More stories

  • in

    Acute and sub-chronic effects of copper on survival, respiratory metabolism, and metal accumulation in Cambaroides dauricus

    Lethal toxicity
    Living animals are constantly faced with various environmental stresses that challenge their daily lives. Cu is an essential metal that participates in normal physiological process of crustaceans, but several studies have shown that crustaceans are adversely affected when exposed to high concentrations of Cu. LC50 value represents a common point at lethal physiological response to toxicity, which has been well-documented in many crustaceans. For example, the 96-h LC50 value for shrimps of Exopalaemon carinicauda, Echinogammars olivii, Sphaeroma serratum, and Palaemon elegans was 0.712 mg Cu/L, 0.25 mg Cu/L, 1.98 mg Cu/L, and 2.52 mg Cu/L, respectively20,22. In addition, for paddy field crab Paratelphusa hydrodromus and freshwater crab, Barytelphusa cunicularis, the 96-h LC50 values recorded were 15.70 mg Cu/L and 215 mg Cu/L, respectively23,24. Likewise, in freshwater crayfish, Procambarus clarkia, the 96-h LC50 value reached 162 mg Cu/L25. These large variations in sub-lethal effects to Cu toxicity in crustaceans appear to be species specific. In our present study, the 96-h LC50 value for Cu exposure in C. dauricus was 32.5 mg/L, which is much higher than those of the most crustaceans, but this species seems relatively less tolerant to Cu, compared to P. clarkia. This difference may also be attributed to the various biotic and abiotic factors like age, sex, weight, salinity, and temperature, besides the species. For example, Taylor26 compared the 96-h Cu tolerance of Cambarus robustus in Pike Creek and in Wavy Lake and concluded the environment differences could affect population sensitivity to Cu toxicity.
    Oxygen consumption rate
    The effects of heavy metal on the respiratory rate of marine and estuarine organisms have been well documented. Spicer and Weber27 showed that heavy metal could cause respiratory impairment in crustaceans. The results obtained in the present study confirmed this previous finding. Both acute and sub-chronic Cu exposure induced significant inhibition of OCR in C. dauricus, with the maximum decreases of 48.4% and 57.9%, respectively, compared to the control. Similarly, a declined OCR by heavy metal has been observed in shrimps, including Penaeus indicus19, L. vannamei28, F. paulensis29, and E. carinicauda20, and crabs, including Uca annulipes, U. triangularis30, and Cancer pagarus27, as well as crayfish, P. clarkia25. The levels of inhibition of the respiration rate were mainly dependent on the exposure time and exposure concentration. Those authors assumed that the ultrastructural impairments of gill epithelium were related to the decrease in respiration rate, thereby affecting the oxygen carrying capacity of gills. Besides the cytological damage of gill, heavy metals also inhibit mitochondrial energy production, thereby affecting the key metabolic pathways. By contrast, an increased respiration rate has been detected in freshwater shrimp, Paratya curvirostris21, and lobster Homarus americanus31. The authors argued that it was attributed to an elevated rate of glycolysis, a mechanism of expenditure of energy reserves characteristic of a stress compensation process. In all, the changes of oxygen consumption level were mainly dependent on the time and concentration of exposure to heavy metals.
    Ammonia excretion rate
    Amino acids are the main sources of ammonia production in vivo. Crustaceans have the ability to regulate the concentration of intracellular free amino acids in order to deal with environmental stress32. In the present study, AER in either acute or sub-chronic Cu exposure showed a declining trend with increasing exposure concentration and time to Cu. A maximum decrease in AER of 79.4% and 70.06%, respectively, were observed respectively after exposure to 16.48 mg/L for 96-h and 2.06 mg/L for 14 days, in comparison to the control (Fig. 1B). In a similar manner, Chinni19 also reported a significant decrease in AER in post larvae P. indicus when exposed to Pb for 30 days. It assumed that such a decrease may be due to reduction in the metabolic rate or an interaction of heavy metal with the pathways for the production of ammonia-N. By contrast, elevations of ammonia excretion in response to heavy metals exposure were reported in other crustaceans. For example, an increase in AER was found in juvenile E. carinicauda after exposure to Zn and Hg20 and in F. paulensis after exposure to Cd and Zn29. It was considered that the gill function was impaired by the metal exposure, resulting in the dysfunction of ammonium excretion control; therefore, outflow of ammonia excretion from the hemolymph to ambient water induced an increased ammonia concentration in the water. In addition, no change in ammonia excretion rate was obtained in Paratya curvirostris after 96-h acute and 10-day sub-chronic Cd stress21. Therefore, the questions of the relationship between heavy metal exposure and ammonia excretion needs to be properly investigated.
    Energy metabolism
    O:N is a useful value for evaluating the characteristics of nutrients utilized by animals and can provide information on changes in energy substrate utilization under various environmental stresses33,34. Theoretically, pure protein catabolism will produce an O:N ratio of 835, and equal proportions of proteins and lipid results in an O:N of 2436. An O:N ratio higher than 24 indicates an elevation in lipid and carbohydrate metabolisms. In this study, in comparison with the controls, high values of O:N were obtained in individuals of C. dauricus exposed to Cu for 96 h and 14 days (Table 1, Fig. 1C). In generally, protein catabolism for energy is less efficient than lipid/carbohydrate catabolism. A species that relies on lipid and carbohydrate metabolism will likely be able to better meet energy demands of toxicant exposure than a species that principally metabolizes protein. The mean O:N ratio higher than 24 in acute Cu exposure and lower than 24 in sub-chronic exposure (Table 3 and Fig. 1C) indicated the differences in energy utilization strategy in response to two patterns of Cu stress. This could be a mechanism explaining the differences in energetic responses to Cu exposure in C. dauricus, relative to other crustacean species.
    Tissues accumulation
    Cu is an essential trace element for biological processes, particularly as a component of the respiratory pigment, hemocyanin. The body Cu concentration in decapod crustaceans can be regulated and does not accumulate until certain environmental threshold levels are achieved37. In addition, as an economic species of crustaceans and in relation to food quality and safety assessment, organ-specific accumulation data, especially for the muscle, are markedly required. In this study, tissue-specific bioaccumulation of Cu observed, and the Cu accumulation in hepatopancreas and muscles were highly dependent on water Cu concentration and exposure time (Fig. 2; Fig. 3A, 3B). Hepatopancreas is the organ most associated with the detoxification and biotransformation process and in direct contact with toxicants in water. The hepatopancreas, containing metal-binding protein, is the main target organ for regulating Cu level38. The maximum Cu accumulation was observed in hepatopancreas, which increased 12.7 folds and 31.6 folds after 4-day acute exposure to 16.48 mg Cu/L and chronic 14-day exposure to 4.12 mg Cu/L, respectively, this indicated that C. dauricus had a great potential for rapid accumulation of Cu in fresh waters. The greatest Cu accumulation occurring in hepatopancreas had been reported for the crayfish species, Astacus leptodactylus39 and Procambarus sp.40 as well as for the freshwater prawn, M. rosenbergii38. Although the hepatopancreas could regulate the Cu level in the animal’s body to avoid toxicity and deficiencies, the high level of external water Cu breaks down the regulation of Cu and causes continuous Cu accumulation, which might lead to the loss of muscular control and eventually, death, for crustaceans.
    In this study, there was no significant time-dependent trend in the accumulation of Cu in the muscle between 7 and 14 days of Cu stress in the lower concentration of 2.06 mg/L (Fig. 3A), this suggests that C. dauricus was able to regulate Cu in the muscle to a fairly constant level under low Cu exposure concentrations. However, C. dauricus exposed to concentration of 4.12 mg Cu/L showed increased accumulation of Cu in the muscle and the equilibrium of Cu accumulation was not reached at 14 days, which might show that the high level of Cu in the external water breaks down the regulation of Cu and caused a continuous Cu accumulation, leading to its toxicity at high concentration. Similar result had been reported in Procambarus sp.40. The author found that Cu uptake reached a kinetic equilibrium within 10 days of exposure to 0.31 mg Cu/L in five organs (gills, ovaries, exoskeleton, hepatopancreas, and muscles), but Cu was rapidly accumulated in the organs of most Procambarus sp., especially in the hepatopancreas, when exposed to higher concentration of 0.38 mg Cu/L after the 14-d exposure test. However, muscle tissue, as the main edible portion, accumulates Cu at a relatively lower rate (Fig. 2; Fig. 3A) and this is important from the angle of human food quality and safety.
    Conclusion
    In this study, we observed that the acute and sub-chronic toxicity of Cu had a dramatic impact on the survival, oxygen consumption rate, ammonia excretion rate and bioaccumulation of C. dauricus. C. dauricus mainly took the strategies of inhibiting respiratory metabolism and shifting energy utilization to adapt to copper stress. The C. dauricus had higher concentration-dependent accumulation ability of copper. Our future work will focus on the metabolic characteristics of copper and other heavy metal from the angle of human food safety. Therefore, our studies provided basic information for further understanding of the toxicological responses of this species to trace metals. More

  • in

    ‘Candidatus Liberibacter solanacearum’ distribution and diversity in Scotland and the characterisation of novel haplotypes from Craspedolepta spp. (Psyllidae: Aphalaridae)

    1.
    Wen, A. et al. Detection, distribution, and genetic variability of ‘Candidatus Liberibacter’ species associated with zebra complex disease of potato in North America. Plant Dis. 93, 1102–1115 (2009).
    CAS  PubMed  Article  Google Scholar 
    2.
    Munyaneza, J. E. et al. First report of “Candidatus Liberibacter solanacearum” associated with psyllid-affected carrots in Europe. Plant Dis. 94, 639 (2010).
    CAS  PubMed  Article  Google Scholar 

    3.
    Nelson, W. R. et al. A new haplotype of ‘Candidatus Liberibacter solanacearum’ identified in the Mediterranean region. Eur. J. Plant Pathol. 135, 633–639 (2013).
    Article  Google Scholar 

    4.
    Teresani, G. R. et al. Association of ‘Candidatus Liberibacter solanacearum’ with a vegetative disorder of celery in Spain and development of a real-time PCR method for its detection. Phytopathology 104, 804–811 (2014).
    CAS  PubMed  Article  Google Scholar 

    5.
    Swisher Grimm, K. D. & Garczynski, S. F. Identification of a new haplotype of ‘Candidatus Liberibacter solanacearum’ in Solanum tuberosum. Plant Dis. 103, 468–474 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Mauck, K. E., Sun, P., Meduri, V. & Hansen, A. K. N. C. Liberibacter psyllaurous haplotype resurrected from a 49-year-old specimen of Solanum umbelliferum: a native host of the psyllid vector. Sci. Rep. 9, 9530 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    7.
    Haapalainen, M. et al. A novel haplotype of ‘Candidatus Liberibacter solanacearum ’ found in Apiaceae and Polygonaceae family plants. Eur. J. Plant Pathol. https://doi.org/10.1007/s10658-019-01890-0 (2019).
    Article  Google Scholar 

    8.
    Contreras-Rendón, A., Sánchez-Pale, J. R., Fuentes-Aragón, D., Alanís-Martínez, I. & Silva-Rojas, H. V. Conventional and qPCR reveals the presence of ‘Candidatus Liberibacter solanacearum’ haplotypes A, and B in Physalis philadelphica plant, seed, and Βactericera cockerelli psyllids, with the assignment of a new haplotype H in Convolvul. Antonie Van Leeuwenhoek 113, 533–551 (2020).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    9.
    Haapalainen, M. et al. Genetic variation of ‘Candidatus Liberibacter solanacearum’ haplotype C and identification of a novel haplotype from Trioza urticae and stinging nettle. Phytopathology 1–49 (2018).

    10.
    Munyaneza, J. E., Sengoda, V. G., Aguilar, E., Bextine, B. & McCue, K. F. First report of ‘Candidatus Liberibacter solanacearum’ associated with psyllid-infested tobacco in Nicaragua. Plant Dis. 97, 1244 (2013).
    CAS  PubMed  Article  Google Scholar 

    11.
    Hajri, A., Loiseau, M., Cousseau-Suhard, P., Renaudin, I. & Gentit, P. Genetic characterization of ‘Candidatus Liberibacter solanacearum’ haplotypes associated with Apiaceous crops in France. Plant Dis. 101, 1383–1390 (2017).
    CAS  PubMed  Article  Google Scholar 

    12.
    Haapalainen, M. et al. Frequency and occurrence of the carrot pathogen ‘Candidatus Liberibacter solanacearum’ haplotype C in Finland. Plant Pathol. 66, 559–570 (2017).
    CAS  Article  Google Scholar 

    13.
    Nissinen, A. I., Haapalainen, M., Jauhiainen, L., Lindman, M. & Pirhonen, M. Different symptoms in carrots caused by male and female carrot psyllid feeding and infection by ‘Candidatus Liberibacter solanacearum’. Plant Pathol. 63, 812–820 (2014).
    Article  Google Scholar 

    14.
    Munyaneza, J. E. et al. First report of “Candidatus Liberibacter solanacearum” associated with psyllid-affected carrots in Sweden. Plant Dis. 96, 453–453 (2012).
    CAS  PubMed  Article  Google Scholar 

    15.
    Ouvrard, D. 2018 Psyl’list – The World Psylloidea Database. https://www.hemiptera-databases.com/psyllist (2019).

    16.
    Bell, J. et al. Detection and monitoring of psyllid vectors of ‘Candidatus Liberibacter solanacearum’ in Scotland – Final report of project RRL/001/14. (2017).

    17.
    Teresani, G. R. et al. Transmission of ‘Candidatus Liberibacter solanacearum’ by Bactericera trigonica Hodkinson to vegetable hosts. Spanish J. Agric. Res. 15, e1011 (2017).
    Article  Google Scholar 

    18.
    Antolínez, C. A., Fereres, A. & Moreno, A. Risk assessment of ‘Candidatus Liberibacter solanacearum’ transmission by the psyllids Bactericera trigonica and B. tremblayi from Apiaceae crops to potato. Sci. Rep. 7, 45534 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    19.
    Mawassi, M. et al. ‘Candidatus Liberibacter solanacearum’ is tightly associated with Carrot Yellows symptoms in Israel and transmitted by the prevalent psyllid vector Bactericera trigonica. Phytopathology 108, 1056–1066 (2018).
    CAS  PubMed  Article  Google Scholar 

    20.
    Antolínez, C. et al. Seasonal abundance of psyllid species on carrots and potato crops in Spain. Insects 10, 287 (2019).
    PubMed Central  Article  PubMed  Google Scholar 

    21.
    Loiseau, M. et al. First report of ‘Candidatus Liberibacter solanacearum’ in carrot in France. Plant Dis. 98, 839 (2014).
    CAS  PubMed  Article  Google Scholar 

    22.
    Tahzima, R. et al. First report of ‘Candidatus, Liberibacter solanacearum’ on carrot in Africa. Plant Dis. 98, 1426 (2014).
    CAS  PubMed  Article  Google Scholar 

    23.
    Alfaro-Fernández, A., Siverio, F., Cebrián, M. C., Villaescusa, F. J. & Font, M. I. ‘Candidatus Liberibacter solanacearum’ associated with Bactericera trigonica-affected carrots in the Canary Islands. Plant Dis. 96, 581 (2012).
    PubMed  Article  Google Scholar 

    24.
    Othmen, S. B. et al. ‘Candidatus Liberibacter solanacearum’ haplotypes D and E in carrot plants and seeds in Tunisia. J. Plant Pathol. 100, 197–207 (2018).
    Article  Google Scholar 

    25
    Othmen, S. B. et al. Bactericera trigonica and B. nigricornis (Hemiptera: Psylloidea) in Tunisia as potential vectors of ‘Candidatus Liberibacter solanacearum’ on Apiaceae. Orient. Insects https://doi.org/10.1080/00305316.2018.1536003 (2018).
    Article  Google Scholar 

    26.
    Monger, W. A. & Jeffries, C. J. First report of ’ Candidatus Liberibacter solanacearum’ in parsley (Petroselinum crispum ) seed. New Dis. Rep. 34, 31 (2016).
    Article  Google Scholar 

    27.
    Torres, G. L. et al. Horizontal transmission of ‘Candidatus Liberibacter solanacearum’ by Bactericera cockerelli (Hemiptera: Triozidae) on Convolvulus and Ipomoea (Solanales: Convolvulaceae). PLoS ONE 10, 1–11 (2015).
    CAS  Google Scholar 

    28.
    Munyaneza, J. E., Sengoda, V. G., Aguilar, E., Bextine, B. R. & McCue, K. F. First report of ‘Candidatus Liberibacter solanacearum’ infecting eggplant in Honduras. Plant Dis. 97, 1654 (2013).
    CAS  PubMed  Article  Google Scholar 

    29.
    Aguilar, E., Sengoda, V. G., Bextine, B., McCue, K. F. & Munyaneza, J. E. First report of ‘Candidatus Liberibacter solanacearum’ on tobacco in Honduras. Plant Dis. 97, 1376 (2013).
    CAS  PubMed  Article  Google Scholar 

    30.
    Munyaneza, J. E., Sengoda, V. G., Crosslin, J. M., De la Rosa-Lozano, G. & Sanchez, A. First report of ‘Candidatus Liberibacter psyllaurous’ in potato tubers with Zebra Chip Disease in Mexico. Dis. Notes 93, 552–552 (2009).
    CAS  Google Scholar 

    31.
    Teulon, D. A., Workman, P. J., Thomas, K. L. & Nielsen, M. C. Bactericera cockerelli: Incursion, dispersal and current distribution on vegetable crops in New Zealand. New Zeal. Plant Prot. 62, 136–144 (2009).
    Article  Google Scholar 

    32.
    Castillo Carrillo, C., Fu, Z. & Burckhardt, D. First record of the Tomato Potato Psyllid Bactericera cockerelli from South America. Bull. Insectol. 72, 85–91 (2019).
    Google Scholar 

    33.
    EPPO. PM 9/25 (1) Bactericera cockerelli and ‘Candidatus Liberibacter solanacearum’. EPPO Bull.47, 513–523 (2017).

    34.
    Hodkinson, I. D. Life cycle variation and adaptation in jumping plant lice (Insecta: Hemiptera: Psylloidea): a global synthesis. J. Nat. Hist. 43, 65–179 (2009).
    Article  Google Scholar 

    35.
    Thinakaran, J. et al. Association of Potato Psyllid (Bactericera cockerelli; Hemiptera: Triozidae) with Lycium spp. (Solanaceae) in potato growing regions of Washington, Idaho, and Oregon. Am. J. Potato Res. 94, 490–499 (2017).
    Article  Google Scholar 

    36.
    Kaur, N. et al. Survival and development of Potato Psyllid (Hemiptera: Triozidae) on Convolvulaceae: effects of a plant-fungus symbiosis (Periglandula). PLoS ONE 13, 1–19 (2018).
    Google Scholar 

    37
    Cooper, W. R., Horton, D. R., Miliczky, E., Wohleb, C. H. & Waters, T. D. The weed link in Zebra Chip epidemiology: suitability of non-crop Solanaceae and Convolvulaceae to Potato Psyllid and “Candidatus Liberibacter solanacearum”. Am. J. Potato Res. https://doi.org/10.1007/s12230-019-09712-z (2019).
    Article  Google Scholar 

    38.
    Munyaneza, J. E., Mustafa, T., Fisher, T. W., Sengoda, V. G. & Horton, D. R. Assessing the likelihood of transmission of ‘Candidatus Liberibacter solanacearum’ to carrot by Potato Psyllid, Bactericera cockerelli (Hemiptera: Triozidae). PLoS ONE 11, 1–16 (2016).
    Article  CAS  Google Scholar 

    39.
    Nissinen, A. I. et al. Can Carrot Psyllid (Trioza apicalis) transmit ‘Candidatus Liberibacter solanacearum’ to potato? Proceedings of the 12th Annual Zebra Chip Report. Sess. 194–198 (2012).

