More stories

  • in

    Area-based conservation in the twenty-first century

    1.
    Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).
    ADS  CAS  Google Scholar 
    2.
    Dudley, N. Guidelines for Applying Protected Area Management Categories (IUCN, 2008).

    3.
    Dudley, N. et al. The essential role of other effective area-based conservation measures in achieving big bold conservation targets. Glob. Ecol. Conserv. 15, e00424 (2018).
    Google Scholar 

    4.
    Donald, P. F. et al. The prevalence, characteristics and effectiveness of Aichi Target 11′ s “other effective area-based conservation measures”(OECMs) in Key Biodiversity Areas. Conserv. Lett. 12, 12659 (2019).
    Google Scholar 

    5.
    UN General Assembly. Transforming our World: The 2030 Agenda for Sustainable Development, 21 October 2015. A/RES/70/1 https://www.refworld.org/docid/57b6e3e44.html (accessed 11 November 2019).

    6.
    Convention on Biological Diversity. COP 10 Decision X/2: Strategic Plan for Biodiversity 2011–2020. http://www.cbd.int/decision/cop/?id=12268 (2011).

    7.
    UNEP-WCMC & IUCN. World Database on Protected Areas (WDPA). https://www.protectedplanet.net/ (UNEP-WCMC, 2019).

    8.
    UNEP-WCMC & IUCN. World Database on Other Effective Area-based Conservation Measures (WD-OCEM). https://www.protectedplanet.net/c/other-effective-area-based-conservation-measures (UNEP-WCMC, 2019).

    9.
    Lewis, E. et al. Dynamics in the global protected-area estate since 2004. Conserv. Biol. 33, 570–579 (2019).
    Google Scholar 

    10.
    Klein, C. J. et al. Shortfalls in the global protected area network at representing marine biodiversity. Sci. Rep. 5, 17539 (2015).
    ADS  PubMed  PubMed Central  Google Scholar 

    11.
    Venter, O. et al. Bias in protected-area location and its effects on long-term aspirations of biodiversity conventions. Conserv. Biol. 32, 127–134 (2018).
    Google Scholar 

    12.
    Mouillot, D. et al. Global marine protected areas do not secure the evolutionary history of tropical corals and fishes. Nat. Commun. 7, 10359 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    13.
    Butchart, S. H. M. et al. Shortfalls and solutions for meeting national and global conservation area targets. Conserv. Lett. 8, 329–337 (2015).
    Google Scholar 

    14.
    Christie, P. et al. Why people matter in ocean governance: incorporating human dimensions into large-scale marine protected areas. Mar. Policy 84, 273–284 (2017).
    Google Scholar 

    15.
    Zafra-Calvo, N. et al. Progress toward equitably managed protected areas in Aichi target 11: a global survey. Bioscience 69, 191–197 (2019). This is the first large review of how well protected areas satisfy social equity metrics.
    PubMed  PubMed Central  Google Scholar 

    16.
    Juffe-Bignoli, D. et al. Achieving Aichi biodiversity target 11 to improve the performance of protected areas and conserve freshwater biodiversity. Aquat. Conserv. 26, 133–151 (2016).
    Google Scholar 

    17.
    Maron, M., Simmonds, J. S. & Watson, J. E. M. Bold nature retention targets are essential for the global environment agenda. Nat. Ecol. Evol. 2, 1194–1195 (2018).
    Google Scholar 

    18.
    Geldmann, J. et al. Changes in protected area management effectiveness over time: a global analysis. Biol. Conserv. 191, 692–699 (2015).
    Google Scholar 

    19.
    Di Minin, E. & Toivonen, T. Global protected area expansion: creating more than paper parks. Bioscience 65, 637–638 (2015).
    PubMed  PubMed Central  Google Scholar 

    20.
    Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665–669 (2017). This study compiles four years of data to assess capacity shortfalls and biodiversity outcomes from the management of 589 marine protected areas.
    ADS  CAS  Google Scholar 

    21.
    Coad, L. et al. Widespread shortfalls in protected area resourcing undermine efforts to conserve biodiversity. Front. Ecol. Environ. 17, 259–264 (2019).
    Google Scholar 

    22.
    Visconti, P. et al. Protected area targets post-2020. Science 364, 239–241 (2019).
    ADS  CAS  Google Scholar 

    23.
    Barnes, M. D., Glew, L., Wyborn, C. & Craigie, I. D. Prevent perverse outcomes from global protected area policy. Nat. Ecol. Evol. 2, 759–762 (2018).
    Google Scholar 

    24.
    IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES secretariat, 2019). This report assesses the status of biodiversity and ecosystem services, their impact on human well-being and the effectiveness of conservation interventions.

    25.
    Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    26.
    Noss, R. F. et al. Bolder thinking for conservation. Conserv. Biol. 26, 1–4 (2012).
    Google Scholar 

    27.
    Wilson, E. O. Half-Earth: Our Planet’s Fight for Life (Liveright, 2016).

    28.
    O’Leary, B. C. et al. Effective coverage targets for ocean protection. Conserv. Lett. 9, 398–404 (2016).
    Google Scholar 

    29.
    Bull, J. W. et al. Net positive outcomes for nature. Nat. Ecol. Evol. 4, 4–7 (2020).
    Google Scholar 

    30.
    Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).
    Google Scholar 

    31.
    Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).
    PubMed  PubMed Central  Google Scholar 

    32.
    Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).
    Google Scholar 

    33.
    UNEP-WCMC, IUCN & NGS. Protected Planet Report 2018 (UNEP-WCMC, IUCN and NGS, 2018). A biennial publication that reviews progress toward protected areas targets and goals.

    34.
    Rodrigues, A. S. L. et al. Global gap analysis: priority regions for expanding the global protected-area network. Bioscience 54, 1092–1100 (2004).
    Google Scholar 

    35.
    IUCN. The IUCN Red List of Threatened Species. Version 2019-2 http://www.iucnredlist.org (accessed 10 September 2019) (2019).

    36.
    IUCN. A Global Standard for the Identification of Key Biodiversity Areas. Version 1.0 (IUCN, 2016).

    37.
    BirdLife International. World Database of Key Biodiversity Areas. www.keybiodiversityareas.org (accessed 20 June 2019) (2019).

    38.
    Jones, K. R. et al. The location and protection status of Earth’s diminishing marine wilderness. Curr. Biol. 28, 2506–2512 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    39.
    Allan, J. R., Venter, O. & Watson, J. E. M. Temporally inter-comparable maps of terrestrial wilderness and the last of the wild. Sci. Data 4, 170187 (2017).
    PubMed  PubMed Central  Google Scholar 

    40.
    Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).
    Google Scholar 

    41.
    Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).
    ADS  Google Scholar 

    42.
    Martin, T. G. & Watson, J. E. M. Intact ecosystems provide best defence against climate change. Nat. Clim. Chang. 6, 122–124 (2016).
    ADS  Google Scholar 

    43.
    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).
    ADS  CAS  Google Scholar 

    44.
    Soto-Navarro, C. et al. Mapping co-benefits for carbon storage and biodiversity to inform conservation policy and action. Phil. Trans. R. Soc. Lond. B 375, 20190128 (2020). This study combines multiple datasets to produce a new high-resolution map of global above- and belowground carbon stored in biomass and soil.
    CAS  Google Scholar 

    45.
    Dargie, G. C. et al. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 542, 86–90 (2017).
    ADS  CAS  Google Scholar 

    46.
    DeVries, T. & Weber, T. The export and fate of organic matter in the ocean: new constraints from combining satellite and oceanographic tracer observations. Glob. Biogeochem. Cycles 31, 535–555 (2017).
    ADS  CAS  Google Scholar 

    47.
    Laws, E. A., D’Sa, E. & Naik, P. Simple equations to estimate ratios of new or export production to total production from satellite-derived estimates of sea surface temperature and primary production. Limnol. Oceanogr. Methods 9, 593–601 (2011).
    Google Scholar 

    48.
    DeVries, T., Primeau, F. & Deutsch, C. The sequestration efficiency of the biological pump. Geophys. Res. Lett. 39, L13601 (2012).
    ADS  Google Scholar 

    49.
    Henson, S. A., Sanders, R. & Madsen, E. Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean. Glob. Biogeochem. Cycles 26, GB1028 (2012).
    ADS  Google Scholar 

    50.
    Roshan, S. & DeVries, T. Efficient dissolved organic carbon production and export in the oligotrophic ocean. Nat. Commun. 8, 2036 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    51.
    Lutz, M. J., Caldeira, K., Dunbar, R. B. & Behrenfeld, M. J. Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. J. Geophys. Res. Oceans 112, C10011 (2007).
    ADS  Google Scholar 

    52.
    Magris, R. A. et al. Biologically representative and well-connected marine reserves enhance biodiversity persistence in conservation planning. Conserv. Lett. 11, e12439 (2018).
    Google Scholar 

    53.
    Mendenhall, C. D., Karp, D. S., Meyer, C. F. J., Hadly, E. A. & Daily, G. C. Predicting biodiversity change and averting collapse in agricultural landscapes. Nature 509, 213–217 (2014).
    ADS  CAS  Google Scholar 

    54.
    Harrison, H. B. et al. Larval export from marine reserves and the recruitment benefit for fish and fisheries. Curr. Biol. 22, 1023–1028 (2012).
    CAS  Google Scholar 

    55.
    Johnson, D. W., Christie, M. R., Pusack, T. J., Stallings, C. D. & Hixon, M. A. Integrating larval connectivity with local demography reveals regional dynamics of a marine metapopulation. Ecology 99, 1419–1429 (2018).
    Google Scholar 

    56.
    Saura, S., Bastin, L., Battistella, L., Mandrici, A. & Dubois, G. Protected areas in the world’s ecoregions: how well connected are they? Ecol. Indic. 76, 144–158 (2017).
    PubMed  PubMed Central  Google Scholar 

    57.
    Saura, S. et al. Global trends in protected area connectivity from 2010 to 2018. Biol. Conserv. 238, 108183 (2019).
    PubMed  PubMed Central  Google Scholar 

    58.
    Endo, C. A. K., Gherardi, D. F. M., Pezzi, L. P. & Lima, L. N. Low connectivity compromises the conservation of reef fishes by marine protected areas in the tropical South Atlantic. Sci. Rep. 9, 8634 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    59.
    Bergseth, B. J., Gurney, G. G., Barnes, M. L., Arias, A. & Cinner, J. E. Addressing poaching in marine protected areas through voluntary surveillance and enforcement. Nat. Sustain. 1, 421–426 (2018). This study uses a citizen science approach to estimate poaching rates inside 55 marine protected areas spanning seven countries.
    Google Scholar 

    60.
    Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).
    CAS  Google Scholar 

    61.
    Costello, M. J. & Ballantine, B. Biodiversity conservation should focus on no-take marine reserves: 94% of marine protected areas allow fishing. Trends Ecol. Evol. 30, 507–509 (2015).
    Google Scholar 

    62.
    Zupan, M. et al. Marine partially protected areas: drivers of ecological effectiveness. Front. Ecol. Environ. 16, 381–387 (2018).
    Google Scholar 

    63.
    Spracklen, B. D., Kalamandeen, M., Galbraith, D., Gloor, E. & Spracklen, D. V. A global analysis of deforestation in moist tropical forest protected areas. PLoS ONE 10, e0143886 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    64.
    Herrera, D., Pfaff, A. & Robalino, J. Impacts of protected areas vary with the level of government: comparing avoided deforestation across agencies in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 116, 14916–14925 (2019).
    CAS  Google Scholar 

    65.
    Negret, P. J. et al. Effects of spatial autocorrelation and sampling design on estimates of protected area effectiveness. Conserv. Biol. https://doi.org/10.1111/cobi.13522 (2020).

    66.
    White, T. D. et al. Assessing the effectiveness of a large marine protected area for reef shark conservation. Biol. Conserv. 207, 64–71 (2017).
    Google Scholar 

    67.
    Giakoumi, S. & Pey, A. Assessing the effects of marine protected areas on biological invasions: a global review. Front. Mar. Sci. 4, 49 (2017).

    68.
    Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA, 116, 23209–23215 (2019).
    ADS  CAS  Google Scholar 

    69.
    Gray, C. L. et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 7, 12306 (2016). This controlled study shows how biodiversity outcomes from protected area management are mediated by different classes of land use.
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    70.
    Kerwath, S. E., Winker, H., Götz, A. & Attwood, C. G. Marine protected area improves yield without disadvantaging fishers. Nat. Commun. 4, 2347 (2013).
    ADS  Google Scholar 

    71.
    Speed, C. W., Cappo, M. & Meekan, M. G. Evidence for rapid recovery of shark populations within a coral reef marine protected area. Biol. Conserv. 220, 308–319 (2018).
    Google Scholar 

    72.
    Caselle, J. E., Rassweiler, A., Hamilton, S. L. & Warner, R. R. Recovery trajectories of kelp forest animals are rapid yet spatially variable across a network of temperate marine protected areas. Sci. Rep. 5, 14102 (2015).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    73.
    Emslie, M. J. et al. Expectations and outcomes of reserve network performance following re-zoning of the Great Barrier Reef marine park. Curr. Biol. 25, 983–992 (2015).
    CAS  Google Scholar 

    74.
    Campbell, S. J., Edgar, G. J., Stuart-Smith, R. D., Soler, G. & Bates, A. E. Fishing-gear restrictions and biomass gains for coral reef fishes in marine protected areas. Conserv. Biol. 32, 401–410 (2018).
    Google Scholar 

    75.
    Mumby, P. J. et al. Trophic cascade facilitates coral recruitment in a marine reserve. Proc. Natl Acad. Sci. USA 104, 8362–8367 (2007).
    ADS  CAS  Google Scholar 

    76.
    Boaden, A. E. & Kingsford, M. J. Predators drive community structure in coral reef fish assemblages. Ecosphere 6, art46 (2015).
    Google Scholar 

    77.
    Lamb, J. B., Williamson, D. H., Russ, G. R. & Willis, B. L. Protected areas mitigate diseases of reef-building corals by reducing damage from fishing. Ecology 96, 2555–2567 (2015).
    Google Scholar 

    78.
    Naidoo, R. et al. Evaluating the impacts of protected areas on human well-being across the developing world. Sci. Adv. 5, eaav3006 (2019).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    79.
    Zafra-Calvo, N. et al. Towards an indicator system to assess equitable management in protected areas. Biol. Conserv. 211, 134–141 (2017).
    Google Scholar 

    80.
    Oldekop, J. A., Holmes, G., Harris, W. E. & Evans, K. L. A global assessment of the social and conservation outcomes of protected areas. Conserv. Biol. 30, 133–141 (2016).
    CAS  Google Scholar 

    81.
    Giakoumi, S. et al. Revisiting “success” and “failure” of marine protected areas: a conservation scientist perspective. Front. Mar. Sci. 5, 223 (2018).

