Extracellular heme recycling and sharing across species by novel mycomembrane vesicles of a Gram-positive bacterium
1.
Faust K, Raes J, Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev Microbiol. 2012;10:538–50.
CAS PubMed Article Google Scholar
2.
Phelan VV, Liu WT, Pogliano K, Dorrestein PC. Microbial metabolic exchange—the chemotype-to-phenotype link. Nat Chem Biol. 2011;8:26–35.
PubMed Article CAS Google Scholar
3.
Natale P, Brüser T, Driessen AJM. Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane: Distinct translocases and mechanisms. Biochim Biophys Acta. 2007;1778:1735–56.
PubMed Article CAS Google Scholar
4.
Holland IB. The extraordinary diversity of bacterial protein secretion mechanisms. Meth Mol Biol. 2010;619:1–20.
CAS Article Google Scholar
5.
Guerrero-Mandujano A, Hernández-Cortez C, Ibarra JA, Castro-Escarpulli G. The outer membrane vesicles: Secretion system type zero. Traffic. 2017;18:425–32.
CAS PubMed Article Google Scholar
6.
Orench‐Rivera N, Kuehn MJ. Environmentally controlled bacterial vesicle‐mediated export. Cell Microbiol. 2016;18:1525–36.
PubMed PubMed Central Article CAS Google Scholar
7.
Kim JH, Lee J, Park J, Gho YS, editors. Gram-negative and Gram-positive bacterial extracellular vesicles. Semin Cell Dev Biol. 2015;40:97–104.
8.
Schwechheimer C, Kuehn MJ. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol. 2015;13:605–19.
CAS PubMed PubMed Central Article Google Scholar
9.
McBroom AJ, Kuehn MJ. Release of outer membrane vesicles by Gram‐negative bacteria is a novel envelope stress response. Mol Microbiol. 2007;63:545–58.
CAS PubMed PubMed Central Article Google Scholar
10.
Arntzen MO, Varnai A, Mackie RI, Eijsink VGH, Pope PB. Outer membrane vesicles from Fibrobacter succinogenes S85 contain an array of carbohydrate-active enzymes with versatile polysaccharide-degrading capacity. Environ Microbiol. 2017;19:2701–14.
CAS PubMed Article Google Scholar
11.
Nordstrom T, Blom AM, Tan TT, Forsgren A, Riesbeck K. Ionic binding of C3 to the human pathogen Moraxella catarrhalis is a unique mechanism for combating innate immunity. J Immunol. 2005;175:3628–36.
PubMed Article Google Scholar
12.
Fulsundar S, Harms K, Flaten GE, Johnsen PJ, Chopade B, Nielsen KM. Gene transfer potential of outer membrane vesicles of Acinetobacter baylyi and effects of stress on vesiculation. Appl Environ Microb. 2014;80:3469–83.
Article CAS Google Scholar
13.
Mashburn LM, Whiteley M. Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature. 2005;437:422–5.
CAS PubMed Article Google Scholar
14.
Toyofuku M, Morinaga K, Hashimoto Y, Uhl J, Shimamura H, Inaba H, et al. Membrane vesicle-mediated bacterial communication. ISME J. 2017;11:1504–9.
PubMed PubMed Central Article Google Scholar
15.
Lee EY, Choi DY, Kim DK, Kim JW, Park JO, Kim S, et al. Gram‐positive bacteria produce membrane vesicles: proteomics‐based characterization of Staphylococcus aureus‐derived membrane vesicles. Proteomics. 2009;9:5425–36.
CAS PubMed Article Google Scholar
16.
Prados-Rosales R, Baena A, Martinez LR, Luque-Garcia J, Kalscheuer R, Veeraraghavan U, et al. Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice. J Clin Investig. 2011;121:1471–83.
PubMed Article CAS Google Scholar
17.
Prados-Rosales R, Brown L, Casadevall A, Montalvo-Quiros S, Luque-Garcia JL. Isolation and identification of membrane vesicle-associated proteins in Gram-positive bacteria and mycobacteria. MethodsX. 2014;1:124–9.
PubMed PubMed Central Article Google Scholar
18.
White DW, Elliott SR, Odean E, Bemis LT, Tischler AD. Mycobacterium tuberculosis Pst/SenX3-RegX3 regulates membrane vesicle production independently of ESX-5 activity. mBio. 2018;9:e00778–18.
