More stories

  • in

    Rethinking swimming performance tests for bottom-dwelling fish: the case of European glass eel (Anguilla anguilla)

    The ability to accurately estimate swimming performance is crucial to predict whether river infrastructure is likely to negatively impact fish movement (see e.g.25). This is particularly relevant for the conservation of endangered species, including the European eel that strongly depends on longitudinal movements between the ocean and rearing habitat within rivers and streams. As eel are catadromous, it is the juvenile life-stage that embarks on the upstream migration, and, due to their small size, the rate and extent of their movement is restricted by their swimming performance and ability to negotiate in-stream barriers such as weirs and barrages15.
    Current approaches used to estimate the swimming performance of glass eel suffer from several major limitations, including the selection of representative flow velocities and accommodation of temperature effects on fish swimming time-to-fatigue. Specifically, the commonly-employed average cross-sectional velocity is not representative of the hydrodynamics experienced by glass eel, since this fish swims close to the channel bed, where the flow velocity is lower. Moreover, water temperature may have an important influence on swimming performance, which generally peaks at an optimum temperature, and ceases at some critical minimum and maximum threshold. To address these shortcomings, the present study integrated constant velocity swimming-performance tests with Computational Fluid Dynamics (CFD) to facilitate the reliable estimation of the velocities experienced by eel in the near-wall region. The developed CFD model was relatively simple to calibrate and allowed for the construction of the reported swimming curves. The k-ε closure method permitted a time efficient modelling process to be adopted that enabled systematic exploration of the velocity magnitude in the spatial domain with excellent resolution. To our knowledge, this is the first time CFD tools are used to provide velocity data that are integrated with the results of experiments on swimming performance of fish.
    The dimensions of the channel used to test fish swimming performance can have an important influence on swimming performance curves. McCleave23 studied the swimming activity of juvenile European eel (mean fish length, 7.2 cm, ranging from 6.9 to 7.5 cm) in a darkened, rectangular swimming chamber. The average cross-sectional velocity U ranged from 0.25 to 0.5 ms-1, whereby the total swimming time-to-fatigue decreased from 146 to 16 s, respectively. The water temperatures in that study (ranged from 11.1–13.3 °C) were quite similar to our 12 °C treatment, but the overall performance was greater in our study, with total swimming time (tf) at U = 0.25 and 0.5 ms-1 being approximately 220 and 40 s, respectively (based on regression analysis), despite the almost-identical mean fish length. The key difference between the two studies was the length of swimming area, which was 1.16 m in our study ( > 15 times the mean length of the fish), and 0.5 m in McCleave23. Likewise, cross-sectional area also appears to be influential. Based on tests using a swimming length of 1.8 m, Clough and Turnpenny33 measured the swimming performance of juvenile eel through a narrow, circular Perspex pipe (0.04 m diameter). Using the developed swimming curve in Clough and Turnpenny33, the burst swimming velocity (total swimming time equal to 20 s) for a 7.0 cm long juvenile eel at a water temperature of 11.1 °C was 0.41 ms-1. Based on the results of our study conducted at 12 °C, we predict glass eel to be able to swim 70 s at an average flow velocity U = 0.41 ms-1. These comparisons may indicate the importance of both the length and the total volume of the working section when testing swimming performance in hydraulic facilities.
    In our study, burst-and-coast swimming was increasingly observed for near-bottom velocities (Ub) exceeding 0.2 ms-1(i.e., average cross-sectional velocity  > 0.3 ms-1). This suggests that the burst-and-coast swimming mode is beneficial under higher velocities because intermittent swimming bestows energetic benefits. Indeed, it is well known that gait transitions, including burst-and-coast swimming, enables recovery and thus enhanced swimming performance19,37. Failure to provide sufficient test space can prevent the subject fish from displaying behaviors that can enhance performance, resulting in conservative estimates of swimming capability19.
    The average cross-sectional velocity is clearly not representative of swimming conditions of bottom-dwelling fish, like Anguillidae, that gain energetic advantages by exploiting the low velocities characterizing near-wall flow regions. The present study demonstrates that, contextually to the flow conditions explored herein, differences in swimming-curve intercepts ranged between 18 and 32%. These differences are essentially equivalent to the average observed differences between U and Ub, which can be explained with the following scaling arguments. In open channel flows, near-bottom velocities Ub scale with the friction velocity, ({rm{u}}_{*})(a fundamental scaling velocity equal to the square root of the shear stress, τ0, divided by the water density, i.e. ({rm{u}}_{*}=sqrt{{uptau }_{0}/uprho })), which is related to the average velocity U via the Darcy-Weisbach friction factor (f) as ({rm{u}}_{*}=rm{U}sqrt{frac{rm{f}}{8}}). The near bed velocities ({rm{U}}_{rm{b}}) were averaged over a 3 mm thick volume of water, which embraces the so-called viscous sub-layer, the buffer sub-layer and, for some experimental conditions it may capture the logarithmic layer38. This is easy to demonstrate by scaling the height of the averaging volume (i.e. 3 mm) by means of the viscous length scale (upupsilon/ {rm{u}}_{*}). This non-dimensional height reaches, at most, the value of 73 which is indicative of a flow region within the logarithmic layer. Therefore, within the averaging volume it is fair to state that ({rm{U}}_{rm{b}}approx Oleft(10{rm{u}}_{*}right)) and hence37,

    $${rm{U}}_{rm{b}}propto {f}^{1/2}rm{U}.$$
    (2)