    82.
    Edgar, G. J. et al. Global conservation outcomes depend on marine protected areas with five key features. Nature 506, 216–220 (2014).
    ADS  CAS  Google Scholar 

    83.
    Ban, N. C. et al. Well-being outcomes of marine protected areas. Nat. Sustain. 2, 524–532 (2019).
    Google Scholar 

    84.
    Corrigan, C. et al. Quantifying the contribution to biodiversity conservation of protected areas governed by indigenous peoples and local communities. Biol. Conserv. 227, 403–412 (2018).
    Google Scholar 

    85.
    Schleicher, J., Peres, C. A., Amano, T., Llactayo, W. & Leader-Williams, N. Conservation performance of different conservation governance regimes in the Peruvian Amazon. Sci. Rep. 7, 11318 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    86.
    Hoffmann, M. et al. The difference conservation makes to extinction risk of the world’s ungulates. Conserv. Biol. 29, 1303–1313 (2015).
    Google Scholar 

    87.
    Watson, J. E. M. et al. Set a global target for ecosystems. Nature 578, 360–362 (2020).
    ADS  CAS  Google Scholar 

    88.
    Stolton, S., Redford, K. H. & Dudley, N. The Futures of Privately Protected Areas (IUCN, 2014).

    89.
    IUCN WCPA. Guidelines for Recognising and Reporting Other Effective Area-based Conservation Measures (IUCN, 2019).

    90.
    Shabtay, A., Portman, M. E., Manea, E. & Gissi, E. Promoting ancillary conservation through marine spatial planning. Sci. Total Environ. 651, 1753–1763 (2019).
    ADS  CAS  Google Scholar 

    91.
    Banks-Leite, C. et al. Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspot. Science 345, 1041–1045 (2014).
    ADS  CAS  Google Scholar 

    92.
    Schuster, R., Germain, R. R., Bennett, J. R., Reo, N. J. & Arcese, P. Vertebrate biodiversity on indigenous-managed lands in Australia, Brazil, and Canada equals that in protected areas. Environ. Sci. Policy 101, 1–6 (2019).
    Google Scholar 

    93.
    Bennett, N. J. & Dearden, P. From measuring outcomes to providing inputs: governance, management, and local development for more effective marine protected areas. Mar. Policy 50, 96–110 (2014).
    Google Scholar 

    94.
    Suchley, A. & Alvarez-Filip, L. Local human activities limit marine protection efficacy on Caribbean coral reefs. Conserv. Lett. 11, e12571 (2018).
    Google Scholar 

    95.
    Cook, C. N., Valkan, R. S., Mascia, M. B. & McGeoch, M. A. Quantifying the extent of protected-area downgrading, downsizing, and degazettement in Australia. Conserv. Biol. 31, 1039–1052 (2017).
    Google Scholar 

    96.
    Qin, S. et al. Protected area downgrading, downsizing, and degazettement as a threat to iconic protected areas. Conserv. Biol. 33, 1275–1285 (2019).
    PubMed  PubMed Central  Google Scholar 

    97.
    Forrest, J. L. et al. Tropical deforestation and carbon emissions from protected area downgrading, downsizing, and degazettement (PADDD). Conserv. Lett. 8, 153–161 (2015).
    Google Scholar 

    98.
    Golden Kroner, R. E. et al. The uncertain future of protected lands and waters. Science 364, 881–886 (2019). This study compiled data that are available globally on PADDD events.
    ADS  CAS  Google Scholar 

    99.
    Roberts, K. E., Valkan, R. S. & Cook, C. N. Measuring progress in marine protection: a new set of metrics to evaluate the strength of marine protected area networks. Biol. Conserv. 219, 20–27 (2018).
    Google Scholar 

    100.
    De Vos, A., Clements, H. S., Biggs, D. & Cumming, G. S. The dynamics of proclaimed privately protected areas in South Africa over 83 years. Conserv. Lett. 12, e12644 (2019).
    Google Scholar 

    101.
    Costelloe, B. et al. Global biodiversity indicators reflect the modeled impacts of protected area policy change. Conserv. Lett. 9, 14–20 (2016).
    Google Scholar 

    102.
    Pringle, R. M. Upgrading protected areas to conserve wild biodiversity. Nature 546, 91–99 (2017).
    ADS  CAS  Google Scholar 

    103.
    Kuempel, C. D., Adams, V. M., Possingham, H. P. & Bode, M. Bigger or better: the relative benefits of protected area network expansion and enforcement for the conservation of an exploited species. Conserv. Lett. 11, e12433 (2018).
    Google Scholar 

    104.
    Adams, V. M., Barnes, M. & Pressey, R. L. Shortfalls in conservation evidence: moving from ecological effects of interventions to policy evaluation. One Earth 1, 62–75 (2019).
    Google Scholar 

    105.
    Coad, L. et al. Measuring impact of protected area management interventions: current and future use of the global database of protected area management effectiveness. Phil. Trans. R. Soc. Lond. B 370, 20140281 (2015).
    Google Scholar 

    106.
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
    ADS  CAS  Google Scholar 

    107.
    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    108.
    Geldmann, J., Joppa, L. N. & Burgess, N. D. Mapping change in human pressure globally on land and within protected areas. Conserv. Biol. 28, 1604–1616 (2014).
    Google Scholar 

    109.
    Wilkie, D. S., Bennett, E. L., Peres, C. A. & Cunningham, A. A. The empty forest revisited. Ann. NY Acad. Sci. 1223, 120–128 (2011).
    ADS  Google Scholar 

    110.
    Volenec, Z. M. & Dobson, A. P. Conservation value of small reserves. Conserv. Biol. 34, 66–79 (2020).
    Google Scholar 

    111.
    Nicholson, E. et al. Scenarios and models to support global conservation targets. Trends Ecol. Evol. 34, 57–68 (2019).
    Google Scholar 

    112.
    Maron, M., Rhodes, J. R. & Gibbons, P. Calculating the benefit of conservation actions. Conserv. Lett. 6, 359–367 (2013).
    Google Scholar 

    113.
    Schleicher, J. et al. Statistical matching for conservation science. Conserv. Biol. 34, 538–549 (2019).
    PubMed  PubMed Central  Google Scholar 

    114.
    Ferraro, P. J. Counterfactual thinking and impact evaluation in environmental policy. New Dir. Eval. 2009, 75–84 (2009).
    Google Scholar 

    115.
    Chandler, M. et al. Contribution of citizen science towards international biodiversity monitoring. Biol. Conserv. 213, 280–294 (2017).
    Google Scholar 

    116.
    Convention on Biological Diversity. Long-Term Strategic Directions to the 2050 Vision for Biodiversity, Approaches to Living in Harmony with Nature and Preparation for the Post-2020 Global Biodiversity Framework. www.cbd.int/decision/cop?id=12268 (2018).

    117.
    Secretariat of the Convention on Biological Diversity. Global Biodiversity Outlook 4 (Secretariat of the Convention on Biological Diversity, 2014).

    118.
    McCarthy, D. P. et al. Financial costs of meeting global biodiversity conservation targets: current spending and unmet needs. Science 338, 946–949 (2012).
    ADS  CAS  Google Scholar 

    119.
    Balmford, A. et al. Walk on the wild side: estimating the global magnitude of visits to protected areas. PLoS Biol. 13, e1002074 (2015).
    PubMed  PubMed Central  Google Scholar 

    120.
    Waldron, A. et al. Reductions in global biodiversity loss predicted from conservation spending. Nature 551, 364–367 (2017).
    ADS  CAS  Google Scholar 

    121.
    Murray, K. A., Allen, T., Loh, E., Machalaba, C. & Daszak, P. Emerging Viral Zoonoses from Wildlife Associated with Animal-Based Food Systems: Risks and Opportunities (Springer, 2016).

    122.
    Dobson, A.P. et al. Ecology and economics for pandemic prevention. Science 369, 379–381 (2020). 

    123.
    Burmester, B. Upgrading or unhelpful? Defiant corporate support for a marine protected area. Mar. Policy 63, 206–212 (2016).
    Google Scholar 

    124.
    Larson, E. R., Howell, S., Kareiva, P. & Armsworth, P. R. Constraints of philanthropy on determining the distribution of biodiversity conservation funding. Conserv. Biol. 30, 206–215 (2016).
    Google Scholar 

    125.
    Smith, T. et al. Biodiversity means business: reframing global biodiversity goals for the private sector. Conserv. Lett. 13, e12690 (2019).
    Google Scholar 

    126.
    Elsen, P. R., Monahan, W. B., Dougherty, E. R. & Merenlender, A. M. Keeping pace with climate change in global terrestrial protected areas. Sci. Adv. 6, eaay0814 (2020).
    ADS  PubMed  PubMed Central  Google Scholar 

    127.
    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Chang. 3, 919–925 (2013).
    ADS  Google Scholar 

    128.
    Bruno, J. F. et al. Climate change threatens the world’s marine protected areas. Nat. Clim. Chang. 8, 499–503 (2018).
    ADS  Google Scholar 

    129.
    Schleuning, M. et al. Ecological networks are more sensitive to plant than to animal extinction under climate change. Nat. Commun. 7, 13965 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    130.
    Bonnot, T. W., Cox, W. A., Thompson, F. R. & Millspaugh, J. J. Threat of climate change on a songbird population through its impacts on breeding. Nat. Clim. Chang. 8, 718–722 (2018).
    ADS  Google Scholar 

    131.
    Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4, 158 (2017).

    132.
    Jones, K. R., Watson, J. E. M., Possingham, H. P. & Klein, C. J. Incorporating climate change into spatial conservation prioritisation: a review. Biol. Conserv. 194, 121–130 (2016).
    Google Scholar 

    133.
    Green, A. L. et al. Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design. Biol. Rev. Camb. Philos. Soc. 90, 1215–1247 (2015).
    Google Scholar 

    134.
    Krueck, N. C. et al. Incorporating larval dispersal into MPA design for both conservation and fisheries. Ecol. Appl. 27, 925–941 (2017).
    Google Scholar 

    135.
    van Kerkhoff, L. et al. Towards future-oriented conservation: managing protected areas in an era of climate change. Ambio 48, 699–713 (2019).
    Google Scholar 

    136.
    Ling, S. D. & Johnson, C. R. Marine reserves reduce risk of climate-driven phase shift by reinstating size- and habitat-specific trophic interactions. Ecol. Appl. 22, 1232–1245 (2012).
    CAS  Google Scholar 

    137.
    Maxwell, S. L., Venter, O., Jones, K. R. & Watson, J. E. M. Integrating human responses to climate change into conservation vulnerability assessments and adaptation planning. Ann. NY Acad. Sci. 1355, 98–116 (2015).
    ADS  Google Scholar 

    138.
    Bennett, J. R. et al. When to monitor and when to act: value of information theory for multiple management units and limited budgets. J. Appl. Ecol. 55, 2102–2113 (2018).
    Google Scholar 

    139.
    Burgass, M. J., Halpern, B. S., Nicholson, E. & Milner-Gulland, E. J. Navigating uncertainty in environmental composite indicators. Ecol. Indic. 75, 268–278 (2017).
    Google Scholar 

    140.
    Bennett, J. R. et al. Polar lessons learned: long-term management based on shared threats in Arctic and Antarctic environments. Front. Ecol. Environ. 13, 316–324 (2015).
    Google Scholar 

    141.
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).
    ADS  CAS  Google Scholar 

    142.
    Bai, Y. et al. Developing China’s ecological redline policy using ecosystem services assessments for land use planning. Nat. Commun. 9, 3034 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    143.
    Hughes, A. C. Understanding and minimizing environmental impacts of the belt and road initiative. Conserv. Biol. 33, 883–894 (2019).
    Google Scholar 

    144.
    Alamgir, M. et al. High-risk infrastructure projects pose imminent threats to forests in Indonesian Borneo. Sci. Rep. 9, 140 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    145.
    Azevedo, A. A. et al. Limits of Brazil’s forest code as a means to end illegal deforestation. Proc. Natl Acad. Sci. USA 114, 7653–7658 (2017).
    ADS  CAS  Google Scholar 

    146.
    Simmonds, J. S. et al. Moving from biodiversity offsets to a target-based approach for ecological compensation. Conserv. Lett. 13, e12695 (2020).
    Google Scholar 

    147.
    Spalding, M. D., Agostini, V. N., Rice, J. & Grant, S. M. Pelagic provinces of the world: a biogeographic classification of the world’s surface pelagic waters. Ocean Coast. Manage. 60, 19–30 (2012).
    Google Scholar 

    148.
    NatureServe. Bird Species Distribution Maps of the World (BirdLife International, 2018).

    149.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Google Scholar 

    150.
    Pauly, D. et al. Sea Around Us Concepts, Design and Data. www.seaaroundus.org (2020).

    151.
    Ferraro, P. J. & Pressey, R. L. Measuring the difference made by conservation initiatives: protected areas and their environmental and social impacts. Phil. Trans. R. Soc. Lond. B 370, 20140270 (2015).
    Google Scholar 

    152.
    Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).
    Google Scholar  More

  • in

    A unique clade of light-driven proton-pumping rhodopsins evolved in the cyanobacterial lineage

    Phylogenetic analysis and distribution of rhodopsin genes in cyanobacteria
    To survey the distribution of rhodopsin genes in cyanobacteria, a sequence homology search was performed using 154 cyanobacterial genomes, including 126 genomes used in a large-scale comparative genomic study of cyanobacteria21 and 28 genomes known to possess rhodopsin genes obtained from a public database. Based on this search, 56 rhodopsin genes in 42 cyanobacterial genomes were identified (Table 1). Stratified by the habitat, the rhodopsin genes were found almost exclusively in freshwater cyanobacteria: 29 in freshwater, 9 in high salinity, 2 in marine, and 2 in NA (not available). There are, however, 9 genomes from a high salinity environment, 8 were from the same site and showed little genetic variation. Phylogenetic analysis of the amino acid sequences of the rhodopsins encoded by the 56 identified genes revealed that the proteins belonged to four known rhodopsin clades: XLR (3 genes), NaR (1 gene), XeR (15 genes), and CyHR (24 genes) and one novel clade (13 genes) (Table 1 and Fig. 1a and Supporting Information Fig. S1); the novel rhodopsin clade consisted entirely of rhodopsin genes from cyanobacterial genomes so we named the clade “cyanorhodopsin” (CyR) (Fig. 1b).
    Table 1 Rhodopsin distribution and habitats in cyanobacterial lineage.
    Full size table

    Figure 1

    The novel cyanorhodopsin clade. (a) Maximum likelihood tree of amino acid sequences of microbial rhodopsins. Bootstrap probabilities (≥ 50%) are indicated by colored circles. Green branches indicate cyanobacterial rhodopsins, and black branches indicate others. Rhodopsin clades are as follows: NaR (Na+-pumping rhodopsin), ClR (Cl−-pumping rhodopsin), XLR (xanthorhodopsin-like rhodopsin), PR (proteorhodopsin), XeR (xenorhodopsin), DTG-motif rhodopsin, SR (sensory rhodopsin-I and sensory rhodopsin-II), BR (bacteriorhodopsin), HR (halorhodopsin), CyHR (cyanobacterial halorhodopsin), and a novel cyanobacteria-specific clade (yellow shading). (b) Enlarged view of the novel cyanobacteria-specific clade. The three rhodopsins functionally examined in this study are shown in red. The scale bar represents substitutions per site.

