Relatives of rubella virus in diverse mammals
1.
Lambert, N., Strebel, P., Orenstein, W., Icenogle, J. & Poland, G. A. Rubella. Lancet 385, 2297–2307 (2015).
PubMed PubMed Central Article Google Scholar
2.
Zhou, Y., Ushijima, H. & Frey, T. K. Genomic analysis of diverse rubella virus genotypes. J. Gen. Virol. 88, 932–941 (2007).
CAS PubMed Article Google Scholar
3.
Chen, J.-P., Strauss, J. H., Strauss, E. G. & Frey, T. K. Characterization of the rubella virus nonstructural protease domain and its cleavage site. J. Virol. 70, 4707–4713 (1996).
CAS PubMed PubMed Central Article Google Scholar
4.
Perelygina, L. et al. Infectious vaccine-derived rubella viruses emerge, persist, and evolve in cutaneous granulomas of children with primary immunodeficiencies. PLoS Pathog. 15, e1008080 (2019).
CAS PubMed PubMed Central Article Google Scholar
5.
DuBois, R. M. et al. Functional and evolutionary insight from the crystal structure of rubella virus protein E1. Nature 493, 552–556 (2013).
CAS PubMed Article ADS Google Scholar
6.
McCarthy, M., Lovett, A., Kerman, R. H., Overstreet, A. & Wolinsky, J. S. Immunodominant T-cell epitopes of rubella virus structural proteins defined by synthetic peptides. J. Virol. 67, 673–681 (1993).
CAS PubMed PubMed Central Article Google Scholar
7.
Maton, W. G. Some account of a rash liable to be mistaken for scarlatina. Med. Trans. R. Coll. Physicians 5, 149–165 (1815).
Google Scholar
8.
Cooper, L. Z. The history and medical consequences of rubella. Rev. Infect. Dis. 7, S2–S10 (1985).
PubMed Article Google Scholar
9.
Gregg, N. M. Congenital cataract following German measles in the mother. Aust. N. Z. J. Ophthalmol. 3, 35–46 (1941).
Google Scholar
10.
Parkman, P. D., Buescher, E. L. & Artenstein, M. S. Recovery of rubella virus from army recruits. Proc. Soc. Exp. Biol. Med. 111, 225–230 (1962).
CAS PubMed Article Google Scholar
11.
Weller, T. H. & Neva, F. A. Propagation in tissue culture of cytopathic agents from patients with rubella-like illness. Proc. Soc. Exp. Biol. Med. 111, 215–225 (1962).
Article Google Scholar
12.
Swan, C., Tostevin, A. L. & Black, G. H. Final observations on congenital defects in infants following infectious diseases during pregnancy, with special reference to rubella. Med. J. Aust. 2, 889–908 (1946).
CAS PubMed Article Google Scholar
13.
Edmunds, W. J., Gay, N. J., Kretzschmar, M., Pebody, R. G. & Wachmann, H. The pre-vaccination epidemiology of measles, mumps and rubella in Europe: implications for modelling studies. Epidemiol. Infect. 125, 635–650 (2000).
CAS PubMed PubMed Central Article Google Scholar
14.
Gonzales, J. A. et al. Association of ocular inflammation and rubella virus persistence. JAMA Ophthalmol. 137, 435–438 (2019).
PubMed Article Google Scholar
15.
Grant, G. B., Reef, S. E., Patel, M., Knapp, J. K. & Dabbagh, A. Progress in rubella and congenital rubella syndrome control and elimination — worldwide, 2000–2016. MMWR Morb. Mortal. Wkly. Rep. 66, 1256–1260 (2017).
PubMed PubMed Central Article Google Scholar
16.
Namuwulya, P. et al. Phylogenetic analysis of rubella viruses identified in Uganda, 2003–2012. J. Med. Virol. 86, 2107–2113 (2014).
PubMed PubMed Central Article Google Scholar
17.
Kretsinger, K., Strebel, P., Kezaala, R. & Goodson, J. L. Transitioning lessons learned and assets of the global polio eradication initiative to global and regional measles and rubella elimination. J. Infect. Dis. 216, S308–S315 (2017).
PubMed PubMed Central Article Google Scholar
18.
Wolfe, N. D., Dunavan, C. P. & Diamond, J. Origins of major human infectious diseases. Nature 447, 279–283 (2007).
CAS PubMed PubMed Central Article ADS Google Scholar
19.
Fahr, J. in Mammals of Africa. Vol. IV: Hedgehogs, Shrews and Bats (eds Happold, M. & Happold, D. C. D.) 380–383 (Bloomsbury, 2013).