    Note that the friction factor (f) may depend on: (i) the Reynolds number (i.e., (rm{Re}=rm{U}4rm{R}/upnu), where U is the average cross-sectional velocity, R is the hydraulic radius defined as the ratio between the wet area and the wet perimeter of the channel cross-section and ν is the water kinematic viscosity); (ii) the relative roughness of the flow; or (iii) both, if the flow is in the hydraulically-smooth, hydraulically-rough and -transition regime, respectively. In the present paper, experiments were carried out in the hydraulically-smooth regime, therefore we can assume (f=0.316{rm{Re}}^{-1/4})39 and hence, from Eq. (2) we obtain

    $${rm{U}}_{rm{b}}propto {(rm{Re}}^{-1/8})rm{U},$$
    (3)

    where the proportionality coefficient is of order 1. From Fig. 2b, it is possible to infer that the average velocity U can be expressed as

    $$rm{U}={rm{alpha }}_{1}{rm{t}}_{rm{ac}}^{{beta }_{1}},$$
    (4)

    where ({rm{alpha }}_{1}=1.099) and ({beta }_{1}= -0.266). Coupling Eqs. (3) and (4) leads to

    $${rm{U}}_{rm{b}} propto {left(frac{rm{R U}}{upnu }right)}^{- frac{1}{8}}{{alpha }}_{1}{rm{t}}_{rm{ac}}^{{upbeta }_{1}}= {left(frac{rm{R}}{upnu }right)}^{- frac{1}{8}}{rm{U}}^{-frac{1}{8}}{{alpha }}_{1 }{rm{t}}_{rm{ac}}^{{upbeta }_{1}}={left(frac{rm{R}}{upnu }right)}^{- frac{1}{8}}{{{alpha }}_{1 }}^{left( 1- frac{1}{8}right)}{rm{ t}}_{rm{ac}}^{left(1 – frac{1}{8}right){upbeta }_{1}}.$$
    (5)

    As observed in Fig. 2b, Eq. (5) demonstrates that referring to the near-bottom velocity Ub rather than the average cross-sectional velocity U, leads to a reduction of the intercept coefficient of a factor scaling as ({left(frac{rm{R}}{upnu }right)}^{- frac{1}{8}}{{rm{alpha }}_{1 }}^{left(- frac{1}{8}right)}), corresponding to a 24–26% reduction, which is very similar to that observed experimentally (i.e., 18–32%, see “Results” section). In addition, the exponent ({upbeta }_{1}) undergoes a reduction of about 1/8, i.e. 12.5%, which compares very well with the 14% variation of the power-law exponents associated with the swimming curves plotted in Fig. 2b and reported in the results section.
    The active swimming time of glass eel (tac) decreases with increasing near-bottom velocity and, for a given bottom velocity, tac increases with increasing water temperature (in the range 8–18 °C). This implies that, at higher temperatures, eel can sustain prescribed flow-velocities for longer times. Interestingly, for any temperature, Ub scales with tac as ({rm{U}}_{rm{b}}sim {rm{t}}_{rm{ac}}^{upbeta }) with (upbeta cong -) 1/3, on average. This may have some interesting implications which are now discussed.
    It can be speculated that the flow resistance experienced by glass eel can be quantified as a drag force ({rm{F}}_{rm{D}}) that scales as (rho {rm{C}}_{rm{D}}a{rm{U}}_{rm{b}}^{2}), where (rho) is the water density, ({rm{C}}_{rm{D}}) is the fish drag coefficient and (a) is the fish frontal area. The power used by glass eel (i.e. the energy spent per unit time) to hold their position against a current, can be expressed as (rm{P}= rho {rm{C}}_{rm{D}}it{a}{rm{U}}_{rm{b}}^{3}) and the total energy spent by the fish is therefore (rm{E}={rm{Pt}}_{rm{ac}}=rho {rm{C}}_{rm{D}}it{a}{rm{U}}_{rm{b}}^{3}{rm{t}}_{rm{ac}}). In the experiments reported herein, eel had an almost uniform body-size (i.e. a similar frontal area a) and, therefore, for a specific water temperature, (rho) and (a) can be considered approximately as constant. For a prescribed water-temperature, the drag coefficient ({rm{C}}_{rm{D}}) of the eel might retain some Reynolds number dependence (in general, the ({rm{C}}_{rm{D}}) of a slender body immersed in a moving fluid reduces with increasing Re due to the weakening of viscous forces with respect to pressure forces in the total drag force experienced by the body), which translates, essentially, into a dependence on ({rm{U}}_{rm{b}}). However, the range of Reynolds numbers experienced by glass eel in the experiments presented herein is too small to induce significant variations in ({rm{C}}_{rm{D}}), which can therefore be considered, in good approximation, as constant. Therefore, it can be also reasonably assumed that the energy spent by the eel during a fatigue experiment, scales as (rm{E}sim {rm{U}}_{rm{b}}^{3}{rm{t}}_{rm{ac}}). However, since the near-bottom velocity scales approximately as ({rm{U}}_{rm{b}}sim {rm{t}}_{rm{ac}}^{-1/3}) (Fig. 3a), it follows that the energy spent by the eel is equal to a constant which is a function of temperature only. This suggests that, for a specific water temperature, the energy spent by a fish in a fatigue test is constant and independent on flow intensity levels (i.e. ({rm{U}}_{rm{b}})) or, in other words, this means that the swimming performance of glass eel might be energy-limited. Clearly, this hypothesis needs to be further substantiated by more experimental work allowing for direct measurement of oxygen (and hence energy) consumption during fatigue tests, possibly carried out using the framework of analysis presented herein. It could be also important to find an experimental, non-invasive technique able to track transparent glass eel while moving in flumes or swimming chambers (e.g.40,41). This will allow a better understanding of the link between swimming speed variability at constant flow and energy consumption16.
    In the analyzed range of water temperatures (which represents common temperatures experienced by glass eel during upstream migration32) and flow velocities (Fig. 3b), Eq. (1) can be used to design a fish-pass or to evaluate its effectiveness for glass eel migration in a prescribed river reach. For instance, Vowles et al.42 proposed eel tiles as a cost-effective solution for mitigating the impacts of anthropogenic barriers to juvenile eel migration. Equation (1) can be used to verify whether velocities in the fish-pass are in an acceptable range, depending on the flow stage and the length of the eel tiles. Equation (1) provides also an estimate of the time needed by glass eel to circumvent dams and weirs or possible delays during migration. However, care would be needed in extrapolating the proposed formula to different water temperatures and larger velocities, compared to those analyzed in the present study. In the domain of application of Eq. (1), it can be speculated that ({rm{U}}_{rm{b}}) scales with temperature as (sim {rm{T}}^{updelta }), where δ is, on average, 0.77. Various effects are lumped into this exponent. Overall, for one velocity, the drag force ({rm{F}}_{rm{D}}) may increase by decreasing temperature because the density and the dynamic viscosity of water increase and this leads to increased values of pressure and viscous forces, respectively. This means that, for a given near-bottom velocity ({rm{U}}_{rm{b}}), water viscosity may cause the fish to get tired sooner (i.e. lower ({rm{t}}_{rm{ef}})) at low temperatures than at high temperatures. Furthermore, the temperature exponent is probably dictated by fish-metabolism. In terms of temperature range and related effects on glass eel swimming performance, similar results were found by other authors in the literature. For instance, Harrison et al.32 reports that low temperatures (below 10 °C) are known to reduce glass eel activity and that, in general, there is a positive correlation between temperature and upstream-migration speed. Furthermore, it was demonstrated that European eel muscle contractility and efficiency decrease rapidly with water temperature below 10 °C43,44. Therefore, low temperatures in rivers may affect eel ecology through both hydrodynamics and physiology, by exerting a direct limiting effect on the movement of the individual. The mechanism controlling the entire breadth of temperatures over which glass eel can have the highest or the lowest swimming performance is still not clear and further research is needed to extend the selected temperature range to achieve comprehensive results for this species. Since European eel is widely distributed across different European climates, we highlight that further investigation can be directed to better determine whether and how water temperature may affect eel swimming performance in different climatic environments and in the context of climate change. More

