Google Scholar
34.
Qu, S., Wu, W., Nel, W. & Ji, J. The behavior of metals/metalloids during natural weathering: a systematic study of the mono-lithological watersheds in the upper Pearl River Basin, China. Sci. Total Environ. 708, 134572 (2020).
ADS CAS PubMed Article PubMed Central Google Scholar
35.
Xia, X. et al. Cadmium risk in the soil-plant system caused by weathering of carbonate bedrock. Chemosphere 254, 126799 (2020).
ADS CAS PubMed Article Google Scholar
36.
Morse, J. W. The kinetics of calcium carbonate dissolution and precipitation in carbonates: mineralogy and chemistry. Rev. Miner. Geochem. 11, 191–225 (1983).
Google Scholar
37.
Morse, J. W. & Arvidson, R. S. The dissolution kinetics of major sedimentary carbonate minerals. Earth Sci. Rev. 58, 51–84 (2002).
ADS CAS Article Google Scholar
38.
Morse, J. W., Arvidson, R. S. & Lüttge, A. Calcium carbonate formation and dissolution. Chem. Rev. 107, 342–381 (2007).
CAS PubMed Article Google Scholar
39.
Arvidson, R. S. et al. Magnesium inhibition of calcite dissolution kinetics. Geochim. Cosmochim. Acta 70, 583–594 (2006).
ADS CAS Article Google Scholar
40.
Harstad, A. O. & Stipp, S. L. S. Calcite dissolution: Effects of trace cations naturally present in Iceland spar calcites. Geochim. Cosmochim. Acta 71, 56–70 (2007).
ADS CAS Article Google Scholar
41.
Mackenzie, F. T. et al. Magnesian calcites: low-temperature occurrence, solubility and solid-solution behavior in carbonates: mineralogy and chemistry. Rev. Miner. Geochem. 11, 97–144 (1983).
Google Scholar
42.
Bischoff, W. D., Mackenzie, F. T. & Bishop, F. C. Stabilities of synthetic magnesian calcites in aqueous solution: comparison with biogenic materials. Geochim. Cosmochim. Acta 51, 1413–1423 (1987).
ADS CAS Article Google Scholar
43.
Busenberg, E. & Niel Plummer, L. Thermodynamics of magnesian calcite solid-solutions at 25 °C and 1 atm total pressure. Geochim. Cosmochim. Acta 53, 1189–1208 (1989).
ADS CAS Article Google Scholar
44.
Davis, K. J., Dove, P. M. & De Yoreo, J. J. The role of Mg2+ as an impurity in calcite growth. Science 290, 1134–1137 (2000).
ADS CAS PubMed Article PubMed Central Google Scholar
45.
Zhang, X., Wu, S. & Chen, F. Nano precipitates formed during the dissolution of calcite incorporated with Cu and Mn. Minerals 8, 484 (2018).
CAS Article Google Scholar
46.
Haese, R. R., Smith, J., Weber, R. & Trafford, J. High-magnesium calcite dissolution in tropical continental shelf sediments controlled by ocean acidification. Environ. Sci. Technol. 48, 8522–8528 (2014).
ADS CAS PubMed Article Google Scholar
47.
Rauls, M. et al. Influence of impurities on crystallization kinetics – a case study on ammonium sulfate. J. Cryst. Growth 213, 116–128 (2000).
ADS CAS Article Google Scholar
48.
Latta, D. E., Pearce, C. I., Rosso, K. M., Kemner, K. M. & Boyanov, M. I. Reaction of UVI with titanium-substituted magnetite: influence of Ti on UIV speciation. Environ. Sci. Technol. 47, 4121–4130 (2013).
ADS CAS PubMed Article Google Scholar
49.
World Data Centre for Greenhouse Gases (WDCGG). https://gaw.kishou.go.jp.
50.
RRUFFa. https://rruff.info/repository/sample_child_record_powder/by_minerals/Smithsonite__R040035-1__Powder__DIF_File__3114.txt.
