‘Candidatus Liberibacter solanacearum’ distribution and diversity in Scotland and the characterisation of novel haplotypes from Craspedolepta spp. (Psyllidae: Aphalaridae)
1.
Wen, A. et al. Detection, distribution, and genetic variability of ‘Candidatus Liberibacter’ species associated with zebra complex disease of potato in North America. Plant Dis. 93, 1102–1115 (2009).
CAS PubMed Article Google Scholar
2.
Munyaneza, J. E. et al. First report of “Candidatus Liberibacter solanacearum” associated with psyllid-affected carrots in Europe. Plant Dis. 94, 639 (2010).
CAS PubMed Article Google Scholar
3.
Nelson, W. R. et al. A new haplotype of ‘Candidatus Liberibacter solanacearum’ identified in the Mediterranean region. Eur. J. Plant Pathol. 135, 633–639 (2013).
Article Google Scholar
4.
Teresani, G. R. et al. Association of ‘Candidatus Liberibacter solanacearum’ with a vegetative disorder of celery in Spain and development of a real-time PCR method for its detection. Phytopathology 104, 804–811 (2014).
CAS PubMed Article Google Scholar
5.
Swisher Grimm, K. D. & Garczynski, S. F. Identification of a new haplotype of ‘Candidatus Liberibacter solanacearum’ in Solanum tuberosum. Plant Dis. 103, 468–474 (2019).
CAS PubMed Article PubMed Central Google Scholar
6.
Mauck, K. E., Sun, P., Meduri, V. & Hansen, A. K. N. C. Liberibacter psyllaurous haplotype resurrected from a 49-year-old specimen of Solanum umbelliferum: a native host of the psyllid vector. Sci. Rep. 9, 9530 (2019).
ADS PubMed PubMed Central Article CAS Google Scholar
7.
Haapalainen, M. et al. A novel haplotype of ‘Candidatus Liberibacter solanacearum ’ found in Apiaceae and Polygonaceae family plants. Eur. J. Plant Pathol. https://doi.org/10.1007/s10658-019-01890-0 (2019).
Article Google Scholar
8.
Contreras-Rendón, A., Sánchez-Pale, J. R., Fuentes-Aragón, D., Alanís-Martínez, I. & Silva-Rojas, H. V. Conventional and qPCR reveals the presence of ‘Candidatus Liberibacter solanacearum’ haplotypes A, and B in Physalis philadelphica plant, seed, and Βactericera cockerelli psyllids, with the assignment of a new haplotype H in Convolvul. Antonie Van Leeuwenhoek 113, 533–551 (2020).
PubMed Article CAS PubMed Central Google Scholar
9.
Haapalainen, M. et al. Genetic variation of ‘Candidatus Liberibacter solanacearum’ haplotype C and identification of a novel haplotype from Trioza urticae and stinging nettle. Phytopathology 1–49 (2018).
10.
Munyaneza, J. E., Sengoda, V. G., Aguilar, E., Bextine, B. & McCue, K. F. First report of ‘Candidatus Liberibacter solanacearum’ associated with psyllid-infested tobacco in Nicaragua. Plant Dis. 97, 1244 (2013).
CAS PubMed Article Google Scholar
11.
Hajri, A., Loiseau, M., Cousseau-Suhard, P., Renaudin, I. & Gentit, P. Genetic characterization of ‘Candidatus Liberibacter solanacearum’ haplotypes associated with Apiaceous crops in France. Plant Dis. 101, 1383–1390 (2017).
CAS PubMed Article Google Scholar
12.
Haapalainen, M. et al. Frequency and occurrence of the carrot pathogen ‘Candidatus Liberibacter solanacearum’ haplotype C in Finland. Plant Pathol. 66, 559–570 (2017).
CAS Article Google Scholar
13.
Nissinen, A. I., Haapalainen, M., Jauhiainen, L., Lindman, M. & Pirhonen, M. Different symptoms in carrots caused by male and female carrot psyllid feeding and infection by ‘Candidatus Liberibacter solanacearum’. Plant Pathol. 63, 812–820 (2014).
Article Google Scholar
14.
Munyaneza, J. E. et al. First report of “Candidatus Liberibacter solanacearum” associated with psyllid-affected carrots in Sweden. Plant Dis. 96, 453–453 (2012).
CAS PubMed Article Google Scholar
15.
Ouvrard, D. 2018 Psyl’list – The World Psylloidea Database. https://www.hemiptera-databases.com/psyllist (2019).
16.
Bell, J. et al. Detection and monitoring of psyllid vectors of ‘Candidatus Liberibacter solanacearum’ in Scotland – Final report of project RRL/001/14. (2017).