    40.
    Haapalainen, M. et al. Carrot pathogen ‘Candidatus Liberibacter solanacearum’ Haplotype C detected in symptomless potato plants in Finland. Potato Res. 61, 31–50 (2018).
    CAS  Article  Google Scholar 

    41.
    Teresani, G. et al. Search for potential vectors of ‘Candidatus Liberibacter solanacearum’: population dynamics in host crops. Span, J. Agric. Res. 13, 1–11 (2015).
    Article  Google Scholar 

    42.
    Antolinez, C. A., Fereres, A. & Moreno, A. Risk assessment of ‘Candidatus Liberibacter solanacearum’ transmission by the psyllids Bactericera trigonica and B. tremblayi from Apiaceae crops to potato. Sci. Rep. 7, 1–10 (2017).
    Article  CAS  Google Scholar 

    43.
    Sjölund, M. J. et al. First report of ’Candidatus Liberibacter solanacearum ’ in the United Kingdom in the psyllid Trioza anthrisci. New Dis. Rep. 36, 4 (2017).
    Article  Google Scholar 

    44.
    Munyaneza, J. E. et al. Association of “Candidatus Liberibacter solanacearum” with the psyllid, Trioza apicalis (Hemiptera: Triozidae) in Europe. J. Econ. Entomol. 103, 1060–1070 (2010).
    CAS  PubMed  Article  Google Scholar 

    45.
    Munyaneza, J. E., Sengoda, V. G., Sundheim, L. & Meadow, R. Survey of ‘Candidatus Liberibacter solanacearum’ in carrot crops affected by the psyllid Trioza apicalis (Hemiptera: Triozidae) in Norway. J. Plant Pathol. 96, 397–402 (2014).
    Google Scholar 

    46.
    Liefting, L. W., Weir, B. S., Pennycook, S. R. & Clover, G. R. G. ‘Candidatus Liberibacter solanacearum’, associated with plants in the family Solanaceae. Int. J. Syst. Evol. Microbiol. 59, 2274–2276 (2009).
    CAS  PubMed  Article  Google Scholar 

    47.
    Hansen, A. K., Trumble, J. T., Stouthamer, R. & Paine, T. D. A new huanglongbing species, ‘Candidatus Liberibacter psyllaurous’, found to infect tomato and potato, is vectored by the psyllid Bactericera cockerelli (Sulc). Appl. Environ. Microbiol. 74, 5862–5865 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Munyaneza, J. E., Sengoda, V. G., Crosslin, J. M., Garzon-Tiznado, J. A. & Cardenas-Valenzuela, O. G. First report of ‘Candidatus Liberibacter solanacearum’ in tomato plants in Mexico. Plant Dis. 93, 1076 (2009).
    PubMed  Google Scholar 

    49.
    Crosslin, J. M., Lin, H. & Munyaneza, J. E. Detection of ‘Candidatus Liberibacter solanacearum’ in the potato psyllid, Bactericera cockerelli (Sulc), by conventional and real-time PCR. Southwest. Entomol. 36, 125–135 (2011).
    Article  Google Scholar 

    50.
    Loiseau, M. et al. Lack of evidence of vertical transmission of ‘Candidatus Liberibacter solanacearum’ by carrot seeds suggests that seed is not a major transmission pathway. Plant Dis. 101, 2104–2109 (2017).
    CAS  PubMed  Article  Google Scholar 

    51.
    Bertolini, E. et al. Transmission of ‘Candidatus Liberibacter solanacearum’ in carrot seeds. Plant Pathol. 64, 276–285 (2015).
    CAS  Article  Google Scholar 

    52.
    Carminati, G., Satta, E., Paltrinieri, S. & Bertaccini, A. Simultaneous evaluation of ‘ Candidatus Phytoplasma’ and ‘Candidatus Liberibacter solanacearum’ seed transmission in carrot. Phytopathogenic Mol. 9, 141 (2019).
    Article  Google Scholar 

    53.
    Bantock, T. & Botting, J. British Bugs: an online identification guide to UK Hemiptera. https://www.britishbugs.org.uk/index.htmlhttps://www.britishbugs.org.uk/index.html (2018).

    54.
    Hodkinson, I. D. & White, I. M. Homoptera Psylloidea. Handbooks for the Identification of British Insects (Royal Entomology Society of London, London, 1979).

    55.
    Munyaneza, J. E. et al. First report of ‘Candidatus Liberibacter solanacearum’ associated with psyllid-infested carrots in Germany. Plant Dis. 99, 1269 (2015).
    Article  Google Scholar 

    56.
    Sjölund, M. J., Arnsdorf, Y. M., Carnegie, M., Fornefeld, E. & Will, T. ‘Candidatus Liberibacter solanacearum’ detected in Trioza urticae using suction trap-based monitoring of psyllids in Germany. J. Plant Dis. Prot. 126, 89–92 (2018).
    Article  Google Scholar 

    57.
    Hajri, A., Cousseau-suhard, P., Gentit, P. & Loiseau, M. New insights into the genetic diversity of the bacterial plant pathogen ‘Candidatus Liberibacter solanacearum ’ as revealed by a new multilocus sequence analysis scheme. bioRxiv (preprint server) https://doi.org/https://doi.org/10.1101/623405.

    58.
    Ossiannilsson, F. The Psylloidea (Homoptera) of Fennoscandia and Denmark. Fauna Entomologica Scandinavia (E. J. Brill, 1992).

    59.
    Tishetshkin, D. Y. The possibility to use bioacoustic characters in the taxonomy of the jumping plant lice with an example of the genus Craspedolepta (Homoptera, Psyllinea, Aphalaridae) and description of a new species from Transbaikalia. Entomol. Rev. 87, 561–570 (2007).
    Article  Google Scholar 

    60.
    Bird, J. M. & Hodkinson, I. D. Species at the edge of their range: The significance of the thermal environment for the distribution of congeneric Craspedolepta species (Sternorrhyncha: Psylloidea) living on Chamerion angustifolium (Onagraceae). Eur. J. Entomol. 96, 103–109 (1999).
    Google Scholar 

    61.
    Brunt, A. et al. Plant Viruses Online: Descriptions and Lists from the VIDE Database. Version: 20th August 1996. https://biology.anu.edu.au/Groups/MES/vide/https://biology.anu.edu.au/Groups/MES/vide/.

    62.
    Sjölund, M. J., Ouvrard, D., Kenyon, D. & Highet, F. Developing an RT-PCR assay for the identification of psyllid species. Proc. Crop Prot. North. Britain 279–282 (2016).

    63.
    Percy, D. M. Radiation, diversity, and host-plant interactions among island and continental legume-feeding psyllids. Evolution (N.Y.) 57, 2540–2556 (2003).
    Google Scholar 

    64.
    Li, W. et al. Multiplex real-time PCR for detection, identification and quantification of ‘Candidatus Liberibacter solanacearum’ in potato plants with zebra chip. J. Microbiol. Methods 78, 59–65 (2009).
    CAS  PubMed  Article  Google Scholar 

    65.
    Peccoud, J., Labonne, G. & Sauvion, N. Molecular test to assign individuals within the Cacopsylla pruni complex. PLoS ONE 8, 1–8 (2013).
    Article  CAS  Google Scholar 

    66.
    EPPO. PM 7/129 (1) DNA barcoding as an identification tool for a number of regulated pests. EPPO Bull.46, 501–537 (2016). More

  • in

    Continental-scale patterns of hyper-cryptic diversity within the freshwater model taxon Gammarus fossarum (Crustacea, Amphipoda)

    1.
    Adams, M., Raadik, T. A., Burridge, C. P. & Georges, A. Global biodiversity assessment and hyper-cryptic species complexes: more than one species of elephant in the room?. Syst. Biol. 63, 518–533 (2014).
    PubMed  Article  Google Scholar 
    2.
    Pérez-Ponce de León, G. & Poulin, R. Taxonomic distribution of cryptic diversity among metazoans: not so homogeneous after all. Biol. Lett. 12, 20160371. https://doi.org/10.1098/rsbl.2016.0371 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    3.
    Pfenninger, M. & Schwenk, K. Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evol. Biol. 7, 121. https://doi.org/10.1186/1471-2148-7-121 (2007).
    Article  PubMed  PubMed Central  Google Scholar 

    4.
    Keshavmurthy, S. et al. DNA barcoding reveals the coral “laboratory-rat”, Stylophora pistillata encompasses multiple identities. Sci. Rep. 3, 1520. https://doi.org/10.1038/srep01520 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    5.
    Mamos, T., Wattier, R., Burzyński, A. & Grabowski, M. The legacy of a vanished sea: a high level of diversification within a European freshwater amphipod species complex driven by 15 My of Paratethys regression. Mol. Ecol. 25, 785–810 (2016).
    Article  Google Scholar 

    6.
    Bickford, D. et al. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22, 148–155 (2007).
    PubMed  Article  Google Scholar 

    7.
    Brodersen, J. & Seehausen, O. Why evolutionary biologists should get seriously involved in ecological monitoring and applied biodiversity assessment programs. Evol. Appl. 7, 968–983 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    8.
    Eme, D. et al. Do cryptic species matter in macroecology? Sequencing European groundwater crustaceans yields smaller ranges but does not challenge biodiversity determinants. Ecography 41, 424–436 (2018).
    Article  Google Scholar 

    9.
    Galipaud, M., Gauthey, Z., Turlin, J., Bollache, L. & Lagrue, C. Mate choice and male–male competition among morphologically cryptic but genetically divergent amphipod lineages. Behav. Ecol. Sociobiol. 69, 1907–1916 (2015).
    Article  Google Scholar 

    10.
    Galipaud, M., Bollache, L. & Lagrue, C. Variations in infection levels and parasite-induced mortality among sympatric cryptic lineages of native amphipods and a congeneric invasive species: Are native hosts always losing?. Int. J. Parasitol. Parasites Wildl. 6, 439–447 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    11.
    Westram, A. M., Baumgartner, C., Keller, I. & Jokela, J. Are cryptic host species also cryptic to parasites? Host specificity and geographical distribution of acanthocephalan parasites infecting freshwater Gammarus. Infect. Genet. Evol. 11, 1083–1090 (2011).
    CAS  PubMed  Article  Google Scholar 

    12.
    Fišer, Ž, Altermatt, F., Zakšek, V., Knapič, T. & Fišer, C. Morphologically cryptic amphipod species are “ecological clones” at regional but not at local scale: a case study of four Niphargus species. PLoS ONE 10, e0134384. https://doi.org/10.1371/journal.pone.0134384 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    13.
    Eisenring, M., Altermatt, F., Westram, A. M. & Jokela, J. Habitat requirements and ecological niche of two cryptic amphipod species at landscape and local scales. Ecosphere 7, e01319. https://doi.org/10.1002/ecs2.1319 (2016).
    Article  Google Scholar 

    14.
    Westram, A. M., Jokela, J. & Keller, I. Hidden biodiversity in an ecologically important freshwater amphipod: Differences in genetic structure between two cryptic species. PLoS ONE 8, e69576. https://doi.org/10.1371/journal.pone.0069576 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    15.
    Mutanen, M., Kaila, L. & Tabell, J. Wide-ranging barcoding aids discovery of one-third increase of species richness in presumably well-investigated moths. Sci. Rep. 3, 2901. https://doi.org/10.1038/srep02901 (2013).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    16.
    Cook, B. D., Page, T. J. & Hughes, J. M. Importance of cryptic species for identifying ‘representative’ units of biodiversity for freshwater conservation. Biol. Conserv. 141, 2821–2831 (2008).
    Article  Google Scholar 

    17.
    Fišer, C., Robinson, C. T. & Malard, F. Cryptic species as a window into the paradigm shift of the species concept. Mol. Ecol. 27, 613–635 (2018).
    PubMed  Article  Google Scholar 

    18.
    Bálint, M., Barnard, P. C., Schmitt, T., Ujvárosi, L. & Popescu, O. Differentiation and speciation in mountain streams: a case study in the caddisfly Rhyacophila aquitanica (Trichoptera). J. Zool. Syst. Evol. Res. 46, 340–345 (2008).
    Article  Google Scholar 

    19.
    Major, K., Soucek, D. J., Giordano, R., Wetzel, M. J. & Soto-Adames, F. The common ecotoxicology laboratory strain of Hyalella azteca is genetically distinct from most wild strains sampled in eastern North America: common lab strain of H. azteca is distinct from wild strains. Environ. Toxicol. Chem. https://doi.org/10.1002/etc.2355 (2013).
    Article  PubMed  Google Scholar 

    20.
    Feckler, A., Thielsch, A., Schwenk, K., Schulz, R. & Bundschuh, M. Differences in the sensitivity among cryptic lineages of the Gammarus fossarum complex. Sci. Total Environ. 439, 158–164 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Feckler, A. et al. Cryptic species diversity: an overlooked factor in environmental management?. J. Appl. Ecol. 51, 958–967 (2014).
    Article  Google Scholar 

    22.
    Caputo, D. R., Robson, S. C., Werner, I. & Ford, A. T. Complete transcriptome assembly and annotation of a critically important amphipod species in freshwater ecotoxicological risk assessment: Gammarus fossarum. Environ. Int. 137, 105319 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Cogne, Y. et al. De novo transcriptomes of 14 gammarid individuals for proteogenomic analysis of seven taxonomic groups. Sci. Data 6, 184. https://doi.org/10.1038/s41597-019-0192-5 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    24.
    Costa-Silva, G. J., Rodriguez, M. S., Roxo, F. F., Foresti, F. & Oliveira, C. Using different methods to access the difficult task of delimiting species in a complex Neotropical hyperdiverse group. PLoS ONE 10, e0135075 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    25.
    Dincă, V. et al. DNA barcode reference library for Iberian butterflies enables a continental-scale preview of potential cryptic diversity. Sci. Rep. 5, 12395. https://doi.org/10.1371/journal.pone.0135075 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    26.
    Trontelj, P. et al. A molecular test for cryptic diversity in ground water: how large are the ranges of macro-stygobionts?. Freshw. Biol. 54, 727–744 (2009).
    CAS  Article  Google Scholar 

    27.
    Jackson, J. K. et al. Cryptic biodiversity in streams: a comparison of macroinvertebrate communities based on morphological and DNA barcode identifications. Freshw. Sci. 33, 312–324 (2014).
    Article  Google Scholar 

    28.
    Grabowski, M., Mamos, T., Bacela-Spychalska, K., Rewicz, T. & Wattier, R. A. Neogene paleogeography provides context for understanding the origin and spatial distribution of cryptic diversity in a widespread balkan freshwater amphipod. PeerJ https://doi.org/10.7717/peerj.3016 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    29.
    Grabowski, M., Wysocka, A. & Mamos, T. Molecular species delimitation methods provide new insight into taxonomy of the endemic gammarid species flock from the ancient Lake Ohrid. Zool. J. Linn. Soc. https://doi.org/10.1093/zoolinnean/zlw025 (2017).
    Article  Google Scholar 

    30.
    Hogg, I. D., Larose, C., de Lafontaine, Y. & Doe, K. G. Genetic evidence for a Hyalella species complex within the Great Lakes—St. Lawrence River drainage basin: implications for ecotoxicology and conservation biology. Can. J. Zool. 76, 1134–1140 (1998).
    Article  Google Scholar 

    31.
    Hogg, I. D., Stevens, M. I., Schnabel, K. E. & Ann Chapman, M. Deeply divergent lineages of the widespread New Zealand amphipod Paracalliope fluviatilis revealed using allozyme and mitochondrial DNA analyses. Freshw. Biol. 51, 236–248 (2006).
    CAS  Article  Google Scholar 

    32.
    Katouzian, A.-R. et al. Drastic underestimation of amphipod biodiversity in the endangered Irano-Anatolian and Caucasus biodiversity hotspots. Sci. Rep. 6, 22507. https://doi.org/10.1038/srep22507 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    33.
    Mamos, T., Wattier, R., Majda, A., Sket, B. & Grabowski, M. Morphological vs. molecular delineation of taxa across montane regions in Europe: the case study of Gammarusbalcanicus Schäferna, (Crustacea: Amphipoda). J. Zool. Syst. Evol. Res. 52, 237–248 (2014).
    Article  Google Scholar 

    34.
    Murphy, N. P., Adams, M., Guzik, M. T. & Austin, A. D. Extraordinary micro-endemism in Australian desert spring amphipods. Mol. Phylogenet. Evol. 66, 645–653 (2013).
    CAS  PubMed  Article  Google Scholar 

    35.
    Murphy, N. P., King, R. A. & Delean, S. Species, ESUs or populations? Delimiting and describing morphologically cryptic diversity in Australian desert spring amphipods. Invertebr. Syst. 29, 457 (2015).
    Article  Google Scholar 

    36.
    Seidel, R. A., Lang, B. K. & Berg, D. J. Phylogeographic analysis reveals multiple cryptic species of amphipods (Crustacea: Amphipoda) in Chihuahuan Desert springs. Biol. Conserv. 142, 2303–2313 (2009).
    Article  Google Scholar 

    37.
    Sutherland, D. L., Hogg, I. D. & Waas, J. R. Phylogeography and species discrimination in the Paracalliopefluviatilis species complex (Crustacea: Amphipoda): can morphologically similar heterospecifics identify compatible mates?: Mate discrimination in P. fluviatilis. Biol. J. Linn. Soc. 99, 196–205 (2009).
    Article  Google Scholar 

    38.
    Witt, J. D. S., Threloff, D. L. & Hebert, P. D. N. DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation. Mol. Ecol. 15, 3073–3082 (2006).
    CAS  PubMed  Article  Google Scholar 

    39.
    Witt, J. D. S. & Hebert, P. D. N. Cryptic species diversity and evolution in the amphipod genus Hyalella within central glaciated North America: a molecular phylogenetic approach. Can. J. Fish Aquat. Sci. 57, 12 (2000).
    Article  Google Scholar 

    40.
    Blackman, R. et al. Detection of a new non-native freshwater species by DNA metabarcoding of environmental samples—first record of Gammarus fossarum in the UK. Aquat. Invasions 12, 177–189 (2017).
    Article  Google Scholar 

    41.
    Dangles, O., Gessner, M. O., Guerold, F. & Chauvet, E. Impacts of stream acidification on litter breakdown: implications for assessing ecosystem functioning. J. Appl. Ecol. 41, 365–378 (2004).
    CAS  Article  Google Scholar 

    42.
    Felten, V., Tixier, G., Guérold, F., De Crespin De Billy, V. & Dangles, O. Quantification of diet variability in a stream amphipod: implications for ecosystem functioning. Fundam. Appl. Limnol. Arch. Für Hydrobiol. 170, 303–313 (2008).
    Article  Google Scholar 

    43.
    Besse, J.-P., Geffard, O. & Coquery, M. Relevance and applicability of active biomonitoring in continental waters under the Water Framework Directive. TrAC Trends Anal. Chem. 36, 113–127 (2012).
    CAS  Article  Google Scholar 

    44.
    Schmidlin, L., von Fumetti, S. & Nagel, P. Temperature effects on the feeding and electron transport system (ETS) activity of Gammarus fossarum. Aquat. Ecol. 49, 71–80 (2015).
    Article  Google Scholar 

    45.
    Labaude, S., Rigaud, T. & Cézilly, F. Additive effects of temperature and infection with an acanthocephalan parasite on the shredding activity of Gammarus fossarum (Crustacea: Amphipoda): the importance of aggregative behavior. Glob. Change Biol. 23, 1415–1424 (2017).
    ADS  Article  Google Scholar 

    46.
    Kunz, P. Y., Kienle, C. & Gerhardt, A. Gammarus spp. in aquatic ecotoxicology and water quality assessment: Toward integrated multilevel tests. In Reviews of Environmental Contamination and Toxicology Vol. 205 (ed. Whitacre, D. M.) 1–76 (Springer, New York, 2010).
    Google Scholar 

    47.
    Mehennaoui, K. et al. Gammarus fossarum (Crustacea, Amphipoda) as a model organism to study the effects of silver nanoparticles. Sci. Total Environ. 566–567, 1649–1659 (2016).
    ADS  PubMed  Article  CAS  Google Scholar 

    48.
    Besse, J.-P. et al. Caged Gammarus fossarum (Crustacea) as a robust tool for the characterization of bioavailable contamination levels in continental waters: towards the determination of threshold values. Water Res. 47, 650–660 (2013).
    CAS  PubMed  Article  Google Scholar 

