More stories

  • in

    Permafrost dynamics and the risk of anthrax transmission: a modelling study

    In this section, we first present the general formulation of our anthrax transmission model following both a deterministic and a stochastic approach. The latter seems particularly suitable in this case because of its ability to capture the dynamics of discrete events furthering pathogen spread, especially in the case of a small host population or episodic disease transmission. Then, we illustrate the methods used to derive conditions for the establishment of sustained disease transmission, in particular considering seasonal variations of environmental forcings and herding practice.
    The anthrax transmission model
    Our formulation builds on a compartmental model describing the epidemiological dynamics that affect a target population (composed of susceptible and infected individuals) being exposed to environmental contamination. We focus on domestic herbivores because they are both the most at risk and the most socio-economically valuable for Arctic communities. We thus neglect any direct interaction between infected carcasses and carnivores or scavengers, and consider environmental spores as the only source of infection (i.e. by ingestion while herds graze). As little is known yet on how age and sex of the animals may influence anthrax transmission, we suppose that all animals are equally vulnerable to the infection.
    Let S(t), I(t) and R(t) be the total abundances of susceptible, infected and temporarily immune animals at time t, respectively, and let H be the total size of the animal population. Differently from previous formulations, we introduce two different reservoirs of spores. The first (with abundance (B_1 (t))) accounts for fresh spores that are released after the death of infected hosts and that are immediately available on the soil surface. As these spores infiltrate, are washed away or get buried, they enter the second reservoir (with abundance (B_2 (t))), which describes long-term storage in the soil. Anthrax transmission can thus be described by the following system of ordinary differential equations:

    $$begin{aligned} frac{dS}{dt}&= mu (H-S) -F(t)S +rho R end{aligned}$$
    (1)

    $$begin{aligned} frac{dI}{dt}&=sigma F(t)S -(mu +alpha ) I end{aligned}$$
    (2)

    $$begin{aligned} frac{dR}{dt}&= (1-sigma )F(t)S – (mu +rho ) R end{aligned}$$
    (3)

    $$begin{aligned} frac{dB_1}{dt}&=theta alpha frac{I}{A} -(delta _1+chi ) B_1 end{aligned}$$
    (4)

    $$begin{aligned} frac{dB_2}{dt}&= chi B_1 -delta _2 B_2 end{aligned}$$
    (5)

    As for susceptible animals (Eq. 1), we assume that pastoralist practices keep herd size under controlled demographic growth, with (mu H) being the constant recruitment rate compensating the natural (non disease-induced) mortality occurring at rate (mu). Susceptible animals may become infected at a rate expressed by the total force of infection, F(t), which will be described in details later. A fraction (sigma) of animals that have been exposed to anthrax spores develops symptoms and enters the infected compartment I (Eq. 2). Once infected, symptomatic animals may die as a result of the anthrax infection at rate (alpha), or die for other causes not related to the disease at rate (mu). The remaining fraction of exposed animals ((1-sigma), e.g. animals that have been exposed to lower doses of spores) may not exhibit symptom and develop a temporary immunity38. As these individuals do not shed spores, we assume that they enter directly the immune compartment R (Eq. 3). These animals lose their immunity and return to the susceptible class at rate (rho). When infected animals die of anthrax disease, spores proliferate in the host carcass. We assume that each death produces a constant number (theta) of spores, which are then released from the carcass and contaminate the surrounding environment, whose areal extent is A (Eq. 4). Both (B_1 (t)) and (B_2 (t)) are environmental densities of spores per unit area (# spores m(^{-2})). The freshly released spores decay at a rate (delta _1), or may be removed from the surface soil layer and stored in the active layer reservoir at a rate (chi) (Eq. 5). The latter rate thus conceptually encapsulates the combined effect of infiltration, runoff, and the burying of infected carcasses without appropriate sanitary precautions. Spores stored in the active layer decay at a rate (delta _2). The main processes involved in anthrax transmission dynamics have been conceptualized in Fig. 1.
    The force of infection F(t) , which controls the rate at which susceptible animals get infected, depends on the concentrations of spores ((B_1), (B_2)) and the rate of exposure ((beta (t))) according to

    $$begin{aligned} F(t)=beta (t)biggl (frac{B_1}{K+B_1}+eta (t)frac{B_2}{K+B_2}biggl ), end{aligned}$$
    (6)

    where the fraction (B_i/(K+B_i)) (for (i=1,2)) is the probability of becoming infected after being exposed to a certain density (B_i) of spores, K being the half-saturation constant (i.e. the dose of spores for which infection risk is half of its maximum value). As mentioned before, because of the processes involving active layer thaw, including e.g. cryoturbation, soil cracking, and solifluction, we assume that spores (B_2) may become available to grazing animals. The exposure to spores (B_2) is therefore influenced by active layer thawing, which has a significant seasonal component. The interaction between thawing and the release of spores is expressed through the parameter (eta (t)), which quantifies the probability of being exposed to spores (B_2) relatively to that of being exposed to freshly released spores ((B_1)). Because all the processes mentioned above are more likely to occur with thawing, we assume the probability (eta (t)) to be proportional to the depth of the active layer. We will later relax this simple assumption and investigate more complex relationships. We initially mimic the annual cycle of active layer thawing with a simple sinusoidal function (which also simplifies stability analysis via Floquet theory), so that (eta (t)) can be expressed as:

    $$begin{aligned} eta (t)=max biggl (0, ; epsilon _{eta } sin biggl (frac{2pi }{365}tbiggl )biggl ) end{aligned}$$
    (7)

    with (epsilon _{eta }) indicating the maximum amplitude of seasonal fluctuations, i.e. the maximum probability for susceptibles to be exposed to spores (B_2) relative to spores (B_1). Note that the soil thaws only during the warmer months, during which susceptibles are potentially exposed to spores (B_2) ((eta (t) >0)). Later on, we model more realistically the annual cycle of active layer depth, relating it to a real record of surface soil temperatures via the Stefan equation39, 40, so as to better analyze anthrax risk in the Arctic environment.
    Herding practices and grazing activity might vary seasonally as well, favouring increased exposure during warmer months. Therefore, we set

    $$begin{aligned} beta (t)= beta _0biggl (1+epsilon _{beta }sin biggl (frac{2 pi }{365} t+2pi phi biggl )biggl ) end{aligned}$$
    (8)

    where (beta _0) is the average value of (beta (t)), (epsilon _{beta }) is the maximum amplitude of seasonal grazing fluctuations, while (0le phi le 1) is the temporal lag between the phases of (beta (t)) and (eta (t)). Note that t is expressed in days.
    Finally, to reduce the number of model parameters, we introduce the dimensionless spore concentrations (B^{*}_1={B_1}/{K}) and (B^{*}_2={B_2}/{K}) (see equations S1–S5 in the Supplementary Information). This substitution allows the aggregation of parameters (theta), A, and K into a single one, namely (theta ^{*}=theta /(A K)).
    Figure 1

    Conceptual diagram of the anthrax transmission model described in Eqs. 1–5.

    Full size image

    Stochastic formulation
    To build a stochastic version of our anthrax transmission model, we rely on an extension of the classic exact stochastic simulator algorithm (SSA)41 that has recently been proposed to describe the Haiti cholera epidemic42. In the SSA, each animal is considered individually, i.e. the abundances of susceptible and infected animals are treated as discrete variables, ({mathscr {S}}(t)) and ({mathscr {I}}(t)). Accordingly, each individual experiences stochastic events (i.e. birth, death, infection, anthrax-related death, etc.; see Table 1) that occur at different rates, (e_k), where k indicates a generic event, depending on the state of the system. The overall occurrence of events is modeled as a Poisson point process whose rate e is defined as the sum of the rates of occurrence of all possible events, i.e.

    $$begin{aligned} e=sum limits _{k=1}^8 e_k . end{aligned}$$

    The inter-arrival time between two subsequent events is thus an exponentially distributed random variable with mean 1/e, and the next event to occur is selected according to the probability (e_k/e)41.
    Table 1 State transitions and rates of all possible events involving susceptible, infected and temporally immune (recovered) animals.
    Full size table

    The concentrations of anthrax spores, ({mathscr {B}}^{*}_1(t)) and ({mathscr {B}}^{*}_2(t)), are instead treated as continuous stochastic variables, because they are typically large enough to allow a continuous description. At each anthrax-related death event, ({mathscr {B}}^{*}_1(t)) undergoes a step increase of size (theta ^{*}), whereas between events spore concentrations are updated using the analytical solution of equations S4–S5 (see the Supplementary Information), with (theta ^{*}=0). In analogy with the deterministic formulation (Eq. 6), the force of infection reads

    $$begin{aligned} {mathscr {F}}(t)=beta (t)biggl (frac{{mathscr {B}}^{*}_1}{K+{mathscr {B}}^{*}_1}+eta (t)frac{{mathscr {B}}^{*}_2}{K+{mathscr {B}}^{*}_2}biggl ). end{aligned}$$

    Finally, a Monte Carlo approach, in which many different trajectories (realizations) of the SSA are evaluated, is used to study the long-term behaviour of the stochastic formulation of the anthrax transmission model.
    Derivation of disease transmission conditions
    Linear stability analysis of time-invariant systems
    Conditions for long-term pathogen invasion and sustained transmission (endemicity) are first derived in the absence of seasonal fluctuations. To that end, we consider the exposure rate and the probability to be infected by spores (B_2) to be constant over time (i.e. (beta (t)=const=beta _0) and (eta (t)=const=eta _0), respectively).
    Endemic anthrax transmission is possible if the disease-free equilibrium (DFE), a state of system 1–5 where ((S,I,R,B_1,B_2)=(H,0,0,0,0)), is asymptotically unstable. Linear stability analysis is used to determine a threshold condition based on the basic reproduction number43

    $$begin{aligned} R_{0}=frac{sigma beta _0 theta ^{*} Halpha (delta _2+eta _0chi )}{delta _2(mu + alpha )(delta _1+chi )} . end{aligned}$$
    (9)

    Specifically, the DFE is asymptotically stable when (R_01), unfeasible and unstable otherwise. Clearly, (R_0=1) represents a bifurcation point, where the two equilibria collide and exchange their stability (transcritical bifurcation). For further mathematical details, the reader may refer to the Supplementary Information.
    In the absence of the long-term spore reservoir (B_2), the basic reproduction number ({tilde{R}}_{0}) reads:

    $$begin{aligned} {tilde{R}}_{0}=frac{sigma beta _0 theta ^{*} H alpha }{(mu + alpha )(delta _1+chi )}. end{aligned}$$
    (10)

    This definition will become useful in the following section.
    Periodic systems: Floquet analysis
    Conditions for endemic anthrax transmission to occur in a seasonally forced environment can be studied by applying Floquet theory36,37. The disease-free equilibrium of model 1–5 subject to periodic fluctuations is unstable when its maximum Floquet exponent, (xi _{max}), is positive (for further theoretical details see Supplementary Information). To compare transmission dynamics between periodic and time-independent conditions we calculated also ({overline{R}}_0) by assuming (eta (t)) and (beta (t)) to be constant and equal to their average value. For any parameter set, ({overline{R}}_0) provides information regarding the stability conditions of the system if temporal fluctuations of parameters were neglected.
    Note that other parameters may vary seasonally: for instance, the spore transition rate (chi) and the decay rates of the spores stored in the two reservoirs may vary over time because of fluctuations in the environment, temperature, and freezing or thawing conditions. However, for the sake of simplicity, and also due to the lack of detailed information, in the following we limit our analyses on the coupled effect of (beta (t)) and (eta (t)) (Eqs. 8 and 7, respectively).
    Model setting and data
    Most of the model parameters have been estimated according to reference values proposed in the literature, as shown in Table 2. The average lifespan of domestic livestock varies widely (on average between 5 and 20 years, or even more44), depending on the animal species and herding management. Since animals with shorter life expectancy are more likely to be infected (see Supplementary Fig. S1), we assumed an average mortality rate of 0.2 years(^{-1}) as a representative case, i.e. domestic cattle with an average lifespan of 5 years. Given high mortality rates among infected herbivores14, we assumed that about 70% of infected animals develop symptoms. The remaining 30% grow a temporary immune response, ensuring animal immunity for about 6 months38. Typically, infection with anthrax bacterium leads symptomatic animals to death in about 14 days14. Then, as the spores are released from infected carcasses, we assumed they remain directly available for about 10 days before their removal from the soil surface15,32. Spores can be viable for decades14, thus we assumed an average viability of 10 years. Finally, we assumed that the probability (eta) can vary between 0 and 1, thus implying that animals can be equally exposed to the two spore reservoirs during the periods of maximum thawing. The parameters (beta) and (theta ^{*}), which quantify overall exposure and contamination, respectively, are critical in determining transmission dynamics. However, the lack of suitable epidemiological records prevents a proper estimation. Therefore, we explored different combinations of these parameters to compare different scenarios for anthrax transmission dynamics and discuss the results. While the maximum exposure rate (beta) has an easily interpretable physical meaning, the parameter (theta ^{*}) has a less immediate interpretation. We therefore illustrate results in terms of the corresponding ({tilde{R}}_{0}) (Eq. 10), that is, the basic reproduction number of the simplified model that does not account for the long-term spore reservoir (B_2). All simulations have been run with a total population size of (H=10^4) animals.
    Finally, we exploited real data on the current variability of climate and permafrost dynamics to investigate the relationship between warm years (and related deeper active layers) and the risk of anthrax outbreaks. To that end, we run model simulations using the stochastic formulation and realistic forcing. To obtain the latter, we exploited a 17-year-long (2002–2018) dataset of thawing depth available at the Samoylov monitoring site (Lena River delta, northern Siberia)45 which we combined with records of soil surface temperature ((hbox {T}_{S})). We then modeled the yearly cycle of the active layer depth Z via the Stefan equation39,40 according to which (Z=Esqrt{C_S}), where E is the edaphic factor taking into account soil properties and (C_S) is the cumulative soil surface temperature, calculated when the top soil temperature is above (0,^{circ }hbox {C}). The estimated value of parameter E is equal to (2.58,hbox {cm}^circ hbox {C}^{-0.5}), when Z is in cm and (C_S) in (^{circ }hbox {C}) (see Supplementary Fig. S2). To produce synthetic time series of active layer depth to be used in the simulations, we first calculated the mean annual soil surface temperature and fitted a normal probability distribution to the 17 records. We then produced 200-year-long time-series of daily soil surface temperature randomly sampling the mean annual temperature from the normal distribution and assigning an annual pattern obtained shifting the trajectory of the average year (i.e. the year whose daily values are the averages across the available record for that specific day). Soil surface temperature is then transformed into active layer depth using the calibrated Stefan equation. In each 200-year-long model simulation, we discarded the first 100 years, which were used as model spin-up period, and retained the last 100 years for analysis. We run 100 replicas of the process, thus obtaining a total of 10,000 years of simulated anthrax incidence. Note that a 100-year-long simulation should not be interpreted as a future projection for which the hypothesis of steady climate is hardly justifiable, but rather as a computational way to obtain a large sample of simulations exploring the current climate variability without the need to repeat the spin-up phase of the model.
    In the analysis described so far, we assumed the probability of contact between animals and spores (B_2), i.e. the parameter (eta (t)), to be proportional to the active layer depth. This implicitly assumes that the underground concentration of spores is uniform. However, as the potential sources of spores are on the surface, a negative gradient of spore concentration for increasing depth could be expected. Mathematically, this can be mimicked assuming a saturating relationship between the probability (eta (t)) and the active layer depth Z(t) so that the marginal increase of risk associated with a unit increase of Z decreases with the depth of the active layer itself. We have therefore explored two scenarios: in the first one (case 1) we assumed a linear relationship, i.e. (eta (t)propto Z(t)); in the second (case 2) a saturating relationship of the type (eta (t)propto Z(t)/(Z(t)+Z_0)), where (Z_0) represents the semi-saturation depth, which has been set to 0.2 m. We then scaled (eta (t)) so that the maximum value for case 1 is equal to 0.2. Accordingly, (eta (t)) in case 2 has been scaled so that it has the same long-term mean of case 1.
    Table 2 Parameter values and their literature sources.
    Full size table More