    Full size image

    Cyanobacterial nomenclature is based largely on morphological features; therefore, species names often do not reflect their lineage. Therefore, to examine the rhodopsin gene distribution we reconstructed a phylogenomic tree of the 154 cyanobacteria genomes by using conserved phylogenetic marker proteins (120 ubiquitous single-copy proteins). Seven subclades (A–G) were assigned to the phylogenomic tree according to a previous study21, together with information on source environment, morphology, presence or absence of the retinal biosynthetic gene diox1 (carotenoid oxygenase), and genome size (Supporting Information Fig. S2). Almost all of the genomes were found to encode diox1 (152/154), indicating that microbial strains with rhodopsins generally also have the ability to produce retinal. In addition, we found that the rhodopsin-possessing strains were not evenly distributed across the subclades (Supporting Information Fig. S2, Table 1 and Supporting Information Table S1): strains in subclades A, C (mainly marine cyanobacteria with relatively smaller genomes), F, and G did not possess any rhodopsin genes; in contrast, almost all the strains in subclade D did possess rhodopsin genes and subclade B contained all functional types of cyanobacterial rhodopsin detected in this study (Supporting Information Fig. S2 and Table 1). No morphological bias in rhodopsin distribution was observed (Supporting Information Fig. S2).
    Amino acid sequences and functions of the rhodopsins in the CyR clade
    To examine the functions of the rhodopsins in the CyR clade, a motif sequence containing specific amino acid residues that are crucial for ion transport activity was examined. In BR, the motif corresponds to Asp85BR, Thr89BR, and Asp96BR (DTD) in the third helix (helix C); the Asp85 and Asp96 residues work as proton acceptor and donor, respectively, and Thr89 forms a hydrogen bond with Asp85. Of the 13 rhodopsins in the CyR clade, the DTD motif was detected in 10, whereas the corresponding motif was Asp, Thr, Glu (DTE) in Calothrix sp. NIES-2098, Nostoc sp. RF31Y, and Nostoc sp. 106C (Supporting Information Fig. S3). All of the CyRs included Lys204N2098R in the seventh helix (helix G), which is known to make a Schiff base linkage between the rhodopsin protein moiety and the retinal chromophore in other rhodopsins (Supporting Information Fig. S3). Also, an aspartic acid residue (Asp200N2098R) and two glutamic acid residues (Glu182N2098R and Glu192N2098R), which are classified as a counterion stabilizing the Schiff base and a proton release group, respectively, were conserved in BR and all of the CyRs22,23. Based on this analysis, CyRs were expected to function as light-driven H+ pumps.
    Next, to further examine the ion-transporting activities of the CyRs, we heterologously expressed three synthesized rhodopsin genes—N2098R (BAY09002.1), B1401R (WP_074382570.1), and N4075R (GAX43141.1)—in Escherichia coli (see Fig. 1b). Rhodopsin-expressing E. coli cells showed more colors than control vector (pET21a) (Fig. 2a) and protein expressions were detected by western blots using anti-His-tag antibody (Fig. 2b). We examined the light-induced change in the pH of the cell suspension. A light-induced decrease in pH was observed in the suspensions of the cells expressing each of the rhodopsins (Fig. 2c, solid line), and this decrease was almost completely abolished in the presence of the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) (Fig. 2c, broken line). These results showed that N2098R and B1401R transport proton from the cytoplasmic side to the extracellular space. On the other hand, N4075R was thought to act as an outward proton pump, but its activity was smaller than that of the others. Therefore, the possibility of transporting other ions cannot be excluded.
    Figure 2

    Light-induced changes of the pH of suspensions of Escherichia coli expressing a rhodopsin (N2098R, B1401R, and N4075R) from the novel CyR clade. (a) The pellet color of CyRs. (b) Detection of protein expression of CyRs by western blots using an anti-His-tag antibody. These proteins were expressed in E. coli cells with a His-tag at the C-terminal. The monomer-band of CyRs (around 22 kDa) were quantified using ImageJ software. (c) The changes in pH in the absence (solid line) and presence (broken line) of CCCP are shown. The numbers in parentheses are the pH units of y-axis divisions. All measurements were performed under the dark condition (gray shading) with illumination at 520 ± 10 nm for 3 min (white shading). E. coli cells containing the pET21a plasmid vector alone were simultaneously analyzed as a negative control.

    Full size image

    Spectroscopic characterization of N2098R
    To characterize the photochemical properties of the CyRs, we focused on N2098R, a well-expressed, stable rhodopsin. After adaption of purified N2098R to the light or dark condition, the absorption maxima of both adapted samples of N2098R was located at 550 nm (Fig. 3a), which was similar to that of GR but not to that of BR or PR (Table 2)6,16,24.
    Figure 3

    Absorption spectra and photocycle of N2098R. (a) UV–Vis spectra of N2098R with (green broken line) and without (black solid line) light illumination at 550 ± 10 nm for 10 min. (b) Flash-induced difference absorption spectra of N2098R over a spectral range of 370 to 700 nm and a time range of 0.01 to 977 ms. (c) Detail of flash-induced difference absorption spectra of N2098R over a spectral range of 570 to 680 nm and a time range of 0.01 to 977 ms. (d) Flash-induced kinetic data of N2098R at 405 nm (violet line), 550 nm (green line), 620 nm (orange line), and 645 nm (red line). The gray line represents the absorption changes of pyranine monitored at 450 nm. (e) Detail of flash-induced kinetic data of N2098R at 405 nm (violet line), 550 nm (green line), 620 nm (range line), and 645 nm (red line).

    Full size image

    Table 2 Photochemical properties of light-driven outward proton pump rhodopsins.
    Full size table

    Next, we examined the retinal configuration in N2098R by high-performance liquid chromatography. Both in light- and dark-adapted samples, the isomeric state of retinal was predominantly all-trans (Supporting Information Fig. S4 and Table 2), which was similar to the isomeric state of retinal in PR25 and GR15,26 but different from that in BR (Table 2)27.
    Charged residues (e.g., Asp85BR and Lys216BR in BR) are essential for proton transportation by rhodopsins28. We therefore estimated the pKa values of the charged residues in N2098R (i.e., Asp74N2098R and Lys204N2098R) by pH titration and fitted the data using the Henderson–Hasselbalch equation assuming a single pKa; the pKa values of Asp74N2098R and Lys204N2098R were estimated to be  More

  • in

    Explicit integration of dispersal-related metrics improves predictions of SDM in predatory arthropods

    1.
    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity: biodiversity and climate change. Ecol. Lett. 15, 365–377 (2012).
    PubMed  PubMed Central  Article  Google Scholar 
    2.
    Garcia, R. A., Cabeza, M., Rahbek, C. & Araújo, M. B. Multiple dimensions of climate change and their implications for biodiversity. Science 344, 1247579 (2014).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    3.
    Pereira, H. M. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501 (2010).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).
    ADS  CAS  Article  Google Scholar 

    5.
    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
    Article  Google Scholar 

    6.
    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Miller, J. Species distribution modeling. Geogr, Compass 4, 490–509 (2010).
    Article  Google Scholar 

    9.
    Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    10.
    Bellard, C. et al. Will climate change promote future invasions?. Glob. Change Biol. 19, 3740–3748 (2013).
    ADS  Article  Google Scholar 

    11.
    Hijmans, R. J. & Graham, C. H. The ability of climate envelope models to predict the effect of climate change on species distributions. Glob. Change Biol. 12, 2272–2281 (2006).
    ADS  Article  Google Scholar 

    12.
    Hao, T., Elith, J., Guillera-Arroita, G. & Lahoz-Monfort, J. J. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers. Distrib. 25, 839–852 (2019).
    Article  Google Scholar 

    13.
    Melo-Merino, S. M., Reyes-Bonilla, H. & Lira-Noriega, A. Ecological niche models and species distribution models in marine environments: a literature review and spatial analysis of evidence. Ecol. Model. 415, 108837 (2020).
    Article  Google Scholar 

    14.
    Qiao, H., Soberón, J. & Peterson, A. T. No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation. Methods Ecol. Evol. 6, 1126–1136 (2015).
    Article  Google Scholar 

    15.
    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    16.
    Thuiller, W. Patterns and uncertainties of species’ range shifts under climate change. Glob. Change Biol. 10, 2020–2027 (2004).
    ADS  Article  Google Scholar 

    17.
    Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N. & Zimmermann, N. E. Uncertainty in ensembles of global biodiversity scenarios. Nat. Commun. 10, 1–9 (2019).
    CAS  Article  Google Scholar 

    18.
    Titeux, N. et al. Biodiversity scenarios neglect future land-use changes. Glob. Change Biol. 22, 2505–2515 (2016).
    ADS  Article  Google Scholar 

    19.
    Solomon, S. et al.IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Vol. 1 (2007).

    20.
    Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).
    Article  Google Scholar 

    21.
    Richmond, O. M. W., McEntee, J. P., Hijmans, R. J. & Brashares, J. S. Is the climate right for pleistocene rewilding? Using species distribution models to extrapolate climatic suitability for mammals across continents. PLoS ONE 5, e12899 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    22.
    Kearney, M. Habitat, environment and niche: what are we modelling?. Oikos 115, 186–191 (2006).
    Article  Google Scholar 

    23.
    Soberon, J. & Peterson, A. T. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers. Inform.2, 1–10 (2005).
    Article  Google Scholar 

    24.
    Merow, C., LaFleur, N., Silander, J. A. Jr., Wilson, A. M. & Rubega, M. Developing dynamic mechanistic species distribution models: predicting bird-mediated spread of invasive plants across northeastern North America. Am. Nat. 178, 30–43 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    25.
    Bocedi, G. et al. RangeShifter: a platform for modelling spatial eco-evolutionary dynamics and species’ responses to environmental changes. Methods Ecol. Evol. 5, 388–396 (2014).
    Article  Google Scholar 

    26.
    Briscoe, N. J. et al. Forecasting species range dynamics with process-explicit models: matching methods to applications. Ecol. Lett. 22, 1940–1956 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    27.
    Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).
    Article  Google Scholar 

    28.
    Mammola, S. & Isaia, M. Rapid poleward distributional shifts in the European cave-dwelling Meta spiders under the influence of competition dynamics. J. Biogeogr. 44, 2789–2797 (2017).
    Article  Google Scholar 

    29.
    Lafage, D., Maugenest, S., Bouzillé, J.-B. & Pétillon, J. Disentangling the influence of local and landscape factors on alpha and beta diversities: opposite response of plants and ground-dwelling arthropods in wet meadows. Ecol. Res. 30, 1025–1035 (2015).
    Article  Google Scholar 

    30.
    Leroy, B. et al. First assessment of effects of global change on threatened spiders: potential impacts on Dolomedes Plantarius (Clerck) and its conservation plans. Biol. Conserv. 161, 155–163 (2013).
    Article  Google Scholar 

    31.
    Leroy, B. et al. Forecasted climate and land use changes, and protected areas: the contrasting case of spiders. Divers. Distrib. 20, 686–697 (2014).
    Article  Google Scholar 

    32.
    Keppel, G. & Wardell-Johnson, G. W. Refugia: keys to climate change management. Glob. Change Biol. 18, 2389–2391 (2012).
    ADS  Article  Google Scholar 

    33.
    Finlayson, C. M. et al. The second warning to humanity—providing a context for wetland management and policy. Wetlands 39, 1–5 (2019).
    Article  Google Scholar 

    34.
    van Helsdingen, P. J. Ecology and distribution of dolomedes in Europe (Araneida: Dolomedidae). Boll. Acc. Gioenia Sci. Nat. 26, 181–187 (1993).
    Google Scholar 

    35.
    Duffey, E. Dolomedes plantarius (Clerck, 1757) (Araneae: Pisauridae): a reassessment of its ecology and distribution in Europe, with comments on its history at Redgrave and Lopham Fen, England. Bull. Br. Arachnol. Soc. 15, 285–292 (2012).
    Google Scholar 

    36.
    Ivanov, V., Prishepchik, O. & Setrakova, E. Dolomedes plantarius (Araneae, Pisauridae) in Belarus: records, distribution and implications for conservation. Arachnol. Mitteilungen 54, 33–37 (2017).
    Article  Google Scholar 

    37.
    Holec, M. Spiders (aranea) of the fishpond eulittoral zone. In Proceedings of the 18th European Colloquium of Arachnology vol. 19, 51–54 (Ekológia, Bratislava, 2000).

    38.
    Duffey, E. The distribution, status and habitat of Dolomedes fimbriatus (Clerck) and D. plantarius (Clerck) in Europe. In Proceedings of 15th European Colloquium of Arachnology 54–65 (1995).

    39.
    Hill, J. K., Thomas, C. D. & Blakeley, D. S. Evolution of flight morphology in a butterfly that has recently expanded its geographic range. Oecologia 121, 165–170 (1999).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    GBIF: The Global Biodiversity Information Facility. What is GBIF?https://www.gbif.org/what-is-gbif (2019).

    41.
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria(2020).

    42.
    ESRI. World Imagery. (2009).

    43.
    Braunisch, V. et al. Selecting from correlated climate variables: a major source of uncertainty for predicting species distributions under climate change. Ecography 36, 971–983 (2013).
    Article  Google Scholar 

    44.
    Dormann, C. F. Promising the future? Global change projections of species distributions. Basic Appl. Ecol. 8, 387–397 (2007).
    Article  Google Scholar 

    45.
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Article  Google Scholar 

    46.
    van Vuuren, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5 (2011).
    ADS  Article  Google Scholar 

    47.
    Hijmans, R. J., Cameron, S. E., Parra, J. L. & Jarvis, A. Very high resolution interpolated climated surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Article  Google Scholar 

    48.
    Lafage, D. & Pétillon, J. Relative importance of management and natural flooding on spider, carabid and plant assemblages in extensively used grasslands along the Loire. Basic Appl. Ecol. 17, 535–545 (2016).
    Article  Google Scholar 

    49.
    Dickel, L. Characterisation of Habitat Requirements of European Fishing Spiders (Inland Norway University of Applied Sciences, 2019).