51.
RRUFFb. https://rruff.info/repository/sample_child_record_powder/by_minerals/Aragonite__R080142-9__Powder__DIF_File__11841.txt.
52.
RRUFFc. https://rruff.info/repository/sample_child_record_powder/by_minerals/Calcite__R050130-1__Powder__DIF_File__4388.txt.
53.
Reeder, R. J. Crystal chemistry of the rhombohedral carbonates in carbonates: mineralogy and chemistry. Rev. Miner. Geochem. 11, 1–47 (1983).
CAS Google Scholar
54.
Chang, L. L. Y. & Brice, W. R. Subsolidus phase relations in the system calcium carbonate-cadmium carbonate. Am. Miner. 56, 338–341 (1971).
Google Scholar
55.
Lorens, R. B. Sr. Cd, Mn and Co distribution coefficients in calcite as a function of calcite precipitation rate. Geochim. Cosmochim. Acta 45, 553–561 (1981).
ADS CAS Article Google Scholar
56.
Stipp, S. L., Hochella, M. F., Parks, G. A. & Leckie, J. O. Cd2+ uptake by calcite, solid-state diffusion, and the formation of solid-solution: Interface processes observed with near-surface sensitive techniques (XPS, LEED, and AES). Geochim. Cosmochim. Acta 56, 1941–1954 (1992).
ADS CAS Article Google Scholar
57.
Reeder, R. J. Interaction of divalent cobalt, zinc, cadmium, and barium with the calcite surface during layer growth. Geochim. Cosmochim. Acta 60, 1543–1552 (1996).
ADS CAS Article Google Scholar
58.
Tesoriero, A. J. & Pankow, J. F. Solid solution partitioning of Sr2+, Ba2+, and Cd2+ to calcite. Geochim. Cosmochim. Acta 60, 1053–1063 (1996).
ADS CAS Article Google Scholar
59.
Prieto, M., Cubillas, P. & Fernández-Gonzalez, Á. Uptake of dissolved Cd by biogenic and abiogenic aragonite: a comparison with sorption onto calcite. Geochim. Cosmochim. Acta 67, 3859–3869 (2003).
ADS CAS Article Google Scholar
60.
Horner, T. J., Rickaby, R. E. M. & Henderson, G. M. Isotopic fractionation of cadmium into calcite. Earth Planet. Sci. Lett. 312, 243–253 (2011).
ADS CAS Article Google Scholar
61.
Moureaux, C. et al. Effects of field contamination by metals (Cd, Cu, Pb, Zn) on biometry and mechanics of echinoderm ossicles. Aquat. Toxicol. 105, 698–707 (2011).
CAS PubMed Article PubMed Central Google Scholar
62.
Xu, M. et al. Heterogeneous growth of cadmium and cobalt carbonate phases at the (1014) calcite surface. Chem. Geol. 397, 24–36 (2015).
ADS CAS Article Google Scholar
63.
Lamble, G. M., Reeder, R. J. & Northrup, P. A. Characterization of heavy metal incorporation in calcite by XAFS spectroscopy. J. Phys. IV 7, 793–797 (1997).
CAS Google Scholar
64.
Reeder, R. J., Lamble, G. M. & Northrup, P. A. XAFS study of the coordination and local relaxation around Co2+, Zn2+, Pb2+ and Ba2+ trace elements in calcite. Am. Miner. 84, 1049–1060 (1999).
ADS CAS Article Google Scholar
65.
Cheng, L., Sturchio, N. C. & Bedzyk, M. J. Local structure of incorporated at the calcite surface: an X-ray standing wave and SEXAFS study. Phys. Rev. B Condens. Matter Mater. Phys. 61, 4877–4883 (2000).
ADS CAS Article Google Scholar
66.
Katsikopoulos, D., Fernández-González, Á, Prieto, A. C. & Prieto, M. Co-crystallization of Co(II) with calcite: implications for the mobility of cobalt in aqueous environments. Chem. Geol. 254, 87–100 (2008).