  • in

    Integrative ecological and molecular analysis indicate high diversity and strict elevational separation of canopy beetles in tropical mountain forests

    1.
    Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526. https://doi.org/10.1038/s41586-018-0301-1 (2018).
    ADS  CAS  Article  PubMed  Google Scholar 
    2.
    Stork, N. E. How many species of insects and other terrestrial arthropods are there on earth?. Annu. Rev. Entomol. 63, 31–45 (2018).
    CAS  Article  Google Scholar 

    3.
    Rahbek, C. et al. Humboldt’s enigma: What causes global patterns of mountain biodiversity?. Science 365, 1108–1113. https://doi.org/10.1126/science.aax0149 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 

    4.
    Basset, Y. et al. Arthropod diversity in a tropical forest. Science 338, 1481–1484. https://doi.org/10.1126/science.1226727 (2012).
    ADS  CAS  Article  PubMed  Google Scholar 

    5.
    Erwin, T. L. Tropical forests: Their richness in Coleoptera and other arthropod species. Coleopterists Bull. 36(1), 74–75 (1982).
    Google Scholar 

    6.
    Sprick, P. & Floren, A. Diversity of Curculionoidea in humid rain forest canopies of Borneo: A taxonomic blank spot. Diversity 10, 116 (2018).
    Article  Google Scholar 

    7.
    Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evolut. 2, 599–610. https://doi.org/10.1038/s41559-018-0490-x (2018).
    Article  Google Scholar 

    8.
    Hammond, P. M. in Insects and the Rain Forest of South East Asia (Wallacea) (eds W. J. Knight & J. D. Holloway) 197–252 (Royal Entomological Society of London, 1990).

    9.
    Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation?. Trends Ecol. Evol. 31, 67–80. https://doi.org/10.1016/j.tree.2015.11.005 (2016).
    Article  PubMed  Google Scholar 

    10.
    Novotny, V. et al. Low beta diversity of herbivorous insects in tropical forests. Nature 448, 692–697 (2007).
    ADS  CAS  Article  Google Scholar 

    11.
    Thormann, B. et al. Small-scale topography modulates elevational α-, β- and γ-diversity of Andean leaf beetles. Oecologia 187, 181–189. https://doi.org/10.1007/s00442-018-4108-4 (2018).
    ADS  Article  PubMed  Google Scholar 

    12.
    12Allison, A., Samuelson, G. A. & Miller, S. E. in Canopy Arthropods (eds N.E. Stork, J. Adis, & R.K. Didham) 237–265 (Chapman & Hall, 1997).

    13.
    Mupepele, A.-C., Müller, T., Dittrich, M. & Floren, A. Are temperate canopy spiders tree-species specific?. PLoS ONE 9, e86571. https://doi.org/10.1371/journal.pone.0086571 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    14.
    Ratnasingham, S. & Hebert, P. D. N. A DNA-based registry for all animal species: The Barcode Index Number (BIN) system. PLoS ONE 8, e66213. https://doi.org/10.1371/journal.pone.0066213 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    15.
    15Miller, S. E., Hausmann, A., Hallwachs, W. & Janzen, D. H. Advancing taxonomy and bioinventories with DNA barcodes. Philos. Trans. R. Soc. B Biol. Sci.371, https://doi.org/10.1098/rstb.2015.0339 (2016).

    16.
    D’Souza, M. L. & Hebert, P. D. N. Stable baselines of temporal turnover underlie high beta diversity in tropical arthropod communities. Mol. Ecol. 27, 2447–2460. https://doi.org/10.1111/mec.14693 (2018).
    Article  PubMed  Google Scholar 

    17.
    Floren, A. & Linsenmair, K. E. in Arthropods of Tropical Forests: Spatio-Temporal Dynamics and Resource Use in the Canopy (eds Y. Basset, V. Novotny, S. Miller, & R. Kitching) 190–197 (Cambridge University Press, 2003).

    18.
    Gill, B. A. et al. Cryptic species diversity reveals biogeographic support for the “mountain passes are higher in the tropics” hypothesis. Proc. R. Soc. B Biol. Sci. 283, 20160553. https://doi.org/10.1098/rspb.2016.0553 (2016).
    Article  Google Scholar 

    19.
    Schmidt, S., Schmid-Egger, C., Morinière, J., Haszprunar, G. & Hebert, P. D. DNA barcoding largely supports 250 years of classical taxonomy: Identifications for Central European bees (Hymenoptera, Apoidea partim). Mol. Ecol. Resour. 15, 985–1000. https://doi.org/10.1111/1755-0998.12363 (2015).
    CAS  Article  PubMed  Google Scholar 

    20.
    García-Robledo, C., Kuprewicz, E. K., Staines, C. L., Erwin, T. L. & Kress, W. J. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. Proc. Natl. Acad. Sci. U.S.A. 113, 680–685. https://doi.org/10.1073/pnas.1507681113 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    21.
    Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J. & Wang, G. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr. Comp. Biol. 46, 5–17. https://doi.org/10.1093/icb/icj003 (2006).
    Article  PubMed  Google Scholar 

    22.
    Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249. https://doi.org/10.1086/282487 (1967).
    Article  Google Scholar 

    23.
    de Bruyn, M. et al. Borneo and Indochina are major evolutionary hotspots for Southeast Asian biodiversity. Syst. Biol. 63, 879–901, https://doi.org/10.1093/sysbio/syu047 (2014).

    24.
    Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impact on tropical nature. Trends Ecol. Evol. 29, 107–116. https://doi.org/10.1016/j.tree.2013.12.001 (2014).
    Article  PubMed  Google Scholar 

    25.
    Carolyn, R. D., Baskoro, D. P. T. & Prasetyo, L. B. Analisis Degradasi Untuk Penyususnan Arahan Strategi Pengendaliannya Di Taman Nasional Gunung Halimun Salak Provinsi Jawa Barat. Globe 15, 39–47 (2013).
    Google Scholar 

    26.
    Priyadi, H. et al.Five Hundred Plant Species in Gunung Halimun Salak National Park, West Java: A Checklist Including Sundanese Names, Distribution and Use (2010).

    27.
    Floren, A. in Manual on Field Recording Techniques and Protocols for All Taxa Biodiversity Inventories ABC Taxa Vol. Part 1 (eds J. Eymann, J. Degreff, & C. Häuser) 158–172 (2010).

    28.
    Schoonhoven, L. M., van Loon, J. J. A. & Dicke, M. Insect-Plant Biology. (Oxford University Press, 2010).

    29.
    deWaard, J. R., Ivanova, N. V., Hajibabaei, M. & Hebert, P. D. N. in Methods in Molecular Biology: Environmental Genetics (ed C. Martin) 275–293 (Humana Press, 2008).

    30.
    Ivanova, N. V., deWaard, J. R. & Hebert, P. D. N. An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol. Ecol. Notes6, 998–1002 (2006).

    31.
    Hebert, P. D. N., Cywinska, A., Ball, S. L. & deWaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. B Biol. Sci. 313–321 (2003).

    32.
    Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evolut., 111–120 (1980).

    33.
    Schmidt, S., Schmid-Egger, C., Morinière, J., Haszprunar, G. & Hebert, P. D. N. DNA barcoding largely supports 250 years of classical taxonomy: identifications for Central European bees (Hymenoptera, Apoideapartim). Mol. Ecol. Resour. 15, 985–1000 (2015).
    CAS  Article  Google Scholar 

    34.
    Pentinsaari, M., Hebert, P. D. N. & Mutanen, M. Barcoding Beetles: A regional survey of 1872 species reveals high identification success and unusually deep interspecific divergences. PLoS ONE9, pdf_724, https://doi.org/10.1371/journal.pone.0108651 (2014).

    35.
    Paradis, E., Claude, J. & Strimmer, K. APE; analyses of phylogenetics and evolution. Bioinformatics, 289–290 (2014).

    36.
    Pagès, H., Aboyoun, P., Gentleman, R. & DebRoy, S. Biostrings: Efficient Manipulation of Biological Strings. R Package Version 2.48.0. (2018).

    37.
    R, C. T. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna). https://www.R-project.org/. (2017).

    38.
    Oksanen, J. et al. Vegan: Community Ecology Package. R Package Version 2.5-4. https://CRAN.R-project.org/package=vegan (2019).

    39.
    Hsieh, T. C., Ma, K. H. & Cho, A. iNEXT: iNterpolation and EXTrapolation for Species Diversity. R Package Version 2.0.19. https://chao.stat.nthu.edu.tw/blog/software-download/. (2019).

    40.
    Smith, M. A., Fernandez-Triana, J., Roughley, E. & Hebert, P. D. N. DNA barcode accumulation curves for understudied taxa and areas. Mol. Ecol. Resour. 9, 208–216. https://doi.org/10.1111/j.1755-0998.2009.02646.x (2009).
    CAS  Article  PubMed  Google Scholar 

    41.
    Legendre, P. & De Cáceres, M. Beta diversity as the variance of community data: Dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963. https://doi.org/10.1111/ele.12141 (2013).
    Article  PubMed  Google Scholar 

    42.
    McArdle, B. H. & Anderson, M. J. Fitting multivariate models to community data: A comment on distance-based redundancy analysis. Ecology 82, 290–297. https://doi.org/10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2 (2001).
    Article  Google Scholar 

    43.
    Chao, A., Chazdon, R., Colwell, R. & Shen, T.-J. Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics 62, 361–371. https://doi.org/10.1111/j.1541-0420.2005.00489.x (2006).
    MathSciNet  Article  PubMed  MATH  Google Scholar 

    44.
    Paradis, E. Pegas: An R package for population genetics with an integrated-modular approach. Bioinformatics 419–420 (2010).

    45.
    Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).
    CAS  PubMed  PubMed Central  Google Scholar 

    46.
    Schliep, K. P. Phangorn: Phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).

    47.
    Miettinen, J., Shi, C. & Liew, S. C. Deforestation rates in insular Southeast Asia between 2000 and 2010. Glob. Change Biol. 17, 2261–2270. https://doi.org/10.1111/j.1365-2486.2011.02398.x (2011).
    ADS  Article  Google Scholar 

    48.
    Turubanova, S., Potapov, P. V., Tyukavina, A. & Hansen, M. C. Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. 13, 074028. https://doi.org/10.1088/1748-9326/aacd1c (2018).
    ADS  Article  Google Scholar 

    49.
    Longino, J. T. & Branstetter, M. G. The truncated bell: An enigmatic but pervasive elevational diversity pattern in Middle American ants. Ecography 42, 272–283. https://doi.org/10.1111/ecog.03871 (2019).
    Article  Google Scholar 

    50.
    Smith, M. A., Hallwachs, W. & Janzen, D. H. Diversity and phylogenetic community structure of ants along a Costa Rican elevational gradient. Ecography 37, 720–731. https://doi.org/10.1111/j.1600-0587.2013.00631.x (2014).
    Article  Google Scholar 

    51.
    Floren, A., Biun, A. & Linsenmair, K. E. Arboreal ants as key predators in tropical lowland rainforest trees. Oecologia 131, 137–144. https://doi.org/10.1007/s00442-002-0874-z (2002).
    ADS  Article  PubMed  Google Scholar 

    52.
    Supriya, K., Moreau, C. S., Sam, K. & Price, T. D. Analysis of tropical and temperate elevational gradients in arthropod abundance. Front. Biogeogr. 11, 1–11, https://doi.org/10.21425/F5FBG43104 (2019).

    53.
    Kress, W. J., García-Robledo, C., Uriarte, M. & Erickson, D. L. DNA barcodes for ecology, evolution, and conservation. Trends Ecol. Evol. 30, 25–35. https://doi.org/10.1016/j.tree.2014.10.008 (2015).
    Article  PubMed  Google Scholar 

    54.
    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406. https://doi.org/10.1126/science.1251817 (2014).
    ADS  CAS  Article  Google Scholar 

    55.
    Guo, Q. et al. Global variation in elevational diversity patterns. Sci. Rep. 3, 3007. https://doi.org/10.1038/srep03007 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    56.
    Bertuzzo, E. et al. Geomorphic controls on elevational gradients of species richness. Proc. Natl. Acad. Sci. 113, 1737–1742. https://doi.org/10.1073/pnas.1518922113 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    57.
    Floren, A. & Schmidl, J. Canopy Arthropod Research in Central Europe—Basic and Applied Studies from the High Frontier. (Bioform, 2008).

    58.
    Hodkinson, I. D. & Casson, D. A lesser predilection for bugs: Hemiptera (Insecta) diversity in tropical rain forests. Biol. J. Lin. Soc. 43, 101–109 (1991).
    Article  Google Scholar 

    59.
    Guerrero-Jiménez, C. J. et al. Pattern of genetic differentiation of an incipient speciation process: The case of the high Andean killifish Orestias. PLoS ONE 12, e0170380. https://doi.org/10.1371/journal.pone.0170380 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    60.
    Merckx, V. S. F. T. et al. Evolution of endemism on a young tropical mountain. Nature524, 347–350, https://doi.org/10.1038/nature14949. https://www.nature.com/nature/journal/v524/n7565/abs/nature14949.html#supplementary-information (2015).

    61.
    Schluter, D. & Pennell, M. W. Speciation gradients and the distribution of biodiversity. Nature546, 48, https://doi.org/10.1038/nature22897. https://www.nature.com/articles/nature22897#supplementary-information (2017). More

  • in

    Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment

    1.
    Delgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S, Alfaro FD, et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat Ecol Evol. 2020;4:210–20.
    PubMed  Article  PubMed Central  Google Scholar 
    2.
    Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun. 2016;7:10541.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Shah F, Wu W. Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability. 2019;11:1485.
    Article  Google Scholar 

    4.
    Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL, et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Natl Acad Sci USA. 2015;112:10967.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Sun R, Zhang X-X, Guo X, Wang D, Chu H. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biol Biochem. 2015;88:9–18.
    CAS  Article  Google Scholar 

    6.
    Mougi A, Kondoh M. Diversity of interaction types and ecological community stability. Science. 2012;337:349–51.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Kumar A, Patel JS, Meena VS. Rhizospheric microbes for sustainable agriculture: an overview. In: Meena VS, editor. Role of rhizospheric microbes in soil: volume 1: stress management and agricultural sustainability. Singapore: Springer Singapore; 2018. p. 1–31.