    50.
    EEA. European Union, Copernicus Land Monitoring Service 2018, European Environment Agency (EEA). (2018).

    51.
    Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117 (2011).
    ADS  Article  Google Scholar 

    52.
    Senay, S. D., Worner, S. P. & Ikeda, T. Novel three-step pseudo-absence selection technique for improved species distribution modelling. PLoS ONE 8, e71218 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Grenouillet, G., Buisson, L., Casajus, N. & Lek, S. Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography 34, 9–17 (2011).
    Article  Google Scholar 

    54.
    Buisson, L., Thuiller, W., Casajus, N., Lek, S. & Grenouillet, G. Uncertainty in ensemble forecasting of species distribution. Glob. Change Biol. 16, 1145–1157 (2010).
    ADS  Article  Google Scholar 

    55.
    Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: how, where and how many?. Methods Ecol. Evol. 3, 327–338 (2012).
    Article  Google Scholar 

    56.
    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
    Article  Google Scholar 

    57.
    Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 27, 861–874 (2006).
    Article  Google Scholar 

    58.
    Engler, R. & Guisan, A. MigClim: predicting plant distribution and dispersal in a changing climate. Divers. Distrib. 15, 590–601 (2009).
    Article  Google Scholar 

    59.
    Bonte, D., Clercq, N. D., Zwertvaegher, I. & Lens, L. Repeatability of dispersal behaviour in a common dwarf spider: evidence for different mechanisms behind short- and long-distance dispersal. Ecol. Entomol. 34, 271–276 (2009).
    Article  Google Scholar 

    60.
    Lee, V. M. J., Kuntner, M. & Li, D. Ballooning behavior in the golden orbweb spider Nephila pilipes (Araneae: Nephilidae). Front. Ecol. Evol. 3, 2 (2015).
    Article  Google Scholar 

    61.
    Reynolds, A. M., Bohan, D. A. & Bell, J. R. Ballooning dispersal in arthropod taxa: conditions at take-off. Biol. Lett. 3, 237–240 (2007).
    PubMed  PubMed Central  Article  Google Scholar 

    62.
    Thomas, C. F. G., Brain, P. & Jepson, P. C. Aerial activity of linyphiid spiders: modelling dispersal distances from meteorology and behaviour. J. Appl. Ecol. 40, 912–927 (2003).
    Article  Google Scholar 

    63.
    Shah, V. B. & McRae, B. Circuitscape: a tool for landscape ecology. In Proceedings of the 7th Python in Science Conference Vol. 7 62–66 (2008).

    64.
    McRae, B. H., Dickson, B. G., Keitt, T. H. & Shah, V. B. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89, 2712–2724 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    65.
    Keeley, A. T. H., Beier, P., Keeley, B. W. & Fagan, M. E. Habitat suitability is a poor proxy for landscape connectivity during dispersal and mating movements. Landsc. Urban Plan. 161, 90–102 (2017).
    Article  Google Scholar 

    66.
    Pelletier, D. et al. Applying circuit theory for corridor expansion and management at regional scales: tiling, pinch points, and omnidirectional connectivity. PLoS ONE 9, e84135 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    67.
    Febbraro, M. D. et al. Integrating climate and land-use change scenarios in modelling the future spread of invasive squirrels in Italy. Divers. Distrib. 25, 644–659 (2019).
    Article  Google Scholar 

    68.
    Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evol. Int. J. Org. Evol. 62, 2868–2883 (2008).
    Article  Google Scholar 

    69.
    Rödder, D. & Engler, J. O. Quantitative metrics of overlaps in Grinnellian niches: advances and possible drawbacks. Glob. Ecol. Biogeogr. 20, 915–927 (2011).
    Article  Google Scholar 

    70.
    Bonte, D., Travis, J. M. J., Clercq, N. D., Zwertvaegher, I. & Lens, L. Thermal conditions during juvenile development affect adult dispersal in a spider. Proc. Natl. Acad. Sci. 105, 17000–17005 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    71.
    Eskildsen, A. et al. Testing species distribution models across space and time: high latitude butterflies and recent warming. Glob. Ecol. Biogeogr. 22, 1293–1303 (2013).
    Article  Google Scholar 

    72.
    Svenning, J.-C. & Skov, F. Limited filling of the potential range in European tree species. Ecol. Lett. 7, 565–573 (2004).
    Article  Google Scholar 

    73.
    Radchuk, V. et al. Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 10, 1–14 (2019).
    CAS  Article  Google Scholar 

    74.
    Bell, J. R., Bohan, D. A., Shaw, E. M. & Weyman, G. S. Ballooning dispersal using silk: world fauna, phylogenies, genetics and models. Bull. Entomol. Res. 95, 69–114 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    75.
    Bonte, D., Borre, J. V., Lens, L. & Jean-Pierre, M. Geographical variation in wolf spider dispersal behaviour is related to landscape structure. Anim. Behav. 72, 655–662 (2006).
    Article  Google Scholar 

    76.
    Bellvert, A., Casals, A., Fonollosa, A., Dalmau, G. & Tobella, C. First record of Dolomedes plantarius (Clerck, 1758) (Araneae: Pisauridae) from the Iberian Peninsula. Rev. Ibérica Aracnol. 23, 109–111 (2013).
    Google Scholar 

    77.
    Carico, J. E. The nearctic species of the genus Dolomedes (Araneae: Pisauridae). Bull. Mus. Comp. Zool. Harv. Coll. 144, 435–488 (1973).
    Google Scholar 

    78.
    Weinstein, B. G., Graham, C. H. & Parra, J. L. The role of environment, dispersal and competition in explaining reduced co-occurrence among related species. PLoS ONE 12, e0185493 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    79.
    Montoya, J. M. & Raffaelli, D. Climate change, biotic interactions and ecosystem services. Philos. Trans. R. Soc. B Biol. Sci. 365, 2013–2018 (2010).
    Article  Google Scholar 

    80.
    Warren, M. S. et al. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414, 65–69 (2001).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    81.
    Roux, P. C. L. & McGeoch, M. A. Rapid range expansion and community reorganization in response to warming. Glob. Change Biol. 14, 2950–2962 (2008).
    ADS  Article  Google Scholar 

    82.
    Losos, J. B. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol. Lett. 11, 995–1003 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    83.
    Williams, D. D., Ambrose, L. G. & Browning, L. N. Trophic dynamics of two sympatric species of riparian spider (Araneae: Tetragnathidae). Can. J. Zool. 73, 1545–1553 (1995).
    Article  Google Scholar 

    84.
    Balfour, R. A., Buddle, C. M., Rypstra, A. L., Walker, S. E. & Marshall, S. D. Ontogenetic shifts in competitive interactions and intra-guild predation between two wolf spider species. Ecol. Entomol. 28, 25–30 (2003).
    Article  Google Scholar 

    85.
    Travis, J. M. J. et al. Dispersal and species’ responses to climate change. Oikos 122, 1532–1540 (2013).
    Article  Google Scholar 

    86.
    Travis, J. M. J. et al. Modelling dispersal: an eco-evolutionary framework incorporating emigration, movement, settlement behaviour and the multiple costs involved. Methods Ecol. Evol. 3, 628–641 (2012).
    Article  Google Scholar 

    87.
    Bonte, D., Lukáč, M. & Lens, L. Starvation affects pre-dispersal behaviour of Erigone spiders. Basic Appl. Ecol. 9, 308–315 (2008).
    Article  Google Scholar 

    88.
    Goodacre, S. L. et al. Microbial modification of host long-distance dispersal capacity. BMC Biol. 7, 32 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    89.
    De Meester, N. & Bonte, D. Information use and density-dependent emigration in an agrobiont spider. Behav. Ecol. 21, 992–998 (2010).
    Article  Google Scholar 

    90.
    Bonte, D. & Lens, L. Heritability of spider ballooning motivation under different wind velocities. Evol. Ecol. Res. 9, 817–827 (2007).
    Google Scholar 

    91.
    Clobert, J., Galliard, J.-F.L., Cote, J., Meylan, S. & Massot, M. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197–209 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    92.
    Titeux, N. et al. Ecological traps and species distribution models: a challenge for prioritizing areas of conservation importance. Ecography 43, 365–375 (2020).
    Article  Google Scholar 

    93.
    Ceia-Hasse, A., Sinervo, B., Vicente, L. & Pereira, H. M. Integrating ecophysiological models into species distribution projections of European reptile range shifts in response to climate change. Ecography 37, 679–688 (2014).
    Article  Google Scholar 

    94.
    Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899 (2010).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    95.
    Slatyer, R. A., Nash, M. A. & Hoffmann, A. A. Measuring the effects of reduced snow cover on Australia’s alpine arthropods. Austral Ecol. 42, 844–857 (2017).
    Article  Google Scholar 

    96.
    Cardoso, P. et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 242, 108426 (2020).
    Article  Google Scholar 

    97.
    Samways, M. J. et al. Solutions for humanity on how to conserve insects. Biol. Conserv. 242, 108427 (2020).
    Article  Google Scholar 

    98.
    Prieto-Benítez, S. & Méndez, M. Effects of land management on the abundance and richness of spiders (Araneae): a meta-analysis. Biol. Conserv. 144, 683–691 (2011).
    Article  Google Scholar 

    99.
    Marc, P., Canard, A. & Ysnel, F. Spiders (Araneae) useful for pest limitation and bioindication. Agric. Ecosyst. Environ. 74, 229–273 (1999).
    Article  Google Scholar 

    100.
    Noss, R. F. & Daly, K. M. Incorporating connectivity into broad-scale conservation planning. In Connectivity Conservation (eds Crooks, K. R. et al.) 587–619 (Cambridge University Press, Cambridge, 2006). https://doi.org/10.1017/CBO9780511754821.026.
    Google Scholar 

    101.
    World Conservation Monitoring Centre. The IUCN Red List of Threatened Species 1996 (1996).

    102.
    Dunnington, D. ggspatial: Spatial Data Framework for ggplot2. https://CRAN.R-project.org/package=ggspatial (2020).

    103.
    Wickham, H. ggplot2: elegant graphics for data analysis (Springer, New York, 2016).
    Google Scholar 

    104.
    South, A. rnaturalearth: World Map Data from Natural Earth. https://CRAN.R-project.org/package=rnaturalearth (2017).

    105.
    Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. https://CRAN.R-project.org/package=ggpubr (2020). More

  • in

    Environmental drivers of megafauna and hominin extinction in Southeast Asia

    1.
    Détroit, F. et al. A new species of Homo from the Late Pleistocene of the Philippines. Nature 568, 181–186 (2019).
    PubMed  Article  ADS  CAS  Google Scholar 
    2.
    Kaifu, Y. Archaic hominin populations in Asia before the arrival of modern humans: their phylogeny and implications for the “Southern Denisovans”. Curr. Anthropol. 58, S418–S433 (2017).
    Article  Google Scholar 

    3.
    Reich, D. et al. Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania. Am. J. Hum. Genet. 89, 516–528 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Louys, J., Curnoe, D. & Tong, H. Characteristics of Pleistocene megafauna extinctions in Southeast Asia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 243, 152–173 (2007).
    Article  Google Scholar 

    5.
    Klein, R. G. Stable carbon isotopes and human evolution. Proc. Natl Acad. Sci. USA 110, 10470–10472 (2013).
    CAS  PubMed  Article  ADS  Google Scholar 

    6.
    Cerling, T. E. et al. Woody cover and hominin environments in the past 6 million years. Nature 476, 51–56 (2011).
    CAS  PubMed  Article  ADS  Google Scholar 

    7.
    Heaney, L. R. in Tropical Forests and Climate (ed. Myers, N.) 53–61 (Springer, 1991).

    8.
    Bird, M. I., Taylor, D. & Hunt, C. Palaeoenvironments of insular Southeast Asia during the Last Glacial Period: a savanna corridor in Sundaland? Quat. Sci. Rev. 24, 2228–2242 (2005).
    Article  ADS  Google Scholar 

    9.
    Louys, J. & Turner, A. Environment, preferred habitats and potential refugia for Pleistocene Homo in Southeast Asia. C. R. Palevol 11, 203–211 (2012).
    Article  Google Scholar 

    10.
    Dennell, R. & Roebroeks, W. An Asian perspective on early human dispersal from Africa. Nature 438, 1099–1104 (2005).
    CAS  PubMed  Article  ADS  Google Scholar 

    11.
    van den Bergh, G. D., de Vos, J. & Sondaar, P. Y. The Late Quaternary palaeogeography of mammal evolution in the Indonesian Archipelago. Palaeogeogr. Palaeoclimatol. Palaeoecol. 171, 385–408 (2001).
    Article  Google Scholar 

    12.
    Steiper, M. E. Population history, biogeography, and taxonomy of orangutans (Genus: Pongo) based on a population genetic meta-analysis of multiple loci. J. Hum. Evol. 50, 509–522 (2006).
    PubMed  Article  Google Scholar 

    13.
    Patel, R. P. et al. Two species of Southeast Asian cats in the genus Catopuma with diverging histories: an island endemic forest specialist and a widespread habitat generalist. R. Soc. Open Sci. 3, 160350 (2016).
    PubMed  PubMed Central  Article  ADS  Google Scholar 

    14.
    Cannon, C. H., Morley, R. J. & Bush, A. B. G. The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance. Proc. Natl Acad. Sci. USA 106, 11188–11193 (2009).
    CAS  PubMed  Article  ADS  Google Scholar 

    15.
    Sun, X., Li, X., Luo, Y. & Chen, X. The vegetation and climate at the last glaciation on the emerged continental shelf of the South China Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 160, 301–316 (2000).
    Article  Google Scholar 

    16.
    Louys, J. & Meijaard, E. Palaeoecology of Southeast Asian megafauna-bearing sites from the Pleistocene and a review of environmental changes in the region. J. Biogeogr. 37, 1432–1449 (2010).
    Google Scholar 

    17.
    Raes, N. et al. Historical distribution of Sundaland’s dipterocarp rainforests at Quaternary glacial maxima. Proc. Natl Acad. Sci. USA 111, 16790–16795 (2014).
    CAS  PubMed  Article  ADS  Google Scholar 

    18.
    Handiani, D. et al. Tropical vegetation response to Heinrich Event 1 as simulated with the UVic ESCM and CCSM3. Clim. Past Discuss. 8, 5359–5387 (2012).
    Article  ADS  Google Scholar 

    19.
    Chabangborn, A., Brandefelt, J. & Wohlfarth, B. Asian monsoon climate during the Last Glacial Maximum: palaeo-data–model comparisons: LGM Asian monsoon climate. Boreas 43, 220–242 (2014).
    Article  Google Scholar 

    20.
    Levin, N. E. et al. Herbivore enamel carbon isotopic composition and the environmental context of Ardipithecus at Gona, Ethiopia. Geol. S. Am. S. 446, 215–235 (2008).
    Google Scholar 

    21.
    Cerling, T. E., Hart, J. A. & Hart, T. B. Stable isotope ecology in the Ituri Forest. Oecologia 138, 5–12 (2004).
    PubMed  Article  ADS  Google Scholar 

    22.
    Secord, R., Wing, S. L. & Chew, A. Stable isotopes in early Eocene mammals as indicators of forest canopy structure and resource partitioning. Paleobiology 34, 282–300 (2008).
    Article  Google Scholar 

    23.
    Fannin, L. D. & McGraw, W. S. Does oxygen stable isotope composition in primates vary as a function of vertical stratification or folivorous behaviour? Folia Primatol. 91, 219–227 (2020).
    PubMed  Article  Google Scholar 

    24.
    Clark, P. U. et al. The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quat. Sci. Rev. 25, 3150–3184 (2006).
    Article  ADS  Google Scholar 

    25.
    Sarr, A. C. et al. Subsiding Sundaland. Geology 47, 119–122 (2019).
    Article  ADS  Google Scholar 

    26.
    Di Nezio, P. N. et al. The climate response of the Indo-Pacific warm pool to glacial sea level. Paleoceanogr 31, 866–894 (2016).
    Article  ADS  Google Scholar 

    27.
    Roberts, P. et al. Isotopic evidence for initial coastal colonization and subsequent diversification in the human occupation of Wallacea. Nat. Commun. 11, 2068 (2020).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    28.
    Barker, G. & Farr, L. E. Archaeological Investigations in the Niah Caves, Sarawak, The Archaeology of Niah Caves, Sarawak (McDonald Institute Monographs, 2016).

