1.
Koonin, E. V. The wonder world of microbial viruses. Expert Rev. Anti Infect. Ther. 8, 1097–1099 (2010).
PubMed PubMed Central Article Google Scholar
2.
Yong, E. I Contain Multitudes: The Microbes Within Us and A Grander View of Life (Ecco, 2016).
3.
Breitbart, M. & Rohwer, F. Here a virus, there a virus, everywhere the same virus? Trends Microbiol. 13, 278–284 (2005).
CAS PubMed Article Google Scholar
4.
Paez-Espino, D. et al. Uncovering Earth’s virome. Nature 536, 425–430 (2016). This is a massive metagenomic study on global viral diversity and distribution and host specificity of viruses. A total of 125,000 partial DNA virus genomes are discovered.
CAS PubMed Article Google Scholar
5.
Edwards, R. A. & Rohwer, F. Viral metagenomics. Nat. Rev. Microbiol. 3, 504–510 (2005).
CAS PubMed Article Google Scholar
6.
Suttle, C. A. Marine viruses-major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007). This is a fundamental must-read review of the general role of viruses in marine ecosystems.
CAS PubMed Article Google Scholar
7.
Abedon, S. T. Bacteriophage Ecology: Population Growth, Evolution, and Impact of Bacterial Viruses (Cambridge Univ. Press, 2008).
8.
Sullivan, M. B., Waterbury, J. B. & Chisholm, S. W. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature 424, 1047–1051 (2003).
CAS PubMed Article Google Scholar
9.
Sullivan, M. B. et al. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ. Microbiol. 12, 3035–3056 (2010).
CAS PubMed PubMed Central Article Google Scholar
10.
Kauffman, K. M. et al. A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. Nature 554, 118–122 (2018).
CAS PubMed Article Google Scholar
11.
Atanasova, N. S., Roine, E., Oren, A., Bamford, D. H. & Oksanen, H. M. Global network of specific virus-host interactions in hypersaline environments. Environ. Microbiol. 14, 426–440 (2012).
CAS PubMed Article Google Scholar
12.
Marston, M. F. et al. Rapid diversification of coevolving marine Synechococcus and a virus. Proc. Natl Acad. Sci. USA 109, 4544–4549 (2012).
CAS PubMed Article Google Scholar
13.
Enav, H., Kirzner, S., Lindell, D., Mandel-Gutfreund, Y. & Béjà, O. Adaptation to sub-optimal hosts is a driver of viral diversification in the ocean. Nat. Commun. 9, 1–11 (2018).
CAS Article Google Scholar
14.
Rappé, M. S. & Giovannoni, S. J. The uncultured microbial majority. Annu. Rev. Microbiol. 57, 369–394 (2003). This is a comprehensive review addressing a fundamental question in microbial ecology on the difficulty of culturing most microorganisms in the laboratory and how this bias impacts microbial discovery.
PubMed Article CAS Google Scholar
15.
Pedrós-Alió, C. The rare bacterial biosphere. Ann. Rev. Mar. Sci. 4, 449–466 (2012).
PubMed Article Google Scholar
16.
Brum, J. R., Schenck, R. O. & Sullivan, M. B. Global morphological analysis of marine viruses shows minimal regional variation and dominance of non-tailed viruses. ISME J. 7, 1738–1751 (2013).
CAS PubMed PubMed Central Article Google Scholar
17.
Brum, J. R. et al. Patterns and ecological drivers of ocean viral communities. Science 348, 1261498 (2015). This is a pioneering, comprehensive metagenomic study on global marine viral diversity from hundreds of samples collected during the Tara expedition.
PubMed Article CAS Google Scholar
18.
Trubl, G. et al. Soil viruses are underexplored players in ecosystem carbon processing. mSystems 3, e00076-18 (2018).
PubMed PubMed Central Article Google Scholar
19.
Paez-Espino, D. et al. IMG/VR v.2.0: an integrated data management and analysis system for cultivated and environmental viral genomes. Nucleic Acids Res. 47, D678–D686 (2019). This article describes the most comprehensive genome database of uncultured viruses recovered by metagenomics from different ecosystems, including the human body, with more than 700,000 viral genome fragments.
CAS PubMed Article Google Scholar
20.
Carlson, C. J., Zipfel, C. M., Garnier, R. & Bansal, S. Global estimates of mammalian viral diversity accounting for host sharing. Nat. Ecol. Evol. 3, 1070–1075 (2019).
PubMed Article Google Scholar
21.
Carroll, D. et al. The Global Virome Project. Science 359, 872–874 (2018).
CAS PubMed Article Google Scholar
22.
Cesar Ignacio-Espinoza, J., Solonenko, S. A. & Sullivan, M. B. The global virome: not as big as we thought? Curr. Opin. Virol. 3, 566–571 (2013). The authors address a hot topic in viral ecology (that is, how big the viral diversity in nature is) and estimate the total number of different viral proteins, which is a proxy for quantifying the number of different existing viruses.
