The effect of slope aspect on vegetation attributes in a mountainous dry valley, Southwest China
1.
Daws, M. I., Mullins, C. E., Burslem, D. F. R. P., Paton, S. R. & Dalling, J. W. Topographic position affects the water regime in a semideciduous tropical forest in Panamá. Plant Soil 238, 79–89. https://doi.org/10.1023/A:1014289930621 (2002).
CAS Article Google Scholar
2.
Sundqvist, M. K., Sanders, N. J. & Wardle, D. A. Community and ecosystem responses to elevational gradients: processes, mechanisms, and insights for global change. Annu. Rev. Ecol. Evol. Syst. 44, 261–280. https://doi.org/10.1146/annurev-ecolsys-110512-135750 (2013).
Article Google Scholar
3.
Jucker, T. et al. Topography shapes the structure, composition and function of tropical forest landscapes. Ecol. Lett. 21, 989–1000. https://doi.org/10.1111/ele.12964 (2018).
Article PubMed PubMed Central Google Scholar
4.
Moeslund, J. E., Arge, L., Bøcher, P. K., Dalgaard, T. & Svenning, J.-C. Topography as a driver of local terrestrial vascular plant diversity patterns. Nord. J. Bot. 31, 129–144. https://doi.org/10.1111/j.1756-1051.2013.00082.x (2013).
Article Google Scholar
5.
Holland, P. G. & Steyn, D. G. Vegetational responses to latitudinal variations in slope angle and aspect. J. Biogeogr. 2, 179–183. https://doi.org/10.2307/3037989 (1975).
Article Google Scholar
6.
Yetemen, O., Istanbulluoglu, E. & Duvall, A. R. Solar radiation as a global driver of hillslope asymmetry: Insights from an ecogeomorphic landscape evolution model. Water Resour. Res. 51, 9843–9861. https://doi.org/10.1002/2015wr017103 (2015).
ADS Article Google Scholar
7.
Bennie, J., Hill, M. O., Baxter, R. & Huntley, B. Influence of slope and aspect on long-term vegetation change in British chalk grasslands. J. Ecol. 94, 355–368. https://doi.org/10.1111/j.1365-2745.2006.01104.x (2006).
Article Google Scholar
8.
Cantlon, J. E. Vegetation and microclimates on north and south slopes of Cushetunk Mountain, New Jersey. Ecol. Monogr. 23, 241–270. https://doi.org/10.2307/1943593 (1953).
Article Google Scholar
9.
Warren, R. J. Mechanisms driving understory evergreen herb distributions across slope aspects: as derived from landscape position. Plant Ecol. 198, 297–308. https://doi.org/10.1007/s11258-008-9406-1 (2008).
Article Google Scholar
10.
Bennie, J., Huntley, B., Wiltshire, A., Hill, M. O. & Baxter, R. Slope, aspect and climate: Spatially explicit and implicit models of topographic microclimate in chalk grassland. Ecol. Model. 216, 47–59. https://doi.org/10.1016/j.ecolmodel.2008.04.010 (2008).
Article Google Scholar
11.
Burnett, B. N., Meyer, G. A. & McFadden, L. D. Aspect-related microclimatic influences on slope forms and processes, northeastern Arizona. J. Geophys. Res. Earth Surf. https://doi.org/10.1029/2007jf000789 (2008).
Article Google Scholar
12.
Geroy, I. J. et al. Aspect influences on soil water retention and storage. Hydrol. Process. 25, 3836–3842. https://doi.org/10.1002/hyp.8281 (2011).
ADS Article Google Scholar
13.
Huang, Y.-M., Liu, D. & An, S.-S. Effects of slope aspect on soil nitrogen and microbial properties in the Chinese Loess region. CATENA 125, 135–145. https://doi.org/10.1016/j.catena.2014.09.010 (2015).
CAS Article Google Scholar
14.
Lozano-García, B., Parras-Alcántara, L. & Brevik, E. C. Impact of topographic aspect and vegetation (native and reforested areas) on soil organic carbon and nitrogen budgets in Mediterranean natural areas. Sci. Total Environ. 544, 963–970. https://doi.org/10.1016/j.scitotenv.2015.12.022 (2016).
ADS CAS Article PubMed Google Scholar
15.
Rasmussen, C. & Tabor, N. J. Applying a quantitative pedogenic energy model across a range of environmental gradients. Soil Sci. Soc. Am. J. 71, 1719–1729. https://doi.org/10.2136/sssaj2007.0051 (2007).