17.
Teresani, G. R. et al. Transmission of ‘Candidatus Liberibacter solanacearum’ by Bactericera trigonica Hodkinson to vegetable hosts. Spanish J. Agric. Res. 15, e1011 (2017).
Article Google Scholar
18.
Antolínez, C. A., Fereres, A. & Moreno, A. Risk assessment of ‘Candidatus Liberibacter solanacearum’ transmission by the psyllids Bactericera trigonica and B. tremblayi from Apiaceae crops to potato. Sci. Rep. 7, 45534 (2017).
ADS PubMed PubMed Central Article CAS Google Scholar
19.
Mawassi, M. et al. ‘Candidatus Liberibacter solanacearum’ is tightly associated with Carrot Yellows symptoms in Israel and transmitted by the prevalent psyllid vector Bactericera trigonica. Phytopathology 108, 1056–1066 (2018).
CAS PubMed Article Google Scholar
20.
Antolínez, C. et al. Seasonal abundance of psyllid species on carrots and potato crops in Spain. Insects 10, 287 (2019).
PubMed Central Article PubMed Google Scholar
21.
Loiseau, M. et al. First report of ‘Candidatus Liberibacter solanacearum’ in carrot in France. Plant Dis. 98, 839 (2014).
CAS PubMed Article Google Scholar
22.
Tahzima, R. et al. First report of ‘Candidatus, Liberibacter solanacearum’ on carrot in Africa. Plant Dis. 98, 1426 (2014).
CAS PubMed Article Google Scholar
23.
Alfaro-Fernández, A., Siverio, F., Cebrián, M. C., Villaescusa, F. J. & Font, M. I. ‘Candidatus Liberibacter solanacearum’ associated with Bactericera trigonica-affected carrots in the Canary Islands. Plant Dis. 96, 581 (2012).
PubMed Article Google Scholar
24.
Othmen, S. B. et al. ‘Candidatus Liberibacter solanacearum’ haplotypes D and E in carrot plants and seeds in Tunisia. J. Plant Pathol. 100, 197–207 (2018).
Article Google Scholar
25
Othmen, S. B. et al. Bactericera trigonica and B. nigricornis (Hemiptera: Psylloidea) in Tunisia as potential vectors of ‘Candidatus Liberibacter solanacearum’ on Apiaceae. Orient. Insects https://doi.org/10.1080/00305316.2018.1536003 (2018).
Article Google Scholar
26.
Monger, W. A. & Jeffries, C. J. First report of ’ Candidatus Liberibacter solanacearum’ in parsley (Petroselinum crispum ) seed. New Dis. Rep. 34, 31 (2016).
Article Google Scholar
27.
Torres, G. L. et al. Horizontal transmission of ‘Candidatus Liberibacter solanacearum’ by Bactericera cockerelli (Hemiptera: Triozidae) on Convolvulus and Ipomoea (Solanales: Convolvulaceae). PLoS ONE 10, 1–11 (2015).
CAS Google Scholar
28.
Munyaneza, J. E., Sengoda, V. G., Aguilar, E., Bextine, B. R. & McCue, K. F. First report of ‘Candidatus Liberibacter solanacearum’ infecting eggplant in Honduras. Plant Dis. 97, 1654 (2013).
CAS PubMed Article Google Scholar
29.
Aguilar, E., Sengoda, V. G., Bextine, B., McCue, K. F. & Munyaneza, J. E. First report of ‘Candidatus Liberibacter solanacearum’ on tobacco in Honduras. Plant Dis. 97, 1376 (2013).
CAS PubMed Article Google Scholar
30.
Munyaneza, J. E., Sengoda, V. G., Crosslin, J. M., De la Rosa-Lozano, G. & Sanchez, A. First report of ‘Candidatus Liberibacter psyllaurous’ in potato tubers with Zebra Chip Disease in Mexico. Dis. Notes 93, 552–552 (2009).
CAS Google Scholar
31.
Teulon, D. A., Workman, P. J., Thomas, K. L. & Nielsen, M. C. Bactericera cockerelli: Incursion, dispersal and current distribution on vegetable crops in New Zealand. New Zeal. Plant Prot. 62, 136–144 (2009).
Article Google Scholar
32.
Castillo Carrillo, C., Fu, Z. & Burckhardt, D. First record of the Tomato Potato Psyllid Bactericera cockerelli from South America. Bull. Insectol. 72, 85–91 (2019).
Google Scholar
33.
EPPO. PM 9/25 (1) Bactericera cockerelli and ‘Candidatus Liberibacter solanacearum’. EPPO Bull.47, 513–523 (2017).