    29.
    Piper, P. J. & Rabett, R. J. Hunting in a tropical rainforest: evidence from the Terminal Pleistocene at Lobang Hangus, Niah Caves, Sarawak. Int. J. Osteoarchaeol. 19, 551–565 (2009).
    Article  Google Scholar 

    30.
    Steiner, C. C., Houck, M. L. & Ryder, O. A. Genetic variation of complete mitochondrial genome sequences of the Sumatran rhinoceros (Dicerorhinus sumatrensis). Conserv. Genet. 19, 397–408 (2018).
    CAS  Article  Google Scholar 

    31.
    Sodhi, N. S., Koh, L. P., Brook, B. W. & Ng, P. K. Southeast Asian biodiversity: an impending disaster. Trends Ecol. Evol. 19, 654–660 (2004).
    PubMed  Article  Google Scholar 

    32.
    Spehar, S. N. et al. Orangutans venture out of the rainforest and into the Anthropocene. Sci. Adv. 4, e1701422 (2018).
    PubMed  PubMed Central  Article  ADS  Google Scholar 

    33.
    Craig, H. The geochemistry of the stable carbon isotope. Geochim. Cosmochim. Acta 3, 53–92 (1953).
    CAS  Article  ADS  Google Scholar 

    34.
    Smith, B. N. & Epstein, S. Two categories of 13C/12C ratios for higher plants. Plant Physiol. 47, 380–384 (1971).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Tieszen, L. L. Natural variations in the carbon isotope values of plants: implications for archaeology, ecology, and paleoecology. J. Archaeol. Sci. 18, 227–248 (1991).
    Article  Google Scholar 

    36.
    Sponheimer, M. et al. Do “savanna” chimpanzees consume C4 resources? J. Hum. Evol. 51, 128–133 (2006).
    CAS  PubMed  Article  Google Scholar 

    37.
    Sponheimer, M. et al. Isotopic evidence of early hominin diets. Proc. Natl Acad. Sci. USA 110, 10513–10518 (2013).
    CAS  Article  ADS  Google Scholar 

    38.
    Codron, J. et al. Stable isotope series from elephant ivory reveal lifetime histories of a true dietary generalist. Proc. R. Soc. Lond. B 279, 2433–2441 (2012).
    Google Scholar 

    39.
    Crowley, B. E. et al. Extinction and ecology retreat in a community of primates. Proc. R. Soc. Lond. B 279, 3597–3605 (2012).
    Google Scholar 

    40.
    Farquhar, G. D., Ehleringer, J. R. & Hubick, K. T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 503–537 (1989).
    CAS  Article  Google Scholar 

    41.
    van der Merwe, N. J. & Medina, E. The canopy effect, carbon isotope ratios and foodwebs in Amazonia. J. Archaeol. Sci. 18, 249–259 (1991).
    Article  Google Scholar 

    42.
    Pearcy, R. W. & Pfitsch, W. A. Influence of sunflecks on the δ13C of Adenocaulon bicolor plants occurring in contrasting forest understory microsites. Oecologia 86, 457–462 (1991).
    PubMed  Article  ADS  Google Scholar 

    43.
    Bonafini, M., Pellegrini, M., Ditchfield, P. & Pollard A. M. Investigation of the ‘canopy effect’ in the isotope ecology of temperate woodlands. J. Archaeol. Sci. 40, 3926–3935 (2013).
    Article  Google Scholar 

    44.
    Ehleringer, J. R., Rundel, P. W. & Nagy, K. A. Stable isotopes in physiological ecology and food web research. Trends Ecol. Evol. 1, 42–45 (1986).
    CAS  PubMed  Article  Google Scholar 

    45.
    van der Merwe, N. J. & Medina, E. Photosynthesis and 13C/12C ratios in Amazonian rainforests. Geochim. Cosmochim. Acta 53, 1091–1094 (1989).
    Article  ADS  Google Scholar 

    46.
    Ometto, J. P. H. B. et al. The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil. Biogeochemistry 79, 251–274 (2006).
    CAS  Article  Google Scholar 

    47.
    Gonfiantini, R., Gratziu, S. & Tongiorgi, E. in Isotopes and Radiation in Soil Plant Nutrition Studies (Technical Report Series No. 206) (ed. Joint FAO/IAEA Division of Atomic Energy in Agriculture) 405–410 (Isotope Atomic Energy Commission, 1965).

    48.
    Flanagan, L. B., Comstock, J. P. & Ehleringer, J. R. Comparison of modelled and observed environmental influences on the stable oxygen and hydrogen isotope composition of leaf water in Phaseolus vulgaris L. Plant Physiol. 96, 588–596 (1991).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Yakir, D., Berry, J. A., Giles, L. & Osmond, C. B. Isotopic heterogeneity of water in transpiring leaves: Identification of the component that controls the δ18O of atmospheric O2 and CO2. Plant Cell Environ. 17, 73–80 (1994).
    CAS  Article  Google Scholar 

    50.
    Sheshshayee, M. S. et al. Oxygen isotope enrichment (Δ18O) as a measure of time-averaged transpiration rate. J. Exp. Bot. 56, 3033–3039 (2005).
    CAS  PubMed  Article  Google Scholar 

    51.
    Buchmann, N. & Ehleringer, J. R. CO2 concentration profiles, and carbon and oxygen isotopes in C3 and C4 crop canopies. Agric. For. Meteorol. 89, 45–58 (1998).
    Article  ADS  Google Scholar 

    52.
    Buchmann, N., Guehl, J. M., Barigah, T. S. & Ehleringer, J. R. Interseasonal comparison of CO2 concentrations, isotopic composition, and carbon dynamics in an Amazonian rainforest (French Guiana). Oecologia 110, 120–131 (1997).
    CAS  PubMed  Article  ADS  Google Scholar 

    53.
    da Silveira, L., Sternberg, L., Mulkey, S. S. & Joseph Wright, S. Oxygen isotope ratio stratification in a tropical moist forest. Oecologia 81, 51–56 (1989).
    PubMed  Article  ADS  Google Scholar 

    54.
    McCarroll, D. & Loader, N. J. in Isotopes in Palaeonvironmental Research (ed. Leng, M. J.) 67–116 (Springer, 2006).

    55.
    Carter, M. L. & Bradbury, M. W. Oxygen isotope ratios in primate bone carbonate reflect amount of leaves and vertical stratification in the diet. Am. J. Primatol. 78, 1086–1097 (2016).
    CAS  PubMed  Article  Google Scholar 

    56.
    Kohn, M. J., Schoeninger, M. J. & Valley, J. W. Herbivore tooth oxygen isotope compositions: effects of diet and physiology. Geochim. Cosmochim. Acta 60, 3889–3896 (1996).
    CAS  Article  ADS  Google Scholar 

    57.
    Levin, N. E., Cerling, T. E., Passey, B. H., Harris, J. M. & Ehleringer, J. R. A stable isotope aridity index for terrestrial environments. Proc. Natl Acad. Sci. USA 103, 11201–11205 (2006).
    CAS  PubMed  Article  ADS  Google Scholar 

    58.
    Lee-Thorp, J. et al. Isotopic evidence for an early shift to C4 resources by Pliocene hominins in Chad. Proc. Natl Acad. Sci. USA 109, 20369–20372 (2012).
    CAS  PubMed  Article  ADS  Google Scholar 

    59.
    Roberts, P. et al. Fruits of the forest: Human stable isotope ecology and rainforest adaptations in Late Pleistocene and Holocene ( More

  • in

    Roles of ethylene, jasmonic acid, and salicylic acid and their interactions in frankincense resin production in Boswellia sacra Flueck. trees

    1.
    Rodd, T. & Stackhouse, J. Tree: A Visual Guide (University of California Press, California, 2008).
    Google Scholar 
    2.
    Thulin, M. Boswellia sacra. The IUCN Red List of Threatened Species 1998: e.T34533A9874201. (1998).

    3.
    Gebrehiwot, K., Muys, B., Haile, M. & Mitloehner, R. Introducing Boswellia papyrifera (Del.) Hochst and its non-timber forest product, frankincense. Int. For. Rev. 5, 348–353 (2003).
    Google Scholar 

    4.
    Tolera, M. et al. Resin secretory structures of Boswellia papyrifera and implications for frankincense yield. Ann. Bot. 111, 61–68 (2013).
    PubMed  Article  Google Scholar 

    5.
    Khan, A. L. et al. Endogenous phytohormones of frankincense producing Boswellia sacra tree populations. PLoS ONE 13, e0207910 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Environment Society of Oman. Annual report 2014. 53 (2014). Available at: https://www.eso.org.om/index/images/file/2016-03/ESO_2014_Annual_Report_English.pdf. (Accessed: 17th August 2020)

    7.
    Bari, R. & Jones, J. D. G. Role of plant hormones in plant defence responses. Plant Mol. Biol. 69, 473–488 (2009).
    CAS  PubMed  Article  Google Scholar 

    8.
    Miller, B., Madilao, L. L., Ralph, S. & Bohlmann, J. Insect-induced conifer defense. White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in sitka spruce. Plant Physiol. 137, 369–382 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    El Atta, H. A., Aref, I. M. & Khalil, S. A. Increased gum arabic production after infestation of acacia senegal with Aspergillus flavus and Pseudomonas pseudoalcaligenes transmitted by Agrilus nubeculosus. Afr. J. Biotechnol. 10, 7166–7173 (2011).
    Google Scholar 

    10.
    Evert, R. F. & Eichhorn, S. E. Esau’s Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body (John Wiley & Sons, New York, 2006).
    Google Scholar 

    11.
    Miyamoto, K. Physiological and biochemical studies on exudation of gum polysaccharides in plants. Regul. Plant Growth Dev. 50, 2–11 (2015).
    CAS  Google Scholar 

    12.
    Cabrita, P. A model for resin flow. In Plant cell and tissue differentiation and secondary metabolites 1–28 (Springer, Cham, 2019).
    Google Scholar 

    13.
    Kuroda, K. & Shimaji, K. Traumatic resin canal formation as a marker of xylem growth. For. Sci. 29, 653–659 (1983).
    Google Scholar 

    14.
    Krekling, T., Vincent, R. F., Berryman, A. A. & Christiansen, E. The structure and development of polyphenolic parenchyma cells in Norway spruce (Picea abies) bark. Flora 195, 354–369 (2000).
    Article  Google Scholar 

    15.
    Nagy, N. E., Franceschi, V. R., Solheim, H., Krekling, T. & Christiansen, E. Wound-induced traumatic resin duct development in stems of Norway spruce (Pinaceae): Anatomy and cytochemical traits. Am. J. Bot. 87, 302–313 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Zeneli, G., Krokene, P., Christiansen, E., Krekling, T. & Gershenzon, J. Methyl jasmonate treatment of mature Norway spruce (Picea abies) trees increases the accumulation of terpenoid resin components and protects against infection by Ceratocystis polonica, a bark beetle-associated fungus. Tree Physiol. 26, 977–988 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Hudgins, J. W., Christiansen, E. & Franceschi, V. R. Methyl jasmonate induces changes mimicking anatomical defenses in diverse members of the Pinaceae. Tree Physiol. 23, 361–371 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Hudgins, J. W. & Franceschi, V. R. Methyl jasmonate-induced ethylene production is responsible for conifer phloem defense responses and reprogramming of stem cambial zone for traumatic resin duct formation. Plant Physiol. 135, 2134–3149 (2004).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Shain, L. Stem defense against pathogens. In Plant Stems: Physiology and Functional Morphology (ed. Gartner, B. L.) 383–406 (Academic Press, New York, 1995).
    Google Scholar 

    20.
    Yang, Y.-X., Ahammed, G., Wu, C., Fan, S. & Zhou, Y.-H. Crosstalk among jasmonate, salicylate and ethylene signaling pathways in plant disease and immune responses. Curr. Protein Pept. Sci. 16, 450–461 (2015).
    CAS  PubMed  Article  Google Scholar 

    21.
    Hudgins, J. W., Ralph, S. G., Franceschi, V. R. & Bohlmann, J. Ethylene in induced conifer defense: cDNA cloning, protein expression, and cellular and subcellular localization of 1-aminocyclopropane-1-carboxylate oxidase in resin duct and phenolic parenchyma cells. Planta 224, 865–877 (2006).
    CAS  PubMed  Article  Google Scholar 

    22.
    Zhao, T. et al. The influence of Ceratocystis polonica inoculation and methyl jasmonate application on terpene chemistry of Norway spruce, Picea abies. Phytochemistry 71, 1332–1341 (2010).
    CAS  PubMed  Article  Google Scholar 

    23.
    Pieterse, C. M. J. & Van Loon, L. C. Salicylic acid-independent plant defence pathways. Trends Plant Sci. 4, 52–58 (1999).
    CAS  PubMed  Article  Google Scholar 

    24.
    Glazebrook, J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43, 205–227 (2005).
    CAS  PubMed  Article  Google Scholar 

    25.
    Derksen, H., Rampitsch, C. & Daayf, F. Signaling cross-talk in plant disease resistance. Plant Sci. 207, 79–87 (2013).
    CAS  PubMed  Article  Google Scholar 

    26.
    Thaler, J. S., Humphrey, P. T. & Whiteman, N. K. Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci. 17, 260–270 (2012).
    CAS  PubMed  Article  Google Scholar 

    27.
    Saniewski, M., Nowacki, J. & Czapski, J. The effect of methyl jasmonate on ethylene production and ethylene-forming enzyme activity in tomatoes. J. Plant Physiol. 129, 175–180 (1987).
    CAS  Article  Google Scholar 

    28.
    Yi, Xu. et al. Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell 6, 1077–1085 (1994).
    Article  Google Scholar 

    29.
    Penninckx, I. A. M. A., Thomma, B. P. H. J., Buchala, A., Métraux, J. P. & Broekaert, W. F. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10, 2103–2113 (1998).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Creelman, R. A. & Mullet, J. E. Biosysnthesis and action of jasmonates in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 355–381 (1997).
    CAS  PubMed  Article  Google Scholar 

    31.
    Sudha, G. & Ravishankar, G. A. Elicitation of anthocyanin production in callus cultures of Daucus carota and the involvement of methyl jasmonate and salicylic acid. Acta Physiol. Plant. 25, 249–256 (2003).
    CAS  Article  Google Scholar 

    32.
    Kunkel, B. N. & Brooks, D. M. Cross talk between signaling pathways in pathogen defense. Curr. Opin. Plant Biol. 5, 325–331 (2002).
    CAS  PubMed  Article  Google Scholar 

    33.
    Telewski, F. W., Wakefield, A. H. & Jaffe, M. J. Computer-assisted image analysis of tissues of ethrel-treated Pinus taeda seedlings. Plant Physiol. 72, 177–181 (1983).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Yamamoto, F., Kozlowski, T. T. & Wolter, K. E. Effect of flooding on growth, stem anatomy, and ethylene production of Pinus halepensis seedlings. Can. J. For. Res. 17, 69–79 (1987).
    CAS  Article  Google Scholar 