    49.
    Gouveia, D. et al. Ecotoxico-Proteomics for aquatic environmental monitoring: First in situ application of a new proteomics-based multibiomarker assay using caged amphipods. Environ. Sci. Technol. 51, 13417–13426 (2017).
    ADS  CAS  PubMed  Article  Google Scholar 

    50.
    Trapp, J. et al. Proteogenomics of Gammarus fossarum to document the reproductive system of amphipods. Mol. Cell. Proteomics 13, 3612–3625 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Sanchez-Thirion, K. et al. High food quality increases infection of Gammarus pulex (Crustacea: Amphipoda) by the acanthocephalan parasite Pomphorhynchus laevis. Int. J. Parasitol. 49, 805–817 (2019).
    CAS  PubMed  Article  Google Scholar 

    52.
    Bigot-Clivot, A. et al. Bioaccumulation of toxoplasma and cryptosporidium by the freshwater crustacean Gammarus fossarum: involvement in biomonitoring surveys and trophic transfer. Ecotoxicol. Environ. Saf. 133, 188–194 (2016).
    CAS  PubMed  Article  Google Scholar 

    53.
    Chen, H.-Y., Grabner, D. S., Nachev, M., Shih, H.-H. & Sures, B. Effects of the acanthocephalan Polymorphus minutus and the microsporidian Dictyocoela duebenum on energy reserves and stress response of cadmium exposed Gammarus fossarum. PeerJ 3, e1353. https://doi.org/10.7717/peerj.1353 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    54.
    Müller, J. Mitochondrial DNA variation and the evolutionary history of cryptic Gammarus fossarum types. Mol. Phylogenet. Evol. 15, 260–268 (2000).
    PubMed  Article  CAS  Google Scholar 

    55.
    Weiss, M., Macher, J. N., Seefeldt, M. A. & Leese, F. Molecular evidence for further overlooked species within the Gammarus fossarum complex (Crustacea: Amphipoda). Hydrobiologia 721, 165–184 (2014).
    CAS  Article  Google Scholar 

    56.
    Weiss, M. & Leese, F. Widely distributed and regionally isolated! Drivers of genetic structure in Gammarus fossarum in a human-impacted landscape. BMC Evol. Biol. 16, 153 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    57.
    Lagrue, C. et al. Confrontation of cryptic diversity and mate discrimination within Gammarus pulex and Gammarus fossarum species complexes. Freshw. Biol. 59, 2555–2570 (2014).
    Article  Google Scholar 

    58.
    Copilaş-Ciocianu, D. & Petrusek, A. The southwestern Carpathians as an ancient centre of diversity of freshwater gammarid amphipods: insights from the Gammarus fossarum species complex. Mol. Ecol. 24, 3980–3992 (2015).
    PubMed  Article  Google Scholar 

    59.
    Copilaş-Ciocianu, D., Rutová, T., Pařil, P. & Petrusek, A. Epigean gammarids survived millions of years of severe climatic fluctuations in high latitude refugia throughout the Western Carpathians. Mol. Phylogenet. Evol. 112, 218–229 (2017).
    PubMed  Article  Google Scholar 

    60.
    Hebert, P. D. N., Ratnasingham, S. & de Waard, J. R. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. B Biol. Sci. 270, S96–S99 (2003).
    CAS  Google Scholar 

    61.
    Kekkonen, M. & Hebert, P. D. N. DNA barcode-based delineation of putative species: efficient start for taxonomic workflows. Mol. Ecol. Resour. 14, 706–715 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    62.
    Copilaş-Ciocianu, D. & Petrusek, A. Phylogeography of a freshwater crustacean species complex reflects a long-gone archipelago. J. Biogeogr. 44, 421–432 (2017).
    Article  Google Scholar 

    63.
    Grabner, D. S. et al. Invaders, natives and their enemies: distribution patterns of amphipods and their microsporidian parasites in the Ruhr Metropolis, Germany. Parasit. Vectors 8, 419 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    64.
    Copilaș-Ciocianu, D., Zimța, A. & Petrusek, A. Integrative taxonomy reveals a new Gammarus species (Crustacea, Amphipoda) surviving in a previously unknown southeast European glacial refugium. J. Zool. Syst. Evol. Res. 57, 272–297 (2019).
    Article  Google Scholar 

    65.
    Copilaş-Ciocianu, D., Zimţa, A.-A., Grabowski, M. & Petrusek, A. Survival in northern microrefugia in an endemic Carpathian gammarid (Crustacea: Amphipoda). Zool. Scr. 47, 357–372 (2018).
    Article  Google Scholar 

    66.
    Hou, Z., Li, J. & Li, S. Diversification of low dispersal crustaceans through mountain uplift: a case study of Gammarus (Amphipoda: Gammaridae) with descriptions of four novel species: Diversification of Gammarus species. Zool. J. Linn. Soc. 170, 591–633 (2014).
    Article  Google Scholar 

    67.
    Wellborn, G. A. & Cothran, R. D. Niche diversity in crustacean cryptic species: complementarity in spatial distribution and predation risk. Oecologia 154, 175–183 (2007).
    ADS  PubMed  Article  Google Scholar 

    68.
    Delić, T., Švara, V., Coleman, C. O., Trontelj, P. & Fišer, C. The giant cryptic amphipod species of the subterranean genus Niphargus (Crustacea, Amphipoda). Zool. Scr. 46, 740–752 (2017).
    Article  Google Scholar 

    69.
    McInerney, C. E. et al. The ancient Britons: groundwater fauna survived extreme climate change over tens of millions of years across NW Europe. Mol. Ecol. 23, 1153–1166 (2014).
    PubMed  Article  Google Scholar 

    70.
    Cooper, S. J. B. et al. Subterranean archipelago in the Australian arid zone: mitochondrial DNA phylogeography of amphipods from central Western Australia: Phylogeography of subterranean amphipods. Mol. Ecol. 16, 1533–1544 (2007).
    CAS  PubMed  Article  Google Scholar 

    71.
    Ethridge, J. Z., Gibson, J. R. & Nice, C. C. Cryptic diversity within and amongst spring-associated Stygobromus amphipods (Amphipoda: Crangonyctidae): Stygobromus amphipod cryptic diversity. Zool. J. Linn. Soc. 167, 227–242 (2013).
    Article  Google Scholar 

    72.
    Beermann, J. et al. Cryptic species in a well-known habitat: applying taxonomics to the amphipod genus Epimeria (Crustacea, Peracarida). Sci. Rep. 8, 6893. https://doi.org/10.1038/s41598-018-25225-x (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    73.
    Baird, H. P., Miller, K. J. & Stark, J. S. Evidence of hidden biodiversity, ongoing speciation and diverse patterns of genetic structure in giant Antarctic amphipods: Genetic diversity in antarticamphipods. Mol. Ecol. 20, 3439–3454 (2011).
    PubMed  Article  Google Scholar 

    74.
    Havermans, C. et al. Genetic and morphological divergences in the cosmopolitan deep-sea amphipod Eurythenes gryllus reveal a diverse abyss and a bipolar species. PLoS ONE 8, e74218. https://doi.org/10.1371/journal.pone.0074218 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    75.
    Havermans, C. Have we so far only seen the tip of the iceberg? Exploring species diversity and distribution of the giant amphipod Eurythenes. Biodiversity 17, 12–25 (2016).
    Article  Google Scholar 

    76.
    Coleman, C. O. Taxonomy in times of the taxonomic impediment—examples from the community of experts on amphipod crustaceans. J. Crustac. Biol. 35, 729–740 (2015).
    Article  Google Scholar 

    77.
    Arfianti, T., Wilson, S. & Costello, M. J. Progress in the discovery of amphipod crustaceans. PeerJ 6, e5187 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    78.
    Popov, S. V. et al. Lithological-Paleogeographic maps of Partethys—10 maps late Eocene to Plioccene. Courier Foschung-Intitut Senckberg 1–46 (2004).

    79.
    Frenzel, B., Pécsi, M. & Velichko, A. A. Atlas of Paleoclimates and Paleoenvironments of the Northern Hemisphere: Late Pleistocene, Holocene (Geographical Research Institute Hungarian Academy of Science; G. Fischer, Budapest, 1992).
    Google Scholar 

    80.
    Macneil, C., Dick, J. T. A. & Elwood, R. W. The trophic ecology of freshwater Gammarus spp (Crustacea; Amphipoda): Problems and perspective concerning the functional feeding group concept. Biol. Rev. 72, 349–364 (2007).
    Article  Google Scholar 

    81.
    Rudolph, K., Coleman, C. O., Mamos, T. & Grabowski, M. Description and post-glacial demography of Gammarusjazdzewskii sp. nov. (Crustacea: Amphipoda) from Central Europe. Syst. Biodivers. 16, 587–603 (2018).
    Article  Google Scholar 

    82.
    Westram, A. M., Jokela, J., Baumgartner, C. & Keller, I. Spatial distribution of cryptic species diversity in European freshwater amphipods (Gammarus fossarum) as revealed by pyrosequencing. PLoS ONE 6, e23879. https://doi.org/10.1371/journal.pone.0023879 (2011).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    83.
    Lefébure, T. et al. Phylogeography of a subterranean amphipod reveals cryptic diversity and dynamic evolution in extreme environments: cryptic and dynamic evolution in subsurface. Mol. Ecol. 15, 1797–1806 (2006).
    PubMed  Article  CAS  Google Scholar 

    84.
    Lefébure, T., Douady, C. J., Malard, F. & Gibert, J. Testing dispersal and cryptic diversity in a widely distributed groundwater amphipod (Niphargus rhenorhodanensis). Mol. Phylogenet. Evol. 42, 676–686 (2007).
    PubMed  Article  CAS  Google Scholar 

    85.
    Raffard, A., Santoul, F., Cucherousset, J. & Blanchet, S. The community and ecosystem consequences of intraspecific diversity: a meta-analysis: the ecological effects of intraspecific diversity. Biol. Rev. 94, 648–661 (2019).
    PubMed  Article  Google Scholar 

    86.
    Jabłońska, A., Wrzesińska, W., Zawal, A., Pešić, V. & Grabowski, M. Long-term within-basin isolation patterns, different conservation units, and interspecific mitochondrial DNA introgression in an amphipod endemic to the ancient Lake Skadar system, Balkan Peninsula. Freshw. Biol. 65, 209–225 (2020).
    Article  CAS  Google Scholar 

    87.
    Stein, E. D., Martinez, M. C., Stiles, S., Miller, P. E. & Zakharov, E. V. Is DNA barcoding actually cheaper and faster than traditional morphological methods: results from a survey of freshwater bioassessment efforts in the United States?. PLoS ONE 9, e95525. https://doi.org/10.1371/journal.pone.0095525 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    88.
    Valentini, A., Pompanon, F. & Taberlet, P. DNA barcoding for ecologists. Trends Ecol. Evol. 24, 110–117 (2009).
    PubMed  Article  Google Scholar 

    89.
    Weigand, H. et al. DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap-analysis and recommendations for future work. Sci. Total Environ. 678, 499–524 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    90.
    Delić, T., Trontelj, P., Rendoš, M. & Fišer, C. The importance of naming cryptic species and the conservation of endemic subterranean amphipods. Sci. Rep. 7, 3391. https://doi.org/10.1038/s41598-017-02938-z (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    91.
    Wysocka, A. et al. Origin of the Lake Ohrid gammarid species flock: ancient local phylogenetic lineage diversification. J. Biogeogr. 41, 1758–1768 (2014).
    Article  Google Scholar 

    92.
    Esmaeili-Rineh, S., Sari, A., Delić, T., Moškrič, A. & Fišer, C. Molecular phylogeny of the subterranean genus Niphargus (Crustacea: Amphipoda) in the Middle East: a comparison with European Niphargids. Zool. J. Linn. Soc. 175, 812–826 (2015).
    Article  Google Scholar 

    93.
    Hou, Z., Sket, B., Fiser, C. & Li, S. Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. Proc. Natl. Acad. Sci. 108, 14533–14538 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    94.
    AltschuP, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic Local Alignment Search Tool. 8.

    95.
    Karaman, G. & Pinkster, S. Freshwater Gammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea-Amphipoda). Part I. Gammarus pulex-group and related species. Bijdragen tot de Dierkunde 1–97 (1977).

    96.
    Piscart, C. & Bollache, L. Crustacés amphipodes de surface : gammares d’eau douce (Association Française de Limnologie, Thonon-les-Bains, 2012).
    Google Scholar 

    97.
    Eggers, T. & Martens, A. A key of the freshwater Amphipods of Germany. Lauterbornia 1–68 (2001).

    98.
    Jazdzewski, K. Morfologia, taksonomia i wystepowanie w Polsce kielzy z rodzajów Gammarus Fabr. i Chaetogammarus Mart. (Crustacea, Amphipoda). Acta Universitatis Lodziensis 1–187 (1975).

    99.
    Karaman, G. S. Crustacea (Amphipoda di acqua dolce. Calderini, Bologna, 1993).
    Google Scholar 

    100.
    Hillis, D. M., Moritz, C. & Mable, B. K. Molecular Systematics (Sinauer Associates Inc, Sunderland, 1996).
    Google Scholar 

    101.
    Casquet, J., Thebaud, C. & Gillespie, R. G. Chelex without boiling, a rapid and easy technique to obtain stable amplifiable DNA from small amounts of ethanol-stored spiders: Quick and easy dsDNA extraction for barcoding. Mol. Ecol. Resour. 12, 136–141 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    102.
    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol 6, 294–299 (1994).
    Google Scholar 

    103.
    Costa, F. O., Henzler, C. M., Lunt, D. H., Whiteley, N. M. & Rock, J. Probing marine Gammarus (Amphipoda) taxonomy with DNA barcodes. Syst. Biodivers. 7, 365–379 (2009).
    Article  Google Scholar 

    104.
    Astrin, J. J. & Stüben, P. E. Phylogeny in cryptic weevils: molecules, morphology and new genera of western Palaearctic Cryptorhynchinae (Coleoptera:Curculionidae). Invertebr. Syst. 22, 503–522 (2008).
    Article  Google Scholar 

    105.
    Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    106.
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).
    CAS  Article  Google Scholar 

    107.
    Librado, P. & Rozas, J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    108.
    Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    109.
    Ratnasingham, S. & Hebert, P. D. N. A DNA-based registry for all animal species: the barcode index number (BIN) System. PLoS ONE 8, e66213. https://doi.org/10.1371/journal.pone.0066213 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    110.
    Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    111.
    Puillandre, N. et al. Large-scale species delimitation method for hyperdiverse groups: large-scale species delimitation. Mol. Ecol. 21, 2671–2691 (2012).
    CAS  PubMed  Article  Google Scholar 

    112.
    Ratnasingham, S. & Hebert, P. D. N. BOLD: The Barcode of life data system (https://www.barcodinglife.org). Mol. Ecol. Notes7, 355–364 (2007).

    113.
    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    114.
    Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537. https://doi.org/10.1371/journal.pcbi.1003537 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    115.
    Bouckaert, R. R. & Drummond, A. J. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 17, 42 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    116.
    Baele, G., Lemey, P. & Vansteelandt, S. Make the most of your samples: Bayes factor estimators for high-dimensional models of sequence evolution. BMC Bioinform. 14, 85 (2013).
    Article  Google Scholar 

    117.
    Brower, A. V. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proc. Natl. Acad. Sci. 91, 6491–6495 (1994).
    ADS  CAS  PubMed  Article  Google Scholar 

    118.
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    119.
    Felsenstein, J. Confidence limits on phylogenies: an approach using the boostrap. Evolution 39, 783–791 (1985).
    PubMed  Article  Google Scholar 

    120.
    Miller, M. P. Alleles In Space (AIS): computer software for the joint analysis of interindividual spatial and genetic information. J. Hered. 96, 722–724 (2005).
    CAS  PubMed  Article  Google Scholar  More

  • in

    A global class reunion with multiple groups feasting on the declining insect smorgasbord

    1.
    Darwin, C. On the Origin of Species (John Murray, London, 1859).
    Google Scholar 
    2.
    Gause, G. F. The Struggle for Existence (Williams & Wilkins, Philadelphia, 1934).
    Google Scholar 

    3.
    Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).
    Article  Google Scholar 

    4.
    Vamosi, S. M., Heard, S. B., Vamosi, J. C. & Webb, C. O. Emerging patterns in the comparative analysis of phylogenetic community structure. Mol. Ecol. 18, 572–592 (2009).
    CAS  Article  Google Scholar 

    5.
    Biere, A. & Bennett, A. E. Three-way interactions between plants, microbes and insects. Funct. Ecol. 27, 567–573 (2013).
    Article  Google Scholar 

    6.
    Biesmeijer, J. C. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354 (2006).
    ADS  CAS  Article  Google Scholar 

    7.
    Harvey, J. A. et al. International scientists formulate a roadmap for insect conservation and recovery. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-019-1079-8 (2020).
    Article  Google Scholar 

    8.
    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).
    PubMed Central  Article  CAS  PubMed  Google Scholar 

    9.
    Leather, S. R. “Ecological Armageddon”—more evidence for the drastic decline in insect numbers: Insect declines. Ann. Appl. Biol. 172, 1–3 (2018).
    Article  Google Scholar 

    10.
    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27 (2019).
    Article  Google Scholar 

    11.
    Cardoso, P. et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 242, 108426 (2020).
    Article  Google Scholar 

    12.
    Ford, H. A., Barrett, G. W., Saunders, D. A. & Recher, H. F. Why have birds in the woodlands of Southern Australia declined?. Biol. Conserv. 97, 71–88 (2001).
    Article  Google Scholar 

    13.
    Córdoba-Aguilar, A. & Rocha-Ortega, M. Damselfly (Odonata: Calopterygidae) population decline in an urbanizing watershed. J. Insect Sci. 19, 30 (2019).
    PubMed Central  Article  PubMed  Google Scholar 

    14.
    Kalkman, V. J. et al. Diversity and conservation of European dragonflies and damselflies (Odonata). Hydrobiologia 811, 269–282 (2018).
    Article  Google Scholar 

    15.
    Rosenberg, K. V. et al. Decline of the North American avifauna. Science https://doi.org/10.1126/science.aaw1313 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    16.
    Rodhouse, T. J. et al. Evidence of region-wide bat population decline from long-term monitoring and Bayesian occupancy models with empirically informed priors. Ecol. Evol. https://doi.org/10.1002/ece3.5612 (2019).
    Article  PubMed Central  PubMed  Google Scholar 

    17.
    Kaunisto, K. M. et al. Threats from the air: Damselfly predation on diverse prey taxa. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13184 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    18.
    Simmons, B. I. et al. Worldwide insect declines: An important message, but interpret with caution. Ecol. Evol. 9, 3678–3680 (2019).
    PubMed Central  Article  PubMed  Google Scholar 

    19.
    Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. & Worm, B. How many species are there on earth and in the ocean?. PLoS Biol. 9, e1001127 (2011).
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    20.
    Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on earth. Proc. Natl. Acad. Sci. 115, 6506–6511 (2018).
    CAS  Article  Google Scholar 

    21.
    Nyffeler, M., Şekercioğlu, ÇH. & Whelan, C. J. Insectivorous birds consume an estimated 400–500 million tons of prey annually. Sci. Nat. 105, 47 (2018).
    Article  CAS  Google Scholar 

    22.
    Vesterinen, E. J. et al. What you need is what you eat? Prey selection by the bat Myotis daubentonii. Mol. Ecol. 25, 1581–1594 (2016).
    CAS  Article  Google Scholar 

    23.
    Vesterinen, E. J., Puisto, A. I. E., Blomberg, A. & Lilley, T. M. Table for five, please: Dietary partitioning in boreal bats. Ecol. Evol. 8, 10914–10937 (2018).
    PubMed Central  Article  PubMed  Google Scholar 

    24.
    Vesterinen, E. J., Puisto, A. I. E., Blomberg, A. S. & Lilley, T. M. Data from: Table for five, please: Dietary partitioning in boreal bats. Dryad Dataset https://doi.org/10.5061/dryad.6880rf1 (2019).
    Article  Google Scholar 

    25.
    Kaunisto, K. M., Roslin, T., Sääksjärvi, I. E. & Vesterinen, E. J. Pellets of proof: First glimpse of the dietary composition of adult odonates as revealed by metabarcoding of feces. Ecol. Evol. 7, 8588–8598 (2017).
    PubMed Central  Article  PubMed  Google Scholar 

    26.
    Kaunisto, K. M., Roslin, T. L., Sääksjärvi, I. E. & Vesterinen, E. J. Data from: Pellets of proof: first glimpse of the dietary composition of adult odonates as revealed by metabarcoding of feces. Dryad Dataset https://doi.org/10.5061/dryad.5n92p (2018).
    Article  Google Scholar 

    27.
    Vesterinen, E. J. et al.Threats from the air: damselfly predation on diverse prey taxa. 1438406240 bytes (2019) https://doi.org/10.5061/DRYAD.ZS7H44J4Z.