PubMed Article Google Scholar
23.
Rohwer, F. Global phage diversity. Cell 113, 141 (2003).
CAS PubMed Article Google Scholar
24.
Suttle, C. A. Environmental microbiology: viral diversity on the global stage. Nat. Microbiol. 1, 1–2 (2016).
Article CAS Google Scholar
25.
Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693 (2016).
CAS PubMed Article Google Scholar
26.
Schulz, F. et al. Hidden diversity of soil giant viruses. Nat. Commun. 9, 1–9 (2018). The article reports the discovery of several relevant giant viruses, including one with a genome of 2.4 Mb, using metagenomics and a method that is similar to those used in SVG, but in this case targeting multiple sets of 100 viruses, instead of single-virus particles.
Article CAS Google Scholar
27.
Brown, C. T. et al. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523, 208–211 (2015).
CAS PubMed Article Google Scholar
28.
Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7, 1–11 (2016).
Article CAS Google Scholar
29.
Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).
CAS PubMed Article Google Scholar
30.
Schulz, F. et al. Giant virus diversity and host interactions through global metagenomics. Nature 578, 432–436 (2020).
CAS PubMed PubMed Central Article Google Scholar
31.
Al-Shayeb, B. et al. Clades of huge phages from across Earth’s ecosystems. Nature 578, 425–431 (2020).
CAS PubMed PubMed Central Article Google Scholar
32.
Breitbart, M. et al. Genomic analysis of uncultured marine viral communities. Proc. Natl Acad. Sci. USA 99, 14250–14255 (2002).
CAS PubMed Article Google Scholar
33.
Dávila-Ramos, S. et al. A review on viral metagenomics in extreme environments. Front. Microbiol. 10, 2403 (2019).
PubMed PubMed Central Article Google Scholar
34.
Chatterjee, A., Sicheritz-Pontén, T., Yadav, R. & Kondabagil, K. Genomic and metagenomic signatures of giant viruses are ubiquitous in water samples from sewage, inland lake, waste water treatment plant, and municipal water supply in Mumbai, India. Sci. Rep. 9, 1–9 (2019).
Article CAS Google Scholar
35.
Simmonds, P. et al. Consensus statement: virus taxonomy in the age of metagenomics. Nat. Rev. Microbiol. 15, 161–168 (2017).
CAS PubMed Article Google Scholar
36.
Martinez-Hernandez, F. et al. Single-virus genomics reveals hidden cosmopolitan and abundant viruses. Nat. Commun. 8, 1–13 (2017). This is a pioneering reference high-throughput SVG study that unveils extremely abundant and ubiquitous uncultured marine viruses overlooked for years by current state-of-the-art, standard metagenomic-based studies.
Article CAS Google Scholar
37.
Roux, S., Emerson, J. B., Eloe-Fadrosh, E. A. & Sullivan, M. B. Benchmarking viromics: an in silico evaluation of metagenome-enabled estimates of viral community composition and diversity. PeerJ 5, e3817 (2017). This in silico study performs a through bioinformatic comparison of different tools used commonly in viral metagenomics and aims to provide useful recommendations and standards for the scientific community.
PubMed PubMed Central Article Google Scholar
38.
Aguirre de Cárcer, D., Angly, F. E. & Alcamí, A. Evaluation of viral genome assembly and diversity estimation in deep metagenomes. BMC Genomics 15, 1–12 (2014).
Article CAS Google Scholar
39.
López-Pérez, M., Haro-Moreno, J. M., Gonzalez-Serrano, R., Parras-Moltó, M. & Rodriguez-Valera, F. Genome diversity of marine phages recovered from Mediterranean metagenomes: size matters. PLoS Genet. 13, e1007018 (2017).
PubMed PubMed Central Article CAS Google Scholar
40.
Labonté, J. M. et al. Single-cell genomics-based analysis of virus–host interactions in marine surface bacterioplankton. ISME J. 9, 2386–2399 (2015). The screening of sequencing data from hundreds of single cells obtained from seawater unveils virus–host interactions in different ecologically important bacterial and archaeal groups.
PubMed PubMed Central Article CAS Google Scholar
41.
Roux, S. et al. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics. eLife 2014, e03125 (2014).
Article CAS Google Scholar
42.
Yoon, H. S. et al. Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science 332, 714–717 (2011). This is the first report of SCG in uncultivated widespread microbial eukaryotes, showing complex viral interactions and metabolic insights into phycobiliphyte groups.
CAS PubMed Article Google Scholar
43.
Castillo, Y. M. et al. Assessing the viral content of uncultured picoeukaryotes in the global‐ocean by single cell genomics. Mol. Ecol. 28, 4272–4289 (2019).
CAS PubMed Article Google Scholar
44.
Benites, L. F. et al. Single cell ecogenomics reveals mating types of individual cells and ssDNA viral infections in the smallest photosynthetic eukaryotes. Phil. Trans. R. Soc. B 374, 20190089 (2019).
