More stories

  • in

    Relatives of rubella virus in diverse mammals

    1.
    Lambert, N., Strebel, P., Orenstein, W., Icenogle, J. & Poland, G. A. Rubella. Lancet 385, 2297–2307 (2015).
    PubMed  PubMed Central  Article  Google Scholar 
    2.
    Zhou, Y., Ushijima, H. & Frey, T. K. Genomic analysis of diverse rubella virus genotypes. J. Gen. Virol. 88, 932–941 (2007).
    CAS  PubMed  Article  Google Scholar 

    3.
    Chen, J.-P., Strauss, J. H., Strauss, E. G. & Frey, T. K. Characterization of the rubella virus nonstructural protease domain and its cleavage site. J. Virol. 70, 4707–4713 (1996).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Perelygina, L. et al. Infectious vaccine-derived rubella viruses emerge, persist, and evolve in cutaneous granulomas of children with primary immunodeficiencies. PLoS Pathog. 15, e1008080 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    5.
    DuBois, R. M. et al. Functional and evolutionary insight from the crystal structure of rubella virus protein E1. Nature 493, 552–556 (2013).
    CAS  PubMed  Article  ADS  Google Scholar 

    6.
    McCarthy, M., Lovett, A., Kerman, R. H., Overstreet, A. & Wolinsky, J. S. Immunodominant T-cell epitopes of rubella virus structural proteins defined by synthetic peptides. J. Virol. 67, 673–681 (1993).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Maton, W. G. Some account of a rash liable to be mistaken for scarlatina. Med. Trans. R. Coll. Physicians 5, 149–165 (1815).
    Google Scholar 

    8.
    Cooper, L. Z. The history and medical consequences of rubella. Rev. Infect. Dis. 7, S2–S10 (1985).
    PubMed  Article  Google Scholar 

    9.
    Gregg, N. M. Congenital cataract following German measles in the mother. Aust. N. Z. J. Ophthalmol. 3, 35–46 (1941).
    Google Scholar 

    10.
    Parkman, P. D., Buescher, E. L. & Artenstein, M. S. Recovery of rubella virus from army recruits. Proc. Soc. Exp. Biol. Med. 111, 225–230 (1962).
    CAS  PubMed  Article  Google Scholar 

    11.
    Weller, T. H. & Neva, F. A. Propagation in tissue culture of cytopathic agents from patients with rubella-like illness. Proc. Soc. Exp. Biol. Med. 111, 215–225 (1962).
    Article  Google Scholar 

    12.
    Swan, C., Tostevin, A. L. & Black, G. H. Final observations on congenital defects in infants following infectious diseases during pregnancy, with special reference to rubella. Med. J. Aust. 2, 889–908 (1946).
    CAS  PubMed  Article  Google Scholar 

    13.
    Edmunds, W. J., Gay, N. J., Kretzschmar, M., Pebody, R. G. & Wachmann, H. The pre-vaccination epidemiology of measles, mumps and rubella in Europe: implications for modelling studies. Epidemiol. Infect. 125, 635–650 (2000).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    14.
    Gonzales, J. A. et al. Association of ocular inflammation and rubella virus persistence. JAMA Ophthalmol. 137, 435–438 (2019).
    PubMed  Article  Google Scholar 

    15.
    Grant, G. B., Reef, S. E., Patel, M., Knapp, J. K. & Dabbagh, A. Progress in rubella and congenital rubella syndrome control and elimination — worldwide, 2000–2016. MMWR Morb. Mortal. Wkly. Rep. 66, 1256–1260 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    16.
    Namuwulya, P. et al. Phylogenetic analysis of rubella viruses identified in Uganda, 2003–2012. J. Med. Virol. 86, 2107–2113 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    17.
    Kretsinger, K., Strebel, P., Kezaala, R. & Goodson, J. L. Transitioning lessons learned and assets of the global polio eradication initiative to global and regional measles and rubella elimination. J. Infect. Dis. 216, S308–S315 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Wolfe, N. D., Dunavan, C. P. & Diamond, J. Origins of major human infectious diseases. Nature 447, 279–283 (2007).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    19.
    Fahr, J. in Mammals of Africa. Vol. IV: Hedgehogs, Shrews and Bats (eds Happold, M. & Happold, D. C. D.) 380–383 (Bloomsbury, 2013).

    20.
    Jetz, W., McPherson, J. M. & Guralnick, R. P. Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol. Evol. 27, 151–159 (2012).
    Article  Google Scholar 

    21.
    O’Shea, T. J., Bogan, M. A. & Ellison, L. E. Monitoring Trends in Bat Populations of the United States and Territories: Status of the Science and Recommendations for the Future. Information and Technology Report USGS/BRD/ITR–2003–0003 (US Department of the Interior, US Geological Survey Washington, 2003).

    22.
    Landau, I. & Chabaud, A.-G. Description de Plasmodium cyclopsi n. sp. parasite du Microchirotère Hipposideros cyclops à Makokou (Gabon). Ann. Parasitol. Hum. Comp. 53, 247–253 (1978).
    CAS  PubMed  Article  Google Scholar 

    23.
    Schaer, J. et al. High diversity of West African bat malaria parasites and a tight link with rodent Plasmodium taxa. Proc. Natl Acad. Sci. USA 110, 17415–17419 (2013).
    CAS  PubMed  Article  ADS  Google Scholar 

    24.
    Michaux, J. R., Libois, R. & Filippucci, M.-G. So close and so different: comparative phylogeography of two small mammal species, the yellow-necked fieldmouse (Apodemus flavicollis) and the woodmouse (Apodemus sylvaticus) in the Western Palearctic region. Heredity 94, 52–63 (2005).
    CAS  PubMed  Article  Google Scholar 

    25.
    Labuda, M. et al. Tick-borne encephalitis virus transmission between ticks cofeeding on specific immune natural rodent hosts. Virology 235, 138–143 (1997).
    CAS  PubMed  Article  Google Scholar 

    26.
    Klempa, B. et al. Complex evolution and epidemiology of Dobrava–Belgrade hantavirus: definition of genotypes and their characteristics. Arch. Virol. 158, 521–529 (2013).
    CAS  PubMed  Article  Google Scholar 

    27.
    Sibold, C. et al. Dobrava hantavirus causes hemorrhagic fever with renal syndrome in central Europe and is carried by two different Apodemus mice species. J. Med. Virol. 63, 158–167 (2001).
    CAS  PubMed  Article  Google Scholar 

    28.
    Oktem, I. M. et al. Dobrava–Belgrade virus in Apodemus flavicollis and A. uralensis mice, Turkey. Emerg. Infect. Dis. 20, 121–125 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    29.
    Doty, J. B. et al. Isolation and characterization of Akhmeta virus from wild-caught rodents (Apodemus spp.) in Georgia. J. Virol. 93, e00966-19 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Prpić, J. et al. First evidence of hepatitis E virus infection in a small mammal (yellow-necked mouse) from Croatia. PLoS ONE 14, e0225583 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    31.
    Hofmann, J., Renz, M., Meyer, S., von Haeseler, A. & Liebert, U. G. Phylogenetic analysis of rubella virus including new genotype I isolates. Virus Res. 96, 123–128 (2003).
    CAS  PubMed  Article  Google Scholar 

    32.
    Abernathy, E. et al. Analysis of whole genome sequences of 16 strains of rubella virus from the United States, 1961–2009. Virol. J. 10, 32 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    33.
    Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protocols 10, 845–858 (2015).
    CAS  PubMed  Article  Google Scholar 

    34.
    Wolinsky, J. S. et al. An antibody- and synthetic peptide-defined rubella virus E1 glycoprotein neutralization domain. J. Virol. 67, 961–968 (1993).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Guy, C., Thiagavel, J., Mideo, N. & Ratcliffe, J. M. Phylogeny matters: revisiting ‘a comparison of bats and rodents as reservoirs of zoonotic viruses’. R. Soc. Open Sci. 6, 181182 (2019).
    PubMed  PubMed Central  Article  ADS  Google Scholar 

    36.
    Luis, A. D. et al. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc. R. Soc. Lond. B 280, 20122753 (2013).
    Google Scholar 

    37.
    Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    38.
    Frey, T. K. Neurological aspects of rubella virus infection. Intervirology 40, 167–175 (1997).
    CAS  PubMed  Article  Google Scholar 

    39.
    Bharadwaj, S. D. et al. Acute encephalitis with atypical presentation of rubella in family cluster, India. Emerg. Infect. Dis. 24, 1923–1925 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    40.
    Grant, G. B. et al. Accelerating measles and rubella elimination through research and innovation — findings from the Measles & Rubella Initiative research prioritization process, 2016. Vaccine 37, 5754–5761 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Struhsaker, T. T. Ecology of an African Rain Forest: Logging in Kibale and the Conflict between Conservation and Exploitation (Univ. Press Florida, 1997).

    42.
    Plumptre, A. J. et al. The biodiversity of the Albertine Rift. Biol. Conserv. 134, 178–194 (2007).
    Article  Google Scholar 

    43.
    Ulrich, R. G. et al. Network “rodent-borne pathogens” in Germany: longitudinal studies on the geographical distribution and prevalence of hantavirus infections. Parasitol. Res. 103, S121–S129 (2008).
    PubMed  Article  Google Scholar 

    44.
    Schlegel, M. et al. Molecular identification of small mammal species using novel cytochrome b gene-derived degenerated primers. Biochem. Genet. 50, 440–447 (2012).
    CAS  PubMed  Article  Google Scholar 

    45.
    Foley, N. M. et al. How and why overcome the impediments to resolution: lessons from rhinolophid and hipposiderid bats. Mol. Biol. Evol. 32, 313–333 (2015).
    CAS  PubMed  Article  Google Scholar 

    46.
    Zhao, G. et al. VirusSeeker, a computational pipeline for virus discovery and virome composition analysis. Virology 503, 21–30 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Bushnell, B. BBMap: a fast, accurate, splice-aware aligner. Version 37.78 https://sourceforge.net/projects/bbmap/ (2014).

    48.
    Andrews, S. FastQC. A quality control tool for high throughput sequence data. Version 0.11.5 https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).

    49.
    Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).
    CAS  PubMed  Article  Google Scholar 

    51.
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
    CAS  Article  Google Scholar 

    52.
    Huson, D. H. et al. MEGAN community edition — interactive exploration and analysis of large-scale microbiome sequencing data. PLOS Comput. Biol. 12, e1004957 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    53.
    Wylezich, C., Papa, A., Beer, M. & Höper, D. A versatile sample processing workflow for metagenomic pathogen detection. Sci. Rep. 8, 13108 (2018).
    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

    54.
    Scheuch, M., Höper, D. & Beer, M. RIEMS: a software pipeline for sensitive and comprehensive taxonomic classification of reads from metagenomics datasets. BMC Bioinformatics 16, 69 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    55.
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).
    MathSciNet  CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Hobman, T. C. & Gillam, S. In vitro and in vivo expression of rubella virus glycoprotein E2: the signal peptide is contained in the C-terminal region of capsid protein. Virology 173, 241–250 (1989).
    CAS  PubMed  Article  Google Scholar 

    59.
    Gasteiger, E. et al. in The Proteomics Protocols Handbook (ed Walker, J. M.) 571–607 (Humana Press, 2005).

    60.
    Forth, L. F. & Höper, D. Highly efficient library preparation for ion torrent sequencing using Y-adapters. Biotechniques 67, 229–237 (2019).
    CAS  PubMed  Article  Google Scholar 

    61.
    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
    CAS  PubMed  Article  Google Scholar 

    62.
    Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).
    CAS  PubMed  Article  Google Scholar 

    63.
    Mitchell, A. L. et al. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 47, D351–D360 (2019).
    CAS  PubMed  Article  Google Scholar 

    64.
    Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Rose, A. S. & Hildebrand, P. W. NGL Viewer: a web application for molecular visualization. Nucleic Acids Res. 43, W576–W579 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Benkert, P., Biasini, M. & Schwede, T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27, 343–350 (2011).
    CAS  PubMed  Article  Google Scholar 

    67.
    Korber, B. in Computational Analysis of HIV Molecular Sequences Ch. 4 (eds Rodrigo, A. G. & Learn, G. H.) 55–72 (Kluwer Academic Publishers, 2000).

    68.
    Leskovec, J. SNAP 2.1. http://snap.stanford.edu/snap-2.1/download.html (2013). More

  • in

    A comprehensive quantification of global nitrous oxide sources and sinks

    1.
    Prather, M. J. et al. Measuring and modeling the lifetime of nitrous oxide including its variability. J. Geophys. Res. D 120, 5693–5705 (2015).
    ADS  CAS  Google Scholar 
    2.
    Ciais, P. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 6 (IPCC, Cambridge Univ. Press, 2013).

    3.
    Gidden, M. J. et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev. 12, 1443–1475 (2019).
    ADS  CAS  Google Scholar 

    4.
    Davidson, E. A. Representative concentration pathways and mitigation scenarios for nitrous oxide. Environ. Res. Lett. 7, 024005 (2012).
    ADS  Google Scholar 

    5.
    Hall, B., Dutton, G. & Elkins, J. The NOAA nitrous oxide standard scale for atmospheric observations. J. Geophys. Res. D 112, D09305 (2007).
    ADS  Google Scholar 

    6.
    Prinn, R. G. et al. History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment (AGAGE). Earth Syst.Sci. Data10, 985–1018 (2018).
    Google Scholar 

    7.
    Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R. & Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Phil.Trans. R. Soc. Lond. B 368, 20130122 (2013).
    Google Scholar 

    8.
    Tian, H. et al. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature 531, 225–228 (2016).
    ADS  CAS  Google Scholar 

    9.
    United Nations Environment Programme & Suntharalingam, P. Drawing Down N 2O to Protect Climate and the Ozone Layer (United Nations Environment Programme, 2013).

    10.
    Park, S. et al. Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940. Nat. Geosci. 5, 261–265 (2012).
    ADS  CAS  Google Scholar 

    11.
    Davidson, E. A. & Kanter, D. Inventories and scenarios of nitrous oxide emissions. Environ. Res. Lett. 9, 105012 (2014).
    ADS  Google Scholar 

    12.
    Reay, D. S. et al. Global agriculture and nitrous oxide emissions. Nat. Clim. Change 2, 410–416 (2012).
    ADS  CAS  Google Scholar 

    13.
    Syakila, A. & Kroeze, C. The global nitrous oxide budget revisited. Greenhouse Gas Meas. Manage. 1, 17–26 (2011).
    ADS  CAS  Google Scholar 

    14.
    IPCC 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories (eds Eggleston, H. S. et al.) (IGES, 2006).

    15.
    Dangal, S. R. et al. Global nitrous oxide emissions from pasturelands and rangelands: magnitude, spatio-temporal patterns and attribution. Glob. Biogeochem. Cycles 33, 200–222 (2019).
    ADS  CAS  Google Scholar 

    16.
    Tian, H. et al. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: magnitude, attribution, and uncertainty. Glob. Change Biol. 25, 640–659 (2019).
    ADS  Google Scholar 

    17.
    Wang, Q. et al. Data-driven estimates of global nitrous oxide emissions from croplands. Natl Sci. Rev. 7, 441–452 (2020).
    CAS  Google Scholar 

    18.
    Thompson, R. L. et al. Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nat. Clim. Change 9, 993–998 (2019).
    ADS  CAS  Google Scholar 

    19.
    Zaehle, S., Ciais, P., Friend, A. D. & Prieur, V. Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions. Nat. Geosci. 4, 601–605 (2011).
    ADS  CAS  Google Scholar 

    20.
    Davidson, E. A. et al. Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature 447, 995–998 (2007).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    21.
    Verchot, L. V. et al. Land use change and biogeochemical controls of nitrogen oxide emissions from soils in eastern Amazonia. Glob. Biogeochem. Cycles 13, 31–46 (1999).
    ADS  CAS  Google Scholar 

    22.
    Shcherbak, I., Millar, N. & Robertson, G. P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl Acad. Sci. USA 111, 9199–9204 (2014).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Van Meter, K. J., Basu, N. B., Veenstra, J. J. & Burras, C. L. The nitrogen legacy: emerging evidence of nitrogen accumulation in anthropogenic landscapes. Environ. Res. Lett. 11, 035014 (2016).
    ADS  Google Scholar 

    24.
    Firestone, M. K. & Davidson, E. A. Microbiological basis of NO and N2O production and consumption in soil. In Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere Vol. 47 (Andreae, M. O. & Schimel, D. S.) 7–21 (Wiley, 1989).