ADS CAS Article Google Scholar
67.
González-López, J. et al. Cobalt incorporation in calcite: thermochemistry of (Ca, Co)CO3 solid solutions from density functional theory simulations. Geochim. Cosmochim. Acta 142, 205–216 (2014).
ADS Article CAS Google Scholar
68.
González-López, J., Fernández-González, Á & Jiménez, A. Precipitation behaviour in the system Ca2+-Co2+-CO32+-H2O at ambient conditions: amorphous phases and CaCO3 polymorphs. Chem. Geol. 482, 91–100 (2018).
ADS Article CAS Google Scholar
69.
De Giudici, G. et al. Coordination environment of Zn in foraminifera Elphidium aculeatum and Quinqueloculina seminula shells from a polluted site. Chem. Geol. 477, 100–111 (2018).
ADS Article CAS Google Scholar
70.
Cheng, L. et al. High-resolution structural study of zinc ion incorporation at the calcite cleavage surface. Surf. Sci. 415, 976–982 (1998).
Article Google Scholar
71.
Elzinga, E. & Reeder, R. X-ray absorption spectroscopy study of Cu2+ and Zn2+ adsorption complexes at the calcite surface: implications for site-specific metal incorporation preferences during calcite crystal growth. Geochim. Cosmochim. Acta 66, 3943–3954 (2002).
ADS CAS Article Google Scholar
72.
Elzinga, E. J., Rouff, A. A. & Reeder, R. J. The long-term fate of Cu2+, Zn2+, and Pb2+ adsorption complexes at the calcite surface: an X-ray absorption spectroscopy study. Geochim. Cosmochim. Acta 70, 2715–2725 (2006).
ADS CAS Article Google Scholar
73.
Menadakis, M., Maroulis, G. & Koutsoukos, P. G. A quantum chemical study of doped CaCO3 (calcite). Comput. Mater. Sci. 38, 522–525 (2007).
CAS Article Google Scholar
74.
Liu, X., Lu, X., Liu, X. & Zhou, H. Atomistic simulation on mixing thermodynamics of calcite-smithsonite solid solutions. Am. Miner. 100, 172–180 (2015).
ADS Article Google Scholar
75.
van Dijk, I., de Nooijer, L. J., Wolthers, M. & Reichart, G. J. Impacts of pH and [CO32−] on the incorporation of Zn in foraminiferal calcite. Geochim. Cosmochim. Acta 197, 263–277 (2017).
ADS Article CAS Google Scholar
76.
Hoffmann, U. & Stipp, S. L. S. The behavior of Ni2+ on calcite surfaces. Geochim. Cosmochim. Acta 65, 4131–4139 (2001).
ADS CAS Article Google Scholar
77.
Lakshtanov, L. Z. & Stipp, S. L. S. Experimental study of nickel(II) interaction with calcite: adsorption and coprecipitation. Geochim. Cosmochim. Acta 71, 3686–3697 (2007).
ADS CAS Article Google Scholar
78.
Munsel, D. et al. Heavy metal incorporation in foraminiferal calcite: results from multi-element enrichment culture experiments with Ammonia tepida. Biogeosciences 7, 2339–2350 (2010).
ADS CAS Article Google Scholar
79.
Andersson, M. P., Sakuma, H. & Stipp, S. L. S. Strontium, nickel, cadmium, and lead substitution into calcite, studied by density functional theory. Langmuir 30, 6129–6133 (2014).
CAS PubMed Article PubMed Central Google Scholar
80.
Reeder, R. J., Nugent, M., Lamble, G. M., Tait, C. D. & Morris, D. E. Uranyl incorporation into calcite and aragonite: XAFS and luminescence studies. Environ. Sci. Technol. 34, 638–644 (2000).
ADS CAS Article Google Scholar
81.
