Area-based conservation in the twenty-first century
1.
Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).
ADS CAS Google Scholar
2.
Dudley, N. Guidelines for Applying Protected Area Management Categories (IUCN, 2008).
3.
Dudley, N. et al. The essential role of other effective area-based conservation measures in achieving big bold conservation targets. Glob. Ecol. Conserv. 15, e00424 (2018).
Google Scholar
4.
Donald, P. F. et al. The prevalence, characteristics and effectiveness of Aichi Target 11′ s “other effective area-based conservation measures”(OECMs) in Key Biodiversity Areas. Conserv. Lett. 12, 12659 (2019).
Google Scholar
5.
UN General Assembly. Transforming our World: The 2030 Agenda for Sustainable Development, 21 October 2015. A/RES/70/1 https://www.refworld.org/docid/57b6e3e44.html (accessed 11 November 2019).
6.
Convention on Biological Diversity. COP 10 Decision X/2: Strategic Plan for Biodiversity 2011–2020. http://www.cbd.int/decision/cop/?id=12268 (2011).
7.
UNEP-WCMC & IUCN. World Database on Protected Areas (WDPA). https://www.protectedplanet.net/ (UNEP-WCMC, 2019).
8.
UNEP-WCMC & IUCN. World Database on Other Effective Area-based Conservation Measures (WD-OCEM). https://www.protectedplanet.net/c/other-effective-area-based-conservation-measures (UNEP-WCMC, 2019).
9.
Lewis, E. et al. Dynamics in the global protected-area estate since 2004. Conserv. Biol. 33, 570–579 (2019).
Google Scholar
10.
Klein, C. J. et al. Shortfalls in the global protected area network at representing marine biodiversity. Sci. Rep. 5, 17539 (2015).
ADS PubMed PubMed Central Google Scholar
11.
Venter, O. et al. Bias in protected-area location and its effects on long-term aspirations of biodiversity conventions. Conserv. Biol. 32, 127–134 (2018).
Google Scholar
12.
Mouillot, D. et al. Global marine protected areas do not secure the evolutionary history of tropical corals and fishes. Nat. Commun. 7, 10359 (2016).
ADS CAS PubMed PubMed Central Google Scholar
13.
Butchart, S. H. M. et al. Shortfalls and solutions for meeting national and global conservation area targets. Conserv. Lett. 8, 329–337 (2015).
Google Scholar
14.
Christie, P. et al. Why people matter in ocean governance: incorporating human dimensions into large-scale marine protected areas. Mar. Policy 84, 273–284 (2017).
Google Scholar
15.
Zafra-Calvo, N. et al. Progress toward equitably managed protected areas in Aichi target 11: a global survey. Bioscience 69, 191–197 (2019). This is the first large review of how well protected areas satisfy social equity metrics.
PubMed PubMed Central Google Scholar
16.
Juffe-Bignoli, D. et al. Achieving Aichi biodiversity target 11 to improve the performance of protected areas and conserve freshwater biodiversity. Aquat. Conserv. 26, 133–151 (2016).
Google Scholar
17.
Maron, M., Simmonds, J. S. & Watson, J. E. M. Bold nature retention targets are essential for the global environment agenda. Nat. Ecol. Evol. 2, 1194–1195 (2018).
Google Scholar
18.
Geldmann, J. et al. Changes in protected area management effectiveness over time: a global analysis. Biol. Conserv. 191, 692–699 (2015).
Google Scholar
19.
Di Minin, E. & Toivonen, T. Global protected area expansion: creating more than paper parks. Bioscience 65, 637–638 (2015).
PubMed PubMed Central Google Scholar
20.
Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665–669 (2017). This study compiles four years of data to assess capacity shortfalls and biodiversity outcomes from the management of 589 marine protected areas.
ADS CAS Google Scholar
21.
Coad, L. et al. Widespread shortfalls in protected area resourcing undermine efforts to conserve biodiversity. Front. Ecol. Environ. 17, 259–264 (2019).
Google Scholar
22.
