Differential effects of low and high temperature stress on pollen germination and tube length of mango (Mangifera indica L.) genotypes
Pearson, P. N. & Palmer, M. R. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406, 695–699 (2000).Article
ADS
CAS
Google Scholar
Wang, P. et al. The genome evolution and domestication of tropical fruit mango. Genome Biol. 21, 60 (2020).Article
Google Scholar
Yang, H. et al. Advances in the regulatory mechanisms of pollen response to heat stress in crops. Chin. Bull. Bot. 54(2), 157–167 (2019).CAS
Google Scholar
Liang, Q. Z. et al. Transcriptome and metabolome analyses reveal the involvement of multiple pathways in flowering intensity in mango. Front. Plant Sci. 13, 933923 (2022).Article
Google Scholar
Ranasinghe, C. S., Waidyarathna, K. P., Pradeep, A. P. C. & Meneripitiya, M. S. K. Approach to screen coconut varieties for high temperature tolerance by in-vitro pollen germination. COCOS. 19, 01–11 (2010).
Google Scholar
Das, S., Krishnan, P., Nayak, M. & Ramakrishnan, B. High temperature stress effects on pollens of rice (Oryza sativa L.) genotypes. Environ. Exp. Bot. 101, 36–46 (2014).Article
Google Scholar
Balasubramanian, S., Sureshkumar, S., Lempe, J. & Weigel, D. Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genet. 2(7), e106 (2006).Article
Google Scholar
Sakata, T., Takahashi, H., Nishiyama, I. & Higashitani, A. Effects of high temperature on the development of pollen mother cells and microspores in Barley Hordeum vulgare L.. J. Plant Res. 113(4), 395–402 (2000).Article
Google Scholar
Hedhly, A., Hormaza, J. I. & Herrero, M. The effect of temperature on pollen germination, pollen tube growth, and stigmatic receptivity in peach. Plant Biol. 7(5), 476–483 (2005).Article
CAS
Google Scholar
Pirlak, L. The effects of temperature on pollen germination and pollen tube growth of apricot and sweet cherry. Gartenbauwissenschaft 67(2), 61–64 (2002).
Google Scholar
Koti, S., Reddy, K. R., Reddy, V. R., Kakani, V. G. & Zhao, D. Interactive effects of carbon dioxide, temperature, and ultraviolet-B radiation on soybean (Glycine max L.) flower and pollen morphology, pollen production, germination, and tube lengths. J. Exp. Bot. 56(412), 725–736 (2004).Article
Google Scholar
Pham, V. T., Herrero, M. & Hormaza, J. I. Effect of temperature on pollen germination and pollen tube growth in longan (Dimocarpus longan Lour.). Sci. Hort. 197, 470–475 (2015).Article
Google Scholar
Meehl, T. G. A. & Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–997 (2004).Article
ADS
CAS
Google Scholar
Reddy, K. R., Hodges, H. F. & Reddy, V. R. Temperature effects on cotton fruit retention. Agron. J. 84, 26–30 (1992).Article
Google Scholar
Reddy, K. R., Reddy, V. R. & Hodges, H. F. Effects of temperature on early season cotton growth and development. Agron. J. 84, 229–237 (1992).Article
Google Scholar
Stainforth, D. et al. Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433, 403–406 (2005).Article
ADS
CAS
Google Scholar
Liu, Z., Yuan, Y., Liu, S., Yu, X. & Rao, L. Screening for high temperature tolerant cotton cultivars by testing in vitro pollen germination, pollen tube growth and boll retention. J. Integr. Plant Biol. 48, 706–714 (2006).Article
Google Scholar
Kakani, V. G., Prasad, P. V. V., Craufurd, P. Q. & Wheeler, T. R. Response of in vitro pollen germination and pollen tube growth of groundnut (Arachis hypogaea L.) genotypes to temperature. Plant Cell Environ. 25, 1651–1661 (2002).Article
Google Scholar
Kakani, V. G. et al. Differences in in vitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature. Ann. Bot. 96(1), 59–67 (2005).Article
CAS
Google Scholar
Hebbar, K. B. et al. Differences in in vitro pollen germination and pollen tube growth of coconut (Cocos nucifera L.) genotypes in response to high temperature stress. Environ. Ex. Bot. 153, 35–44 (2018).Article
Google Scholar