Reeder, R. J. et al. Coprecipitation of uranium(VI) with calcite: XAFS, micro-XAS, and luminescence characterization. Geochim. Cosmochim. Acta 65, 3491–3503 (2001).
ADS CAS Article Google Scholar
82.
Chen, X., Romaniello, S. J., Herrmann, A. D., Wasylenki, L. E. & Anbar, A. D. Uranium isotope fractionation during coprecipitation with aragonite and calcite. Geochim. Cosmochim. Acta 188, 189–207 (2016).
ADS CAS Article Google Scholar
83.
Niu, Z. et al. Spectroscopic studies on U(VI) incorporation into CaCO3: effects of aging time and U(VI) concentration. Chemosphere 220, 1100–1107 (2019).
ADS CAS Article Google Scholar
84.
Kelly, S. D. et al. Uranyl incorporation in natural calcite. Environ. Sci. Technol. 37, 1284–1287 (2003).
ADS CAS Article Google Scholar
85.
Reeder, R. J. et al. Site-specific incorporation of uranyl carbonate species at the calcite surface. Geochim. Cosmochim. Acta 68, 4799–4808 (2004).
ADS CAS Article Google Scholar
86.
Wang, Z., Zachara, J. M., Mckinley, J. P. & Smith, S. C. Cryogenic laser induced U(VI) fluorescence studies of a U(VI) substituted natural calcite: implications to U(VI) speciation in contaminated hanford sediments. Environ. Sci. Technol. 39, 2651–2659 (2005).
ADS CAS PubMed Article Google Scholar
87.
Kelly, S. D., Rasbury, E. T., Chattopadhyay, S., Kropf, A. J. & Kemner, K. M. Evidence of a stable uranyl site in ancient organic-rich calcite. Environ. Sci. Technol. 40, 2262–2268 (2006).
ADS CAS PubMed Article Google Scholar
88.
Arai, Y., Marcus, M. A., Tamura, N., Davis, J. A. & Zachara, J. M. Spectroscopic evidence for uranium bearing precipitates in vadose zone sediments at the Hanford 300-area site. Environ. Sci. Technol. 41, 4633–4639 (2007).
ADS CAS PubMed Article Google Scholar
89.
Keul, N. et al. Incorporation of uranium in benthic foraminiferal calcite reflects seawater carbonate ion concentration. Geochem. Geophys. Geosyst. 14, 102–111 (2013).
ADS CAS Article Google Scholar
90.
Balboni, E., Morrison, J. M., Wang, Z., Engelhard, M. H. & Burns, P. C. Incorporation of Np(V) and U(VI) in carbonate and sulfate minerals crystallized from aqueous solution. Geochim. Cosmochim. Acta 151, 133–149 (2015).
ADS CAS Article Google Scholar
91.
Smith, K. F. et al. U(VI) behaviour in hyperalkaline calcite systems. Geochim. Cosmochim. Acta 148, 343–359 (2015).
ADS CAS Article Google Scholar
92.
Walker, S. M. & Becker, U. Uranyl(VI) and neptunyl(V) incorporation in carbonate and sulfate minerals: insight from first-principles. Geochim. Cosmochim. Acta 161, 19–35 (2015).
ADS CAS Article Google Scholar
93.
Lee, Y. J., Reeder, R. J., Wenskus, R. W. & Elzinga, E. J. Structural relaxation in the MnCO3–CaCO3 solid solution: a Mn K-edge EXAFS study. Phys. Chem. Miner. 29, 585–594 (2002).
ADS CAS Article Google Scholar
94.
Rouff, A. A., Elzinga, E. J., Reeder, R. J. & Fisher, N. S. X-ray absorption spectroscopic evidence for the formation of Pb(II) inner-Sphere adsorption complexes and precipitates at the calcite−water interface. Environ. Sci. Technol. 38, 1700–1707 (2004).
ADS CAS PubMed Article Google Scholar
95.