  • in

    The macroevolutionary landscape of short-necked plesiosaurians

    1.
    Vermeij, G. J. & Motani, R. Land to sea transitions in vertebrates: The dynamics of colonization. Paleobiology 44, 237–250 (2018).
    Article  Google Scholar 
    2.
    Motani, R. Evolution of fish-shaped reptiles (Reptilia: Ichthyopterygia) in their physical environments and constraints. Annu. Rev. Earth Planet. Sci. 33, 395–420 (2005).
    ADS  CAS  Article  Google Scholar 

    3.
    Mccurry, M. R. et al. The remarkable convergence of skull shape in crocodilians and toothed whales. Proc. R. Soc. B Biol. Sci. 284, 9–11 (2017).
    Google Scholar 

    4.
    McCurry, M. R. et al. The repeated evolution of dental apicobasal ridges in aquatic-feeding mammals and reptiles. Biol. J. Linn. Soc. https://doi.org/10.1093/biolinnean/blz025 (2019).
    Article  Google Scholar 

    5.
    Lindgren, J., Caldwell, M. W., Konishi, T. & Chiappe, L. M. Convergent evolution in aquatic tetrapods: Insights from an exceptional fossil mosasaur. PLoS ONE 5, e11998 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    6.
    Lindgren, J., Polcyn, M. J. & Young, B. A. Landlubbers to leviathans: Evolution of swimming in mosasaurine mosasaurs. Paleobiology 37, 445–469 (2011).
    Article  Google Scholar 

    7.
    Kelley, N. P. & Motani, R. Trophic convergence drives morphological convergence in marine tetrapods. Biol. Lett. 11, 1–5 (2015).
    Article  Google Scholar 

    8.
    Makádi, L., Caldwell, M. W. & Ösi, A. The first freshwater mosasauroid (Upper Cretaceous, Hungary) and a new clade of basal mosasauroids. PLoS ONE 7, e51781 (2012).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    9.
    O’Keefe, F. R. A cladistic analysis and taxonomic revision of the Plesiosauria (Reptilia:Sauropterygia). Acta Zool. Fenn. 213, 1–63 (2001).
    Google Scholar 

    10.
    O’Keefe, F. R. The evolution of plesiosaur and pliosaur morphotypes in the Plesiosauria (Reptilia: Sauropterygia). Palaeobiology 28, 101–112 (2002).
    Article  Google Scholar 

    11.
    Fischer, V., Benson, R. B. J., Druckenmiller, P. S., Ketchum, H. F. & Bardet, N. The evolutionary history of polycotylid plesiosaurians. R. Soc. Open Sci. 5, 172177 (2018).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Soul, L. C. & Benson, R. B. J. Developmental mechanisms of macroevolutionary change in the tetrapod axis: A case study of Sauropterygia. Evolution (N. Y.) 71, 1164–1177 (2017).
    Google Scholar 

    13.
    Foffa, D., Young, M. T., Stubbs, T. L., Dexter, K. G. & Brusatte, S. L. The long-term ecology and evolution of marine reptiles in a Jurassic seaway. Nat. Ecol. Evol. 2, 1548–1555 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    14.
    Stubbs, T. L. & Benton, M. J. Ecomorphological diversifications of Mesozoic marine reptiles: The roles of ecological opportunity and extinction. Paleobiology https://doi.org/10.1017/pab.2016.15 (2016).
    Article  Google Scholar 

    15.
    Zverkov, N. G., Fischer, V., Madzia, D. & Benson, R. B. J. Increased Pliosaurid dental disparity across the jurassic—Cretaceous transition. Palaeontology 61, 825–846 (2018).
    Article  Google Scholar 

    16.
    Fischer, V., Bardet, N., Benson, R. B. J., Arkhangelsky, M. S. & Friedman, M. Extinction of fish-shaped marine reptiles associated with reduced evolutionary rates and global environmental volatility. Nat. Commun. 7, 1–11 (2016).
    Google Scholar 

    17.
    Fischer, V. Taxonomy of Platypterygius campylodon and the diversity of the last ichthyosaurs. PeerJ 4, 1–21 (2016).
    CAS  Google Scholar 

    18.
    Ridgway, S. H. & Harrison, R. The Second Book of Dolphins and the Porpoise. Handbook of Marine Mammals (Academic Press, Cambridge, 1999).
    Google Scholar 

    19.
    Fischer, V. et al. Plasticity and convergence in the evolution of short-necked plesiosaurs. Curr. Biol. 27, 1667–1676 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    R Core Team. R: A language and environment for statistical computing. (2016).

    21.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, New York, 2016).
    Google Scholar 

    22.
    de Vries, A. & Ripley, B. D. ggdendro: Create Dendrograms and Tree Diagrams Using ‘ggplot2’ (2016).