    8.
    Yeates GW, Bongers T. Nematode diversity in agroecosystems. In: Paoletti MG, editor. Invertebrate biodiversity as bioindicators of sustainable landscapes. Amsterdam: Elsevier; 1999. p. 113–35.

    9.
    Chaffron S, Rehrauer H, Pernthaler J, von Mering C. A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res. 2010;20:947–59.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Banerjee S, Schlaeppi K, van der Heijden MGA. Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol. 2018;16:567–76.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Cai G, Chen D, Ding H, Pacholski A, Fan X, Zhu Z. Nitrogen losses from fertilizers applied to maize, wheat and rice in the North China Plain. Nutr Cycl Agroecosys. 2002;63:187–95.
    CAS  Article  Google Scholar 

    12.
    Fan K, Delgado-Baquerizo M, Guo X, Wang D, Wu Y, Zhu M, et al. Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome. 2019;7:143.
    PubMed  PubMed Central  Article  Google Scholar 

    13.
    Biddle JF, Fitz-Gibbon S, Schuster SC, Brenchley JE, House CH. Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proc Natl Acad Sci USA. 2008;105:10583–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Bokulich NA, Mills DA. Improved selection of internal transcribed spacer-specific primers enables quantitative, ultra-high-throughput profiling of fungal communities. Appl Environ Microbiol. 2013;79:2519–26.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Lumini E, Orgiazzi A, Borriello R, Bonfante P, Bianciotto V. Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ Microbiol. 2010;12:2165–79.
    CAS  PubMed  Google Scholar 

    16.
    Porazinska D, Giblin-Davis, Robin M, Faller LF, William K, Natsumi M, et al. Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity. Mol Ecol Resour. 2009;9:1439–50.
    CAS  PubMed  Article  Google Scholar 

    17.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2011;6:610.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    20.
    Kõljalg U, Larsson K-H, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, et al. UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. N. Phytol. 2005;166:1063–8.
    Article  CAS  Google Scholar 

    21.
    Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, et al. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). N Phytol. 2010;188:223–41.
    Article  CAS  Google Scholar 

    22.
    Quast C, Pruesse E, Gerken J, Peplies J, Yarza P, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–D6.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    23.
    Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–8.
    Article  Google Scholar 

    24.
    Dean R, Kan JALV, Pretorius ZA, Hammond‐Kosack KE, Pietro AD, Spanu PD, et al. The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol. 2012;13:804.
    PubMed Central  Article  Google Scholar 

    25.
    Wang F-H, Qiao M, Su J-Q, Chen Z, Zhou X, Zhu Y-G. High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation. Environ Sci Technol. 2014;48:9079–85.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Zheng B, Zhu Y, Sardans J, Peñuelas J, Su J. QMEC: a tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling. Sci China Life Sci. 2018;61:1451–62.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001;29:e45–e45.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Langfelder P, Horvath S. Fast R functions for robust correlations and hierarchical clustering. J Stat Softw. 2012;46:11.

    29.
    Benjamini Y, Krieger AM, Yekutieli D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika. 2006;93:491–507.

    30.
    Hines J, van der Putten WH, De Deyn GB, Wagg C, Voigt W, Mulder C, et al. Chapter four-Towards an integration of biodiversity–ecosystem functioning and food web theory to evaluate relationships between multiple ecosystem services. Adv Ecol Res. 2015;53:161–99.

    31.
    Menezes AB, Prendergast-Miller MT, Richardson AE, Toscas P, Farrell M, Macdonald LM, et al. Network analysis reveals that bacteria and fungi form modules that correlate independently with soil parameters. Environ Microbiol. 2015;17:2677–89.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    32.
    Heleno R, Devoto M, Pocock M. Connectance of species interaction networks and conservation value: Is it any good to be well connected? Ecol Indic. 2012;14:7–10.
    Article  Google Scholar 

    33.
    Ramírez-Flandes S, González B, Ulloa O. Redox traits characterize the organization of global microbial communities. Proc Natl Acad Sci USA. 2019;116:3630.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    34.
    Pérez Castro S, Cleland EE, Wagner R, Sawad RA, Lipson DA. Soil microbial responses to drought and exotic plants shift carbon metabolism. ISME J. 2019;13:1776–87.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    35.
    Zhang C, Song Z, Zhuang D, Wang J, Xie S, Liu G. Urea fertilization decreases soil bacterial diversity, but improves microbial biomass, respiration, and N-cycling potential in a semiarid grassland. Biol Fert Soils. 2019;55:229–42.
    CAS  Article  Google Scholar 

    36.
    Fraser TD, Lynch DH, Bent E, Entz MH, Dunfield KE. Soil bacterial phoD gene abundance and expression in response to applied phosphorus and long-term management. Soil Biol Biochem. 2015;88:137–47.
    CAS  Article  Google Scholar 

    37.
    García-Palacios P, Shaw EA, Wall DH, Hättenschwiler S. Temporal dynamics of biotic and abiotic drivers of litter decomposition. Ecol Lett. 2016;19:554–63.
    PubMed  Article  PubMed Central  Google Scholar 

    38.
    Hug LA, Castelle CJ, Wrighton KC, Thomas BC, Sharon I, Frischkorn KR, et al. Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. Microbiome. 2013;1:22.
    PubMed  PubMed Central  Article  Google Scholar 

    39.
    Lu J, Yang F, Wang S, Ma H, Liang J, Chen Y. Co-existence of rhizobia and diverse non-rhizobial bacteria in the rhizosphere and nodules of dalbergia odorifera seedlings inoculated with Bradyrhizobium elkanii, Rhizobium multihospitium–like and Burkholderia pyrrocinia–like strains. Front Microbiol. 2017;8:2255.

    40.
    Haack FS, Poehlein A, Kröger C, Voigt CA, Piepenbring M, Bode HB, et al. Molecular keys to the janthinobacterium and duganella spp. interaction with the plant pathogen Fusarium graminearum. Front Microbiol. 2016;7:1668.

    41.
    Clay K, Leuchtmann A. Infection of woodland grasses by fungal endophytes. Mycologia. 1989;81:805–11.
    Article  Google Scholar 

    42.
    Huang X, Liu L, Wen T, Zhang J, Wang F, Cai Z. Changes in the soil microbial community after reductive soil disinfestation and cucumber seedling cultivation. Appl Microbiol Biotechnol. 2016;100:5581–93.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Palleroni NJ. Pseudomonas. In: M.E. Trujillo, S. Dedysh, P. DeVos, B. Hedlund, P. Kämpfer, F.A. Rainey and W.B. Whitman, editors. Bergeyʼs Manual of Systematics of Archaea and Bacteria. John Wiley & Sons, Inc. in association with Bergey’s Manual Trust; 2015. p. 1–105.

    44.
    Wei Z, Yang T, Friman V-P, Xu Y, Shen Q, Jousset A. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat Commun. 2015;6:8413.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Mao Y, Li X, Smyth EM, Yannarell AC, Mackie RI. Enrichment of specific bacterial and eukaryotic microbes in the rhizosphere of switchgrass (Panicum virgatum L.) through root exudates. Environ Microbiol Rep. 2014;6:293–306.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk H-P, et al. Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev. 2016;80:1.
    PubMed  Article  PubMed Central  Google Scholar 

    47.
    Agnolucci M, Battini F, Cristani C, Giovannetti M. Diverse bacterial communities are recruited on spores of different arbuscular mycorrhizal fungal isolates. Biol Fert Soils. 2015;51:379–89.
    CAS  Article  Google Scholar 

    48.
    Levy A, Merritt AJ, Mayo MJ, Chang BJ, Abbott LK, Inglis TJJ. Association between Burkholderia species and arbuscular mycorrhizal fungus spores in soil. Soil Biol Biochem. 2009;41:1757–9.
    CAS  Article  Google Scholar 

    49.
    Li X, Rui J, Xiong J, Li J, He Z, Zhou J, et al. Functional potential of soil microbial communities in the maize rhizosphere. PLoS ONE. 2014;9:e112609.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    50.
    Ragot SA, Kertesz MA, Mészáros É, Frossard E, Bünemann EK. Soil phoD and phoX alkaline phosphatase gene diversity responds to multiple environmental factors. FEMS Microbiol Ecol. 2016;93:fiw212.

    51.
    Gianfreda L. Enzymes of importance to rhizosphere processes. J Soil Sc Plant Nutr. 2015;15:283–306.
    CAS  Google Scholar 

    52.
    Su J-Q, Ding L-J, Xue K, Yao H-Y, Quensen J, Bai S-J, et al. Long-term balanced fertilization increases the soil microbial functional diversity in a phosphorus-limited paddy soil. Mol Ecol. 2015;24:136–50.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Ratliff TJ, Fisk MC. Phosphatase activity is related to N availability but not P availability across hardwood forests in the northeastern United States. Soil Biol Biochem. 2016;94:61–9.
    CAS  Article  Google Scholar  More

  • in

    Single-virus genomics and beyond

    1.
    Koonin, E. V. The wonder world of microbial viruses. Expert Rev. Anti Infect. Ther. 8, 1097–1099 (2010).
    PubMed  PubMed Central  Article  Google Scholar 
    2.
    Yong, E. I Contain Multitudes: The Microbes Within Us and A Grander View of Life (Ecco, 2016).

    3.
    Breitbart, M. & Rohwer, F. Here a virus, there a virus, everywhere the same virus? Trends Microbiol. 13, 278–284 (2005).
    CAS  PubMed  Article  Google Scholar 

    4.
    Paez-Espino, D. et al. Uncovering Earth’s virome. Nature 536, 425–430 (2016). This is a massive metagenomic study on global viral diversity and distribution and host specificity of viruses. A total of 125,000 partial DNA virus genomes are discovered.
    CAS  PubMed  Article  Google Scholar 

    5.
    Edwards, R. A. & Rohwer, F. Viral metagenomics. Nat. Rev. Microbiol. 3, 504–510 (2005).
    CAS  PubMed  Article  Google Scholar 

    6.
    Suttle, C. A. Marine viruses-major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007). This is a fundamental must-read review of the general role of viruses in marine ecosystems.
    CAS  PubMed  Article  Google Scholar 

    7.
    Abedon, S. T. Bacteriophage Ecology: Population Growth, Evolution, and Impact of Bacterial Viruses (Cambridge Univ. Press, 2008).

    8.
    Sullivan, M. B., Waterbury, J. B. & Chisholm, S. W. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature 424, 1047–1051 (2003).
    CAS  PubMed  Article  Google Scholar 

    9.
    Sullivan, M. B. et al. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ. Microbiol. 12, 3035–3056 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Kauffman, K. M. et al. A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. Nature 554, 118–122 (2018).
    CAS  PubMed  Article  Google Scholar 

    11.
    Atanasova, N. S., Roine, E., Oren, A., Bamford, D. H. & Oksanen, H. M. Global network of specific virus-host interactions in hypersaline environments. Environ. Microbiol. 14, 426–440 (2012).
    CAS  PubMed  Article  Google Scholar 

    12.
    Marston, M. F. et al. Rapid diversification of coevolving marine Synechococcus and a virus. Proc. Natl Acad. Sci. USA 109, 4544–4549 (2012).
    CAS  PubMed  Article  Google Scholar 

    13.
    Enav, H., Kirzner, S., Lindell, D., Mandel-Gutfreund, Y. & Béjà, O. Adaptation to sub-optimal hosts is a driver of viral diversification in the ocean. Nat. Commun. 9, 1–11 (2018).
    CAS  Article  Google Scholar 

    14.
    Rappé, M. S. & Giovannoni, S. J. The uncultured microbial majority. Annu. Rev. Microbiol. 57, 369–394 (2003). This is a comprehensive review addressing a fundamental question in microbial ecology on the difficulty of culturing most microorganisms in the laboratory and how this bias impacts microbial discovery.
    PubMed  Article  CAS  Google Scholar 

    15.
    Pedrós-Alió, C. The rare bacterial biosphere. Ann. Rev. Mar. Sci. 4, 449–466 (2012).
    PubMed  Article  Google Scholar 

    16.
    Brum, J. R., Schenck, R. O. & Sullivan, M. B. Global morphological analysis of marine viruses shows minimal regional variation and dominance of non-tailed viruses. ISME J. 7, 1738–1751 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Brum, J. R. et al. Patterns and ecological drivers of ocean viral communities. Science 348, 1261498 (2015). This is a pioneering, comprehensive metagenomic study on global marine viral diversity from hundreds of samples collected during the Tara expedition.
    PubMed  Article  CAS  Google Scholar 

    18.
    Trubl, G. et al. Soil viruses are underexplored players in ecosystem carbon processing. mSystems 3, e00076-18 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Paez-Espino, D. et al. IMG/VR v.2.0: an integrated data management and analysis system for cultivated and environmental viral genomes. Nucleic Acids Res. 47, D678–D686 (2019). This article describes the most comprehensive genome database of uncultured viruses recovered by metagenomics from different ecosystems, including the human body, with more than 700,000 viral genome fragments.
    CAS  PubMed  Article  Google Scholar 

    20.
    Carlson, C. J., Zipfel, C. M., Garnier, R. & Bansal, S. Global estimates of mammalian viral diversity accounting for host sharing. Nat. Ecol. Evol. 3, 1070–1075 (2019).
    PubMed  Article  Google Scholar 

    21.
    Carroll, D. et al. The Global Virome Project. Science 359, 872–874 (2018).
    CAS  PubMed  Article  Google Scholar 

    22.
    Cesar Ignacio-Espinoza, J., Solonenko, S. A. & Sullivan, M. B. The global virome: not as big as we thought? Curr. Opin. Virol. 3, 566–571 (2013). The authors address a hot topic in viral ecology (that is, how big the viral diversity in nature is) and estimate the total number of different viral proteins, which is a proxy for quantifying the number of different existing viruses.
    PubMed  Article  Google Scholar 

    23.
    Rohwer, F. Global phage diversity. Cell 113, 141 (2003).
    CAS  PubMed  Article  Google Scholar 

    24.
    Suttle, C. A. Environmental microbiology: viral diversity on the global stage. Nat. Microbiol. 1, 1–2 (2016).
    Article  CAS  Google Scholar 

    25.
    Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693 (2016).
    CAS  PubMed  Article  Google Scholar 

    26.
    Schulz, F. et al. Hidden diversity of soil giant viruses. Nat. Commun. 9, 1–9 (2018). The article reports the discovery of several relevant giant viruses, including one with a genome of 2.4 Mb, using metagenomics and a method that is similar to those used in SVG, but in this case targeting multiple sets of 100 viruses, instead of single-virus particles.
    Article  CAS  Google Scholar 

    27.
    Brown, C. T. et al. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523, 208–211 (2015).
    CAS  PubMed  Article  Google Scholar 

    28.
    Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7, 1–11 (2016).
    Article  CAS  Google Scholar 

    29.
    Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).
    CAS  PubMed  Article  Google Scholar 

    30.
    Schulz, F. et al. Giant virus diversity and host interactions through global metagenomics. Nature 578, 432–436 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    Al-Shayeb, B. et al. Clades of huge phages from across Earth’s ecosystems. Nature 578, 425–431 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Breitbart, M. et al. Genomic analysis of uncultured marine viral communities. Proc. Natl Acad. Sci. USA 99, 14250–14255 (2002).
    CAS  PubMed  Article  Google Scholar 

