Primates facing climate crisis in a tropical forest hotspot will lose climatic suitable geographical range
Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).Article
ADS
CAS
Google Scholar
Sandel, B. et al. The influence of late Quaternary climate-change velocity on species endemism. Science 334(6056), 660–664 (2011).Article
ADS
CAS
Google Scholar
Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science https://doi.org/10.1126/science.aaf7671 (2016).Article
Google Scholar
Davis, M. B. & Shaw, R. G. Range shifts and adaptive responses to quaternary climate change. Science 292(5517), 673–679 (2001).Article
ADS
CAS
Google Scholar
Lane, J. E., Kruuk, L. E. B., Charmantier, A., Murie, J. O. & Dobson, F. S. Delayed phenology and reduced fitness associated with climate change in a wild hibernator. Nature 489, 554–557 (2012).Article
ADS
CAS
Google Scholar
Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science https://doi.org/10.1126/science.aai9214 (2017).Article
Google Scholar
Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C. & Mace, G. M. Beyond predictions: Biodiversity conservation in a changing climate. Science https://doi.org/10.1126/science.1200303 (2011).Article
Google Scholar
Pacifici, M. et al. Species’ traits influenced their response to recent climate change. Nat. Clim. Change 7, 205–208 (2017).Article
ADS
Google Scholar
Schloss, C. A., Nuñez, T. A. & Lawler, J. J. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. PNAS 109(22), 8606–8611 (2012).Article
ADS
CAS
Google Scholar
Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308(5730), 1912–1915 (2005).Article
ADS
CAS
Google Scholar
Bradshaw, W. E., Zani, P. A. & Holzapfel, C. M. Adaptation to temperate climates. Evolution 58(8), 1748–1762 (2004).
Google Scholar
Thomas, C. D. et al. Ecological and evolutionary processes at expanding range margins. Nature 411(6837), 577–581 (2001).Article
ADS
CAS
Google Scholar
Urban, M. C. Accelerating extinction risk from climate change. Science 348(6234), 571–573 (2015).Article
ADS
CAS
Google Scholar
Waller, N. L., Gynther, I. C., Freeman, A. B., Lavery, T. H. & Leung, L. K. P. The bramble cay melomys Melomys rubicola (Rodentia:Muridae): A first mammalian extinction caused by human-induced climate change?. Wildl. Res. 44(1), 9–21 (2017).Article
Google Scholar
Murray, K. A., Rosauer, D., McCallum, H. & Skerratt, L. F. Integrating species traits with extrinsic threats: Closing the gap between predicting and preventing species declines. Proc. R. Soc. B: Biol. Sci. 278(1711), 1515–1523 (2011).Article
Google Scholar
Stevens, G. C. The latitudinal gradient in geographical range: How so many species coexist in the Tropics. Am. Nat. 133(2), 240–256 (1989).Article
Google Scholar
Hickling, R., Roy, D. B., Hill, J. K., Fox, R. & Thomas, C. D. The distributions of a wide range of taxonomic groups are expanding polewards. Glob. Change Biol. 12(3), 450–455 (2006).Article
ADS
Google Scholar
Virkkala, R., Heikkinen, R. K., Leikola, N. & Luoto, M. Projected large-scale range reductions of northern-boreal land bird species due to climate change. Biol. Conserv. 141(5), 1343–1353 (2008).Article
Google Scholar
Sales, L. P. et al. Niche conservatism and the invasive potential of the wild boar. J. Anim. Ecol. 86(5), 1214–1223 (2017).Article
Google Scholar
Gouveia, S. F. et al. Climate and land use changes will degrade the configuration of the landscape for titi monkeys in eastern Brazil. Glob. Change Biol. 22(6), 2003–2012 (2016).Article
ADS
Google Scholar
Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful?. Glob. Ecol. Biogeogr. 12(5), 361–371 (2003).Article
Google Scholar
Engler, R. et al. Predicting future distributions of mountain plants under climate change: does dispersal capacity matter?. Ecography 32(1), 34–45 (2009).Article
Google Scholar
Ozinga, W. A. et al. Predictability of plant species composition from environmental conditions is constrained by dispersal limitation. Oikos 108(3), 555–561 (2005).Article