    28.
    Deagle, B. E. et al. Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data?. Mol. Ecol. 28, 391–406 (2019).
    Article  Google Scholar 

    29.
    Dormann, C. F., Frund, J., Bluthgen, N. & Gruber, B. Indices, graphs and null models: Analyzing bipartite ecological networks. Open Ecol. J. 2, 7–24 (2009).
    Article  Google Scholar 

    30.
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2018).

    31.
    Oksanen, J. et al. vegan: Community Ecology Package. (2013).

    32.
    Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406 (2014).
    ADS  CAS  Article  Google Scholar 

    33.
    Butchart, S. H. M. et al. Global biodiversity: Indicators of recent declines. Science 328, 1164–1168 (2010).
    ADS  CAS  Article  Google Scholar 

    34.
    Fuszara, E. et al. Population changes in Natterer’s bat (Myotis nattereri) and Daubenton’s bat (M. daubentonii) in winter roosts of central Poland. Pol. J. Ecol. 58, 769–781 (2010).
    Google Scholar 

    35.
    Kim, K. C. & Byrne, L. B. Biodiversity loss and the taxonomic bottleneck: Emerging biodiversity science. Ecol. Res. 21, 794 (2006).
    Article  Google Scholar 

    36.
    Sekercioglu, C. H. et al. Disappearance of insectivorous birds from tropical forest fragments. Proc. Natl. Acad. Sci. USA. 99, 263–267 (2002).
    ADS  CAS  Article  Google Scholar 

    37.
    Spiller, K. J. & Dettmers, R. Evidence for multiple drivers of aerial insectivore declines in North America. Condor 121, 10 (2019).
    Article  Google Scholar 

    38.
    Lister, B. C. & Garcia, A. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl. Acad. Sci. 115, E10397–E10406 (2018).
    CAS  Article  Google Scholar 

    39.
    Warren, M. S. et al. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414, 65–69 (2001).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    40.
    Ochieng, H., de Ruyter van Steveninck, E. D. & Wanda, F. M. Mouthpart deformities in Chironomidae (Diptera) as indicators of heavy metal pollution in northern Lake Victoria, Uganda. Afr. J. Aquat. Sci. 33, 135–142 (2008).
    CAS  Article  Google Scholar 

    41.
    Luoto, T. P. Hydrological change in lakes inferred from midge assemblages through use of an intralake calibration set. Ecol. Monogr. 80, 303–329 (2010).
    Article  Google Scholar 

    42.
    Aquatic insects of North Europe—A Taxonomic Handbook. vol. 2 (Apollo Books, 1997).

    43.
    Wirta, H. K. et al. Exposing the structure of an Arctic food web. Ecol. Evol. 5, 3842–3856 (2015).
    PubMed Central  Article  PubMed  Google Scholar 

    44.
    Vesterinen, E. J., Lilley, T., Laine, V. N. & Wahlberg, N. Next generation sequencing of fecal DNA reveals the dietary diversity of the widespread insectivorous predator Daubenton’s bat (Myotis daubentonii) in southwestern Finland. PLoS ONE 8, e82168 (2013).
    ADS  PubMed Central  Article  CAS  PubMed  Google Scholar 

    45.
    Clare, E. L., Fraser, E. E., Braid, H. E., Fenton, M. B. & Hebert, P. D. N. Species on the menu of a generalist predator, the eastern red bat (Lasiurus borealis): Using a molecular approach to detect arthropod prey. Mol. Ecol. 18, 2532–2542 (2009).
    Article  Google Scholar 

    46.
    Clare, E. L. et al. The diet of Myotis lucifugus across Canada: Assessing foraging quality and diet variability. Mol. Ecol. 23, 3618–3632 (2014).
    Article  Google Scholar 

    47.
    Rytkönen, S. et al. From feces to data: A metabarcoding method for analyzing consumed and available prey in a bird-insect food web. Ecol. Evol. 9, 631–639 (2019).
    Article  Google Scholar 

    48.
    Eitzinger, B. et al. Assessing changes in arthropod predator–prey interactions through DNA-based gut content analysis—variable environment, stable diet. Mol. Ecol. 28, 266–280 (2019).
    CAS  Article  Google Scholar 

    49.
    Schmidt, N. M., Mosbacher, J. B., Eitzinger, B., Vesterinen, E. J. & Roslin, T. High resistance towards herbivore-induced habitat change in a high Arctic arthropod community. Biol. Lett. 14, 20180054 (2018).
    PubMed Central  Article  CAS  PubMed  Google Scholar 

    50.
    Schmidt, N. M., Mosbacher, J. B., Vesterinen, E. J., Roslin, T. & Michelsen, A. Limited dietary overlap amongst resident Arctic herbivores in winter: Complementary insights from complementary methods. Oecologia 187, 689–699 (2018).
    ADS  Article  Google Scholar 

    51.
    Gripenberg, S. et al. A highly resolved food web for insect seed predators in a species-rich tropical forest: Host use by insect seed predators. Ecol. Lett. https://doi.org/10.1111/ele.13359 (2019).
    Article  PubMed Central  PubMed  Google Scholar 

    52.
    Basset, Y. et al. A cross-continental comparison of assemblages of seed- and fruit-feeding insects in tropical rain forests: Faunal composition and rates of attack. J. Biogeogr. 45, 1395–1407 (2018).
    Article  Google Scholar 

    53.
    Raitif, J., Plantegenest, M., Agator, O., Piscart, C. & Roussel, J.-M. Seasonal and spatial variations of stream insect emergence in an intensive agricultural landscape. Sci. Total Environ. 644, 594–601 (2018).
    ADS  CAS  Article  Google Scholar 

    54.
    Rogers, L. E., Buschbom, R. L. & Watson, C. R. Length-weight relationships of shrub-steppe invertebrates1. Ann. Entomol. Soc. Am. 70, 51–53 (1977).
    Article  Google Scholar 

    55.
    De Felici, L., Piersma, T. & Howison, R. A. Abundance of arthropods as food for meadow bird chicks in response to short- and long-term soil wetting in Dutch dairy grasslands. PeerJ 7, e7401 (2019).
    PubMed Central  Article  PubMed  Google Scholar 

    56.
    Aziz, M. A. et al. Using non-invasively collected genetic data to estimate density and population size of tigers in the Bangladesh Sundarbans. Glob. Ecol. Conserv. 12, 272–282 (2017).
    Article  Google Scholar 

    57.
    Greenop, A., Woodcock, B. A., Wilby, A., Cook, S. M. & Pywell, R. F. Functional diversity positively affects prey suppression by invertebrate predators: A meta-analysis. Ecology 99, 1771–1782 (2018).
    PubMed Central  Article  PubMed  Google Scholar 

    58.
    Kissick, A. L., Dunning, J. B., Fernandez-Juricic, E. & Holland, J. D. Different responses of predator and prey functional diversity to fragmentation. Ecol. Appl. 28, 1853–1866 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    59.
    Petchey, O. L. & Gaston, K. J. Functional diversity: Back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).
    Article  PubMed  PubMed Central  Google Scholar  More

  • in

    New clues on the Atlantic eels spawning behavior and area: the Mid-Atlantic Ridge hypothesis

    To enable successful spawning of Atlantic eels in remote offshore areas of the ocean, three conditions need to be met. This requires, first, appropriate navigation abilities and cues leading to the remote spawning area; second, a meeting point; and third, an adequate timing.
    Orientation and navigation cues towards the spawning area
    Eels are thought to imprint a magnetic map on their first transoceanic migration from the spawning areas to the coasts21. Moreover, silver eels are known to be sensitive to magnetic cues22 that are likely involved in navigation towards the Sargasso sea with a very high spatial accuracy23. Under this hypothesis, silver eels are expected to choose the fastest or shortest route to join the Sargasso Sea. Indeed, recent studies showed that European silver eel swam south-westward24, 25 while American silver eels swam south-eastward26. Surprisingly, none of the tagged eels reached the spawning areas within the Sargasso Sea26. One single American eel reached the north west boundaries of the North Atlantic Convergence zone at  > 2,000 km from the center of the Sargasso Sea26, while a few European eels where detected at the North East of the Azores at c.a. 3,000 km from the Sargasso Sea24, 25. This was interpreted as a consequence of the tagging rather than a biological fact.
    Interestingly, all European eels, whatever their release points (Baltic Sea, Ireland, the Bay of Biscay, Mediterranean) converged towards the Azores, which is not the shortest way back to the Sargasso Sea24. So what could be the advantage for silver eels for choosing a longer route? The most parsimonious hypothesis is that the Azores serve as a meeting point located along the Mid-Atlantic Ridge. Once they reach this point they turn southwest, following the Mid-Atlantic Ridge. This could be made possible by the striking vertical diel migration behavior that takes eels from epipelagic layers (150–300 m) during the night to mesopelagic and bathypelagic depths during the daytime (down to 1,200 m)24,25,26. This behavior could enable silver eels to detect and follow the Mid Atlantic Ridge and associated seamounts that culminate at 2,000 m to 3,500 m above the seafloor that lies at  > 4,000 m depths. Moreover, it is likely that eels detect chemical variations of the seawater using their high olfactory abilities enabling them to detect specific odors or plumes from subducted or convected deep layer waters27, 28. Indeed, the volcanic activity and deep currents disturbed by the sea level rise around the ridge likely modify the chemical composition and related odor of the water thus providing signposts28.
    Following this north south Y axis, silver eels may finally reach favorable thermic conditions of 22 to 24 °C to spawn, which are located between two parallel east–west thermal fronts that occur in the Sargasso Sea at about 24°N and 28°N (X-axis)8, 29. Worth mentioning, small leptocephali of both Atlantic eel species have been collected over a wide longitudinal range (75–50°W) between these two fronts8. Although the collected area of American and European eel larvae partly overlapped in Sargasso Sea, the southern-most collection of European eel larvae was about 100–200 km north compared to American eel larvae8, apart from thermal fronts that were suggested earlier as an X-axis, European eels may follow a different hint. One of the major water masses in the Sargasso Sea is the North Atlantic Subtropical Mode Water, which has unique vertical temperature distribution, in which the temperature is nearly uniform in the Mode Water layer, especially in winter and early spring30, 31. Its southern boundary is around 22–26°N; therefore, the mode water’s boundary could also potentially serve as a destination hint (X-axis) for European eels.
    Meeting point to mitigate lack of migration timing
    Once eels have reached favorable habitat conditions to spawn, they have to find their mates to breed. Random mating in the huge Sargasso Sea (c.a. 3 million km2) is highly unlikely. Indeed, male and female silver eels do not have a synchronized migration. Males start their migration from August to September, whereas females migrate between November and December24. Telemetry data demonstrated that migrating silver eels disperse after they are released24. Migration speed is highly variable according to size24, 32, because males that are approximately 45 cm long on average have much lower swimming speeds than female eels, which have bodies up to twice the size as males. This suggests that, unlike tuna or mackerel, eels do not form schools, and even if they start their spawning migration in a school from continental rivers, they eventually scatter and arrive in the Sargasso Sea one by one. These arguments strongly suggest that synchronized migration and schooling do not likely occur, meaning that successful mating and spawning depends on the existence of clear physical, chemical, geological, or biological signals that eels can use to locate a meeting point in the ocean. However, such east–west and north–south hints (X and Y axis) or any kind of gradient do not exist in the large Sargasso Sea.
    Egg distributions of Japanese eel within the spawning area indicated that spawning occurred just south of the crossing point where north–south seamount chain and east–west salinity front between two water masses with different salinities—caused by evaporation in the north and tropical rainfall in the south13, 16. It has been speculated that eels can locate the spawning site using a combination of the seamount chain (Y-axis) and salinity front (X-axis) as a signpost for forming spawning aggregations in the ocean.
    To ensure successful external fertilization of eggs, eels must meet their mates in the ocean, meaning that time and space must precisely coincide for successful mating. If the same strategy can be adapted to Atlantic eels, waters near the Mid-Atlantic Ridge could be chosen as a spawning site because of unusual topographical features, geomagnetic anomalies33 or variation of chemical compositions that could serve as an olfactory cue for eels. Indeed, active hydrothermal vents have been observed along the Mid-Atlantic Ridge across the entire Atlantic34, and the release of chemical elements from hydrothermal vents may serve as a cue for locating a spawning site. This kind of signpost remains very large, and therefore it is likely that pheromones might be released by silver eels to favor the final meeting of the partners.
    Simulating departure from the Mid Atlantic Ridge and from the Sargasso Sea
    Using the same principle as Japanese eel, volcanically active parts of the Mid-Atlantic Ridge could be one of the spawning sites for Atlantic eels due to unusual topographical features, geomagnetic anomalies, or differing water chemical composition21. The 22 °C and 24 °C thermal fronts between which Atlantic eel larvae have been frequently observed8 are used to extend farther east, interacting with the Mid-Atlantic Ridge at around 27 and 20°N, respectively. To the south of these thermal fronts exists a discernible salinity front around the northern limit of the North Equatorial Current (NEC) in the Atlantic at 15–18°N. Thus, we modeled the transport of virtual leptocephali larvae from the area chosen to be 15–29°N and 43–48°W which included intersections of the Mid-Atlantic Ridge by one salinity front and two thermal fronts (Fig. 1 top).
    We then released v-larvae near the Mid-Atlantic Ridge from 15 to 29°N. We classified v-larvae by their initial positions as north of the 22 °C isotherm (yellow), between the 22 and 23 °C isotherm (blue), between the 23 and 24 °C isotherm (green), south of the 24 °C isotherm (red), and the north of NEC with a salinity front at around 18–19°N (cyan) (Figs. 1, 2). Passive swimming v-larvae were widely dispersed to the west and east of the release area after 720 days of migration (Fig. 2). V-larvae departing from north of 24°N (yellow and blue dots) finally arrived at the Azores front and North Atlantic drift, with easternmost positions near 15°W, showing similar distribution to observed European eel larvae. In contrast, v-larvae departing from south of 24°N (green, red, and cyan dots) could make it to the Caribbean Sea and the Gulf of Mexico, and some v-larvae entrained in the Loop Current and Gulf Stream, arriving at the east coast of North America, that is similar to the observed American eel larvae distribution. The percentage of v-larvae reaching 25°W after 720 days decreased from north to south: 0.71% in the northernmost area (yellow in Fig. 2), 0.13% (blue), and 0% (green, red, and cyan). Arrival at the Caribbean Sea and Gulf of Mexico increased from north to south: 0.13% (yellow in Fig. 2), 0.77% (blue), 4.64% (green), 19.3% (red), and 38.9% in cyan.
    Figure 2

    Distribution of passive swimming v-larvae departing from near the Mid-Atlantic Ridge. Colors correspond to release areas (north of the 22 °C isotherm (yellow), between the 22 and 23 °C isotherm (blue), between the 23 and 24 °C isotherm (green), south of the 24 °C isotherm (red), and the north of NEC with a salinity front at around 18–19°N (cyan)) as indicated in the top panel. The simulation period was 1993–2000 and included both positive (1993–1994, 1999–2000) and negative (1995–1996, 1997–1998) North Atlantic Oscillation events, and the results are based on an eight-year composite.

    Full size image

    By comparison, v-larvae released in the Sargasso Sea were widely distributed throughout the northwestern Atlantic Ocean, including the Caribbean Sea and Gulf of Mexico (Fig. 3). A total of 0.14% of the v-larvae released from the suggested European eel spawning area in the Sargasso Sea reached 25°W after 720 days (Fig. 3 right), whereas 0.27% of those released in the American eel spawning area reached 25°W (Fig. 3 left). Arrival at the Caribbean Sea and Gulf of Mexico was 6.56% and 11.9% of those released from European and American eel spawning areas, respectively.
    Figure 3

    Distribution of v-larvae released in the Sargasso Sea for American (left) and European eels (right).

    Full size image

    Although the distribution patterns were similar to v-larvae departing from the newly proposed spawning area (Figs. 3, 5), differences were detected. A significant fraction of v-larvae representing European eels released in the Sargasso Sea dispersed to the Caribbean Sea and Gulf of Mexico (Fig. 3, right). As the v-larvae departing from the northern proposed area did not enter these areas (Fig. 2), and only American eel larvae but not European eel larvae have been collected in the Caribbean Sea and Gulf of Mexico. In addition, some of v-larvae representing American eel departing from Sargasso Sea were transported far northeast by Gulf Stream and North Atlantic Drift to east of 40°W, where American eel larvae were not observed8. In contrast, v-larvae departing from southern proposed area showed closer distribution to observations of American eel leptocephali, while v-larvae departing from central to northern sub areas of the Mid-Atlantic Ridge presented similar distributions to observations of European eel leptocephali. Therefore, it could be suggested that both European and American eels may indeed spawn in the newly proposed area near the Mid-Atlantic Ridge.
    Interestingly, distributions of v-larvae departing from the American eel spawning area or from the European eel are very similar (Fig. 3) suggesting that swimming and orientations are likely. If v-larvae could swim at 1 body length per second (BL/s) northeastward, arrival rate at 25°W would increase substantially, especially for those departing from the northern area (Fig. 4, left). On the other hand, v-larvae swimming at the same speed of 1BL/s but heading northwestward would not reach 25°W (Fig. 4, right), instead, distribution of v-larvae would be concentrated at northwestern Atlantic Ocean. The simulations with swimming ability indeed also revealed similar distribution as observations. V-larvae departure from northern area would swim towards eastern north Atlantic (yellow and blue, Fig. 4 left), whereas those departing from southern area (cyan and red, Fig. 4 right) would move towards western north Atlantic and some of them may bypass Caribbean Sea and Gulf of Mexico.
    Figure 4

    Same as Fig. 2, but for northwestward swimming (left), and northeastward swimming (right) at swimming speed of 1 BL/s.

    Full size image

    Estimating spawning location of small leptocephali caught in historical surveys
    Historical surveys have spent great effort to search the eggs and spawning adult eels in the past century. However, the larval surveys to date have not explicitly considered the possibility of alternative spawning areas or an extension eastward. This introduced an evident gap, both geographically and temporally, in larval surveys. Indeed, our numerical simulation showed that a different departure point (spawning area), located above the Mid-Atlantic Ridge, resulted in a distribution of leptocephali larvae similar to historical observations in the Atlantic Ocean. Hence, these results strongly suggest that oceanographic surveys should be organized outside the Sargasso Sea, in the vicinity of the Mid Atlantic Ridge.
    We applied passive backward particle tracking to trace the origin of those observed Atlantic eel larvae. We released v-larvae in the Sargasso Sea where ≤ 10.9 mm Atlantic eel larvae have been collected8. The distribution of potential v-larvae origins 30 days prior to on-site collections was not far from where eel larvae have been collected (Fig. 5), as ocean currents were rather weak and lacked a unified direction. The results suggest a few possibilities, such as eggs may occur nearby the area where eel larvae were collected although they have not been collected; eel larvae indeed were observed in rather a wide region, suggesting eel larvae (or eggs) may also occur in areas located outside the hot-spot survey zone of the Sargasso Sea. Learning from the experience of Japanese eel surveys would allow exploring the hypothesis of alternative spawning locations.
    Figure 5

    Distributions of passive backward tracking v-larvae 30 days prior to collection for (a) American eels, and (b) European eels. Black crosses showed the released locations that followed the positions where eel larvae were collected8.