    33.
    Dávila-Ramos, S. et al. A review on viral metagenomics in extreme environments. Front. Microbiol. 10, 2403 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    34.
    Chatterjee, A., Sicheritz-Pontén, T., Yadav, R. & Kondabagil, K. Genomic and metagenomic signatures of giant viruses are ubiquitous in water samples from sewage, inland lake, waste water treatment plant, and municipal water supply in Mumbai, India. Sci. Rep. 9, 1–9 (2019).
    Article  CAS  Google Scholar 

    35.
    Simmonds, P. et al. Consensus statement: virus taxonomy in the age of metagenomics. Nat. Rev. Microbiol. 15, 161–168 (2017).
    CAS  PubMed  Article  Google Scholar 

    36.
    Martinez-Hernandez, F. et al. Single-virus genomics reveals hidden cosmopolitan and abundant viruses. Nat. Commun. 8, 1–13 (2017). This is a pioneering reference high-throughput SVG study that unveils extremely abundant and ubiquitous uncultured marine viruses overlooked for years by current state-of-the-art, standard metagenomic-based studies.
    Article  CAS  Google Scholar 

    37.
    Roux, S., Emerson, J. B., Eloe-Fadrosh, E. A. & Sullivan, M. B. Benchmarking viromics: an in silico evaluation of metagenome-enabled estimates of viral community composition and diversity. PeerJ 5, e3817 (2017). This in silico study performs a through bioinformatic comparison of different tools used commonly in viral metagenomics and aims to provide useful recommendations and standards for the scientific community.
    PubMed  PubMed Central  Article  Google Scholar 

    38.
    Aguirre de Cárcer, D., Angly, F. E. & Alcamí, A. Evaluation of viral genome assembly and diversity estimation in deep metagenomes. BMC Genomics 15, 1–12 (2014).
    Article  CAS  Google Scholar 

    39.
    López-Pérez, M., Haro-Moreno, J. M., Gonzalez-Serrano, R., Parras-Moltó, M. & Rodriguez-Valera, F. Genome diversity of marine phages recovered from Mediterranean metagenomes: size matters. PLoS Genet. 13, e1007018 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    40.
    Labonté, J. M. et al. Single-cell genomics-based analysis of virus–host interactions in marine surface bacterioplankton. ISME J. 9, 2386–2399 (2015). The screening of sequencing data from hundreds of single cells obtained from seawater unveils virus–host interactions in different ecologically important bacterial and archaeal groups.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    41.
    Roux, S. et al. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics. eLife 2014, e03125 (2014).
    Article  CAS  Google Scholar 

    42.
    Yoon, H. S. et al. Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science 332, 714–717 (2011). This is the first report of SCG in uncultivated widespread microbial eukaryotes, showing complex viral interactions and metabolic insights into phycobiliphyte groups.
    CAS  PubMed  Article  Google Scholar 

    43.
    Castillo, Y. M. et al. Assessing the viral content of uncultured picoeukaryotes in the global‐ocean by single cell genomics. Mol. Ecol. 28, 4272–4289 (2019).
    CAS  PubMed  Article  Google Scholar 

    44.
    Benites, L. F. et al. Single cell ecogenomics reveals mating types of individual cells and ssDNA viral infections in the smallest photosynthetic eukaryotes. Phil. Trans. R. Soc. B 374, 20190089 (2019).
    CAS  PubMed  Article  Google Scholar 

    45.
    Martinez-Hernandez, F. et al. Single-cell genomics uncover Pelagibacter as the putative host of the extremely abundant uncultured 37-F6 viral population in the ocean. ISME J. 13, 232–236 (2019).
    CAS  PubMed  Article  Google Scholar 

    46.
    Brussaard, C. P. D., Noordeloos, A. A. M., Sandaa, R. A., Heldal, M. & Bratbak, G. Discovery of a dsRNA virus infecting the marine photosynthetic protist Micromonas pusilla. Virology 319, 280–291 (2004).
    CAS  PubMed  Article  Google Scholar 

    47.
    Dean, F. B. et al. Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl Acad. Sci. USA 99, 5261–5266 (2002).
    CAS  PubMed  Article  Google Scholar 

    48.
    Raghunathan, A. et al. Genomic DNA amplification from a single bacterium. Appl. Environ. Microbiol. 71, 3342–3347 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Stepanauskas, R. & Sieracki, M. E. Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time. Proc. Natl Acad. Sci. USA 104, 9052–9057 (2007).
    CAS  PubMed  Article  Google Scholar 

    50.
    Rinke, C. et al. Obtaining genomes from uncultivated environmental microorganisms using FACS-based single-cell genomics. Nat. Protoc. 9, 1038–1048 (2014).
    CAS  PubMed  Article  Google Scholar 

    51.
    Martinez-Garcia, M., Martinez-Hernandez, F. & Martínez Martínez, J. Single-virus genomics: studying uncultured viruses, one at a time. Ref. Module Life Sci. https://doi.org/10.1016/b978-0-12-809633-8.21497-0 (2020). The authors provide methodological details and protocols for implementing SVG to complement other existing methods in viral ecology.
    Article  Google Scholar 

    52.
    Lindell, D. et al. Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc. Natl Acad. Sci. USA 101, 11013–11018 (2004).
    CAS  PubMed  Article  Google Scholar 

    53.
    Breitbart, M., Thompson, L., Suttle, C. & Sullivan, M. Exploring the vast diversity of marine viruses. Oceanography 20, 135–139 (2007).
    Article  Google Scholar 

    54.
    Brum, J. R. & Sullivan, M. B. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat. Rev. Microbiol. 13, 147–159 (2015). This review is recommended for readers who would like an introduction to recent technological advances in marine virology.
    CAS  PubMed  Article  Google Scholar 

    55.
    De Corte, D. et al. Viral communities in the global deep ocean conveyor belt assessed by targeted viromics. Front. Microbiol. 10, 1801 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    56.
    Aylward, F. O. et al. Diel cycling and long-term persistence of viruses in the ocean’s euphotic zone. Proc. Natl Acad. Sci. USA 114, 11446–11451 (2017).
    CAS  PubMed  Article  Google Scholar 

    57.
    Luo, E., Aylward, F. O., Mende, D. R. & Delong, E. F. Bacteriophage distributions and temporal variability in the ocean’s interior. mBio 8, e01903-17 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    58.
    Angly, F. E. et al. The marine viromes of four oceanic regions. PLoS Biol. 4, 2121–2131 (2006).
    CAS  Article  Google Scholar 

    59.
    Coutinho, F. H., Rosselli, R. & Rodríguez-Valera, F. Trends of microdiversity reveal depth-dependent evolutionary strategies of viruses in the Mediterranean. mSystems 4, 1–17 (2019).
    Article  Google Scholar 

    60.
    Roux, S., Krupovic, M., Debroas, D., Forterre, P. & Enault, F. Assessment of viral community functional potential from viral metagenomes may be hampered by contamination with cellular sequences. Open Biol. 3, 130160 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    61.
    Zolfo, M. et al. Detecting contamination in viromes using ViromeQC. Nat. Biotechnol. 37, 1408–1412 (2019).
    CAS  PubMed  Article  Google Scholar 

    62.
    Amgarten, D., Braga, L. P. P., da Silva, A. M. & Setubal, J. C. MARVEL, a tool for prediction of bacteriophage sequences in metagenomic bins. Front. Genet. 9, 304 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    63.
    Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: mining viral signal from microbial genomic data. PeerJ 3, e985 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    64.
    Ponsero, A. J. & Hurwitz, B. L. The promises and pitfalls of machine learning for detecting viruses in aquatic metagenomes. Front. Microbiol. 10, 806 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    65.
    Crummett, L. T., Puxty, R. J., Weihe, C., Marston, M. F. & Martiny, J. B. H. The genomic content and context of auxiliary metabolic genes in marine cyanomyoviruses. Virology 499, 219–229 (2016).
    CAS  PubMed  Article  Google Scholar 

    66.
    Pagarete, A., Allen, M. J., Wilson, W. H., Kimmance, S. A. & de Vargas, C. Host-virus shift of the sphingolipid pathway along an Emiliania huxleyi bloom: survival of the fattest. Environ. Microbiol. 11, 2840–2848 (2009).
    CAS  PubMed  Article  Google Scholar 

    67.
    Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, 1109–1123 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Kavagutti, V. S., Andrei, A. Ş., Mehrshad, M., Salcher, M. M. & Ghai, R. Phage-centric ecological interactions in aquatic ecosystems revealed through ultra-deep metagenomics. Microbiome 7, 1–15 (2019).
    Article  Google Scholar 

    69.
    Sutton, T. D. S., Clooney, A. G., Ryan, F. J., Ross, R. P. & Hill, C. Choice of assembly software has a critical impact on virome characterisation. Microbiome 7, 12 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    70.
    Madoui, M.-A. et al. Genome assembly using Nanopore-guided long and error-free DNA reads. BMC Genomics 16, 327 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    71.
    Warwick-Dugdale, J. et al. Long-read viral metagenomics captures abundant and microdiverse viral populations and their niche-defining genomic islands. PeerJ 7, e6800 (2019). This pioneering study successfully combines long-read and short-read sequencing data to improve viral metagenomic assemblies and shows the potential of Nanopore sequencing data to advance virus discovery.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    72.
    Beaulaurier, J. et al. Assembly-free single-molecule sequencing recovers complete virus genomes from natural microbial communities. Genome Res. 30, 437–446 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    73.
    Mizuno, C. M., Rodriguez-Valera, F., Kimes, N. E. & Ghai, R. Expanding the marine virosphere using metagenomics. PLoS Genet. 9, e1003987 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    74.
    Garcia-Heredia, I. et al. Reconstructing viral genomes from the environment using fosmid clones: the case of haloviruses. PLoS ONE 7, e33802 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Chow, C. E. T., Winget, D. M., White, R. A., Hallam, S. J. & Suttle, C. A. Combining genomic sequencing methods to explore viral diversity and reveal potential virus-host interactions. Front. Microbiol. 6, 265 (2015).
    PubMed  PubMed Central  Google Scholar 

    76.
    Mizuno, C. M., Ghai, R., Saghaï, A., López-García, P. & Rodriguez-Valera, F. Genomes of abundant and widespread viruses from the deep ocean. mBio 7, e00805–e00816 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    77.
    Martinez-Garcia, M. et al. High-throughput single-cell sequencing identifies photoheterotrophs and chemoautotrophs in freshwater bacterioplankton. ISME J. 6, 113–123 (2012).
    CAS  PubMed  Article  Google Scholar 

    78.
    Stepanauskas, R. Single cell genomics: an individual look at microbes. Curr. Opin. Microbiol. 15, 613–620 (2012).
    CAS  PubMed  Article  Google Scholar 

    79.
    Sieracki, M. E. et al. Single cell genomics yields a wide diversity of small planktonic protists across major ocean ecosystems. Sci. Rep. 9, 1–11 (2019).
    CAS  Article  Google Scholar 

    80.
    Lasken, R. S. Genomic sequencing of uncultured microorganisms from single cells. Nat. Rev. Microbiol. 10, 631–640 (2012).
    CAS  PubMed  Article  Google Scholar 

    81.
    López-Escardó, D. et al. Evaluation of single-cell genomics to address evolutionary questions using three SAGs of the choanoflagellate Monosiga brevicollis. Sci. Rep. 7, 1–14 (2017).
    Article  CAS  Google Scholar 

    82.
    Mangot, J. F. et al. Accessing the genomic information of unculturable oceanic picoeukaryotes by combining multiple single cells. Sci. Rep. 7, 1–12 (2017).
    Article  CAS  Google Scholar 

    83.
    Seeleuthner, Y. et al. Single-cell genomics of multiple uncultured stramenopiles reveals underestimated functional diversity across oceans. Nat. Commun. 9, 1–10 (2018).
    CAS  Article  Google Scholar 

    84.
    Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013). This article is an excellent example of the power of single-cell technologies to provide biological insights into uncultured microorganisms.
    CAS  PubMed  Article  Google Scholar 

    85.
    Swan, B. K. et al. Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Proc. Natl Acad. Sci. USA 110, 11463–11468 (2013).
    CAS  PubMed  Article  Google Scholar 

    86.
    Garcia, S. L. et al. Metabolic potential of a single cell belonging to one of the most abundant lineages in freshwater bacterioplankton. ISME J. 7, 137–147 (2013).
    CAS  PubMed  Article  Google Scholar 

    87.
    Martinez-Garcia, M. et al. Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of verrucomicrobia. PLoS ONE 7, e35314 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    88.
    Stepanauskas, R. et al. Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles. Nat. Commun. 8, 1–10 (2017). The authors use flow cytometry to sort uncultured single viruses and they amplify their genomes with a new variant of an efficient Φ29 enzyme, which is commonly used in SCG and SVG. This study is another SVG example targeting uncultured viruses.
    Article  CAS  Google Scholar 

    89.
    Ghylin, T. W. et al. Comparative single-cell genomics reveals potential ecological niches for the freshwater acI Actinobacteria lineage. ISME J. 8, 2503–2516 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    90.
    Wilson, W. H. et al. Genomic exploration of individual giant ocean viruses. ISME J. 11, 1736–1745 (2017). This reference SVG study targets for the first time uncultured giant viruses in nature, which are commonly ignored with standard metagenomic techniques.
    PubMed  PubMed Central  Article  Google Scholar 

    91.
    de la Cruz Peña, M. et al. Deciphering the human virome with single-virus genomics and metagenomics. Viruses 10, 113 (2018). This is the first study on SVG applied to the human virome. The authors implement this novel technology, combined with metagenomics, in salivary human samples and discover important, abundant phages.
    PubMed Central  Article  CAS  PubMed  Google Scholar 

    92.
    Allen, L. Z. et al. Single virus genomics: a new tool for virus discovery. PLoS ONE 6, e17722 (2011). This is the first report showing the feasibility of SVG as a new tool for virus discovery. The authors successfully use this technology to sequence several single sorted virus particles of viral isolates T4 and λ of E. coli.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    93.
    Holmfeldt, K., Odić, D., Sullivan, M. B., Middelboe, M. & Riemann, L. Cultivated single-stranded DNA phages that infect marine bacteroidetes prove difficult to detect with DNA-binding stains. Appl. Environ. Microbiol. 78, 892–894 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    94.
    Pospichalova, V. et al. Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer. J. Extracell. Vesicles 4, 25530 (2015).
    PubMed  Article  CAS  Google Scholar 

    95.
    Giesecke, C. et al. Determination of background, signal-to-noise, and dynamic range of a flow cytometer: a novel practical method for instrument characterization and standardization. Cytometry A 91, 1104–1114 (2017).
    CAS  PubMed  Article  Google Scholar 

    96.
    Schmidt, H. & Hawkins, A. R. Single-virus analysis through chip-based optical detection. Bioanalysis 8, 867–870 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    97.
    Brussaard, C., Payet, J. P., Winter, C. & Weinbauer, M. G. Quantification of aquatic viruses by flow cytometry. Man. Aquat. Viral Ecol. 11, 102–109 (2010).
    Article  Google Scholar 