Google Scholar
Takahashi, K. & Kamitani, T. Effect of dispersal capacity on forest plant migration at a landscape scale. J. Ecol. 92(5), 778–785 (2004).Article
Google Scholar
Koo, K. A. & Park, S. U. The effect of interplays among climate change, land-use change, and dispersal capacity on plant redistribution. Ecol. Indic. 142, 109192 (2022).Article
Google Scholar
Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333(6045), 1024–1026 (2011).Article
ADS
CAS
Google Scholar
Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3(10), 919–925 (2013).Article
ADS
Google Scholar
Vanderwal, J. et al. Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change. Nat. Clim. Change 3, 239–243 (2013).Article
ADS
Google Scholar
Lira, A. F. de A., Badillo-Montaño, R., Lira-Noriega, A. & de Albuquerque, C. M. R. Potential distribution patterns of scorpions in north-eastern Brazil under scenarios of future climate change. Austral Ecol. 45(2), 215–228 (2020).Castro, M. B. et al. Will the emblematic southern conifer Araucaria angustifolia survive to climate change in Brazil?. Biodivers. Conserv. 29(2), 591–607 (2020).Article
Google Scholar
Wilson, O. J., Walters, R. J., Mayle, F. E., Lingner, D. V. & Vibrans, A. C. Cold spot microrefugia hold the key to survival for Brazil’s Critically Endangered Araucaria tree. Glob. Change Biol. 25(12), 4339–4351 (2019).Article
ADS
Google Scholar
Esser, L. F. et al. Future uncertainties for the distribution and conservation of Paubrasilia echinata under climate change. Acta Bot. Bras. 33(4), 770–776 (2019).Article
Google Scholar
Cabanne, G. S. et al. Effects of Pleistocene climate changes on species ranges and evolutionary processes in the Neotropical Atlantic Forest. Biol. J. Linn. Soc. 119(4), 856–872 (2016).Article
Google Scholar
Iturralde-Pólit, P., Dangles, O., Burneo, S. F. & Meynard, C. N. The effects of climate change on a mega-diverse country: predicted shifts in mammalian species richness and turnover in continental Ecuador. Biotropica 49(6), 821–831 (2017).Article
Google Scholar
Vu, T. T. et al. An assessment of the impact of climate change on the distribution of the grey-shanked douc Pygathrix cinerea using an ecological niche model. Primates 61(2), 267–275 (2020).Article
Google Scholar
Sales, L. P., Ribeiro, B. R., Pires, M. M., Chapman, C. A. & Loyola, R. Recalculating route: dispersal constraints will drive the redistribution of Amazon primates in the Anthropocene. Ecography 42(10), 1789–1801 (2019).Article
Google Scholar
Hill, S. E. & Winder, I. C. Predicting the impacts of climate change on Papio baboon biogeography: Are widespread, generalist primates ‘safe’?. J. Biogeogr. 46(7), 1380–1405 (2019).
Google Scholar
Gillings, S., Balmer, D. E. & Fuller, R. J. Directionality of recent bird distribution shifts and climate change in Great Britain. Glob. Change Biol. 21(6), 2155–2168 (2015).Article
ADS
Google Scholar
Fernández, D. et al. The current status of the world’s primates: Mapping threats to understand priorities for primate conservation. Int. J. Primatol. 43, 15–39 (2022).Article
Google Scholar
Stewart, B. M., Turner, S. E. & Matthews, H. D. Climate change impacts on potential future ranges of non-human primate species. Clim. Change 162, 2301–2318 (2020).Article
ADS
CAS
Google Scholar
Estrada, A. et al. Primates in peril: The significance of Brazil, Madagascar, Indonesia and the Democratic Republic of the Congo for global primate conservation. PeerJ 6, e4869; https://doi.org/10.7717/peerj.4869 (2018).Estrada, A. et al. Impending extinction crisis of the world’s primates: Why primates matter. Sci. Adv. https://doi.org/10.1126/sciadv.1600946 (2017).Article
Google Scholar
Graham, T. L., Matthews, H. D. & Turner, S. E. A global-scale evaluation of primate exposure and vulnerability to climate change. Int. J. Primatol. 37(2), 158–174 (2016).Article
Google Scholar
Meyer, A. L. S., Pie, M. R. & Passos, F. C. Assessing the exposure of lion tamarins (Leontopithecus spp.) to future climate change. Am. J. Primatol. 76(6), 551–562 (2014).Article