    Full size image

    Disagreement from microchemistry aspect
    Ocean currents in the Sargasso Sea are generally weak, with average speeds less than 5 cm/s in the top 200 m (Fig. 1 bottom). Eddy activity is inactive in the Sargasso Sea and eddy nonlinearity is relatively low compared to those formed near the Gulf Stream or Azores Current35, indicating less trapping and transporting by westward propagating eddies for marine organisms. Additionally, Japanese eels are spawned in the faster (10–20 cm/s) NEC in the Pacific (Fig. 6), thus, it can be said that the Sargasso Sea, which is the presumed Atlantic eel spawning area, is relatively quiet and has less transporting ability because of a subtropical gyre convergence zone. This convergence zone is unfavorable for the transport of eel larvae to continental rivers.
    Figure 6

    Bathymetry (shading) and mean ocean circulation (vectors) in the western Pacific. Fast and slow currents with criteria of 0.15 m/s are indicated by magenta and white vectors, respectively. The yellow circle marks the spawning area of Japanese eels. See the analogy of ocean current systems in both the Atlantic (Fig. 1) and Pacific (Fig. 6), i.e., the relationship between possible eel spawning locations and currents in the western subtropical gyre such as the North Equatorial Current and western boundary currents (Gulf Stream or Kuroshio).

    Full size image

    Interestingly, concentrations of Mn, a trace element signature, in the central part of otoliths of glass eels caught in western European estuaries were significantly greater than those of leptocephali collected in the Sargasso Sea20. Mn is a geochemical fingerprint of volcanic activity mainly found along the Mid-Atlantic Ridge34.The numerical experiment had shown that the buoyant hydrothermal plume could transport dissolved elements vertically by 1000–1500 m, and could also spread thousands of kilometers by horizontal advection. This suggests that glass eels caught in European estuaries spent their early life in the plume of a volcanic activity zone whereas leptocephali born in the Sargasso Sea may not successfully migrate to Europe due to being trapped in the convergence zone. This supports the existence of multiple spawning areas or batches suggested by Baltazar-Soares36, without affecting the well-established panmixia36,37,38,39 given that larvae seeded from any location are dispersed along with large recovering areas (Figs. 2, 4).
    General discussion
    The present study explores the existence of another spawning area near the Mid-Atlantic Ridge at the east of the Sargasso Sea, that has been assumed to be the sole spawning area for almost 100 years since Schmidt’s research. This scenario relies on the combination of ecological and environmental inferences, comparative biology, the need of biotracers to pilot the catadromous fish and modelling.
    The distribution of v-larvae departing from the newly proposed spawning area near the Mid-Atlantic Ridge showed possibilities of successful migration of both species to their respective geographic continental distributions. The v-larvae released in the northern region of the newly proposed spawning area showed distributions similar to those of collected European eel larvae, whereas those that departed from the southern region, within the salinity front, had distributions closer to the those of American eel larvae8. These fits between our model and observations of larval distribution are even stronger when assigning orientation and swimming skills to v-larvae. We therefore assume that swimming and orientation behaviors likely occur supporting previous findings and hypothesis21, 40.
    Salinity fronts have been suggested to be related to Japanese eel spawning41 in the Pacific Ocean. Indeed, approximately 600 eggs have been collected over five research cruises at the intersection of the salinity front and the West Mariana Ridge. Similarly, a salinity front has also been observed in the Atlantic Ocean between the Sargasso Sea and NEC at around 15–18°N. In the new spawning area tested in this study, a strong salinity front with a rapid increased from 36.3 PSU at 15°N to 36.9 PSU at 19°N down to depths around 200 m was observed, and the front extended below 200 m south of 18°N. The salinity front could potentially provide a landmark for silver eels during breeding migration. In this study, v-larvae released near the salinity front showed quick dispersion westward, entering the Caribbean Sea and the Gulf of Mexico with some going to the Gulf Stream. This pattern is similar to that of Japanese eels in the Pacific Ocean that established their migration loop in the southwest corner of the subtropical gyre using the NEC and the Kuroshio42 (Fig. 6).
    For the migration of adult eels, routes proposed by Righton et al.24 from a pop-up tag study showed that silver European eels seemed to converge toward the Azores regardless of origin (Baltic, North Sea, Celtic Sea, Bay of Biscay, Mediterranean). This does not fit with the Sargasso Sea hypothesis as the most direct routes from northern Europe and the Mediterranean to the Sargasso Sea do not encompass the Azores. Our hypothesis is that the Azores acts as a landmark for silver eels swimming southwest.
    On their spawning migration, silver eels need to find the most efficient way to reach the spawning area using the safest and less energy costly route. It could be suggested that silver eels simply backtrack the migration route they used as leptocephali. This would imply that eels imprint their larval route, and that silver eels would have to swim against the strongest currents of the North Atlantic Ocean as the Gulf Stream, the Azores Currents and the North Atlantic drift (ie Miller and Tsukamoto43). This strategy would probably cost too much energy. Alternatively, by converging towards the Azores, as suggested by Righton et al.24, Silver eels avoid the strongest marine currents thus saving energy expenditures, which is a more likely evolutionary scenario. However, this would involve the existence of a genetically imprinted geomagnetic map that would enable eels to navigate towards the Azores whatever their departure point. Although possible, this assumption remains speculative as to date, science has not addressed how DNA encodes for such a behavior.
    Because of their diel vertical migration ranging from ~ 800 m during the day to 300 m at night24, 25, 44, these eels could detect the topography and specific odors of the ridge they follow until they reach to favorable thermal fronts. Strong magnetic abnormalities occur along the Mid-Atlantic Ridge from the Azores to the junction with the Kane fracture zone (23.5 N; 46.4 W) and then make a bend westward along the Krane fracture33. For the American eel, an individual released from the Gulf of St. Lawrence near the northernmost distributional range of American eel leptocephali showed a long-distance migration to the northern Sargasso Sea26. We need to further observe the route in the southern Sargasso Sea. Additionally, the release of silver eels with pop-up tags from the Caribbean Sea near the southernmost distributional range and nearest areas to both the Sargasso Sea and Mid-Atlantic Ridge is the next step to confirm the success of adults migrating to their spawning area.
    The collection of tiny larvae, known as preleptocephali, has been reported for both species in the Sargasso Sea. Preleptocephali are newly hatched larvae less than 6 mm long, and are genetically identified to be American eel, European eel, or other marine eel species. Molecular techniques are indispensable because morphological species identification does not work for undeveloped eggs and preleptocephali. Preleptocephali collected in the Sargasso Sea appear to be approximately one week old after hatching, which seems a too short duration for transportation of eggs and preleptocephali by currents from the newly proposed spawning area to the collection area in the Sargasso Sea. Therefore, it is indeed a fact that eel spawning occurs in the Sargasso Sea. Although eggs and spawning-condition adults have not been collected there, this lack of collection does not mean absence. There has also been no collection of eggs and adults or even preleptocephali outside Sargasso Sea. These apparent “false negatives” may result from insufficient sampling efforts in the Sargasso Sea and Mid-Atlantic Ridge areas as shown by Westerberg et al. 201845. It is also noteworthy that sampling efforts were not necessarily conducted with appropriate timing, place, and sampling methods, for example, with attention to peak spawning season, lunar phase, sampling grid mesh size of sampling grid, etc.
    Based on molecular phylogenetic analyses of all anguillid eels, Atlantic eel ancestors were speculated to have invaded the North Atlantic from the Indo-Pacific through the ancient Tethys Sea before the Isthmus of Suez closed 30 million years ago46. They established their small migration loop around the coasts of the North Atlantic. They had a spawning area near the Mid-Atlantic Ridge in the narrow ancient North Atlantic that had not yet well expanded, and larvae were transported to Europe and North America randomly. Based on the expansion of the Atlantic Ocean floor, it is likely that the Atlantic eel split into two distinct species, American and European eels, due to the separation of their spawning areas, migration routes, and recruitment places42. The segregation of the two spawning areas probably is still the current situation considering the limited hybridization between both species and the introgression from American eels to European eels47. Moreover, the introgression force declines from northern to southern Europe, suggesting that spawning may have taken place in the central part of the newly proposed hatching zone near the Mid-Atlantic Ridge. For effective conservation of these endangered species, we must understand Atlantic eel reproductive ecology, including their respective present-day spawning areas and the evolutionary processes of both eel species. The first step in this process is to organize research cruises to enlarge the domain of survey and to validate a newly proposed Mid-Atlantic ridge hypothesis. More

  • in

    State-level needs for social distancing and contact tracing to contain COVID-19 in the United States

    Our overall approach is as follows: (1) develop a mathematical model (an SEIR-type compartmental model)18,19 that incorporates social-distancing data, case identification via testing, isolation of detected cases and contact tracing; (2) assess the model’s predictive performance by training (calibrating) it to reported cases and mortality data from 19 March to 30 April 2020 and validating its predictions against data from 1 May to 20 June 2020; and (3) use the model, trained on data to 22 July 2020, to predict future incidence and mortality. The final stage of our approach predicts future events under a set of scenarios that include increased case detection through expansion of testing rate, contact tracing and relaxation or increase of measures to promote social distancing. All model fitting is performed in a Bayesian framework to incorporate available prior information and address multivariate uncertainty in model parameters.
    Model formulation
    We modified the standard SEIR model to address testing and contact tracing, as well as asymptomatic individuals. A fraction fA of those exposed (E) to enter the asymptomatic A class (divided into AU for untested and AC for contact traced) instead of the infected I class, which in our model formulation also includes infectious presymptomatic individuals. With respect to testing, separate compartments were added for untested, ‘freely roaming’ infected individuals (IU), tested/isolated cases (IT) and fatalities (FT). Following recovery, untested infected individuals (IU) and all asymptomatic individuals move to the untested recovered compartment, IU, and tested infected individuals move to the tested recovered compartment, IT. In balancing considerations of model fidelity and parameter identifiability, we made the reasonably conservative assumptions that all tested cases are effectively isolated (through self-quarantine or hospitalization) and thus unavailable for transmission, and that all COVID-related deaths are identified/tested.
    With respect to contact tracing, the additional compartment SC represents unexposed contacts who undergo a period of isolation during which they are not susceptible before returning to S, while EC, AC and IC represent contacts who were exposed. Again, the reasonably conservative assumption was made that all exposed contacts undergo testing, with an accelerated testing rate compared to the general population. We assume a closed population of constant size, N, for each state.
    The ordinary differential equations governing our model are as follows:

    $$begin{array}{l}frac{{mathrm{d}S}}{{mathrm{d}t}} = – S times c times left[ {beta + (1 – beta ) times f_{mathrm{C}}} right] times (I_{mathrm{U}} + A_{mathrm{U}})/N + S_{mathrm{C}} times gamma \ frac{{mathrm{d}S_{mathrm{C}}}}{{mathrm{d}t}} = – S_{mathrm{C}} times gamma + S times c times (1 – beta ) times f_{mathrm{C}} times (I_{mathrm{U}} + A_{mathrm{U}})/N\ frac{{mathrm{d}E}}{{mathrm{d}t}} = – E times kappa + S times c times beta times (1 – f_{mathrm{C}}) times (I_{mathrm{U}} + A_{mathrm{U}})/N\ frac{{mathrm{d}E_{mathrm{C}}}}{{mathrm{d}t}} = – E_{mathrm{C}} times kappa + S times c times beta times f_{mathrm{C}} times (I_{mathrm{U}} + A_{mathrm{U}})/N\ frac{{mathrm{d}I_{mathrm{U}}}}{{mathrm{d}t}} = – I_{mathrm{U}} times (lambda + rho ) + E times kappa times (1 – f_{mathrm{A}})\ frac{{mathrm{d}A_{mathrm{U}}}}{{mathrm{d}t}} = – A_{mathrm{U}} times rho + E times kappa times f_{mathrm{A}}\ frac{{mathrm{d}I_{mathrm{C}}}}{{mathrm{d}t}} = – I_{mathrm{C}} times (lambda _{mathrm{C}} + rho _{mathrm{C}}) + E_{mathrm{C}} times kappa times (1 – f_{mathrm{A}})\ frac{{mathrm{d}A_{mathrm{C}}}}{{mathrm{d}t}} = – A_{mathrm{C}} times rho _{mathrm{C}} + E_{mathrm{C}} times kappa times f_{mathrm{A}}\ frac{{mathrm{d}R_{mathrm{U}}}}{{mathrm{d}t}} = (I_{mathrm{U}} + A_{mathrm{U}} + A_{mathrm{C}}) times rho + I_{mathrm{C}} times rho _{mathrm{C}}\ frac{{mathrm{d}I_{mathrm{T}}}}{{mathrm{d}t}} = – I_{mathrm{T}} times (rho + delta ) + I_{mathrm{U}} times lambda + I_{mathrm{C}} times lambda _{mathrm{C}}\ frac{{mathrm{d}R_{mathrm{T}}}}{{mathrm{d}t}} = I_{mathrm{T}} times rho \ frac{{mathrm{d}F_{mathrm{T}}}}{{mathrm{d}t}} = I_{mathrm{T}} times delta end{array}$$

    where c is the contact rate between individuals, β is the transmission probability per infected contact, fC is the fraction of contacts identified through contact tracing, 1/γ is the duration of self-isolation after contact tracing, 1/κ is the latent period, fA is the fraction of exposed who are asymptomatic, λ is the testing rate, δ is the fatality rate, ρ is the recovery rate and λC and ρC are the testing and recovery rates, respectively, of contact-traced individuals. The testing rates λ and λC, the fatality rate δ and the recovery rate of traced contacts ρC are each composites of several underlying parameters. The testing rate defined as

    $$lambda (t) = F_{{mathrm{test}},0} times left[ {1 – frac{1}{{1 + mathrm{e}^{(t – T50_T)/tau _T}}}} right] times {mathrm{Sens}_{rm{test}}} times k_{{mathrm{test}}},$$

    where Ftest,0 is the current testing coverage (fraction of infected individuals tested), Senstest is the test sensitivity (true positive rate) and ktest is the rate of testing for those tested, with a typical time-to-test equal to 1/ktest. The time-dependence term models the ramping up of testing using a logistic function with a growth rate of 1/τT d−1, where T50T is the time where 50% of the current testing rate is achieved. Similarly, for testing of traced contacts, the same definition is used with the assumption that all identified contacts are tested, Ftest,0 = 1 and at a faster assumed testing rate, kC,test:

    $$lambda _{mathrm{C}}(t) = left[ {1 – frac{1}{{1 + mathrm{e}^{(t – T50_T)/tau _T}}}} right] times {mathrm{Sens}_{rm{test}}} times k_{{mathrm{C,test}}},$$

    Because all contacts are assumed to be tested, the rate ρC at which they enter the ‘recovered’ compartment, RU is simply the rate of false negative test results:

    $$rho _{mathrm{C}}(t) = left[ {1 – frac{1}{{1 + mathrm{e}^{(t – T50_T)/tau _T}}}} right] times (1 – {mathrm{Sens}_{rm{test}}}) times k_{{mathrm{test}}}$$

    The fatality rate is adjusted to maintain consistency with the assumption that all COVID-19 deaths are identified, assuming constant IFR. Specifically, we first calculated the fraction of infected that is tested and positive:

    $$f_{{mathrm{pos}}}(t) = f_{mathrm{C}}frac{{lambda _{mathrm{C}}(t)}}{{lambda _{mathrm{C}}(t) + rho _{mathrm{C}}(t)}} + (1 – f_{mathrm{C}})frac{{lambda (t)}}{{lambda (t) + rho }}.$$

    Then the case fatality rate CFR(t) = IFR/fpos(t). Because CFR = δ/(δ + ρ), this implies

    $$delta (t) = rho frac{{{mathrm{CFR}}(t)}}{{1 – {mathrm{CFR}}(t)}} = rho frac{{{mathrm{IFR}}}}{{f_{{mathrm{pos}}}(t) – {mathrm{IFR}}}}.$$

    The model is ‘seeded’ Ninitial cases on 29 February 2020. Because in the early stages of the outbreak there may be multiple ‘imported’ cases, we fit to data only from 19 March 2020 onwards, 1 week after the US travel ban was put in place31.
    Our model is fit to daily case yc and death yd data (cumulative data are not used for fitting because of autocorrelation). To adequately fit the case and mortality data, we accounted for two lag times. First, a lag is assumed between leaving the IU compartment and public reporting of a positive test result, accounting for the time it takes to seek a test, obtain testing and have the result reported. No lag is assumed for tests from contact tracing. Second, a lag time is assumed between entering the fatally ill compartment FT and publicly reported deaths. Additionally, we use a negative binomial likelihood to account for the substantial day-to-day over-dispersion in reporting results. The corresponding equations are as follows:

    $$begin{array}{l}y_{{mathrm{obs}},[c,d]}(t) approx {mathrm{NegBin}}[alpha _{[c,d]},p_{[c,d]}(t)]\ p_{[c,d]}(t) = frac{{y_{{mathrm{pred}},[c,d]}(t)}}{{alpha _{[c,d]} + y_{{mathrm{pred}},[c,d]}(t)}}\ y_{{mathrm{pred}},c}(t) = I_{mathrm{U}}(t – tau _{{mathrm{case}}}) times lambda (t) + I_{mathrm{C}}(t) times lambda _{mathrm{C}}(t)\ y_{{mathrm{pred}},d}(t) = I_{mathrm{T}}(t – tau _{{mathrm{death}}}) times delta (t)end{array}$$

    In this parameterization, because the dispersion parameter α → ∞, the likelihood becomes a Poisson distribution with expected value ypred,[c,d], whereas for small values of α there is substantial interindividual variability. Case and death data were sourced from The COVID Tracking Project32.
    Finally, we derived the time-dependent reproduction number, R(t) and the effective reproduction number, Reff(t) of this model, given by

    $$R(t) = c times beta times (1 – f_{mathrm{C}})left( {frac{{1 – f_{mathrm{A}}}}{{lambda + rho }} + frac{{f_{mathrm{A}}}}{rho }} right)$$

    and

    $$R_{{mathrm{eff}}}(t) = R(t) times frac{{{{S}}(t)}}{N}$$

    Reff(t) is the average number of secondary infection cases generated by a single infectious individual during their infectious period in partially susceptible population at time t. It is equal to the product of the transmission risk per contact of an infectious individual with their untraced contacts, c × β × (1 − fC), times their average duration of infection, (left( {frac{{1 – f_{mathrm{A}}}}{{lambda + rho }} + frac{{f_{mathrm{A}}}}{rho }} right)), and the portion of contacts that are susceptible, (frac{{{{S}}(t)}}{N}). This accounts for the relative contribution of asymptomatic, (c times beta times left( {1 – f_{mathrm{C}}} right)left( {frac{{f_{mathrm{A}}}}{rho }} right) times frac{{{{S}}(t)}}{N}) and symptomatic infection, (c times beta times (1 – f_{mathrm{C}})left( {frac{{1 – f_{mathrm{A}}}}{{lambda + rho }}} right) times frac{{{{S}}(t)}}{N}). Using posterior samples for all 50 states and the District of Columbia, we conducted an analysis of variance using a linear model to characterize the contributions to the combined interstate and intrastate variation in Reff. Specifically, we used a linear model for Reff with the model parameters R0, η, θmin, rmax, fC, fA, λ and ρ as predictors, and evaluated the percentage of variance in Reff contributed by each parameter.
    Incorporating social distancing, enhanced hygiene practices and reopening
    The impact of social distancing, hygiene practices and reopening was modelled through a time dependence in the contact rate, c and the transmission probability per infected contact, β:

    $$begin{array}{l}c(t) = c_0 times left[ {theta (t) + (1 – theta _{mathrm{min}}) times r(t)} right]\ beta (t) = beta _0 times theta (t)^eta end{array}$$