    25.
    Griffis, T. J. et al. Nitrous oxide emissions are enhanced in a warmer and wetter world. Proc. Natl Acad. Sci. USA 114, 12081–12085 (2017).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    26.
    Pärn, J. et al. Nitrogen-rich organic soils under warm well-drained conditions are global nitrous oxide emission hotspots. Nat. Commun. 9, 1135 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    27.
    Smith, K. The potential for feedback effects induced by global warming on emissions of nitrous oxide by soils. Glob. Change Biol. 3, 327–338 (1997).
    ADS  CAS  Google Scholar 

    28.
    The Food and Agriculture Organization of the United Nations Statistics (FAO, accessed 7 July 2019); https://www.fao.org/faostat/en/#data/.

    29.
    Xu, R. et al. Increased nitrogen enrichment and shifted patterns in the world’s grassland: 1860–2016. Earth Syst. Sci. Data 11, 175–187 (2019).
    ADS  Google Scholar 

    30.
    Beusen, A. H., Bouwman, A. F., Van Beek, L. P., Mogollón, J. M. & Middelburg, J. J. Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum. Biogeosciences 13, 2441–2451 (2016).
    ADS  CAS  Google Scholar 

    31.
    MacLeod, M., Hasan, M. R., Robb, D. H. F. & Mamun-Ur-Rashid, M. Quantifying and Mitigating Greenhouse Gas Emissions from Global Aquaculture FAO Fisheries and Aquaculture technical paper no. 626 (FAO, 2019).

    32.
    Buitenhuis, E. T., Suntharalingam, P. & Le Quéré, C. Constraints on global oceanic emissions of N2O from observations and models. Biogeosciences 15, 2161–2175 (2018).
    ADS  CAS  Google Scholar 

    33.
    Manizza, M., Keeling, R. F. & Nevison, C. D. On the processes controlling the seasonal cycles of the air–sea fluxes of O2 and N2O: a modelling study. Tellus B 64, 18429 (2012).
    ADS  Google Scholar 

    34.
    Martinez-Rey, J., Bopp, L., Gehlen, M., Tagliabue, A. & Gruber, N. Projections of oceanic N2O emissions in the 21st century using the IPSL Earth system model. Biogeosciences 12, 4133–4148 (2015).
    ADS  Google Scholar 

    35.
    Maavara, T. et al. Nitrous oxide emissions from inland waters: are IPCC estimates too high? Glob. Change Biol. 25, 473–488 (2019).
    ADS  Google Scholar 

    36.
    Yao, Y. et al. Increased global nitrous oxide emissions from streams and rivers in the Anthropocene. Nat. Clim. Change 10, 138–142 (2020).
    ADS  CAS  Google Scholar 

    37.
    Gerber, P. J. et al. Tackling Climate Change Through Livestock: A Global Assessment of Emissions and Mitigation Opportunities. (FAO, 2013).

    38.
    Herrero, M. et al. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl Acad. Sci. USA 110, 20888–20893 (2013).
    ADS  CAS  Google Scholar 

    39.
    Yuan, J. et al. Rapid growth in greenhouse gas emissions from the adoption of industrial-scale aquaculture. Nat. Clim. Change 9, 318–322 (2019).
    ADS  Google Scholar 

    40.
    Froehlich, H. E., Runge, C. A., Gentry, R. R., Gaines, S. D. & Halpern, B. S. Comparative terrestrial feed and land use of an aquaculture-dominant world. Proc. Natl Acad. Sci. USA 115, 5295–5300 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Winiwarter, W., Höglund-Isaksson, L., Klimont, Z., Schöpp, W. & Amann, M. Technical opportunities to reduce global anthropogenic emissions of nitrous oxide. Environ. Res. Lett. 13, 014011 (2018).
    ADS  Google Scholar 

    42.
    Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    43.
    Mueller, N. D. et al. Declining spatial efficiency of global cropland nitrogen allocation. Glob. Biogeochem. Cycles 31, 245–257 (2017).
    ADS  CAS  Google Scholar 

    44.
    European Environment Agency. Annual European Union Greenhouse Gas Inventory 1990–2017 and Inventory Report 2019 EEA/PUBL/2019/051 (EEA, 2019).

    45.
    Cui, Z. et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 555, 363–366 (2018).
    ADS  CAS  PubMed  Google Scholar 

    46.
    Kanter, D. et al. A post-Kyoto partner: considering the stratospheric ozone regime as a tool to manage nitrous oxide. Proc. Natl Acad. Sci. USA 110, 4451–4457 (2013).
    ADS  CAS  Google Scholar 

    47.
    Schneider, L., Lazarus, M. & Kollmuss, A. Industrial N 2O Projects Under the CDM: Adipic Acid – A Case of Carbon Leakage SEI working paper WP-US-1006 (Stockholm Environment Institute, 2010).

    48.
    O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).
    ADS  Google Scholar 

    49.
    Gütschow, J. et al. The PRIMAP-hist national historical emissions time series. Earth Syst.Sci. Data 8, 571–603 (2016).
    Google Scholar 

    50.
    Nevison, C. D., Lueker, T. J. & Weiss, R. F. Quantifying the nitrous oxide source from coastal upwelling. Glob. Biogeochem. Cycles 18, GB1018 (2004).
    ADS  Google Scholar 

    51.
    Lauerwald, R. et al. Natural lakes are a minor global source of N2O to the atmosphere. Glob. Biogeochem. Cycles 33, 1564–1581 (2019).
    ADS  CAS  Google Scholar 

    52.
    Kroeze, C., Mosier, A. & Bouwman, L. Closing the global N2O budget: a retrospective analysis 1500–1994. Glob. Biogeochem. Cycles 13, 1–8 (1999).
    ADS  CAS  Google Scholar 

    53.
    Schumann, U. & Huntrieser, H. The global lightning-induced nitrogen oxides source. Atmos. Chem. Phys. 7, 3823–3907 (2007).
    ADS  CAS  Google Scholar 

    54.
    De Klein, C. et al. N2O emissions from managed soils, and CO2 emissions from lime and urea application. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories Vol. 4, Ch. 11 (IPCC, 2006).

    55.
    Dentener, F. J. & Crutzen, P. J. A three-dimensional model of the global ammonia cycle. J. Atmos. Chem. 19, 331–369 (1994).
    CAS  Google Scholar 

    56.
    Röckmann, T., Kaiser, J., Crowley, J. N., Brenninkmeijer, C. A. & Crutzen, P. J. The origin of the anomalous or “mass-independent” oxygen isotope fractionation in tropospheric N2O. Geophys. Res. Lett. 28, 503–506 (2001).
    ADS  Google Scholar 

    57.
    Kaiser, J. & Röckmann, T. Absence of isotope exchange in the reaction of N2O+O(1D) and the global Δ17O budget of nitrous oxide. Geophys. Res. Lett. 32, L15808 (2005).
    ADS  Google Scholar 

    58.
    Schlesinger, W. H. An estimate of the global sink for nitrous oxide in soils. Glob. Change Biol. 19, 2929–2931 (2013).
    ADS  Google Scholar 

    59.
    Syakila, A., Kroeze, C. & Slomp, C. P. Neglecting sinks for N2O at the Earth’s surface: does it matter? J. Integr. Environ. Sci. 7, 79–87 (2010).
    Google Scholar 

    60.
    Bouwman, A. F. et al. Hindcasts and future projections of global inland and coastal nitrogen and phosphorus loads due to finfish aquaculture. Rev. Fish. Sci. 21, 112–156 (2013).
    CAS  Google Scholar 

    61.
    Bouwman, A. F. et al. Global hindcasts and future projections of coastal nitrogen and phosphorus loads due to shellfish and seaweed aquaculture. Rev. Fish. Sci. 19, 331–357 (2011).
    ADS  CAS  Google Scholar 

    62.
    Hu, Z., Lee, J. W., Chandran, K., Kim, S. & Khanal, S. K. Nitrous oxide (N2O) emission from aquaculture: a review. Environ. Sci. Technol. 46, 6470–6480 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    63.
    Williams, J. & Crutzen, P. J. Nitrous oxide from aquaculture. Nat. Geosci. 3, 143 (2010).
    ADS  CAS  Google Scholar 

    64.
    Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    65.
    Yang, J. et al. Spatial and temporal patterns of global burned area in response to anthropogenic and environmental factors: reconstructing global fire history for the 20th and early 21st centuries. J. Geophys. Res. Biogeosci. 119, 249–263 (2014).
    ADS  Google Scholar 

    66.
    Dennis, R. A Review of Fire Projects in Indonesia (1982–1998) (Center for International Forestry Research, 1999).

    67.
    Suntharalingam, P. et al. Quantifying the impact of anthropogenic nitrogen deposition on oceanic nitrous oxide. Geophys. Res. Lett. 39, L07605 (2012).
    ADS  Google Scholar 

    68.
    Murray, R. H., Erler, D. V. & Eyre, B. D. Nitrous oxide fluxes in estuarine environments: response to global change. Glob. Change Biol. 21, 3219–3245 (2015).
    ADS  Google Scholar 

    69.
    Erler, D. V. et al. Applying cavity ring-down spectroscopy for the measurement of dissolved nitrous oxide concentrations and bulk nitrogen isotopic composition in aquatic systems: correcting for interferences and field application. Limnol. Oceanogr. Methods 13, 391–401 (2015).
    CAS  Google Scholar 

    70.
    Murray, R., Erler, D., Rosentreter, J. & Eyre, B. Seasonal and spatial N2O concentrations and emissions in three tropical estuaries. Mar. Chem. 221, 103779 (2020).
    CAS  Google Scholar 

    71.
    Vernberg, F. J. & Vernberg, W. B. The Coastal Zone: Past, Present, and Future (Univ. South Carolina Press, 2001).

    72.
    Houghton, R. et al. Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecol. Monogr. 53, 235–262 (1983).
    CAS  Google Scholar 

    73.
    Davidson, E. A. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nat. Geosci. 2, 659–662 (2009).
    ADS  CAS  Google Scholar 

    74.
    van Lent, J., Hergoualc’h, K. & Verchot, L. V. Soil N2O and NO emissions from land use and land-use change in the tropics and subtropics: a meta-analysis. Biogeosciences 12, 7299–7313 (2015).
    ADS  Google Scholar 

    75.
    Keller, M. & Reiners, W. A. Soil–atmosphere exchange of nitrous oxide, nitric oxide, and methane under secondary succession of pasture to forest in the Atlantic lowlands of Costa Rica. Glob. Biogeochem. Cycles 8, 399–409 (1994).
    ADS  CAS  Google Scholar 

    76.
    Melillo, J. M. et al. Nitrous oxide emissions from forests and pastures of various ages in the Brazilian Amazon. J. Geophys. Res. D 106, 34179–34188 (2001).
    ADS  CAS  Google Scholar 

    77.
    McGuire, A. et al. Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process-based ecosystem models. Glob. Biogeochem. Cycles 15, 183–206 (2001).
    ADS  CAS  Google Scholar 

    78.
    Dlugokencky, E., Steele, L., Lang, P. & Masarie, K. The growth rate and distribution of atmospheric methane. J. Geophys. Res. D 99, 17021–17043 (1994).
    ADS  CAS  Google Scholar 

    79.
    IPCC 2013. Annex II: Climate System Scenario Tables (eds Prather, M. et al.). In Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

    80.
    Prather, M. J., Holmes, C. D. & Hsu, J. Reactive greenhouse gas scenarios: systematic exploration of uncertainties and the role of atmospheric chemistry. Geophys. Res. Lett. 39, L09803 (2012).
    ADS  Google Scholar 

    81.
    Prather, M. J. & Hsu, J. Coupling of nitrous oxide and methane by global atmospheric chemistry. Science 330, 952–954 (2010).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    82.
    Mosier, A. & Kroeze, C. Potential impact on the global atmospheric N2O budget of the increased nitrogen input required to meet future global food demands. Chemosphere 2, 465–473 (2000).
    CAS  Google Scholar 

    83.
    Mosier, A. et al. Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutr. Cycl. Agroecosyst. 52, 225–248 (1998).
    CAS  Google Scholar 

    84.
    Houghton, J. T. et al (eds) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories Vols 1–3 (IPCC, 1997).

    85.
    Nevison, C. Indirect N2O emissions from agriculture. In Background Papers:IPCC Expert Meetings on Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories 381–397 (IPCC, 2000).

    86.
    2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories Vol. 4 (IPCC, 2019).

    87.
    Crutzen, P. J., Mosier, A. R., Smith, K. A. & Winiwarter, W. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos. Chem. Phys. 8, 389–395 (2008).
    ADS  CAS  Google Scholar 

    88.
    Smith, K. A., Mosier, A. R., Crutzen, P. J. & Winiwarter, W. The role of N2O derived from crop-based biofuels, and from agriculture in general, in Earth’s climate. Phil.Trans. R. Soc. Lond. B 367, 1169–1174 (2012).
    CAS  Google Scholar 

    89.
    Thompson, R. L. et al. Nitrous oxide emissions 1999 to 2009 from a global atmospheric inversion. Atmos. Chem. Phys. 14, 1801–1817 (2014).
    ADS  Google Scholar 

    90.
    Wells, K. C. et al. Simulation of atmospheric N2O with GEOS-Chem and its adjoint: evaluation of observational constraints. Geosci. Model Dev. 8, 3179–3198 (2015).
    ADS  CAS  Google Scholar 

    91.
    Wilson, C., Chipperfield, M., Gloor, M. & Chevallier, F. Development of a variational flux inversion system (INVICAT v1. 0) using the TOMCAT chemical transport model. Geosci. Model Dev. 7, 2485–2500 (2014).
    ADS  Google Scholar 

    92.
    Patra, P. K. et al. Improved chemical tracer simulation by MIROC4.0-based atmospheric chemistry-transport model (MIROC4-ACTM). SOLA 14, 91–96 (2018).
    ADS  Google Scholar 

    93.
    Tian, H. Q. et al. The global N2O Model Intercomparison Project. Bull. Am. Meteorol. Soc. 99, 1231–1251 (2018).
    ADS  Google Scholar 

    94.
    Suntharalingam, P. et al. Anthropogenic nitrogen inputs and impacts on oceanic N2O fluxes in the northern Indian Ocean: the need for an integrated observation and modelling approach. Deep Sea Res. Part II 166, 104–113 (2019).
    CAS  Google Scholar 

    95.
    Battaglia, G. & Joos, F. Marine N2O emissions from nitrification and denitrification constrained by modern observations and projected in multimillennial global warming simulations. Glob. Biogeochem. Cycles 32, 92–121 (2018).
    ADS  CAS  Google Scholar 

    96.
    Galloway, J. et al. The impact of animal production systems on the nitrogen cycle. In Livestock in a Changing Landscape Vol. 1 (eds Steinfeld, H. et al.) 83–95 (Island Press, 2010).