Google Scholar
Braz, A. G., Lorini, M. L. & Vale, M. M. Climate change is likely to affect the distribution but not parapatry of the Brazilian marmoset monkeys (Callithrix spp.). Divers. Distrib. 25(4), 536–550 (2019).Article
Google Scholar
Lima, A. A. de, Ribeiro, M. C., Grelle, C. E. de V. & Pinto, M. P. Impacts of climate changes on spatio-temporal diversity patterns of Atlantic Forest primates. Perspect. Ecol. Conserv. 17(2), 50–56 (2019).Colombo, A. F. & Joly, C. A. Brazilian Atlantic Forest lato sensu: the most ancient Brazilian forest, and a biodiversity hotspot, is highly threatened by climate change. Braz. J. Biol. 70(3), 697–708 (2010).Article
CAS
Google Scholar
Zwiener, V. P., Lira-Noriega, A., Grady, C. J., Padial, A. A. & Vitule, J. R. Climate change as a driver of biotic homogenization of woody plants in the Atlantic Forest. Glob. Ecol. Biogeogr. 27(3), 298–309 (2018).Article
Google Scholar
Lemes, P., Melo, A. S. & Loyola, R. D. Climate change threatens protected areas of the Atlantic Forest. Biodivers. Conserv. 23(2), 357–368 (2014).Article
Google Scholar
Rezende, G. C., Sobral-Souza, T. & Culot, L. Integrating climate and landscape models to prioritize areas and conservation strategies for an endangered arboreal primate. Am. J. Primatol. 82(12), e23202. https://doi.org/10.1002/ajp.23202 (2020).Article
Google Scholar
Silva, L. B. et al. How future climate change and deforestation can drastically affect the species of monkeys endemic to the eastern Amazon, and priorities for conservation. Biodivers. Conserv. 31, 971–988 (2022).Article
Google Scholar
Sales, L., Ribeiro, B. R., Chapman, C. A. & Loyola, R. Multiple dimensions of climate change on the distribution of Amazon primates. Perspect. Ecol. Conserv. 18(2), 83–90 (2020).
Google Scholar
Moraes, B., Razgour, O., Souza-Alves, J., Boubli, J. & Bezerra, B. Habitat suitability for primate conservation in north-east Brazil. Oryx 54(6), 803–813 (2020).Article
Google Scholar
Hanson, J. O. et al. Global conservation of species’ niches. Nature 580, 232–234 (2020).Article
ADS
CAS
Google Scholar
Hanson, J. O., Rhodes, J. R., Riginos, C. & Fuller, R. A. Environmental and geographic variables are effective surrogates for genetic variation in conservation planning. PNAS 114(48), 12755–12760 (2017).Article
ADS
CAS
Google Scholar
Scheele, B. C., Foster, C. N., Banks, S. C. & Lindenmayer, D. B. Niche contractions in declining species: Mechanisms and consequences. Trends Ecol. Evol. 32(5), 346–355 (2017).Article
Google Scholar
Travis, J. M. J. et al. Dispersal and species’ responses to climate change. Oikos 122, 1532–1540 (2013).Article
Google Scholar
Lenoir, J. & Svenning, J.-C. Climate-related range shifts – a global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).Article
Google Scholar
Raghunathan, N., François, L., Huynen, M. C., Oliveira, L. C. & Hambuckers, A. Modelling the distribution of key tree species used by lion tamarins in the Brazilian Atlantic forest under a scenario of future climate change. Reg. Environ. Change 15, 683–693 (2015).Article
Google Scholar
Lawler, J. J., Ruesch, A. S., Olden, J. D. & McRae, B. H. Projected climate-driven faunal movement routes. Ecol. Lett. 16(8), 1014–1022 (2013).Article
CAS
Google Scholar
Årevall, J., Early, R., Estrada, A., Wennergren, U. & Eklöf, A. C. Conditions for successful range shifts under climate change: The role of species dispersal and landscape configuration. Divers. Distrib. 24, 1598–1611 (2018).Article
Google Scholar
Carroll, C., Lawler, J. J., Roberts, D. R. & Hamann, A. Biotic and climatic velocity identify contrasting areas of vulnerability to climate change. PLoS ONE 10(10), e0142024. https://doi.org/10.1371/journal.pone.0140486 (2015).Article
CAS
Google Scholar
Davies, T. J., Purvis, A. & Gittleman, J. L. Quaternary climate change and the geographic ranges of mammals. Am. Nat. 174(3), 297–307 (2009).Article
Google Scholar