    98.
    Mojica, K. D. A. & Brussaard, C. P. D. Factors affecting virus dynamics and microbial host-virus interactions in marine environments. FEMS Microbiol. Ecol. 89, 495–515 (2014).
    CAS  PubMed  Article  Google Scholar 

    99.
    Blainey, P. C. & Quake, S. R. Digital MDA for enumeration of total nucleic acid contamination. Nucleic Acids Res. 39, e19 (2011).
    PubMed  Article  CAS  Google Scholar 

    100.
    Woyke, T. et al. Decontamination of MDA reagents for single cell whole genome amplification. PLoS ONE 6, e26161 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    101.
    Povilaitis, T., Alzbutas, G., Sukackaite, R., Siurkus, J. & Skirgaila, R. In vitro evolution of phi29 DNA polymerase using isothermal compartmentalized self replication technique. Protein Eng. Des. Sel. 29, 617–628 (2016).
    CAS  PubMed  Article  Google Scholar 

    102.
    Gawad, C., Koh, W. & Quake, S. R. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17, 175–188 (2016). This is one of the most comprehensive technical and scientific reviews of SCG technologies of unicellular and multicellular organisms, and discusses how these technologies have enabled new discoveries in multiple fields from microbiology to cancer or immunology.
    CAS  PubMed  Article  Google Scholar 

    103.
    Martínez Martínez, J., Swan, B. K. & Wilson, W. H. Marine viruses, a genetic reservoir revealed by targeted viromics. ISME J. 8, 1079–1088 (2014). This study uses technologies similar to those used in SVG to discover giant viruses and other relevant uncultured viruses from a sorted pool of marine uncultured viruses.
    PubMed  Article  CAS  Google Scholar 

    104.
    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    105.
    Woyke, T. et al. One bacterial cell, one complete genome. PLoS ONE 5, e10314 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    106.
    Roux, S. et al. Minimum information about an uncultivated virus genome (MIUVIG). Nat. Biotechnol. 37, 29–37 (2019).
    CAS  PubMed  Article  Google Scholar 

    107.
    Hercher, M., Mueller, W. & Shapiro, H. M. Detection and discrimination of individual viruses by flow cytometry. J. Histochem. Cytochem. 27, 350–352 (1979).
    CAS  PubMed  Article  Google Scholar 

    108.
    Lippé, R. Flow virometry: a powerful tool to functionally characterize viruses. J. Virol. 92, e01765-17 (2017).
    Article  Google Scholar 

    109.
    Koonin, E. V. & Yutin, N. Evolution of the large nucleocytoplasmic DNA viruses of eukaryotes and convergent origins of viral gigantism. Adv. Virus Res. 103, 167–202 (2019).
    CAS  PubMed  Article  Google Scholar 

    110.
    Brum, J. R. et al. Illuminating structural proteins in viral ‘dark matter’ with metaproteomics. Proc. Natl Acad. Sci. USA 113, 2436–2441 (2016).
    CAS  PubMed  Article  Google Scholar 

    111.
    Alonso-Sáez, L., Morán, X. A. G. & Clokie, M. R. Low activity of lytic pelagiphages in coastal marine waters. ISME J. 12, 2100–2102 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    112.
    Zhao, Y. et al. Abundant SAR11 viruses in the ocean. Nature 494, 357–360 (2013).
    CAS  PubMed  Article  Google Scholar 

    113.
    McMullen, A., Martinez‐Hernandez, F. & Martinez‐Garcia, M. Absolute quantification of infecting viral particles by chip‐based digital polymerase chain reaction. Environ. Microbiol. Rep. 11, 855–860 (2019).
    CAS  PubMed  Google Scholar 

    114.
    Fukuda, R., Ogawa, H., Nagata, T. & Koike, I. Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Appl. Environ. Microbiol. 64, 3352–3358 (1998).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    115.
    Needham, D. M. et al. Targeted metagenomic recovery of four divergent viruses reveals shared and distinctive characteristics of giant viruses of marine eukaryotes. Phil. Trans. R. Soc. B 374, 20190086 (2019).
    CAS  PubMed  Article  Google Scholar 

    116.
    Needham, D. M. et al. A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators. Proc. Natl Acad. Sci. USA 116, 20574–20583 (2019).
    CAS  PubMed  Article  Google Scholar 

    117.
    Dieterich, D. C., Link, A. J., Graumann, J., Tirrell, D. A. & Schuman, E. M. Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc. Natl Acad. Sci. USA 103, 9482–9487 (2006).
    CAS  PubMed  Article  Google Scholar 

    118.
    Hatzenpichler, R. et al. In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry. Environ. Microbiol. 16, 2568–2590 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    119.
    Pasulka, A. L. et al. Interrogating marine virus-host interactions and elemental transfer with BONCAT and nanoSIMS-based methods. Environ. Microbiol. 20, 671–692 (2018).
    CAS  PubMed  Article  Google Scholar 

    120.
    Dominguez-Medina, S. et al. Neutral mass spectrometry of virus capsids above 100 megadaltons with nanomechanical resonators. Science 362, 918–922 (2018).
    CAS  PubMed  Article  Google Scholar 

    121.
    Hermelink, A. et al. Towards a correlative approach for characterising single virus particles by transmission electron microscopy and nanoscale Raman spectroscopy. Analyst 142, 1342–1349 (2017).
    CAS  PubMed  Article  Google Scholar 

    122.
    Ruokola, P. et al. Raman spectroscopic signatures of echovirus 1 uncoating. J. Virol. 88, 8504–8513 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    123.
    Schatz, D. et al. Communication via extracellular vesicles enhances viral infection of a cosmopolitan alga. Nat. Microbiol. 2, 1485–1492 (2017).
    CAS  PubMed  Article  Google Scholar 

    124.
    Berleman, J. & Auer, M. The role of bacterial outer membrane vesicles for intra- and interspecies delivery. Environ. Microbiol. 15, 347–354 (2013).
    CAS  PubMed  Article  Google Scholar 

    125.
    Van Niel, G., D’Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).
    PubMed  Article  CAS  Google Scholar 

    126.
    Machtinger, R., Laurent, L. C. & Baccarelli, A. A. Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Hum. Reprod. Update 22, 182–193 (2016).
    CAS  PubMed  Google Scholar 

    127.
    Biller, S. J. et al. Membrane vesicles in sea water: heterogeneous DNA content and implications for viral abundance estimates. ISME J. 11, 394–404 (2017).
    CAS  PubMed  Article  Google Scholar 

    128.
    Kulp, A. & Kuehn, M. J. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 64, 163–184 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    129.
    Jacob, F. & Wollman, E. L. Viruses and genes. Sci. Am. 204, 93–107 (1961).
    CAS  PubMed  Article  Google Scholar 

    130.
    Forterre, P. The virocell concept and environmental microbiology. ISME J. 7, 233–236 (2013).
    CAS  PubMed  Article  Google Scholar 

    131.
    Forterre, P. Manipulation of cellular syntheses and the nature of viruses: the virocell concept. C. R. Chim. 14, 392–399 (2011).
    CAS  Article  Google Scholar 

    132.
    Weitz, J. S., Li, G., Gulbudak, H., Cortez, M. H. & Whitaker, R. J. Viral invasion fitness across a continuum from lysis to latency. Virus Evol. 5, vez006 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    133.
    Martinez-Garcia, M. et al. Unveiling in situ interactions between marine protists and bacteria through single cell sequencing. ISME J. 6, 703–707 (2012).
    CAS  PubMed  Article  Google Scholar 

    134.
    Martínez-García, M., Santos, F., Moreno-Paz, M., Parro, V. & Antón, J. Unveiling viral–host interactions within the ‘microbial dark matter’. Nat. Commun. 5, 1–8 (2014).
    Article  CAS  Google Scholar 

    135.
    Džunková, M. et al. Defining the human gut host–phage network through single-cell viral tagging. Nat. Microbiol. 4, 2192–2203 (2019). This is probably one of the most comprehensive SCG studies within the context of the human gut microbiota, and unveils a total of 363 unique host–phage pairings, expanding the known host–phage network of the gut microbiota.
    PubMed  Article  CAS  Google Scholar 

    136.
    Munson-Mcgee, J. H. et al. A virus or more in (nearly) every cell: Ubiquitous networks of virus-host interactions in extreme environments. ISME J. 12, 1706–1714 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    137.
    Jarett, J. K. et al. Insights into the dynamics between viruses and their hosts in a hot spring microbial mat. ISME J. 14, 2527–2541 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    138.
    Deng, L. et al. Viral tagging reveals discrete populations in Synechococcus viral genome sequence space. Nature 513, 242–245 (2014).
    CAS  PubMed  Article  Google Scholar 

    139.
    Allers, E. et al. Single-cell and population level viral infection dynamics revealed by phageFISH, a method to visualize intracellular and free viruses. Environ. Microbiol. 15, 2306–2318 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    140.
    Zanini, F. et al. Virus-inclusive single-cell RNA sequencing reveals the molecular signature of progression to severe dengue. Proc. Natl Acad. Sci. USA 115, E12363–E12369 (2018).
    CAS  PubMed  Article  Google Scholar 

    141.
    Steuerman, Y. et al. Dissection of influenza infection in vivo by single-cell RNA sequencing. Cell Syst. 6, 679–691 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    142.
    Wyler, E. et al. Single-cell RNA-sequencing of herpes simplex virus 1-infected cells connects NRF2 activation to an antiviral program. Nat. Commun. 10, 1–14 (2019).
    Article  CAS  Google Scholar 

    143.
    Guo, Q., Duffy, S. P., Matthews, K., Islamzada, E. & Ma, H. Deformability based cell sorting using microfluidic ratchets enabling phenotypic separation of leukocytes directly from whole blood. Sci. Rep. 7, 1–11 (2017).
    Article  CAS  Google Scholar 

    144.
    Liu, W. et al. More than efficacy revealed by single-cell analysis of antiviral therapeutics. Sci. Adv. 5, eaax4761 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    145.
    Lasken, R. S. Single-cell genomic sequencing using multiple displacement amplification. Curr. Opin. Microbiol. 10, 510–516 (2007).
    CAS  PubMed  Article  Google Scholar 

    146.
    Marcy, Y. et al. Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc. Natl Acad. Sci. USA 104, 11889–11894 (2007).
    CAS  PubMed  Article  Google Scholar 

    147.
    Swan, B. K. et al. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science 333, 1296–1300 (2011).
    CAS  PubMed  Article  Google Scholar 

    148.
    Ahrendt, S. R. et al. Leveraging single-cell genomics to expand the fungal tree of life. Nat. Microbiol. 3, 1417–1428 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    149.
    McConnell, M. J. et al. Mosaic copy number variation in human neurons. Science 342, 632–637 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    150.
    Poulin, J. F., Tasic, B., Hjerling-Leffler, J., Trimarchi, J. M. & Awatramani, R. Disentangling neural cell diversity using single-cell transcriptomics. Nat. Neurosci. 19, 1131–1141 (2016).
    PubMed  Article  CAS  Google Scholar 

    151.
    Tanay, A. & Regev, A. Scaling single-cell genomics from phenomenology to mechanism. Nature 541, 331–338 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    152.
    Sandberg, R. Entering the era of single-cell transcriptomics in biology and medicine. Nat. Methods 11, 22–24 (2014).
    CAS  PubMed  Article  Google Scholar 

    153.
    Wang, Y. et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512, 155–160 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    154.
    Lindell, D. et al. Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution. Nature 449, 83–86 (2007).
    CAS  PubMed  Article  Google Scholar 

    155.
    Roux, S., Tournayre, J., Mahul, A., Debroas, D. & Enault, F. Metavir 2: new tools for viral metagenome comparison and assembled virome analysis. BMC Bioinformatics 15, 1–12 (2014).
    Article  CAS  Google Scholar 

    156.
    Watson, M., Schnettler, E. & Kohl, A. viRome: an R package for the visualization and analysis of viral small RNA sequence datasets. Bioinformatics 29, 1902–1903 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    157.
    Jurtz, V. I., Villarroel, J., Lund, O., Voldby Larsen, M. & Nielsen, M. MetaPhinder—identifying bacteriophage sequences in metagenomic data sets. PLoS ONE 11, e0163111 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    158.
    Zheng, T. et al. Mining, analyzing, and integrating viral signals from metagenomic data. Microbiome 7, 1–15 (2019).
    CAS  Article  Google Scholar 

    159.
    Ren, J., Ahlgren, N. A., Lu, Y. Y., Fuhrman, J. A. & Sun, F. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome 5, 69 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    160.
    Fang, Z. et al. PPR-Meta: a tool for identifying phages and plasmids from metagenomic fragments using deep learning. GigaScience 8, giz066 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    161.
    Tampuu, A., Bzhalava, Z., Dillner, J. & Vicente, R. ViraMiner: Deep learning on raw DNA sequences for identifying viral genomes in human samples. PLoS ONE 14, e0222271 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    162.
    Bin Jang, H. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).
    Article  CAS  Google Scholar 

    163.
    Schleyer, G. et al. In plaque-mass spectrometry imaging of a bloom-forming alga during viral infection reveals a metabolic shift towards odd-chain fatty acid lipids. Nat. Microbiol. 4, 527–538 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    164.
    Van Etten, J. L., Burbank, D. E., Kuczmarski, D. & Meints, R. H. Virus infection of culturable Chlorella-like algae and development of a plaque assay. Science 219, 994–996 (1983).
    Article  Google Scholar 

    165.
    Maxwell, K. L. & Frappier, L. Viral proteomics. Microbiol. Mol. Biol. Rev. 71, 398–411 (2007).
    CAS  Article  Google Scholar 

    166.
    Lum, K. K. & Cristea, I. M. Proteomic approaches to uncovering virus-host protein interactions during the progression of viral infection. Expert Rev. Proteom. 13, 325–340 (2016).
    CAS  Article  Google Scholar 

    167.
    Cheng, W. & Schimert, K. A method for tethering single viral particles for virus-cell interaction studies with optical tweezers. Proc. SPIE 10723, 107233B (2018).
    Google Scholar 

    168.
    Ekeberg, T. et al. Three-dimensional reconstruction of the giant mimivirus particle with an X-ray free-electron laser. Phys. Rev. Lett. 114, 098102 (2015).
    PubMed  Article  CAS  Google Scholar 

    169.
    Cheng, Y. Single-particle cryo-EM at crystallographic resolution. Cell 161, 450–457 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    170.
    Lyumkis, D. Challenges and opportunities in cryo-EM single-particle analysis. J. Biol. Chem. 294, 5181–5197 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    171.
    Subramaniam, S., Bartesaghi, A., Liu, J., Bennett, A. E. & Sougrat, R. Electron tomography of viruses. Curr. Opin. Struct. Biol. 17, 596–602 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    172.
    Gamage, S. et al. Probing structural changes in single enveloped virus particles using nano-infrared spectroscopic imaging. PLoS ONE 13, e0199112 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    173.
    Martínez Martínez, J., Schroeder, D. C., Larsen, A., Bratbak, G. & Wilson, W. H. Molecular dynamics of Emiliania huxleyi and cooccurring viruses during two separate mesocosm studies. Appl. Environ. Microbiol. 73, 554–562 (2007).
    Article  CAS  Google Scholar 