CAS PubMed Article Google Scholar
45.
Martinez-Hernandez, F. et al. Single-cell genomics uncover Pelagibacter as the putative host of the extremely abundant uncultured 37-F6 viral population in the ocean. ISME J. 13, 232–236 (2019).
CAS PubMed Article Google Scholar
46.
Brussaard, C. P. D., Noordeloos, A. A. M., Sandaa, R. A., Heldal, M. & Bratbak, G. Discovery of a dsRNA virus infecting the marine photosynthetic protist Micromonas pusilla. Virology 319, 280–291 (2004).
CAS PubMed Article Google Scholar
47.
Dean, F. B. et al. Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl Acad. Sci. USA 99, 5261–5266 (2002).
CAS PubMed Article Google Scholar
48.
Raghunathan, A. et al. Genomic DNA amplification from a single bacterium. Appl. Environ. Microbiol. 71, 3342–3347 (2005).
CAS PubMed PubMed Central Article Google Scholar
49.
Stepanauskas, R. & Sieracki, M. E. Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time. Proc. Natl Acad. Sci. USA 104, 9052–9057 (2007).
CAS PubMed Article Google Scholar
50.
Rinke, C. et al. Obtaining genomes from uncultivated environmental microorganisms using FACS-based single-cell genomics. Nat. Protoc. 9, 1038–1048 (2014).
CAS PubMed Article Google Scholar
51.
Martinez-Garcia, M., Martinez-Hernandez, F. & Martínez Martínez, J. Single-virus genomics: studying uncultured viruses, one at a time. Ref. Module Life Sci. https://doi.org/10.1016/b978-0-12-809633-8.21497-0 (2020). The authors provide methodological details and protocols for implementing SVG to complement other existing methods in viral ecology.
Article Google Scholar
52.
Lindell, D. et al. Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc. Natl Acad. Sci. USA 101, 11013–11018 (2004).
CAS PubMed Article Google Scholar
53.
Breitbart, M., Thompson, L., Suttle, C. & Sullivan, M. Exploring the vast diversity of marine viruses. Oceanography 20, 135–139 (2007).
Article Google Scholar
54.
Brum, J. R. & Sullivan, M. B. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat. Rev. Microbiol. 13, 147–159 (2015). This review is recommended for readers who would like an introduction to recent technological advances in marine virology.
CAS PubMed Article Google Scholar
55.
De Corte, D. et al. Viral communities in the global deep ocean conveyor belt assessed by targeted viromics. Front. Microbiol. 10, 1801 (2019).
PubMed PubMed Central Article Google Scholar
56.
Aylward, F. O. et al. Diel cycling and long-term persistence of viruses in the ocean’s euphotic zone. Proc. Natl Acad. Sci. USA 114, 11446–11451 (2017).
CAS PubMed Article Google Scholar
57.
Luo, E., Aylward, F. O., Mende, D. R. & Delong, E. F. Bacteriophage distributions and temporal variability in the ocean’s interior. mBio 8, e01903-17 (2017).
PubMed PubMed Central Article Google Scholar
58.
Angly, F. E. et al. The marine viromes of four oceanic regions. PLoS Biol. 4, 2121–2131 (2006).
CAS Article Google Scholar
59.
Coutinho, F. H., Rosselli, R. & Rodríguez-Valera, F. Trends of microdiversity reveal depth-dependent evolutionary strategies of viruses in the Mediterranean. mSystems 4, 1–17 (2019).
Article Google Scholar
60.
Roux, S., Krupovic, M., Debroas, D., Forterre, P. & Enault, F. Assessment of viral community functional potential from viral metagenomes may be hampered by contamination with cellular sequences. Open Biol. 3, 130160 (2013).
PubMed PubMed Central Article CAS Google Scholar
61.
Zolfo, M. et al. Detecting contamination in viromes using ViromeQC. Nat. Biotechnol. 37, 1408–1412 (2019).
CAS PubMed Article Google Scholar
62.
Amgarten, D., Braga, L. P. P., da Silva, A. M. & Setubal, J. C. MARVEL, a tool for prediction of bacteriophage sequences in metagenomic bins. Front. Genet. 9, 304 (2018).
PubMed PubMed Central Article CAS Google Scholar
63.
Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: mining viral signal from microbial genomic data. PeerJ 3, e985 (2015).
PubMed PubMed Central Article CAS Google Scholar
64.
Ponsero, A. J. & Hurwitz, B. L. The promises and pitfalls of machine learning for detecting viruses in aquatic metagenomes. Front. Microbiol. 10, 806 (2019).
PubMed PubMed Central Article Google Scholar
65.
Crummett, L. T., Puxty, R. J., Weihe, C., Marston, M. F. & Martiny, J. B. H. The genomic content and context of auxiliary metabolic genes in marine cyanomyoviruses. Virology 499, 219–229 (2016).