Kerisit, S. N. & Prange, M. P. Ab initio molecular dynamics simulation of divalent metal cation incorporation in calcite: implications for interpreting X-ray absorption spectroscopy data. ACS Earth Spectr. Chem. 3, 2582 (2019).
CAS Article Google Scholar
96.
Elzinga, E. J. et al. EXAFS study of rare-earth element coordination in calcite. Geochim. Cosmochim. Acta 66, 2875–2885 (2002).
ADS CAS Article Google Scholar
97.
Heberling, F., Denecke, M. A. & Bosbach, D. Neptunium(V) coprecipitation with calcite. Environ. Sci. Technol. 42, 471–476 (2008).
ADS CAS PubMed Article Google Scholar
98.
Sturchio, N. C., Antonio, M. R., Soderholm, L., Sutton, S. R. & Brannon, J. C. Tetravalent uranium in calcite. Science 281, 971–973 (1998).
ADS CAS PubMed Article Google Scholar
99.
Stumpf, T., Marques Fernandes, M., Walther, C., Dardenne, K. & Fanghänel, T. Structural characterization of Am incorporated into calcite: A TRLFS and EXAFS study. J. Colloid Interface Sci. 302, 240–245 (2006).
ADS CAS PubMed Article Google Scholar
100.
Podder, J. et al. Iodate in calcite and vaterite: insights from synchrotron X-ray absorption spectroscopy and first-principles calculations. Geochim. Cosmochim. Acta 198, 218–228 (2017).
ADS CAS Article Google Scholar
101.
Saslow, S. A. et al. Chromate effect on iodate incorporation into calcite. ACS Earth Spectr. Chem. 3, 1624–1630 (2019).
CAS Article Google Scholar
102.
Tang, Y., Elzinga, E. J., Jae Lee, Y. & Reeder, R. J. Coprecipitation of chromate with calcite: batch experiments and X-ray absorption spectroscopy. Geochim. Cosmochim. Acta 71, 1480–1493 (2007).
ADS CAS Article Google Scholar
103.
Aurelio, G. et al. Structural study of selenium(IV) substitutions in calcite. Chem. Geol. 270, 249–256 (2010).
ADS CAS Article Google Scholar
104.
Bardelli, F. et al. Arsenic uptake by natural calcite: an XAS study. Geochim. Cosmochim. Acta 75, 3011–3023 (2011).
ADS CAS Article Google Scholar
105.
Alexandratos, V. G., Elzinga, E. J. & Reeder, R. J. Arsenate uptake by calcite: macroscopic and spectroscopic characterization of adsorption and incorporation mechanisms. Geochim. Cosmochim. Acta 71, 4172–4187 (2007).
ADS CAS Article Google Scholar
106.
Füger, A., Konrad, F., Leis, A., Dietzel, M. & Mavromatis, V. Effect of growth rate and pH on lithium incorporation in calcite. Geochim. Cosmochim. Acta 248, 14–24 (2019).
ADS Article CAS Google Scholar
107.
vander Putten, E., Dehairs, F., Keppens, E. & Baeyens, W. High resolution distribution of trace elements in the calcite shell layer of modern Mytilus edulis: environmental and biological controls. Geochim. Cosmochim. Acta 64, 997–1011 (2000).
ADS CAS Article Google Scholar
108.
Vielzeuf, D. et al. Distribution of sulphur and magnesium in the red coral. Chem. Geol. 355, 13–27 (2013).
ADS CAS Article Google Scholar
109.
Trong Nguyen, L. et al. Distribution of trace element in Japanese red coral Paracorallium japonicum by μ-XRF and sulfur speciation by XANES: linkage between trace element distribution and growth ring formation. Geochim. Cosmochim. Acta 127, 1–9 (2014).
ADS CAS Article Google Scholar
110.
Tanaka, K. et al. Microscale magnesium distribution in shell of the Mediterranean mussel Mytilus galloprovincialis: an example of multiple factors controlling Mg/Ca in biogenic calcite. Chem. Geol. 511, 521–532 (2019).