    97.
    Elberling, B., Christiansen, H. H. & Hansen, B. U. High nitrous oxide production from thawing permafrost. Nat. Geosci. 3, 332–335 (2010).
    ADS  CAS  Google Scholar 

    98.
    Wagner-Riddle, C. et al. Globally important nitrous oxide emissions from croplands induced by freeze–thaw cycles. Nat. Geosci. 10, 279–283 (2017).
    ADS  CAS  Google Scholar 

    99.
    Suntharalingam, P. et al. Estimates of oceanic nitrous-oxide emissions from global biogeochemistry models. In American Geophysical Union, Fall Meeting 2018 B21K-2481B (2018).

    100.
    Janssens-Maenhout, G. et al. EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970–2012. Earth Syst. Sci. Data 11, 959–1002 (2019).
    ADS  Google Scholar 

    101.
    Tubiello, F. et al. Estimating Greenhouse Gas Emissions in Agriculture Ch. 5, 35–115 (FAO, 2015).

    102.
    van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst.Sci. Data 9, 697–720 (2017).
    Google Scholar 

    103.
    Dentener, F. Global maps of atmospheric nitrogen deposition, 1860, 1993, and 2050. https://doi.org/10.3334/ORNLDAAC/830 (Oak Ridge National Laboratory, 2006).

    104.
    Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).
    Google Scholar  More

  • in

    Comparing fish prey diversity for a critically endangered aquatic mammal in a reserve and the wild using eDNA metabarcoding

    1.
    Gangloff, M. M., Edgar, G. J. & Wilson, B. Imperilled species in aquatic ecosystems: emerging threats, management and future prognosis. Aquatic Conserv. Mar. Freshw. Ecosyst. 26, 858–871 (2016).
    Article  Google Scholar 
    2.
    WWF. Living Planet Report—2018: Aiming Higher (eds Grooten, M. & Almond, R.E.A.). WWF, Gland, Switzerland (2018).

    3.
    Zhou, X. et al. Population genomics of finless porpoises reveal an incipient cetacean species adapted to freshwater. Nat. Commun. 9, 1276 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    4.
    Mei, Z. et al. Accelerating population decline of Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis). Biol. Conserv. 153, 192–200 (2012).
    Article  Google Scholar 

    5.
    Wang, D., Turvey, S.T., Zhao, X. & Mei, Z. Neophocaena asiaeorientalisssp.asiaeorientalis. The IUCN Red List of Threatened Species 2013 e.T43205774A45893487, http://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T43205774A45893487.en(2013).

    6.
    Yang, J. et al. A preliminary study on diet of the Yangtze finless porpoise using next-generation sequencing techniques. Mar. Mammal Sci. 35, 1579–1586 (2019).
    CAS  Article  Google Scholar 

    7.
    Wang, D. Population status, threats and conservation of the Yangtze finless porpoise. Chin. Sci. Bull. 54, 3473–3484 (2009).
    CAS  Google Scholar 

    8.
    Wu, J. et al. Progress in studies on water ecology in Tian’e Zhou Oxbow. Acta Hydrobiol. Sin. 41, 935–946 (2017) (In Chinese).
    Google Scholar 

    9.
    Nabi, G., Hao, Y., Robeck, T. R., Zheng, J. & Wang, D. Physiological consequences of biologic state and habitat dynamics on the critically endangered Yangtze finless porpoises (Neophocaena asiaeorientalis ssp. asiaeorientalis) dwelling in the wild and semi-natural environment. Conserv. Physiol. 6, coy072 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Stewart, K., Ma, H., Zheng, J. & Zhao, J. Using environmental DNA to assess population-wide spatiotemporal reserve use. Conserv. Biol. 31, 1173–1182 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    11.
    Chen, M. et al. Parentage-based group composition and dispersal pattern studies of the Yangtze Finless Porpoise population in Poyang Lake. Int. J. Mol. Sci. 17, 1268 (2016).
    PubMed Central  Article  Google Scholar 

    12.
    Civade, R. et al. Spatial representativeness of environmental DNA metabarcoding signal for fish biodiversity assessment in a natural freshwater system. PLoS ONE 11, e0157366 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    13.
    Evans, N. T. et al. Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding. Mol. Ecol. Resour. 16, 29–41 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Hänfling, B. et al. Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods. Mol. Ecol. 25, 3101–3119 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    15.
    Fujii, K. et al. Environmental DNA metabarcoding for fish community analysis in backwater lakes: a comparison of capture methods. PLoS ONE 14, e0210357 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Andruszkiewicz, E. A. et al. Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding. PLoS ONE 12, e0176343 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    17.
    Harper, L. R. et al. Needle in a haystack? A comparison of eDNA metabarcoding and targeted qPCR for detection of the great crested newt (Triturus cristatus). Ecol. Evol. 8, 6330–6341 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Günther, B., Knebelsberger, T., Neumann, H., Laakmann, S. & Arbizu, P. M. Metabarcoding of marine environmental DNA based on mitochondrial and nuclear genes. Sci. Rep. 8, 14822 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    19.
    Djurhuus, A. et al. Evaluation of marine zooplankton community structure through environmental DNA metabarcoding. Limnol. Oceanogr. Methods 16, 209–221 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    20.
    Ficetola, G. F., Miaud, C., Pompanon, F. & Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 4, 423–425 (2008).
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    Taberlet, P., Coissac, E., Hajibabaei, M. & Rieseberg, L. H. Environmental DNA. Mol. Ecol. 21, 1789–1793 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Thomsen, P. F. et al. Monitoring endangered freshwater biodiversity using environmental DNA. Mol. Ecol. 21, 2565–2573 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Stewart, K. A. Understanding the biotic and abiotic factors on sources of aquatic environmental DNA. Biodivers. Conserv. 28, 983–1001 (2019).
    Article  Google Scholar 

    24.
    Lopes, C. M. et al. eDNA metabarcoding: a promising method for anuran surveys in highly diverse tropical forests. Mol. Ecol. Resour. 17, 904–914 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Hobbs, J., Helbing, C. C. & Veldhoen, N. Environmental DNA protocol for freshwater aquatic ecosystems version 2.2. Report for the BC Ministry of Environment, Victoria BC Canada (2017).

    26.
    Laramie, M.B., Pilliod, D.S., Goldberg, C.S. & Strickler, K.M. Environmental DNA sampling protocol—Filtering water to capture DNA from aquatic organisms.U.S. Geological Survey Techniques and Methods, book 2, chap. A13, 15 p. (2015).

    27.
    Ma, H. et al. Characterization, optimization, and validation of environmental DNA (eDNA) markers to detect an endangered aquatic mammal. Conserv. Genet. Resour. 8, 561–568 (2016).
    Article  Google Scholar 

    28.
    Thomsen, P. F. et al. Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS ONE 7, e41732 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Dougherty, M. M. et al. Environmental DNA (eDNA) detects the invasive rusty crayfish Orconectes rusticus at low abundances. J. Appl. Ecol. 53, 722–732 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    30.
    Evans, N. T. et al. Fish community assessment with eDNA metabarcoding: effects of sampling design and bioinformatic filtering. Can. J. Fish. Aquat. Sci. 74, 1362–1374 (2017).
    CAS  Article  Google Scholar 

    31.
    Renshaw, M. A., Olds, B. P., Jerde, C. L., Mcveigh, M. M. & Lodge, D. M. The room temperature preservation of filtered environmental DNA samples and assimilation into a phenol-chloroform-isoamyl alcohol DNA extraction. Mol. Ecol. Resour. 15, 168–176 (2015).
    CAS  PubMed  Article  Google Scholar 

    32.
    Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Sym. Ser. 41, 95–98 (1999).
    CAS  Google Scholar 

    34.
    Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2, 150088 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Olds, B. P. et al. Estimating species richness using environmental DNA. Ecol. Evol. 6, 4214–4226 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    37.
    Deiner, K. et al. Long-range PCR allows sequencing of mitochondrial genomes from environmental DNA. Methods Ecol. Evol. 8, 1888–1898 (2017).
    Article  Google Scholar 

    38.
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    39.
    Port, J. A. et al. Assessing vertebrate biodiversity in a kelp forest ecosystem using environmental DNA. Mol. Ecol. 25, 527–541 (2016).
    CAS  PubMed  Article  Google Scholar 

    40.
    Pochon, X., Zaiko, A., Fletcher, L. M., Laroche, O. & Wood, S. A. Wanted dead or alive? Using metabarcoding of environmental DNA and RNA to distinguish living assemblages for biosecurity applications. PLoS ONE 12, e0187636 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    41.
    Sato, H., Sogo, Y., Doi, H. & Yamanaka, H. Usefulness and limitations of sample pooling for environmental DNA metabarcoding of freshwater fish communities. Sci. Rep. 7, 14860 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    42.
    Yamamoto, S. et al. Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Sci. Rep. 7, 40368 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009).
    Article  CAS  Google Scholar 

    44.
    Huson, D. H. et al. MEGAN Community Edition—interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 12, e1004957 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    45.
    DiBattista, J. D. et al. Assessing the utility of eDNA as a tool to survey reef-fish communities in the Red Sea. Coral Reefs 36, 1245–1252 (2017).
    ADS  Article  Google Scholar 

    46.
    Siegenthaler, A. et al. Metabarcoding of shrimp stomach content: Harnessing a natural sampler for fish biodiversity monitoring. Mol. Ecol. Resour. 19, 206–220 (2019).
    CAS  PubMed  Article  Google Scholar 

    47.
    Racine, J. S. RStudio: a platform-independent IDE for R and Sweave. J. Appl. Econ. 27, 167–172 (2012).
    Article  Google Scholar 

    48.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org (2018).

    49.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (eds Gentleman, R., Hornik, K. & Parmigiani, G.) 1–212 (Springer, 2009).

    50.
    Guevara, M. R., Hartmann, D. & Mendoza, M. diverse: an R package to analyze diversity in complex systems. R J. 8, 60–78 (2016).
    Article  Google Scholar 

    51.
    Valentini, A. et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 25, 929–942 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Stoeckle, M. Y., Soboleva, L. & Charlop-Powers, Z. Aquatic environmental DNA detects seasonal fish abundance and habitat preference in an urban estuary. PLoS ONE 12, e0175186 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    53.
    Thomsen, P. F. et al. Environmental DNA from seawater samples correlate with trawl catches of subarctic, deepwater fishes. PLoS ONE 11, e0165252 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    54.
    Huang, L., Wu, Z. & Li, J. Fish fauna, biogeography and conservation of freshwater fish in Poyang Lake Basin China. Environ. Biol. Fish. 96, 1229–1243 (2013).
    Article  Google Scholar 

    55.
    Gong, J. et al. Interannual variation of the fish community structure in the Tian-e-Zhou Oxbow of Yangtze River. J. Hydroecol. 39, 46–53 (2018) (In Chinese).
    Google Scholar 

    56.
    Gong, C., Chen, Z. & Cheng, F. The status and management suggestions of the Yangtze finless porpoise prey fish in the Tian-e-Zhou Oxbow of Yangtze River. China Fish. 6, 43–45 (2019) (In Chinese).
    Google Scholar 

    57.
    Wang, T., Wang, H., Sun, G., Huang, D. & Shen, J. Length–weight and length–length relationships for some Yangtze River fishes in Tian-e-zhou Oxbow China. J. Appl. Ichthyol. 28, 660–662 (2012).
    Article  Google Scholar 

    58.
    Yang, S., Li, M., Zhu, Q., Wang, M. & Liu, H. Spatial and temporal variations of fish assemblages in Poyanghu Lake. Resour. Environ. Yangtze Basin 24, 54–64 (2015) (In Chinese).
    CAS  Google Scholar 

    59.
    Jin, B. et al. Fish assemblage structure in relation to seasonal environmental variation in sub-lakes of the Poyang Lake floodplain, China. Fish. Manag. Ecol. 26, 131–140 (2019).
    Article  Google Scholar 

    60.
    Fang, C. et al. Fish resources in Poyang Lake and their utilization. Jiangsu Agric. Sci. 44, 233–243 (2016) (In Chinese).
    Google Scholar 

    61.
    Zhong, B. et al. Classification of Pelteobagrus fish in Poyang Lake based on mitochondrial COI gene sequence. Mitochondrial DNA A 27, 4635–4637 (2016).
    CAS  Article  Google Scholar 

    62.
    Xiong, G., Zhang, T., Lin, Y., Wang, W. & You, X. Analysis of some characters of fish in the inner Lake of Poyang Lake Wetland. Jiangxi Fish. Sci. Technol. 3, 10–12 (2018) (In Chinese).
    Google Scholar 

    63.
    Liu, X. et al. Biodiversity pattern of fish assemblages in Poyang Lake Basin: threat and conservation. Ecol. Evol. 9, 11672–11683 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    64.
    Liu, M. et al. Species diversity of drifting fish eggs in the Yangtze River using molecular identification. PeerJ 6, e5807 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    65.
    Hinlo, R., Furlan, E., Suitor, L. & Gleeson, D. Environmental DNA monitoring and management of invasive fish: comparison of eDNA and fyke netting. Manag. Biol. Invasion 8, 89–100 (2017).
    Article  Google Scholar 

    66.
    Pilliod, D. S., Goldberg, C. S., Arkle, R. S. & Waits, L. P. Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. Can. J. Fish. Aquat. Sci. 70, 1123–1130 (2013).
    CAS  Article  Google Scholar 

    67.
    Lacoursière-Roussel, A., Côté, G., Leclerc, V. & Bernatchez, L. Quantifying relative fish abundance with eDNA: a promising tool for fisheries management. J. Appl. Ecol. 53, 1148–1157 (2016).
    Article  CAS  Google Scholar 

    68.
    Lacoursière-Roussel, A., Rosabal, M. & Bernatchez, L. Estimating fish abundance and biomass from eDNA concentrations: variability among capture methods and environmental conditions. Mol. Ecol. Resour. 16, 1401–1414 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    69.
    Ushio, M. et al. Quantitative monitoring of multispecies fish environmental DNA using high-throughput sequencing. Metabarcod. Metagenom. 2, 1–15 (2018).
    Google Scholar 

    70.
    Simmons, M., Tucker, A., Chadderton, W. L., Jerde, C. L. & Mahon, A. R. Active and passive environmental DNA surveillance of aquatic invasive species. Can. J. Fish. Aquat. Sci. 73, 76–83 (2016).
    CAS  Article  Google Scholar 

    71.
    Smart, A. S., Tingley, R., Weeks, A. R., vanRooyen, A. R. & McCarthy, M. A. Environmental DNA sampling is more sensitive than a traditional survey technique for detecting an aquatic invader. Ecol. Appl. 25, 1944–1952 (2015).
    PubMed  Article  Google Scholar 

    72.
    Eiler, A., Löfgren, A., Hjerne, O., Nordén, S. & Saetre, P. Environmental DNA (eDNA) detects the pool frog (Pelophylax lessonae) at times when traditional monitoring methods are insensitive. Sci. Rep. 8, 5452 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    73.
    Lin, Y., Gao, Z. & Zhao, A. Introduction and use of non-native species for aquaculture in China: status, risks and management solutions. Rev. Aquacult. 7, 28–38 (2015).
    Article  Google Scholar 

    74.
    Xiong, et al. Non-native freshwater fish species in China. Rev. Fish. Biol. Fish. 25, 651–687 (2015).
    Article  Google Scholar 

    75.
    Pilliod, D. S., Goldberg, C. S., Arkle, R. S. & Waits, L. P. Factors influencing detection of eDNA from a stream-dwelling amphibian. Mol. Ecol. Resour. 14, 109–116 (2014).
    CAS  PubMed  Article  Google Scholar 

    76.
    Eichmiller, J. J., Best, S. E. & Sorensen, P. W. Effects of temperature and trophic state on degradation of environmental DNA in lake water. Environ. Sci. Technol. 50, 1859–1867 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    77.
    Zou, K. et al. eDNA metabarcoding as a promising conservation tool for monitoring fish diversity in a coastal wetland of the Pearl River Estuary compared to bottom trawling. Sci. Total Environ. 702, 134704 (2020).
    ADS  CAS  PubMed  Article  Google Scholar 

    78.
    Fernández, S., Rodríguez-Martínez, S., Martínez, J. L., Garcia-Vazquez, E. & Ardura, A. How can eDNA contribute in riverine macroinvertebrate assessment? A metabarcoding approach in the Nalón River (Asturias, Northern Spain). Environ. DNA 1, 385–401 (2019).
    Article  Google Scholar 

    79.
    Lacoursière-Roussel, A. et al. eDNA metabarcoding as a new surveillance approach for coastal Arctic biodiversity. Ecol. Evol. 8, 7763–7777 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    80.
    Liu, Y. et al. Application of environmental DNA metabarcoding to spatiotemporal finfish community assessment in a temperate embayment. Front. Mar. Sci. 6, 674 (2019).
    ADS  Article  Google Scholar 

    81.
    Xie, X. et al. Are river protected areas sufficient for fish conservation? Implications from large-scale hydroacoustic surveys in the middle reach of the Yangtze River. BMC Ecol. 19, 42 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    82.
    Xinhua. China starts 10-year fishing ban on Yangtze River.China Daily;https://www.chinadaily.com.cn/a/202001/02/WS5e0d4851a310cf3e35581f65.html(2020).