CAS PubMed Article Google Scholar
66.
Pagarete, A., Allen, M. J., Wilson, W. H., Kimmance, S. A. & de Vargas, C. Host-virus shift of the sphingolipid pathway along an Emiliania huxleyi bloom: survival of the fattest. Environ. Microbiol. 11, 2840–2848 (2009).
CAS PubMed Article Google Scholar
67.
Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, 1109–1123 (2019).
CAS PubMed PubMed Central Article Google Scholar
68.
Kavagutti, V. S., Andrei, A. Ş., Mehrshad, M., Salcher, M. M. & Ghai, R. Phage-centric ecological interactions in aquatic ecosystems revealed through ultra-deep metagenomics. Microbiome 7, 1–15 (2019).
Article Google Scholar
69.
Sutton, T. D. S., Clooney, A. G., Ryan, F. J., Ross, R. P. & Hill, C. Choice of assembly software has a critical impact on virome characterisation. Microbiome 7, 12 (2019).
PubMed PubMed Central Article Google Scholar
70.
Madoui, M.-A. et al. Genome assembly using Nanopore-guided long and error-free DNA reads. BMC Genomics 16, 327 (2015).
PubMed PubMed Central Article CAS Google Scholar
71.
Warwick-Dugdale, J. et al. Long-read viral metagenomics captures abundant and microdiverse viral populations and their niche-defining genomic islands. PeerJ 7, e6800 (2019). This pioneering study successfully combines long-read and short-read sequencing data to improve viral metagenomic assemblies and shows the potential of Nanopore sequencing data to advance virus discovery.
PubMed PubMed Central Article CAS Google Scholar
72.
Beaulaurier, J. et al. Assembly-free single-molecule sequencing recovers complete virus genomes from natural microbial communities. Genome Res. 30, 437–446 (2020).
PubMed PubMed Central Article Google Scholar
73.
Mizuno, C. M., Rodriguez-Valera, F., Kimes, N. E. & Ghai, R. Expanding the marine virosphere using metagenomics. PLoS Genet. 9, e1003987 (2013).
PubMed PubMed Central Article CAS Google Scholar
74.
Garcia-Heredia, I. et al. Reconstructing viral genomes from the environment using fosmid clones: the case of haloviruses. PLoS ONE 7, e33802 (2012).
CAS PubMed PubMed Central Article Google Scholar
75.
Chow, C. E. T., Winget, D. M., White, R. A., Hallam, S. J. & Suttle, C. A. Combining genomic sequencing methods to explore viral diversity and reveal potential virus-host interactions. Front. Microbiol. 6, 265 (2015).
PubMed PubMed Central Google Scholar
76.
Mizuno, C. M., Ghai, R., Saghaï, A., López-García, P. & Rodriguez-Valera, F. Genomes of abundant and widespread viruses from the deep ocean. mBio 7, e00805–e00816 (2016).
CAS PubMed PubMed Central Article Google Scholar
77.
Martinez-Garcia, M. et al. High-throughput single-cell sequencing identifies photoheterotrophs and chemoautotrophs in freshwater bacterioplankton. ISME J. 6, 113–123 (2012).
CAS PubMed Article Google Scholar
78.
Stepanauskas, R. Single cell genomics: an individual look at microbes. Curr. Opin. Microbiol. 15, 613–620 (2012).
CAS PubMed Article Google Scholar
79.
Sieracki, M. E. et al. Single cell genomics yields a wide diversity of small planktonic protists across major ocean ecosystems. Sci. Rep. 9, 1–11 (2019).
CAS Article Google Scholar
80.
Lasken, R. S. Genomic sequencing of uncultured microorganisms from single cells. Nat. Rev. Microbiol. 10, 631–640 (2012).
CAS PubMed Article Google Scholar
81.
López-Escardó, D. et al. Evaluation of single-cell genomics to address evolutionary questions using three SAGs of the choanoflagellate Monosiga brevicollis. Sci. Rep. 7, 1–14 (2017).
Article CAS Google Scholar
82.
Mangot, J. F. et al. Accessing the genomic information of unculturable oceanic picoeukaryotes by combining multiple single cells. Sci. Rep. 7, 1–12 (2017).
Article CAS Google Scholar
83.
Seeleuthner, Y. et al. Single-cell genomics of multiple uncultured stramenopiles reveals underestimated functional diversity across oceans. Nat. Commun. 9, 1–10 (2018).
CAS Article Google Scholar
84.
Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013). This article is an excellent example of the power of single-cell technologies to provide biological insights into uncultured microorganisms.
CAS PubMed Article Google Scholar
85.
Swan, B. K. et al. Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Proc. Natl Acad. Sci. USA 110, 11463–11468 (2013).
CAS PubMed Article Google Scholar
86.
Garcia, S. L. et al. Metabolic potential of a single cell belonging to one of the most abundant lineages in freshwater bacterioplankton. ISME J. 7, 137–147 (2013).
CAS PubMed Article Google Scholar
87.