    35.
    Kusumoto, D. & Suzuki, K. Induction of traumatic resin canals in Cupressaceae by ethrel application. Mokuzaigakkaishi 47, 1–6 (2001).
    Google Scholar 

    36.
    Lawton, K. A., Potter, S. L., Uknes, S. & Ryals, J. Acquired resistance signal transduction in Arabidopsis is ethylene independent. Plant Cell 6, 581–588 (1994).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Kozlowski, G., Buchala, A., Plant, J. M. P. & Métraux, J. P. Methyl jasmonate protects Norway spruce seedlings against Pythium ultimum Trow. Physiol. Mol. Plant Pathol. 55, 53–58 (1999).
    CAS  Article  Google Scholar 

    38.
    Arango-Velez, A. et al. Differences in defence responses of Pinus contorta and Pinus banksiana to the mountain pine beetle fungal associate Grosmannia clavigera are affected by water deficit. Plant Cell Environ. 39, 726–744 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Krokene, P., Nagy, N. E. & Solheim, H. Methyl jasmonate and oxalic acid treatment of Norway spruce: Anatomically based defense responses and increased resistance against fungal infection. Tree Physiol. 28, 29–35 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Krokene, P., Nagy, N. E. & Krekling, T. Traumatic resin ducts and polyphenolic parenchyma cells in conifers. In Induced Plant Resistance to Herbivory 147–169 (Springer, Berlin, 2008). https://doi.org/10.1007/978-1-4020-8182-8_7.
    Google Scholar 

    41.
    WMO. World Weather Information Service. World Weather Information Service (2019). Available at: https://worldweather.wmo.int/en/city.html?cityId=113. (Accessed: 22nd August 2020)

    42.
    Abeles, F. B., Morgan, P. W. & Saltveit, M. E. Ethylene in plant biology (Elsevier Inc, Amsterdam, 2012). https://doi.org/10.1016/C2009-0-03226-7.
    Google Scholar 

    43.
    Yamamoto, F., Sakata, T. & Terazawa, K. Growth, morphology, stem anatomy, and ethylene production in flooded Alnus japonica seedlings. IAWA J. 16, 47–59 (1995).
    Article  Google Scholar 

    44.
    Du, S., Sugano, M., Tsushima, M., Nakamura, T. & Yamamoto, F. Endogenous indole-3-acetic acid and ethylene evolution in tilted Metasequoia glyptostroboides stems in relation to compression-wood formation. J. Plant Res. 117, 171–174 (2004).
    CAS  PubMed  Article  Google Scholar 

    45.
    Wilkes, J., Dale, G. T. & Old, K. M. Production of ethylene by Endothia gyrosa and Cytospora eucalypticola and its possible relationship to kino vein formation in Eucalyptus maculata. Physiol. Mol. Plant Pathol. https://doi.org/10.1016/0885-5765(89)90024-6 (1989).
    Article  Google Scholar 

    46.
    Popp, M. P., Johnson, J. D. & Lesney, M. S. Changes in ethylene production and monoterpene concentration in slash pine and loblolly pine following inoculation with bark beetle vectored fungi. Tree Physiol. 15, 807–812 (1995).
    CAS  Article  Google Scholar 

    47.
    Yamamoto, F. & Kozlowski, T. Effects of flooding, tilting of stems, and ethrel application on growth, stem anatomy and ethylene production of Pinus densiflora seedlings. J. Exp. Bot. 38, 293–310 (1987).
    CAS  Article  Google Scholar 

    48.
    Heijari, J. et al. Application of methyl jasmonate reduces growth but increases chemical defence and resistance against Hylobius abietis in Scots pine seedlings. Entomol. Exp. Appl. 115, 117–124 (2005).
    CAS  Article  Google Scholar 

    49.
    Yalpani, N., Silverman, P., Wilson, T. M. A., Kleier, D. A. & Raskin, I. Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell 3, 809–818 (1991).
    CAS  PubMed  PubMed Central  Google Scholar 

    50.
    Enyedi, A. J., Yalpani, N., Silverman, P. & Raskin, I. Localization, conjugation, and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus (systemic acquired resistance/pathogenesis-related proteins/glucosyltransferase/sigaI transduction). Plant Biol. 89, 2 (1992).
    Google Scholar 

    51.
    Clarke, J. D., Volko, S. M., Ledford, H., Ausubel, F. M. & Dong, X. Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis. Plant Cell 12, 2175–2190 (2000).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Kozlowski, G. & Métraux, J. P. Infection of Norway spruce (Picea abies (L.) Karst.) seedlings with Pythium irregulare Buism. and Pythium ultimum Trow.: histological and biochemical responses. Eur. J. Plant Pathol. 104, 225–234 (1998).
    CAS  Article  Google Scholar 

    53.
    Davis, J. M. et al. Pathogen challenge, salicylic acid, and jasmonic acid regulate expression of chitinase gene homologs in pine. Mol. Plant-Microbe Interact. 15, 380–387 (2002).
    CAS  PubMed  Article  Google Scholar 

    54.
    O’Donnell, P. J., Jones, J. B., Antoine, F. R., Ciardi, J. & Klee, H. J. Ethylene-dependent salicylic acid regulates an expanded cell death response to a plant pathogen. Plant J. 25, 315–323 (2001).
    PubMed  Article  Google Scholar 

    55.
    Doares, S. H., Narváez-Vpsquez, J., Conconi, A. & Ryan, C. A. Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiol 108, 1741–1742 (1995).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Dekebo, A., Zewdu, M. & Dagne, E. Volatile oils of frankincense from Boswellia papyrifera. Bull. Chem. Soc. Ethiop. 13, 93–96 (1999).
    CAS  Article  Google Scholar 

    57.
    GHCN. Global Historical Climatology Network (GHCN) | National Centers for Environmental Information (NCEI) formerly known as National Climatic Data Center (NCDC). (2020).

    58.
    Ahmed, A. E. M. et al. Effects of ethephon and methyl jasmonate on physicochemical properties of Acacia seyal var. seyal (L.) gum produced in Sudan. Food Hydrocoll. 90, 413–420 (2019).
    CAS  Article  Google Scholar  More

  • in

    Permafrost dynamics and the risk of anthrax transmission: a modelling study

    In this section, we first present the general formulation of our anthrax transmission model following both a deterministic and a stochastic approach. The latter seems particularly suitable in this case because of its ability to capture the dynamics of discrete events furthering pathogen spread, especially in the case of a small host population or episodic disease transmission. Then, we illustrate the methods used to derive conditions for the establishment of sustained disease transmission, in particular considering seasonal variations of environmental forcings and herding practice.
    The anthrax transmission model
    Our formulation builds on a compartmental model describing the epidemiological dynamics that affect a target population (composed of susceptible and infected individuals) being exposed to environmental contamination. We focus on domestic herbivores because they are both the most at risk and the most socio-economically valuable for Arctic communities. We thus neglect any direct interaction between infected carcasses and carnivores or scavengers, and consider environmental spores as the only source of infection (i.e. by ingestion while herds graze). As little is known yet on how age and sex of the animals may influence anthrax transmission, we suppose that all animals are equally vulnerable to the infection.
    Let S(t), I(t) and R(t) be the total abundances of susceptible, infected and temporarily immune animals at time t, respectively, and let H be the total size of the animal population. Differently from previous formulations, we introduce two different reservoirs of spores. The first (with abundance (B_1 (t))) accounts for fresh spores that are released after the death of infected hosts and that are immediately available on the soil surface. As these spores infiltrate, are washed away or get buried, they enter the second reservoir (with abundance (B_2 (t))), which describes long-term storage in the soil. Anthrax transmission can thus be described by the following system of ordinary differential equations:

    $$begin{aligned} frac{dS}{dt}&= mu (H-S) -F(t)S +rho R end{aligned}$$
    (1)

    $$begin{aligned} frac{dI}{dt}&=sigma F(t)S -(mu +alpha ) I end{aligned}$$
    (2)

    $$begin{aligned} frac{dR}{dt}&= (1-sigma )F(t)S – (mu +rho ) R end{aligned}$$
    (3)

    $$begin{aligned} frac{dB_1}{dt}&=theta alpha frac{I}{A} -(delta _1+chi ) B_1 end{aligned}$$
    (4)

    $$begin{aligned} frac{dB_2}{dt}&= chi B_1 -delta _2 B_2 end{aligned}$$
    (5)

    As for susceptible animals (Eq. 1), we assume that pastoralist practices keep herd size under controlled demographic growth, with (mu H) being the constant recruitment rate compensating the natural (non disease-induced) mortality occurring at rate (mu). Susceptible animals may become infected at a rate expressed by the total force of infection, F(t), which will be described in details later. A fraction (sigma) of animals that have been exposed to anthrax spores develops symptoms and enters the infected compartment I (Eq. 2). Once infected, symptomatic animals may die as a result of the anthrax infection at rate (alpha), or die for other causes not related to the disease at rate (mu). The remaining fraction of exposed animals ((1-sigma), e.g. animals that have been exposed to lower doses of spores) may not exhibit symptom and develop a temporary immunity38. As these individuals do not shed spores, we assume that they enter directly the immune compartment R (Eq. 3). These animals lose their immunity and return to the susceptible class at rate (rho). When infected animals die of anthrax disease, spores proliferate in the host carcass. We assume that each death produces a constant number (theta) of spores, which are then released from the carcass and contaminate the surrounding environment, whose areal extent is A (Eq. 4). Both (B_1 (t)) and (B_2 (t)) are environmental densities of spores per unit area (# spores m(^{-2})). The freshly released spores decay at a rate (delta _1), or may be removed from the surface soil layer and stored in the active layer reservoir at a rate (chi) (Eq. 5). The latter rate thus conceptually encapsulates the combined effect of infiltration, runoff, and the burying of infected carcasses without appropriate sanitary precautions. Spores stored in the active layer decay at a rate (delta _2). The main processes involved in anthrax transmission dynamics have been conceptualized in Fig. 1.
    The force of infection F(t) , which controls the rate at which susceptible animals get infected, depends on the concentrations of spores ((B_1), (B_2)) and the rate of exposure ((beta (t))) according to

    $$begin{aligned} F(t)=beta (t)biggl (frac{B_1}{K+B_1}+eta (t)frac{B_2}{K+B_2}biggl ), end{aligned}$$
    (6)

    where the fraction (B_i/(K+B_i)) (for (i=1,2)) is the probability of becoming infected after being exposed to a certain density (B_i) of spores, K being the half-saturation constant (i.e. the dose of spores for which infection risk is half of its maximum value). As mentioned before, because of the processes involving active layer thaw, including e.g. cryoturbation, soil cracking, and solifluction, we assume that spores (B_2) may become available to grazing animals. The exposure to spores (B_2) is therefore influenced by active layer thawing, which has a significant seasonal component. The interaction between thawing and the release of spores is expressed through the parameter (eta (t)), which quantifies the probability of being exposed to spores (B_2) relatively to that of being exposed to freshly released spores ((B_1)). Because all the processes mentioned above are more likely to occur with thawing, we assume the probability (eta (t)) to be proportional to the depth of the active layer. We will later relax this simple assumption and investigate more complex relationships. We initially mimic the annual cycle of active layer thawing with a simple sinusoidal function (which also simplifies stability analysis via Floquet theory), so that (eta (t)) can be expressed as:

    $$begin{aligned} eta (t)=max biggl (0, ; epsilon _{eta } sin biggl (frac{2pi }{365}tbiggl )biggl ) end{aligned}$$
    (7)

    with (epsilon _{eta }) indicating the maximum amplitude of seasonal fluctuations, i.e. the maximum probability for susceptibles to be exposed to spores (B_2) relative to spores (B_1). Note that the soil thaws only during the warmer months, during which susceptibles are potentially exposed to spores (B_2) ((eta (t) >0)). Later on, we model more realistically the annual cycle of active layer depth, relating it to a real record of surface soil temperatures via the Stefan equation39, 40, so as to better analyze anthrax risk in the Arctic environment.
    Herding practices and grazing activity might vary seasonally as well, favouring increased exposure during warmer months. Therefore, we set

    $$begin{aligned} beta (t)= beta _0biggl (1+epsilon _{beta }sin biggl (frac{2 pi }{365} t+2pi phi biggl )biggl ) end{aligned}$$
    (8)

    where (beta _0) is the average value of (beta (t)), (epsilon _{beta }) is the maximum amplitude of seasonal grazing fluctuations, while (0le phi le 1) is the temporal lag between the phases of (beta (t)) and (eta (t)). Note that t is expressed in days.
    Finally, to reduce the number of model parameters, we introduce the dimensionless spore concentrations (B^{*}_1={B_1}/{K}) and (B^{*}_2={B_2}/{K}) (see equations S1–S5 in the Supplementary Information). This substitution allows the aggregation of parameters (theta), A, and K into a single one, namely (theta ^{*}=theta /(A K)).
    Figure 1

    Conceptual diagram of the anthrax transmission model described in Eqs. 1–5.