    The θ(t) function parameterized social distancing during the progression to shelter-in-place, and is modelled as a Weibull function:

    $$theta (t) = theta _{{mathrm{min}}} + (1 – theta _{{mathrm{min}}}){mathrm{e}}^{ – (t/tau _theta )^{n_theta }},$$

    which starts as unity and decreases to θmin, with τθ being the Weibull scale parameter and nθ the Weibull shape parameter (Fig. 1).
    The r(t) function parameterized relative increase in contacts due to reopening after shelter-in-place, with r = 1 corresponding to a return to baseline c = c0.

    $$begin{array}{l}r(t) = r_{{mathrm{max}}}frac{{t – tau _theta – tau _s}}{{tau _r}}left[ {u(t – t_r) – u(t – t_{r{mathrm{max}}})} right] + u(t – t_{r{mathrm{max}}})\ u(t) = {mathrm{Heaviside}}(t) approx 1 – frac{1}{{1 + {mathrm{e}}^{4t}}}\ t_r = tau _theta + tau _s\ t_{r{mathrm{max}}} = tau _theta + tau _s + tau _rend{array}$$

    The term r(t) is 0 before tr, linear between tr and trmax and constant at a value of rmax after that, and made continuous by approximating the Heaviside function by a logistic function. The reopening time is defined as τs days after τθ, and the maximum relative increase in contacts rmax happens τr days after that.
    We selected the functional form above for c(t) because it was found to be able to represent a wide variety of social-distancing data, including mobile phone mobility data from Unacast33 and Google34 as well as restaurant booking data from OpenTable35. We used these different mobility sources to derive state-specific prior distributions because different social-distancing datasets had different values for θmin, τθ, nθ, τs, rmax and τr (Supplementary Fig. 1).
    With respect to the reduction in transmission probability β, we assumed that during the shelter-in-place phase, hygiene-based mitigation paralleled this decline with an effectiveness power η, and that this mitigation continued through reopening.
    Finally, we define an overall reopening parameter Δ that measures the rebound in disease transmission, c × β relative to its minimum, defined to be 0 during shelter-in-place (that is, R(t) is at a minimum) and 1 when all restrictions are removed (when R(t) = R0), which can be derived as:

    $${Delta}(t) = frac{{c times beta /(c_0 times beta _0) – theta _{{mathrm{min}}}^{1 + eta }}}{{1 – theta _{{mathrm{min}}}^{1 + eta }}}.$$

    Our model is illustrated in Fig. 1, with parameters and prior distributions listed in Table 1.
    Scenario evaluation
    We used the model to make several inferences about the current and future course of the pandemic in each state. First, we consider the effective reproduction number. Two time points of particular interest are the time of minimum Reff, reflecting the degree to which shelter-in-place and other interventions were effective in reducing transmission, and the final time of the simulation, 22 July 2020, reflecting the extent to which reopening has increased Reff. Additional parameters of interest are the current levels of reopening Δ(t), testing λ and contact tracing fC.
    We then conducted scenario-based prospective predictions using our model’s parameters as estimated to 22 July 2020. We then asked the following questions:
    (1)
    Assuming current levels of reopening, what increases in general testing λ and/or contact tracing fC would be necessary to bring Reff  More

  • in

    A salmon diet database for the North Pacific Ocean

    1.
    Pacific Salmon Life Histories. (eds. Groot, C & Margolis, L.) (University of British Columbia Press, 1991).
    2.
    Beamish, R. J. & Mahnken, C. A critical size and period hypothesis to explain natural regulation of salmon abundance and the linkage to climate and climate change. Prog. Oceanogr. 49, 423–437 (2001).
    ADS  Article  Google Scholar 

    3.
    Bradford, M. J. Comparative review of Pacific salmon survival rates. Can. J. Fish. Aquat. Sci. 52, 1327–1338 (1995).
    Article  Google Scholar 

    4.
    Mueter, F. J., Peterman, R. M. & Pyper, B. J. Corrigendum: Opposite effects of ocean temperature on survival rates of 120 stocks of Pacific salmon (Oncorhynchus spp.) in northern and southern areas. Can. J. Fish. Aquat. Sci. 60, 757–757 (2003).
    Article  Google Scholar 

    5.
    Zimmerman, M. S. et al. Spatial and temporal patterns in smolt survival of wild and hatchery coho salmon in the Salish Sea. Mar. Coast. Fish. 7, 116–134 (2015).
    Article  Google Scholar 

    6.
    Dale, K. E., Daly, E. A. & Brodeur, R. D. Interannual variability in the feeding and condition of subyearling Chinook salmon off Oregon and Washington in relation to fluctuating ocean conditions. Fish. Oceanogr. 26, 1–16 (2017).
    Article  Google Scholar 

    7.
    Davis, N. D. et al. Review of BASIS salmon food habits studies. North Pacific Anadromous Fish Comm. Bull. 5, 197–208 (2009).
    Google Scholar 

    8.
    Qin, Y. & Kaeriyama, M. Feeding habits and trophic levels of Pacific salmon (Oncorhynchus spp.) in the North Pacific Ocean. North Pacific Anadromous Fish Comm. Bull. 6, 469–481 (2016).
    Article  Google Scholar 

    9.
    Chapman, W. M. The Pilchard Fishery of the State of Washington in 1936 with Notes on the Food of the Silver and Chinook Salmon off the Washington Coast. Biological Report No. 36C (State of Washington, Division of Scientific Research, Department of Fisheries, 1936).

    10.
    Silliman, R. P. Fluctuations in the diet of the Chinook and silver salmons (Oncorhynchus tschawytscha and O. kisutch) off Washington, as related to the troll catch of salmon. Copeia 1941, 80–87 (1941).
    Article  Google Scholar 

    11.
    Brodeur, R. D., Daly, E. A., Schabetsberger, R. A. & Mier, K. L. Interannual and interdecadal variability in juvenile coho salmon (Oncorhynchus kisutch) diets in relation to environmental changes in the northern California Current. Fish. Oceanogr. 16, 395–408 (2007).
    Article  Google Scholar 

    12.
    Brodeur, R. D. A Synthesis of the Food Habits and Feeding Ecology of Salmonids in Marine Waters of the North Pacific. INPFC Doc; FRI-UW-9016. (Fisheries Research Institute, University of Washington, 1990).

    13.
    Karpenko, V. I., Volkov, F. & Koval, M. V. Diets of Pacific salmon in the Sea of Okhotsk. Bering Sea, and Northwest Pacific Ocean. North Pacific Anadromous Fish Comm. Bull. 4, 105–116 (2007).
    Google Scholar 

    14.
    Starovoytov, A. N. Trends in abundance and feeding of chum salmon in the Western Bering Sea. North Pacific Anadromous Fish Comm. Bull. 4, 45–51 (2007).
    Google Scholar 

    15.
    Kaeriyama, M. et al. Change in feeding ecology and trophic dynamics of Pacific salmon (Oncorhynchus spp.) in the central Gulf of Alaska in relation to climate events. Fish. Oceanogr. 13, 197–207 (2004).
    Article  Google Scholar 

    16.
    Jamieson, G., Livingston, P. & Zhang, C.-I. Report of Working Group 19 on Ecosystem-based Management Science and its Application to the North Pacific. PICES Scientific Report 37 (North Pacific Marine Science Organization, 2010).

    17.
    Schoen, E. R. et al. Future of Pacific salmon in the face of environmental change: Lessons from one of the world’s remaining productive salmon regions. Fisheries 42, 538–553 (2017).
    Article  Google Scholar 

    18.
    Healey, M. The cumulative impacts of climate change on Fraser River sockeye salmon (Oncorhynchus nerka) and implications for management. Can. J. Fish. Aquat. Sci. 68, 718–737 (2011).
    Article  Google Scholar 

    19.
    Carmack, E., Winsor, P. & Williams, W. The contiguous panarctic Riverine Coastal Domain: A unifying concept. Prog. Oceanogr. 139, 13–23 (2015).
    ADS  Article  Google Scholar 

    20.
    MySQL version 8.0.18. MySQL, https://www.mysql.com/ (2019).

    21.
    Graham, C, Pakhomov, E. A., & Hunt, B. P. V. North Pacific Marine Salmon Diet Database. GitHub, https://github.com/mcarolinegraham/North_Pacific_Marine_Salmon_Diet_Database (2020).

    22.
    Graham, C, Pakhomov, E. A., & Hunt, B. P. V. A salmon diet database for the North Pacific Ocean. figshare https://doi.org/10.6084/m9.figshare.c.4974128 (2020)

    23.
    R Core Development Team. R: A language and environment for statistical computing, version 3.6.1. The R Project for Statistical Computing https://www.r-project.org/ (2019).

    24.
    Andrievskaya, L. D. Food relationships of the Pacific salmon in the sea. Vopr. Ikhtiologii 6, 84–90 (1966).
    Google Scholar 

    25.
    Carlson, H. R. Foods of juvenile sockeye salmon, Oncorhynchus nerka, in the inshore coastal waters of Bristol Bay, Alaska, 1966–67. Fish. Bull. 74, 458–462 (1976).
    Google Scholar 

    26.
    Chuchukalo, V. L., Volkov, A. F., Efimkin, A. Y. & Kuznetsova, N. A. Feeding and Daily Rations of Sockeye Salmon (Oncorhynchus nerka) During the Summer Period. NPAFC Doc. 125 (Pacific Research Institute of Fisheries Oceanography (TINRO), 1995).

    27.
    Davis, N. D., Takahashi, M. & Ishida, Y. The 1996 Japan-U.S. Cooperative High-seas Salmon Research Cruise of the Wakatake maru and a Summary of 1991-1996 Results. NPAFC Doc. 194; FRI-UW-9617 (Fisheries Research Institute, University of Washington; National Research Institute of Far Seas Fisheries, 1996).

    28.
    Davis, N. D., Aydin, K. Y. & Ishida, Y. Diel Feeding Habits and Estimates of Prey Consumption of Sockeye, Chum, and Pink Salmon in the Bering Sea in 1997. NPAFC Doc. 363; FRI-UW-9816 (Fisheries Research Institute, University of Washington; National Research Institute of Far Seas Fisheries, 1998).

    29.
    Davis, N. D., Aydin, K. Y. & Ishida, Y. Diel catches and food habits of sockeye, pink, and chum salmon in the Central Bering Sea in summer. North Pacific Anadromous Fish Comm. Bull. 2, 99–109 (2000).
    Google Scholar 

    30.
    Dulepova, E. P. & Dulepov, V. I. Interannual and Interregional Analysis of Chum Salmon Feeding Features in the Bering Sea and Adjacent Pacific Waters of Eastern Kamchatka. NPAFC Doc. 728 (Pacific Research Fisheries Centre, TINRO-Centre, 2003).

    31.
    Fukataki, H. Stomach contents of the pink salmon, Oncorhynchus gorbuscha (Walbaum), in the Japan Sea during the spring season of 1965. Bull. Jap. Sea Reg. Fish. Res. Lab. 17, 49–66 (1967).
    Google Scholar 

    32.
    Glebov, I. I. Chinook and Coho Salmon Feeding Habits in the Far Eastern Seas in the Course of Yearly Migration Cycle. NPAFC Doc. 378 (Pacific Research Fisheries Centre TINRO-Centre, 1998).

    33.
    Ito, J. Food and feeding habits of Pacific salmon (genus Oncorhynchus) in their oceanic life. Bull. Hokkaido Reg. Fish. Res. Lab. 29, 85–97 (1964).
    Google Scholar 

    34.
    Kaeriyama, M. et al. Feeding ecology of sockeye and pink salmon in the Gulf of Alaska. North Pacific Anadromous Fish Comm. Bull. 2, 55–63 (2000).
    Google Scholar 

    35.
    Kanno, Y. & Hamai, I. Food of salmonid fish in the Bering Sea in summer of 1966. Bull. Fac. Fish. Hokkaido Univ. 22, 107–128 (1971).
    Google Scholar 

    36.
    Manzer, J. I. Food of Pacific salmon and steelhead trout in the Northeast Pacific Ocean. J. Fish. Res. Board Canada 25, 1085–1089 (1968).
    Article  Google Scholar 

    37.
    Perry, R. I., Hargreaves, N. B., Waddell, B. J. & Mackas, D. L. Spatial variations in feeding and condition of juvenile pink and chum salmon off Vancouver Island, British Columbia. Fish. Oceanogr. 5, 73–88 (1996).
    Article  Google Scholar 

    38.
    Tadokoro, K., Ishida, Y., Davis, N. D., Ueyanagi, S. & Sugimoto, T. Change in chum salmon (Oncorhynchus keta) stomach contents associated with fluctuation of pink salmon (O. gorbuscha) abundance in the central subarctic Pacific and Bering Sea. Fish. Oceanogr. 5, 89–99 (1996).
    Article  Google Scholar 

    39.
    Takeuchi, I. Food animals collected from the stomachs of three salmonid fishes (Oncorhynchus) and their distribution in the natural environments in the northern North Pacific. Bull. Hokkaido Reg. Fish. Res. Lab. 38, 1–119 (1972).
    MathSciNet  Google Scholar 

    40.
    Ueno, M., Kosaka, S. & Ushiyama, H. Food and feeding behavior of Pacific salmon—II. Sequential change of stomach contents. Bull. Japanese Soc. Sci. Fish. 35, 1060–1066 (1969).
    Article  Google Scholar 

    41.
    Volkov, A. F., Chuchukalo, V. I., Efimkin, A. Y. Feeding of Chinook and Coho Salmon in the Northwestern Pacific Ocean. NPAFC Doc. 124 (Pacific Research Institute of Fisheries Oceanography, 1995).

    42.
    Auburn, M. E. & Ignell, S. E. Food habits of juvenile salmon in the Gulf of Alaska July–August 1996. North Pacific Anadromous Fish Comm. Bull. 2, 89–97 (2000).
    Google Scholar 

    43.
    Aydin, K. Y. Abiotic and Biotic Factors Influencing Food Habits of Pacific Salmon in the Gulf of Alaska. In Technical report: Workshop of Climate Change and Salmon Production (ed. Myers, K. W.) 39–40 (North Pacific Anadromous Fish Commission, 1998).

    44.
    Daly, E. A. & Brodeur, R. D. Warming ocean conditions relate to increased trophic requirements of threatened and endangered salmon. PLoS One 10, e0144066 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    45.
    Davis, N. D., Armstrong, J. L. & Myers, K. W. Bering Sea Salmon Food Habits: Diet Overlap in Fall and Potential for Interactions Among Salmon. SAFS-UW-0311 (Fisheries Research Institute, School of Aquatic and Fisheries Sciences, University of Washington, 2003).

    46.
    Kawamura, H., Miyamoto, M., Nagata, M. & Hirano, K. Interaction between chum salmon and fat greenling juveniles in the coastal Sea of Japan off northern Hokkaido. North Pacific Anadromous Fish Comm. Bull. 1, 412–418 (1998).
    Google Scholar 

    47.
    Ueno, Y. Deepwater migrations of chum salmon (Oncorhynchus keta) along the Pacific coast of northern Japan. Can. J. Fish. Aquat. Sci. 49, 2307–2312 (1992).
    Article  Google Scholar 

    48.
    Ueno, Y., Seki, J., Shimizu, I. P. & Shershnev, A. Large juvenile chum salmon Oncorhynchus keta collected in coastal waters of Iturup Island. Nippon Suisan Gakkaishi 58, 1393–1397 (1992).
    Article  Google Scholar 

    49.
    Waddell, B. J., Morris, J. F. T. & Healey, M. C. The abundance, distribution, and biological characteristics of Chinook and coho salmon on the fishing banks off southwest Vancouver Island, May 18-30, 1989 and April 23-May 5, 1990. Can. Tech. Rep. Fish. Aquat. Sci. 1891, 1–113 (1992).
    Google Scholar 

    50.
    Andrievskaya, L. D. The feeding of Pacific salmon fry in the sea. Proceedings of the Pacific Research Institute of Fisheries and Oceanography 64, 73–80 (1970).
    Google Scholar 

    51.
    Atcheson, M. E., Myers, K. W., Beauchamp, D. A. & Mantua, N. J. Bioenergetic response by steelhead to variation in diet, thermal habitat, and climate in the North Pacific Ocean. Trans. Am. Fish. Soc. 141, 1081–1096 (2012).
    Article  Google Scholar 

    52.
    Carlson, H. R. et al. Cruise Report of the F/V Great Pacific Survey of Young Salmon in the North Pacific–Dixon Entrance to Western Aleutians—July–August 1996. NPAFC Doc. 222 (Auke Bay Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 1996).

    53.
    Davis, N. D., Fukuwaka, M., Armstrong, J. L. & Myers, K. W. Salmon food habits studies in the Bering Sea. 1960 to present. North Pacific Anadromous Fish Comm. Tech. Rep. 6, 24–28 (2005).
    Google Scholar 

    54.
    Myers, K. W. & Aydin, K. Y. The 1996 International Cooperative Salmon Research Cruise of the Oshoro maru and a Summary of 1994-1996 Results. NPAFC Doc. 195; FRI-UW-9613 (University of Washington, Fisheries Research Institute, 1996).

    55.
    Myers, K. W. et al. Migrations, Abundance, and Origins of Salmonids in Offshore Waters of the North Pacific – 1995. NPAFC Doc. 152; FRI-UW-9613 (University of Washington, Fisheries Research Institute, 1995).

    56.
    Sturdevant, M. V, Ignell, S. E. & Morris, J. Diet of Juvenile Salmon off Southeastern Alaska, October-November 1995. NPAFC Doc. 275 (Auke Bay Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 1997).

    57.
    Walker, R. V. Summary of Cooperative U.S.-Japan High Seas Salmonid Research Aboard the Japanese Research Vessel Oshoro Maru, 1993. NPAFC Doc. 21 (Fisheries Research Institute, University of Washington, 1993).

    58.
    Suzuki, T. et al. Feeding selectivity of juvenile chum salmon in the Japan Sea Coast of Northern Honshu. Sci. Reports Hokkaido Salmon Hatch. 48, 11–16 (1994).
    Google Scholar 

    59.
    Shimazaki, K. & Mishima, S. On the diurnal change of the feeding activity of salmon in the Okhotsk Sea. Bull. Fac. Fish. Hokkaido University 20, 82–93 (1969).
    Google Scholar 

    60.
    Weitkamp, L. A. Ocean Conditions, Marine Survival, and Performance of Juvenile Chinook (Oncorhynchus tshawytscha) and Coho (O. kisutch) Salmon in Southeast Alaska. PhD thesis, University of Washington (2004).

    61.
    Starovoytov, A. N. Chum salmon (Oncorhynchus keta (Walbaum)) in the Far East Seas – biological description of the species 2. Diet composition and trophic linkages of chum salmon in the Far East Seas and adjacent waters of the Northwest Pacific Ocean. Izv. TINRO 133, 3–34 (2003).
    Google Scholar 

    62.
    LeBrasseur, R. J. & Doidge, D. A. Stomach Contents of Salmonids Caught in the Northeastern Pacific Ocean – 1959 & 1960. In Circular, Statistical Series. vol. 3 (Fisheries Research Board of Canada, 1966).

    63.
    Lebrasseur, R. J. & Doidge, D. A. Stomach Contents of Salmonids Caught in the Northeastern Pacific Ocean – 1962. In Circular, Statistical Series. vol. 4 (Fisheries Research Board of Canada, 1966).

    64.
    Lebrasseur, R. J. & Doidge, D. A. Stomach Contents of Salmonids Caught in the Northeastern Pacific Ocean – 1963 & 1964. In Circular, Statistical Series. vol. 5 (Fisheries Research Board of Canada, 1966).