Martinez-Garcia, M. et al. Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of verrucomicrobia. PLoS ONE 7, e35314 (2012).
CAS PubMed PubMed Central Article Google Scholar
88.
Stepanauskas, R. et al. Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles. Nat. Commun. 8, 1–10 (2017). The authors use flow cytometry to sort uncultured single viruses and they amplify their genomes with a new variant of an efficient Φ29 enzyme, which is commonly used in SCG and SVG. This study is another SVG example targeting uncultured viruses.
Article CAS Google Scholar
89.
Ghylin, T. W. et al. Comparative single-cell genomics reveals potential ecological niches for the freshwater acI Actinobacteria lineage. ISME J. 8, 2503–2516 (2014).
CAS PubMed PubMed Central Article Google Scholar
90.
Wilson, W. H. et al. Genomic exploration of individual giant ocean viruses. ISME J. 11, 1736–1745 (2017). This reference SVG study targets for the first time uncultured giant viruses in nature, which are commonly ignored with standard metagenomic techniques.
PubMed PubMed Central Article Google Scholar
91.
de la Cruz Peña, M. et al. Deciphering the human virome with single-virus genomics and metagenomics. Viruses 10, 113 (2018). This is the first study on SVG applied to the human virome. The authors implement this novel technology, combined with metagenomics, in salivary human samples and discover important, abundant phages.
PubMed Central Article CAS PubMed Google Scholar
92.
Allen, L. Z. et al. Single virus genomics: a new tool for virus discovery. PLoS ONE 6, e17722 (2011). This is the first report showing the feasibility of SVG as a new tool for virus discovery. The authors successfully use this technology to sequence several single sorted virus particles of viral isolates T4 and λ of E. coli.
CAS PubMed PubMed Central Article Google Scholar
93.
Holmfeldt, K., Odić, D., Sullivan, M. B., Middelboe, M. & Riemann, L. Cultivated single-stranded DNA phages that infect marine bacteroidetes prove difficult to detect with DNA-binding stains. Appl. Environ. Microbiol. 78, 892–894 (2012).
CAS PubMed PubMed Central Article Google Scholar
94.
Pospichalova, V. et al. Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer. J. Extracell. Vesicles 4, 25530 (2015).
PubMed Article CAS Google Scholar
95.
Giesecke, C. et al. Determination of background, signal-to-noise, and dynamic range of a flow cytometer: a novel practical method for instrument characterization and standardization. Cytometry A 91, 1104–1114 (2017).
CAS PubMed Article Google Scholar
96.
Schmidt, H. & Hawkins, A. R. Single-virus analysis through chip-based optical detection. Bioanalysis 8, 867–870 (2016).
CAS PubMed PubMed Central Article Google Scholar
97.
Brussaard, C., Payet, J. P., Winter, C. & Weinbauer, M. G. Quantification of aquatic viruses by flow cytometry. Man. Aquat. Viral Ecol. 11, 102–109 (2010).
Article Google Scholar
98.
Mojica, K. D. A. & Brussaard, C. P. D. Factors affecting virus dynamics and microbial host-virus interactions in marine environments. FEMS Microbiol. Ecol. 89, 495–515 (2014).
CAS PubMed Article Google Scholar
99.
Blainey, P. C. & Quake, S. R. Digital MDA for enumeration of total nucleic acid contamination. Nucleic Acids Res. 39, e19 (2011).
PubMed Article CAS Google Scholar
100.
Woyke, T. et al. Decontamination of MDA reagents for single cell whole genome amplification. PLoS ONE 6, e26161 (2011).
CAS PubMed PubMed Central Article Google Scholar
101.
Povilaitis, T., Alzbutas, G., Sukackaite, R., Siurkus, J. & Skirgaila, R. In vitro evolution of phi29 DNA polymerase using isothermal compartmentalized self replication technique. Protein Eng. Des. Sel. 29, 617–628 (2016).
CAS PubMed Article Google Scholar
102.
Gawad, C., Koh, W. & Quake, S. R. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17, 175–188 (2016). This is one of the most comprehensive technical and scientific reviews of SCG technologies of unicellular and multicellular organisms, and discusses how these technologies have enabled new discoveries in multiple fields from microbiology to cancer or immunology.
CAS PubMed Article Google Scholar
103.
Martínez Martínez, J., Swan, B. K. & Wilson, W. H. Marine viruses, a genetic reservoir revealed by targeted viromics. ISME J. 8, 1079–1088 (2014). This study uses technologies similar to those used in SVG to discover giant viruses and other relevant uncultured viruses from a sorted pool of marine uncultured viruses.
PubMed Article CAS Google Scholar
104.
Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).
CAS PubMed PubMed Central Article Google Scholar
105.
Woyke, T. et al. One bacterial cell, one complete genome. PLoS ONE 5, e10314 (2010).
PubMed PubMed Central Article CAS Google Scholar
106.