Aloni, B., Peet, M., Pharr, M. & Karmi, L. The effect of high temperaturare and high atmospheric CO2 on carbohydrate changes in bell pepper (Capsicum annuum) pollen in relation to its germination. Physiol. Plant 112, 505–512 (2001).Article
CAS
Google Scholar
Dai, Q., Shaobing, P., Chavez, A. Q. & Vergara, B. S. Intraspecific responses of 188 rice cultivars to enhanced UVB radiation. Environ. Exp. Bot. 34(4), 433–442 (1994).Article
Google Scholar
Hepler, P. K., Vidali, L. & Cheung, A. Y. Polarized cell growth in higher plants. Annu. Rev. Cell Dev. Biol. 17(1), 159–187 (2001).Article
CAS
Google Scholar
Prado, A. M., Porterfield, D. M. & Feijo, J. A. Nitric oxide is involved in growth regulation and re-orientation of pollen tubes. Development 131(11), 2707–2714 (2004).Article
CAS
Google Scholar
Potocky, M., Jones, M. A., Bezvoda, R., Smirnoff, N. & Zarsky, V. Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytol. 174(4), 742–751 (2007).Article
CAS
Google Scholar
Lassig, R., Gutermuth, T., Bey, T. D., Konrad, K. R. & Romeis, T. Pollen tube NAD (P)H oxidases act as a speed control to dampen growth rate oscillations during polarized cell growth. Plant J. 78(1), 94–106 (2014).Article
CAS
Google Scholar
McInnis, S. M., Desikan, R., Hancock, J. T. & Hiscock, S. J. Production of reactive oxygen species and reactive nitrogen species by angiosperm stigmas and pollen: potential signalling crosstalk?. New Phytol. 172(2), 221–228 (2006).Article
CAS
Google Scholar
Duan, Q. et al. Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nat. Commun. 5, 3129 (2014).Article
ADS
Google Scholar
You, J. & Chan, Z. ROS regulation during abiotic stress responses in crop plants. Front Plant Sci. 6, 1092 (2015).Article
Google Scholar
Apel, K. & Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373–399 (2004).Article
CAS
Google Scholar
Pandhair, V. & Sekhon, B. S. Reactive oxygen species and antioxidants in plants: An overview. J. Plant Biochem. Biot. 15(2), 71–78 (2006).Article
CAS
Google Scholar
Sharma, P., Jha, A. B., Dubey, R. S. & Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. https://doi.org/10.1155/2012/217037 (2012).Article
Google Scholar
Luo, C. et al. Construction of a high-density genetic map based on large-scale marker development in mango using specific-locus amplified fragment sequencing (SLAF-seq). Front. Plant Sci. 7, 1310 (2016).Article
Google Scholar
IPCC. IPCC Fourth Assessment Report. http://www.ipcc.ch/. Accessed 15 Jan 2010 (2007)Reddy, K. R. & Kakani, V. G. Screening Capsicum species of different origins for high temperature tolerance by in vitro pollen germination and pollen tube length. Sci. Hort. 112, 130–135 (2007).Article
Google Scholar
Armendariz, B. H. C., Oropeza, C., Chan, J. L., Maust, B., Aguilar, C. C. C., & Saenz, L. Pollen Fertility and Female Flower Anatomy of Micropropagated Coconut Palms. 373–378 (Revista Fitotecnia Mexicana, Sociedad Mexicana de Fitogenetica, A C. Mexico, 2006)Binelli, G., Manincor, E. V. & Ottaviano, E. Temperature effects on pollen germination and pollen tube growth in maize. Genetica Agraria 39, 269–281 (1985).
Google Scholar
Matlob, A. N. & Kelly, W. C. Effect of high temperature on pollen tube growth of snake melon and cucumber. J. Am. Soc. Hortic. Sci. 98, 296–300 (1973).Article
Google Scholar
Zhou, Q. F. An Empirical Study on the Evolution of Mango Production in China. 1–53 (Hainan University, 2017)He, L. et al. Grafting trial on mango varieties in hot-dry region Jinsha River. Subtropic. Agric. Res. 6(3), 21–24 (2010) (in Chinese with English abstract).
Google Scholar
Gong, D. Y., Liu, Q. G., Zhang, Y. & Zhang, X. B. Studies on adaptability and application of mango varieties in south subtropical regions of Guizhou. Acta Agricult. Jiangxi 24(7), 28–31 (2012) (in Chinese).CAS
Google Scholar
Liu, Z. T. Performance and cultivation techniques of coconut mango in Panxi hot area. Trop. Agricult. Guangxi 3(110), 11–12 (2007).