Visconti, P. et al. Protected area targets post-2020. Science 364, 239–241 (2019).
ADS CAS Google Scholar
23.
Barnes, M. D., Glew, L., Wyborn, C. & Craigie, I. D. Prevent perverse outcomes from global protected area policy. Nat. Ecol. Evol. 2, 759–762 (2018).
Google Scholar
24.
IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES secretariat, 2019). This report assesses the status of biodiversity and ecosystem services, their impact on human well-being and the effectiveness of conservation interventions.
25.
Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).
ADS CAS PubMed PubMed Central Google Scholar
26.
Noss, R. F. et al. Bolder thinking for conservation. Conserv. Biol. 26, 1–4 (2012).
Google Scholar
27.
Wilson, E. O. Half-Earth: Our Planet’s Fight for Life (Liveright, 2016).
28.
O’Leary, B. C. et al. Effective coverage targets for ocean protection. Conserv. Lett. 9, 398–404 (2016).
Google Scholar
29.
Bull, J. W. et al. Net positive outcomes for nature. Nat. Ecol. Evol. 4, 4–7 (2020).
Google Scholar
30.
Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).
Google Scholar
31.
Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).
PubMed PubMed Central Google Scholar
32.
Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).
Google Scholar
33.
UNEP-WCMC, IUCN & NGS. Protected Planet Report 2018 (UNEP-WCMC, IUCN and NGS, 2018). A biennial publication that reviews progress toward protected areas targets and goals.
34.
Rodrigues, A. S. L. et al. Global gap analysis: priority regions for expanding the global protected-area network. Bioscience 54, 1092–1100 (2004).
Google Scholar
35.
IUCN. The IUCN Red List of Threatened Species. Version 2019-2 http://www.iucnredlist.org (accessed 10 September 2019) (2019).
36.
IUCN. A Global Standard for the Identification of Key Biodiversity Areas. Version 1.0 (IUCN, 2016).
37.
BirdLife International. World Database of Key Biodiversity Areas. www.keybiodiversityareas.org (accessed 20 June 2019) (2019).
38.
Jones, K. R. et al. The location and protection status of Earth’s diminishing marine wilderness. Curr. Biol. 28, 2506–2512 (2018).
CAS PubMed PubMed Central Google Scholar
39.
Allan, J. R., Venter, O. & Watson, J. E. M. Temporally inter-comparable maps of terrestrial wilderness and the last of the wild. Sci. Data 4, 170187 (2017).
PubMed PubMed Central Google Scholar
40.
Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).
Google Scholar
41.
Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).
ADS Google Scholar
42.
Martin, T. G. & Watson, J. E. M. Intact ecosystems provide best defence against climate change. Nat. Clim. Chang. 6, 122–124 (2016).
ADS Google Scholar
43.
Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).
ADS CAS Google Scholar
44.
Soto-Navarro, C. et al. Mapping co-benefits for carbon storage and biodiversity to inform conservation policy and action. Phil. Trans. R. Soc. Lond. B 375, 20190128 (2020). This study combines multiple datasets to produce a new high-resolution map of global above- and belowground carbon stored in biomass and soil.
CAS Google Scholar
45.
Dargie, G. C. et al. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 542, 86–90 (2017).
ADS CAS Google Scholar
46.
DeVries, T. & Weber, T. The export and fate of organic matter in the ocean: new constraints from combining satellite and oceanographic tracer observations. Glob. Biogeochem. Cycles 31, 535–555 (2017).
ADS CAS Google Scholar
47.
Laws, E. A., D’Sa, E. & Naik, P. Simple equations to estimate ratios of new or export production to total production from satellite-derived estimates of sea surface temperature and primary production. Limnol. Oceanogr. Methods 9, 593–601 (2011).
Google Scholar
48.
DeVries, T., Primeau, F. & Deutsch, C. The sequestration efficiency of the biological pump. Geophys. Res. Lett. 39, L13601 (2012).
ADS Google Scholar
49.