ADS CAS Article Google Scholar
16.
Broxton, P. D., Troch, P. A. & Lyon, S. W. On the role of aspect to quantify water transit times in small mountainous catchments. Water Resour. Res. https://doi.org/10.1029/2008wr007438 (2009).
Article Google Scholar
17.
Casanova, M., Messing, I. & Joel, A. Influence of aspect and slope gradient on hydraulic conductivity measured by tension infiltrometer. Hydrol. Process. 14, 155–164. https://doi.org/10.1002/(sici)1099-1085(200001)14:1%3c155::aid-hyp917%3e3.0.co;2-j (2000).
ADS Article Google Scholar
18.
Gutiérrez-Jurado, H. A., Vivoni, E. R., Istanbulluoglu, E. & Bras, R. L. Ecohydrological response to a geomorphically significant flood event in a semiarid catchment with contrasting ecosystems. Geophys. Res. Lett. https://doi.org/10.1029/2007gl030994 (2007).
Article Google Scholar
19.
Wang, L., Wei, S., Horton, R. & Shao, M. A. Effects of vegetation and slope aspect on water budget in the hill and gully region of the Loess Plateau of China. CATENA 87, 90–100. https://doi.org/10.1016/j.catena.2011.05.010 (2011).
Article Google Scholar
20.
Pook, E. & Moore, C. The influence of aspect on the composition and structure of dry sclerophyll forest on Black Mountain, Canberra. ACT. Aust. J. Bot. 14, 223–242. https://doi.org/10.1071/BT9660223 (1966).
Article Google Scholar
21.
Armesto, J. J. & Martίnez, J. A. Relations between vegetation structure and slope aspect in the Mediterranean region of Chile. J. Ecol. 66, 881–889. https://doi.org/10.2307/2259301 (1978).
Article Google Scholar
22.
Badano, E. I., Cavieres, L. A., Molina-Montenegro, M. A. & Quiroz, C. L. Slope aspect influences plant association patterns in the Mediterranean matorral of central Chile. J. Arid Environ. 62, 93–108. https://doi.org/10.1016/j.jaridenv.2004.10.012 (2005).
ADS Article Google Scholar
23.
Zapata-Rios, X., Brooks, P. D., Troch, P. A., McIntosh, J. & Guo, Q. Influence of terrain aspect on water partitioning, vegetation structure and vegetation greening in high-elevation catchments in northern New Mexico. Ecohydrology 9, 782–795. https://doi.org/10.1002/eco.1674 (2016).
Article Google Scholar
24.
Poulos, H. M. & Camp, A. E. Topographic influences on vegetation mosaics and tree diversity in the Chihuahuan Desert Borderlands. Ecology 91, 1140–1151. https://doi.org/10.1890/08-1808.1 (2010).
Article PubMed Google Scholar
25.
Kutiel, P. & Lavee, H. Efffect of slope aspect on soil and vegetation properties along an aridity transect. Isr. J. Plant Sci. 47, 169. https://doi.org/10.1080/07929978.1999.10676770 (1999).
Article Google Scholar
26.
Sternberg, M. & Shoshany, M. Influence of slope aspect on Mediterranean woody formations: comparison of a semiarid and an arid site in Israel. Ecol. Res. 16, 335–345. https://doi.org/10.1046/j.1440-1703.2001.00393.x (2001).
Article Google Scholar
27.
Méndez-Toribio, M., Meave, J. A., Zermeño-Hernández, I. & Ibarra-Manríquez, G. Effects of slope aspect and topographic position on environmental variables, disturbance regime and tree community attributes in a seasonal tropical dry forest. J. Veg. Sci. 27, 1094–1103. https://doi.org/10.1111/jvs.12455 (2016).
Article Google Scholar
28.
Gallardo-Cruz, J. A., Pérez-García, E. A. & Meave, J. A. β-Diversity and vegetation structure as influenced by slope aspect and altitude in a seasonally dry tropical landscape. Landsc. Ecol. 24, 473–482. https://doi.org/10.1007/s10980-009-9332-1 (2009).
Article Google Scholar
29.
Paudel, S. & Vetaas, O. R. Effects of topography and land use on woody plant species composition and beta diversity in an arid Trans-Himalayan landscape, Nepal. J. Mt. Sci. 11, 1112–1122. https://doi.org/10.1007/s11629-013-2858-3 (2014).
Article Google Scholar
30.