Gaston, K.J. The structure and dynamics of geographic ranges (Oxford University Press, 2003).Meyer, A. L. S. & Pie, M. R. Climate change estimates surpass rates of climatic niche evolution in primates. Int. J. Primatol. 43, 40–56 (2021).Article
Google Scholar
Zeigler, S. L., Fagan, W. F., DeFries, R. & Raboy, B. E. Identifying important forest patches for the long-term persistence of the endangered golden-headed lion tamarin (Leontopithecus chrysomelas). Trop. Conserv. Sci. 3(1), 63–77 (2010).Article
Google Scholar
Dosen, J., Fortin, M. J. & Raboy, B. E. Restoration strategies to improve connectivity for golden-headed lion tamarins (Leontopithecus chrysomelas) in the Bahian Atlantic Forest. Brazil. Int. J. Primatol. 38(5), 962–983 (2017).Article
Google Scholar
Piffer, P. R., Rosa, M. R., Tambosi, L. R., Metzger, J. P. & Uriarte, M. Turnover rates of regenerated forests challenge restoration efforts in the Brazilian Atlantic Forest. Environ. Res. Lett. 17(4), 045009. https://doi.org/10.1088/1748-9326/ac5ae1 (2022).Article
ADS
Google Scholar
Estrada, A., Raboy, B. E. & Oliveira, L. C. Agroecosystems and primate conservation in the tropics: A review. Am. J. Primatol. 74, 696–711 (2012).Article
Google Scholar
Galea, B., Humle, T. Identifying and mitigating the impacts on primates of transportation and service corridors. Conserv. Biol. 36, e13836; https://doi.org/10.1111/cobi.13836 (2022).Gouveia, S. F. et al. Functional planning units for the management of an endangered Brazilian titi monkey. Am. J. Primatol. 79(5), e22637; https://doi.org/10.1002/ajp.22637 (2017).Rezende, G. et al. Leontopithecus chrysopygus. The IUCN Red List of Threatened Species, e.T11505A17935400; https://doi.org/10.2305/IUCN.UK.2020-2.RLTS.T11505A17935400.en (2020).Culot, L. et al. ATLANTIC-PRIMATES: A dataset of communities and occurrences of primates in the Atlantic Forests of South America. Ecology 100(1), e02525; https://doi.org/10.1002/ecy.2525 (2018).Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37(12), 4302–4315 (2017).Article
Google Scholar
Quinn, G. P. & Keough, M. J. Experimental design and data analysis for biologists (Cambridge University Press, 2002).Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1(1), 3–14 (2010).Article
Google Scholar
Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17(1), 43–57 (2011).Article
Google Scholar
Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190(3–4), 231–259 (2006).Article
Google Scholar
Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29(2), 129–151 (2006).Article
Google Scholar
Muscarella, R. et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for ecological niche models. Methods Ecol. Evol. 5(11), 1198–1205 (2014).Article
Google Scholar
Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 34(1), 102–117 (2007).Article
Google Scholar
Shcheglovitova, M. & Anderson, R. P. Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes. Ecol. Modell. 269, 9–17 (2013).Article
Google Scholar
Wenger, S. J. & Olden, J. D. Assessing transferability of ecological models: An underappreciated aspect of statistical validation. Methods Ecol. Evol. 3(2), 260–267 (2012).Article
Google Scholar
Hidasi-Neto, J. et al. Climate change will drive mammal species loss and biotic homogenization in the Cerrado Biodiversity Hotspot. Perspect. Ecol. Conserv. 17(2), 57–63 (2019).
Google Scholar
Bowman, J., Jaeger, J. A. G. & Fahrig, L. Dispersal distance of mammals is proportional to home range size. Ecology 83(7), 2049–2055 (2002).Article
Google Scholar
Galán-Acedo, C., Arroyo-Rodríguez, V., Andresen, E. & Arasa-Gisbert, R. Ecological traits of the world’s primates. Sci. Data 6, 55. https://doi.org/10.1038/s41597-019-0059-9 (2019).Article
Google Scholar
Pacifici, M. et al. Generation length for mammals. Nat. Conserv. 5, 89–94 (2013).Article
Google Scholar
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing Vienna Austria (2017).QGIS Development Team. QGIS Geographic Information System (2016). More