    65.
    Ishida, Y. & Davis, N. D. Chum salmon feeding habits in relation to growth reduction. Salmon Rep. Ser. 47, 104–110 (1999).
    Google Scholar 

    66.
    Tamura, R., Shimazaki, K. & Ueno, Y. Trophic relations of juvenile salmon (genus Oncorhynchus) in the Okhotsk Sea and Pacific waters off the Kuril Islands. Salmon Rep. Ser. 47, 138–168 (1999).
    Google Scholar 

    67.
    Seki, J. & Shimizu, I. Diel migration of zooplankton and feeding behavior of juvenile chum salmon in the central Pacific coast of Hokkaido. Bull. Nat. Salmon Resour. Cent. 1, 13–27 (1998).
    Google Scholar 

    68.
    Suzuki, T., Fukuwaka, M., Kawana, M., Ohkuma, K. & Seki, J. Investigation on survival mechanism of juvenile chum salmon during the early sea life in 1994. Salmon Database 3, 59–68 (1995).
    Google Scholar 

    69.
    Andrievskaya, L. D. The feeding of pink salmon in the wintering areas in the Sea of Japan. Izv. TINRO 90, 97–110 (1974).
    Google Scholar 

    70.
    Andrievskaya, L. D. Feeding of Pacific salmon juveniles in the Sea of Okhotsk. Izv. TINRO 78, 105–115 (1970).
    Google Scholar 

    71.
    Chuchukalo, V. I., Volkov, A. F., Efimkin, Ay. & Blagoderov, A. I. Distribution and feeding of the Chinook salmon (Oncorhynchus tschawytscha) in the northwest Pacific. Izv. TINRO, 137–141 (1994).

    72.
    Gorbatenko, K. M. Food and feeding habits of juvenile pink and chum salmons in the epipelagic zone of the Okhotsk Sea in winter. Izv. TINRO 199, 234–243 (1996).
    Google Scholar 

    73.
    Kayev, A. M., Chupakhin, V. M. & Fedotova, N. A. Feeding peculiarities and interrelationships between juvenile salmons in coastal waters of the Etorofu Island. Vopr. Ikhtiologii 33, 215–224 (1993).
    Google Scholar 

    74.
    Klovatch, N. V. Ecological Consequences of Large-scale Breeding Operations of Chum Salmon (Oncorhynchus keta). PhD extended summary (VNIRO, 2002).

    75.
    Shershnev, A. P., Chupakhin, V. M. & Rudnev, V. A. Some features of the ecology of young Sakhalin and Iturup pink salmon Oncorhynchus gorbuscha (Walbaum) (Salmonidae) during marine period of life. Vopr. Ikhtiologii 22, 441–448 (1982).
    Google Scholar 

    76.
    Tutubalin, B. G. & Chuchukalo, V. I. The Feeding of Genus Oncorhynchus Pacific Salmons in the North Pacific During the Winter-Spring Period. In Living Resources of the Pacific Ocean: Collected Papers (eds. Gristenko, O. F., Churikov, A. A. & Klovach, N. V.) 77–85 (VNIRO, 1992).

    77.
    Volkov, A. F. Food and feeding habits of young Pacific salmon in the Okhotsk Sea during the autumn-winter period. Okeanologiya 36, 80–85 (1996).
    Google Scholar 

    78.
    Volkov, A. F. Food and feeding habits of pink, chum and sockeye salmon during their anadromous migrations. Izv. TINRO 116, 128–137 (1994).
    Google Scholar 

    79.
    Fisheries Agency of Japan. Report on research by Japan for the International North Pacific Fisheries Commission during the year 1965. International North Pacific Fisheries Commission Ann. Rep., 42–55 (1965).

    80.
    Davis, N. D. U.S.-Japan Cooperative High Seas Salmonid Research in 1990: Summary of Research Aboard the Japanese Research Vessel Hokuho Maru, 4 June to 19 July. INPFC Doc.; FRI-UW-9010. (Fisheries Research Institute, University of Washington, 1990). More

  • in

    Single-virus genomics and beyond

    1.
    Koonin, E. V. The wonder world of microbial viruses. Expert Rev. Anti Infect. Ther. 8, 1097–1099 (2010).
    PubMed  PubMed Central  Article  Google Scholar 
    2.
    Yong, E. I Contain Multitudes: The Microbes Within Us and A Grander View of Life (Ecco, 2016).

    3.
    Breitbart, M. & Rohwer, F. Here a virus, there a virus, everywhere the same virus? Trends Microbiol. 13, 278–284 (2005).
    CAS  PubMed  Article  Google Scholar 

    4.
    Paez-Espino, D. et al. Uncovering Earth’s virome. Nature 536, 425–430 (2016). This is a massive metagenomic study on global viral diversity and distribution and host specificity of viruses. A total of 125,000 partial DNA virus genomes are discovered.
    CAS  PubMed  Article  Google Scholar 

    5.
    Edwards, R. A. & Rohwer, F. Viral metagenomics. Nat. Rev. Microbiol. 3, 504–510 (2005).
    CAS  PubMed  Article  Google Scholar 

    6.
    Suttle, C. A. Marine viruses-major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007). This is a fundamental must-read review of the general role of viruses in marine ecosystems.
    CAS  PubMed  Article  Google Scholar 

    7.
    Abedon, S. T. Bacteriophage Ecology: Population Growth, Evolution, and Impact of Bacterial Viruses (Cambridge Univ. Press, 2008).

    8.
    Sullivan, M. B., Waterbury, J. B. & Chisholm, S. W. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature 424, 1047–1051 (2003).
    CAS  PubMed  Article  Google Scholar 

    9.
    Sullivan, M. B. et al. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ. Microbiol. 12, 3035–3056 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Kauffman, K. M. et al. A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. Nature 554, 118–122 (2018).
    CAS  PubMed  Article  Google Scholar 

    11.
    Atanasova, N. S., Roine, E., Oren, A., Bamford, D. H. & Oksanen, H. M. Global network of specific virus-host interactions in hypersaline environments. Environ. Microbiol. 14, 426–440 (2012).
    CAS  PubMed  Article  Google Scholar 

    12.
    Marston, M. F. et al. Rapid diversification of coevolving marine Synechococcus and a virus. Proc. Natl Acad. Sci. USA 109, 4544–4549 (2012).
    CAS  PubMed  Article  Google Scholar 

    13.
    Enav, H., Kirzner, S., Lindell, D., Mandel-Gutfreund, Y. & Béjà, O. Adaptation to sub-optimal hosts is a driver of viral diversification in the ocean. Nat. Commun. 9, 1–11 (2018).
    CAS  Article  Google Scholar 

    14.
    Rappé, M. S. & Giovannoni, S. J. The uncultured microbial majority. Annu. Rev. Microbiol. 57, 369–394 (2003). This is a comprehensive review addressing a fundamental question in microbial ecology on the difficulty of culturing most microorganisms in the laboratory and how this bias impacts microbial discovery.
    PubMed  Article  CAS  Google Scholar 

    15.
    Pedrós-Alió, C. The rare bacterial biosphere. Ann. Rev. Mar. Sci. 4, 449–466 (2012).
    PubMed  Article  Google Scholar 

    16.
    Brum, J. R., Schenck, R. O. & Sullivan, M. B. Global morphological analysis of marine viruses shows minimal regional variation and dominance of non-tailed viruses. ISME J. 7, 1738–1751 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Brum, J. R. et al. Patterns and ecological drivers of ocean viral communities. Science 348, 1261498 (2015). This is a pioneering, comprehensive metagenomic study on global marine viral diversity from hundreds of samples collected during the Tara expedition.
    PubMed  Article  CAS  Google Scholar 

    18.
    Trubl, G. et al. Soil viruses are underexplored players in ecosystem carbon processing. mSystems 3, e00076-18 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Paez-Espino, D. et al. IMG/VR v.2.0: an integrated data management and analysis system for cultivated and environmental viral genomes. Nucleic Acids Res. 47, D678–D686 (2019). This article describes the most comprehensive genome database of uncultured viruses recovered by metagenomics from different ecosystems, including the human body, with more than 700,000 viral genome fragments.
    CAS  PubMed  Article  Google Scholar 

    20.
    Carlson, C. J., Zipfel, C. M., Garnier, R. & Bansal, S. Global estimates of mammalian viral diversity accounting for host sharing. Nat. Ecol. Evol. 3, 1070–1075 (2019).
    PubMed  Article  Google Scholar 

    21.
    Carroll, D. et al. The Global Virome Project. Science 359, 872–874 (2018).
    CAS  PubMed  Article  Google Scholar 

    22.
    Cesar Ignacio-Espinoza, J., Solonenko, S. A. & Sullivan, M. B. The global virome: not as big as we thought? Curr. Opin. Virol. 3, 566–571 (2013). The authors address a hot topic in viral ecology (that is, how big the viral diversity in nature is) and estimate the total number of different viral proteins, which is a proxy for quantifying the number of different existing viruses.
    PubMed  Article  Google Scholar 

    23.
    Rohwer, F. Global phage diversity. Cell 113, 141 (2003).
    CAS  PubMed  Article  Google Scholar 

    24.
    Suttle, C. A. Environmental microbiology: viral diversity on the global stage. Nat. Microbiol. 1, 1–2 (2016).
    Article  CAS  Google Scholar 

    25.
    Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693 (2016).
    CAS  PubMed  Article  Google Scholar 

    26.
    Schulz, F. et al. Hidden diversity of soil giant viruses. Nat. Commun. 9, 1–9 (2018). The article reports the discovery of several relevant giant viruses, including one with a genome of 2.4 Mb, using metagenomics and a method that is similar to those used in SVG, but in this case targeting multiple sets of 100 viruses, instead of single-virus particles.
    Article  CAS  Google Scholar 

    27.
    Brown, C. T. et al. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523, 208–211 (2015).
    CAS  PubMed  Article  Google Scholar 

    28.
    Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7, 1–11 (2016).
    Article  CAS  Google Scholar 

    29.
    Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).
    CAS  PubMed  Article  Google Scholar 

    30.
    Schulz, F. et al. Giant virus diversity and host interactions through global metagenomics. Nature 578, 432–436 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    Al-Shayeb, B. et al. Clades of huge phages from across Earth’s ecosystems. Nature 578, 425–431 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Breitbart, M. et al. Genomic analysis of uncultured marine viral communities. Proc. Natl Acad. Sci. USA 99, 14250–14255 (2002).
    CAS  PubMed  Article  Google Scholar 

    33.
    Dávila-Ramos, S. et al. A review on viral metagenomics in extreme environments. Front. Microbiol. 10, 2403 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    34.
    Chatterjee, A., Sicheritz-Pontén, T., Yadav, R. & Kondabagil, K. Genomic and metagenomic signatures of giant viruses are ubiquitous in water samples from sewage, inland lake, waste water treatment plant, and municipal water supply in Mumbai, India. Sci. Rep. 9, 1–9 (2019).
    Article  CAS  Google Scholar 

    35.
    Simmonds, P. et al. Consensus statement: virus taxonomy in the age of metagenomics. Nat. Rev. Microbiol. 15, 161–168 (2017).
    CAS  PubMed  Article  Google Scholar 

    36.
    Martinez-Hernandez, F. et al. Single-virus genomics reveals hidden cosmopolitan and abundant viruses. Nat. Commun. 8, 1–13 (2017). This is a pioneering reference high-throughput SVG study that unveils extremely abundant and ubiquitous uncultured marine viruses overlooked for years by current state-of-the-art, standard metagenomic-based studies.
    Article  CAS  Google Scholar 

    37.
    Roux, S., Emerson, J. B., Eloe-Fadrosh, E. A. & Sullivan, M. B. Benchmarking viromics: an in silico evaluation of metagenome-enabled estimates of viral community composition and diversity. PeerJ 5, e3817 (2017). This in silico study performs a through bioinformatic comparison of different tools used commonly in viral metagenomics and aims to provide useful recommendations and standards for the scientific community.
    PubMed  PubMed Central  Article  Google Scholar 

    38.
    Aguirre de Cárcer, D., Angly, F. E. & Alcamí, A. Evaluation of viral genome assembly and diversity estimation in deep metagenomes. BMC Genomics 15, 1–12 (2014).
    Article  CAS  Google Scholar 

    39.
    López-Pérez, M., Haro-Moreno, J. M., Gonzalez-Serrano, R., Parras-Moltó, M. & Rodriguez-Valera, F. Genome diversity of marine phages recovered from Mediterranean metagenomes: size matters. PLoS Genet. 13, e1007018 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    40.
    Labonté, J. M. et al. Single-cell genomics-based analysis of virus–host interactions in marine surface bacterioplankton. ISME J. 9, 2386–2399 (2015). The screening of sequencing data from hundreds of single cells obtained from seawater unveils virus–host interactions in different ecologically important bacterial and archaeal groups.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    41.
    Roux, S. et al. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics. eLife 2014, e03125 (2014).
    Article  CAS  Google Scholar 

    42.
    Yoon, H. S. et al. Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science 332, 714–717 (2011). This is the first report of SCG in uncultivated widespread microbial eukaryotes, showing complex viral interactions and metabolic insights into phycobiliphyte groups.
    CAS  PubMed  Article  Google Scholar 

    43.
    Castillo, Y. M. et al. Assessing the viral content of uncultured picoeukaryotes in the global‐ocean by single cell genomics. Mol. Ecol. 28, 4272–4289 (2019).
    CAS  PubMed  Article  Google Scholar 

    44.
    Benites, L. F. et al. Single cell ecogenomics reveals mating types of individual cells and ssDNA viral infections in the smallest photosynthetic eukaryotes. Phil. Trans. R. Soc. B 374, 20190089 (2019).
    CAS  PubMed  Article  Google Scholar 

    45.
    Martinez-Hernandez, F. et al. Single-cell genomics uncover Pelagibacter as the putative host of the extremely abundant uncultured 37-F6 viral population in the ocean. ISME J. 13, 232–236 (2019).
    CAS  PubMed  Article  Google Scholar 

    46.
    Brussaard, C. P. D., Noordeloos, A. A. M., Sandaa, R. A., Heldal, M. & Bratbak, G. Discovery of a dsRNA virus infecting the marine photosynthetic protist Micromonas pusilla. Virology 319, 280–291 (2004).
    CAS  PubMed  Article  Google Scholar 

    47.
    Dean, F. B. et al. Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl Acad. Sci. USA 99, 5261–5266 (2002).
    CAS  PubMed  Article  Google Scholar 

    48.
    Raghunathan, A. et al. Genomic DNA amplification from a single bacterium. Appl. Environ. Microbiol. 71, 3342–3347 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Stepanauskas, R. & Sieracki, M. E. Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time. Proc. Natl Acad. Sci. USA 104, 9052–9057 (2007).
    CAS  PubMed  Article  Google Scholar 

    50.
    Rinke, C. et al. Obtaining genomes from uncultivated environmental microorganisms using FACS-based single-cell genomics. Nat. Protoc. 9, 1038–1048 (2014).
    CAS  PubMed  Article  Google Scholar 

    51.
    Martinez-Garcia, M., Martinez-Hernandez, F. & Martínez Martínez, J. Single-virus genomics: studying uncultured viruses, one at a time. Ref. Module Life Sci. https://doi.org/10.1016/b978-0-12-809633-8.21497-0 (2020). The authors provide methodological details and protocols for implementing SVG to complement other existing methods in viral ecology.
    Article  Google Scholar 

    52.
    Lindell, D. et al. Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc. Natl Acad. Sci. USA 101, 11013–11018 (2004).
    CAS  PubMed  Article  Google Scholar 

    53.
    Breitbart, M., Thompson, L., Suttle, C. & Sullivan, M. Exploring the vast diversity of marine viruses. Oceanography 20, 135–139 (2007).
    Article  Google Scholar 

    54.
    Brum, J. R. & Sullivan, M. B. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat. Rev. Microbiol. 13, 147–159 (2015). This review is recommended for readers who would like an introduction to recent technological advances in marine virology.
    CAS  PubMed  Article  Google Scholar 

    55.
    De Corte, D. et al. Viral communities in the global deep ocean conveyor belt assessed by targeted viromics. Front. Microbiol. 10, 1801 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    56.
    Aylward, F. O. et al. Diel cycling and long-term persistence of viruses in the ocean’s euphotic zone. Proc. Natl Acad. Sci. USA 114, 11446–11451 (2017).
    CAS  PubMed  Article  Google Scholar 

    57.
    Luo, E., Aylward, F. O., Mende, D. R. & Delong, E. F. Bacteriophage distributions and temporal variability in the ocean’s interior. mBio 8, e01903-17 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    58.
    Angly, F. E. et al. The marine viromes of four oceanic regions. PLoS Biol. 4, 2121–2131 (2006).
    CAS  Article  Google Scholar 

    59.
    Coutinho, F. H., Rosselli, R. & Rodríguez-Valera, F. Trends of microdiversity reveal depth-dependent evolutionary strategies of viruses in the Mediterranean. mSystems 4, 1–17 (2019).
    Article  Google Scholar 

    60.
    Roux, S., Krupovic, M., Debroas, D., Forterre, P. & Enault, F. Assessment of viral community functional potential from viral metagenomes may be hampered by contamination with cellular sequences. Open Biol. 3, 130160 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    61.
    Zolfo, M. et al. Detecting contamination in viromes using ViromeQC. Nat. Biotechnol. 37, 1408–1412 (2019).
    CAS  PubMed  Article  Google Scholar 

    62.
    Amgarten, D., Braga, L. P. P., da Silva, A. M. & Setubal, J. C. MARVEL, a tool for prediction of bacteriophage sequences in metagenomic bins. Front. Genet. 9, 304 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    63.
    Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: mining viral signal from microbial genomic data. PeerJ 3, e985 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    64.
    Ponsero, A. J. & Hurwitz, B. L. The promises and pitfalls of machine learning for detecting viruses in aquatic metagenomes. Front. Microbiol. 10, 806 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    65.
    Crummett, L. T., Puxty, R. J., Weihe, C., Marston, M. F. & Martiny, J. B. H. The genomic content and context of auxiliary metabolic genes in marine cyanomyoviruses. Virology 499, 219–229 (2016).
    CAS  PubMed  Article  Google Scholar 

    66.
    Pagarete, A., Allen, M. J., Wilson, W. H., Kimmance, S. A. & de Vargas, C. Host-virus shift of the sphingolipid pathway along an Emiliania huxleyi bloom: survival of the fattest. Environ. Microbiol. 11, 2840–2848 (2009).
    CAS  PubMed  Article  Google Scholar 

    67.
    Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, 1109–1123 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Kavagutti, V. S., Andrei, A. Ş., Mehrshad, M., Salcher, M. M. & Ghai, R. Phage-centric ecological interactions in aquatic ecosystems revealed through ultra-deep metagenomics. Microbiome 7, 1–15 (2019).
    Article  Google Scholar 

    69.
    Sutton, T. D. S., Clooney, A. G., Ryan, F. J., Ross, R. P. & Hill, C. Choice of assembly software has a critical impact on virome characterisation. Microbiome 7, 12 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    70.
    Madoui, M.-A. et al. Genome assembly using Nanopore-guided long and error-free DNA reads. BMC Genomics 16, 327 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    71.
    Warwick-Dugdale, J. et al. Long-read viral metagenomics captures abundant and microdiverse viral populations and their niche-defining genomic islands. PeerJ 7, e6800 (2019). This pioneering study successfully combines long-read and short-read sequencing data to improve viral metagenomic assemblies and shows the potential of Nanopore sequencing data to advance virus discovery.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    72.
    Beaulaurier, J. et al. Assembly-free single-molecule sequencing recovers complete virus genomes from natural microbial communities. Genome Res. 30, 437–446 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    73.
    Mizuno, C. M., Rodriguez-Valera, F., Kimes, N. E. & Ghai, R. Expanding the marine virosphere using metagenomics. PLoS Genet. 9, e1003987 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    74.
    Garcia-Heredia, I. et al. Reconstructing viral genomes from the environment using fosmid clones: the case of haloviruses. PLoS ONE 7, e33802 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Chow, C. E. T., Winget, D. M., White, R. A., Hallam, S. J. & Suttle, C. A. Combining genomic sequencing methods to explore viral diversity and reveal potential virus-host interactions. Front. Microbiol. 6, 265 (2015).
    PubMed  PubMed Central  Google Scholar 

    76.
    Mizuno, C. M., Ghai, R., Saghaï, A., López-García, P. & Rodriguez-Valera, F. Genomes of abundant and widespread viruses from the deep ocean. mBio 7, e00805–e00816 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    77.
    Martinez-Garcia, M. et al. High-throughput single-cell sequencing identifies photoheterotrophs and chemoautotrophs in freshwater bacterioplankton. ISME J. 6, 113–123 (2012).
    CAS  PubMed  Article  Google Scholar 