34.
Hodkinson, I. D. Life cycle variation and adaptation in jumping plant lice (Insecta: Hemiptera: Psylloidea): a global synthesis. J. Nat. Hist. 43, 65–179 (2009).
Article Google Scholar
35.
Thinakaran, J. et al. Association of Potato Psyllid (Bactericera cockerelli; Hemiptera: Triozidae) with Lycium spp. (Solanaceae) in potato growing regions of Washington, Idaho, and Oregon. Am. J. Potato Res. 94, 490–499 (2017).
Article Google Scholar
36.
Kaur, N. et al. Survival and development of Potato Psyllid (Hemiptera: Triozidae) on Convolvulaceae: effects of a plant-fungus symbiosis (Periglandula). PLoS ONE 13, 1–19 (2018).
Google Scholar
37
Cooper, W. R., Horton, D. R., Miliczky, E., Wohleb, C. H. & Waters, T. D. The weed link in Zebra Chip epidemiology: suitability of non-crop Solanaceae and Convolvulaceae to Potato Psyllid and “Candidatus Liberibacter solanacearum”. Am. J. Potato Res. https://doi.org/10.1007/s12230-019-09712-z (2019).
Article Google Scholar
38.
Munyaneza, J. E., Mustafa, T., Fisher, T. W., Sengoda, V. G. & Horton, D. R. Assessing the likelihood of transmission of ‘Candidatus Liberibacter solanacearum’ to carrot by Potato Psyllid, Bactericera cockerelli (Hemiptera: Triozidae). PLoS ONE 11, 1–16 (2016).
Article CAS Google Scholar
39.
Nissinen, A. I. et al. Can Carrot Psyllid (Trioza apicalis) transmit ‘Candidatus Liberibacter solanacearum’ to potato? Proceedings of the 12th Annual Zebra Chip Report. Sess. 194–198 (2012).
40.
Haapalainen, M. et al. Carrot pathogen ‘Candidatus Liberibacter solanacearum’ Haplotype C detected in symptomless potato plants in Finland. Potato Res. 61, 31–50 (2018).
CAS Article Google Scholar
41.
Teresani, G. et al. Search for potential vectors of ‘Candidatus Liberibacter solanacearum’: population dynamics in host crops. Span, J. Agric. Res. 13, 1–11 (2015).
Article Google Scholar
42.
Antolinez, C. A., Fereres, A. & Moreno, A. Risk assessment of ‘Candidatus Liberibacter solanacearum’ transmission by the psyllids Bactericera trigonica and B. tremblayi from Apiaceae crops to potato. Sci. Rep. 7, 1–10 (2017).
Article CAS Google Scholar
43.
Sjölund, M. J. et al. First report of ’Candidatus Liberibacter solanacearum ’ in the United Kingdom in the psyllid Trioza anthrisci. New Dis. Rep. 36, 4 (2017).
Article Google Scholar
44.
Munyaneza, J. E. et al. Association of “Candidatus Liberibacter solanacearum” with the psyllid, Trioza apicalis (Hemiptera: Triozidae) in Europe. J. Econ. Entomol. 103, 1060–1070 (2010).
CAS PubMed Article Google Scholar
45.
Munyaneza, J. E., Sengoda, V. G., Sundheim, L. & Meadow, R. Survey of ‘Candidatus Liberibacter solanacearum’ in carrot crops affected by the psyllid Trioza apicalis (Hemiptera: Triozidae) in Norway. J. Plant Pathol. 96, 397–402 (2014).
Google Scholar
46.
Liefting, L. W., Weir, B. S., Pennycook, S. R. & Clover, G. R. G. ‘Candidatus Liberibacter solanacearum’, associated with plants in the family Solanaceae. Int. J. Syst. Evol. Microbiol. 59, 2274–2276 (2009).
CAS PubMed Article Google Scholar
47.
Hansen, A. K., Trumble, J. T., Stouthamer, R. & Paine, T. D. A new huanglongbing species, ‘Candidatus Liberibacter psyllaurous’, found to infect tomato and potato, is vectored by the psyllid Bactericera cockerelli (Sulc). Appl. Environ. Microbiol. 74, 5862–5865 (2008).
CAS PubMed PubMed Central Article Google Scholar
48.
Munyaneza, J. E., Sengoda, V. G., Crosslin, J. M., Garzon-Tiznado, J. A. & Cardenas-Valenzuela, O. G. First report of ‘Candidatus Liberibacter solanacearum’ in tomato plants in Mexico. Plant Dis. 93, 1076 (2009).