    83.
    Yang, S., Xu, K., Milliman, J. D. & Wu, C. Decline of Yangtze River water and sediment discharge: Impact from natural and anthropogenic changes. Sci. Rep. 5, 12581 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar  More

  • in

    The global biological microplastic particle sink

    For this study we use the University of Victoria Earth System Climate Model (UVic ESCM) version 2.940,41,42. The UVic ESCM is an intermediate-complexity earth system model with a resolution of 1.8(^circ ) latitude by 3.6(^circ ) longitude and 19 ocean depth levels. The surface ocean level is 50 m deep. The model contains a two dimensional energy moisture-balance model of the atmosphere, as well as representations of sea ice, ocean circulation and sediments, and terrestrial carbon. The particular biogeochemical version used here includes three phytoplankton functional types, namely diazotrophs (DZ), mixed phytoplankton (PH), and small phytoplankton and calcifiers (CO)43. The model pre-industrial climate has been previously described43, as has its response to business-as-usual atmospheric (hbox{CO}_2) forcing44. The following sections describe the MP model. A model schematic is presented in Fig. 6.
    Figure 6

    Microplastic model schematic. Marine snow is produced as a fixed fraction of the free detritus (DET) pool. MP aggregates with this marine snow, entering the (hbox{MP}_A) (marine snow entrained MP) pool. (hbox{MP}_A) held in aggregates sinks at the aggregate rate, with a fraction reaching the seafloor considered to be lost from the ocean. Detrital remineralisation releases the (hbox{MP}_A) from marine snow aggregates at the rate of detrital remineralisation. MP is also grazed by zooplankton and excreted into a pellet-bound (hbox{MP}_Z) pool. Pellet-bound (hbox{MP}_Z) sinks and is released back to the free MP pool at the rate of detrital remineralisation, but some is also lost at the seafloor. Details on the biogeochemical aspects of the model are previously described43.

    Full size image

    Model description
    The base model43 was modified in order to quantify the roles of two of the three theorised biological export pathways on MP (aggregation in marine snow and zooplankton ingestion; for now, we neglect an explicit representation of biofouling29). We distinguish between detritus that becomes faecal pellets, and the physical aggregation of marine snow, by introducing a new faecal pellet tracer to divert 50% of zooplankton particulate losses into a separate detrital pool27. For simplicity, this new pellet detrital pool has the same sinking parameterisation as the original detritus. Using the same sinking rates for both detrital classes produces ocean biogeochemistry that is identical to the previously published versions of the model. In the model, plastic particles only interact passively with marine snow (they do not, for example, modify aggregate sinking rates), but they interact actively with zooplankton grazing (described below). Plastic particles have been observed to both increase and decrease the sinking rates of marine snow21,22 and decrease the sinking rates of faecal pellets20,38, but for simplicity and as a first approximation we neglect these effects in our model.
    Three MP compartments are introduced; “free” (unattached) microplastic (MP), microplastic aggregated in marine snow ((hbox{MP}_A)), and microplastic in zooplankton faecal pellets ((hbox{MP}_Z)). All MP are considered to represent particles within a biologically active size range, but this size (and the particles’ composition) is never made explicit. These assumptions could bias modelled MP towards polymer types favoured by generic zooplankton34 and particle sizes in the lower end33,34 of the defined range of microplastic size. However, our parameter sensitivity testing in the Supplemental Information tests various fractional uptake rates that implicitly consider size and particle composition in how biologically “active” the MP pool is. As with all model ocean tracers, microplastic concentrations (MP) vary according to:

    $$begin{aligned} frac{dmathrm {MP}}{dt} = T + S(mathrm {MP}) end{aligned}$$
    (1)

    With T including all transport terms and S representing all source minus sink terms. The source and sink terms for free microplastic are:

    $$begin{aligned} S(mathrm {MP}) = Emis – S(mathrm {MP}_A) – S(mathrm {MP}_Z) + w_p frac{delta mathrm {MP} times F_R}{delta z} end{aligned}$$
    (2)

    Microplastic is emitted to the ocean (Emis) along coastlines and major shipping routes using a scaling against regional (hbox{CO}_2) emissions (a dataset provided with the standard UVic ESCM version 2.9 package download), in order to approximate degree of industrialisation and population density in this first version of this model. The rate of emission is a proportion of the total annual plastic waste generation ((F_T))45. For now, abiotic degradation of macroplastics as a source of microplastics to the ocean is neglected to keep the model simple and focus on biological transport. The MP then exchanges with the marine snow ((hbox{MP}_A)) and zooplankton faecal pellet ((hbox{MP}_Z)) pools. A fast particle rising rate ((w_p)) of 1.9 cm per second46 is prescribed to a fraction ((F_R)) of the free MP in each grid cell below the surface level as an approximation of positive buoyancy. An alternative approach would be to assign a uniform rise rate to all MP particles, and to subject the value of the rise rate to sensitivity testing. However, a weakness of this alternative approach is that the many types of plastic in the ocean have different characteristic buoyancies, which could produce unique particle pathways18. In this alternative approach it would be more appropriate to explicitly simulate multiple MP types in the model (which we sought to avoid in this first modelling effort for the sake of simplicity). Nevertheless, we conducted a sensitivity test using several different rise rates, and the effect of reducing the mean rise rate was similar to reducing the fraction assigned a rise rate.
    In the current model version there are no abiotic breakdown rates (i.e., photo-degradation39) or respiration losses47 removing MP from circulation.
    MP is modelled to aggregate in marine snow as:

    $$begin{aligned} S(mathrm {MP}_A) = A_{upt} – A_{rel} – w_Dfrac{delta mathrm {MP}_A}{delta z} end{aligned}$$
    (3)

    MP particles are taken up ((A_{upt})) via a Monod function applied to the rate of marine snow formation (sources of detritus; (D_A) in nitrogen units, multiplied by an aggregation fraction, (F_A)) in order to approximate an increased likelihood of MP/marine snow encounter with increasing MP concentrations that approaches a level of saturation at high MP concentrations:

    $$begin{aligned} A_{upt} = frac{mathrm {MP}}{k_P + mathrm {MP}} times source(D_A) times F_A end{aligned}$$
    (4)

    The uptake constant ((k_P)) is subjected to sensitivity testing, as is the fraction of marine snow aggregation ((F_A)). In this parameterisation, the aggregation of MP in marine snow represents the net uptake of MP into aggregates by both aggregation and biofouling processes. Biofouling occurs mostly in the upper 50 m35, which is the entire surface layer grid cell in our model. The entrainment-release cycle of biofouling is implicit in our parameterisation via the microbial loop, which is temperature-dependent. Sensitivity testing of the (k_P) and (F_A) parameters therefore represent testing of the net aggregation due to non-zooplankton biological aggregation effects. MP is released ((A_{rel})) from marine snow at the rate of detrital remineralisation ((mu _D)). This rate is temperature-dependent and results in higher rates of release in the low latitudes.

    $$begin{aligned} A_{rel} = mu _D mathrm {MP}_A end{aligned}$$
    (5)

    A particle sinking term ((w_D)) applies to marine snow-associated MP, and has the same value as sinking detritus. The base unit of all MP tracers is number of plastic particles. As a first approximation we assume that all marine snow aggregates forming from free detritus have the characteristic of diatom aggregates (8.8 (upmu )g C per aggregate48). Model detritus in mmol N is converted to mmol C using Redfield stoichiometry, which is then converted to (upmu )g C to calculate the maximum number of aggregates. The maximum number of aggregates is then multiplied by the aggregation fraction (F_A), to calculate (hbox{MP}_A) source and sink rates. MP is conserved for all MP tracers when surface flux balances sedimentary loss rate. What fraction of MP particles reaching the seafloor via aggregate and faecal pellet ballasting are returned to the water column ((F_B)) is tested. For simplicity and as a first approximation, detritus ballasted by calcite, and calcite43, are assumed to not aggregate with microplastic.
    Similarly, for MP associated with zooplankton, sources and sinks are:

    $$begin{aligned} S(mathrm {MP}_Z) = P_{upt} – P_{rel} – w_Dfrac{delta mathrm {MP}_Z}{delta z} end{aligned}$$
    (6)

    The calculation of MP particle ingestion rate ((P_{upt})) is the same as for other food sources37. A grazing preference ((psi _{MP})) for MP is subjected to sensitivity testing. This sensitivity testing implicitly examines effects such as biofouling altering the grazing preference of zooplankton for MP. It is assumed that 100% of ingested MP will be egested as faecal pellets and released ((P_{rel})) to the “free” MP pool at the rate of faecal pellet remineralisation, with no plastic remaining in the gut and no plastic being metabolised by the zooplankton. Ingesting MP also results in a reduced zooplankton carbon uptake rate19, with implications for primary and export production (although, Redfield ratios are conserved). Pellet-bound (hbox{MP}_Z) is considered to sink at the rate of faecal pellets ((w_D)).
    Plastic is eaten by zooplankton in this model. The Holling II grazing formulation37 is extended to include MP. Grazing of MP ((G_{MP})) is calculated as:

    $$begin{aligned} begin{aligned} G_{MP}&= mu _Z^{max} times Z times mathrm {MP}times R_{M:P}times R_{F:MP}times R_{N:F}times psi _{MP}\&quad times ,(psi _{CO}CO+psi _{PH}PH+psi _{DZ}DZ+psi _{Detr_{tot}}Detr_{tot}\&quad +,psi_{Z}Z+psi _{MP}mathrm {MP}times R_{M:P}times R_{F:MP}times R_{N:F} + k_Z)^{-1} end{aligned} end{aligned}$$
    (7)

    The maximum potential grazing rate ((mu _Z^{max})) is scaled by zooplankton population (Z) and MP availability (MP), and weighted by a food preference ((psi _{MP})), total prey (CO, PH, DZ, (hbox{Detr}_{{tot}})), and Z representing the food sources described in44 and a half saturation constant for zooplankton ingestion ((k_z)). Grazing preferences must always sum to 1 in the model, so sensitivity testing of (psi _{MP}) requires that all grazing preferences must also be adjusted. This is done by varying (psi _{MP}) but requiring (psi _{DZ}) always be set to 0.1 (on the basis that diazotrophs are a poor food source, and to minimize disruption to the nitrogen cycle). The remaining allowance is equally split by the other (psi ) terms. The calculation occurs in N units, so MP is first converted to grams of MP using the MP particle-to-mass conversion of 236E3 tonnes MP = 51.2E12 particles MP ((R_{M:P}))4. It is assumed that 1 g MP will roughly replace 1 g of food (at Redfield ratios; (R_{N:F}) is the conversion from mol Food to mol N) in the zooplankton’s diet, and MP is thus converted to mmol N for the grazing calculation. However, we subject this ratio ((R_{F:MP})) to sensitivity testing. Zooplankton uptake of plastic is therefore:

    $$begin{aligned} P_{upt} = frac{G_{MP}}{R_{M:P}times R_{F:MP}times R_{N:F}} end{aligned}$$
    (8)

    MP particles are released from faecal pellets via remineralisation, which occurs at the same rate as the remineralisation of aggregates:

    $$begin{aligned} P_{rel} = mu _D mathrm {MP}_Z end{aligned}$$
    (9)

    Model forcing
    The model was integrated at year 1765 boundary conditions (including agricultural greenhouse forcing and land ice) for more than 10,000 years until equilibration was achieved. From year 1765 to 1950, historical (hbox{CO}_2) concentration forcing, and geostrophically adjusted wind anomalies are applied. From 1950 to 2100 the model is forced with a combination of historical (hbox{CO}_2) concentration forcing (to 2000) and a business-as-usual high atmospheric (hbox{CO}_2) concentration projection RCP8.549,50. MP emissions start from 2 million metric tonnes in year 1950 (a total plastic waste generation estimate45), increasing at a rate of 8.4% per year. (hbox{CO}_2) and MP forcing is summarized in Fig. 7. It has been estimated that about 4% of total plastic waste generated enters the ocean30, but that the microplastic mass found at the sea surface represents only about 1% of the annual plastic input to the ocean4. We test a range of input fractions (see Table 2), after applying a mass conversion from tonnes to number of MP particles4. Using a considerable over-estimation of MP pollution rate also implicitly accounts for abiotic degradation of larger plastics.
    Figure 7

    Model forcing from years 1950–2100. Atmospheric (hbox{CO}_2) follows RCP8.5 (panel a). Plastic flux into the ocean is assumed to be some fraction of the total historical and projected plastic waste generation estimate (panel b), with a continuing rate of increase of 8.4% per year45, converted to MP particles using a mass conversion4. Previous estimates of actual total plastic mass flux into the ocean is only about 4% of the total plastic waste generation30, with the MP fraction being a small proportion of that.