    23.
    Galili, T. dendextend: An R package for visualizing, adjusting, and comparing trees of hierarchical clustering. Bioinformatics 31, 3718–3720 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Auguie, B. gridExtra: Miscellaneous Functions for ‘Grid’ Graphics (2017).

    25.
    Benson, R. B. J. & Druckenmiller, P. S. Faunal turnover of marine tetrapods during the Jurassic-Cretaceous transition. Biol. Rev. 89, 1–23 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    26.
    Goloboff, P. A. & Catalano, S. A. TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics https://doi.org/10.1111/cla.12160 (2016).
    Article  Google Scholar 

    27.
    Bapst, D. W. paleotree: An R package for paleontological and phylogenetic analyses of evolution. Methods Ecol. Evol. 3, 803–807 (2012).
    Article  Google Scholar 

    28.
    Revelle, W. psych: Procedures for Psychological, Psychometric, and Personality Research (2018).

    29.
    Suzuki, R. & Shimodaira, H. Pvclust: Hierarchical Clustering with P-Values via Multiscale Bootstrap Resampling, 1–13 (2015).

    30.
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 

    31.
    Oksanen, J. et al.vegan: Community Ecology Package (2019).

    32.
    Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Slowikowski, K. ggrepel: Automatically Position Non-overlapping Text Labels with ‘ggplot2’ (2019).

    34.
    Sievert, C. plotly for R (2018).

    35.
    Venables, W. N. & Ripley, B. D. MASS: Modern Applied Statistics with S (Springer, New York, 2002).
    Google Scholar 

    36.
    Marshall, C. R. The evolution of morphogenetic fitness landscapes: Conceptualising the interplay between the developmental and ecological drivers of morphological innovation. Aust. J. Zool. 62, 3–17 (2014).
    Article  Google Scholar 

    37.
    Boucher, F. C., Démery, V., Conti, E., Harmon, L. J. & Uyeda, J. A general model for estimating macroevolutionary landscapes. Syst. Biol. 67, 1–16 (2017).
    Google Scholar 

    38.
    Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).
    Article  Google Scholar 

    39.
    Hijmans, R. J. Raster: Geographic Data Analysis and Modeling (2019).

    40.
    Andrew Barr, W. The morphology of the bovid calcaneus: Function, phylogenetic signal, and allometric scaling. J. Mamm. Evol. https://doi.org/10.1007/s10914-018-9446-9 (2018).
    Article  Google Scholar 

    41.
    Ketchum, H. F. & Benson, R. B. J. A new pliosaurid (Sauropterygia, Plesiosauria) from the Oxford Clay Formation (Middle Jurassic, Callovian) of England: Evidence for a gracile, longirostrine grade of Early-Middle Jurassic pliosaurids. Spec. Pap. Palaeontol. 86, 109–129 (2011).
    Google Scholar 

    42.
    Albright, L. B., Gillette, D. D. & Titus, A. L. Plesiosaurs from the upper cretaceous (Cenomanian–Turonian) tropic shale of southern Utah, part 2: Polycotylidae. J. Vertebr. Paleontol. 27, 41–58 (2007).
    Article  Google Scholar 

    43.
    Páramo-Fonseca, M. E., Benavides-Cabra, C. D. & Gutiérrez, I. E. A new specimen of Stenorhynchosaurus munozi Pliosauridae ), from the Barremian of Colombia: New morphological features and ontogenetic implications. J. Vertebr. Paleontol. 39, 1–16 (2019).
    Article  Google Scholar 

    44.
    Stayton, C. T. The definition, recognition, and interpretation of convergent evolution, and two new measures for quantifying and assessing the significance of convergence. Evolution (N. Y.) 69, 2140–2153 (2015).
    Google Scholar 

    45.
    Stayton, C. T. Package convevol. 14 (2018).

    46.
    Button, D. J. & Zanno, L. E. Repeated evolution of divergent modes of herbivory in non-avian dinosaurs. Curr. Biol. 30, 158–168 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Castiglione, S. et al. A new, fast method to search for morphological convergence with shape data. PLoS ONE 14, e0226949 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Raia, P. et al. RRphylo: Phylogenetic ridge regression methods for comparative studies. Methods Ecol. Evol. 9, 974–983 (2019).
    Google Scholar 

    49.
    Guillerme, T. dispRity: A modular R package for measuring disparity. Methods Ecol. Evol. 9, 1755 (2018).
    Article  Google Scholar 

    50.
    McCurry, M. R., Walmsley, C. W., Fitzgerald, E. M. G. & McHenry, C. R. The biomechanical consequences of longirostry in crocodilians and odontocetes. J. Biomech. 56, 61–70 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Foffa, D. et al. Functional anatomy and feeding biomechanics of a giant Upper Jurassic pliosaur (Reptilia: Sauropterygia) from Weymouth Bay, Dorset, UK. J. Anat. 225, 209–219 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    52.
    Schubert, B. W. & Ungar, P. S. Wear facets and enamel spalling in tyrannosaurid dinosaurs. Acta Palaeontol. Pol. 50, 93–99 (2005).
    Google Scholar 

    53.
    Madzia, D., Sachs, S. & Lindgren, J. Morphological and phylogenetic aspects of the dentition of Megacephalosaurus eulerti, a pliosaurid from the Turonian of Kansas, USA, with remarks on the cranial anatomy of the taxon. Geol. Mag. https://doi.org/10.1017/S0016756818000523 (2018).
    Article  Google Scholar 

    54.
    Madzia, D. A reappraisal of Polyptychodon (Plesiosauria) from the Cretaceous of England. PeerJ 4, e1998 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    55.
    Bardet, N., Fischer, V. & Machalski, M. Large predatory marine reptiles from the Albian-Cenomanian of Annopol, Poland. Geol. Mag. 153, 1–16 (2016).
    ADS  CAS  Article  Google Scholar 

    56.
    Pierce, S. E., Angielczyk, K. D. & Rayfield, E. J. Shape and mechanics in thalattosuchian (Crocodylomorpha) skulls: Implications for feeding behaviour and niche partitioning. J. Anat. 215, 555–576 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Da Silva, V. M. F. & Best, R. C. Amazon river dolphin (Inia) preys on turtle (Podocnemis). Investig. Cetacea 8, 253–256 (1992).
    Google Scholar 