Roux, S. et al. Minimum information about an uncultivated virus genome (MIUVIG). Nat. Biotechnol. 37, 29–37 (2019).
CAS PubMed Article Google Scholar
107.
Hercher, M., Mueller, W. & Shapiro, H. M. Detection and discrimination of individual viruses by flow cytometry. J. Histochem. Cytochem. 27, 350–352 (1979).
CAS PubMed Article Google Scholar
108.
Lippé, R. Flow virometry: a powerful tool to functionally characterize viruses. J. Virol. 92, e01765-17 (2017).
Article Google Scholar
109.
Koonin, E. V. & Yutin, N. Evolution of the large nucleocytoplasmic DNA viruses of eukaryotes and convergent origins of viral gigantism. Adv. Virus Res. 103, 167–202 (2019).
CAS PubMed Article Google Scholar
110.
Brum, J. R. et al. Illuminating structural proteins in viral ‘dark matter’ with metaproteomics. Proc. Natl Acad. Sci. USA 113, 2436–2441 (2016).
CAS PubMed Article Google Scholar
111.
Alonso-Sáez, L., Morán, X. A. G. & Clokie, M. R. Low activity of lytic pelagiphages in coastal marine waters. ISME J. 12, 2100–2102 (2018).
PubMed PubMed Central Article Google Scholar
112.
Zhao, Y. et al. Abundant SAR11 viruses in the ocean. Nature 494, 357–360 (2013).
CAS PubMed Article Google Scholar
113.
McMullen, A., Martinez‐Hernandez, F. & Martinez‐Garcia, M. Absolute quantification of infecting viral particles by chip‐based digital polymerase chain reaction. Environ. Microbiol. Rep. 11, 855–860 (2019).
CAS PubMed Google Scholar
114.
Fukuda, R., Ogawa, H., Nagata, T. & Koike, I. Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Appl. Environ. Microbiol. 64, 3352–3358 (1998).
CAS PubMed PubMed Central Article Google Scholar
115.
Needham, D. M. et al. Targeted metagenomic recovery of four divergent viruses reveals shared and distinctive characteristics of giant viruses of marine eukaryotes. Phil. Trans. R. Soc. B 374, 20190086 (2019).
CAS PubMed Article Google Scholar
116.
Needham, D. M. et al. A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators. Proc. Natl Acad. Sci. USA 116, 20574–20583 (2019).
CAS PubMed Article Google Scholar
117.
Dieterich, D. C., Link, A. J., Graumann, J., Tirrell, D. A. & Schuman, E. M. Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc. Natl Acad. Sci. USA 103, 9482–9487 (2006).
CAS PubMed Article Google Scholar
118.
Hatzenpichler, R. et al. In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry. Environ. Microbiol. 16, 2568–2590 (2014).
CAS PubMed PubMed Central Article Google Scholar
119.
Pasulka, A. L. et al. Interrogating marine virus-host interactions and elemental transfer with BONCAT and nanoSIMS-based methods. Environ. Microbiol. 20, 671–692 (2018).
CAS PubMed Article Google Scholar
120.
Dominguez-Medina, S. et al. Neutral mass spectrometry of virus capsids above 100 megadaltons with nanomechanical resonators. Science 362, 918–922 (2018).
CAS PubMed Article Google Scholar
121.
Hermelink, A. et al. Towards a correlative approach for characterising single virus particles by transmission electron microscopy and nanoscale Raman spectroscopy. Analyst 142, 1342–1349 (2017).
CAS PubMed Article Google Scholar
122.
Ruokola, P. et al. Raman spectroscopic signatures of echovirus 1 uncoating. J. Virol. 88, 8504–8513 (2014).
PubMed PubMed Central Article CAS Google Scholar
123.
Schatz, D. et al. Communication via extracellular vesicles enhances viral infection of a cosmopolitan alga. Nat. Microbiol. 2, 1485–1492 (2017).
CAS PubMed Article Google Scholar
124.
Berleman, J. & Auer, M. The role of bacterial outer membrane vesicles for intra- and interspecies delivery. Environ. Microbiol. 15, 347–354 (2013).
CAS PubMed Article Google Scholar
125.
Van Niel, G., D’Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).
PubMed Article CAS Google Scholar
126.
Machtinger, R., Laurent, L. C. & Baccarelli, A. A. Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Hum. Reprod. Update 22, 182–193 (2016).
CAS PubMed Google Scholar
127.
Biller, S. J. et al. Membrane vesicles in sea water: heterogeneous DNA content and implications for viral abundance estimates. ISME J. 11, 394–404 (2017).
CAS PubMed Article Google Scholar
128.
Kulp, A. & Kuehn, M. J. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 64, 163–184 (2010).
CAS PubMed PubMed Central Article Google Scholar
129.
Jacob, F. & Wollman, E. L. Viruses and genes. Sci. Am. 204, 93–107 (1961).
CAS PubMed Article Google Scholar
130.