    Full size image

    Table 2 Microplastic model parameters and range tested.
    Full size table

    Experimental setup
    A 700-member Latin Hypercube51 was used to test the microplastic parameter space of the model using the forcing described in the previous section. While biological model parameters might also influence microplastic uptake and transport, we limited our initial tests to the new parameters introduced above. A range of values was prescribed to the parameters listed in Table 2, in which the parameter space was randomly sampled with a normal distribution. The objective was to see what can be learned about plastic accumulation in the ocean, when very little is known about plastic/particle interactions and basic processes are still poorly understood. An analysis of the full Latin Hypercube parameter search is provided as Supplemental Information.
    We adopted an incremental approach to increasing model complexity. We started with a control Hypercube where biology was not allowed to take up plastic, in order to first test the physical parameters ((F_T) and (F_R), the fraction of total annual plastic produced entering the ocean as MP, and the fraction assigned a rise rate, respectively). One hundred simulations were performed in this configuration, with the results analysed in the Supplemental Information. We next included passive plastic aggregation in marine snow (MP plus the (hbox{MP}_A) tracer) in a 300 simulation Hypercube, spread across the (k_P) (marine snow uptake coefficient) parameter space (0–1, 1–100, 100–1000 particles (hbox{m}^{-3}), each with 100 Hypercube simulations) in a normal distribution. These 300 simulations explored the 5 relevant MP model parameters: (F_T), (F_R), (F_A) (marine snow aggregation fraction), (k_P), and (F_B) (fractional return to ocean at the seafloor). These results are also provided in the Supplemental Information. Finally, we added active zooplankton-associated plastic (MP, plus (hbox{MP}_A) and (hbox{MP}_Z) tracers) as a third 300-individual Hypercube set. This third Hypercube is similarly split across the (k_P) parameter space in a normal distribution, but with the addition of grazing parameters (psi _{MP}) (MP grazing preference) and (R_{F:MP}) (the food to MP substitution ratio; 7 parameters in total). More

  • in

    Acidobacteria are active and abundant members of diverse atmospheric H2-oxidizing communities detected in temperate soils

    1.
    Conrad R. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev. 1996;60:609–40.
    CAS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Rhee TS, Brenninkmeijer CAM, Röckmann T. The overwhelming role of soils in the global atmospheric hydrogen cycle. Atmos Chem Phys. 2006;6:1611–25.
    CAS  Article  Google Scholar 

    3.
    Downey NVS, Randerson JT, Eiler JM. Molecular hydrogen uptake by soils in forest, desert, and marsh ecosystems in California. J Geophys Res. 2008;113:G03037.
    Article  Google Scholar 

    4.
    Schmitt S, Hanselmann A, Wollschläger U, Hammer S, Levin I. Investigation of parameters controlling the soil sink of atmospheric molecular hydrogen. Tellus B Chem Phys Meter. 2009;61:416–23.
    Article  CAS  Google Scholar 

    5.
    Novelli PC, Lang PM, Masarie KA, Hurst DF, Myers R, Elkins JW. Molecular hydrogen in the troposphere: Global distribution and budget. J Geophys Res. 1999;104:30427–44.
    CAS  Article  Google Scholar 

    6.
    Downey NVS, Randerson JT, Eiler JM. Temperature and moisture dependence of soil H2 uptake measured in the laboratory. Geophys Res Lett. 2006;33:1–5.
    Google Scholar 

    7.
    Häring V, Conrad R. Demonstration of two different H2-oxidizing activities in soil using an H2 consumption and a tritium exchange assay. Biol Fertil Soils. 1994;17:125–8.
    Article  Google Scholar 

    8.
    Schuler S, Conrad R. Soils contain two different activities for oxidation of hydrogen. FEMS Microbiol Ecol. 1990;73:77–84.
    CAS  Article  Google Scholar 

    9.
    Constant P, Chowdhury SP, Hesse L, Pratscher J, Conrad R. Genome data mining and soil survey for the novel group 5 [NiFe]-hydrogenase to explore the diversity and ecological importance of presumptive high-affinity H2-oxidizing bacteria. Appl Environ Microbiol. 2011;77:6027–35.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Greening C, Constant P, Hards K, Morales SE, Oakeshott JG, Russell RJ, et al. Atmospheric hydrogen scavenging: from enzymes to ecosystems. Appl Environ Microbiol. 2015;81:1190–9.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    11.
    Maimaiti J, Zhang Y, Yang J, Cen YP, Layzell DB, Peoples M, et al. Isolation and characterization of hydrogen-oxidizing bacteria induced following exposure of soil to hydrogen gas and their impact on plant growth. Environ Microbiol. 2007;9:435–44.
    CAS  PubMed  Article  Google Scholar 

    12.
    Constant P, Poissant L, Villemur R. Isolation of Streptomyces sp. PCB7, the first microorganism demonstrating high-affinity uptake of tropospheric H2. ISME J. 2008;2:1066–76.
    CAS  PubMed  Article  Google Scholar 

    13.
    Constant P, Hallenbeck PC. Chapter 5 – Hydrogenase. In: Pandey A, Chang JS, Hallenbeck PC, Larroche C, editors. Biohydrogen, 1st edition. Amsterdam: Elsevier; 2013.

    14.
    Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilized energy source for microbial growth and survival. ISME J. 2016;10:761–77.
    CAS  PubMed  Article  Google Scholar 

    15.
    Constant P, Hallenbeck PC. Chapter 3 – Hydrogenase. In . Editors: Pandey A, Mohan SV, Chang JS, Hallenbeck PC, Larroche C, editors. Biohydrogen, 2nd edition. Amsterdam: Elsevier; 2019;49–78.

    16.
    Piché-Choquette S, Constant P. Molecular hydrogen, a neglected key driver of soil biogeochemical processes. Appl Environ Microbiol. 2019;85:e02418–18.
    PubMed  PubMed Central  Article  Google Scholar 

    17.
    Greening C, Berney M, Hards K, Cook GM, Conrad R. A soil actinobacterium scavenges atmospheric H2 using two membrane-associated, oxygen-dependent [NiFe] hydrogenases. Proc Natl Acad Sci USA. 2014;111:4257–61.
    CAS  PubMed  Article  Google Scholar 

    18.
    Constant P, Chowdhury SP, Pratscher J, Conrad R. Streptomycetes contributing to atmospheric molecular hydrogen soil uptake are widespread and encode a putative high‐affinity [NiFe]‐hydrogenase. Environ Microbiol. 2010;12:821–9.
    CAS  PubMed  Article  Google Scholar 

    19.
    Meredith LK, Rao D, Bosak T, Klepec-Ceraj V, Tada KR, Hansel CM, et al. Consumption of atmospheric hydrogen during the life cycle of soil‐dwelling actinobacteria. Environ Microbiol Rep. 2014;6:226–38.
    CAS  PubMed  Article  Google Scholar 

    20.
    Piché-Choquette S, Khdhiri M, Constant P. Survey of high-affinity H2-oxidizing bacteria in soil reveals their vast diversity yet underrepresentation in genomic databases. Micro Ecol. 2017;74:771–5.
    Article  CAS  Google Scholar 

    21.
    Greening C, Carere CR, Rushton-Green R, Harold LK, Hards K, Taylor MC, et al. Persistence of the dominant soil phylum Acidobacteria by trace gas scavenging. Proc Natl Acad Sci USA. 2015;112:10497–502.
    CAS  PubMed  Article  Google Scholar 

    22.
    Islam ZF, Cordero PRF, Feng J, Chen YJ, Bay SK, Jirapanjawat T, et al. Two Chloroflexi classes independently evolved the ability to persist on atmospheric hydrogen and carbon monoxide. ISME J. 2019;13:1801–13.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Mohammadi S, Pol A, van Alen TA, Jetten MSM, Op den Camp HJM. Methylacidiphilum fumariolicum SolV, a thermoacidophilic ‘Knallgas’ methanotroph with both an oxygen-sensitive and -insensitive hydrogenase. ISME J. 2017;11:945–58.
    CAS  PubMed  Article  Google Scholar 

    24.
    Janssen PH. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol. 2006;72:1719–28.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Barns SM, Cain EC, Sommerville L, Kuske CR. Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. Appl Environ Microbiol. 2007;73:3113–6.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Dedysh SN, Yilmaz P. Refining the taxonomic structure of the phylum Acidobacteria. Int J Syst Evol Microbiol. 2018;68:3796–806.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Kielak AM, Barreto CC, Kowalchuk GA, van Veen JA, Kuramae EE. The ecology of acidobacteria: moving beyond genes and genomes. Front Microbiol. 2016;7:744.
    PubMed  PubMed Central  Google Scholar 

    28.
    Myers MR, King GM. Isolation and characterization of Acidobacterium ailaaui sp. nov., a novel member of Acidobacteria sub-division I, from a geothermally-heated Hawaiian microbial mat. Int J Syst Evol Microbiol. 2016;66:5328–35.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Eichorst SA, Trojan D, Roux S, Herbold C, Rattei T, Woebken D. Genomic insights into the Acidobacteria reveal strategies for their success in terrestrial environments. Environ Microbiol. 2018;20:1041–63.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Gödde R, Meuser K, Conrad R. Hydrogen consumption and carbon monoxide production in soils with different properties. Biol Fertil Soils. 2000;32:129–34.
    Article  Google Scholar 

    31.
    Meredith LK, Commane R, Keenan TF, Klosterman ST, Munger JW, Templer PH, et al. Ecosystem fluxes of hydrogen in a mid‐latitude forest driven by soil microorganisms and plants. Glob Change Biol. 2017;23:906–19.
    Article  Google Scholar 

    32.
    Turlapati SA, Minocha R, Bhiravarasa PS, Tisa LS, Thomas WK, Minocha SC. Chronic N-amended soils exhibit an altered bacterial community structure in Harvard Forest, MA, USA. FEMS Microbiol Ecol. 2012;83:478–93.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    33.
    Søndergaard D, Pedersen CNS, Greening C. HydDB: A web tool for hydrogenase classification and analysis. Sci Rep. 2016;6:1–8.
    Article  CAS  Google Scholar 

    34.
    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019;20:1160–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    37.
    Eddy SR. A new generation of homology search tools based on probabilistic inference. Genome Inf. 2009;23:205–11.
    Google Scholar 

    38.
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26:1641–50.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Kaiser C, Koranda M, Kitzler B, Fuchslueger L, Schnecker J, Schweiger P, et al. Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. N. Phytol. 2010;187:843–58.
    CAS  Article  Google Scholar 

    42.
    Spohn M, Pötsch EM, Eichorst SA, Woebken D, Wanek W, Richter A. Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland. Soil Biol Biochem. 2016;97:168–75.
    CAS  Article  Google Scholar 

    43.
    Šťovíček A, Kim M, Or D, Gillor O. Microbial community response to hydration-desiccation cycles in desert soil. Sci Rep. 2017;7:1–19.
    Article  CAS  Google Scholar 

    44.
    Angel R. Total nucleic acid extraction from soil. Protocol Exchange. 2012; https://doi.org/10.1038/protex.2012.046.

    45.
    Rose TM, Schultz ER, Henikoff JG, Pietrokovski S, McCallum CM, Henikoff S. Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Nucl Acids Res. 1998;26:1628–35.
    CAS  PubMed  Article  Google Scholar 

    46.
    Herbold CW, Pelikan C, Kuzyk O, Hausmann B, Angel R, Berry D, et al. A flexible and economical barcoding approach for highly multiplexed amplicon sequencing of diverse target genes. Front Microbiol. 2015;6:731.
    PubMed  PubMed Central  Article  Google Scholar 

    47.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-Source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.
    PubMed  PubMed Central  Article  Google Scholar 

    49.
    Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90 K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    50.
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Constant P, Chowdhury SP, Hesse L, Conrad R. Co-localization of atmospheric H2 oxidation activity and high affinity H2-oxidizing bacteria in non-axenic soil and sterile soil amended with Streptomyces sp. PCB7. Soil Biol Biochem. 2011;43:1888–93.
    CAS  Article  Google Scholar 

    53.
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29–37.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.
    CAS  PubMed  Article  Google Scholar 

    56.
    Eichorst SA, Kuske CR, Schmidt TM. Influence of plant polymers on the distribution and cultivation of bacteria in the phylum Acidobacteria. Appl Environ Microbiol. 2011;77:586–96.
    CAS  PubMed  Article  Google Scholar 

    57.
    Koch IH, Gich F, Dunfield PF, Overmann J. Edaphobacter modestus gen. nov., sp. nov. and Edaphobacter aggregans sp. nov., two novel acidobacteria isolated from alpine and forest soils. Int J Syst Evol Microbiol. 2008;58:1114–22.
    CAS  PubMed  Article  Google Scholar 

    58.
    Eichorst SA, Breznak JA, Schmidt TM. Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria. Appl Environ Microbiol. 2007;73:2708–17.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Ritz C, Baty F, Streibig JC, Gerhard D. Dose-response analysis using R. PLoS ONE. 2015;10:e0146021.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    60.
    Joseph SJ, Hugenholtz P, Sangwan P, Osborne CA, Janssen PH. Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl Environ Microbiol. 2003;69:7210–5.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Männistö MK, Rawat S, Starovoytov V, Haggblom MM. Granulicella arctica sp. nov., Granulicella mallensis sp. nov., Granulicella tundricola sp. nov. and Granulicella sapmiensis sp. nov., novel acidobacteria from tundra soil. Int J Syst Evol Microbiol. 2012;62:2097–106.
    PubMed  Article  CAS  Google Scholar 

    62.
    Crowe MA, Power JF, Morgan XC, Dunfield PF, Lagutin K, Rijpstra WIC, et al. Pyrinomonas methylaliphatogenes gen. nov., sp. nov., a novel group 4 thermophilic member of the phylum Acidobacteria from geothermal soils. Int J Syst Evol Microbiol. 2014;64:220–7.
    CAS  PubMed  Article  Google Scholar 

    63.
    Belova SE, Ravin NV, Pankratov TA, Rakitin AL, Ivanova AA, Beletsky AV, et al. Hydrolytic capabilities as a key to environmental success: chitinolytic and cellulolytic acidobacteria from acidic sub-arctic soils and boreal peatlands. Front Microbiol. 2018;9:1–14.
    Article  Google Scholar 

    64.
    Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.
    CAS  PubMed  Article  Google Scholar 

    65.
    Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M, et al. Three genomes in the phylum Acidobacteria provide insight into their lifestyles in soils. Appl Environ Microbiol. 2009;75:2046–56.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Schäfer C, Bommer M, Hennig SE, Jeoung JH, Dobbek H, Lenz O. Structure of an actinobacterial-type [NiFe]-hydrogenase reveals insight into O2-tolerant H2 oxidation. Structure. 2016;24:285–92.
    PubMed  Article  CAS  Google Scholar 

    67.
    Liot Q, Constant P. Breathing air to save energy–new insights into the ecophysiological role of high-affinity [NiFe]-hydrogenase in Streptomyces avermitilis. Microbiologyopen. 2016;5:47–59.
    CAS  PubMed  Article  Google Scholar 

    68.
    Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J. 2009;3:442–53.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA. 1998;95:6578–83.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Kolter R, Siegele DA, Tormo A. The stationary phase of the bacterial life cycle. Ann Rev Microbiol. 1993;47:855–74.
    CAS  Article  Google Scholar 

    71.
    Lennon JTJ, Jones SES. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev. 2011;9:119–30.
    CAS  Google Scholar 

    72.
    Jones SE, Lennon JT. Dormancy contributes to the maintenance of microbial diversity. Proc Natl Acad Sci USA. 2010;107:5881–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    73.
    Morita RY. Is H2 the universal energy source for long-term survival? Micro Ecol. 1999;38:307–20.
    CAS  Article  Google Scholar 

    74.
    Cordero PRF, Bayly K, Man Leung P, Huang C, Islam ZF, Schittenhelm RB, et al. Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. ISME J. 2019;13:2868–81.
    CAS  PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Interactions with conspecific outsiders as drivers of cognitive evolution

    1.
    Milton, K. in Machiavellian Intelligence: Social Expertise and the Evolution of Intellect in Monkeys, Apes, and Humans 285–305 (Clarendon, Oxford, 1988).
    2.
    DeCasien, A. R., Williams, S. A. & Higham, J. P. Primate brain size is predicted by diet but not sociality. Nat. Ecol. Evol. 1, 0112 (2017).
    Article  Google Scholar 

    3.
    Sayol, F. et al. Environmental variation and the evolution of large brains in birds. Nat. Commun. 7, 13971 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Powell, L. E., Isler, K. & Barton, R. A. Re-evaluating the link between brain size and behavioural ecology in primates. Proc. R. Soc. B Biol. Sci. 284, 1–8 (2017).
    Google Scholar 

    5.
    Byrne, R. W. & Whiten, A. in Machiavellian Intelligence: Social Expertise and the Evolution of Intellect in Monkeys, Apes, and Humans. https://doi.org/10.2307/2804121 (Clarendon, Oxford, 1988).