Google Scholar
Gajanayake, B., Trader, B. W., Reddy, K. R. & Harkess, R. L. Screening ornamental pepper cultivars for temperature tolerance using pollen and physiological parameters. Hortic. Sci. 46, 878–884 (2011).
Google Scholar
Salem, M. A., Kakani, V. G., Koti, S. & Reddy, K. R. Pollen-based screening of soybean genotypes for high temperatures. Crop Sci. 47, 219–231 (2007).Article
Google Scholar
Young, L. W., Wilen, R. W. & Bonham-Smith, P. C. High temperature stress of Brassica napus during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production. J. Exp. Bot. 55, 485–495 (2004).Article
CAS
Google Scholar
Kafizadeh, N., Carapetian, J. & Kalantari, K. M. Effects of heat stress on pollen viability and pollen tube growth in pepper. Res. J. Biol. Sci. 3, 1159–1162 (2008).
Google Scholar
Pressman, E., Peet, M. M. & Pharr, D. M. The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anthers. Ann. Bot. 90, 613–636 (2002).Article
Google Scholar
Sukhvibul, N. et al. Effect of temperature on pollen germination and pollen tube growth of four cultivars of mango (Mangifera indica L.). J. Hortic. Sci. Biotechnol. 75(2), 214–222 (2000).Article
Google Scholar
Koubouris, G. C., Metzidakis, I. T. & Vasilakakis, M. D. Impact of temperature on olive (Olea europaea L.) pollen performance in relation to relative humidity and genotype. Environ. Exp. Bot. 67(1), 209–214 (2009).Article
Google Scholar
Huang, J. H. et al. Effects of low temperatures on sexual reproduction of ‘Tainong 1’ mango (Mangifera indica). Sci. Horticult. 126(2), 109–119 (2010) (in Chinese with English abstract).Article
Google Scholar
Çetinbaş-Gença, A., Cai, G., Vardara, F. & Ünal, M. Differential effects of low and high temperature stress on pollen germination and tube length of hazelnut (Corylus avellana L.) genotypes. Sci. Horticult. 255, 61–69 (2019).Article
Google Scholar
Sorkheh, K. et al. Interactive effects of temperature and genotype on almond (Prunus dulcis L.) pollen germination and tube length. Sci. Hortic. 227, 162–168 (2018).Article
Google Scholar
Wang, L. et al. Analysis of common errors of custom enzyme activity units and suggestions for standardized use. Chin. J. Sci. Technol. 24(5), 1009–1011 (2013).
Google Scholar
Wang, W. et al. Combined cytological and transcriptomic analysis reveals a nitric oxide signaling pathway involved in cold-inhibited Camellia sinensis pollen tube growth. Front. Plant Sci. 7, 456 (2016).
Google Scholar
He, J. M., Bai, X. L., Wang, R. B., Cao, B. & She, X. P. The involvement of nitric oxide in ultraviolet-B-inhibited pollen germination and tube growth of Paulownia tomentosa in vitro. Physiol. Plant 131(2), 273–282 (2007).CAS
Google Scholar
Gao, Y. et al. Mitochondrial dysfunction mediated by cytoplasmic acidification results in pollen tube growth cessation in Pyrus pyrifolia. Physiol. Plant 153(4), 603–615 (2015).Article
CAS
Google Scholar
Hall, A. E. Breading for heat tolerance. Plant Breed. Rev. (SAS Institute) 10, 129–168 (1999) (SAS/STAT user’s guide, version 9.2. SAS Institute, 1992).Mearns, L. O., Easterling, W., Hays, C. & Marx, D. Comparison of agricultural impacts of climate change calculated from high and low resolution climate change scenarios. Part I. The uncertainty due to spatial scale. Clim. Change. 51, 131–172 (2001).Article
Google Scholar
SAS Institute SAS/STAT User’s Guide, Version 9.1.3. (SAS Institute Inc., 2004).Li, H. S., Sun, Q., Zhao, S. J. & Zhang, W. H. Experiment Principle and Technology of Plant Physiology and Biochemistry (Higher Education Press, 2000).
Google Scholar
Cai, Q. S. Plant Physiology Experiment. Vol. 4(1). 182–186 (China Agricultural University Press, 2013) (in Chinese).Jia, M. X. et al. ROS-induced oxidative stress is closely related to pollen deterioration following cryopreservation. In Vitro Cell Dev. Biol. Plant 53(4), 433–439 (2017).Article
CAS
Google Scholar More