    58.
    Hocking, D. P., Marx, F. G., Park, T., Fitzgerald, E. M. G. & Evans, A. R. A behavioural framework for the evolution of feeding in predatory aquatic mammals. Proc. R. Soc. B Biol. Sci. 284, 20162750 (2017).
    Article  Google Scholar 

    59.
    Wiens, J. J. & Graham, C. H. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).
    Article  Google Scholar 

    60.
    Schumacher, B. A., Carpenter, K. & Everhart, M. J. A new Cretaceous Pliosaurid (Reptilia, Plesiosauria) from the Carlile Shale (middle Turonian) of Russell County, Kansas. J. Vertebr. Paleontol. 33, 613–628 (2013).
    Article  Google Scholar 

    61.
    Benson, R. B. J. et al. A giant pliosaurid skull from the Late Jurassic of England. PLoS ONE 8, e65989 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    O’Gorman, J. P., Gasparini, Z. & Spalletti, L. A. A new Pliosaurus species (Sauropterygia, Plesiosauria) from the Upper Jurassic of Patagonia: New insights on the Tithonian morphological disparity of mandibular symphyseal morphology. J. Paleontol. https://doi.org/10.1017/jpa.2017.82 (2018).
    Article  Google Scholar 

    63.
    Knutsen, E. M., Druckenmiller, P. S. & Hurum, J. A new species of Pliosaurus (Sauropterygia: Plesiosauria) from the Middle Volgian of central Spitsbergen, Norway. Nor. J. Geol. 92, 235–258 (2012).
    Google Scholar 

    64.
    Tarlo, L. B. A review of the upper Jurassic pliosaurs. Bull. Br. Museum Nat. Hist. Geol. 4, 145–189 (1960).
    Google Scholar 

    65.
    Zverkov, N. G. & Prilepskaya, N. E. A prevalence of Arthropterygius (Ichthyosauria: Ophthalmosauridae) in the Late Jurassic—Earliest Cretaceous of the Boreal Realm. PeerJ 7, e6799 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    66.
    Delsett, L. L. et al. Mesozoic marine reptiles from Spitsbergen and their ecosystems. Geol. Today 35, 20–25 (2019).
    Article  Google Scholar 

    67.
    Adams, D. A. Trinacromerum bonneri, new species, last and fastest pliosaur of the Western Interior Seaway. Texas J. Sci. 49, 179–198 (1997).
    Google Scholar 

    68.
    Monnet, C. The Cenomanian-Turonian boundary mass extinction (Late Cretaceous): New insights from ammonoid biodiversity patterns of Europe, Tunisia and the Western Interior (North America). Palaeogeogr. Palaeoclimatol. Palaeoecol. 282, 88–104 (2009).
    Article  Google Scholar 

    69.
    Iba, Y. et al. Belemnite extinction and the origin of modern cephalopods 35 m.y. prior to the Cretaceous-Paleogene event. Geology 39, 483–486 (2011).
    ADS  Article  Google Scholar 

    70.
    Bengtson, P. & Kakabadze, M. V. Ammonites and the mid-Cretaceous saga. Cretac. Res. 88, 90 (2018).
    Article  Google Scholar 

    71.
    Bardet, N. et al. Mesozoic marine reptile palaeobiogeography in response to drifting plates. Gondwana Res. 26, 869–887 (2014).
    ADS  Article  Google Scholar 

    72.
    Bardet, N., Houssaye, A., Rage, J.-C. & Suberbiola, X. P. The Cenomanian-Turonian (Late Cretaceous) radiation of marine squamates (Reptilia): The role of the Mediterranean Tethys. Bull. la Soc. Géol. Fr. 179, 605–622 (2008).
    Article  Google Scholar 

    73.
    Polcyn, M. J., Jacobs, L. L., Araújo, R., Schulp, A. S. & Mateus, O. Physical drivers of mosasaur evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 400, 17–27 (2014).
    Article  Google Scholar 

    74.
    Condamine, F. L., Romieu, J. & Guinot, G. Climate cooling and clade competition likely drove the decline of lamniform sharks. Proc. Natl. Acad. Sci. U.S.A. 116, 20584–20590 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Guinot, G., Underwood, C. J., Cappetta, H. & Ward, D. J. Sharks (Elasmobranchii: Euselachii) from the Late Cretaceous of France and the UK. J. Syst. Palaeontol. 11, 589–671 (2013).
    Article  Google Scholar 

    76.
    Cavin, L., Forey, P. L. & Lécuyer, C. Correlation between environment and Late Mesozoic ray-finned fish evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 245, 353–367 (2007).
    Article  Google Scholar 

    77.
    O’Gorman, J. P. Elasmosaurid phylogeny and paleobiogeography, with a reappraisal of Aphrosaurus furlongi from the Maastrichtian of the Moreno Formation. J. Vertebr. Paleontol. 39, e1692025 (2020).
    Article  Google Scholar 

    78.
    Skelton, P. W., Spicer, R. A., Kelley, S. & Gilmour, I. The Cretaceous World (Cambridge University Press, Cambridge, 2003).
    Google Scholar 

    79.
    Schumacher, B. A. A ‘woollgari-zone mosasaur’ (Squamata; Mosasauridae) from the Carlile Shale (Lower Middle Turonian) of central Kansas and the stratigraphic overlap of early mosasaurs and pliosaurid plesiosaurs. Trans. Kansas Acad. Sci. 114, 1–14 (2011).
    Article  Google Scholar 

    80.
    Zverkov, N. G. & Pervushov, E. M. A gigantic pliosaurid from the Cenomanian (upper Cretaceous) of the Volga Region, Russia. Cretac. Res https://doi.org/10.1016/j.cretres.2020.104419 (2020).
    Article  Google Scholar 

    81.
    Robin O’Keefe, F. et al. Cranial anatomy of Morturneria seymourensis from Antarctica, and the evolution of filter feeding in plesiosaurs of the Austral Late Cretaceous. J. Vertebr. Paleontol. 4634, e1347570 (2017).
    Article  Google Scholar 

