1.
Adams, M., Raadik, T. A., Burridge, C. P. & Georges, A. Global biodiversity assessment and hyper-cryptic species complexes: more than one species of elephant in the room?. Syst. Biol. 63, 518–533 (2014).
PubMed Article Google Scholar
2.
Pérez-Ponce de León, G. & Poulin, R. Taxonomic distribution of cryptic diversity among metazoans: not so homogeneous after all. Biol. Lett. 12, 20160371. https://doi.org/10.1098/rsbl.2016.0371 (2016).
Article PubMed PubMed Central Google Scholar
3.
Pfenninger, M. & Schwenk, K. Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evol. Biol. 7, 121. https://doi.org/10.1186/1471-2148-7-121 (2007).
Article PubMed PubMed Central Google Scholar
4.
Keshavmurthy, S. et al. DNA barcoding reveals the coral “laboratory-rat”, Stylophora pistillata encompasses multiple identities. Sci. Rep. 3, 1520. https://doi.org/10.1038/srep01520 (2013).
CAS Article PubMed PubMed Central Google Scholar
5.
Mamos, T., Wattier, R., Burzyński, A. & Grabowski, M. The legacy of a vanished sea: a high level of diversification within a European freshwater amphipod species complex driven by 15 My of Paratethys regression. Mol. Ecol. 25, 785–810 (2016).
Article Google Scholar
6.
Bickford, D. et al. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22, 148–155 (2007).
PubMed Article Google Scholar
7.
Brodersen, J. & Seehausen, O. Why evolutionary biologists should get seriously involved in ecological monitoring and applied biodiversity assessment programs. Evol. Appl. 7, 968–983 (2014).
PubMed PubMed Central Article Google Scholar
8.
Eme, D. et al. Do cryptic species matter in macroecology? Sequencing European groundwater crustaceans yields smaller ranges but does not challenge biodiversity determinants. Ecography 41, 424–436 (2018).
Article Google Scholar
9.
Galipaud, M., Gauthey, Z., Turlin, J., Bollache, L. & Lagrue, C. Mate choice and male–male competition among morphologically cryptic but genetically divergent amphipod lineages. Behav. Ecol. Sociobiol. 69, 1907–1916 (2015).
Article Google Scholar
10.
Galipaud, M., Bollache, L. & Lagrue, C. Variations in infection levels and parasite-induced mortality among sympatric cryptic lineages of native amphipods and a congeneric invasive species: Are native hosts always losing?. Int. J. Parasitol. Parasites Wildl. 6, 439–447 (2017).
PubMed PubMed Central Article Google Scholar
11.
Westram, A. M., Baumgartner, C., Keller, I. & Jokela, J. Are cryptic host species also cryptic to parasites? Host specificity and geographical distribution of acanthocephalan parasites infecting freshwater Gammarus. Infect. Genet. Evol. 11, 1083–1090 (2011).
CAS PubMed Article Google Scholar
12.
Fišer, Ž, Altermatt, F., Zakšek, V., Knapič, T. & Fišer, C. Morphologically cryptic amphipod species are “ecological clones” at regional but not at local scale: a case study of four Niphargus species. PLoS ONE 10, e0134384. https://doi.org/10.1371/journal.pone.0134384 (2015).
CAS Article PubMed PubMed Central Google Scholar
13.
Eisenring, M., Altermatt, F., Westram, A. M. & Jokela, J. Habitat requirements and ecological niche of two cryptic amphipod species at landscape and local scales. Ecosphere 7, e01319. https://doi.org/10.1002/ecs2.1319 (2016).
Article Google Scholar
14.
Westram, A. M., Jokela, J. & Keller, I. Hidden biodiversity in an ecologically important freshwater amphipod: Differences in genetic structure between two cryptic species. PLoS ONE 8, e69576. https://doi.org/10.1371/journal.pone.0069576 (2013).
ADS CAS Article PubMed PubMed Central Google Scholar
15.
Mutanen, M., Kaila, L. & Tabell, J. Wide-ranging barcoding aids discovery of one-third increase of species richness in presumably well-investigated moths. Sci. Rep. 3, 2901. https://doi.org/10.1038/srep02901 (2013).
ADS Article PubMed PubMed Central Google Scholar
16.
Cook, B. D., Page, T. J. & Hughes, J. M. Importance of cryptic species for identifying ‘representative’ units of biodiversity for freshwater conservation. Biol. Conserv. 141, 2821–2831 (2008).