    78.
    Stepanauskas, R. Single cell genomics: an individual look at microbes. Curr. Opin. Microbiol. 15, 613–620 (2012).
    CAS  PubMed  Article  Google Scholar 

    79.
    Sieracki, M. E. et al. Single cell genomics yields a wide diversity of small planktonic protists across major ocean ecosystems. Sci. Rep. 9, 1–11 (2019).
    CAS  Article  Google Scholar 

    80.
    Lasken, R. S. Genomic sequencing of uncultured microorganisms from single cells. Nat. Rev. Microbiol. 10, 631–640 (2012).
    CAS  PubMed  Article  Google Scholar 

    81.
    López-Escardó, D. et al. Evaluation of single-cell genomics to address evolutionary questions using three SAGs of the choanoflagellate Monosiga brevicollis. Sci. Rep. 7, 1–14 (2017).
    Article  CAS  Google Scholar 

    82.
    Mangot, J. F. et al. Accessing the genomic information of unculturable oceanic picoeukaryotes by combining multiple single cells. Sci. Rep. 7, 1–12 (2017).
    Article  CAS  Google Scholar 

    83.
    Seeleuthner, Y. et al. Single-cell genomics of multiple uncultured stramenopiles reveals underestimated functional diversity across oceans. Nat. Commun. 9, 1–10 (2018).
    CAS  Article  Google Scholar 

    84.
    Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013). This article is an excellent example of the power of single-cell technologies to provide biological insights into uncultured microorganisms.
    CAS  PubMed  Article  Google Scholar 

    85.
    Swan, B. K. et al. Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Proc. Natl Acad. Sci. USA 110, 11463–11468 (2013).
    CAS  PubMed  Article  Google Scholar 

    86.
    Garcia, S. L. et al. Metabolic potential of a single cell belonging to one of the most abundant lineages in freshwater bacterioplankton. ISME J. 7, 137–147 (2013).
    CAS  PubMed  Article  Google Scholar 

    87.
    Martinez-Garcia, M. et al. Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of verrucomicrobia. PLoS ONE 7, e35314 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    88.
    Stepanauskas, R. et al. Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles. Nat. Commun. 8, 1–10 (2017). The authors use flow cytometry to sort uncultured single viruses and they amplify their genomes with a new variant of an efficient Φ29 enzyme, which is commonly used in SCG and SVG. This study is another SVG example targeting uncultured viruses.
    Article  CAS  Google Scholar 

    89.
    Ghylin, T. W. et al. Comparative single-cell genomics reveals potential ecological niches for the freshwater acI Actinobacteria lineage. ISME J. 8, 2503–2516 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    90.
    Wilson, W. H. et al. Genomic exploration of individual giant ocean viruses. ISME J. 11, 1736–1745 (2017). This reference SVG study targets for the first time uncultured giant viruses in nature, which are commonly ignored with standard metagenomic techniques.
    PubMed  PubMed Central  Article  Google Scholar 

    91.
    de la Cruz Peña, M. et al. Deciphering the human virome with single-virus genomics and metagenomics. Viruses 10, 113 (2018). This is the first study on SVG applied to the human virome. The authors implement this novel technology, combined with metagenomics, in salivary human samples and discover important, abundant phages.
    PubMed Central  Article  CAS  PubMed  Google Scholar 

    92.
    Allen, L. Z. et al. Single virus genomics: a new tool for virus discovery. PLoS ONE 6, e17722 (2011). This is the first report showing the feasibility of SVG as a new tool for virus discovery. The authors successfully use this technology to sequence several single sorted virus particles of viral isolates T4 and λ of E. coli.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    93.
    Holmfeldt, K., Odić, D., Sullivan, M. B., Middelboe, M. & Riemann, L. Cultivated single-stranded DNA phages that infect marine bacteroidetes prove difficult to detect with DNA-binding stains. Appl. Environ. Microbiol. 78, 892–894 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    94.
    Pospichalova, V. et al. Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer. J. Extracell. Vesicles 4, 25530 (2015).
    PubMed  Article  CAS  Google Scholar 

    95.
    Giesecke, C. et al. Determination of background, signal-to-noise, and dynamic range of a flow cytometer: a novel practical method for instrument characterization and standardization. Cytometry A 91, 1104–1114 (2017).
    CAS  PubMed  Article  Google Scholar 

    96.
    Schmidt, H. & Hawkins, A. R. Single-virus analysis through chip-based optical detection. Bioanalysis 8, 867–870 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    97.
    Brussaard, C., Payet, J. P., Winter, C. & Weinbauer, M. G. Quantification of aquatic viruses by flow cytometry. Man. Aquat. Viral Ecol. 11, 102–109 (2010).
    Article  Google Scholar 

    98.
    Mojica, K. D. A. & Brussaard, C. P. D. Factors affecting virus dynamics and microbial host-virus interactions in marine environments. FEMS Microbiol. Ecol. 89, 495–515 (2014).
    CAS  PubMed  Article  Google Scholar 

    99.
    Blainey, P. C. & Quake, S. R. Digital MDA for enumeration of total nucleic acid contamination. Nucleic Acids Res. 39, e19 (2011).
    PubMed  Article  CAS  Google Scholar 

    100.
    Woyke, T. et al. Decontamination of MDA reagents for single cell whole genome amplification. PLoS ONE 6, e26161 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    101.
    Povilaitis, T., Alzbutas, G., Sukackaite, R., Siurkus, J. & Skirgaila, R. In vitro evolution of phi29 DNA polymerase using isothermal compartmentalized self replication technique. Protein Eng. Des. Sel. 29, 617–628 (2016).
    CAS  PubMed  Article  Google Scholar 

    102.
    Gawad, C., Koh, W. & Quake, S. R. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17, 175–188 (2016). This is one of the most comprehensive technical and scientific reviews of SCG technologies of unicellular and multicellular organisms, and discusses how these technologies have enabled new discoveries in multiple fields from microbiology to cancer or immunology.
    CAS  PubMed  Article  Google Scholar 

    103.
    Martínez Martínez, J., Swan, B. K. & Wilson, W. H. Marine viruses, a genetic reservoir revealed by targeted viromics. ISME J. 8, 1079–1088 (2014). This study uses technologies similar to those used in SVG to discover giant viruses and other relevant uncultured viruses from a sorted pool of marine uncultured viruses.
    PubMed  Article  CAS  Google Scholar 

    104.
    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    105.
    Woyke, T. et al. One bacterial cell, one complete genome. PLoS ONE 5, e10314 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    106.
    Roux, S. et al. Minimum information about an uncultivated virus genome (MIUVIG). Nat. Biotechnol. 37, 29–37 (2019).
    CAS  PubMed  Article  Google Scholar 

    107.
    Hercher, M., Mueller, W. & Shapiro, H. M. Detection and discrimination of individual viruses by flow cytometry. J. Histochem. Cytochem. 27, 350–352 (1979).
    CAS  PubMed  Article  Google Scholar 

    108.
    Lippé, R. Flow virometry: a powerful tool to functionally characterize viruses. J. Virol. 92, e01765-17 (2017).
    Article  Google Scholar 

    109.
    Koonin, E. V. & Yutin, N. Evolution of the large nucleocytoplasmic DNA viruses of eukaryotes and convergent origins of viral gigantism. Adv. Virus Res. 103, 167–202 (2019).
    CAS  PubMed  Article  Google Scholar 

    110.
    Brum, J. R. et al. Illuminating structural proteins in viral ‘dark matter’ with metaproteomics. Proc. Natl Acad. Sci. USA 113, 2436–2441 (2016).
    CAS  PubMed  Article  Google Scholar 

    111.
    Alonso-Sáez, L., Morán, X. A. G. & Clokie, M. R. Low activity of lytic pelagiphages in coastal marine waters. ISME J. 12, 2100–2102 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    112.
    Zhao, Y. et al. Abundant SAR11 viruses in the ocean. Nature 494, 357–360 (2013).
    CAS  PubMed  Article  Google Scholar 

    113.
    McMullen, A., Martinez‐Hernandez, F. & Martinez‐Garcia, M. Absolute quantification of infecting viral particles by chip‐based digital polymerase chain reaction. Environ. Microbiol. Rep. 11, 855–860 (2019).
    CAS  PubMed  Google Scholar 

    114.
    Fukuda, R., Ogawa, H., Nagata, T. & Koike, I. Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Appl. Environ. Microbiol. 64, 3352–3358 (1998).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    115.
    Needham, D. M. et al. Targeted metagenomic recovery of four divergent viruses reveals shared and distinctive characteristics of giant viruses of marine eukaryotes. Phil. Trans. R. Soc. B 374, 20190086 (2019).
    CAS  PubMed  Article  Google Scholar 

    116.
    Needham, D. M. et al. A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators. Proc. Natl Acad. Sci. USA 116, 20574–20583 (2019).
    CAS  PubMed  Article  Google Scholar 

    117.
    Dieterich, D. C., Link, A. J., Graumann, J., Tirrell, D. A. & Schuman, E. M. Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc. Natl Acad. Sci. USA 103, 9482–9487 (2006).
    CAS  PubMed  Article  Google Scholar 

    118.
    Hatzenpichler, R. et al. In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry. Environ. Microbiol. 16, 2568–2590 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    119.
    Pasulka, A. L. et al. Interrogating marine virus-host interactions and elemental transfer with BONCAT and nanoSIMS-based methods. Environ. Microbiol. 20, 671–692 (2018).
    CAS  PubMed  Article  Google Scholar 

    120.
    Dominguez-Medina, S. et al. Neutral mass spectrometry of virus capsids above 100 megadaltons with nanomechanical resonators. Science 362, 918–922 (2018).
    CAS  PubMed  Article  Google Scholar 

    121.
    Hermelink, A. et al. Towards a correlative approach for characterising single virus particles by transmission electron microscopy and nanoscale Raman spectroscopy. Analyst 142, 1342–1349 (2017).
    CAS  PubMed  Article  Google Scholar 

    122.
    Ruokola, P. et al. Raman spectroscopic signatures of echovirus 1 uncoating. J. Virol. 88, 8504–8513 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    123.
    Schatz, D. et al. Communication via extracellular vesicles enhances viral infection of a cosmopolitan alga. Nat. Microbiol. 2, 1485–1492 (2017).
    CAS  PubMed  Article  Google Scholar 

    124.
    Berleman, J. & Auer, M. The role of bacterial outer membrane vesicles for intra- and interspecies delivery. Environ. Microbiol. 15, 347–354 (2013).
    CAS  PubMed  Article  Google Scholar 

    125.
    Van Niel, G., D’Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).
    PubMed  Article  CAS  Google Scholar 

    126.
    Machtinger, R., Laurent, L. C. & Baccarelli, A. A. Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Hum. Reprod. Update 22, 182–193 (2016).
    CAS  PubMed  Google Scholar 

    127.
    Biller, S. J. et al. Membrane vesicles in sea water: heterogeneous DNA content and implications for viral abundance estimates. ISME J. 11, 394–404 (2017).
    CAS  PubMed  Article  Google Scholar 

    128.
    Kulp, A. & Kuehn, M. J. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 64, 163–184 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    129.
    Jacob, F. & Wollman, E. L. Viruses and genes. Sci. Am. 204, 93–107 (1961).
    CAS  PubMed  Article  Google Scholar 

    130.
    Forterre, P. The virocell concept and environmental microbiology. ISME J. 7, 233–236 (2013).
    CAS  PubMed  Article  Google Scholar 

    131.
    Forterre, P. Manipulation of cellular syntheses and the nature of viruses: the virocell concept. C. R. Chim. 14, 392–399 (2011).
    CAS  Article  Google Scholar 

    132.
    Weitz, J. S., Li, G., Gulbudak, H., Cortez, M. H. & Whitaker, R. J. Viral invasion fitness across a continuum from lysis to latency. Virus Evol. 5, vez006 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    133.
    Martinez-Garcia, M. et al. Unveiling in situ interactions between marine protists and bacteria through single cell sequencing. ISME J. 6, 703–707 (2012).
    CAS  PubMed  Article  Google Scholar 

    134.
    Martínez-García, M., Santos, F., Moreno-Paz, M., Parro, V. & Antón, J. Unveiling viral–host interactions within the ‘microbial dark matter’. Nat. Commun. 5, 1–8 (2014).
    Article  CAS  Google Scholar 

    135.
    Džunková, M. et al. Defining the human gut host–phage network through single-cell viral tagging. Nat. Microbiol. 4, 2192–2203 (2019). This is probably one of the most comprehensive SCG studies within the context of the human gut microbiota, and unveils a total of 363 unique host–phage pairings, expanding the known host–phage network of the gut microbiota.
    PubMed  Article  CAS  Google Scholar 

    136.
    Munson-Mcgee, J. H. et al. A virus or more in (nearly) every cell: Ubiquitous networks of virus-host interactions in extreme environments. ISME J. 12, 1706–1714 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    137.
    Jarett, J. K. et al. Insights into the dynamics between viruses and their hosts in a hot spring microbial mat. ISME J. 14, 2527–2541 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    138.
    Deng, L. et al. Viral tagging reveals discrete populations in Synechococcus viral genome sequence space. Nature 513, 242–245 (2014).
    CAS  PubMed  Article  Google Scholar 

    139.
    Allers, E. et al. Single-cell and population level viral infection dynamics revealed by phageFISH, a method to visualize intracellular and free viruses. Environ. Microbiol. 15, 2306–2318 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    140.
    Zanini, F. et al. Virus-inclusive single-cell RNA sequencing reveals the molecular signature of progression to severe dengue. Proc. Natl Acad. Sci. USA 115, E12363–E12369 (2018).
    CAS  PubMed  Article  Google Scholar 

    141.
    Steuerman, Y. et al. Dissection of influenza infection in vivo by single-cell RNA sequencing. Cell Syst. 6, 679–691 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    142.
    Wyler, E. et al. Single-cell RNA-sequencing of herpes simplex virus 1-infected cells connects NRF2 activation to an antiviral program. Nat. Commun. 10, 1–14 (2019).
    Article  CAS  Google Scholar 

    143.
    Guo, Q., Duffy, S. P., Matthews, K., Islamzada, E. & Ma, H. Deformability based cell sorting using microfluidic ratchets enabling phenotypic separation of leukocytes directly from whole blood. Sci. Rep. 7, 1–11 (2017).
    Article  CAS  Google Scholar 

    144.
    Liu, W. et al. More than efficacy revealed by single-cell analysis of antiviral therapeutics. Sci. Adv. 5, eaax4761 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    145.
    Lasken, R. S. Single-cell genomic sequencing using multiple displacement amplification. Curr. Opin. Microbiol. 10, 510–516 (2007).
    CAS  PubMed  Article  Google Scholar 

    146.
    Marcy, Y. et al. Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc. Natl Acad. Sci. USA 104, 11889–11894 (2007).
    CAS  PubMed  Article  Google Scholar 

    147.
    Swan, B. K. et al. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science 333, 1296–1300 (2011).
    CAS  PubMed  Article  Google Scholar 

    148.
    Ahrendt, S. R. et al. Leveraging single-cell genomics to expand the fungal tree of life. Nat. Microbiol. 3, 1417–1428 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    149.
    McConnell, M. J. et al. Mosaic copy number variation in human neurons. Science 342, 632–637 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    150.
    Poulin, J. F., Tasic, B., Hjerling-Leffler, J., Trimarchi, J. M. & Awatramani, R. Disentangling neural cell diversity using single-cell transcriptomics. Nat. Neurosci. 19, 1131–1141 (2016).
    PubMed  Article  CAS  Google Scholar 

    151.
    Tanay, A. & Regev, A. Scaling single-cell genomics from phenomenology to mechanism. Nature 541, 331–338 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    152.
    Sandberg, R. Entering the era of single-cell transcriptomics in biology and medicine. Nat. Methods 11, 22–24 (2014).
    CAS  PubMed  Article  Google Scholar 

    153.
    Wang, Y. et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512, 155–160 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    154.
    Lindell, D. et al. Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution. Nature 449, 83–86 (2007).
    CAS  PubMed  Article  Google Scholar 

    155.
    Roux, S., Tournayre, J., Mahul, A., Debroas, D. & Enault, F. Metavir 2: new tools for viral metagenome comparison and assembled virome analysis. BMC Bioinformatics 15, 1–12 (2014).
    Article  CAS  Google Scholar 

    156.
    Watson, M., Schnettler, E. & Kohl, A. viRome: an R package for the visualization and analysis of viral small RNA sequence datasets. Bioinformatics 29, 1902–1903 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    157.
    Jurtz, V. I., Villarroel, J., Lund, O., Voldby Larsen, M. & Nielsen, M. MetaPhinder—identifying bacteriophage sequences in metagenomic data sets. PLoS ONE 11, e0163111 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    158.
    Zheng, T. et al. Mining, analyzing, and integrating viral signals from metagenomic data. Microbiome 7, 1–15 (2019).
    CAS  Article  Google Scholar 

    159.
    Ren, J., Ahlgren, N. A., Lu, Y. Y., Fuhrman, J. A. & Sun, F. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome 5, 69 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    160.
    Fang, Z. et al. PPR-Meta: a tool for identifying phages and plasmids from metagenomic fragments using deep learning. GigaScience 8, giz066 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    161.
    Tampuu, A., Bzhalava, Z., Dillner, J. & Vicente, R. ViraMiner: Deep learning on raw DNA sequences for identifying viral genomes in human samples. PLoS ONE 14, e0222271 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    162.
    Bin Jang, H. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).
    Article  CAS  Google Scholar 

    163.
    Schleyer, G. et al. In plaque-mass spectrometry imaging of a bloom-forming alga during viral infection reveals a metabolic shift towards odd-chain fatty acid lipids. Nat. Microbiol. 4, 527–538 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    164.
    Van Etten, J. L., Burbank, D. E., Kuczmarski, D. & Meints, R. H. Virus infection of culturable Chlorella-like algae and development of a plaque assay. Science 219, 994–996 (1983).
    Article  Google Scholar 

    165.
    Maxwell, K. L. & Frappier, L. Viral proteomics. Microbiol. Mol. Biol. Rev. 71, 398–411 (2007).
    CAS  Article  Google Scholar 

    166.
    Lum, K. K. & Cristea, I. M. Proteomic approaches to uncovering virus-host protein interactions during the progression of viral infection. Expert Rev. Proteom. 13, 325–340 (2016).
    CAS  Article  Google Scholar 

    167.
    Cheng, W. & Schimert, K. A method for tethering single viral particles for virus-cell interaction studies with optical tweezers. Proc. SPIE 10723, 107233B (2018).
    Google Scholar 

    168.
    Ekeberg, T. et al. Three-dimensional reconstruction of the giant mimivirus particle with an X-ray free-electron laser. Phys. Rev. Lett. 114, 098102 (2015).
    PubMed  Article  CAS  Google Scholar 

    169.
    Cheng, Y. Single-particle cryo-EM at crystallographic resolution. Cell 161, 450–457 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    170.
    Lyumkis, D. Challenges and opportunities in cryo-EM single-particle analysis. J. Biol. Chem. 294, 5181–5197 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    171.
    Subramaniam, S., Bartesaghi, A., Liu, J., Bennett, A. E. & Sougrat, R. Electron tomography of viruses. Curr. Opin. Struct. Biol. 17, 596–602 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    172.
    Gamage, S. et al. Probing structural changes in single enveloped virus particles using nano-infrared spectroscopic imaging. PLoS ONE 13, e0199112 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    173.
    Martínez Martínez, J., Schroeder, D. C., Larsen, A., Bratbak, G. & Wilson, W. H. Molecular dynamics of Emiliania huxleyi and cooccurring viruses during two separate mesocosm studies. Appl. Environ. Microbiol. 73, 554–562 (2007).
    Article  CAS  Google Scholar 

    174.
    Martínez Martínez, J. et al. New lipid envelope-containing dsDNA virus isolates infecting Micromonas pusilla reveal a separate phylogenetic group. Aquat. Microb. Ecol. 74, 17–28 (2015).
    Article  Google Scholar  More