Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment
1.
Delgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S, Alfaro FD, et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat Ecol Evol. 2020;4:210–20.
PubMed Article PubMed Central Google Scholar
2.
Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun. 2016;7:10541.
CAS PubMed PubMed Central Article Google Scholar
3.
Shah F, Wu W. Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability. 2019;11:1485.
Article Google Scholar
4.
Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL, et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Natl Acad Sci USA. 2015;112:10967.
CAS PubMed Article PubMed Central Google Scholar
5.
Sun R, Zhang X-X, Guo X, Wang D, Chu H. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biol Biochem. 2015;88:9–18.
CAS Article Google Scholar
6.
Mougi A, Kondoh M. Diversity of interaction types and ecological community stability. Science. 2012;337:349–51.
CAS PubMed Article PubMed Central Google Scholar
7.
Kumar A, Patel JS, Meena VS. Rhizospheric microbes for sustainable agriculture: an overview. In: Meena VS, editor. Role of rhizospheric microbes in soil: volume 1: stress management and agricultural sustainability. Singapore: Springer Singapore; 2018. p. 1–31.
8.
Yeates GW, Bongers T. Nematode diversity in agroecosystems. In: Paoletti MG, editor. Invertebrate biodiversity as bioindicators of sustainable landscapes. Amsterdam: Elsevier; 1999. p. 113–35.
9.
Chaffron S, Rehrauer H, Pernthaler J, von Mering C. A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res. 2010;20:947–59.
CAS PubMed PubMed Central Article Google Scholar
10.
Banerjee S, Schlaeppi K, van der Heijden MGA. Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol. 2018;16:567–76.
CAS PubMed Article PubMed Central Google Scholar
11.
Cai G, Chen D, Ding H, Pacholski A, Fan X, Zhu Z. Nitrogen losses from fertilizers applied to maize, wheat and rice in the North China Plain. Nutr Cycl Agroecosys. 2002;63:187–95.
CAS Article Google Scholar
12.
Fan K, Delgado-Baquerizo M, Guo X, Wang D, Wu Y, Zhu M, et al. Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome. 2019;7:143.
PubMed PubMed Central Article Google Scholar
13.
Biddle JF, Fitz-Gibbon S, Schuster SC, Brenchley JE, House CH. Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proc Natl Acad Sci USA. 2008;105:10583–8.
CAS PubMed Article PubMed Central Google Scholar
14.
Bokulich NA, Mills DA. Improved selection of internal transcribed spacer-specific primers enables quantitative, ultra-high-throughput profiling of fungal communities. Appl Environ Microbiol. 2013;79:2519–26.
CAS PubMed PubMed Central Article Google Scholar
15.
Lumini E, Orgiazzi A, Borriello R, Bonfante P, Bianciotto V. Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ Microbiol. 2010;12:2165–79.
CAS PubMed Google Scholar
16.
Porazinska D, Giblin-Davis, Robin M, Faller LF, William K, Natsumi M, et al. Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity. Mol Ecol Resour. 2009;9:1439–50.
CAS PubMed Article Google Scholar
17.
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335.
CAS PubMed PubMed Central Article Google Scholar
18.
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.
CAS PubMed PubMed Central Article Google Scholar
19.
McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2011;6:610.
PubMed PubMed Central Article CAS Google Scholar
20.
Kõljalg U, Larsson K-H, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, et al. UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. N. Phytol. 2005;166:1063–8.
Article CAS Google Scholar
21.
Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, et al. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). N Phytol. 2010;188:223–41.
Article CAS Google Scholar
22.
Quast C, Pruesse E, Gerken J, Peplies J, Yarza P, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–D6.
PubMed PubMed Central Article CAS Google Scholar
23.
Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–8.
Article Google Scholar
24.
Dean R, Kan JALV, Pretorius ZA, Hammond‐Kosack KE, Pietro AD, Spanu PD, et al. The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol. 2012;13:804.
PubMed Central Article Google Scholar
25.
Wang F-H, Qiao M, Su J-Q, Chen Z, Zhou X, Zhu Y-G. High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation. Environ Sci Technol. 2014;48:9079–85.
CAS PubMed Article PubMed Central Google Scholar
26.
Zheng B, Zhu Y, Sardans J, Peñuelas J, Su J. QMEC: a tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling. Sci China Life Sci. 2018;61:1451–62.
CAS PubMed Article PubMed Central Google Scholar
27.
Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001;29:e45–e45.
CAS PubMed PubMed Central Article Google Scholar
28.
Langfelder P, Horvath S. Fast R functions for robust correlations and hierarchical clustering. J Stat Softw. 2012;46:11.
29.
Benjamini Y, Krieger AM, Yekutieli D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika. 2006;93:491–507.
30.
Hines J, van der Putten WH, De Deyn GB, Wagg C, Voigt W, Mulder C, et al. Chapter four-Towards an integration of biodiversity–ecosystem functioning and food web theory to evaluate relationships between multiple ecosystem services. Adv Ecol Res. 2015;53:161–99.
31.
Menezes AB, Prendergast-Miller MT, Richardson AE, Toscas P, Farrell M, Macdonald LM, et al. Network analysis reveals that bacteria and fungi form modules that correlate independently with soil parameters. Environ Microbiol. 2015;17:2677–89.
PubMed Article CAS PubMed Central Google Scholar
32.
Heleno R, Devoto M, Pocock M. Connectance of species interaction networks and conservation value: Is it any good to be well connected? Ecol Indic. 2012;14:7–10.