CAS PubMed PubMed Central Google Scholar
19.
Hoffmann C, Leis A, Niederweis M, Plitzko JM, Engelhardt H. Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. PNAS. 2008;105:3963–7.
CAS PubMed Article Google Scholar
20.
Ganz T, Nemeth E. Iron homeostasis in host defence and inflammation. Nat Rev Immunol. 2015;15:500–10.
CAS PubMed PubMed Central Article Google Scholar
21.
Huber DL. Synthesis, properties, and applications of iron nanoparticles. Small. 2005;1:482–501.
CAS PubMed Article Google Scholar
22.
Wandersman C, Delepelaire P. Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol. 2004;58:611–47.
CAS PubMed Article Google Scholar
23.
Morel FM, Price N. The biogeochemical cycles of trace metals in the oceans. Science. 2003;300:944–7.
CAS PubMed Article PubMed Central Google Scholar
24.
Ram RJ, VerBerkmoes NC, Thelen MP, Tyson GW, Baker BJ, Blake RC, et al. Community proteomics of a natural microbial biofilm. Science. 2005;308:1915–20.
CAS PubMed Article Google Scholar
25.
Cao B, Shi L, Brown RN, Xiong Y, Fredrickson JK, Romine MF, et al. Extracellular polymeric substances from Shewanella sp. HRCR‐1 biofilms: characterization by infrared spectroscopy and proteomics. Environ Microbiol. 2011;13:1018–31.
CAS PubMed Article Google Scholar
26.
Vong L, Laës A, Blain S. Determination of iron–porphyrin-like complexes at nanomolar levels in seawater. Anal Chim Acta. 2007;588:237–44.
CAS PubMed Article Google Scholar
27.
Létoffé S, Nato F, Goldberg ME, Wandersman C. Interactions of HasA, a bacterial haemophore, with haemoglobin and with its outer membrane receptor HasR. Mol Microbiol. 1999;33:546–55.
PubMed Article Google Scholar
28.
Tong Y, Guo M. Bacterial heme-transport proteins and their heme-coordination modes. Arch Biochem Biophys. 2009;481:1–15.
CAS PubMed Article Google Scholar
29.
Pilpa RM, Robson SA, Villareal VA, Wong ML, Phillips M, Clubb RT. Functionally distinct NEAT (NEAr Transporter) domains within the Staphylococcus aureus IsdH/HarA protein extract heme from methemoglobin. J Biol Chem. 2009;284:1166–76.
CAS PubMed PubMed Central Article Google Scholar
30.
Gat O, Zaide G, Inbar I, Grosfeld H, Chitlaru T, Levy H, et al. Characterization of Bacillus anthracis iron‐regulated surface determinant (Isd) proteins containing NEAT domains. Mol Microbiol. 2008;70:983–99.
CAS PubMed PubMed Central Google Scholar
31.
Choby JE, Skaar EP. Heme synthesis and acquisition in bacterial pathogens. J Mol Biol. 2016;428:3408–28.
CAS PubMed PubMed Central Article Google Scholar
32.
Allen CE, Schmitt MP. HtaA is an iron-regulated hemin binding protein involved in the utilization of heme iron in Corynebacterium diphtheriae. J Bacteriol. 2009;191:2638–48.
CAS PubMed PubMed Central Article Google Scholar
33.
Allen CE, Schmitt MP. Novel hemin binding domains in the Corynebacterium diphtheriae HtaA protein interact with hemoglobin and are critical for heme iron utilization by HtaA. J Bacteriol. 2011;193:5374–85.
CAS PubMed PubMed Central Article Google Scholar
34.
Duckworth AW, Grant S, Grant WD, Jones BE, Meijer D. Dietzia natronolimnaios sp. nov., a new member of the genus Dietzia isolated from an East African soda lake. Extremophiles. 1998;2:359–66.
CAS PubMed Article PubMed Central Google Scholar
35.
Mayilraj S, Suresh K, Kroppenstedt R, Saini H. Dietzia kunjamensis sp. nov., isolated from the Indian Himalayas. Int J Syst Evol Microbiol. 2006;56:1667–71.
CAS PubMed Article PubMed Central Google Scholar
36.