Article Google Scholar
17.
Fišer, C., Robinson, C. T. & Malard, F. Cryptic species as a window into the paradigm shift of the species concept. Mol. Ecol. 27, 613–635 (2018).
PubMed Article Google Scholar
18.
Bálint, M., Barnard, P. C., Schmitt, T., Ujvárosi, L. & Popescu, O. Differentiation and speciation in mountain streams: a case study in the caddisfly Rhyacophila aquitanica (Trichoptera). J. Zool. Syst. Evol. Res. 46, 340–345 (2008).
Article Google Scholar
19.
Major, K., Soucek, D. J., Giordano, R., Wetzel, M. J. & Soto-Adames, F. The common ecotoxicology laboratory strain of Hyalella azteca is genetically distinct from most wild strains sampled in eastern North America: common lab strain of H. azteca is distinct from wild strains. Environ. Toxicol. Chem. https://doi.org/10.1002/etc.2355 (2013).
Article PubMed Google Scholar
20.
Feckler, A., Thielsch, A., Schwenk, K., Schulz, R. & Bundschuh, M. Differences in the sensitivity among cryptic lineages of the Gammarus fossarum complex. Sci. Total Environ. 439, 158–164 (2012).
ADS CAS PubMed Article PubMed Central Google Scholar
21.
Feckler, A. et al. Cryptic species diversity: an overlooked factor in environmental management?. J. Appl. Ecol. 51, 958–967 (2014).
Article Google Scholar
22.
Caputo, D. R., Robson, S. C., Werner, I. & Ford, A. T. Complete transcriptome assembly and annotation of a critically important amphipod species in freshwater ecotoxicological risk assessment: Gammarus fossarum. Environ. Int. 137, 105319 (2020).
CAS PubMed Article PubMed Central Google Scholar
23.
Cogne, Y. et al. De novo transcriptomes of 14 gammarid individuals for proteogenomic analysis of seven taxonomic groups. Sci. Data 6, 184. https://doi.org/10.1038/s41597-019-0192-5 (2019).
CAS Article PubMed PubMed Central Google Scholar
24.
Costa-Silva, G. J., Rodriguez, M. S., Roxo, F. F., Foresti, F. & Oliveira, C. Using different methods to access the difficult task of delimiting species in a complex Neotropical hyperdiverse group. PLoS ONE 10, e0135075 (2015).
PubMed PubMed Central Article CAS Google Scholar
25.
Dincă, V. et al. DNA barcode reference library for Iberian butterflies enables a continental-scale preview of potential cryptic diversity. Sci. Rep. 5, 12395. https://doi.org/10.1371/journal.pone.0135075 (2015).
ADS CAS Article PubMed PubMed Central Google Scholar
26.
Trontelj, P. et al. A molecular test for cryptic diversity in ground water: how large are the ranges of macro-stygobionts?. Freshw. Biol. 54, 727–744 (2009).
CAS Article Google Scholar
27.
Jackson, J. K. et al. Cryptic biodiversity in streams: a comparison of macroinvertebrate communities based on morphological and DNA barcode identifications. Freshw. Sci. 33, 312–324 (2014).
Article Google Scholar
28.
Grabowski, M., Mamos, T., Bacela-Spychalska, K., Rewicz, T. & Wattier, R. A. Neogene paleogeography provides context for understanding the origin and spatial distribution of cryptic diversity in a widespread balkan freshwater amphipod. PeerJ https://doi.org/10.7717/peerj.3016 (2017).
Article PubMed PubMed Central Google Scholar
29.
Grabowski, M., Wysocka, A. & Mamos, T. Molecular species delimitation methods provide new insight into taxonomy of the endemic gammarid species flock from the ancient Lake Ohrid. Zool. J. Linn. Soc. https://doi.org/10.1093/zoolinnean/zlw025 (2017).
Article Google Scholar
30.
Hogg, I. D., Larose, C., de Lafontaine, Y. & Doe, K. G. Genetic evidence for a Hyalella species complex within the Great Lakes—St. Lawrence River drainage basin: implications for ecotoxicology and conservation biology. Can. J. Zool. 76, 1134–1140 (1998).
Article Google Scholar
31.
Hogg, I. D., Stevens, M. I., Schnabel, K. E. & Ann Chapman, M. Deeply divergent lineages of the widespread New Zealand amphipod Paracalliope fluviatilis revealed using allozyme and mitochondrial DNA analyses. Freshw. Biol. 51, 236–248 (2006).