    82.
    Serratos, D. J., Druckenmiller, P. & Benson, R. B. J. A new elasmosaurid (Sauropterygia, Plesiosauria) from the Bearpaw Shale (Late Cretaceous, Maastrichtian) of Montana demonstrates multiple evolutionary reductions of neck length within Elasmosauridae. J. Vertebr. Paleontol. 1278608, 1–25 (2017).
    Google Scholar 

    83.
    Losos, J. B. Convergence, adaptation, and constraint. Evolution (N. Y.) 65, 1827–1840 (2011).
    Google Scholar 

    84.
    Korn, D., Hopkins, M. J. & Walton, S. A. Extinction space—A method for the quantification and classification of changes in morphospace across extinction boundaries. Evolution (N. Y.) https://doi.org/10.1111/evo.12162 (2013).
    Article  Google Scholar 

    85.
    Friedman, M. Explosive morphological diversification of spiny-finned teleost fishes in the aftermath of the end-Cretaceous extinction. Proc. R. Soc. B Biol. Sci. 277, 1675–1683 (2010).
    Article  Google Scholar 

    86.
    Mahler, D. L., Ingram, T., Revell, L. J. & Losos, J. B. Exceptional convergence on the macroevolutionary landscape. Science 341, 292–295 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    87.
    Pigot, A. L. et al. Macroevolutionary convergence connects morphological form to ecological function in birds. Nat. Ecol. Evol. 4, 230–239 (2020).
    PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Future climate change vulnerability of endemic island mammals

    1.
    Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. Biodiversity: the ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Pereira, H. M. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    3.
    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    4.
    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    5.
    Kier, G. et al. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl Acad. Sci. USA 106, 9322–9327 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    6.
    Işik, K. Rare and endemic species: why are they prone to extinction? Turk. J. Bot. 35, 411–417 (2011).
    Google Scholar 

    7.
    Harter, D. E. V. et al. Impacts of global climate change on the floras of oceanic islands – projections, implications and current knowledge. Perspect. Plant Ecol. Evol. Syst. 17, 160–183 (2015).
    Article  Google Scholar 

    8.
    Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Chang. 5, 215–224 (2015).
    ADS  Article  Google Scholar 

    9.
    de los Ríos, C., Watson, J. E. M. & Butt, N. Persistence of methodological, taxonomical, and geographical bias in assessments of species’ vulnerability to climate change: a review. Glob. Ecol. Conserv. 15, e00412 (2018).
    Article  Google Scholar 

    10.
    Williams, S. E., Shoo, L. P., Isaac, J. L., Hoffmann, A. A. & Langham, G. Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol. 6, e325 (2008).
    PubMed Central  Article  CAS  PubMed  Google Scholar 

    11.
    Foden, W. B. et al. Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8, e65427 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Intergovernmental Panel on Climate Change. Climate change 2007: impacts, adaptation and vulnerability. https://www.ipcc.ch/report/ar4/wg2/ (2007).

    13.
    Chin, A., Kyne, P. M., Walker, T. I. & McAuley, R. B. An integrated risk assessment for climate change: analysing the vulnerability of sharks and rays on Australia’s Great Barrier Reef. Glob. Chang. Biol. 16, 1936–1953 (2010).
    ADS  Article  Google Scholar 

    14.
    Ameca y Juárez, E. I., Mace, G. M., Cowlishaw, G. & Pettorelli, N. Natural population die-offs: causes and consequences for terrestrial mammals. Trends Ecol. Evol. 27, 272–277 (2012).
    PubMed  Article  Google Scholar 

    15.
    Foden, W. B. et al. Climate change vulnerability assessment of species. Wiley Interdiscip. Rev. Clim. Chang. 10, e551 (2019).
    Article  Google Scholar 

    16.
    Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 12, 361–371 (2003).
    Article  Google Scholar 

    17.
    Garcia, R. A., Burgess, N. D., Cabeza, M., Rahbek, C. & Araújo, M. B. Exploring consensus in 21st century projections of climatically suitable areas for African vertebrates. Glob. Chang. Biol. 18, 1253–1269 (2012).
    ADS  Article  Google Scholar 

    18.
    Visconti, P. et al. Projecting global biodiversity indicators under future development scenarios. Conserv. Lett. 9, 5–13 (2016).
    Article  Google Scholar 

    19.
    Morin, X. & Thuiller, W. Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology 90, 1301–1313 (2009).
    PubMed  Article  Google Scholar 

    20.
    Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. B Biol. Sci. 367, 1665–1679 (2012).
    Article  Google Scholar 

    21.
    Pearson, R. G. et al. Life history and spatial traits predict extinction risk due to climate change. Nat. Clim. Chang. 4, 217–221 (2014).
    ADS  Article  Google Scholar 

    22.
    Hossain, M. A., Kujala, H., Bland, L. M., Burgman, M. & Lahoz-Monfort, J. J. Assessing the impacts of uncertainty in climate-change vulnerability assessments. Divers. Distrib. 25, 1234–1245 (2019).
    Google Scholar 

    23.
    Parravicini, V. et al. Global mismatch between species richness and vulnerability of reef fish assemblages. Ecol. Lett. 17, 1101–1110 (2014).
    PubMed  Article  Google Scholar 

    24.
    Li, D., Wu, S., Liu, L., Zhang, Y. & Li, S. Vulnerability of the global terrestrial ecosystems to climate change. Glob. Chang. Biol. 24, 4095–4106 (2018).
    ADS  PubMed  Article  Google Scholar 

    25.
    Spooner, F. E. B., Pearson, R. G. & Freeman, R. Rapid warming is associated with population decline among terrestrial birds and mammals globally. Glob. Chang. Biol. 24, 4521–4531 (2018).
    ADS  PubMed  Article  Google Scholar 

    26.
    Moilanen, A., Wilson, K. A. & Possingham, H. P. Spatial Conservation Prioritization: Quantitative Methods and Computational Tools (Oxford University Press, 2009).