    6.
    Dunbar, R. I. M. The social brain hypothesis. Evol. Anthropol. Rev. 6, 178–190 (1998).
    Article  Google Scholar 

    7.
    Ashton, B. J., Thornton, A. & Ridley, A. R. An intraspecific appraisal of the social intelligence hypothesis. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170288 (2018).
    Article  Google Scholar 

    8.
    Holekamp, K. E. Questioning the social intelligence hypothesis. Trends Cogn. Sci. 11, 65–69 (2007).
    PubMed  Article  Google Scholar 

    9.
    Kern, J. M. & Radford, A. N. Experimental evidence for delayed contingent cooperation among wild dwarf mongooses. Proc. Natl Acad. Sci. USA 115, 6255–6260 (2018).
    CAS  PubMed  Article  Google Scholar 

    10.
    Borgeaud, C. & Bshary, R. Wild vervet monkeys trade tolerance and specific coalitionary support for grooming in experimentally induced conflicts. Curr. Biol. 25, 3011–3016 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Moll, H. & Tomasello, M. Cooperation and human cognition: the Vygotskian intelligence hypothesis. Philos. Trans. R. Soc. B Biol. Sci. 362, 639–648 (2007).
    Article  Google Scholar 

    12.
    van Schaik, C. P., Isler, K. & Burkart, J. M. Explaining brain size variation: from social to cultural brain. Trends Cogn. Sci. 16, 277–284 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    13.
    Lucas, J. R., Gentry, K. E., Sieving, K. E. & Freeberg, T. M. Communication as a fundamental part of Machiavellian intelligence. J. Comp. Psychol. 132, 442–454 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    14.
    Dunbar, R. I. M. & Shultz, S. Why are there so many explanations for primate brain evolution? Philos. Trans. R. Soc. B Biol. Sci. 372, 20160244 (2017).
    Article  Google Scholar 

    15.
    Dunbar, R. I. M. & Shultz, S. Understanding primate brain evolution. Philos. Trans. R. Soc. B Biol. Sci. 362, 649–658 (2007).
    CAS  Article  Google Scholar 

    16.
    Shultz, S. & Dunbar, R. I. M. Social bonds in birds are associated with brain size and contingent on the correlated evolution of life-history and increased parental investment. Biol. J. Linn. Soc. 100, 111–123 (2010).
    Article  Google Scholar 

    17.
    Shultz, S. & Dunbar, R. I. M. The evolution of the social brain: anthropoid primates contrast with other vertebrates. Proc. R. Soc. B Biol. Sci. 274, 2429–2436 (2007).
    Article  Google Scholar 

    18.
    Lemoine, S. et al. Between-group competition impacts reproductive success in wild chimpanzees. Curr. Biol. 30, 312–318.e3 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Adams, E. S. Approaches to the study of territory size and shape. Annu. Rev. Ecol. Syst. 32, 277–303 (2001).
    Article  Google Scholar 

    20.
    Hardy, I. C. W. & Briffa, M. Animal Contests (Cambridge Univ. Press, Cambridge, 2013).
    Google Scholar 

    21.
    Radford, A. N., Majolo, B. & Aureli, F. Within-group behavioural consequences of between-group conflict: a prospective review. Proc. R. Soc. B Biol. Sci. 283, 20161567 (2016).
    Article  Google Scholar 

    22.
    van Schaik, C. P. in Comparative Socioecology (eds. Standen, V. & Foley, R. A.) 195–218 (Blackwell, 1989).

    23.
    Wrangham, R. W. An ecological model of female-bonded primate groups. Behaviour 75, 262–300 (1980).
    Article  Google Scholar 

    24.
    Sterck, E. H. M. The evolution of female social relationships in nonhuman primates. Behav. Ecol. Sociol. 291–309 (1997).

    25.
    Wilson, M. L. & Wrangham, R. W. Intergroup relations in chimpanzees. Annu. Rev. Anthropol. 32, 363–392 (2003).
    Article  Google Scholar 

    26.
    Moser-Purdy, C., MacDougall-Shackleton, E. A. & Mennill, D. J. Enemies are not always dear: male song sparrows adjust dear enemy effect expression in response to female fertility. Anim. Behav. 126, 17–22 (2017).
    Article  Google Scholar 

    27.
    Gherardi, F. Fighting behavior in hermit crabs: the combined effect of resource-holding potential and resource value in Pagurus longicarpus. Behav. Ecol. Sociobiol. 59, 500–510 (2006).
    Article  Google Scholar 

    28.
    Alexander, R. D. in The Human Revolution (eds. Mellars, P. & Stringer, C.) 455–513 (Edinburgh Univ. Press, Edinburgh, 1984).

    29.
    Hamilton, W. D. in ASA Studies 4: Biosocial Anthropology (ed. Fox, R.) 133–153 (Malaby, 1975).

    30.
    Grueter, C. C. Home range overlap as a driver of intelligence in primates. Am. J. Primatol. 77, 418–424 (2015).
    PubMed  Article  Google Scholar 

    31.
    Reichert, M. S. & Quinn, J. L. Cognition in contests: mechanisms, ecology, and evolution. Trends Ecol. Evol. 32, 773–785 (2017).
    PubMed  Article  Google Scholar 

    32.
    Shettleworth, S. J. Cognition, Evolution, and Behavior (Oxford Univ. Press, 2010).

    33.
    Young, A. J., Spong, G. & Clutton-Brock, T. Subordinate male meerkats prospect for extra-group paternity: alternative reproductive tactics in a cooperative mammal. Proc. R. Soc. B Biol. Sci. 274, 1603–1609 (2007).
    Article  Google Scholar 

    34.
    Radford, A. N. & du Plessis, M. A. Territorial vocal rallying in the green woodhoopoe: factors affecting contest length and outcome. Anim. Behav. 68, 803–810 (2004).
    Article  Google Scholar 

    35.
    Geissmann, T. & Orgeldinger, M. The relationship between duet songs and pair bonds in siamangs, Hylobates syndactylus. Anim. Behav. 60, 805–809 (2000).
    CAS  PubMed  Article  Google Scholar 

    36.
    Ridley, A. R. in Cooperative Breeding in Vertebrates: Studies of Ecology, Evolution and Behavior. 115–132. https://doi.org/10.1017/CBO9781107338357.008 (Cambridge Univ. Press, 2016).

    37.
    Bee, M. A. Habituation and sensitization of aggression in bullfrogs (Rana catesbeiana): testing the dual-process theory of habituation. J. Comp. Psychol. 115, 307–316 (2001).
    CAS  PubMed  Article  Google Scholar 

    38.
    Sheehan, M. J. & Tibbetts, E. A. Selection for individual recognition and the evolution of polymorphic identity signals in Polistes paper wasps. J. Evol. Biol. 23, 570–577 (2010).
    CAS  PubMed  Article  Google Scholar 

    39.
    Cant, M. A., Otali, E. & Mwanguhya, F. Fighting and mating between groups in a cooperatively breeding mammal, the banded mongoose. Ethology 108, 541–555 (2002).
    Article  Google Scholar 

    40.
    Braga Goncalves, I. & Radford, A. N. Experimental evidence that intruder and group member attributes affect outgroup defence and associated within-group interactions in a social fish. Proc. R. Soc. B Biol. Sci. 286, 20191261 (2019).
    Article  Google Scholar 

    41.
    Szipl, G., Ringler, E. & Bugnyar, T. Attacked ravens flexibly adjust signalling behaviour according to audience composition. Proc. R. Soc. B Biol. Sci. 285, 20180375 (2018).
    Article  Google Scholar 

    42.
    Noser, R. & Byrne, R. W. Mental maps in chacma baboons (Papio ursinus): Using inter-group encounters as a natural experiment. Anim. Cogn. 10, 331–340 (2007).
    PubMed  Article  Google Scholar 

    43.
    Radford, A. N. Preparing for battle? Potential intergroup conflict promotes current intragroup affiliation. Biol. Lett. 7, 26–29 (2011).
    PubMed  Article  Google Scholar 

    44.
    Christensen, C. & Radford, A. N. Dear enemies or nasty neighbors? Causes and consequences of variation in the responses of group-living species to territorial intrusions. Behav. Ecol. 29, 1004–1013 (2018).
    Article  Google Scholar 

    45.
    Temeles, E. J. The role of neighbours in territorial systems: when are they ‘dear enemies’? Anim. Behav. 47, 339–350 (1994).
    Article  Google Scholar 

    46.
    Radford, A. N. Group-specific vocal signatures and neighbour-stranger discrimination in the cooperatively breeding green woodhoopoe. Anim. Behav. 70, 1227–1234 (2005).
    Article  Google Scholar 

    47.
    Hyman, J. & Hughes, M. Territory owners discriminate between aggressive and nonaggressive neighbours. Anim. Behav. 72, 209–215 (2006).
    Article  Google Scholar 

    48.
    Monclús, R., Saavedra, I. & de Miguel, J. Context-dependent responses to neighbours and strangers in wild European rabbits (Oryctolagus cuniculus). Behav. Process. 106, 17–21 (2014).
    Article  Google Scholar 

    49.
    Thompson, F. J., Marshall, H. H., Vitikainen, E. I. K. & Cant, M. A. Causes and consequences of intergroup conflict in cooperative banded mongooses. Anim. Behav. 126, 31–40 (2017).
    Article  Google Scholar 

    50.
    McComb, K., Packer, C. & Pusey, A. Roaring and numerical assessment in contests between groups of female lions, Panthera leo. Anim. Behav. 47, 379–387 (1994).
    Article  Google Scholar 

    51.
    Descovich, K. A., Lisle, A. T., Johnston, S., Nicolson, V. & Phillips, C. J. C. Differential responses of captive southern hairy-nosed wombats (Lasiorhinus latifrons) to the presence of faeces from different species and male and female conspecifics. Appl. Anim. Behav. Sci. 138, 110–117 (2012).
    Article  Google Scholar 

    52.
    Christensen, C., Kern, J. M., Bennitt, E. & Radford, A. N. Rival group scent induces changes in dwarf mongoose immediate behavior and subsequent movement. Behav. Ecol. 27, 1627–1634 (2016).
    Google Scholar 

    53.
    Trimmer, P. C. & Houston, A. I. An evolutionary perspective on information processing. Top. Cogn. Sci. 6, 312–330 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    54.
    Mares, R., Young, A. J., Levesque, D. L., Harrison, N. & Clutton-Brock, T. H. Responses to intruder scents in the cooperatively breeding meerkat: sex and social status differences and temporal variation. Behav. Ecol. 22, 594–600 (2011).
    Article  Google Scholar 

    55.
    Humphries, D. J., Finch, F. M., Bell, M. B. V. & Ridley, A. R. Vocal cues to identity: pied babblers produce individually distinct but not stable loud calls. Ethology 122, 609–619 (2016).
    Article  Google Scholar 

    56.
    Burgener, N., Dehnhard, M., Hofer, H. & East, M. L. Does anal gland scent signal identity in the spotted hyaena? Anim. Behav. 77, 707–715 (2009).
    Article  Google Scholar 

    57.
    Lanchester, F. W. W. Aircraft in Warfare: the Dawn of the Fourth Arm. (Constable and Company Limited, 1916).

    58.
    Wilson, M. L., Britton, N. F. & Franks, N. R. Chimpanzees and the mathematics of battle. Proc. R. Soc. B Biol. Sci. 269, 1107–1112 (2002).
    Article  Google Scholar 

    59.
    Plowes, N. J. R. & Adams, E. S. An empirical test of Lanchester’s square law: mortality during battles of the fire ant Solenopsis invicta. Proc. R. Soc. B Biol. Sci. 272, 1809–1814 (2005).
    Article  Google Scholar 

    60.
    Radford, A. N. Territorial vocal rallying in the green woodhoopoe: influence of rival group size and composition. Anim. Behav. 66, 1035–1044 (2003).
    Article  Google Scholar 

    61.
    van Schaik, C. P. et al. Male monkeys use punishment and coercion to de-escalate costly intergroup fights. Proc. R. Soc. B Biol. Sci. 285, 20172323 (2018).
    Article  Google Scholar 

    62.
    Boydston, E. E., Morelli, T. L. & Holekamp, K. E. Sex differences in territorial behavior exhibited by the spotted hyena (Hyaenidae, Crocuta crocuta). Ethology 107, 369–385 (2001).
    Article  Google Scholar 

    63.
    McComb, K., Pusey, A., Packer, C. & Grinnell, J. Female lions can identify potentially infanticidal males from their roars. Proc. R. Soc. B Biol. Sci. 252, 59–64 (1993).
    ADS  CAS  Article  Google Scholar 

    64.
    Koch, F., Signer, J., Kappeler, P. M. & Fichtel, C. Intergroup encounters in Verreaux’s sifakas (Propithecus verreauxi): who fights and why? Behav. Ecol. Sociobiol. 70, 797–808 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    65.
    Schindler, S., Radford, A. N. & Schindler, S. Factors influencing within-group conflict over defence against conspecific outsiders seeking breeding positions. Proc. R. Soc. B Biol. Sci. 285, 20181669 (2018).
    Article  Google Scholar 

    66.
    Arseneau-Robar, T. J. M. et al. Female monkeys use both the carrot and the stick to promote male participation in intergroup fights. Proc. R. Soc. B Biol. Sci. 283, 20161817 (2016).
    Article  Google Scholar 

    67.
    Radford, A. N. Duration and outcome of intergroup conflict influences intragroup affiliative behaviour. Proc. R. Soc. B Biol. Sci. 275, 2787–2791 (2008).
    Article  Google Scholar 

    68.
    Tibbetts, E. A., Agudelo, J., Pandit, S. & Riojas, J. Transitive inference in Polistes paper wasps. Biol. Lett. 15, 20190015 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    69.
    Grosenick, L., Clement, T. S. & Fernald, R. D. Fish can infer social rank by observation alone. Nature 445, 429–432 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Arseneau-Robar, T. J. M., Taucher, A. L., Schnider, A. B., van Schaik, C. P. & Willems, E. P. Intra- and interindividual differences in the costs and benefits of intergroup aggression in female vervet monkeys. Anim. Behav. 123, 129–137 (2017).
    Article  Google Scholar 

    71.
    Kotrschal, A., Räsänen, K., Kristjánsson, B. K., Senn, M. & Kolm, N. Extreme sexual brain size dimorphism in sticklebacks: a consequence of the cognitive challenges of sex and parenting? PLoS ONE 7, e30055 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    72.
    Garamszegi, L. Z., Eens, M., Erritzøe, J. & Møller, A. P. Sperm competition and sexually size dimorphic brains in birds. Proc. R. Soc. B Biol. Sci. 272, 159–166 (2005).
    Article  Google Scholar 

    73.
    Willems, E. P. & Van Schaik, C. P. Collective action and the intensity of between-group competition in nonhuman primates. Behav. Ecol. 26, 625–631 (2015).
    Article  Google Scholar 

    74.
    Kotrschal, A. et al. Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain. Curr. Biol. 23, 168–171 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Kotrschal, A., Corral-Lopez, A. & Kolm, N. Large brains, short life: selection on brain size impacts intrinsic lifespan. Biol. Lett. 15 (2019).