ADS CAS Article Google Scholar
111.
Drake, H., Tullborg, E. L., Hogmalm, K. J. & Åström, M. E. Trace metal distribution and isotope variations in low-temperature calcite and groundwater in granitoid fractures down to 1km depth. Geochim. Cosmochim. Acta 84, 217–238 (2012).
ADS CAS Article Google Scholar
112.
Gabitov, R. I., Sadekov, A. & Migdisov, A. REE incorporation into calcite individual crystals as one time spike addition. Minerals 7, 1–11 (2017).
CAS Article Google Scholar
113.
Svensson, U. & Dreybrodt, W. Dissolution kinetics of natural calcite minerals in CO2-water systems approaching calcite equilibrium. Chem. Geol. 100, 129–145 (1992).
ADS CAS Article Google Scholar
114.
Eisenlohr, L., Meteva, K., Gabrovšek, F. & Dreybrodt, W. The inhibiting action of intrinsic impurities in natural calcium carbonate minerals to their dissolution kinetics in aqueous H2O–CO2 solutions. Geochim. Cosmochim. Acta 63, 989–1001 (1999).
ADS CAS Article Google Scholar
115.
Briese, L., Arvidson, R. S. & Luttge, A. The effect of crystal size variation on the rate of dissolution: a kinetic Monte Carlo study. Geochim. Cosmochim. Acta 212, 167–175 (2017).
ADS CAS Article Google Scholar
116.
Noiriel, C., Oursin, M. & Daval, D. Examination of crystal dissolution in 3D: a way to reconcile dissolution rates in the laboratory? Geochim. Cosmochim. Acta 273, 1–25 (2020).
ADS CAS Article Google Scholar
117.
Jacquat, O., Voegelin, A., Juillot, F. & Kretzschmar, R. Changes in Zn speciation during soil formation from Zn-rich limestones. Geochim. Cosmochim. Acta 73, 5554–5571 (2009).
ADS CAS Article Google Scholar
118.
Wilson, M. J. Weathering of the primary rock-forming minerals: processes, products and rates. Clay Miner. 39, 233–266 (2004).
ADS CAS Article Google Scholar
119.
Velde, B. & Alain, M. The Origin of Clay Minerals in Soils and Weathered Rocks (Springer, New York, 2008).
Google Scholar
120.
Nesbitt, H. W. Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature 279, 206–210 (1979).
ADS CAS Article Google Scholar
121.
Li, M. Y. H., Zhou, M. F. & Williams-Jones, A. E. The genesis of regolith-hosted heavy rare earth element deposits: insights from the world-class Zudong deposit in Jiangxi province, South China. Econ. Geol. 114, 541–568 (2019).
Article Google Scholar
122.
Li, M. Y. H. & Zhou, M. F. The role of clay minerals in formation of the regolith-hosted heavy rare earth element deposits. Am. Miner. 105, 92–108 (2020).
ADS Article Google Scholar
123.
Savage, K. S., Tingle, T. N., O’Day, P. A., Waychunas, G. A. & Bird, D. K. Arsenic speciation in pyrite and secondary weathering phases, Mother Lode Gold District, Tuolumne County, California. Appl. Geochem. 15, 1219–1244 (2000).
CAS Article Google Scholar
124.
Zhu, Y. et al. Characterization, dissolution and solubility of the hydroxypyromorphite-hydroxyapatite solid solution [(PbxCa1-x)5(PO4)3OH] at 25 °C and pH 2–9. Geochem. Trans. 17, 1–18 (2016).
ADS Article CAS Google Scholar
125.
Godelitsas, A., Astilleros, J. M., Hallam, K., Harissopoulos, S. & Putnis, A. Interaction of calcium carbonates with lead in aqueous solutions. Environ. Sci. Technol. 37, 3351–3360 (2003).
ADS CAS PubMed Article Google Scholar
126.