Li J, Chen C, Zhao G-Z, Klenk H-P, Pukall R, Zhang Y-Q, et al. Description of Dietzia lutea sp. nov., isolated from a desert soil in Egypt. Syst Appl Microbiol. 2009;32:118–23.
CAS PubMed Article PubMed Central Google Scholar
37.
Fang H, Qin X-Y, Zhang K-D, Nie Y, Wu X-L. Role of the Group 2 Mrp sodium/proton antiporter in rapid response to high alkaline shock in the alkaline-and salt-tolerant Dietzia sp. DQ12-45-1b. Appl Microbiol Biotechnol. 2018;102:3765–77.
CAS PubMed Article PubMed Central Google Scholar
38.
Wang X-B, Chi C-Q, Nie Y, Tang Y-Q, Tan Y, Wu G, et al. Degradation of petroleum hydrocarbons (C6–C40) and crude oil by a novel Dietzia strain. Bioresour Technol. 2011;102:7755–61.
CAS PubMed Article PubMed Central Google Scholar
39.
Rédei GP M9 Bacterial Minimal Medium. In: Rédei GP, editors. Encyclopedia of genetics, genomics, proteomics and informatics, 3rd edn. Dordrecht: Springer Group; 2008. pp. 484–6.
40.
Van Kessel JC, Hatfull GF. Recombineering in Mycobacterium tuberculosis. Nat Methods. 2007;4:147–52.
PubMed Article CAS Google Scholar
41.
Liang J, Jiangyang J, Nie Y, Wu X. Regulation of the alkane hydroxylase CYP153 gene in a Gram-positive alkane-degrading bacterium, Dietzia sp. strain DQ12-45-1b. Appl Environ Microbiol. 2016;82:608–19.
CAS PubMed PubMed Central Article Google Scholar
42.
Lu S, Nie Y, Tang Y-Q, Xiong G, Wu X-L. A critical combination of operating parameters can significantly increase the electrotransformation efficiency of a Gram-positive Dietzia strain. J Microbiol Methods. 2014;103:144–51.
CAS PubMed Article Google Scholar
43.
Szvetnik A, Bihari Z, Szabo Z, Kelemen O, Kiss I. Genetic manipulation tools for Dietzia spp. J Appl Microbiol. 2010;109:1845–52.
CAS PubMed Google Scholar
44.
Deininger PL. Molecular cloning: a laboratory manual. Anal Biochem. 1990;186:182–3.
Article Google Scholar
45.
McBroom AJ, Johnson AP, Vemulapalli S, Kuehn MJ. Outer membrane vesicle production by Escherichia coli is independent of membrane instability. J Bacteriol. 2006;188:5385–92.
CAS PubMed PubMed Central Article Google Scholar
46.
Prados-Rosales R, Weinrick BC, Pique DG, Jacobs WR Jr, Casadevall A, Rodriguez GM. Role for Mycobacterium tuberculosis membrane vesicles in iron acquisition. J Bacteriol. 2014;196:1250–6.
PubMed PubMed Central Article CAS Google Scholar
47.
Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Biochem Cell Biol. 1959;37:911–7.
CAS Google Scholar
48.
Keddie RM, Cure GL. The cell wall composition and distribution of free mycolic acids in named strains of coryneform bacteria and in isolates from various natural sources. J Appl Microbiol. 1977;42:229–52.
CAS Google Scholar
49.
Liu Y, Zhang Q, Hu M, Yu K, Fu J, Zhou F, et al. Proteomic analyses of intracellular Salmonella enterica serovar Typhimurium reveal extensive bacterial adaptations to infected host epithelial cells. Infect Immun. 2015;83:2897–906.
CAS PubMed PubMed Central Article Google Scholar
50.
Calderoncelis F, Encinar JR, Sanzmedel A. Standardization approaches in absolute quantitative proteomics with mass spectrometry. Mass Spectrom Rev. 2018;37:715–37.
CAS Article Google Scholar
51.
Liang J-L, Gao Y, He Z, Nie Y, Wang M, JiangYang J-H, et al. Crystal structure of TetR family repressor AlkX from Dietzia sp. strain DQ12-45-1b implicated in biodegradation of n-alkanes. Appl Environ Microbiol. 2017;83:e01447–17.
CAS PubMed PubMed Central Article Google Scholar
52.