    174.
    Martínez Martínez, J. et al. New lipid envelope-containing dsDNA virus isolates infecting Micromonas pusilla reveal a separate phylogenetic group. Aquat. Microb. Ecol. 74, 17–28 (2015).
    Article  Google Scholar  More

  • in

    Temporal and spatial dynamics in the apple flower microbiome in the presence of the phytopathogen Erwinia amylovora

    1.
    Aleklett K, Hart M, Shade A. The microbial ecology of flowers: an emerging frontier in phyllosphere research. Botany. 2014;92:253–66.
    Article  Google Scholar 
    2.
    Shade A, McManus PS, Handelsman J. Unexpected diversity during community succession in the apple flower microbiome. MBio. 2013;4:e00602–12.
    PubMed  PubMed Central  Article  Google Scholar 

    3.
    Ambika Manirajan B, Ratering S, Rusch V, Schwiertz A, Geissler‐Plaum R, Cardinale M, et al. Bacterial microbiota associated with flower pollen is influenced by pollination type, and shows a high degree of diversity and species‐specificity. Environ Microbiol. 2016;18:5161–74.
    Article  Google Scholar 

    4.
    Tucker CM, Fukami T. Environmental variability counteracts priority effects to facilitate species coexistence: evidence from nectar microbes. Proc R Soc B: Biol Sci. 2014;281:20132637.
    Article  Google Scholar 

    5.
    Pusey PL, Rudell DR, Curry EA, Mattheis JP. Characterization of stigma exudates in aqueous extracts from apple and pear flowers. HortScience. 2008;43:1471–8.
    Article  Google Scholar 

    6.
    Stockwell V, McLaughlin R, Henkels M, Loper J, Sugar D, Roberts R. Epiphytic colonization of pear stigmas and hypanthia by bacteria during primary bloom. Phytopathology. 1999;89:1162–8.
    CAS  Article  Google Scholar 

    7.
    Steven B, Huntley RB, Zeng Q. The influence of flower anatomy and apple cultivar on the apple flower phytobiome. Phytobiomes. 2018;2:171–9.
    Article  Google Scholar 

    8.
    Norelli JL, Jones AL, Aldwinckle HS. Fire blight management in the twenty-first century: using new technologies that enhance host resistance in apple. Plant Dis. 2003;87:756–65.
    Article  Google Scholar 

    9.
    Thomson S, Wagner A, Gouk S, editors. Rapid epiphytic colonization of apple flowers and the role of insects and rain. VIII International Workshop on Fire Blight. vol 489. ISHS Acta Horticulturae; Kusadasi, Turkey. 1998.

    10.
    Pusey PL, Stockwell VO, Mazzola M. Epiphytic bacteria and yeasts on apple blossoms and their potential as antagonists of Erwinia amylovora. Phytopathology. 2009;99:571–81.
    Article  Google Scholar 

    11.
    Sinclair L, Osman OA, Bertilsson S, Eiler A. Microbial community composition and diversity via 16S rRNA gene amplicons: evaluating the illumina platform. PLoS ONE. 2015;10:e0116955.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    12.
    Pirc M, Ravnikar M, Tomlinson J, Dreo T. Improved fireblight diagnostics using quantitative real‐time PCR detection of Erwinia amylovora chromosomal DNA. Plant Pathol. 2009;58:872–81.
    CAS  Article  Google Scholar 

    13.
    Cui Z, Yuan X, Yang C-H, Huntley RB, Sun W, Wang J, et al. Development of a method to monitor gene expression in single bacterial cells during the interaction with plants and use to study the expression of the type III secretion system in single cells of Dickeya dadantii in potato. Front Microbiol. 2018;9:1429.
    PubMed  PubMed Central  Article  Google Scholar 

    14.
    Schloss PD, W S, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Rognes T, F T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.
    PubMed  PubMed Central  Article  Google Scholar 

    16.
    Westcott SL, S P. OptiClust, an improved method for assigning amplicon-based sequence data to operational taxonomic units. MSphere. 2017;2:e00073–17.
    PubMed  PubMed Central  Article  Google Scholar 

    17.
    Quast C, P E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–D6.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    18.
    Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Dixon P. VEGAN, a package of R functions for community ecology. J Vegetation Sci. 2003;14:927–30.
    Article  Google Scholar 

    20.
    Wickham H. ggplot2: elegant graphics for data analysis. Springer; New York. 2016.

    21.
    Palacio-Bielsa A, R M, Llop P, López MM. Erwinia spp. from pome fruit trees: similarities and differences among pathogenic and non-pathogenic species. Trees. 2012;26:13–29.
    Article  Google Scholar 

    22.
    Kube M, M A, Müller I, Kuhl H, Beck A, Reinhardt R, Geider K. The genome of Erwinia tasmaniensis strain Et1/99, a non‐pathogenic bacterium in the genus Erwinia. Environ Microbiol. 2008;10:2211–22.
    CAS  Article  Google Scholar 

    23.
    Geider K, A G, Du Z, Jakovljevic V, Jock S, Völksch B. Erwinia tasmaniensis sp. nov., a non-phytopathogenic bacterium from apple and pear trees. Int J Syst Evolut Microbiol. 2006;56:2937–43.
    CAS  Article  Google Scholar 

    24.
    Thomson S. The role of the stigma in fire blight infections. Phytopathology. 1986;76:476–82.
    Article  Google Scholar 

    25.
    Johnson KB, S V. Management of fire blight: a case study in microbial ecology. Annu Rev Phytopathol. 1998;36:227–48.
    CAS  Article  Google Scholar 

    26.
    Berendsen RL, Pieterse CM, Bakker PA. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17:478–86.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Albrecht M, Padrón B, Bartomeus I, Traveset A. Consequences of plant invasions on compartmentalization and species’ roles in plant–pollinator networks. Proc R Soc B: Biol Sci. 2014;281:20140773.
    Article  Google Scholar 

    28.
    Edlund AF, Swanson R, Preuss D. Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell. 2004;16:S84–S97.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Fridman S, Izhaki I, Gerchman Y, Halpern M. Bacterial communities in floral nectar. Environ Microbiol Rep. 2012;4:97–104.
    Article  Google Scholar 

    30.
    Yuan J, Chaparro JM, Manter DK, Zhang R, Vivanco JM, Shen Q. Roots from distinct plant developmental stages are capable of rapidly selecting their own microbiome without the influence of environmental and soil edaphic factors. Soil Biol Biochem. 2015;89:206–9.
    CAS  Article  Google Scholar 

    31.
    Marschner P, Neumann G, Kania A, Weiskopf L, Lieberei R. Spatial and temporal dynamics of the microbial community structure in the rhizosphere of cluster roots of white lupin (Lupinus albus L.). Plant Soil. 2002;246:167–74.
    CAS  Article  Google Scholar 

    32.
    Bardgett RD, Bowman WD, Kaufmann R, Schmidt SK. A temporal approach to linking aboveground and belowground ecology. Trends Ecol Evol. 2005;20:634–41.
    Article  Google Scholar 

    33.
    Goldford JE, Lu N, Bajić D, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, et al. Emergent simplicity in microbial community assembly. Science. 2018;361:469–74.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Pusey P, Stockwell V, Reardon C, Smits T, Duffy B. Antibiosis activity of Pantoea agglomerans biocontrol strain E325 against Erwinia amylovora on apple flower stigmas. Phytopathology. 2011;101:1234–41.
    CAS  Article  Google Scholar 

    35.
    Herrera CM. Microclimate and individual variation in pollinators: flowering plants are more than their flowers. Ecology. 1995;76:1516–24.
    Article  Google Scholar 

    36.
    Medzhitov R, Schneider DS, Soares MP. Disease tolerance as a defense strategy. Science. 2012;335:936–41.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Hamdan-Partida A, González-García S, de la Rosa García E, Bustos-Martínez J. Community-acquired methicillin-resistant Staphylococcus aureus can persist in the throat. Int J Med Microbiol. 2018;308:469–75.
    Article  Google Scholar 

    38.
    Peacock SJ, de Silva I, Lowy FD. What determines nasal carriage of Staphylococcus aureus? Trends Microbiol. 2001;9:605–10.
    CAS  Article  Google Scholar 

    39.
    Von Eiff C, Becker K, Machka K, Stammer H, Peters G. Nasal carriage as a source of Staphylococcus aureus bacteremia. N Engl J Med. 2001;344:11–6.
    Article  Google Scholar 

    40.
    Paetzold B, Willis JR, de Lima JP, Knödlseder N, Brüggemann H, Quist SR, et al. Skin microbiome modulation induced by probiotic solutions. Microbiome. 2019;7:95.
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Trosvik P, Stenseth NC, Rudi K. Convergent temporal dynamics of the human infant gut microbiota. ISME J. 2010;4:151.
    CAS  Article  Google Scholar 

    42.
    Shenhav L, Furman O, Briscoe L, Thompson M, Silverman JD, Mizrahi I, et al. Modeling the temporal dynamics of the gut microbial community in adults and infants. PLoS Comput Biol. 2019;15:e1006960.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Giatsis C, Sipkema D, Smidt H, Verreth J, Verdegem M. The colonization dynamics of the gut microbiota in tilapia larvae. PLoS ONE. 2014;9:e103641.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    44.
    Booijink CC, El‐Aidy S, Rajilić‐Stojanović M, Heilig HG, Troost FJ, Smidt H, et al. High temporal and inter‐individual variation detected in the human ileal microbiota. Environ Microbiol. 2010;12:3213–27.
    CAS  Article  Google Scholar 

    45.
    Bolnick DI, Snowberg LK, Hirsch PE, Lauber CL, Org E, Parks B, et al. Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat Commun. 2014;5:4500.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Colman DR, Toolson EC, Takacs‐Vesbach C. Do diet and taxonomy influence insect gut bacterial communities? Mol Ecol. 2012;21:5124–37.
    CAS  Article  Google Scholar 

    47.
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027.
    Article  Google Scholar 

    48.
    Mariat D, Firmesse O, Levenez F, Guimarăes V, Sokol H, Doré J, et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009;9:123.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Råberg L, Sim D, Read AF. Disentangling genetic variation for resistance and tolerance to infectious diseases in animals. Science. 2007;318:812–4.
    Article  CAS  Google Scholar  More

  • in

    Groundwater arsenic

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript. More

  • in

    Acidobacteria are active and abundant members of diverse atmospheric H2-oxidizing communities detected in temperate soils

    1.
    Conrad R. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev. 1996;60:609–40.
    CAS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Rhee TS, Brenninkmeijer CAM, Röckmann T. The overwhelming role of soils in the global atmospheric hydrogen cycle. Atmos Chem Phys. 2006;6:1611–25.
    CAS  Article  Google Scholar 

    3.
    Downey NVS, Randerson JT, Eiler JM. Molecular hydrogen uptake by soils in forest, desert, and marsh ecosystems in California. J Geophys Res. 2008;113:G03037.
    Article  Google Scholar 

    4.
    Schmitt S, Hanselmann A, Wollschläger U, Hammer S, Levin I. Investigation of parameters controlling the soil sink of atmospheric molecular hydrogen. Tellus B Chem Phys Meter. 2009;61:416–23.
    Article  CAS  Google Scholar 

    5.
    Novelli PC, Lang PM, Masarie KA, Hurst DF, Myers R, Elkins JW. Molecular hydrogen in the troposphere: Global distribution and budget. J Geophys Res. 1999;104:30427–44.
    CAS  Article  Google Scholar 

    6.
    Downey NVS, Randerson JT, Eiler JM. Temperature and moisture dependence of soil H2 uptake measured in the laboratory. Geophys Res Lett. 2006;33:1–5.
    Google Scholar 

    7.
    Häring V, Conrad R. Demonstration of two different H2-oxidizing activities in soil using an H2 consumption and a tritium exchange assay. Biol Fertil Soils. 1994;17:125–8.
    Article  Google Scholar 

    8.
    Schuler S, Conrad R. Soils contain two different activities for oxidation of hydrogen. FEMS Microbiol Ecol. 1990;73:77–84.
    CAS  Article  Google Scholar 

    9.
    Constant P, Chowdhury SP, Hesse L, Pratscher J, Conrad R. Genome data mining and soil survey for the novel group 5 [NiFe]-hydrogenase to explore the diversity and ecological importance of presumptive high-affinity H2-oxidizing bacteria. Appl Environ Microbiol. 2011;77:6027–35.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Greening C, Constant P, Hards K, Morales SE, Oakeshott JG, Russell RJ, et al. Atmospheric hydrogen scavenging: from enzymes to ecosystems. Appl Environ Microbiol. 2015;81:1190–9.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    11.
    Maimaiti J, Zhang Y, Yang J, Cen YP, Layzell DB, Peoples M, et al. Isolation and characterization of hydrogen-oxidizing bacteria induced following exposure of soil to hydrogen gas and their impact on plant growth. Environ Microbiol. 2007;9:435–44.
    CAS  PubMed  Article  Google Scholar 

    12.
    Constant P, Poissant L, Villemur R. Isolation of Streptomyces sp. PCB7, the first microorganism demonstrating high-affinity uptake of tropospheric H2. ISME J. 2008;2:1066–76.
    CAS  PubMed  Article  Google Scholar 

    13.
    Constant P, Hallenbeck PC. Chapter 5 – Hydrogenase. In: Pandey A, Chang JS, Hallenbeck PC, Larroche C, editors. Biohydrogen, 1st edition. Amsterdam: Elsevier; 2013.

    14.
    Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilized energy source for microbial growth and survival. ISME J. 2016;10:761–77.
    CAS  PubMed  Article  Google Scholar 

    15.
    Constant P, Hallenbeck PC. Chapter 3 – Hydrogenase. In . Editors: Pandey A, Mohan SV, Chang JS, Hallenbeck PC, Larroche C, editors. Biohydrogen, 2nd edition. Amsterdam: Elsevier; 2019;49–78.