Forterre, P. The virocell concept and environmental microbiology. ISME J. 7, 233–236 (2013).
CAS PubMed Article Google Scholar
131.
Forterre, P. Manipulation of cellular syntheses and the nature of viruses: the virocell concept. C. R. Chim. 14, 392–399 (2011).
CAS Article Google Scholar
132.
Weitz, J. S., Li, G., Gulbudak, H., Cortez, M. H. & Whitaker, R. J. Viral invasion fitness across a continuum from lysis to latency. Virus Evol. 5, vez006 (2019).
PubMed PubMed Central Article Google Scholar
133.
Martinez-Garcia, M. et al. Unveiling in situ interactions between marine protists and bacteria through single cell sequencing. ISME J. 6, 703–707 (2012).
CAS PubMed Article Google Scholar
134.
Martínez-García, M., Santos, F., Moreno-Paz, M., Parro, V. & Antón, J. Unveiling viral–host interactions within the ‘microbial dark matter’. Nat. Commun. 5, 1–8 (2014).
Article CAS Google Scholar
135.
Džunková, M. et al. Defining the human gut host–phage network through single-cell viral tagging. Nat. Microbiol. 4, 2192–2203 (2019). This is probably one of the most comprehensive SCG studies within the context of the human gut microbiota, and unveils a total of 363 unique host–phage pairings, expanding the known host–phage network of the gut microbiota.
PubMed Article CAS Google Scholar
136.
Munson-Mcgee, J. H. et al. A virus or more in (nearly) every cell: Ubiquitous networks of virus-host interactions in extreme environments. ISME J. 12, 1706–1714 (2018).
CAS PubMed PubMed Central Article Google Scholar
137.
Jarett, J. K. et al. Insights into the dynamics between viruses and their hosts in a hot spring microbial mat. ISME J. 14, 2527–2541 (2020).
CAS PubMed PubMed Central Article Google Scholar
138.
Deng, L. et al. Viral tagging reveals discrete populations in Synechococcus viral genome sequence space. Nature 513, 242–245 (2014).
CAS PubMed Article Google Scholar
139.
Allers, E. et al. Single-cell and population level viral infection dynamics revealed by phageFISH, a method to visualize intracellular and free viruses. Environ. Microbiol. 15, 2306–2318 (2013).
CAS PubMed PubMed Central Article Google Scholar
140.
Zanini, F. et al. Virus-inclusive single-cell RNA sequencing reveals the molecular signature of progression to severe dengue. Proc. Natl Acad. Sci. USA 115, E12363–E12369 (2018).
CAS PubMed Article Google Scholar
141.
Steuerman, Y. et al. Dissection of influenza infection in vivo by single-cell RNA sequencing. Cell Syst. 6, 679–691 (2018).
CAS PubMed PubMed Central Article Google Scholar
142.
Wyler, E. et al. Single-cell RNA-sequencing of herpes simplex virus 1-infected cells connects NRF2 activation to an antiviral program. Nat. Commun. 10, 1–14 (2019).
Article CAS Google Scholar
143.
Guo, Q., Duffy, S. P., Matthews, K., Islamzada, E. & Ma, H. Deformability based cell sorting using microfluidic ratchets enabling phenotypic separation of leukocytes directly from whole blood. Sci. Rep. 7, 1–11 (2017).
Article CAS Google Scholar
144.
Liu, W. et al. More than efficacy revealed by single-cell analysis of antiviral therapeutics. Sci. Adv. 5, eaax4761 (2019).
CAS PubMed PubMed Central Article Google Scholar
145.
Lasken, R. S. Single-cell genomic sequencing using multiple displacement amplification. Curr. Opin. Microbiol. 10, 510–516 (2007).
CAS PubMed Article Google Scholar
146.
Marcy, Y. et al. Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc. Natl Acad. Sci. USA 104, 11889–11894 (2007).
CAS PubMed Article Google Scholar
147.
Swan, B. K. et al. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science 333, 1296–1300 (2011).
CAS PubMed Article Google Scholar
148.
Ahrendt, S. R. et al. Leveraging single-cell genomics to expand the fungal tree of life. Nat. Microbiol. 3, 1417–1428 (2018).
CAS PubMed PubMed Central Article Google Scholar
149.
McConnell, M. J. et al. Mosaic copy number variation in human neurons. Science 342, 632–637 (2013).
CAS PubMed PubMed Central Article Google Scholar
150.
Poulin, J. F., Tasic, B., Hjerling-Leffler, J., Trimarchi, J. M. & Awatramani, R. Disentangling neural cell diversity using single-cell transcriptomics. Nat. Neurosci. 19, 1131–1141 (2016).
PubMed Article CAS Google Scholar
151.
Tanay, A. & Regev, A. Scaling single-cell genomics from phenomenology to mechanism. Nature 541, 331–338 (2017).
CAS PubMed PubMed Central Article Google Scholar
152.