Henson, S. A., Sanders, R. & Madsen, E. Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean. Glob. Biogeochem. Cycles 26, GB1028 (2012).
ADS Google Scholar
50.
Roshan, S. & DeVries, T. Efficient dissolved organic carbon production and export in the oligotrophic ocean. Nat. Commun. 8, 2036 (2017).
ADS PubMed PubMed Central Google Scholar
51.
Lutz, M. J., Caldeira, K., Dunbar, R. B. & Behrenfeld, M. J. Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. J. Geophys. Res. Oceans 112, C10011 (2007).
ADS Google Scholar
52.
Magris, R. A. et al. Biologically representative and well-connected marine reserves enhance biodiversity persistence in conservation planning. Conserv. Lett. 11, e12439 (2018).
Google Scholar
53.
Mendenhall, C. D., Karp, D. S., Meyer, C. F. J., Hadly, E. A. & Daily, G. C. Predicting biodiversity change and averting collapse in agricultural landscapes. Nature 509, 213–217 (2014).
ADS CAS Google Scholar
54.
Harrison, H. B. et al. Larval export from marine reserves and the recruitment benefit for fish and fisheries. Curr. Biol. 22, 1023–1028 (2012).
CAS Google Scholar
55.
Johnson, D. W., Christie, M. R., Pusack, T. J., Stallings, C. D. & Hixon, M. A. Integrating larval connectivity with local demography reveals regional dynamics of a marine metapopulation. Ecology 99, 1419–1429 (2018).
Google Scholar
56.
Saura, S., Bastin, L., Battistella, L., Mandrici, A. & Dubois, G. Protected areas in the world’s ecoregions: how well connected are they? Ecol. Indic. 76, 144–158 (2017).
PubMed PubMed Central Google Scholar
57.
Saura, S. et al. Global trends in protected area connectivity from 2010 to 2018. Biol. Conserv. 238, 108183 (2019).
PubMed PubMed Central Google Scholar
58.
Endo, C. A. K., Gherardi, D. F. M., Pezzi, L. P. & Lima, L. N. Low connectivity compromises the conservation of reef fishes by marine protected areas in the tropical South Atlantic. Sci. Rep. 9, 8634 (2019).
ADS PubMed PubMed Central Google Scholar
59.
Bergseth, B. J., Gurney, G. G., Barnes, M. L., Arias, A. & Cinner, J. E. Addressing poaching in marine protected areas through voluntary surveillance and enforcement. Nat. Sustain. 1, 421–426 (2018). This study uses a citizen science approach to estimate poaching rates inside 55 marine protected areas spanning seven countries.
Google Scholar
60.
Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).
CAS Google Scholar
61.
Costello, M. J. & Ballantine, B. Biodiversity conservation should focus on no-take marine reserves: 94% of marine protected areas allow fishing. Trends Ecol. Evol. 30, 507–509 (2015).
Google Scholar
62.
Zupan, M. et al. Marine partially protected areas: drivers of ecological effectiveness. Front. Ecol. Environ. 16, 381–387 (2018).
Google Scholar
63.
Spracklen, B. D., Kalamandeen, M., Galbraith, D., Gloor, E. & Spracklen, D. V. A global analysis of deforestation in moist tropical forest protected areas. PLoS ONE 10, e0143886 (2015).
CAS PubMed PubMed Central Google Scholar
64.
Herrera, D., Pfaff, A. & Robalino, J. Impacts of protected areas vary with the level of government: comparing avoided deforestation across agencies in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 116, 14916–14925 (2019).
CAS Google Scholar
65.
Negret, P. J. et al. Effects of spatial autocorrelation and sampling design on estimates of protected area effectiveness. Conserv. Biol. https://doi.org/10.1111/cobi.13522 (2020).
66.
White, T. D. et al. Assessing the effectiveness of a large marine protected area for reef shark conservation. Biol. Conserv. 207, 64–71 (2017).
Google Scholar
67.
Giakoumi, S. & Pey, A. Assessing the effects of marine protected areas on biological invasions: a global review. Front. Mar. Sci. 4, 49 (2017).