CAS Article Google Scholar
32.
Katouzian, A.-R. et al. Drastic underestimation of amphipod biodiversity in the endangered Irano-Anatolian and Caucasus biodiversity hotspots. Sci. Rep. 6, 22507. https://doi.org/10.1038/srep22507 (2016).
ADS CAS Article PubMed PubMed Central Google Scholar
33.
Mamos, T., Wattier, R., Majda, A., Sket, B. & Grabowski, M. Morphological vs. molecular delineation of taxa across montane regions in Europe: the case study of Gammarusbalcanicus Schäferna, (Crustacea: Amphipoda). J. Zool. Syst. Evol. Res. 52, 237–248 (2014).
Article Google Scholar
34.
Murphy, N. P., Adams, M., Guzik, M. T. & Austin, A. D. Extraordinary micro-endemism in Australian desert spring amphipods. Mol. Phylogenet. Evol. 66, 645–653 (2013).
CAS PubMed Article Google Scholar
35.
Murphy, N. P., King, R. A. & Delean, S. Species, ESUs or populations? Delimiting and describing morphologically cryptic diversity in Australian desert spring amphipods. Invertebr. Syst. 29, 457 (2015).
Article Google Scholar
36.
Seidel, R. A., Lang, B. K. & Berg, D. J. Phylogeographic analysis reveals multiple cryptic species of amphipods (Crustacea: Amphipoda) in Chihuahuan Desert springs. Biol. Conserv. 142, 2303–2313 (2009).
Article Google Scholar
37.
Sutherland, D. L., Hogg, I. D. & Waas, J. R. Phylogeography and species discrimination in the Paracalliopefluviatilis species complex (Crustacea: Amphipoda): can morphologically similar heterospecifics identify compatible mates?: Mate discrimination in P. fluviatilis. Biol. J. Linn. Soc. 99, 196–205 (2009).
Article Google Scholar
38.
Witt, J. D. S., Threloff, D. L. & Hebert, P. D. N. DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation. Mol. Ecol. 15, 3073–3082 (2006).
CAS PubMed Article Google Scholar
39.
Witt, J. D. S. & Hebert, P. D. N. Cryptic species diversity and evolution in the amphipod genus Hyalella within central glaciated North America: a molecular phylogenetic approach. Can. J. Fish Aquat. Sci. 57, 12 (2000).
Article Google Scholar
40.
Blackman, R. et al. Detection of a new non-native freshwater species by DNA metabarcoding of environmental samples—first record of Gammarus fossarum in the UK. Aquat. Invasions 12, 177–189 (2017).
Article Google Scholar
41.
Dangles, O., Gessner, M. O., Guerold, F. & Chauvet, E. Impacts of stream acidification on litter breakdown: implications for assessing ecosystem functioning. J. Appl. Ecol. 41, 365–378 (2004).
CAS Article Google Scholar
42.
Felten, V., Tixier, G., Guérold, F., De Crespin De Billy, V. & Dangles, O. Quantification of diet variability in a stream amphipod: implications for ecosystem functioning. Fundam. Appl. Limnol. Arch. Für Hydrobiol. 170, 303–313 (2008).
Article Google Scholar
43.
Besse, J.-P., Geffard, O. & Coquery, M. Relevance and applicability of active biomonitoring in continental waters under the Water Framework Directive. TrAC Trends Anal. Chem. 36, 113–127 (2012).
CAS Article Google Scholar
44.
Schmidlin, L., von Fumetti, S. & Nagel, P. Temperature effects on the feeding and electron transport system (ETS) activity of Gammarus fossarum. Aquat. Ecol. 49, 71–80 (2015).
Article Google Scholar
45.
Labaude, S., Rigaud, T. & Cézilly, F. Additive effects of temperature and infection with an acanthocephalan parasite on the shredding activity of Gammarus fossarum (Crustacea: Amphipoda): the importance of aggregative behavior. Glob. Change Biol. 23, 1415–1424 (2017).
ADS Article Google Scholar
46.
Kunz, P. Y., Kienle, C. & Gerhardt, A. Gammarus spp. in aquatic ecotoxicology and water quality assessment: Toward integrated multilevel tests. In Reviews of Environmental Contamination and Toxicology Vol. 205 (ed. Whitacre, D. M.) 1–76 (Springer, New York, 2010).