Article Google Scholar
33.
Ramírez-Flandes S, González B, Ulloa O. Redox traits characterize the organization of global microbial communities. Proc Natl Acad Sci USA. 2019;116:3630.
PubMed Article CAS PubMed Central Google Scholar
34.
Pérez Castro S, Cleland EE, Wagner R, Sawad RA, Lipson DA. Soil microbial responses to drought and exotic plants shift carbon metabolism. ISME J. 2019;13:1776–87.
PubMed PubMed Central Article CAS Google Scholar
35.
Zhang C, Song Z, Zhuang D, Wang J, Xie S, Liu G. Urea fertilization decreases soil bacterial diversity, but improves microbial biomass, respiration, and N-cycling potential in a semiarid grassland. Biol Fert Soils. 2019;55:229–42.
CAS Article Google Scholar
36.
Fraser TD, Lynch DH, Bent E, Entz MH, Dunfield KE. Soil bacterial phoD gene abundance and expression in response to applied phosphorus and long-term management. Soil Biol Biochem. 2015;88:137–47.
CAS Article Google Scholar
37.
García-Palacios P, Shaw EA, Wall DH, Hättenschwiler S. Temporal dynamics of biotic and abiotic drivers of litter decomposition. Ecol Lett. 2016;19:554–63.
PubMed Article PubMed Central Google Scholar
38.
Hug LA, Castelle CJ, Wrighton KC, Thomas BC, Sharon I, Frischkorn KR, et al. Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. Microbiome. 2013;1:22.
PubMed PubMed Central Article Google Scholar
39.
Lu J, Yang F, Wang S, Ma H, Liang J, Chen Y. Co-existence of rhizobia and diverse non-rhizobial bacteria in the rhizosphere and nodules of dalbergia odorifera seedlings inoculated with Bradyrhizobium elkanii, Rhizobium multihospitium–like and Burkholderia pyrrocinia–like strains. Front Microbiol. 2017;8:2255.
40.
Haack FS, Poehlein A, Kröger C, Voigt CA, Piepenbring M, Bode HB, et al. Molecular keys to the janthinobacterium and duganella spp. interaction with the plant pathogen Fusarium graminearum. Front Microbiol. 2016;7:1668.
41.
Clay K, Leuchtmann A. Infection of woodland grasses by fungal endophytes. Mycologia. 1989;81:805–11.
Article Google Scholar
42.
Huang X, Liu L, Wen T, Zhang J, Wang F, Cai Z. Changes in the soil microbial community after reductive soil disinfestation and cucumber seedling cultivation. Appl Microbiol Biotechnol. 2016;100:5581–93.
CAS PubMed Article PubMed Central Google Scholar
43.
Palleroni NJ. Pseudomonas. In: M.E. Trujillo, S. Dedysh, P. DeVos, B. Hedlund, P. Kämpfer, F.A. Rainey and W.B. Whitman, editors. Bergeyʼs Manual of Systematics of Archaea and Bacteria. John Wiley & Sons, Inc. in association with Bergey’s Manual Trust; 2015. p. 1–105.
44.
Wei Z, Yang T, Friman V-P, Xu Y, Shen Q, Jousset A. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat Commun. 2015;6:8413.
CAS PubMed PubMed Central Article Google Scholar
45.
Mao Y, Li X, Smyth EM, Yannarell AC, Mackie RI. Enrichment of specific bacterial and eukaryotic microbes in the rhizosphere of switchgrass (Panicum virgatum L.) through root exudates. Environ Microbiol Rep. 2014;6:293–306.
CAS PubMed Article PubMed Central Google Scholar
46.
Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk H-P, et al. Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev. 2016;80:1.
PubMed Article PubMed Central Google Scholar
47.
Agnolucci M, Battini F, Cristani C, Giovannetti M. Diverse bacterial communities are recruited on spores of different arbuscular mycorrhizal fungal isolates. Biol Fert Soils. 2015;51:379–89.
CAS Article Google Scholar
48.
Levy A, Merritt AJ, Mayo MJ, Chang BJ, Abbott LK, Inglis TJJ. Association between Burkholderia species and arbuscular mycorrhizal fungus spores in soil. Soil Biol Biochem. 2009;41:1757–9.
CAS Article Google Scholar
49.
Li X, Rui J, Xiong J, Li J, He Z, Zhou J, et al. Functional potential of soil microbial communities in the maize rhizosphere. PLoS ONE. 2014;9:e112609.
PubMed PubMed Central Article CAS Google Scholar
50.
Ragot SA, Kertesz MA, Mészáros É, Frossard E, Bünemann EK. Soil phoD and phoX alkaline phosphatase gene diversity responds to multiple environmental factors. FEMS Microbiol Ecol. 2016;93:fiw212.
51.
Gianfreda L. Enzymes of importance to rhizosphere processes. J Soil Sc Plant Nutr. 2015;15:283–306.
CAS Google Scholar
52.
Su J-Q, Ding L-J, Xue K, Yao H-Y, Quensen J, Bai S-J, et al. Long-term balanced fertilization increases the soil microbial functional diversity in a phosphorus-limited paddy soil. Mol Ecol. 2015;24:136–50.
CAS PubMed Article PubMed Central Google Scholar
53.
Ratliff TJ, Fisk MC. Phosphatase activity is related to N availability but not P availability across hardwood forests in the northeastern United States. Soil Biol Biochem. 2016;94:61–9.
CAS Article Google Scholar More