68.
Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA, 116, 23209–23215 (2019).
ADS CAS Google Scholar
69.
Gray, C. L. et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 7, 12306 (2016). This controlled study shows how biodiversity outcomes from protected area management are mediated by different classes of land use.
ADS CAS PubMed PubMed Central Google Scholar
70.
Kerwath, S. E., Winker, H., Götz, A. & Attwood, C. G. Marine protected area improves yield without disadvantaging fishers. Nat. Commun. 4, 2347 (2013).
ADS Google Scholar
71.
Speed, C. W., Cappo, M. & Meekan, M. G. Evidence for rapid recovery of shark populations within a coral reef marine protected area. Biol. Conserv. 220, 308–319 (2018).
Google Scholar
72.
Caselle, J. E., Rassweiler, A., Hamilton, S. L. & Warner, R. R. Recovery trajectories of kelp forest animals are rapid yet spatially variable across a network of temperate marine protected areas. Sci. Rep. 5, 14102 (2015).
ADS CAS PubMed PubMed Central Google Scholar
73.
Emslie, M. J. et al. Expectations and outcomes of reserve network performance following re-zoning of the Great Barrier Reef marine park. Curr. Biol. 25, 983–992 (2015).
CAS Google Scholar
74.
Campbell, S. J., Edgar, G. J., Stuart-Smith, R. D., Soler, G. & Bates, A. E. Fishing-gear restrictions and biomass gains for coral reef fishes in marine protected areas. Conserv. Biol. 32, 401–410 (2018).
Google Scholar
75.
Mumby, P. J. et al. Trophic cascade facilitates coral recruitment in a marine reserve. Proc. Natl Acad. Sci. USA 104, 8362–8367 (2007).
ADS CAS Google Scholar
76.
Boaden, A. E. & Kingsford, M. J. Predators drive community structure in coral reef fish assemblages. Ecosphere 6, art46 (2015).
Google Scholar
77.
Lamb, J. B., Williamson, D. H., Russ, G. R. & Willis, B. L. Protected areas mitigate diseases of reef-building corals by reducing damage from fishing. Ecology 96, 2555–2567 (2015).
Google Scholar
78.
Naidoo, R. et al. Evaluating the impacts of protected areas on human well-being across the developing world. Sci. Adv. 5, eaav3006 (2019).
ADS CAS PubMed PubMed Central Google Scholar
79.
Zafra-Calvo, N. et al. Towards an indicator system to assess equitable management in protected areas. Biol. Conserv. 211, 134–141 (2017).
Google Scholar
80.
Oldekop, J. A., Holmes, G., Harris, W. E. & Evans, K. L. A global assessment of the social and conservation outcomes of protected areas. Conserv. Biol. 30, 133–141 (2016).
CAS Google Scholar
81.
Giakoumi, S. et al. Revisiting “success” and “failure” of marine protected areas: a conservation scientist perspective. Front. Mar. Sci. 5, 223 (2018).
82.
Edgar, G. J. et al. Global conservation outcomes depend on marine protected areas with five key features. Nature 506, 216–220 (2014).
ADS CAS Google Scholar
83.
Ban, N. C. et al. Well-being outcomes of marine protected areas. Nat. Sustain. 2, 524–532 (2019).
Google Scholar
84.
Corrigan, C. et al. Quantifying the contribution to biodiversity conservation of protected areas governed by indigenous peoples and local communities. Biol. Conserv. 227, 403–412 (2018).
Google Scholar
85.
Schleicher, J., Peres, C. A., Amano, T., Llactayo, W. & Leader-Williams, N. Conservation performance of different conservation governance regimes in the Peruvian Amazon. Sci. Rep. 7, 11318 (2017).
ADS PubMed PubMed Central Google Scholar
86.
Hoffmann, M. et al. The difference conservation makes to extinction risk of the world’s ungulates. Conserv. Biol. 29, 1303–1313 (2015).
Google Scholar
87.