Google Scholar
47.
Mehennaoui, K. et al. Gammarus fossarum (Crustacea, Amphipoda) as a model organism to study the effects of silver nanoparticles. Sci. Total Environ. 566–567, 1649–1659 (2016).
ADS PubMed Article CAS Google Scholar
48.
Besse, J.-P. et al. Caged Gammarus fossarum (Crustacea) as a robust tool for the characterization of bioavailable contamination levels in continental waters: towards the determination of threshold values. Water Res. 47, 650–660 (2013).
CAS PubMed Article Google Scholar
49.
Gouveia, D. et al. Ecotoxico-Proteomics for aquatic environmental monitoring: First in situ application of a new proteomics-based multibiomarker assay using caged amphipods. Environ. Sci. Technol. 51, 13417–13426 (2017).
ADS CAS PubMed Article Google Scholar
50.
Trapp, J. et al. Proteogenomics of Gammarus fossarum to document the reproductive system of amphipods. Mol. Cell. Proteomics 13, 3612–3625 (2014).
CAS PubMed PubMed Central Article Google Scholar
51.
Sanchez-Thirion, K. et al. High food quality increases infection of Gammarus pulex (Crustacea: Amphipoda) by the acanthocephalan parasite Pomphorhynchus laevis. Int. J. Parasitol. 49, 805–817 (2019).
CAS PubMed Article Google Scholar
52.
Bigot-Clivot, A. et al. Bioaccumulation of toxoplasma and cryptosporidium by the freshwater crustacean Gammarus fossarum: involvement in biomonitoring surveys and trophic transfer. Ecotoxicol. Environ. Saf. 133, 188–194 (2016).
CAS PubMed Article Google Scholar
53.
Chen, H.-Y., Grabner, D. S., Nachev, M., Shih, H.-H. & Sures, B. Effects of the acanthocephalan Polymorphus minutus and the microsporidian Dictyocoela duebenum on energy reserves and stress response of cadmium exposed Gammarus fossarum. PeerJ 3, e1353. https://doi.org/10.7717/peerj.1353 (2015).
CAS Article PubMed PubMed Central Google Scholar
54.
Müller, J. Mitochondrial DNA variation and the evolutionary history of cryptic Gammarus fossarum types. Mol. Phylogenet. Evol. 15, 260–268 (2000).
PubMed Article CAS Google Scholar
55.
Weiss, M., Macher, J. N., Seefeldt, M. A. & Leese, F. Molecular evidence for further overlooked species within the Gammarus fossarum complex (Crustacea: Amphipoda). Hydrobiologia 721, 165–184 (2014).
CAS Article Google Scholar
56.
Weiss, M. & Leese, F. Widely distributed and regionally isolated! Drivers of genetic structure in Gammarus fossarum in a human-impacted landscape. BMC Evol. Biol. 16, 153 (2016).
PubMed PubMed Central Article CAS Google Scholar
57.
Lagrue, C. et al. Confrontation of cryptic diversity and mate discrimination within Gammarus pulex and Gammarus fossarum species complexes. Freshw. Biol. 59, 2555–2570 (2014).
Article Google Scholar
58.
Copilaş-Ciocianu, D. & Petrusek, A. The southwestern Carpathians as an ancient centre of diversity of freshwater gammarid amphipods: insights from the Gammarus fossarum species complex. Mol. Ecol. 24, 3980–3992 (2015).
PubMed Article Google Scholar
59.
Copilaş-Ciocianu, D., Rutová, T., Pařil, P. & Petrusek, A. Epigean gammarids survived millions of years of severe climatic fluctuations in high latitude refugia throughout the Western Carpathians. Mol. Phylogenet. Evol. 112, 218–229 (2017).
PubMed Article Google Scholar
60.
Hebert, P. D. N., Ratnasingham, S. & de Waard, J. R. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. B Biol. Sci. 270, S96–S99 (2003).
CAS Google Scholar
61.
Kekkonen, M. & Hebert, P. D. N. DNA barcode-based delineation of putative species: efficient start for taxonomic workflows. Mol. Ecol. Resour. 14, 706–715 (2014).
PubMed PubMed Central Article Google Scholar
62.
Copilaş-Ciocianu, D. & Petrusek, A. Phylogeography of a freshwater crustacean species complex reflects a long-gone archipelago. J. Biogeogr. 44, 421–432 (2017).
Article Google Scholar
63.