    27.
    Brooks, T. M. et al. Global biodiversity conservation priorities. Science 313, 58–61 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    28.
    Rondinini, C., Rodrigues, A. S. L. & Boitani, L. The key elements of a comprehensive global mammal conservation strategy. Philos. Trans. R. Soc. B Biol. Sci. 366, 2591–2597 (2011).
    Article  Google Scholar 

    29.
    Leclerc, C., Courchamp, F. & Bellard, C. Insular threat associations within taxa worldwide. Sci. Rep. 8, 6393 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    30.
    Pacifici, M., Visconti, P. & Rondinini, C. A framework for the identification of hotspots of climate change risk for mammals. Glob. Chang. Biol. 24, 1626–1636 (2018).
    ADS  PubMed  Article  Google Scholar 

    31.
    Dickinson, M. G., Orme, C. D. L., Suttle, K. B. & Mace, G. M. Separating sensitivity from exposure in assessing extinction risk from climate change. Sci. Rep. 4, 6898 (2015).
    Article  CAS  Google Scholar 

    32.
    González-Suárez, M., Gómez, A. & Revilla, E. Which intrinsic traits predict vulnerability to extinction depends on the actual threatening processes. Ecosphere 4, art76 (2013).
    Article  Google Scholar 

    33.
    Pimm, S., Raven, P., Peterson, A., Şekercioǧlu, Ç. H. & Ehrlich, P. R. Human impacts on the rates of recent, present, and future bird extinctions. Proc. Natl Acad. Sci. USA 103, 10941–10946 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    34.
    Jansson, R. Extinction risks from climate change: macroecological and historical insights. F1000 Biol. Rep. 1, 44 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    35.
    Ferreira, M. T. et al. Implications of climate change to the design of protected areas: the case study of small islands (Azores). PLoS ONE 14, e0218168 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    37.
    Gaüzère, P., Jiguet, F. & Devictor, V. Can protected areas mitigate the impacts of climate change on bird’s species and communities? Divers. Distrib. 22, 625–637 (2016).
    Article  Google Scholar 

    38.
    Heinen, J. H., van Loon, E. E., Hansen, D. M. & Kissling, W. D. Extinction-driven changes in frugivore communities on oceanic islands. Ecography 41, 1245–1255 (2018).
    Article  Google Scholar 

    39.
    Pacifici, M. et al. Species’ traits influenced their response to recent climate change. Nat. Clim. Chang. 7, 205–208 (2017).
    ADS  Article  Google Scholar 

    40.
    Angert, A. L. et al. Do species’ traits predict recent shifts at expanding range edges? Ecol. Lett. 14, 677–689 (2011).
    PubMed  Article  Google Scholar 

    41.
    Estrada, A., Morales-Castilla, I., Caplat, P. & Early, R. Usefulness of species traits in predicting range shifts. Trends Ecol. Evol. 31, 190–203 (2016).
    PubMed  Article  Google Scholar 

    42.
    Morrison, L., Estrada, A. & Early, R. Species traits suggest European mammals facing the greatest climate change are also least able to colonize new locations. Divers. Distrib. 24, 1321–1332 (2018).
    Article  Google Scholar 

    43.
    Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    44.
    Whittaker, R. J. & Fernández-Palacios, J. M. Island Biogeography: Ecology, Evolution, and Conservation (Oxford University Press, Oxford, 2007).

    45.
    Wheatley, C. J. et al. Climate change vulnerability for species—assessing the assessments. Glob. Chang. Biol. 23, 3704–3715 (2017).
    ADS  PubMed  Article  Google Scholar 

    46.
    Butt, N. et al. Challenges in assessing the vulnerability of species to climate change to inform conservation actions. Biol. Conserv. 199, 10–15 (2016).
    Article  Google Scholar 

    47.
    Ofori, B. Y., Stow, A. J., Baumgartner, J. B. & Beaumont, L. J. Influence of adaptive capacity on the outcome of climate change vulnerability assessment. Sci. Rep. 7, 12979 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    48.
    Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Chang. 8, 713–717 (2018).
    ADS  Article  Google Scholar 

    49.
    Hannah, L. et al. Fine-grain modeling of species’ response to climate change: holdouts, stepping-stones, and microrefugia. Trends Ecol. Evol. 29, 390–397 (2014).
    PubMed  Article  Google Scholar 

    50.
    Bellard, C., Leclerc, C. & Courchamp, F. Impact of sea level rise on the 10 insular biodiversity hotspots. Glob. Ecol. Biogeogr. 23, 203–212 (2014).
    Article  Google Scholar 

    51.
    Ameca y Juárez, E. I., Mace, G. M., Cowlishaw, G., Cornforth, W. A. & Pettorelli, N. Assessing exposure to extreme climatic events for terrestrial mammals. Conserv. Lett. 6, 145–153 (2013).
    Article  Google Scholar 

    52.
    Maxwell, S. L., Venter, O., Jones, K. R. & Watson, J. E. M. Integrating human responses to climate change into conservation vulnerability assessments and adaptation planning. Ann. NY Acad. Sci. 1355, 98–116 (2015).
    ADS  PubMed  Article  Google Scholar 

    53.
    Martin, T. G. & Watson, J. E. M. Intact ecosystems provide best defence against climate change. Nat. Clim. Chang. 6, 122–124 (2016).
    ADS  Article  Google Scholar 

    54.
    IUCN. The IUCN red list of threatened species (version 2018-2). http://www.iucnredlist.org (2018).

    55.
    Weigelt, P., Jetz, W. & Kreft, H. Bioclimatic and physical characterization of the world’s islands. Proc. Natl Acad. Sci. USA 110, 15307–11532 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    56.
    Williams, J. W., Jackson, S. T. & Kutzbach, J. E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl Acad. Sci. USA 104, 5738–5742 (2007).
    ADS  CAS  PubMed  Article  Google Scholar 

    57.
    Bellard, C. et al. Vulnerability of biodiversity hotspots to global change. Glob. Ecol. Biogeogr. 23, 1376–1386 (2014).
    Article  Google Scholar 

    58.
    Veloz, S. D. et al. No-analog climates and shifting realized niches during the late quaternary: implications for 21st-century predictions by species distribution models. Glob. Chang. Biol. 18, 1698–1713 (2012).
    ADS  Article  Google Scholar 

    59.
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Article  Google Scholar 

    60.
    Intergovernmental Panel on Climate Change. Climate change 2013: the physical science basis. https://www.ipcc.ch/report/ar5/wg1/ (2013).