Zhang, R. The Dry Valley of the Hengduan Mountains Regions (Science Press, Beijing, 1992).
Google Scholar
31.
Vegetation, E. B. O. S. Sichuan Vegetation (People’s Publishing House of Sichuan, Beijing, 1980).
Google Scholar
32.
Guan, W. et al. Vegetation classification and the main types of vegetation of the dry valley of Minjiang River. J. Mt. Res. 22, 679–686 (2004).
Google Scholar
33.
Ma, K.-M. et al. Multiple-scale soil moisture distribution and its implications for ecosystem restoration in an arid river valley, China. Land Degrad. Dev. 15, 75–85. https://doi.org/10.1002/ldr.584 (2004).
CAS Article Google Scholar
34.
Lu, T., Ma, K. M., Zhang, W. H. & Fu, B. J. Differential responses of shrubs and herbs present at the Upper Minjiang River basin (Tibetan Plateau) to several soil variables. J. Arid Environ. 67, 373–390. https://doi.org/10.1016/j.jaridenv.2006.03.011 (2006).
ADS Article Google Scholar
35.
Xu, X.-L., Ma, K.-M., Fu, B.-J., Song, C.-J. & Liu, W. Relationships between vegetation and soil and topography in a dry warm river valley, SW China. CATENA 75, 138–145. https://doi.org/10.1016/j.catena.2008.04.016 (2008).
Article Google Scholar
36.
Solon, J., Degórski, M. & Roo-Zielińska, E. Vegetation response to a topographical-soil gradient. CATENA 71, 309–320. https://doi.org/10.1016/j.catena.2007.01.006 (2007).
Article Google Scholar
37.
Birkeland, P. W. Soils and Geomorphology (Oxford University Press, Oxford, 1984).
Google Scholar
38.
Loik, M. E., Breshears, D. D., Lauenroth, W. K. & Belnap, J. A multi-scale perspective of water pulses in dryland ecosystems: climatology and ecohydrology of the western USA. Oecologia 141, 269–281. https://doi.org/10.1007/s00442-004-1570-y (2004).
ADS Article PubMed Google Scholar
39.
Schwinning, S. & Sala, O. E. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141, 211–220. https://doi.org/10.1007/s00442-004-1520-8 (2004).
ADS Article PubMed Google Scholar
40.
Fernandez-Going, B. M., Harrison, S., Anacker, B. & Safford, H. Climate interacts with soil to produce beta diversity in Californian plant communities. Ecology 94, 2007–2018. https://doi.org/10.1890/12-2011.1 (2013).
CAS Article PubMed Google Scholar
41.
Araya, Y. N., Gowing, D. J. & Dise, N. Does soil nitrogen availability mediate the response of grassland composition to water regime?. J. Veg. Sci. 24, 506–517. https://doi.org/10.1111/j.1654-1103.2012.01481.x (2013).
Article Google Scholar
42.
Araya, Y. N. et al. A fundamental, eco-hydrological basis for niche segregation in plant communities. New Phytol. 189, 253–258. https://doi.org/10.1111/j.1469-8137.2010.03475.x (2011).
Article PubMed Google Scholar
43.
Li, Y. J., Bao, W. K. & Wu, N. Spatial patterns of the soil seed bank and extant vegetation across the dry Minjiang River valley in southwest China. J. Arid Environ. 75, 1083–1089. https://doi.org/10.1016/j.jaridenv.2011.05.012 (2011).
ADS Article Google Scholar
44.
Li, F., Bao, W., Liu, J. & Wu, N. Eco-anatomical characteristics of Sophora davidii leaves along an elevation gradient in upper Minjiang River dry valley. Chin. J. Appl. Ecol. 17, 5–10 (2006).
Google Scholar
45.
Li, F., Bao, W. & Zhu, L. Species diversity and spatial distribution of legumes in the dry valley of Minjiang River, SW China. J. Mt. Sci. 1, 76–84 (2010).
Google Scholar
46.
Song, C. J. et al. Distribution patterns of shrubby N-fixers and non-N fixers in an arid valley in Southwest China: implications for ecological restoration. Ecol. Res. 25, 553–564. https://doi.org/10.1007/s11284-009-0685-3 (2010).
Article Google Scholar
47.
Liu, G. et al. Aboveground biomass of main shrubs in dry valley of Minjiang River. Acta Ecol. Sin. 23, 1757–1764. https://doi.org/10.1023/A:1022289509702 (2003).
Article Google Scholar
48.