PubMed Google Scholar
49.
Crosslin, J. M., Lin, H. & Munyaneza, J. E. Detection of ‘Candidatus Liberibacter solanacearum’ in the potato psyllid, Bactericera cockerelli (Sulc), by conventional and real-time PCR. Southwest. Entomol. 36, 125–135 (2011).
Article Google Scholar
50.
Loiseau, M. et al. Lack of evidence of vertical transmission of ‘Candidatus Liberibacter solanacearum’ by carrot seeds suggests that seed is not a major transmission pathway. Plant Dis. 101, 2104–2109 (2017).
CAS PubMed Article Google Scholar
51.
Bertolini, E. et al. Transmission of ‘Candidatus Liberibacter solanacearum’ in carrot seeds. Plant Pathol. 64, 276–285 (2015).
CAS Article Google Scholar
52.
Carminati, G., Satta, E., Paltrinieri, S. & Bertaccini, A. Simultaneous evaluation of ‘ Candidatus Phytoplasma’ and ‘Candidatus Liberibacter solanacearum’ seed transmission in carrot. Phytopathogenic Mol. 9, 141 (2019).
Article Google Scholar
53.
Bantock, T. & Botting, J. British Bugs: an online identification guide to UK Hemiptera. https://www.britishbugs.org.uk/index.htmlhttps://www.britishbugs.org.uk/index.html (2018).
54.
Hodkinson, I. D. & White, I. M. Homoptera Psylloidea. Handbooks for the Identification of British Insects (Royal Entomology Society of London, London, 1979).
55.
Munyaneza, J. E. et al. First report of ‘Candidatus Liberibacter solanacearum’ associated with psyllid-infested carrots in Germany. Plant Dis. 99, 1269 (2015).
Article Google Scholar
56.
Sjölund, M. J., Arnsdorf, Y. M., Carnegie, M., Fornefeld, E. & Will, T. ‘Candidatus Liberibacter solanacearum’ detected in Trioza urticae using suction trap-based monitoring of psyllids in Germany. J. Plant Dis. Prot. 126, 89–92 (2018).
Article Google Scholar
57.
Hajri, A., Cousseau-suhard, P., Gentit, P. & Loiseau, M. New insights into the genetic diversity of the bacterial plant pathogen ‘Candidatus Liberibacter solanacearum ’ as revealed by a new multilocus sequence analysis scheme. bioRxiv (preprint server) https://doi.org/https://doi.org/10.1101/623405.
58.
Ossiannilsson, F. The Psylloidea (Homoptera) of Fennoscandia and Denmark. Fauna Entomologica Scandinavia (E. J. Brill, 1992).
59.
Tishetshkin, D. Y. The possibility to use bioacoustic characters in the taxonomy of the jumping plant lice with an example of the genus Craspedolepta (Homoptera, Psyllinea, Aphalaridae) and description of a new species from Transbaikalia. Entomol. Rev. 87, 561–570 (2007).
Article Google Scholar
60.
Bird, J. M. & Hodkinson, I. D. Species at the edge of their range: The significance of the thermal environment for the distribution of congeneric Craspedolepta species (Sternorrhyncha: Psylloidea) living on Chamerion angustifolium (Onagraceae). Eur. J. Entomol. 96, 103–109 (1999).
Google Scholar
61.
Brunt, A. et al. Plant Viruses Online: Descriptions and Lists from the VIDE Database. Version: 20th August 1996. https://biology.anu.edu.au/Groups/MES/vide/https://biology.anu.edu.au/Groups/MES/vide/.
62.
Sjölund, M. J., Ouvrard, D., Kenyon, D. & Highet, F. Developing an RT-PCR assay for the identification of psyllid species. Proc. Crop Prot. North. Britain 279–282 (2016).
63.
Percy, D. M. Radiation, diversity, and host-plant interactions among island and continental legume-feeding psyllids. Evolution (N.Y.) 57, 2540–2556 (2003).
Google Scholar
64.
Li, W. et al. Multiplex real-time PCR for detection, identification and quantification of ‘Candidatus Liberibacter solanacearum’ in potato plants with zebra chip. J. Microbiol. Methods 78, 59–65 (2009).
CAS PubMed Article Google Scholar
65.
Peccoud, J., Labonne, G. & Sauvion, N. Molecular test to assign individuals within the Cacopsylla pruni complex. PLoS ONE 8, 1–8 (2013).
Article CAS Google Scholar
66.
EPPO. PM 7/129 (1) DNA barcoding as an identification tool for a number of regulated pests. EPPO Bull.46, 501–537 (2016). More