Schindler, M., Hawthorne, F. C., Putnis, C. & Putnis, A. Growth of uranyl-hydroxy-hydrate and uranyl-carbonate minerals on the (104) surface of calcite. Can. Mineral. 42, 1683–1697 (2004).
CAS Article Google Scholar
127.
Schindler, M. & Putnis, A. Crystal growth of schoepite on the (104) surface of calcite. Can. Mineral. 42, 1667–1681 (2004).
CAS Article Google Scholar
128.
Tang, H., Xian, H., He, H., Wei, J. & Liu, H. Science of the total environment kinetics and mechanisms of the interaction between the calcite (10.4) surface and Cu2+-bearing solutions. Sci. Total Environ. 668, 602–616 (2019).
ADS CAS PubMed Article Google Scholar
129.
Klasa, J. et al. An atomic force microscopy study of the dissolution of calcite in the presence of phosphate ions. Geochim. Cosmochim. Acta 117, 115–128 (2013).
ADS CAS Article Google Scholar
130.
Renard, F., Røyne, A. & Putnis, C. V. Timescales of interface-coupled dissolution-precipitation reactions on carbonates. Geosci. Front. 10, 17–27 (2019).
CAS Article Google Scholar
131.
Yang, T., Huh, W., Jho, J. Y. & Kim, I. W. Effects of fluoride and polymeric additives on the dissolution of calcite and the subsequent formation of fluorite. Colloids Surf. A 451, 75–84 (2014).
CAS Article Google Scholar
132.
Yuan, K., Lee, S. S., De Andrade, V., Sturchio, N. C. & Fenter, P. Replacement of calcite (CaCO3) by cerussite (PbCO3). Environ. Sci. Technol. 50, 12984–12991 (2016).
ADS CAS PubMed Article Google Scholar
133.
Pearce, M. A., Timms, N. E., Hough, R. M. & Cleverley, J. S. Reaction mechanism for the replacement of calcite by dolomite and siderite: implications for geochemistry, microstructure and porosity evolution during hydrothermal mineralisation. Contrib. Miner. Pet. 166, 995–1009 (2013).
ADS CAS Article Google Scholar
134.
Jonas, L., Müller, T., Dohmen, R., Baumgartner, L. & Putlitz, B. Transport-controlled hydrothermal replacement of calcite by Mg-carbonates. Geology 43, 779–783 (2015).
ADS CAS Article Google Scholar
135.
Kondratiuk, P., Tredak, H., Ladd, A. J. C. & Szymczak, P. Synchronization of dissolution and precipitation fronts during infiltration-driven replacement in porous rocks. Geophys. Res. Lett. 42, 2244–2252 (2015).
ADS Article Google Scholar
136.
Takahashi, Y., Miyoshi, T., Yabuki, S., Inada, Y. & Shimizu, H. Observation of transformation of calcite to gypsum in mineral aerosols by Ca K-edge X-ray absorption near-edge structure (XANES). Atmos. Environ. 42, 6535–6541 (2008).
ADS CAS Article Google Scholar
137.
Ruiz-Agudo, E. et al. Experimental study of the replacement of calcite by calcium sulphates. Geochim. Cosmochim. Acta 156, 75–93 (2015).
ADS CAS Article Google Scholar
138.
Ruiz-Agudo, E., Álvarez-Lloret, P., Putnis, C. V., Rodriguez-Navarro, A. B. & Putnis, A. Influence of chemical and structural factors on the calcite-calcium oxalate transformation. CrystEngComm 15, 9968–9979 (2013).
CAS Article Google Scholar
139.
Pedrosa, E. T., Boeck, L., Putnis, C. V. & Putnis, A. The replacement of a carbonate rock by fluorite: kinetics and microstructure. Am. Miner. 102, 126–134 (2017).
ADS Article Google Scholar
140.
Glover, E. D. & Sippel, R. F. Experimental pseudomorphs: replacement of calcite by fluorite. Am. Miner. 47, 1156–1165 (1962).
CAS Google Scholar
141.