    76.
    Tsuboi, M. et al. Comparative support for the expensive tissue hypothesis: big brains are correlated with smaller gut and greater parental investment in Lake Tanganyika cichlids. Evolution 69, 190–200 (2015).
    PubMed  Article  Google Scholar 

    77.
    Kotrschal, A., Kolm, N. & Penn, D. J. Selection for brain size impairs innate, but not adaptive immune responses. Proc. R. Soc. B Biol. Sci. 283 (2016).

    78.
    Gervais, M. M., Kline, M., Ludmer, M., George, R. & Manson, J. H. The strategy of psychopathy: primary psychopathic traits predict defection on low-value relationships. Proc. R. Soc. B Biol. Sci. 280, 20122773 (2013).
    Article  Google Scholar 

    79.
    Creel, S. & Christianson, D. Relationships between direct predation and risk effects. Trends Ecol. Evol. 23, 194–201 (2008).
    PubMed  Article  Google Scholar 

    80.
    Bruintjes, R., Lynton-Jenkins, J., Jones, J. W. & Radford, A. N. Out-group threat promotes within-group affiliation in a cooperative fish. Am. Nat. 187, 274–282 (2015).
    PubMed  Article  Google Scholar 

    81.
    Mosser, A. & Packer, C. Group territoriality and the benefits of sociality in the African lion, Panthera leo. Anim. Behav. 78, 359–370 (2009).
    Article  Google Scholar 

    82.
    Crofoot, M. C., Gilby, I. C., Wikelski, M. C. & Kays, R. W. Interaction location outweighs the competitive advantage of numerical superiority in Cebus capucinus intergroup contests. Proc. Natl Acad. Sci. USA 105, 577–581 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    83.
    Shaw, R. C., Boogert, N. J., Clayton, N. S. & Burns, K. C. Wild psychometrics: evidence for ‘general’ cognitive performance in wild New Zealand robins, Petroica longipes. Anim. Behav. 109, 101–111 (2015).
    Article  Google Scholar 

    84.
    Buechel, S. D., Boussard, A., Kotrschal, A., van Der Bijl, W. & Kolm, N. Brain size affects performance in a reversal-learning test. Proc. R. Soc. B Biol. Sci. 285, 20172031 (2018).
    Article  Google Scholar 

    85.
    Kotrschal, A., Deacon, A. E., Magurran, A. E. & Kolm, N. Predation pressure shapes brain anatomy in the wild. Evol. Ecol. 31, 619–633 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    86.
    Herculano-Houzel, S. & Lent, R. Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. J. Neurosci. 25, 2518–2521 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    87.
    Ashton, B. J., Ridley, A. R., Edwards, E. K. & Thornton, A. Cognitive performance is linked to group size and affects fitness in Australian magpies. Nature 61, 5985–5991 (2018).
    Google Scholar 

    88.
    Taborsky, B. & Oliveira, R. F. Social competence: an evolutionary approach. Trends Ecol. Evol. 27, 679–688 (2012).
    PubMed  Article  Google Scholar 

    89.
    Gonda, A., Herczeg, G. & Merilä, J. Evolutionary ecology of intraspecific brain size variation: a review. Ecol. Evol. 3, 2751–2764 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    90.
    Morris-Drake, A. et al. Experimental field evidence that out-group threats influence within-group behavior. Behav. Ecol. 30, 1425–1435 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    91.
    Hellmann, J. K. & Hamilton, I. M. Intragroup social dynamics vary with the presence of neighbors in a cooperatively breeding fish. Curr. Zool. 65, 21–31 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    92.
    Healy, S. D. & Rowe, C. A critique of comparative studies of brain size. Proc. R. Soc. B Biol. Sci. 274, 453–464 (2007).
    Article  Google Scholar 

    93.
    Kotrschal, A. et al. The benefit of evolving a larger brain: big-brained guppies perform better in a cognitive task. Anim. Behav. 86, e4–e6 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    94.
    Whiten, A. Social, Machiavellian and cultural cognition: a golden age of discovery in comparative and evolutionary psychology. J. Comp. Psychol. 132, 437–441 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    95.
    Radford, A. N. & Bruintjes, R. Expanding the link between out-group threats and in-group behavior (a reply to Kavaliers and Choleris). Am. Nat. 189, 459–462 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    96.
    Brown, M. Food and range defence in group-living primates. Anim. Behav. 85, 807–816 (2013).
    Article  Google Scholar 

    97.
    Mirville, M. O. et al. Factors influencing individual participation during intergroup interactions in mountain gorillas. Anim. Behav. 144, 75–86 (2018).
    Article  Google Scholar 

    98.
    Sheldahl, L. A. & Martins, E. P. The territorial behavior of the western fence lizard, Sceloporus occidentalis. Herpetologica 56, 469–479 (2000).
    Google Scholar 

    99.
    Ward, M. P., Alessi, M., Benson, T. J. & Chiavacci, S. J. The active nightlife of diurnal birds: extraterritorial forays and nocturnal activity patterns. Anim. Behav. 88, 175–184 (2014).
    Article  Google Scholar 

    100.
    Feldblum, J. T., Manfredi, S., Gilby, I. C. & Pusey, A. E. The timing and causes of a unique chimpanzee community fission preceding Gombe’s “Four-Year War”. Am. J. Phys. Anthropol. 166, 730–744 (2018).
    PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Alligators in the big city: spatial ecology of American alligators (Alligator mississippiensis) at multiple scales across an urban landscape

    Our work was conducted under a permit from the University of North Florida Institutional Animal Care and Use Committee (permit #18-005).
    Field methods
    We performed nighttime spotlight surveys with an outboard motorboat throughout 2019 to determine relative alligator abundance, distribution, and habitat selection. This technique is an established method for estimating relative population sizes in crocodilians across heterogeneous habitat32. However, a limitation of spotlight surveys is the variation in detection probability caused by different environmental conditions or observers29. To control for these effects, we implemented a standardized survey protocol33,34. All surveys covered the first 8 km of nine tributaries within the lower St. Johns River system, starting at the point where each tributary meets the main channel of the river (Fig. 1). We limited our surveys to the first 8 km because some tributaries contained low bridges that blocked boat access after this point. We chose tributaries that were surrounded by different amounts of urban land cover such that our surveys spanned an urbanization gradient from approximately 5 to 80% urban land cover within 1 km of the river’s edge (Fig. 2). GIS analyses also revealed that land use patterns around the St. Johns River are dynamic, with different urban land cover proportions at 0.1, 1, 3, and 5 km from the water’s edge for each tributary (Fig. 2). To reduce temporal bias, we conducted surveys over the span of 1 year and segregated sampling periods into four distinct seasons (winter [Dec–Feb], spring [Mar–May], summer [Jun–Aug], and fall [Sep–Nov]. We surveyed each tributary one time during the middle month of each season, resulting in a total of four surveys per tributary. We surveyed the tributaries in a quasi-random fashion because the tributaries closest to the mouth of the St. Johns River are under significant tidal influence, so we timed surveys of those tributaries during periods of high tide in order to access the full survey area. We only performed surveys when rainfall was absent and wind speeds were below 16 km/h since these factors have been shown to affect alligator detection probability24. Quasi-random sampling over the span of a year was best suited to randomize environmental conditions that affect nighttime spotlight survey counts, such as water level, temperature, moon phase, and moon illumination24,31,35,36.
    Figure 1

    Map of the tributaries surrounding the lower St. Johns River that were surveyed as part of our study (white areas). From northeast to south: Clapboard Creek, Dunn Creek, Broward River, Trout River, Arlington River, Ortega River, Doctors Lake, Julington Creek, and Black Creek. The map was created with ArcGIS Pro 2.6 (https://arcgis.pro/).

    Full size image

    Figure 2

    Levels of urban development (FLUCCS code 1000) surrounding the tributaries of the St. Johns River that were surveyed in this study. Land use was quantified using 0.1, 1, 3, and 5 km buffers around each tributary transect.

    Full size image

    We began all surveys no earlier than 30 min after sunset and we maintained a constant boat speed of 10–12 km/h. At the start and end of each survey we recorded moon phase, weather conditions, visibility, ambient light, air temperature, water temperature, and salinity. We detected alligator eyeshine primarily using two 1200 lm handheld spotlights, but we also used additional handheld lights (6000 lumens) often throughout the surveys. As soon as we detected eyeshine we approached the alligator at reduced speed. We placed each individual into a size class (30–90 cm [juvenile], 90–180 cm [sub-adult], 180–270 cm [adult], 270–360 cm [large adult], + 360 cm [largest adult]) by estimating the distance between the eyes and the tip of the snout37,38. If an alligator submerged before size estimation could take place, we recorded its length as unknown or simply larger or smaller than 180 cm. At each sighting we recorded global positioning system location using the on-deck boat navigation unit. We measured environmental characteristics at each sighting using a YSI meter (Pro2030; YSI; Yellow Springs, Ohio, USA), a thermometer, and a sky quality meter (SQM; Unihedron; Grimsby, Ontario, Canada).
    We recorded information about habitat characteristics for each sighting following previous studies13,26. We first visually characterized habitat in a 10 m radius circle centered on the alligator sighting location (“used habitat”). We recorded the proportion of open water, emergent vegetation, floating vegetation, anthropogenic structure, and dry ground within the circle, as well as the alligator’s distance from shore, vegetation, and anthropogenic structure. We then visually classified the same habitat characteristics in a 20 × 100 m plot centered on the alligator sighting location and stretching along the shoreline (“available habitat”). If an alligator sighting occurred entirely in open water, then we shifted the available habitat plot to the closest shoreline. For each used habitat circle and available habitat plot, we classified the respective shorelines as natural, hardened, or mixed, depending on if the shore was totally vegetated, subject to anthropogenic armoring, or a mixture of the two types, respectively. We also estimated the proportion of shoreline found within these areas that were covered in naturally growing vegetation rather than anthropogenically altered lawns.
    Land use classification
    We used ArcGIS Pro (ESRI; Redlands, CA, USA) for all spatial data manipulation and visualization. We acquired land use and cover data from the St. Johns River Water Management District (SJRWMD) via the Florida Geographic Data Library. For all analyses we used data from the most recent SJRWMD dataset, which was from 2014.
    We split a 100 k definition polygon of the St. Johns River to create smaller units representing each tributary transect. The resulting features consisted of the main portion of each tributary surveyed where lower order streams that were not surveyed were deleted. Because the extent to which alligators respond to land use changes was not known a priori, we buffered the transect polygon feature for each tributary to 0.1, 1, 3, and 5 km to further clip the SJRWMD land cover and use data layer. By creating four buffers for each of the nine tributaries, we generated a total of 36 land cover and use layers.
    We classified land use types through the Florida Land Use and Cover Classification System (FLUCCS), as cited in SJRWMD metadata documentation. This hierarchical coding scheme contains four levels, of which we used the highest level (level 1) designation. This particular level classifies land use into nine distinct categories. These categories included urban and built-up; agriculture; upland nonforested; upland forests; water; wetlands; barren land; transportation, communication, and utilities; and special classification. For the purposes of this study, we only included defined terrestrial land use types in statistical analyses. These land use types were urban and built-up (e.g., residential, industrial, and recreational areas), agriculture (e.g., cropland, pastures, aquaculture), upland nonforested (e.g., shrub and brushland), upland forests (e.g., coniferous forests, hardwood forests, tree plantations), wetlands (e.g., freshwater/saltwater marshes, mangrove swamps, wet prairies), barren land (e.g., beaches other than swimming beaches, borrow areas, spoil areas), and transportation, communication and utilities (e.g., highways, electrical power facilities, wastewater treatment facilities). We calculated the proportions of each land use type using each respective land use shape area divided by total shape area.
    Statistical analyses
    To determine if environmental conditions and/or land use characteristics affect broad scale alligator distribution, we performed multiple analyses using SPSS (IBM; Armonk, NY, USA). We included all alligator sightings in our analyses, but we did not apply population estimate correction equations to the alligator counts because they tend to underestimate population numbers in crocodilians39. Sighting data used in statistical analyses therefore represent relative alligator abundance, not estimates of true alligator population size. We first checked normality for each variable using Kolmogorov–Smirnov and Shapiro–Wilk tests to determine if parametric or nonparametric tests were appropriate. Normality varied greatly across the suite of variables; therefore, Spearman’s rho and Pearson’s correlation coefficient were used when appropriate. We then performed simple linear regression to determine if there were any direct relationships between relative alligator abundance and individual variables. We performed these tests for alligator counts in each tributary by season and for the average number of sightings per tributary across seasons. We also averaged environmental variables for each tributary by season and for the average value per tributary across seasons. We tested for the effect of land use at all four buffer sizes for each tributary, including all relevant terrestrial land use types.
    We then performed multiple linear regression analyses in a stepwise manner. This modeling system excluded variables found to be highly correlated with other variables (multicollinear) and retained variables that significantly contributed to the model (P ≤ 0.05). We then performed these tests on modified datasets that did not contain the two most saline tributaries to further validate preliminary findings. When more than one significant model was produced for a given data set, we calculated AICc values to rank models while penalizing model complexity and accounting for our small sample sizes.
    To evaluate habitat selection, we compared percent shoreline vegetation and the proportions of habitat characteristics found in the 10 m radius circle to those found in the remaining areas of each respective 20 × 100 m plot using the Wilcoxon signed rank test. When comparisons could be made between two normally distributed groups of data, we used a paired sample t test instead. While comparing used to available habitat data was the basis of the tests, the amount of data per analysis differed between analysis groups. The first group was composed of all habitat selection data across time and space. This “global” dataset was the most robust in terms of sample size but may have been biased by double counting individuals across time. The second group was divided by season, so analyses were performed on all data collected within a season across space. This group removed the bias of double counting individuals but may be affected by variation in the number of sightings per season and tributary. More

  • in

    Fruit host-dependent fungal communities in the microbiome of wild Queensland fruit fly larvae

    1.
    Flint, H. J., Scott, K. P., Louis, P. & Duncan, S. H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 9, 577. https://doi.org/10.1038/nrgastro.2012.156 (2012).
    CAS  Article  PubMed  Google Scholar 
    2.
    Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267. https://doi.org/10.1126/science.1223813 (2012).
    ADS  CAS  Article  Google Scholar 

    3.
    Zhang, Z., Jiao, S., Li, X. & Li, M. Bacterial and fungal gut communities of Agrilus mali at different developmental stages and fed different diets. Sci. Rep. 8, 15634 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    4.
    Engel, P. & Moran, N. A. The gut microbiota of insects–diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735 (2013).
    CAS  PubMed  Article  Google Scholar 

    5.
    Paine, T., Raffa, K. & Harrington, T. Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annu. Rev. Entomol. 42, 179–206 (1997).
    CAS  PubMed  Article  Google Scholar 

    6.
    Yun, J. H. et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microbiol. 80, 5254–5264 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    7.
    Fukatsu, T. & Ishikawa, H. A novel eukaryotic extracellular symbiont in an aphid, Astegopteryx styraci (Homoptera, Aphididae, Hormaphidinae). J. Insect Physiol. 38, 765–773 (1992).
    Article  Google Scholar 

    8.
    Malacrinò, A., Schena, L., Campolo, O., Laudani, F. & Palmeri, V. Molecular analysis of the fungal microbiome associated with the olive fruit fly Bactrocera oleae. Fungal Ecol. 18, 67–74 (2015).
    Article  Google Scholar 

    9.
    Vega, F. E. & Blackwell, M. Insect-Fungal Associations: Ecology and Evolution (Oxford University Press, Oxford, 2005).
    Google Scholar 