Watson, J. E. M. et al. Set a global target for ecosystems. Nature 578, 360–362 (2020).
ADS CAS Google Scholar
88.
Stolton, S., Redford, K. H. & Dudley, N. The Futures of Privately Protected Areas (IUCN, 2014).
89.
IUCN WCPA. Guidelines for Recognising and Reporting Other Effective Area-based Conservation Measures (IUCN, 2019).
90.
Shabtay, A., Portman, M. E., Manea, E. & Gissi, E. Promoting ancillary conservation through marine spatial planning. Sci. Total Environ. 651, 1753–1763 (2019).
ADS CAS Google Scholar
91.
Banks-Leite, C. et al. Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspot. Science 345, 1041–1045 (2014).
ADS CAS Google Scholar
92.
Schuster, R., Germain, R. R., Bennett, J. R., Reo, N. J. & Arcese, P. Vertebrate biodiversity on indigenous-managed lands in Australia, Brazil, and Canada equals that in protected areas. Environ. Sci. Policy 101, 1–6 (2019).
Google Scholar
93.
Bennett, N. J. & Dearden, P. From measuring outcomes to providing inputs: governance, management, and local development for more effective marine protected areas. Mar. Policy 50, 96–110 (2014).
Google Scholar
94.
Suchley, A. & Alvarez-Filip, L. Local human activities limit marine protection efficacy on Caribbean coral reefs. Conserv. Lett. 11, e12571 (2018).
Google Scholar
95.
Cook, C. N., Valkan, R. S., Mascia, M. B. & McGeoch, M. A. Quantifying the extent of protected-area downgrading, downsizing, and degazettement in Australia. Conserv. Biol. 31, 1039–1052 (2017).
Google Scholar
96.
Qin, S. et al. Protected area downgrading, downsizing, and degazettement as a threat to iconic protected areas. Conserv. Biol. 33, 1275–1285 (2019).
PubMed PubMed Central Google Scholar
97.
Forrest, J. L. et al. Tropical deforestation and carbon emissions from protected area downgrading, downsizing, and degazettement (PADDD). Conserv. Lett. 8, 153–161 (2015).
Google Scholar
98.
Golden Kroner, R. E. et al. The uncertain future of protected lands and waters. Science 364, 881–886 (2019). This study compiled data that are available globally on PADDD events.
ADS CAS Google Scholar
99.
Roberts, K. E., Valkan, R. S. & Cook, C. N. Measuring progress in marine protection: a new set of metrics to evaluate the strength of marine protected area networks. Biol. Conserv. 219, 20–27 (2018).
Google Scholar
100.
De Vos, A., Clements, H. S., Biggs, D. & Cumming, G. S. The dynamics of proclaimed privately protected areas in South Africa over 83 years. Conserv. Lett. 12, e12644 (2019).
Google Scholar
101.
Costelloe, B. et al. Global biodiversity indicators reflect the modeled impacts of protected area policy change. Conserv. Lett. 9, 14–20 (2016).
Google Scholar
102.
Pringle, R. M. Upgrading protected areas to conserve wild biodiversity. Nature 546, 91–99 (2017).
ADS CAS Google Scholar
103.
Kuempel, C. D., Adams, V. M., Possingham, H. P. & Bode, M. Bigger or better: the relative benefits of protected area network expansion and enforcement for the conservation of an exploited species. Conserv. Lett. 11, e12433 (2018).
Google Scholar
104.
Adams, V. M., Barnes, M. & Pressey, R. L. Shortfalls in conservation evidence: moving from ecological effects of interventions to policy evaluation. One Earth 1, 62–75 (2019).
Google Scholar
105.
Coad, L. et al. Measuring impact of protected area management interventions: current and future use of the global database of protected area management effectiveness. Phil. Trans. R. Soc. Lond. B 370, 20140281 (2015).
Google Scholar
106.
Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
ADS CAS Google Scholar
107.
Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).
ADS CAS PubMed PubMed Central Google Scholar
108.