Grabner, D. S. et al. Invaders, natives and their enemies: distribution patterns of amphipods and their microsporidian parasites in the Ruhr Metropolis, Germany. Parasit. Vectors 8, 419 (2015).
PubMed PubMed Central Article Google Scholar
64.
Copilaș-Ciocianu, D., Zimța, A. & Petrusek, A. Integrative taxonomy reveals a new Gammarus species (Crustacea, Amphipoda) surviving in a previously unknown southeast European glacial refugium. J. Zool. Syst. Evol. Res. 57, 272–297 (2019).
Article Google Scholar
65.
Copilaş-Ciocianu, D., Zimţa, A.-A., Grabowski, M. & Petrusek, A. Survival in northern microrefugia in an endemic Carpathian gammarid (Crustacea: Amphipoda). Zool. Scr. 47, 357–372 (2018).
Article Google Scholar
66.
Hou, Z., Li, J. & Li, S. Diversification of low dispersal crustaceans through mountain uplift: a case study of Gammarus (Amphipoda: Gammaridae) with descriptions of four novel species: Diversification of Gammarus species. Zool. J. Linn. Soc. 170, 591–633 (2014).
Article Google Scholar
67.
Wellborn, G. A. & Cothran, R. D. Niche diversity in crustacean cryptic species: complementarity in spatial distribution and predation risk. Oecologia 154, 175–183 (2007).
ADS PubMed Article Google Scholar
68.
Delić, T., Švara, V., Coleman, C. O., Trontelj, P. & Fišer, C. The giant cryptic amphipod species of the subterranean genus Niphargus (Crustacea, Amphipoda). Zool. Scr. 46, 740–752 (2017).
Article Google Scholar
69.
McInerney, C. E. et al. The ancient Britons: groundwater fauna survived extreme climate change over tens of millions of years across NW Europe. Mol. Ecol. 23, 1153–1166 (2014).
PubMed Article Google Scholar
70.
Cooper, S. J. B. et al. Subterranean archipelago in the Australian arid zone: mitochondrial DNA phylogeography of amphipods from central Western Australia: Phylogeography of subterranean amphipods. Mol. Ecol. 16, 1533–1544 (2007).
CAS PubMed Article Google Scholar
71.
Ethridge, J. Z., Gibson, J. R. & Nice, C. C. Cryptic diversity within and amongst spring-associated Stygobromus amphipods (Amphipoda: Crangonyctidae): Stygobromus amphipod cryptic diversity. Zool. J. Linn. Soc. 167, 227–242 (2013).
Article Google Scholar
72.
Beermann, J. et al. Cryptic species in a well-known habitat: applying taxonomics to the amphipod genus Epimeria (Crustacea, Peracarida). Sci. Rep. 8, 6893. https://doi.org/10.1038/s41598-018-25225-x (2018).
ADS CAS Article PubMed PubMed Central Google Scholar
73.
Baird, H. P., Miller, K. J. & Stark, J. S. Evidence of hidden biodiversity, ongoing speciation and diverse patterns of genetic structure in giant Antarctic amphipods: Genetic diversity in antarticamphipods. Mol. Ecol. 20, 3439–3454 (2011).
PubMed Article Google Scholar
74.
Havermans, C. et al. Genetic and morphological divergences in the cosmopolitan deep-sea amphipod Eurythenes gryllus reveal a diverse abyss and a bipolar species. PLoS ONE 8, e74218. https://doi.org/10.1371/journal.pone.0074218 (2013).
ADS CAS Article PubMed PubMed Central Google Scholar
75.
Havermans, C. Have we so far only seen the tip of the iceberg? Exploring species diversity and distribution of the giant amphipod Eurythenes. Biodiversity 17, 12–25 (2016).
Article Google Scholar
76.
Coleman, C. O. Taxonomy in times of the taxonomic impediment—examples from the community of experts on amphipod crustaceans. J. Crustac. Biol. 35, 729–740 (2015).
Article Google Scholar
77.
Arfianti, T., Wilson, S. & Costello, M. J. Progress in the discovery of amphipod crustaceans. PeerJ 6, e5187 (2018).
PubMed PubMed Central Article Google Scholar
78.
Popov, S. V. et al. Lithological-Paleogeographic maps of Partethys—10 maps late Eocene to Plioccene. Courier Foschung-Intitut Senckberg 1–46 (2004).
79.