    Full size image

    Stochastic formulation
    To build a stochastic version of our anthrax transmission model, we rely on an extension of the classic exact stochastic simulator algorithm (SSA)41 that has recently been proposed to describe the Haiti cholera epidemic42. In the SSA, each animal is considered individually, i.e. the abundances of susceptible and infected animals are treated as discrete variables, ({mathscr {S}}(t)) and ({mathscr {I}}(t)). Accordingly, each individual experiences stochastic events (i.e. birth, death, infection, anthrax-related death, etc.; see Table 1) that occur at different rates, (e_k), where k indicates a generic event, depending on the state of the system. The overall occurrence of events is modeled as a Poisson point process whose rate e is defined as the sum of the rates of occurrence of all possible events, i.e.

    $$begin{aligned} e=sum limits _{k=1}^8 e_k . end{aligned}$$

    The inter-arrival time between two subsequent events is thus an exponentially distributed random variable with mean 1/e, and the next event to occur is selected according to the probability (e_k/e)41.
    Table 1 State transitions and rates of all possible events involving susceptible, infected and temporally immune (recovered) animals.
    Full size table

    The concentrations of anthrax spores, ({mathscr {B}}^{*}_1(t)) and ({mathscr {B}}^{*}_2(t)), are instead treated as continuous stochastic variables, because they are typically large enough to allow a continuous description. At each anthrax-related death event, ({mathscr {B}}^{*}_1(t)) undergoes a step increase of size (theta ^{*}), whereas between events spore concentrations are updated using the analytical solution of equations S4–S5 (see the Supplementary Information), with (theta ^{*}=0). In analogy with the deterministic formulation (Eq. 6), the force of infection reads

    $$begin{aligned} {mathscr {F}}(t)=beta (t)biggl (frac{{mathscr {B}}^{*}_1}{K+{mathscr {B}}^{*}_1}+eta (t)frac{{mathscr {B}}^{*}_2}{K+{mathscr {B}}^{*}_2}biggl ). end{aligned}$$

    Finally, a Monte Carlo approach, in which many different trajectories (realizations) of the SSA are evaluated, is used to study the long-term behaviour of the stochastic formulation of the anthrax transmission model.
    Derivation of disease transmission conditions
    Linear stability analysis of time-invariant systems
    Conditions for long-term pathogen invasion and sustained transmission (endemicity) are first derived in the absence of seasonal fluctuations. To that end, we consider the exposure rate and the probability to be infected by spores (B_2) to be constant over time (i.e. (beta (t)=const=beta _0) and (eta (t)=const=eta _0), respectively).
    Endemic anthrax transmission is possible if the disease-free equilibrium (DFE), a state of system 1–5 where ((S,I,R,B_1,B_2)=(H,0,0,0,0)), is asymptotically unstable. Linear stability analysis is used to determine a threshold condition based on the basic reproduction number43

    $$begin{aligned} R_{0}=frac{sigma beta _0 theta ^{*} Halpha (delta _2+eta _0chi )}{delta _2(mu + alpha )(delta _1+chi )} . end{aligned}$$
    (9)

    Specifically, the DFE is asymptotically stable when (R_01), unfeasible and unstable otherwise. Clearly, (R_0=1) represents a bifurcation point, where the two equilibria collide and exchange their stability (transcritical bifurcation). For further mathematical details, the reader may refer to the Supplementary Information.
    In the absence of the long-term spore reservoir (B_2), the basic reproduction number ({tilde{R}}_{0}) reads:

    $$begin{aligned} {tilde{R}}_{0}=frac{sigma beta _0 theta ^{*} H alpha }{(mu + alpha )(delta _1+chi )}. end{aligned}$$
    (10)

    This definition will become useful in the following section.
    Periodic systems: Floquet analysis
    Conditions for endemic anthrax transmission to occur in a seasonally forced environment can be studied by applying Floquet theory36,37. The disease-free equilibrium of model 1–5 subject to periodic fluctuations is unstable when its maximum Floquet exponent, (xi _{max}), is positive (for further theoretical details see Supplementary Information). To compare transmission dynamics between periodic and time-independent conditions we calculated also ({overline{R}}_0) by assuming (eta (t)) and (beta (t)) to be constant and equal to their average value. For any parameter set, ({overline{R}}_0) provides information regarding the stability conditions of the system if temporal fluctuations of parameters were neglected.
    Note that other parameters may vary seasonally: for instance, the spore transition rate (chi) and the decay rates of the spores stored in the two reservoirs may vary over time because of fluctuations in the environment, temperature, and freezing or thawing conditions. However, for the sake of simplicity, and also due to the lack of detailed information, in the following we limit our analyses on the coupled effect of (beta (t)) and (eta (t)) (Eqs. 8 and 7, respectively).
    Model setting and data
    Most of the model parameters have been estimated according to reference values proposed in the literature, as shown in Table 2. The average lifespan of domestic livestock varies widely (on average between 5 and 20 years, or even more44), depending on the animal species and herding management. Since animals with shorter life expectancy are more likely to be infected (see Supplementary Fig. S1), we assumed an average mortality rate of 0.2 years(^{-1}) as a representative case, i.e. domestic cattle with an average lifespan of 5 years. Given high mortality rates among infected herbivores14, we assumed that about 70% of infected animals develop symptoms. The remaining 30% grow a temporary immune response, ensuring animal immunity for about 6 months38. Typically, infection with anthrax bacterium leads symptomatic animals to death in about 14 days14. Then, as the spores are released from infected carcasses, we assumed they remain directly available for about 10 days before their removal from the soil surface15,32. Spores can be viable for decades14, thus we assumed an average viability of 10 years. Finally, we assumed that the probability (eta) can vary between 0 and 1, thus implying that animals can be equally exposed to the two spore reservoirs during the periods of maximum thawing. The parameters (beta) and (theta ^{*}), which quantify overall exposure and contamination, respectively, are critical in determining transmission dynamics. However, the lack of suitable epidemiological records prevents a proper estimation. Therefore, we explored different combinations of these parameters to compare different scenarios for anthrax transmission dynamics and discuss the results. While the maximum exposure rate (beta) has an easily interpretable physical meaning, the parameter (theta ^{*}) has a less immediate interpretation. We therefore illustrate results in terms of the corresponding ({tilde{R}}_{0}) (Eq. 10), that is, the basic reproduction number of the simplified model that does not account for the long-term spore reservoir (B_2). All simulations have been run with a total population size of (H=10^4) animals.
    Finally, we exploited real data on the current variability of climate and permafrost dynamics to investigate the relationship between warm years (and related deeper active layers) and the risk of anthrax outbreaks. To that end, we run model simulations using the stochastic formulation and realistic forcing. To obtain the latter, we exploited a 17-year-long (2002–2018) dataset of thawing depth available at the Samoylov monitoring site (Lena River delta, northern Siberia)45 which we combined with records of soil surface temperature ((hbox {T}_{S})). We then modeled the yearly cycle of the active layer depth Z via the Stefan equation39,40 according to which (Z=Esqrt{C_S}), where E is the edaphic factor taking into account soil properties and (C_S) is the cumulative soil surface temperature, calculated when the top soil temperature is above (0,^{circ }hbox {C}). The estimated value of parameter E is equal to (2.58,hbox {cm}^circ hbox {C}^{-0.5}), when Z is in cm and (C_S) in (^{circ }hbox {C}) (see Supplementary Fig. S2). To produce synthetic time series of active layer depth to be used in the simulations, we first calculated the mean annual soil surface temperature and fitted a normal probability distribution to the 17 records. We then produced 200-year-long time-series of daily soil surface temperature randomly sampling the mean annual temperature from the normal distribution and assigning an annual pattern obtained shifting the trajectory of the average year (i.e. the year whose daily values are the averages across the available record for that specific day). Soil surface temperature is then transformed into active layer depth using the calibrated Stefan equation. In each 200-year-long model simulation, we discarded the first 100 years, which were used as model spin-up period, and retained the last 100 years for analysis. We run 100 replicas of the process, thus obtaining a total of 10,000 years of simulated anthrax incidence. Note that a 100-year-long simulation should not be interpreted as a future projection for which the hypothesis of steady climate is hardly justifiable, but rather as a computational way to obtain a large sample of simulations exploring the current climate variability without the need to repeat the spin-up phase of the model.
    In the analysis described so far, we assumed the probability of contact between animals and spores (B_2), i.e. the parameter (eta (t)), to be proportional to the active layer depth. This implicitly assumes that the underground concentration of spores is uniform. However, as the potential sources of spores are on the surface, a negative gradient of spore concentration for increasing depth could be expected. Mathematically, this can be mimicked assuming a saturating relationship between the probability (eta (t)) and the active layer depth Z(t) so that the marginal increase of risk associated with a unit increase of Z decreases with the depth of the active layer itself. We have therefore explored two scenarios: in the first one (case 1) we assumed a linear relationship, i.e. (eta (t)propto Z(t)); in the second (case 2) a saturating relationship of the type (eta (t)propto Z(t)/(Z(t)+Z_0)), where (Z_0) represents the semi-saturation depth, which has been set to 0.2 m. We then scaled (eta (t)) so that the maximum value for case 1 is equal to 0.2. Accordingly, (eta (t)) in case 2 has been scaled so that it has the same long-term mean of case 1.
    Table 2 Parameter values and their literature sources.
    Full size table More

  • in

    Integrative ecological and molecular analysis indicate high diversity and strict elevational separation of canopy beetles in tropical mountain forests

    1.
    Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526. https://doi.org/10.1038/s41586-018-0301-1 (2018).
    ADS  CAS  Article  PubMed  Google Scholar 
    2.
    Stork, N. E. How many species of insects and other terrestrial arthropods are there on earth?. Annu. Rev. Entomol. 63, 31–45 (2018).
    CAS  Article  Google Scholar 

    3.
    Rahbek, C. et al. Humboldt’s enigma: What causes global patterns of mountain biodiversity?. Science 365, 1108–1113. https://doi.org/10.1126/science.aax0149 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 

    4.
    Basset, Y. et al. Arthropod diversity in a tropical forest. Science 338, 1481–1484. https://doi.org/10.1126/science.1226727 (2012).
    ADS  CAS  Article  PubMed  Google Scholar 

    5.
    Erwin, T. L. Tropical forests: Their richness in Coleoptera and other arthropod species. Coleopterists Bull. 36(1), 74–75 (1982).
    Google Scholar 

    6.
    Sprick, P. & Floren, A. Diversity of Curculionoidea in humid rain forest canopies of Borneo: A taxonomic blank spot. Diversity 10, 116 (2018).
    Article  Google Scholar 

    7.
    Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evolut. 2, 599–610. https://doi.org/10.1038/s41559-018-0490-x (2018).
    Article  Google Scholar 

    8.
    Hammond, P. M. in Insects and the Rain Forest of South East Asia (Wallacea) (eds W. J. Knight & J. D. Holloway) 197–252 (Royal Entomological Society of London, 1990).

    9.
    Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation?. Trends Ecol. Evol. 31, 67–80. https://doi.org/10.1016/j.tree.2015.11.005 (2016).
    Article  PubMed  Google Scholar 

    10.
    Novotny, V. et al. Low beta diversity of herbivorous insects in tropical forests. Nature 448, 692–697 (2007).
    ADS  CAS  Article  Google Scholar 

    11.
    Thormann, B. et al. Small-scale topography modulates elevational α-, β- and γ-diversity of Andean leaf beetles. Oecologia 187, 181–189. https://doi.org/10.1007/s00442-018-4108-4 (2018).
    ADS  Article  PubMed  Google Scholar 

    12.
    12Allison, A., Samuelson, G. A. & Miller, S. E. in Canopy Arthropods (eds N.E. Stork, J. Adis, & R.K. Didham) 237–265 (Chapman & Hall, 1997).

    13.
    Mupepele, A.-C., Müller, T., Dittrich, M. & Floren, A. Are temperate canopy spiders tree-species specific?. PLoS ONE 9, e86571. https://doi.org/10.1371/journal.pone.0086571 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    14.
    Ratnasingham, S. & Hebert, P. D. N. A DNA-based registry for all animal species: The Barcode Index Number (BIN) system. PLoS ONE 8, e66213. https://doi.org/10.1371/journal.pone.0066213 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    15.
    15Miller, S. E., Hausmann, A., Hallwachs, W. & Janzen, D. H. Advancing taxonomy and bioinventories with DNA barcodes. Philos. Trans. R. Soc. B Biol. Sci.371, https://doi.org/10.1098/rstb.2015.0339 (2016).

    16.
    D’Souza, M. L. & Hebert, P. D. N. Stable baselines of temporal turnover underlie high beta diversity in tropical arthropod communities. Mol. Ecol. 27, 2447–2460. https://doi.org/10.1111/mec.14693 (2018).
    Article  PubMed  Google Scholar 

    17.
    Floren, A. & Linsenmair, K. E. in Arthropods of Tropical Forests: Spatio-Temporal Dynamics and Resource Use in the Canopy (eds Y. Basset, V. Novotny, S. Miller, & R. Kitching) 190–197 (Cambridge University Press, 2003).

    18.
    Gill, B. A. et al. Cryptic species diversity reveals biogeographic support for the “mountain passes are higher in the tropics” hypothesis. Proc. R. Soc. B Biol. Sci. 283, 20160553. https://doi.org/10.1098/rspb.2016.0553 (2016).
    Article  Google Scholar 

    19.
    Schmidt, S., Schmid-Egger, C., Morinière, J., Haszprunar, G. & Hebert, P. D. DNA barcoding largely supports 250 years of classical taxonomy: Identifications for Central European bees (Hymenoptera, Apoidea partim). Mol. Ecol. Resour. 15, 985–1000. https://doi.org/10.1111/1755-0998.12363 (2015).
    CAS  Article  PubMed  Google Scholar 

    20.
    García-Robledo, C., Kuprewicz, E. K., Staines, C. L., Erwin, T. L. & Kress, W. J. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. Proc. Natl. Acad. Sci. U.S.A. 113, 680–685. https://doi.org/10.1073/pnas.1507681113 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    21.
    Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J. & Wang, G. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr. Comp. Biol. 46, 5–17. https://doi.org/10.1093/icb/icj003 (2006).
    Article  PubMed  Google Scholar 

    22.
    Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249. https://doi.org/10.1086/282487 (1967).
    Article  Google Scholar 

    23.
    de Bruyn, M. et al. Borneo and Indochina are major evolutionary hotspots for Southeast Asian biodiversity. Syst. Biol. 63, 879–901, https://doi.org/10.1093/sysbio/syu047 (2014).

    24.
    Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impact on tropical nature. Trends Ecol. Evol. 29, 107–116. https://doi.org/10.1016/j.tree.2013.12.001 (2014).
    Article  PubMed  Google Scholar 

    25.
    Carolyn, R. D., Baskoro, D. P. T. & Prasetyo, L. B. Analisis Degradasi Untuk Penyususnan Arahan Strategi Pengendaliannya Di Taman Nasional Gunung Halimun Salak Provinsi Jawa Barat. Globe 15, 39–47 (2013).
    Google Scholar 

    26.
    Priyadi, H. et al.Five Hundred Plant Species in Gunung Halimun Salak National Park, West Java: A Checklist Including Sundanese Names, Distribution and Use (2010).

    27.
    Floren, A. in Manual on Field Recording Techniques and Protocols for All Taxa Biodiversity Inventories ABC Taxa Vol. Part 1 (eds J. Eymann, J. Degreff, & C. Häuser) 158–172 (2010).

    28.
    Schoonhoven, L. M., van Loon, J. J. A. & Dicke, M. Insect-Plant Biology. (Oxford University Press, 2010).

    29.
    deWaard, J. R., Ivanova, N. V., Hajibabaei, M. & Hebert, P. D. N. in Methods in Molecular Biology: Environmental Genetics (ed C. Martin) 275–293 (Humana Press, 2008).

    30.
    Ivanova, N. V., deWaard, J. R. & Hebert, P. D. N. An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol. Ecol. Notes6, 998–1002 (2006).

    31.
    Hebert, P. D. N., Cywinska, A., Ball, S. L. & deWaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. B Biol. Sci. 313–321 (2003).

    32.
    Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evolut., 111–120 (1980).

    33.
    Schmidt, S., Schmid-Egger, C., Morinière, J., Haszprunar, G. & Hebert, P. D. N. DNA barcoding largely supports 250 years of classical taxonomy: identifications for Central European bees (Hymenoptera, Apoideapartim). Mol. Ecol. Resour. 15, 985–1000 (2015).
    CAS  Article  Google Scholar 

    34.
    Pentinsaari, M., Hebert, P. D. N. & Mutanen, M. Barcoding Beetles: A regional survey of 1872 species reveals high identification success and unusually deep interspecific divergences. PLoS ONE9, pdf_724, https://doi.org/10.1371/journal.pone.0108651 (2014).

    35.
    Paradis, E., Claude, J. & Strimmer, K. APE; analyses of phylogenetics and evolution. Bioinformatics, 289–290 (2014).

    36.
    Pagès, H., Aboyoun, P., Gentleman, R. & DebRoy, S. Biostrings: Efficient Manipulation of Biological Strings. R Package Version 2.48.0. (2018).