    10.
    Stefanini, I. Yeast-insect associations: it takes guts. Yeast 35, 315–330 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Boyce, A. Bionomics of the walnut husk fly, Rhagoletis completa. Hilgardia 8, 363–579 (1934).
    Article  Google Scholar 

    12.
    Fanson, B. G. & Taylor, P. W. Protein: carbohydrate ratios explain life span patterns found in Queensland fruit fly on diets varying in yeast: sugar ratios. Age 34, 1361–1368 (2012).
    CAS  PubMed  Article  Google Scholar 

    13.
    Moadeli, T., Mainali, B., Ponton, F. & Taylor, P. Evaluation of yeasts in gel larval diet for Queensland fruit fly, Bactrocera tryoni. J. Appl. Entomol. 142, 679–688 (2018).
    CAS  Article  Google Scholar 

    14.
    Nash, W. J. & Chapman, T. Effect of dietary components on larval life history characteristics in the Medfly (Ceratitis capitata: Diptera, Tephritidae). PLoS ONE 9, e86029 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    15.
    Nestel, D. & Nemny-Lavy, E. Nutrient balance in medfly, Ceratitis capitata, larval diets affects the ability of the developing insect to incorporate lipid and protein reserves. Entomol. Exp. Appl. 126, 53–60. https://doi.org/10.1111/j.1570-7458.2007.00639.x (2008).
    CAS  Article  Google Scholar 

    16.
    Nestel, D., Nemny-Lavy, E. & Chang, C. L. Lipid and protein loads in pupating larvae and emerging adults as affected by the composition of Mediterranean fruit fly (Ceratitis capitata) meridic larval diets. Arch. Insect Biochem. Physiol. 56, 97–109. https://doi.org/10.1002/arch.20000 (2004).
    CAS  Article  PubMed  Google Scholar 

    17.
    Mori, B. A. et al. Enhanced yeast feeding following mating facilitates control of the invasive fruit pest Drosophila suzukii. J. Appl. Ecol. 54, 170–177. https://doi.org/10.1111/1365-2664.12688 (2017).
    Article  Google Scholar 

    18.
    Stamps, J. A., Yang, L. H., Morales, V. M. & Boundy-Mills, K. L. Drosophila regulate yeast density and increase yeast community similarity in a natural substrate. PLoS ONE 7, e42238. https://doi.org/10.1371/journal.pone.0042238 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    19.
    Anagnostou, C., Dorsch, M. & Rohlfs, M. Influence of dietary yeasts on Drosophila melanogaster life-history traits. Entomol. Exp. Appl. 136, 1–11. https://doi.org/10.1111/j.1570-7458.2010.00997.x (2010).
    Article  Google Scholar 

    20.
    Rohlfs, M. & Kürschner, L. Saprophagous insect larvae, Drosophila melanogaster, profit from increased species richness in beneficial microbes. J. Appl. Entomol. 134, 667–671. https://doi.org/10.1111/j.1439-0418.2009.01458.x (2010).
    Article  Google Scholar 

    21.
    Menezes, C. et al. A Brazilian social bee must cultivate fungus to survive. Curr. Biol. 25, 2851–2855. https://doi.org/10.1016/j.cub.2015.09.028 (2015).
    CAS  Article  PubMed  Google Scholar 

    22.
    Yun, J. H., Jung, M. J., Kim, P. S. & Bae, J. W. Social status shapes the bacterial and fungal gut communities of the honey bee. Sci. Rep. 8, 2019. https://doi.org/10.1038/s41598-018-19860-7 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    23.
    DeLeon-Rodriguez, C. M. & Casadevall, A. Cryptococcus neoformans: tripping on acid in the phagolysosome. Front. Microbiol. 7, 164. https://doi.org/10.3389/fmicb.2016.00164 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    24.
    Hajek, A. & St. Leger, R. Interactions between fungal pathogens and insect hosts. Annu. Rev. Entomol. 39, 293–322. https://doi.org/10.1146/annurev.en.39.010194.001453 (1994).
    Article  Google Scholar 

    25.
    Lu, H. L., Wang, J. B., Brown, M. A., Euerle, C. & Leger, R. J. S. Identification of Drosophila mutants affecting defense to an entomopathogenic fungus. Sci. Rep. 5, 12350 (2015).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Almeida, J. E., Batista Filho, A., Oliveira, F. C. & Raga, A. Pathogenicity of the entomopathogenic fungi and nematode on medfly Ceratitis capitata (Wied.)(Diptera: Tephritidae). BioAssay https://doi.org/10.14295/BA.v2 (2007).
    Article  Google Scholar 

    27.
    Lacey, L. A., Frutos, R., Kaya, H. & Vail, P. Insect pathogens as biological control agents: do they have a future?. Biol. Control 21, 230–248 (2001).
    Article  Google Scholar 

    28.
    Ortu, S., Cocco, A. & Dau, R. Evaluation of the entomopathogenic fungus Beauveria bassiana strain ATCC 74040 for the management of Ceratitis capitata. B. Insectol. 62, 245–252 (2009).
    Google Scholar 

    29.
    Quesada-Moraga, E., Ruiz-García, A. & Santiago-Alvarez, C. Laboratory evaluation of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae against puparia and adults of Ceratitis capitata (Diptera: Tephritidae). J. Econ. Entomol. 99, 1955–1966 (2006).
    CAS  PubMed  Article  Google Scholar 

    30.
    Clarke, A. R., Powell, K. S., Weldon, C. W. & Taylor, P. W. The ecology of Bactrocera tryoni (Diptera: Tephritidae): what do we know to assist pest management?. Ann. Appl. Biol. 158, 26–54 (2011).
    Article  Google Scholar 

    31.
    Dominiak, B. C. & Daniels, D. Review of the past and present distribution of Mediterranean fruit fly (Ceratitis capitata Wiedemann) and Queensland fruit fly (Bactrocera tryoni Froggatt) in Australia. Aust. J. Entomol. 51, 104–115 (2012).
    Article  Google Scholar 

    32.
    Sutherst, R. W., Collyer, B. S. & Yonow, T. The vulnerability of Australian horticulture to the Queensland fruit fly, Bactrocera (Dacus) tryoni, under climate change. Aust. J. Agric. Res. 51, 467–480 (2000).
    Article  Google Scholar 

    33.
    Dominiak, B., Westcott, A. & Barchia, I. Release of sterile Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), at Sydney, Australia. Aust. J. Exp. Agric. 43, 519–528 (2003).
    Article  Google Scholar 

    34.
    Deutscher, A. T. et al. Near full-length 16S rRNA gene next-generation sequencing revealed Asaia as a common midgut bacterium of wild and domesticated Queensland fruit fly larvae. Microbiome 6, 85 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    35.
    Drew, R., Courtice, A. & Teakle, D. Bacteria as a natural source of food for adult fruit flies (Diptera: Tephritidae). Oecologia 60, 279–284. https://doi.org/10.1007/BF00376839 (1983).
    ADS  CAS  Article  PubMed  Google Scholar 

    36.
    Lloyd, A., Drew, R., Teakle, D. & Hayward, A. Bacteria associated with some Dacus species (Diptera: Tephritidae) and their host fruit in Queensland. Aust. J. Biol. Sci. 39, 361–368 (1986).
    Article  Google Scholar 

    37.
    Morrow, J. L., Frommer, M., Shearman, D. C. & Riegler, M. The microbiome of field-caught and laboratory-adapted Australian tephritid fruit fly species with different host plant use and specialisation. Microb. Ecol. 70, 498–508 (2015).
    CAS  PubMed  Article  Google Scholar 

    38.
    Murphy, K. M., Teakle, D. S. & MacRae, I. C. Kinetics of colonization of adult Queensland fruit flies (Bactrocera tryoni) by dinitrogen-fixing alimentary tract bacteria. Appl. Environ. Microbiol. 60, 2508–2517 (1994).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Thaochan, N., Drew, R., Hughes, J., Vijaysegaran, S. & Chinajariyawong, A. Alimentary tract bacteria isolated and identified with API-20E and molecular cloning techniques from Australian tropical fruit flies Bactrocera cacuminata and B. tryoni. J. Insect Sci. 10, 131 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Majumder, R., Sutcliffe, B., Taylor, P. W. & Chapman, T. A. Next-Generation Sequencing reveals relationship between the larval microbiome and food substrate in the polyphagous Queensland fruit fly. Sci. Rep. 9, 1–12 (2019).
    Article  CAS  Google Scholar 

    41.
    Shuttleworth, L. A., Khan, M. A. M., Collins, D., Osborne, T. & Reynolds, O. L. Wild bacterial probiotics fed to larvae of mass-reared Queensland fruit fly [Bactrocera tryoni (Froggatt)] do not impact long-term survival, mate selection, or locomotor activity. Insect Sci. 27, 745–755 (2020).
    CAS  PubMed  Article  Google Scholar 

    42.
    Shuttleworth, L. A. et al. A walk on the wild side: gut bacteria fed to mass-reared larvae of Queensland fruit fly [Bactrocera tryoni (Froggatt)] influence development. BMC Biotechnol. 19, 1–11 (2019).
    Article  CAS  Google Scholar 

    43.
    Woruba, D. N. et al. Diet and irradiation effects on the bacterial community composition and structure in the gut of domesticated teneral and mature Queensland fruit fly, Bactrocera tryoni (Diptera: Tephritidae). BMC Microbiol. 19, 281 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Majumder, R., Sutcliffe, B., Chapman, T. A. & Taylor, P. W. Microbiome of the Queensland fruit fly through metamorphosis. Microorganisms 8, 795 (2020).
    PubMed Central  Article  PubMed  Google Scholar 

    45.
    Deutscher, A. T., Reynolds, O. L. & Chapman, T. A. Yeast: an overlooked component of Bactrocera tryoni (Diptera: Tephritidae) larval gut microbiota. J. Econ. Entomol. 110, 298–300 (2016).
    Google Scholar 

    46.
    Piper, A. M., Farnier, K., Linder, T., Speight, R. & Cunningham, J. P. Two gut-associated yeasts in a tephritid fruit fly have contrasting effects on adult attraction and larval survival. J. Chem. Ecol. 43, 891–901 (2017).
    CAS  PubMed  Article  Google Scholar 

    47.
    Toju, H., Tanabe, A. S., Yamamoto, S. & Sato, H. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE 7, e40863 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Schmidt, P. A. et al. Illumina metabarcoding of a soil fungal community. Soil Biol. Biochem. 65, 128–132 (2013).
    CAS  Article  Google Scholar 

    49.
    Yun, J. H., Jung, M. J., Kim, P. S. & Bae, J. W. Social status shapes the bacterial and fungal gut communities of the honey bee. Sci. Rep. 8, 1–11 (2018).
    Article  CAS  Google Scholar 

    50.
    Ravenscraft, A., Berry, M., Hammer, T., Peay, K. & Boggs, C. Structure and function of the bacterial and fungal gut microbiota of Neotropical butterflies. Ecol. Monogr. 89, e01346 (2019).
    Article  Google Scholar 

    51.
    Mohammed, W. S., Ziganshina, E. E., Shagimardanova, E. I., Gogoleva, N. E. & Ziganshin, A. M. Comparison of intestinal bacterial and fungal communities across various xylophagous beetle larvae (Coleoptera: Cerambycidae). Sci. Rep. 8, 10073 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    52.
    Sutcliffe, B. et al. Diverse fungal lineages in subtropical ponds are altered by sediment-bound copper. Fungal Ecol. 34, 28–42 (2018).
    Article  Google Scholar 

    53.
    Hamby, K. A., Hernández, A., Boundy-Mills, K. & Zalom, F. G. Associations of yeasts with spotted-wing Drosophila (Drosophila suzukii; Diptera: Drosophilidae) in cherries and raspberries. Appl. Environ. Microbiol. 78, 4869–4873 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Kurtzman, C., Fell, J. W. & Boekhout, T. The Yeasts: A Taxonomic Study (Elsevier, Amsterdam, 2011).
    Google Scholar 

    55.
    Marchesi, J. R. Prokaryotic and eukaryotic diversity of the human gut. Adv. Appl. Microbiol. 72, 43–62 (2010).
    PubMed  Article  Google Scholar 

    56.
    Xiang, H. et al. Microbial communities in the larval midgut of laboratory and field populations of cotton bollworm (Helicoverpa armigera). Can. J. Microbiol. 52, 1085–1092 (2006).
    CAS  PubMed  Article  Google Scholar 

    57.
    Kudo, R., Masuya, H., Endoh, R., Kikuchi, T. & Ikeda, H. Gut bacterial and fungal communities in ground-dwelling beetles are associated with host food habit and habitat. ISME J. 13, 676 (2019).
    CAS  PubMed  Article  Google Scholar 

    58.
    Broderick, N. A., Raffa, K. F., Goodman, R. M. & Handelsman, J. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl. Environ. Microbiol. 70, 293–300 (2004).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Colman, D. R., Toolson, E. C. & Takacs-Vesbach, C. Do diet and taxonomy influence insect gut bacterial communities?. Mol. Ecol. 21, 5124–5137 (2012).
    CAS  PubMed  Article  Google Scholar 

    60.
    Quan, A. S. & Eisen, M. B. The ecology of the Drosophila-yeast mutualism in wineries. PLoS ONE 13, e0196440 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    61.
    Starmer, W. T. & Lachance, M. A. Yeast ecology. Yeasts 7, 65–83 (2011).
    Article  Google Scholar 

    62.
    Molnárová, J., Vadkertiová, R. & Stratilová, E. Extracellular enzymatic activities and physiological profiles of yeasts colonizing fruit trees. J. Basic Microbiol. 54, S74–S84 (2014).
    PubMed  Article  CAS  Google Scholar 

    63.
    White, I. M. & Elson-Harris, M. M. Fruit Flies of Economic Significance: Their Identification and Bionomics (CAB International, Wallingford, 1992).
    Google Scholar 

    64.
    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).
    CAS  PubMed  Google Scholar 

    65.
    Benson, D. A. et al. GenBank. Nucleic Acids Res. 46, D41–D47 (2018).
    CAS  PubMed  Article  Google Scholar 

    66.
    Australia, P. H. The Australian Handbook for the Identification of Fruit Flies. Vol. Version 1.0 (ed. Woods N) 234 (2011).

    67.
    Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113–118 (1993).
    CAS  PubMed  Article  Google Scholar 

    68.
    Hoggard, M. et al. Characterizing the human mycobiota: a comparison of small subunit rRNA, ITS1, ITS2, and large subunit rRNA genomic targets. Front. Microbiol. 9, 2208 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    69.
    Fouts, D. E. et al. Next generation sequencing to define prokaryotic and fungal diversity in the bovine rumen. PLoS ONE 7, e48289 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    71.
    Greenfield, P. Greenfield Hybrid Analysis Pipeline (GHAP) v1 (CSIRO, Canberra, 2017).
    Google Scholar 

    72.
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
    CAS  PubMed  Article  Google Scholar 

    73.
    Maidak, B. L. et al. The ribosomal database project (RDP). Nucleic Acids Res. 24, 82–85 (1996).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Deshpande, V. et al. Fungal identification using a Bayesian classifier and the Warcup training set of internal transcribed spacer sequences. Mycologia 108, 1–5 (2016).
    PubMed  Article  Google Scholar 

    75.
    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).
    CAS  PubMed  Article  Google Scholar 

    76.
    Clarke, K. & Ainsworth, M. A method of linking multivariate community structure to environmental variables. Mar. Ecol. Prog. Ser. 92, 205–205 (1993).
    ADS  Article  Google Scholar  More