Tashiro Y, Hasegawa Y, Shintani M, Takaki K, Ohkuma M, Kimbara K, et al. Interaction of bacterial membrane vesicles with specific species and their potential for delivery to target cells. Front Microbiol. 2017;8:571.
PubMed PubMed Central Article Google Scholar
53.
Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2014;43:D222–D6.
PubMed PubMed Central Article CAS Google Scholar
54.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.
CAS PubMed PubMed Central Article Google Scholar
55.
Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics. 2010;26:1608–15.
CAS PubMed PubMed Central Article Google Scholar
56.
Song H, Sandie R, Wang Y, Andrade-Navarro MA, Niederweis M. Identification of outer membrane proteins of Mycobacterium tuberculosis. Tuberculosis. 2008;88:526–44.
CAS PubMed Article Google Scholar
57.
Daffé M, Quémard A, Marrakchi H. Mycolic acids: from chemistry to biology. In: Geiger O, editors. Biogenesis of fatty acids, lipids and membranes. Cham: Springer; 2017. p. 1–36.
58.
Choi D, Kim D, Choi SJ, Lee J, Choi J, Rho S, et al. Proteomic analysis of outer membrane vesicles derived from Pseudomonas aeruginosa. Proteomics. 2011;11:3424–9.
CAS PubMed Article Google Scholar
59.
Marchand CH, Salmeron C, Bou Raad R, Meniche X, Chami M, Masi M, et al. Biochemical disclosure of the mycolate outer membrane of Corynebacterium glutamicum. J Bacteriol. 2012;194:587–97.
CAS PubMed PubMed Central Article Google Scholar
60.
Daffe M, Marrakchi H. Unraveling the structure of the mycobacterial envelope. Microbiol Spectr. 2019;7:1087–95.
Article Google Scholar
61.
Nishiuchi Y, Baba T, Yano I. Mycolic acids from Rhodococcus, Gordonia, and Dietzia. J Microbiol Methods. 2000;40:1–9.
CAS PubMed Article Google Scholar
62.
Collins M, Goodfellow M, Minnikin D. A survey of the structures of mycolic acids in Corynebacterium and related taxa. Microbiology. 1982;128:129–49.
CAS Article Google Scholar
63.
Rath P, Saurel O, Czaplicki G, Tropis M, Daffé M, Ghazi A, et al. Cord factor (trehalose 6, 6′-dimycolate) forms fully stable and non-permeable lipid bilayers required for a functional outer membrane. Biochim Biophys Acta-Biomemb. 2013;1828:2173–81.
CAS Article Google Scholar
64.
Caruana JC, Walper SA. Bacterial membrane vesicles as mediators of microbe – microbe and microbe – host community interactions. Front Microbiol. 2020;11:432.
PubMed PubMed Central Article Google Scholar
65.
Rich PR, Maréchal A 8.5 electron transfer chains: structures, mechanisms and energy coupling. In: Egelman EH, editor. Comprehensive biophysics. Amsterdam: Elsevier; 2012. p. 72–93.
66.
Butaitė E, Baumgartner M, Wyder S, Kümmerli R. Siderophore cheating and cheating resistance shape competition for iron in soil and freshwater Pseudomonas communities. Nat Commun. 2017;8:1–12.
Article CAS Google Scholar
67.
Zuber B, Chami M, Houssin C, Dubochet J, Griffiths G, Daffé M. Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state. J Bacteriol. 2008;190:5672–80.
CAS PubMed PubMed Central Article Google Scholar
68.
Sani M, Houben ENG, Geurtsen J, Pierson J, De Punder K, Van Zon M, et al. Direct visualization by cryo-EM of the mycobacterial capsular layer: a labile structure containing ESX-1-secreted proteins. PLoS Pathog. 2010;6:e1000794.
PubMed PubMed Central Article CAS Google Scholar
69.
Kramer J, Özkaya Ö, Kümmerli R. Bacterial siderophores in community and host interactions. Nat Rev Microbiol. 2020;18:152–63.
CAS PubMed Article Google Scholar
70.
Rakoff-Nahoum S, Coyne MJ, Comstock LE. An ecological network of polysaccharide utilization among human intestinal symbionts. Curr Biol. 2014;24:40–9.
CAS PubMed Article PubMed Central Google Scholar More