Ellenberg, H. et al. Zeigerwerte von pflanzen in Mitteleuropa (1992).
49.
Shreve, F. Soil temperature as influenced by altitude and slope exposure. Ecology 5, 128–136. https://doi.org/10.2307/1929010 (1924).
Article Google Scholar
50.
Gutiérrez-Jurado, H. A. et al. On the observed ecohydrologic dynamics of a semiarid basin with aspect-delimited ecosystems. Water Resour. Res. 49, 8263–8284. https://doi.org/10.1002/2013wr014364 (2013).
Article Google Scholar
51.
Liu, G. et al. Distribution regulation of aboveground biomass of three main shrub types in the dry valley of Minjiang River. J. Mt. Sci. 21, 24–32 (2003).
Google Scholar
52.
Pugnaire, F. I. & Luque, M. T. Changes in plant interactions along a gradient of environmental stress. Oikos 93, 42–49. https://doi.org/10.1034/j.1600-0706.2001.930104.x (2001).
Article Google Scholar
53.
Chase, J. M. & Leibold, M. A. Spatial scale dictates the productivity–biodiversity relationship. Nature 416, 427–430. https://doi.org/10.1038/416427a (2002).
ADS CAS Article Google Scholar
54.
Sarr, D. A., Hibbs, D. E. & Huston, M. A. A hierarchical perspective of plant diversity. Q. Rev. Biol. 80, 187–212. https://doi.org/10.1086/433058 (2005).
Article PubMed Google Scholar
55.
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853. https://doi.org/10.1038/35002501 (2000).
ADS CAS Article PubMed Google Scholar
56.
Ricklefs, R. E. Community diversity: relative roles of local and regional processes. Science 235, 167–171. https://doi.org/10.1126/science.235.4785.167 (1987).
ADS CAS Article PubMed Google Scholar
57.
Pang, X. Y., Bao, W. K. & Ning, W. U. Reasons of dry valley climate characteristic and its formation reason in upstream of Minjiang River. Resour. Environ. Yangtze Basin 17, 46–53 (2008).
Google Scholar
58.
Minchin, P. R. An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69, 89–107. https://doi.org/10.1007/BF00038690 (1987).
Article Google Scholar
59.
Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x (1993).
Article Google Scholar
60.
Oksanen, J. et al.vegan: Community Ecology Package. R package version 2.5-2. 2018 (2018).
61.
Wang, Y. J., Huang, C. D., Zhang, J., Yang, W. Q. & Wang, X. S. Species Diversity, biomass and their relationship of shrubberies in an arid valley of the Minjiang River. Arid Zone Res. 27, 567–572. https://doi.org/10.3724/SP.J.1077.2010.01263 (2010).
CAS Article Google Scholar
62.
Gotelli, N. J. & Colwell, R. K. Estimating species richness. In: Biological Diversity: Frontiers in Measurement and Assessment, Vol. 12 (eds Magurran, A. & McGill, B.) 39–54 (Oxford University Press, Oxford, 2011).
Google Scholar
63.
Colwell, R. K. & Coddington, J. A. Estimating terrestrial biodiversity through extrapolation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 345, 101–118 (1994).
ADS CAS Article Google Scholar
64.
Smith, E. P. & van Belle, G. Nonparametric estimation of species richness. Biometrics 40, 119–129 (1984).
Article Google Scholar
65.
Maurer, B. A. & McGill, B. J. In Biological Diversity: Frontiers in Measurement and Assessment (eds Magurran, A. E. & McGill, B. J.) 55–65 (Oxford University Press, Oxford, 2011).
66.
Fisher, R. A., Corbet, A. S. & Williams, C. B. The relation between the number of species and the number of individuals in a random sample of an animal population. J. Anim. Ecol. 12, 42–58 (1943).
Article Google Scholar
67.
Sørensen, T. A. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. K. Dan. Vidensk. Selsk. Biol. Skr. 5, 1–34 (1948).
Google Scholar
68.
Koleff, P., Gaston, K. J. & Lennon, J. J. Measuring beta diversity for presence-absence data. J. Anim. Ecol. 72, 367–382. https://doi.org/10.1046/j.1365-2656.2003.00710.x (2003).
Article Google Scholar
69.
Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253. https://doi.org/10.1111/j.1541-0420.2005.00440.x (2006).
MathSciNet Article PubMed MATH Google Scholar
70.
Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693. https://doi.org/10.1111/j.1461-0248.2006.00926.x (2006).
Article PubMed Google Scholar
71.
R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2018). More