Sandberg, R. Entering the era of single-cell transcriptomics in biology and medicine. Nat. Methods 11, 22–24 (2014).
CAS PubMed Article Google Scholar
153.
Wang, Y. et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512, 155–160 (2014).
CAS PubMed PubMed Central Article Google Scholar
154.
Lindell, D. et al. Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution. Nature 449, 83–86 (2007).
CAS PubMed Article Google Scholar
155.
Roux, S., Tournayre, J., Mahul, A., Debroas, D. & Enault, F. Metavir 2: new tools for viral metagenome comparison and assembled virome analysis. BMC Bioinformatics 15, 1–12 (2014).
Article CAS Google Scholar
156.
Watson, M., Schnettler, E. & Kohl, A. viRome: an R package for the visualization and analysis of viral small RNA sequence datasets. Bioinformatics 29, 1902–1903 (2013).
CAS PubMed PubMed Central Article Google Scholar
157.
Jurtz, V. I., Villarroel, J., Lund, O., Voldby Larsen, M. & Nielsen, M. MetaPhinder—identifying bacteriophage sequences in metagenomic data sets. PLoS ONE 11, e0163111 (2016).
PubMed PubMed Central Article CAS Google Scholar
158.
Zheng, T. et al. Mining, analyzing, and integrating viral signals from metagenomic data. Microbiome 7, 1–15 (2019).
CAS Article Google Scholar
159.
Ren, J., Ahlgren, N. A., Lu, Y. Y., Fuhrman, J. A. & Sun, F. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome 5, 69 (2017).
PubMed PubMed Central Article Google Scholar
160.
Fang, Z. et al. PPR-Meta: a tool for identifying phages and plasmids from metagenomic fragments using deep learning. GigaScience 8, giz066 (2019).
PubMed PubMed Central Article CAS Google Scholar
161.
Tampuu, A., Bzhalava, Z., Dillner, J. & Vicente, R. ViraMiner: Deep learning on raw DNA sequences for identifying viral genomes in human samples. PLoS ONE 14, e0222271 (2019).
CAS PubMed PubMed Central Article Google Scholar
162.
Bin Jang, H. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).
Article CAS Google Scholar
163.
Schleyer, G. et al. In plaque-mass spectrometry imaging of a bloom-forming alga during viral infection reveals a metabolic shift towards odd-chain fatty acid lipids. Nat. Microbiol. 4, 527–538 (2019).
CAS PubMed PubMed Central Article Google Scholar
164.
Van Etten, J. L., Burbank, D. E., Kuczmarski, D. & Meints, R. H. Virus infection of culturable Chlorella-like algae and development of a plaque assay. Science 219, 994–996 (1983).
Article Google Scholar
165.
Maxwell, K. L. & Frappier, L. Viral proteomics. Microbiol. Mol. Biol. Rev. 71, 398–411 (2007).
CAS Article Google Scholar
166.
Lum, K. K. & Cristea, I. M. Proteomic approaches to uncovering virus-host protein interactions during the progression of viral infection. Expert Rev. Proteom. 13, 325–340 (2016).
CAS Article Google Scholar
167.
Cheng, W. & Schimert, K. A method for tethering single viral particles for virus-cell interaction studies with optical tweezers. Proc. SPIE 10723, 107233B (2018).
Google Scholar
168.
Ekeberg, T. et al. Three-dimensional reconstruction of the giant mimivirus particle with an X-ray free-electron laser. Phys. Rev. Lett. 114, 098102 (2015).
PubMed Article CAS Google Scholar
169.
Cheng, Y. Single-particle cryo-EM at crystallographic resolution. Cell 161, 450–457 (2015).
CAS PubMed PubMed Central Article Google Scholar
170.
Lyumkis, D. Challenges and opportunities in cryo-EM single-particle analysis. J. Biol. Chem. 294, 5181–5197 (2019).
CAS PubMed PubMed Central Article Google Scholar
171.
Subramaniam, S., Bartesaghi, A., Liu, J., Bennett, A. E. & Sougrat, R. Electron tomography of viruses. Curr. Opin. Struct. Biol. 17, 596–602 (2007).
CAS PubMed PubMed Central Article Google Scholar
172.
Gamage, S. et al. Probing structural changes in single enveloped virus particles using nano-infrared spectroscopic imaging. PLoS ONE 13, e0199112 (2018).
PubMed PubMed Central Article CAS Google Scholar
173.
Martínez Martínez, J., Schroeder, D. C., Larsen, A., Bratbak, G. & Wilson, W. H. Molecular dynamics of Emiliania huxleyi and cooccurring viruses during two separate mesocosm studies. Appl. Environ. Microbiol. 73, 554–562 (2007).
Article CAS Google Scholar
174.
Martínez Martínez, J. et al. New lipid envelope-containing dsDNA virus isolates infecting Micromonas pusilla reveal a separate phylogenetic group. Aquat. Microb. Ecol. 74, 17–28 (2015).
Article Google Scholar More