    16.
    Piché-Choquette S, Constant P. Molecular hydrogen, a neglected key driver of soil biogeochemical processes. Appl Environ Microbiol. 2019;85:e02418–18.
    PubMed  PubMed Central  Article  Google Scholar 

    17.
    Greening C, Berney M, Hards K, Cook GM, Conrad R. A soil actinobacterium scavenges atmospheric H2 using two membrane-associated, oxygen-dependent [NiFe] hydrogenases. Proc Natl Acad Sci USA. 2014;111:4257–61.
    CAS  PubMed  Article  Google Scholar 

    18.
    Constant P, Chowdhury SP, Pratscher J, Conrad R. Streptomycetes contributing to atmospheric molecular hydrogen soil uptake are widespread and encode a putative high‐affinity [NiFe]‐hydrogenase. Environ Microbiol. 2010;12:821–9.
    CAS  PubMed  Article  Google Scholar 

    19.
    Meredith LK, Rao D, Bosak T, Klepec-Ceraj V, Tada KR, Hansel CM, et al. Consumption of atmospheric hydrogen during the life cycle of soil‐dwelling actinobacteria. Environ Microbiol Rep. 2014;6:226–38.
    CAS  PubMed  Article  Google Scholar 

    20.
    Piché-Choquette S, Khdhiri M, Constant P. Survey of high-affinity H2-oxidizing bacteria in soil reveals their vast diversity yet underrepresentation in genomic databases. Micro Ecol. 2017;74:771–5.
    Article  CAS  Google Scholar 

    21.
    Greening C, Carere CR, Rushton-Green R, Harold LK, Hards K, Taylor MC, et al. Persistence of the dominant soil phylum Acidobacteria by trace gas scavenging. Proc Natl Acad Sci USA. 2015;112:10497–502.
    CAS  PubMed  Article  Google Scholar 

    22.
    Islam ZF, Cordero PRF, Feng J, Chen YJ, Bay SK, Jirapanjawat T, et al. Two Chloroflexi classes independently evolved the ability to persist on atmospheric hydrogen and carbon monoxide. ISME J. 2019;13:1801–13.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Mohammadi S, Pol A, van Alen TA, Jetten MSM, Op den Camp HJM. Methylacidiphilum fumariolicum SolV, a thermoacidophilic ‘Knallgas’ methanotroph with both an oxygen-sensitive and -insensitive hydrogenase. ISME J. 2017;11:945–58.
    CAS  PubMed  Article  Google Scholar 

    24.
    Janssen PH. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol. 2006;72:1719–28.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Barns SM, Cain EC, Sommerville L, Kuske CR. Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. Appl Environ Microbiol. 2007;73:3113–6.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Dedysh SN, Yilmaz P. Refining the taxonomic structure of the phylum Acidobacteria. Int J Syst Evol Microbiol. 2018;68:3796–806.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Kielak AM, Barreto CC, Kowalchuk GA, van Veen JA, Kuramae EE. The ecology of acidobacteria: moving beyond genes and genomes. Front Microbiol. 2016;7:744.
    PubMed  PubMed Central  Google Scholar 

    28.
    Myers MR, King GM. Isolation and characterization of Acidobacterium ailaaui sp. nov., a novel member of Acidobacteria sub-division I, from a geothermally-heated Hawaiian microbial mat. Int J Syst Evol Microbiol. 2016;66:5328–35.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Eichorst SA, Trojan D, Roux S, Herbold C, Rattei T, Woebken D. Genomic insights into the Acidobacteria reveal strategies for their success in terrestrial environments. Environ Microbiol. 2018;20:1041–63.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Gödde R, Meuser K, Conrad R. Hydrogen consumption and carbon monoxide production in soils with different properties. Biol Fertil Soils. 2000;32:129–34.
    Article  Google Scholar 

    31.
    Meredith LK, Commane R, Keenan TF, Klosterman ST, Munger JW, Templer PH, et al. Ecosystem fluxes of hydrogen in a mid‐latitude forest driven by soil microorganisms and plants. Glob Change Biol. 2017;23:906–19.
    Article  Google Scholar 

    32.
    Turlapati SA, Minocha R, Bhiravarasa PS, Tisa LS, Thomas WK, Minocha SC. Chronic N-amended soils exhibit an altered bacterial community structure in Harvard Forest, MA, USA. FEMS Microbiol Ecol. 2012;83:478–93.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    33.
    Søndergaard D, Pedersen CNS, Greening C. HydDB: A web tool for hydrogenase classification and analysis. Sci Rep. 2016;6:1–8.
    Article  CAS  Google Scholar 

    34.
    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019;20:1160–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    37.
    Eddy SR. A new generation of homology search tools based on probabilistic inference. Genome Inf. 2009;23:205–11.
    Google Scholar 

    38.
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26:1641–50.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Kaiser C, Koranda M, Kitzler B, Fuchslueger L, Schnecker J, Schweiger P, et al. Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. N. Phytol. 2010;187:843–58.
    CAS  Article  Google Scholar 

    42.
    Spohn M, Pötsch EM, Eichorst SA, Woebken D, Wanek W, Richter A. Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland. Soil Biol Biochem. 2016;97:168–75.
    CAS  Article  Google Scholar 

    43.
    Šťovíček A, Kim M, Or D, Gillor O. Microbial community response to hydration-desiccation cycles in desert soil. Sci Rep. 2017;7:1–19.
    Article  CAS  Google Scholar 

    44.
    Angel R. Total nucleic acid extraction from soil. Protocol Exchange. 2012; https://doi.org/10.1038/protex.2012.046.

    45.
    Rose TM, Schultz ER, Henikoff JG, Pietrokovski S, McCallum CM, Henikoff S. Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Nucl Acids Res. 1998;26:1628–35.
    CAS  PubMed  Article  Google Scholar 

    46.
    Herbold CW, Pelikan C, Kuzyk O, Hausmann B, Angel R, Berry D, et al. A flexible and economical barcoding approach for highly multiplexed amplicon sequencing of diverse target genes. Front Microbiol. 2015;6:731.
    PubMed  PubMed Central  Article  Google Scholar 

    47.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-Source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.
    PubMed  PubMed Central  Article  Google Scholar 

    49.
    Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90 K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    50.
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Constant P, Chowdhury SP, Hesse L, Conrad R. Co-localization of atmospheric H2 oxidation activity and high affinity H2-oxidizing bacteria in non-axenic soil and sterile soil amended with Streptomyces sp. PCB7. Soil Biol Biochem. 2011;43:1888–93.
    CAS  Article  Google Scholar 

    53.
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29–37.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.
    CAS  PubMed  Article  Google Scholar 

    56.
    Eichorst SA, Kuske CR, Schmidt TM. Influence of plant polymers on the distribution and cultivation of bacteria in the phylum Acidobacteria. Appl Environ Microbiol. 2011;77:586–96.
    CAS  PubMed  Article  Google Scholar 

    57.
    Koch IH, Gich F, Dunfield PF, Overmann J. Edaphobacter modestus gen. nov., sp. nov. and Edaphobacter aggregans sp. nov., two novel acidobacteria isolated from alpine and forest soils. Int J Syst Evol Microbiol. 2008;58:1114–22.
    CAS  PubMed  Article  Google Scholar 

    58.
    Eichorst SA, Breznak JA, Schmidt TM. Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria. Appl Environ Microbiol. 2007;73:2708–17.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Ritz C, Baty F, Streibig JC, Gerhard D. Dose-response analysis using R. PLoS ONE. 2015;10:e0146021.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    60.
    Joseph SJ, Hugenholtz P, Sangwan P, Osborne CA, Janssen PH. Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl Environ Microbiol. 2003;69:7210–5.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Männistö MK, Rawat S, Starovoytov V, Haggblom MM. Granulicella arctica sp. nov., Granulicella mallensis sp. nov., Granulicella tundricola sp. nov. and Granulicella sapmiensis sp. nov., novel acidobacteria from tundra soil. Int J Syst Evol Microbiol. 2012;62:2097–106.
    PubMed  Article  CAS  Google Scholar 

    62.
    Crowe MA, Power JF, Morgan XC, Dunfield PF, Lagutin K, Rijpstra WIC, et al. Pyrinomonas methylaliphatogenes gen. nov., sp. nov., a novel group 4 thermophilic member of the phylum Acidobacteria from geothermal soils. Int J Syst Evol Microbiol. 2014;64:220–7.
    CAS  PubMed  Article  Google Scholar 

    63.
    Belova SE, Ravin NV, Pankratov TA, Rakitin AL, Ivanova AA, Beletsky AV, et al. Hydrolytic capabilities as a key to environmental success: chitinolytic and cellulolytic acidobacteria from acidic sub-arctic soils and boreal peatlands. Front Microbiol. 2018;9:1–14.
    Article  Google Scholar 

    64.
    Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.
    CAS  PubMed  Article  Google Scholar 

    65.
    Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M, et al. Three genomes in the phylum Acidobacteria provide insight into their lifestyles in soils. Appl Environ Microbiol. 2009;75:2046–56.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Schäfer C, Bommer M, Hennig SE, Jeoung JH, Dobbek H, Lenz O. Structure of an actinobacterial-type [NiFe]-hydrogenase reveals insight into O2-tolerant H2 oxidation. Structure. 2016;24:285–92.
    PubMed  Article  CAS  Google Scholar 

    67.
    Liot Q, Constant P. Breathing air to save energy–new insights into the ecophysiological role of high-affinity [NiFe]-hydrogenase in Streptomyces avermitilis. Microbiologyopen. 2016;5:47–59.
    CAS  PubMed  Article  Google Scholar 

    68.
    Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J. 2009;3:442–53.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA. 1998;95:6578–83.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Kolter R, Siegele DA, Tormo A. The stationary phase of the bacterial life cycle. Ann Rev Microbiol. 1993;47:855–74.
    CAS  Article  Google Scholar 

    71.
    Lennon JTJ, Jones SES. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev. 2011;9:119–30.
    CAS  Google Scholar 

    72.
    Jones SE, Lennon JT. Dormancy contributes to the maintenance of microbial diversity. Proc Natl Acad Sci USA. 2010;107:5881–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    73.
    Morita RY. Is H2 the universal energy source for long-term survival? Micro Ecol. 1999;38:307–20.
    CAS  Article  Google Scholar 

    74.
    Cordero PRF, Bayly K, Man Leung P, Huang C, Islam ZF, Schittenhelm RB, et al. Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. ISME J. 2019;13:2868–81.
    CAS  PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Interactions with conspecific outsiders as drivers of cognitive evolution

    1.
    Milton, K. in Machiavellian Intelligence: Social Expertise and the Evolution of Intellect in Monkeys, Apes, and Humans 285–305 (Clarendon, Oxford, 1988).
    2.
    DeCasien, A. R., Williams, S. A. & Higham, J. P. Primate brain size is predicted by diet but not sociality. Nat. Ecol. Evol. 1, 0112 (2017).
    Article  Google Scholar 

    3.
    Sayol, F. et al. Environmental variation and the evolution of large brains in birds. Nat. Commun. 7, 13971 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Powell, L. E., Isler, K. & Barton, R. A. Re-evaluating the link between brain size and behavioural ecology in primates. Proc. R. Soc. B Biol. Sci. 284, 1–8 (2017).
    Google Scholar 

    5.
    Byrne, R. W. & Whiten, A. in Machiavellian Intelligence: Social Expertise and the Evolution of Intellect in Monkeys, Apes, and Humans. https://doi.org/10.2307/2804121 (Clarendon, Oxford, 1988).

    6.
    Dunbar, R. I. M. The social brain hypothesis. Evol. Anthropol. Rev. 6, 178–190 (1998).
    Article  Google Scholar 

    7.
    Ashton, B. J., Thornton, A. & Ridley, A. R. An intraspecific appraisal of the social intelligence hypothesis. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170288 (2018).
    Article  Google Scholar 

    8.
    Holekamp, K. E. Questioning the social intelligence hypothesis. Trends Cogn. Sci. 11, 65–69 (2007).
    PubMed  Article  Google Scholar 

    9.
    Kern, J. M. & Radford, A. N. Experimental evidence for delayed contingent cooperation among wild dwarf mongooses. Proc. Natl Acad. Sci. USA 115, 6255–6260 (2018).
    CAS  PubMed  Article  Google Scholar 

    10.
    Borgeaud, C. & Bshary, R. Wild vervet monkeys trade tolerance and specific coalitionary support for grooming in experimentally induced conflicts. Curr. Biol. 25, 3011–3016 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Moll, H. & Tomasello, M. Cooperation and human cognition: the Vygotskian intelligence hypothesis. Philos. Trans. R. Soc. B Biol. Sci. 362, 639–648 (2007).
    Article  Google Scholar 

    12.
    van Schaik, C. P., Isler, K. & Burkart, J. M. Explaining brain size variation: from social to cultural brain. Trends Cogn. Sci. 16, 277–284 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    13.
    Lucas, J. R., Gentry, K. E., Sieving, K. E. & Freeberg, T. M. Communication as a fundamental part of Machiavellian intelligence. J. Comp. Psychol. 132, 442–454 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    14.
    Dunbar, R. I. M. & Shultz, S. Why are there so many explanations for primate brain evolution? Philos. Trans. R. Soc. B Biol. Sci. 372, 20160244 (2017).
    Article  Google Scholar 

    15.
    Dunbar, R. I. M. & Shultz, S. Understanding primate brain evolution. Philos. Trans. R. Soc. B Biol. Sci. 362, 649–658 (2007).
    CAS  Article  Google Scholar 

    16.
    Shultz, S. & Dunbar, R. I. M. Social bonds in birds are associated with brain size and contingent on the correlated evolution of life-history and increased parental investment. Biol. J. Linn. Soc. 100, 111–123 (2010).
    Article  Google Scholar 

    17.
    Shultz, S. & Dunbar, R. I. M. The evolution of the social brain: anthropoid primates contrast with other vertebrates. Proc. R. Soc. B Biol. Sci. 274, 2429–2436 (2007).
    Article  Google Scholar 

    18.
    Lemoine, S. et al. Between-group competition impacts reproductive success in wild chimpanzees. Curr. Biol. 30, 312–318.e3 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Adams, E. S. Approaches to the study of territory size and shape. Annu. Rev. Ecol. Syst. 32, 277–303 (2001).
    Article  Google Scholar 

    20.
    Hardy, I. C. W. & Briffa, M. Animal Contests (Cambridge Univ. Press, Cambridge, 2013).
    Google Scholar 

    21.
    Radford, A. N., Majolo, B. & Aureli, F. Within-group behavioural consequences of between-group conflict: a prospective review. Proc. R. Soc. B Biol. Sci. 283, 20161567 (2016).
    Article  Google Scholar 

    22.
    van Schaik, C. P. in Comparative Socioecology (eds. Standen, V. & Foley, R. A.) 195–218 (Blackwell, 1989).

    23.
    Wrangham, R. W. An ecological model of female-bonded primate groups. Behaviour 75, 262–300 (1980).
    Article  Google Scholar 

    24.
    Sterck, E. H. M. The evolution of female social relationships in nonhuman primates. Behav. Ecol. Sociol. 291–309 (1997).

    25.
    Wilson, M. L. & Wrangham, R. W. Intergroup relations in chimpanzees. Annu. Rev. Anthropol. 32, 363–392 (2003).
    Article  Google Scholar 

    26.
    Moser-Purdy, C., MacDougall-Shackleton, E. A. & Mennill, D. J. Enemies are not always dear: male song sparrows adjust dear enemy effect expression in response to female fertility. Anim. Behav. 126, 17–22 (2017).
    Article  Google Scholar 

    27.
    Gherardi, F. Fighting behavior in hermit crabs: the combined effect of resource-holding potential and resource value in Pagurus longicarpus. Behav. Ecol. Sociobiol. 59, 500–510 (2006).
    Article  Google Scholar 

    28.
    Alexander, R. D. in The Human Revolution (eds. Mellars, P. & Stringer, C.) 455–513 (Edinburgh Univ. Press, Edinburgh, 1984).