20.
Jetz, W., McPherson, J. M. & Guralnick, R. P. Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol. Evol. 27, 151–159 (2012).
Article Google Scholar
21.
O’Shea, T. J., Bogan, M. A. & Ellison, L. E. Monitoring Trends in Bat Populations of the United States and Territories: Status of the Science and Recommendations for the Future. Information and Technology Report USGS/BRD/ITR–2003–0003 (US Department of the Interior, US Geological Survey Washington, 2003).
22.
Landau, I. & Chabaud, A.-G. Description de Plasmodium cyclopsi n. sp. parasite du Microchirotère Hipposideros cyclops à Makokou (Gabon). Ann. Parasitol. Hum. Comp. 53, 247–253 (1978).
CAS PubMed Article Google Scholar
23.
Schaer, J. et al. High diversity of West African bat malaria parasites and a tight link with rodent Plasmodium taxa. Proc. Natl Acad. Sci. USA 110, 17415–17419 (2013).
CAS PubMed Article ADS Google Scholar
24.
Michaux, J. R., Libois, R. & Filippucci, M.-G. So close and so different: comparative phylogeography of two small mammal species, the yellow-necked fieldmouse (Apodemus flavicollis) and the woodmouse (Apodemus sylvaticus) in the Western Palearctic region. Heredity 94, 52–63 (2005).
CAS PubMed Article Google Scholar
25.
Labuda, M. et al. Tick-borne encephalitis virus transmission between ticks cofeeding on specific immune natural rodent hosts. Virology 235, 138–143 (1997).
CAS PubMed Article Google Scholar
26.
Klempa, B. et al. Complex evolution and epidemiology of Dobrava–Belgrade hantavirus: definition of genotypes and their characteristics. Arch. Virol. 158, 521–529 (2013).
CAS PubMed Article Google Scholar
27.
Sibold, C. et al. Dobrava hantavirus causes hemorrhagic fever with renal syndrome in central Europe and is carried by two different Apodemus mice species. J. Med. Virol. 63, 158–167 (2001).
CAS PubMed Article Google Scholar
28.
Oktem, I. M. et al. Dobrava–Belgrade virus in Apodemus flavicollis and A. uralensis mice, Turkey. Emerg. Infect. Dis. 20, 121–125 (2014).
PubMed PubMed Central Article Google Scholar
29.
Doty, J. B. et al. Isolation and characterization of Akhmeta virus from wild-caught rodents (Apodemus spp.) in Georgia. J. Virol. 93, e00966-19 (2019).
CAS PubMed PubMed Central Article Google Scholar
30.
Prpić, J. et al. First evidence of hepatitis E virus infection in a small mammal (yellow-necked mouse) from Croatia. PLoS ONE 14, e0225583 (2019).
PubMed PubMed Central Article CAS Google Scholar
31.
Hofmann, J., Renz, M., Meyer, S., von Haeseler, A. & Liebert, U. G. Phylogenetic analysis of rubella virus including new genotype I isolates. Virus Res. 96, 123–128 (2003).
CAS PubMed Article Google Scholar
32.
Abernathy, E. et al. Analysis of whole genome sequences of 16 strains of rubella virus from the United States, 1961–2009. Virol. J. 10, 32 (2013).
PubMed PubMed Central Article Google Scholar
33.
Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protocols 10, 845–858 (2015).
CAS PubMed Article Google Scholar
34.
Wolinsky, J. S. et al. An antibody- and synthetic peptide-defined rubella virus E1 glycoprotein neutralization domain. J. Virol. 67, 961–968 (1993).
CAS PubMed PubMed Central Article Google Scholar
35.
Guy, C., Thiagavel, J., Mideo, N. & Ratcliffe, J. M. Phylogeny matters: revisiting ‘a comparison of bats and rodents as reservoirs of zoonotic viruses’. R. Soc. Open Sci. 6, 181182 (2019).
PubMed PubMed Central Article ADS Google Scholar
36.
Luis, A. D. et al. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc. R. Soc. Lond. B 280, 20122753 (2013).
Google Scholar
37.
Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).
CAS PubMed PubMed Central Article ADS Google Scholar
38.
Frey, T. K. Neurological aspects of rubella virus infection. Intervirology 40, 167–175 (1997).
CAS PubMed Article Google Scholar
39.
Bharadwaj, S. D. et al. Acute encephalitis with atypical presentation of rubella in family cluster, India. Emerg. Infect. Dis. 24, 1923–1925 (2018).