    37.
    R, C. T. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna). https://www.R-project.org/. (2017).

    38.
    Oksanen, J. et al. Vegan: Community Ecology Package. R Package Version 2.5-4. https://CRAN.R-project.org/package=vegan (2019).

    39.
    Hsieh, T. C., Ma, K. H. & Cho, A. iNEXT: iNterpolation and EXTrapolation for Species Diversity. R Package Version 2.0.19. https://chao.stat.nthu.edu.tw/blog/software-download/. (2019).

    40.
    Smith, M. A., Fernandez-Triana, J., Roughley, E. & Hebert, P. D. N. DNA barcode accumulation curves for understudied taxa and areas. Mol. Ecol. Resour. 9, 208–216. https://doi.org/10.1111/j.1755-0998.2009.02646.x (2009).
    CAS  Article  PubMed  Google Scholar 

    41.
    Legendre, P. & De Cáceres, M. Beta diversity as the variance of community data: Dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963. https://doi.org/10.1111/ele.12141 (2013).
    Article  PubMed  Google Scholar 

    42.
    McArdle, B. H. & Anderson, M. J. Fitting multivariate models to community data: A comment on distance-based redundancy analysis. Ecology 82, 290–297. https://doi.org/10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2 (2001).
    Article  Google Scholar 

    43.
    Chao, A., Chazdon, R., Colwell, R. & Shen, T.-J. Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics 62, 361–371. https://doi.org/10.1111/j.1541-0420.2005.00489.x (2006).
    MathSciNet  Article  PubMed  MATH  Google Scholar 

    44.
    Paradis, E. Pegas: An R package for population genetics with an integrated-modular approach. Bioinformatics 419–420 (2010).

    45.
    Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).
    CAS  PubMed  PubMed Central  Google Scholar 

    46.
    Schliep, K. P. Phangorn: Phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).

    47.
    Miettinen, J., Shi, C. & Liew, S. C. Deforestation rates in insular Southeast Asia between 2000 and 2010. Glob. Change Biol. 17, 2261–2270. https://doi.org/10.1111/j.1365-2486.2011.02398.x (2011).
    ADS  Article  Google Scholar 

    48.
    Turubanova, S., Potapov, P. V., Tyukavina, A. & Hansen, M. C. Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. 13, 074028. https://doi.org/10.1088/1748-9326/aacd1c (2018).
    ADS  Article  Google Scholar 

    49.
    Longino, J. T. & Branstetter, M. G. The truncated bell: An enigmatic but pervasive elevational diversity pattern in Middle American ants. Ecography 42, 272–283. https://doi.org/10.1111/ecog.03871 (2019).
    Article  Google Scholar 

    50.
    Smith, M. A., Hallwachs, W. & Janzen, D. H. Diversity and phylogenetic community structure of ants along a Costa Rican elevational gradient. Ecography 37, 720–731. https://doi.org/10.1111/j.1600-0587.2013.00631.x (2014).
    Article  Google Scholar 

    51.
    Floren, A., Biun, A. & Linsenmair, K. E. Arboreal ants as key predators in tropical lowland rainforest trees. Oecologia 131, 137–144. https://doi.org/10.1007/s00442-002-0874-z (2002).
    ADS  Article  PubMed  Google Scholar 

    52.
    Supriya, K., Moreau, C. S., Sam, K. & Price, T. D. Analysis of tropical and temperate elevational gradients in arthropod abundance. Front. Biogeogr. 11, 1–11, https://doi.org/10.21425/F5FBG43104 (2019).

    53.
    Kress, W. J., García-Robledo, C., Uriarte, M. & Erickson, D. L. DNA barcodes for ecology, evolution, and conservation. Trends Ecol. Evol. 30, 25–35. https://doi.org/10.1016/j.tree.2014.10.008 (2015).
    Article  PubMed  Google Scholar 

    54.
    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406. https://doi.org/10.1126/science.1251817 (2014).
    ADS  CAS  Article  Google Scholar 

    55.
    Guo, Q. et al. Global variation in elevational diversity patterns. Sci. Rep. 3, 3007. https://doi.org/10.1038/srep03007 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    56.
    Bertuzzo, E. et al. Geomorphic controls on elevational gradients of species richness. Proc. Natl. Acad. Sci. 113, 1737–1742. https://doi.org/10.1073/pnas.1518922113 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    57.
    Floren, A. & Schmidl, J. Canopy Arthropod Research in Central Europe—Basic and Applied Studies from the High Frontier. (Bioform, 2008).

    58.
    Hodkinson, I. D. & Casson, D. A lesser predilection for bugs: Hemiptera (Insecta) diversity in tropical rain forests. Biol. J. Lin. Soc. 43, 101–109 (1991).
    Article  Google Scholar 

    59.
    Guerrero-Jiménez, C. J. et al. Pattern of genetic differentiation of an incipient speciation process: The case of the high Andean killifish Orestias. PLoS ONE 12, e0170380. https://doi.org/10.1371/journal.pone.0170380 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    60.
    Merckx, V. S. F. T. et al. Evolution of endemism on a young tropical mountain. Nature524, 347–350, https://doi.org/10.1038/nature14949. https://www.nature.com/nature/journal/v524/n7565/abs/nature14949.html#supplementary-information (2015).

    61.
    Schluter, D. & Pennell, M. W. Speciation gradients and the distribution of biodiversity. Nature546, 48, https://doi.org/10.1038/nature22897. https://www.nature.com/articles/nature22897#supplementary-information (2017). More

  • in

    Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment

    1.
    Delgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S, Alfaro FD, et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat Ecol Evol. 2020;4:210–20.
    PubMed  Article  PubMed Central  Google Scholar 
    2.
    Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun. 2016;7:10541.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Shah F, Wu W. Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability. 2019;11:1485.
    Article  Google Scholar 

    4.
    Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL, et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Natl Acad Sci USA. 2015;112:10967.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Sun R, Zhang X-X, Guo X, Wang D, Chu H. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biol Biochem. 2015;88:9–18.
    CAS  Article  Google Scholar 

    6.
    Mougi A, Kondoh M. Diversity of interaction types and ecological community stability. Science. 2012;337:349–51.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Kumar A, Patel JS, Meena VS. Rhizospheric microbes for sustainable agriculture: an overview. In: Meena VS, editor. Role of rhizospheric microbes in soil: volume 1: stress management and agricultural sustainability. Singapore: Springer Singapore; 2018. p. 1–31.

    8.
    Yeates GW, Bongers T. Nematode diversity in agroecosystems. In: Paoletti MG, editor. Invertebrate biodiversity as bioindicators of sustainable landscapes. Amsterdam: Elsevier; 1999. p. 113–35.

    9.
    Chaffron S, Rehrauer H, Pernthaler J, von Mering C. A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res. 2010;20:947–59.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Banerjee S, Schlaeppi K, van der Heijden MGA. Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol. 2018;16:567–76.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Cai G, Chen D, Ding H, Pacholski A, Fan X, Zhu Z. Nitrogen losses from fertilizers applied to maize, wheat and rice in the North China Plain. Nutr Cycl Agroecosys. 2002;63:187–95.
    CAS  Article  Google Scholar 

    12.
    Fan K, Delgado-Baquerizo M, Guo X, Wang D, Wu Y, Zhu M, et al. Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome. 2019;7:143.
    PubMed  PubMed Central  Article  Google Scholar 

    13.
    Biddle JF, Fitz-Gibbon S, Schuster SC, Brenchley JE, House CH. Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proc Natl Acad Sci USA. 2008;105:10583–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Bokulich NA, Mills DA. Improved selection of internal transcribed spacer-specific primers enables quantitative, ultra-high-throughput profiling of fungal communities. Appl Environ Microbiol. 2013;79:2519–26.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Lumini E, Orgiazzi A, Borriello R, Bonfante P, Bianciotto V. Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ Microbiol. 2010;12:2165–79.
    CAS  PubMed  Google Scholar 

    16.
    Porazinska D, Giblin-Davis, Robin M, Faller LF, William K, Natsumi M, et al. Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity. Mol Ecol Resour. 2009;9:1439–50.
    CAS  PubMed  Article  Google Scholar 

    17.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2011;6:610.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    20.
    Kõljalg U, Larsson K-H, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, et al. UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. N. Phytol. 2005;166:1063–8.
    Article  CAS  Google Scholar 

    21.
    Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, et al. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). N Phytol. 2010;188:223–41.
    Article  CAS  Google Scholar 

    22.
    Quast C, Pruesse E, Gerken J, Peplies J, Yarza P, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–D6.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    23.
    Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–8.
    Article  Google Scholar 

    24.
    Dean R, Kan JALV, Pretorius ZA, Hammond‐Kosack KE, Pietro AD, Spanu PD, et al. The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol. 2012;13:804.
    PubMed Central  Article  Google Scholar 

    25.
    Wang F-H, Qiao M, Su J-Q, Chen Z, Zhou X, Zhu Y-G. High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation. Environ Sci Technol. 2014;48:9079–85.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Zheng B, Zhu Y, Sardans J, Peñuelas J, Su J. QMEC: a tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling. Sci China Life Sci. 2018;61:1451–62.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001;29:e45–e45.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Langfelder P, Horvath S. Fast R functions for robust correlations and hierarchical clustering. J Stat Softw. 2012;46:11.

    29.
    Benjamini Y, Krieger AM, Yekutieli D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika. 2006;93:491–507.

    30.
    Hines J, van der Putten WH, De Deyn GB, Wagg C, Voigt W, Mulder C, et al. Chapter four-Towards an integration of biodiversity–ecosystem functioning and food web theory to evaluate relationships between multiple ecosystem services. Adv Ecol Res. 2015;53:161–99.

    31.
    Menezes AB, Prendergast-Miller MT, Richardson AE, Toscas P, Farrell M, Macdonald LM, et al. Network analysis reveals that bacteria and fungi form modules that correlate independently with soil parameters. Environ Microbiol. 2015;17:2677–89.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    32.
    Heleno R, Devoto M, Pocock M. Connectance of species interaction networks and conservation value: Is it any good to be well connected? Ecol Indic. 2012;14:7–10.
    Article  Google Scholar 

    33.
    Ramírez-Flandes S, González B, Ulloa O. Redox traits characterize the organization of global microbial communities. Proc Natl Acad Sci USA. 2019;116:3630.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    34.
    Pérez Castro S, Cleland EE, Wagner R, Sawad RA, Lipson DA. Soil microbial responses to drought and exotic plants shift carbon metabolism. ISME J. 2019;13:1776–87.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    35.
    Zhang C, Song Z, Zhuang D, Wang J, Xie S, Liu G. Urea fertilization decreases soil bacterial diversity, but improves microbial biomass, respiration, and N-cycling potential in a semiarid grassland. Biol Fert Soils. 2019;55:229–42.
    CAS  Article  Google Scholar 

    36.
    Fraser TD, Lynch DH, Bent E, Entz MH, Dunfield KE. Soil bacterial phoD gene abundance and expression in response to applied phosphorus and long-term management. Soil Biol Biochem. 2015;88:137–47.
    CAS  Article  Google Scholar 

    37.
    García-Palacios P, Shaw EA, Wall DH, Hättenschwiler S. Temporal dynamics of biotic and abiotic drivers of litter decomposition. Ecol Lett. 2016;19:554–63.
    PubMed  Article  PubMed Central  Google Scholar 

    38.
    Hug LA, Castelle CJ, Wrighton KC, Thomas BC, Sharon I, Frischkorn KR, et al. Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. Microbiome. 2013;1:22.
    PubMed  PubMed Central  Article  Google Scholar 

    39.
    Lu J, Yang F, Wang S, Ma H, Liang J, Chen Y. Co-existence of rhizobia and diverse non-rhizobial bacteria in the rhizosphere and nodules of dalbergia odorifera seedlings inoculated with Bradyrhizobium elkanii, Rhizobium multihospitium–like and Burkholderia pyrrocinia–like strains. Front Microbiol. 2017;8:2255.

    40.
    Haack FS, Poehlein A, Kröger C, Voigt CA, Piepenbring M, Bode HB, et al. Molecular keys to the janthinobacterium and duganella spp. interaction with the plant pathogen Fusarium graminearum. Front Microbiol. 2016;7:1668.

    41.
    Clay K, Leuchtmann A. Infection of woodland grasses by fungal endophytes. Mycologia. 1989;81:805–11.
    Article  Google Scholar 

    42.
    Huang X, Liu L, Wen T, Zhang J, Wang F, Cai Z. Changes in the soil microbial community after reductive soil disinfestation and cucumber seedling cultivation. Appl Microbiol Biotechnol. 2016;100:5581–93.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Palleroni NJ. Pseudomonas. In: M.E. Trujillo, S. Dedysh, P. DeVos, B. Hedlund, P. Kämpfer, F.A. Rainey and W.B. Whitman, editors. Bergeyʼs Manual of Systematics of Archaea and Bacteria. John Wiley & Sons, Inc. in association with Bergey’s Manual Trust; 2015. p. 1–105.

    44.
    Wei Z, Yang T, Friman V-P, Xu Y, Shen Q, Jousset A. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat Commun. 2015;6:8413.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Mao Y, Li X, Smyth EM, Yannarell AC, Mackie RI. Enrichment of specific bacterial and eukaryotic microbes in the rhizosphere of switchgrass (Panicum virgatum L.) through root exudates. Environ Microbiol Rep. 2014;6:293–306.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk H-P, et al. Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev. 2016;80:1.
    PubMed  Article  PubMed Central  Google Scholar 

    47.
    Agnolucci M, Battini F, Cristani C, Giovannetti M. Diverse bacterial communities are recruited on spores of different arbuscular mycorrhizal fungal isolates. Biol Fert Soils. 2015;51:379–89.
    CAS  Article  Google Scholar 

    48.
    Levy A, Merritt AJ, Mayo MJ, Chang BJ, Abbott LK, Inglis TJJ. Association between Burkholderia species and arbuscular mycorrhizal fungus spores in soil. Soil Biol Biochem. 2009;41:1757–9.
    CAS  Article  Google Scholar 

    49.
    Li X, Rui J, Xiong J, Li J, He Z, Zhou J, et al. Functional potential of soil microbial communities in the maize rhizosphere. PLoS ONE. 2014;9:e112609.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    50.
    Ragot SA, Kertesz MA, Mészáros É, Frossard E, Bünemann EK. Soil phoD and phoX alkaline phosphatase gene diversity responds to multiple environmental factors. FEMS Microbiol Ecol. 2016;93:fiw212.

    51.
    Gianfreda L. Enzymes of importance to rhizosphere processes. J Soil Sc Plant Nutr. 2015;15:283–306.
    CAS  Google Scholar 

    52.
    Su J-Q, Ding L-J, Xue K, Yao H-Y, Quensen J, Bai S-J, et al. Long-term balanced fertilization increases the soil microbial functional diversity in a phosphorus-limited paddy soil. Mol Ecol. 2015;24:136–50.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Ratliff TJ, Fisk MC. Phosphatase activity is related to N availability but not P availability across hardwood forests in the northeastern United States. Soil Biol Biochem. 2016;94:61–9.
    CAS  Article  Google Scholar  More