Geldmann, J., Joppa, L. N. & Burgess, N. D. Mapping change in human pressure globally on land and within protected areas. Conserv. Biol. 28, 1604–1616 (2014).
Google Scholar
109.
Wilkie, D. S., Bennett, E. L., Peres, C. A. & Cunningham, A. A. The empty forest revisited. Ann. NY Acad. Sci. 1223, 120–128 (2011).
ADS Google Scholar
110.
Volenec, Z. M. & Dobson, A. P. Conservation value of small reserves. Conserv. Biol. 34, 66–79 (2020).
Google Scholar
111.
Nicholson, E. et al. Scenarios and models to support global conservation targets. Trends Ecol. Evol. 34, 57–68 (2019).
Google Scholar
112.
Maron, M., Rhodes, J. R. & Gibbons, P. Calculating the benefit of conservation actions. Conserv. Lett. 6, 359–367 (2013).
Google Scholar
113.
Schleicher, J. et al. Statistical matching for conservation science. Conserv. Biol. 34, 538–549 (2019).
PubMed PubMed Central Google Scholar
114.
Ferraro, P. J. Counterfactual thinking and impact evaluation in environmental policy. New Dir. Eval. 2009, 75–84 (2009).
Google Scholar
115.
Chandler, M. et al. Contribution of citizen science towards international biodiversity monitoring. Biol. Conserv. 213, 280–294 (2017).
Google Scholar
116.
Convention on Biological Diversity. Long-Term Strategic Directions to the 2050 Vision for Biodiversity, Approaches to Living in Harmony with Nature and Preparation for the Post-2020 Global Biodiversity Framework. www.cbd.int/decision/cop?id=12268 (2018).
117.
Secretariat of the Convention on Biological Diversity. Global Biodiversity Outlook 4 (Secretariat of the Convention on Biological Diversity, 2014).
118.
McCarthy, D. P. et al. Financial costs of meeting global biodiversity conservation targets: current spending and unmet needs. Science 338, 946–949 (2012).
ADS CAS Google Scholar
119.
Balmford, A. et al. Walk on the wild side: estimating the global magnitude of visits to protected areas. PLoS Biol. 13, e1002074 (2015).
PubMed PubMed Central Google Scholar
120.
Waldron, A. et al. Reductions in global biodiversity loss predicted from conservation spending. Nature 551, 364–367 (2017).
ADS CAS Google Scholar
121.
Murray, K. A., Allen, T., Loh, E., Machalaba, C. & Daszak, P. Emerging Viral Zoonoses from Wildlife Associated with Animal-Based Food Systems: Risks and Opportunities (Springer, 2016).
122.
Dobson, A.P. et al. Ecology and economics for pandemic prevention. Science 369, 379–381 (2020).
123.
Burmester, B. Upgrading or unhelpful? Defiant corporate support for a marine protected area. Mar. Policy 63, 206–212 (2016).
Google Scholar
124.
Larson, E. R., Howell, S., Kareiva, P. & Armsworth, P. R. Constraints of philanthropy on determining the distribution of biodiversity conservation funding. Conserv. Biol. 30, 206–215 (2016).
Google Scholar
125.
Smith, T. et al. Biodiversity means business: reframing global biodiversity goals for the private sector. Conserv. Lett. 13, e12690 (2019).
Google Scholar
126.
Elsen, P. R., Monahan, W. B., Dougherty, E. R. & Merenlender, A. M. Keeping pace with climate change in global terrestrial protected areas. Sci. Adv. 6, eaay0814 (2020).
ADS PubMed PubMed Central Google Scholar
127.
Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Chang. 3, 919–925 (2013).
ADS Google Scholar
128.
Bruno, J. F. et al. Climate change threatens the world’s marine protected areas. Nat. Clim. Chang. 8, 499–503 (2018).
ADS Google Scholar
129.
Schleuning, M. et al. Ecological networks are more sensitive to plant than to animal extinction under climate change. Nat. Commun. 7, 13965 (2016).