PubMed PubMed Central Article Google Scholar
40.
Grant, G. B. et al. Accelerating measles and rubella elimination through research and innovation — findings from the Measles & Rubella Initiative research prioritization process, 2016. Vaccine 37, 5754–5761 (2019).
PubMed PubMed Central Article Google Scholar
41.
Struhsaker, T. T. Ecology of an African Rain Forest: Logging in Kibale and the Conflict between Conservation and Exploitation (Univ. Press Florida, 1997).
42.
Plumptre, A. J. et al. The biodiversity of the Albertine Rift. Biol. Conserv. 134, 178–194 (2007).
Article Google Scholar
43.
Ulrich, R. G. et al. Network “rodent-borne pathogens” in Germany: longitudinal studies on the geographical distribution and prevalence of hantavirus infections. Parasitol. Res. 103, S121–S129 (2008).
PubMed Article Google Scholar
44.
Schlegel, M. et al. Molecular identification of small mammal species using novel cytochrome b gene-derived degenerated primers. Biochem. Genet. 50, 440–447 (2012).
CAS PubMed Article Google Scholar
45.
Foley, N. M. et al. How and why overcome the impediments to resolution: lessons from rhinolophid and hipposiderid bats. Mol. Biol. Evol. 32, 313–333 (2015).
CAS PubMed Article Google Scholar
46.
Zhao, G. et al. VirusSeeker, a computational pipeline for virus discovery and virome composition analysis. Virology 503, 21–30 (2017).
CAS PubMed PubMed Central Article Google Scholar
47.
Bushnell, B. BBMap: a fast, accurate, splice-aware aligner. Version 37.78 https://sourceforge.net/projects/bbmap/ (2014).
48.
Andrews, S. FastQC. A quality control tool for high throughput sequence data. Version 0.11.5 https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).
49.
Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).
CAS PubMed PubMed Central Article Google Scholar
50.
Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).
CAS PubMed Article Google Scholar
51.
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
CAS Article Google Scholar
52.
Huson, D. H. et al. MEGAN community edition — interactive exploration and analysis of large-scale microbiome sequencing data. PLOS Comput. Biol. 12, e1004957 (2016).
PubMed PubMed Central Article CAS Google Scholar
53.
Wylezich, C., Papa, A., Beer, M. & Höper, D. A versatile sample processing workflow for metagenomic pathogen detection. Sci. Rep. 8, 13108 (2018).
PubMed PubMed Central Article ADS CAS Google Scholar
54.
Scheuch, M., Höper, D. & Beer, M. RIEMS: a software pipeline for sensitive and comprehensive taxonomic classification of reads from metagenomics datasets. BMC Bioinformatics 16, 69 (2015).
PubMed PubMed Central Article CAS Google Scholar
55.
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
CAS PubMed PubMed Central Article Google Scholar
56.
Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).
MathSciNet CAS PubMed PubMed Central Article Google Scholar
57.
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
CAS PubMed PubMed Central Article Google Scholar
58.
Hobman, T. C. & Gillam, S. In vitro and in vivo expression of rubella virus glycoprotein E2: the signal peptide is contained in the C-terminal region of capsid protein. Virology 173, 241–250 (1989).
CAS PubMed Article Google Scholar
59.
Gasteiger, E. et al. in The Proteomics Protocols Handbook (ed Walker, J. M.) 571–607 (Humana Press, 2005).
60.
Forth, L. F. & Höper, D. Highly efficient library preparation for ion torrent sequencing using Y-adapters. Biotechniques 67, 229–237 (2019).
CAS PubMed Article Google Scholar
61.
Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
CAS PubMed Article Google Scholar
62.
Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).
CAS PubMed Article Google Scholar
63.
Mitchell, A. L. et al. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 47, D351–D360 (2019).
CAS PubMed Article Google Scholar
64.
Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).
CAS PubMed PubMed Central Article Google Scholar
65.
Rose, A. S. & Hildebrand, P. W. NGL Viewer: a web application for molecular visualization. Nucleic Acids Res. 43, W576–W579 (2015).
CAS PubMed PubMed Central Article Google Scholar
66.
Benkert, P., Biasini, M. & Schwede, T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27, 343–350 (2011).
CAS PubMed Article Google Scholar
67.
Korber, B. in Computational Analysis of HIV Molecular Sequences Ch. 4 (eds Rodrigo, A. G. & Learn, G. H.) 55–72 (Kluwer Academic Publishers, 2000).
68.
Leskovec, J. SNAP 2.1. http://snap.stanford.edu/snap-2.1/download.html (2013). More