Frenzel, B., Pécsi, M. & Velichko, A. A. Atlas of Paleoclimates and Paleoenvironments of the Northern Hemisphere: Late Pleistocene, Holocene (Geographical Research Institute Hungarian Academy of Science; G. Fischer, Budapest, 1992).
Google Scholar
80.
Macneil, C., Dick, J. T. A. & Elwood, R. W. The trophic ecology of freshwater Gammarus spp (Crustacea; Amphipoda): Problems and perspective concerning the functional feeding group concept. Biol. Rev. 72, 349–364 (2007).
Article Google Scholar
81.
Rudolph, K., Coleman, C. O., Mamos, T. & Grabowski, M. Description and post-glacial demography of Gammarusjazdzewskii sp. nov. (Crustacea: Amphipoda) from Central Europe. Syst. Biodivers. 16, 587–603 (2018).
Article Google Scholar
82.
Westram, A. M., Jokela, J., Baumgartner, C. & Keller, I. Spatial distribution of cryptic species diversity in European freshwater amphipods (Gammarus fossarum) as revealed by pyrosequencing. PLoS ONE 6, e23879. https://doi.org/10.1371/journal.pone.0023879 (2011).
ADS CAS Article PubMed PubMed Central Google Scholar
83.
Lefébure, T. et al. Phylogeography of a subterranean amphipod reveals cryptic diversity and dynamic evolution in extreme environments: cryptic and dynamic evolution in subsurface. Mol. Ecol. 15, 1797–1806 (2006).
PubMed Article CAS Google Scholar
84.
Lefébure, T., Douady, C. J., Malard, F. & Gibert, J. Testing dispersal and cryptic diversity in a widely distributed groundwater amphipod (Niphargus rhenorhodanensis). Mol. Phylogenet. Evol. 42, 676–686 (2007).
PubMed Article CAS Google Scholar
85.
Raffard, A., Santoul, F., Cucherousset, J. & Blanchet, S. The community and ecosystem consequences of intraspecific diversity: a meta-analysis: the ecological effects of intraspecific diversity. Biol. Rev. 94, 648–661 (2019).
PubMed Article Google Scholar
86.
Jabłońska, A., Wrzesińska, W., Zawal, A., Pešić, V. & Grabowski, M. Long-term within-basin isolation patterns, different conservation units, and interspecific mitochondrial DNA introgression in an amphipod endemic to the ancient Lake Skadar system, Balkan Peninsula. Freshw. Biol. 65, 209–225 (2020).
Article CAS Google Scholar
87.
Stein, E. D., Martinez, M. C., Stiles, S., Miller, P. E. & Zakharov, E. V. Is DNA barcoding actually cheaper and faster than traditional morphological methods: results from a survey of freshwater bioassessment efforts in the United States?. PLoS ONE 9, e95525. https://doi.org/10.1371/journal.pone.0095525 (2014).
ADS CAS Article PubMed PubMed Central Google Scholar
88.
Valentini, A., Pompanon, F. & Taberlet, P. DNA barcoding for ecologists. Trends Ecol. Evol. 24, 110–117 (2009).
PubMed Article Google Scholar
89.
Weigand, H. et al. DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap-analysis and recommendations for future work. Sci. Total Environ. 678, 499–524 (2019).
ADS CAS PubMed Article Google Scholar
90.
Delić, T., Trontelj, P., Rendoš, M. & Fišer, C. The importance of naming cryptic species and the conservation of endemic subterranean amphipods. Sci. Rep. 7, 3391. https://doi.org/10.1038/s41598-017-02938-z (2017).
ADS CAS Article PubMed PubMed Central Google Scholar
91.
Wysocka, A. et al. Origin of the Lake Ohrid gammarid species flock: ancient local phylogenetic lineage diversification. J. Biogeogr. 41, 1758–1768 (2014).
Article Google Scholar
92.
Esmaeili-Rineh, S., Sari, A., Delić, T., Moškrič, A. & Fišer, C. Molecular phylogeny of the subterranean genus Niphargus (Crustacea: Amphipoda) in the Middle East: a comparison with European Niphargids. Zool. J. Linn. Soc. 175, 812–826 (2015).
Article Google Scholar
93.
Hou, Z., Sket, B., Fiser, C. & Li, S. Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. Proc. Natl. Acad. Sci. 108, 14533–14538 (2011).
ADS CAS PubMed Article Google Scholar
94.