ADS CAS PubMed PubMed Central Google Scholar
130.
Bonnot, T. W., Cox, W. A., Thompson, F. R. & Millspaugh, J. J. Threat of climate change on a songbird population through its impacts on breeding. Nat. Clim. Chang. 8, 718–722 (2018).
ADS Google Scholar
131.
Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4, 158 (2017).
132.
Jones, K. R., Watson, J. E. M., Possingham, H. P. & Klein, C. J. Incorporating climate change into spatial conservation prioritisation: a review. Biol. Conserv. 194, 121–130 (2016).
Google Scholar
133.
Green, A. L. et al. Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design. Biol. Rev. Camb. Philos. Soc. 90, 1215–1247 (2015).
Google Scholar
134.
Krueck, N. C. et al. Incorporating larval dispersal into MPA design for both conservation and fisheries. Ecol. Appl. 27, 925–941 (2017).
Google Scholar
135.
van Kerkhoff, L. et al. Towards future-oriented conservation: managing protected areas in an era of climate change. Ambio 48, 699–713 (2019).
Google Scholar
136.
Ling, S. D. & Johnson, C. R. Marine reserves reduce risk of climate-driven phase shift by reinstating size- and habitat-specific trophic interactions. Ecol. Appl. 22, 1232–1245 (2012).
CAS Google Scholar
137.
Maxwell, S. L., Venter, O., Jones, K. R. & Watson, J. E. M. Integrating human responses to climate change into conservation vulnerability assessments and adaptation planning. Ann. NY Acad. Sci. 1355, 98–116 (2015).
ADS Google Scholar
138.
Bennett, J. R. et al. When to monitor and when to act: value of information theory for multiple management units and limited budgets. J. Appl. Ecol. 55, 2102–2113 (2018).
Google Scholar
139.
Burgass, M. J., Halpern, B. S., Nicholson, E. & Milner-Gulland, E. J. Navigating uncertainty in environmental composite indicators. Ecol. Indic. 75, 268–278 (2017).
Google Scholar
140.
Bennett, J. R. et al. Polar lessons learned: long-term management based on shared threats in Arctic and Antarctic environments. Front. Ecol. Environ. 13, 316–324 (2015).
Google Scholar
141.
Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).
ADS CAS Google Scholar
142.
Bai, Y. et al. Developing China’s ecological redline policy using ecosystem services assessments for land use planning. Nat. Commun. 9, 3034 (2018).
ADS PubMed PubMed Central Google Scholar
143.
Hughes, A. C. Understanding and minimizing environmental impacts of the belt and road initiative. Conserv. Biol. 33, 883–894 (2019).
Google Scholar
144.
Alamgir, M. et al. High-risk infrastructure projects pose imminent threats to forests in Indonesian Borneo. Sci. Rep. 9, 140 (2019).
ADS PubMed PubMed Central Google Scholar
145.
Azevedo, A. A. et al. Limits of Brazil’s forest code as a means to end illegal deforestation. Proc. Natl Acad. Sci. USA 114, 7653–7658 (2017).
ADS CAS Google Scholar
146.
Simmonds, J. S. et al. Moving from biodiversity offsets to a target-based approach for ecological compensation. Conserv. Lett. 13, e12695 (2020).
Google Scholar
147.
Spalding, M. D., Agostini, V. N., Rice, J. & Grant, S. M. Pelagic provinces of the world: a biogeographic classification of the world’s surface pelagic waters. Ocean Coast. Manage. 60, 19–30 (2012).
Google Scholar
148.
NatureServe. Bird Species Distribution Maps of the World (BirdLife International, 2018).
149.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
Google Scholar
150.
Pauly, D. et al. Sea Around Us Concepts, Design and Data. www.seaaroundus.org (2020).
151.
Ferraro, P. J. & Pressey, R. L. Measuring the difference made by conservation initiatives: protected areas and their environmental and social impacts. Phil. Trans. R. Soc. Lond. B 370, 20140270 (2015).
Google Scholar
152.
Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).
Google Scholar More