Subhas, A. V. et al. Catalysis and chemical mechanisms of calcite dissolution in seawater. Proc. Natl. Acad. Sci. USA 114, 8175–8180 (2017).
ADS CAS PubMed Article PubMed Central Google Scholar
142.
Renard, F., Putnis, C. V., Montes-Hernandez, G. & King, H. E. Siderite dissolution coupled to iron oxyhydroxide precipitation in the presence of arsenic revealed by nanoscale imaging. Chem. Geol. 449, 123–134 (2017).
ADS CAS Article Google Scholar
143.
Marocchi, M., Bureau, H., Fiquet, G. & Guyot, F. In-situ monitoring of the formation of carbon compounds during the dissolution of iron(II) carbonate (siderite). Chem. Geol. 290, 145–155 (2011).
ADS CAS Article Google Scholar
144.
Perdikouri, C., Piazolo, S., Kasioptas, A., Schmidt, B. C. & Putnis, A. Hydrothermal replacement of aragonite by calcite: interplay between replacement, fracturing and growth. Eur. J. Miner. 25, 123–136 (2013).
CAS Article Google Scholar
145.
Greer, H. F., Zhou, W. & Guo, L. Phase transformation of Mg-calcite to aragonite in active-forming hot spring travertines. Miner. Pet. 109, 453–462 (2015).
CAS Article Google Scholar
146.
Hacker, B. R., Kirby, S. H. & Bohlen, S. R. Time and metamorphic petrology: calcite to aragonite experiments. Science 258, 110–112 (1992).
ADS CAS PubMed Article PubMed Central Google Scholar
147.
Hacker, B. R., Rubie, D. C., Kirby, S. H. & Bohlen, S. R. The calcite → aragonite transformation in low-Mg marble: equilibrium relations, transformations mechanisms, and rates. J. Geophys. Res. Solid Earth 110, 1–16 (2005).
Article CAS Google Scholar
148.
Lin, S. J. & Huang, W. L. Polycrystalline calcite to aragonite transformation kinetics: experiments in synthetic systems. Contrib. Miner. Pet. 147, 604–614 (2004).
ADS CAS Article Google Scholar
149.
Huang, Y. C. et al. Calcium-43 NMR studies of polymorphic transition of calcite to aragonite. J. Phys. Chem. B 116, 14295–14301 (2012).
CAS PubMed Article PubMed Central Google Scholar
150.
Monger, H. C., Daugherty, L. A. & Lindemann, W. C. Microbial precipitation of pedogenic calcite. Geology 19, 997–1000 (1991).
ADS CAS Article Google Scholar
151.
Claquin, T., Schulz, M. & Balkanski, Y. J. Modeling the mineralogy of atmospheric dust sources. J. Geophys. Res. Atmos. 104, 22243–22256 (1999).
ADS CAS Article Google Scholar
152.
Engelbrecht, J. P. & Derbyshire, E. Airborne mineral dust. Elements 6, 241–246 (2010).
Article Google Scholar
153.
Falini, G., Albeck, S., Weiner, S. & Addadi, L. Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271, 67–69 (1996).
ADS Article Google Scholar
154.
Rodgers, A. L. & Spector, M. Human stones. Endeavour 5, 119–126 (1981).
CAS PubMed Article Google Scholar
155.
Baconnier, S. et al. Calcite microcrystals in the pineal gland of the human brain: first physical and chemical studies. Bioelectromagnetics 23, 488–495 (2002).
CAS PubMed Article Google Scholar
156.
Tessier, A., Campbell, P. G. C. & Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51, 844–851 (1979).
CAS Article Google Scholar
157.
Gleyzes, C., Tellier, S. & Astruc, M. Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. Trends Anal. Chem. 21, 451–467 (2002).
CAS Article Google Scholar
158.
Bronick, C. J. & Lal, R. Soil structure and management: a review. Geoderma 124, 3–22 (2005).
ADS CAS Article Google Scholar More