AltschuP, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic Local Alignment Search Tool. 8.
95.
Karaman, G. & Pinkster, S. Freshwater Gammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea-Amphipoda). Part I. Gammarus pulex-group and related species. Bijdragen tot de Dierkunde 1–97 (1977).
96.
Piscart, C. & Bollache, L. Crustacés amphipodes de surface : gammares d’eau douce (Association Française de Limnologie, Thonon-les-Bains, 2012).
Google Scholar
97.
Eggers, T. & Martens, A. A key of the freshwater Amphipods of Germany. Lauterbornia 1–68 (2001).
98.
Jazdzewski, K. Morfologia, taksonomia i wystepowanie w Polsce kielzy z rodzajów Gammarus Fabr. i Chaetogammarus Mart. (Crustacea, Amphipoda). Acta Universitatis Lodziensis 1–187 (1975).
99.
Karaman, G. S. Crustacea (Amphipoda di acqua dolce. Calderini, Bologna, 1993).
Google Scholar
100.
Hillis, D. M., Moritz, C. & Mable, B. K. Molecular Systematics (Sinauer Associates Inc, Sunderland, 1996).
Google Scholar
101.
Casquet, J., Thebaud, C. & Gillespie, R. G. Chelex without boiling, a rapid and easy technique to obtain stable amplifiable DNA from small amounts of ethanol-stored spiders: Quick and easy dsDNA extraction for barcoding. Mol. Ecol. Resour. 12, 136–141 (2012).
CAS PubMed Article PubMed Central Google Scholar
102.
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol 6, 294–299 (1994).
Google Scholar
103.
Costa, F. O., Henzler, C. M., Lunt, D. H., Whiteley, N. M. & Rock, J. Probing marine Gammarus (Amphipoda) taxonomy with DNA barcodes. Syst. Biodivers. 7, 365–379 (2009).
Article Google Scholar
104.
Astrin, J. J. & Stüben, P. E. Phylogeny in cryptic weevils: molecules, morphology and new genera of western Palaearctic Cryptorhynchinae (Coleoptera:Curculionidae). Invertebr. Syst. 22, 503–522 (2008).
Article Google Scholar
105.
Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).
CAS PubMed PubMed Central Article Google Scholar
106.
Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).
CAS Article Google Scholar
107.
Librado, P. & Rozas, J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).
CAS PubMed Article PubMed Central Google Scholar
108.
Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877 (2012).
CAS PubMed Article PubMed Central Google Scholar
109.
Ratnasingham, S. & Hebert, P. D. N. A DNA-based registry for all animal species: the barcode index number (BIN) System. PLoS ONE 8, e66213. https://doi.org/10.1371/journal.pone.0066213 (2013).
ADS CAS Article PubMed PubMed Central Google Scholar
110.
Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876 (2013).
CAS PubMed PubMed Central Article Google Scholar
111.
Puillandre, N. et al. Large-scale species delimitation method for hyperdiverse groups: large-scale species delimitation. Mol. Ecol. 21, 2671–2691 (2012).
CAS PubMed Article Google Scholar
112.
Ratnasingham, S. & Hebert, P. D. N. BOLD: The Barcode of life data system (https://www.barcodinglife.org). Mol. Ecol. Notes7, 355–364 (2007).
113.
Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
CAS PubMed PubMed Central Article Google Scholar
114.
Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537. https://doi.org/10.1371/journal.pcbi.1003537 (2014).
CAS Article PubMed PubMed Central Google Scholar
115.
Bouckaert, R. R. & Drummond, A. J. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 17, 42 (2017).
PubMed PubMed Central Article Google Scholar
116.
Baele, G., Lemey, P. & Vansteelandt, S. Make the most of your samples: Bayes factor estimators for high-dimensional models of sequence evolution. BMC Bioinform. 14, 85 (2013).
Article Google Scholar
117.
Brower, A. V. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proc. Natl. Acad. Sci. 91, 6491–6495 (1994).
ADS CAS PubMed Article Google Scholar
118.
Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).
CAS PubMed PubMed Central Article Google Scholar
119.
Felsenstein, J. Confidence limits on phylogenies: an approach using the boostrap. Evolution 39, 783–791 (1985).
PubMed Article Google Scholar
120.
Miller, M. P. Alleles In Space (AIS): computer software for the joint analysis of interindividual spatial and genetic information. J. Hered. 96, 722–724 (2005).
CAS PubMed Article Google Scholar More