    29.
    Hamilton, W. D. in ASA Studies 4: Biosocial Anthropology (ed. Fox, R.) 133–153 (Malaby, 1975).

    30.
    Grueter, C. C. Home range overlap as a driver of intelligence in primates. Am. J. Primatol. 77, 418–424 (2015).
    PubMed  Article  Google Scholar 

    31.
    Reichert, M. S. & Quinn, J. L. Cognition in contests: mechanisms, ecology, and evolution. Trends Ecol. Evol. 32, 773–785 (2017).
    PubMed  Article  Google Scholar 

    32.
    Shettleworth, S. J. Cognition, Evolution, and Behavior (Oxford Univ. Press, 2010).

    33.
    Young, A. J., Spong, G. & Clutton-Brock, T. Subordinate male meerkats prospect for extra-group paternity: alternative reproductive tactics in a cooperative mammal. Proc. R. Soc. B Biol. Sci. 274, 1603–1609 (2007).
    Article  Google Scholar 

    34.
    Radford, A. N. & du Plessis, M. A. Territorial vocal rallying in the green woodhoopoe: factors affecting contest length and outcome. Anim. Behav. 68, 803–810 (2004).
    Article  Google Scholar 

    35.
    Geissmann, T. & Orgeldinger, M. The relationship between duet songs and pair bonds in siamangs, Hylobates syndactylus. Anim. Behav. 60, 805–809 (2000).
    CAS  PubMed  Article  Google Scholar 

    36.
    Ridley, A. R. in Cooperative Breeding in Vertebrates: Studies of Ecology, Evolution and Behavior. 115–132. https://doi.org/10.1017/CBO9781107338357.008 (Cambridge Univ. Press, 2016).

    37.
    Bee, M. A. Habituation and sensitization of aggression in bullfrogs (Rana catesbeiana): testing the dual-process theory of habituation. J. Comp. Psychol. 115, 307–316 (2001).
    CAS  PubMed  Article  Google Scholar 

    38.
    Sheehan, M. J. & Tibbetts, E. A. Selection for individual recognition and the evolution of polymorphic identity signals in Polistes paper wasps. J. Evol. Biol. 23, 570–577 (2010).
    CAS  PubMed  Article  Google Scholar 

    39.
    Cant, M. A., Otali, E. & Mwanguhya, F. Fighting and mating between groups in a cooperatively breeding mammal, the banded mongoose. Ethology 108, 541–555 (2002).
    Article  Google Scholar 

    40.
    Braga Goncalves, I. & Radford, A. N. Experimental evidence that intruder and group member attributes affect outgroup defence and associated within-group interactions in a social fish. Proc. R. Soc. B Biol. Sci. 286, 20191261 (2019).
    Article  Google Scholar 

    41.
    Szipl, G., Ringler, E. & Bugnyar, T. Attacked ravens flexibly adjust signalling behaviour according to audience composition. Proc. R. Soc. B Biol. Sci. 285, 20180375 (2018).
    Article  Google Scholar 

    42.
    Noser, R. & Byrne, R. W. Mental maps in chacma baboons (Papio ursinus): Using inter-group encounters as a natural experiment. Anim. Cogn. 10, 331–340 (2007).
    PubMed  Article  Google Scholar 

    43.
    Radford, A. N. Preparing for battle? Potential intergroup conflict promotes current intragroup affiliation. Biol. Lett. 7, 26–29 (2011).
    PubMed  Article  Google Scholar 

    44.
    Christensen, C. & Radford, A. N. Dear enemies or nasty neighbors? Causes and consequences of variation in the responses of group-living species to territorial intrusions. Behav. Ecol. 29, 1004–1013 (2018).
    Article  Google Scholar 

    45.
    Temeles, E. J. The role of neighbours in territorial systems: when are they ‘dear enemies’? Anim. Behav. 47, 339–350 (1994).
    Article  Google Scholar 

    46.
    Radford, A. N. Group-specific vocal signatures and neighbour-stranger discrimination in the cooperatively breeding green woodhoopoe. Anim. Behav. 70, 1227–1234 (2005).
    Article  Google Scholar 

    47.
    Hyman, J. & Hughes, M. Territory owners discriminate between aggressive and nonaggressive neighbours. Anim. Behav. 72, 209–215 (2006).
    Article  Google Scholar 

    48.
    Monclús, R., Saavedra, I. & de Miguel, J. Context-dependent responses to neighbours and strangers in wild European rabbits (Oryctolagus cuniculus). Behav. Process. 106, 17–21 (2014).
    Article  Google Scholar 

    49.
    Thompson, F. J., Marshall, H. H., Vitikainen, E. I. K. & Cant, M. A. Causes and consequences of intergroup conflict in cooperative banded mongooses. Anim. Behav. 126, 31–40 (2017).
    Article  Google Scholar 

    50.
    McComb, K., Packer, C. & Pusey, A. Roaring and numerical assessment in contests between groups of female lions, Panthera leo. Anim. Behav. 47, 379–387 (1994).
    Article  Google Scholar 

    51.
    Descovich, K. A., Lisle, A. T., Johnston, S., Nicolson, V. & Phillips, C. J. C. Differential responses of captive southern hairy-nosed wombats (Lasiorhinus latifrons) to the presence of faeces from different species and male and female conspecifics. Appl. Anim. Behav. Sci. 138, 110–117 (2012).
    Article  Google Scholar 

    52.
    Christensen, C., Kern, J. M., Bennitt, E. & Radford, A. N. Rival group scent induces changes in dwarf mongoose immediate behavior and subsequent movement. Behav. Ecol. 27, 1627–1634 (2016).
    Google Scholar 

    53.
    Trimmer, P. C. & Houston, A. I. An evolutionary perspective on information processing. Top. Cogn. Sci. 6, 312–330 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    54.
    Mares, R., Young, A. J., Levesque, D. L., Harrison, N. & Clutton-Brock, T. H. Responses to intruder scents in the cooperatively breeding meerkat: sex and social status differences and temporal variation. Behav. Ecol. 22, 594–600 (2011).
    Article  Google Scholar 

    55.
    Humphries, D. J., Finch, F. M., Bell, M. B. V. & Ridley, A. R. Vocal cues to identity: pied babblers produce individually distinct but not stable loud calls. Ethology 122, 609–619 (2016).
    Article  Google Scholar 

    56.
    Burgener, N., Dehnhard, M., Hofer, H. & East, M. L. Does anal gland scent signal identity in the spotted hyaena? Anim. Behav. 77, 707–715 (2009).
    Article  Google Scholar 

    57.
    Lanchester, F. W. W. Aircraft in Warfare: the Dawn of the Fourth Arm. (Constable and Company Limited, 1916).

    58.
    Wilson, M. L., Britton, N. F. & Franks, N. R. Chimpanzees and the mathematics of battle. Proc. R. Soc. B Biol. Sci. 269, 1107–1112 (2002).
    Article  Google Scholar 

    59.
    Plowes, N. J. R. & Adams, E. S. An empirical test of Lanchester’s square law: mortality during battles of the fire ant Solenopsis invicta. Proc. R. Soc. B Biol. Sci. 272, 1809–1814 (2005).
    Article  Google Scholar 

    60.
    Radford, A. N. Territorial vocal rallying in the green woodhoopoe: influence of rival group size and composition. Anim. Behav. 66, 1035–1044 (2003).
    Article  Google Scholar 

    61.
    van Schaik, C. P. et al. Male monkeys use punishment and coercion to de-escalate costly intergroup fights. Proc. R. Soc. B Biol. Sci. 285, 20172323 (2018).
    Article  Google Scholar 

    62.
    Boydston, E. E., Morelli, T. L. & Holekamp, K. E. Sex differences in territorial behavior exhibited by the spotted hyena (Hyaenidae, Crocuta crocuta). Ethology 107, 369–385 (2001).
    Article  Google Scholar 

    63.
    McComb, K., Pusey, A., Packer, C. & Grinnell, J. Female lions can identify potentially infanticidal males from their roars. Proc. R. Soc. B Biol. Sci. 252, 59–64 (1993).
    ADS  CAS  Article  Google Scholar 

    64.
    Koch, F., Signer, J., Kappeler, P. M. & Fichtel, C. Intergroup encounters in Verreaux’s sifakas (Propithecus verreauxi): who fights and why? Behav. Ecol. Sociobiol. 70, 797–808 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    65.
    Schindler, S., Radford, A. N. & Schindler, S. Factors influencing within-group conflict over defence against conspecific outsiders seeking breeding positions. Proc. R. Soc. B Biol. Sci. 285, 20181669 (2018).
    Article  Google Scholar 

    66.
    Arseneau-Robar, T. J. M. et al. Female monkeys use both the carrot and the stick to promote male participation in intergroup fights. Proc. R. Soc. B Biol. Sci. 283, 20161817 (2016).
    Article  Google Scholar 

    67.
    Radford, A. N. Duration and outcome of intergroup conflict influences intragroup affiliative behaviour. Proc. R. Soc. B Biol. Sci. 275, 2787–2791 (2008).
    Article  Google Scholar 

    68.
    Tibbetts, E. A., Agudelo, J., Pandit, S. & Riojas, J. Transitive inference in Polistes paper wasps. Biol. Lett. 15, 20190015 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    69.
    Grosenick, L., Clement, T. S. & Fernald, R. D. Fish can infer social rank by observation alone. Nature 445, 429–432 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Arseneau-Robar, T. J. M., Taucher, A. L., Schnider, A. B., van Schaik, C. P. & Willems, E. P. Intra- and interindividual differences in the costs and benefits of intergroup aggression in female vervet monkeys. Anim. Behav. 123, 129–137 (2017).
    Article  Google Scholar 

    71.
    Kotrschal, A., Räsänen, K., Kristjánsson, B. K., Senn, M. & Kolm, N. Extreme sexual brain size dimorphism in sticklebacks: a consequence of the cognitive challenges of sex and parenting? PLoS ONE 7, e30055 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    72.
    Garamszegi, L. Z., Eens, M., Erritzøe, J. & Møller, A. P. Sperm competition and sexually size dimorphic brains in birds. Proc. R. Soc. B Biol. Sci. 272, 159–166 (2005).
    Article  Google Scholar 

    73.
    Willems, E. P. & Van Schaik, C. P. Collective action and the intensity of between-group competition in nonhuman primates. Behav. Ecol. 26, 625–631 (2015).
    Article  Google Scholar 

    74.
    Kotrschal, A. et al. Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain. Curr. Biol. 23, 168–171 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Kotrschal, A., Corral-Lopez, A. & Kolm, N. Large brains, short life: selection on brain size impacts intrinsic lifespan. Biol. Lett. 15 (2019).

    76.
    Tsuboi, M. et al. Comparative support for the expensive tissue hypothesis: big brains are correlated with smaller gut and greater parental investment in Lake Tanganyika cichlids. Evolution 69, 190–200 (2015).
    PubMed  Article  Google Scholar 

    77.
    Kotrschal, A., Kolm, N. & Penn, D. J. Selection for brain size impairs innate, but not adaptive immune responses. Proc. R. Soc. B Biol. Sci. 283 (2016).

    78.
    Gervais, M. M., Kline, M., Ludmer, M., George, R. & Manson, J. H. The strategy of psychopathy: primary psychopathic traits predict defection on low-value relationships. Proc. R. Soc. B Biol. Sci. 280, 20122773 (2013).
    Article  Google Scholar 

    79.
    Creel, S. & Christianson, D. Relationships between direct predation and risk effects. Trends Ecol. Evol. 23, 194–201 (2008).
    PubMed  Article  Google Scholar 

    80.
    Bruintjes, R., Lynton-Jenkins, J., Jones, J. W. & Radford, A. N. Out-group threat promotes within-group affiliation in a cooperative fish. Am. Nat. 187, 274–282 (2015).
    PubMed  Article  Google Scholar 

    81.
    Mosser, A. & Packer, C. Group territoriality and the benefits of sociality in the African lion, Panthera leo. Anim. Behav. 78, 359–370 (2009).
    Article  Google Scholar 

    82.
    Crofoot, M. C., Gilby, I. C., Wikelski, M. C. & Kays, R. W. Interaction location outweighs the competitive advantage of numerical superiority in Cebus capucinus intergroup contests. Proc. Natl Acad. Sci. USA 105, 577–581 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    83.
    Shaw, R. C., Boogert, N. J., Clayton, N. S. & Burns, K. C. Wild psychometrics: evidence for ‘general’ cognitive performance in wild New Zealand robins, Petroica longipes. Anim. Behav. 109, 101–111 (2015).
    Article  Google Scholar 

    84.
    Buechel, S. D., Boussard, A., Kotrschal, A., van Der Bijl, W. & Kolm, N. Brain size affects performance in a reversal-learning test. Proc. R. Soc. B Biol. Sci. 285, 20172031 (2018).
    Article  Google Scholar 

    85.
    Kotrschal, A., Deacon, A. E., Magurran, A. E. & Kolm, N. Predation pressure shapes brain anatomy in the wild. Evol. Ecol. 31, 619–633 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    86.
    Herculano-Houzel, S. & Lent, R. Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. J. Neurosci. 25, 2518–2521 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    87.
    Ashton, B. J., Ridley, A. R., Edwards, E. K. & Thornton, A. Cognitive performance is linked to group size and affects fitness in Australian magpies. Nature 61, 5985–5991 (2018).
    Google Scholar 

    88.
    Taborsky, B. & Oliveira, R. F. Social competence: an evolutionary approach. Trends Ecol. Evol. 27, 679–688 (2012).
    PubMed  Article  Google Scholar 

    89.
    Gonda, A., Herczeg, G. & Merilä, J. Evolutionary ecology of intraspecific brain size variation: a review. Ecol. Evol. 3, 2751–2764 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    90.
    Morris-Drake, A. et al. Experimental field evidence that out-group threats influence within-group behavior. Behav. Ecol. 30, 1425–1435 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    91.
    Hellmann, J. K. & Hamilton, I. M. Intragroup social dynamics vary with the presence of neighbors in a cooperatively breeding fish. Curr. Zool. 65, 21–31 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    92.
    Healy, S. D. & Rowe, C. A critique of comparative studies of brain size. Proc. R. Soc. B Biol. Sci. 274, 453–464 (2007).
    Article  Google Scholar 

    93.
    Kotrschal, A. et al. The benefit of evolving a larger brain: big-brained guppies perform better in a cognitive task. Anim. Behav. 86, e4–e6 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    94.
    Whiten, A. Social, Machiavellian and cultural cognition: a golden age of discovery in comparative and evolutionary psychology. J. Comp. Psychol. 132, 437–441 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    95.
    Radford, A. N. & Bruintjes, R. Expanding the link between out-group threats and in-group behavior (a reply to Kavaliers and Choleris). Am. Nat. 189, 459–462 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    96.
    Brown, M. Food and range defence in group-living primates. Anim. Behav. 85, 807–816 (2013).
    Article  Google Scholar 

    97.
    Mirville, M. O. et al. Factors influencing individual participation during intergroup interactions in mountain gorillas. Anim. Behav. 144, 75–86 (2018).
    Article  Google Scholar 

    98.
    Sheldahl, L. A. & Martins, E. P. The territorial behavior of the western fence lizard, Sceloporus occidentalis. Herpetologica 56, 469–479 (2000).
    Google Scholar 

    99.
    Ward, M. P., Alessi, M., Benson, T. J. & Chiavacci, S. J. The active nightlife of diurnal birds: extraterritorial forays and nocturnal activity patterns. Anim. Behav. 88, 175–184 (2014).
    Article  Google Scholar 

    100.
    Feldblum, J. T., Manfredi, S., Gilby, I. C. & Pusey, A. E. The timing and causes of a unique chimpanzee community fission preceding Gombe’s “Four-Year War”. Am. J. Phys. Anthropol. 166, 730–744 (2018).
    PubMed  Article  PubMed Central  Google Scholar  More