    61.
    Veloz, S. et al. Identifying climatic analogs for Wisconsin under 21st-century climate-change scenarios. Clim. Change 112, 1037–1058 (2012).
    ADS  Article  Google Scholar 

    62.
    Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).
    Article  Google Scholar 

    63.
    Pacifici, M. et al. Generation length for mammals. Nat. Conserv. 5, 89–94 (2013).
    Article  Google Scholar 

    64.
    Leclerc, C., Villéger, S., Marino, C. & Bellard, C. Global changes threaten functional and taxonomic diversity of insular species worldwide. Divers. Distrib. 26, 402–414 (2020).
    Article  Google Scholar 

    65.
    Thomas, C. D. et al. Protected areas facilitate species’ range expansions. Proc. Natl Acad. Sci. USA 109, 14063–14068 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    66.
    Mazaris, A. D. et al. Evaluating the connectivity of a protected areas’ network under the prism of global change: the efficiency of the European Natura 2000 Network for four birds of prey. PLoS ONE 8, e59640 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    67.
    Isaac, N. J. B., Turvey, S. T., Collen, B., Waterman, C. & Baillie, J. E. M. Mammals on the edge: conservation priorities based on threat and phylogeny. PLoS ONE 2, e296 (2007).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Faurby, S. et al. PHYLACINE 1.2: the phylogenetic atlas of mammal macroecology. Ecology 99, 2626–2626 (2018).
    PubMed  Article  Google Scholar 

    69.
    Winter, M., Devictor, V. & Schweiger, O. Phylogenetic diversity and nature conservation: where are we? Trends Ecol. Evol. 28, 199–204 (2013).
    PubMed  Article  Google Scholar 

    70.
    IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. https://ipbes.net/global-assessment (2019).

    71.
    Balmford, A. Extinction filters and current resilience: the significance of past selection pressures for conservation biology. Trends Ecol. Evol. 11, 193–196 (1996).
    CAS  PubMed  Article  Google Scholar 

    72.
    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    73.
    Allan, J. D. et al. Joint analysis of stressors and ecosystem services to enhance restoration effectiveness. Proc. Natl Acad. Sci. USA 110, 372–377 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    74.
    Halpern, B. S. & Fujita, R. Assumptions, challenges, and future directions in cumulative impact analysis. Ecosphere 4, art131 (2013).
    Article  Google Scholar 

    75.
    Hwang, C.-L. & Yoon, K. Multiple Attribute Decision Making: Methods and Applications, Vol. 186 (Springer-Verlag, New York, 1981).

    76.
    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2008). More

  • in

    Wildland fire as an atmospheric source of viable microbial aerosols and biological ice nucleating particles

    1.
    Amato P, Brisebois E, Draghi M, Duchane C, Fröhloch-Nowoisky J, Huffman JA, et al. Main biological aerosols, specificities, abundance, and diversity. In: Delort A-M, Amato P, editors. Microbiology of aerosols. 1st ed. John Wiley & Sons, Inc.; Hoboken, New Jersey, USA. 2018. p. 3–11.
    2.
    Burrows SM, Butler T, Jöckel P, Tost H, Kerkweg A, Pöschl U, et al. Bacteria in the global atmosphere—part 2: modeling of emissions and transport between different ecosystems. Atmos Chem Phys. 2009;9:9281–97.
    CAS  Article  Google Scholar 

    3.
    Wilkinson DM, Koumoutsaris S, Mitchell EAD, Bey I. Modelling the effect of size on the aerial dispersal of microorganisms. J Biogeogr. 2012;39:89–97.
    Article  Google Scholar 

    4.
    Bryan NC, Christner BC, Guzik TG, Granger DJ, Stewart MF. Abundance and survival of microbial aerosols in the troposphere and stratosphere. ISME J. 2019;13:2789–99.
    CAS  PubMed  Article  Google Scholar 

    5.
    Amato P, Joly M, Schaupp C, Attard E, Möhler O, Morris CE, et al. Survival and ice nucleation activity of bacteria as aerosols in a cloud simulation chamber. Atmos Chem Phys. 2015;15:6455–65.
    CAS  Article  Google Scholar 

    6.
    Brown JKM, Hovmøller MS. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science. 2002;297:537–41.
    CAS  PubMed  Article  Google Scholar 

    7.
    Douwes J, Thorne P, Pearce N, Heederik D. Bioaerosol health effects and exposure assessment: progress and prospects. Ann Occup Hyg. 2003;47:187–200.
    CAS  PubMed  Google Scholar 

    8.
    Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, et al. Emerging fungal threats to animal, plant and ecosystem health. Nature. 2012;484:186–94.
    CAS  PubMed  Article  Google Scholar 

    9.
    Huffman JA, Prenni AJ, DeMott PJ, Pöhlker C, Mason RH, Robinson NH, et al. High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmos Chem Phys. 2013;13:6151–64.
    Article  CAS  Google Scholar 

    10.
    Möhler O, Demott PJ, Vali G, Levin Z. Microbiology and atmospheric processes: the role of biological particles in cloud physics. Biogeosciences. 2007;1059–71.

    11.
    Morris CE, Conen F, Alex Huffman J, Phillips V, Pöschl U, Sands DC. Bioprecipitation: a feedback cycle linking Earth history, ecosystem dynamics and land use through biological ice nucleators in the atmosphere. Glob Change Biol. 2014;20:341–51.
    Article  Google Scholar 

    12.
    Sands DC, Langhans VE, Scharen AL, de Smet G. The association between bacteria and rain and possible resultant meteorological implications. J Hung Meteorol Ser. 1982;86:148–52.
    Google Scholar 

    13.
    Burrows SM, Elbert W, Lawrence MG, Pöschl U. Bacteria in the global atmosphere—part 1: review and synthesis of literature data for different ecosystems. Atmos Chem Phys. 2009;9:9263–80.
    CAS  Article  Google Scholar 

    14.
    Lindow SE, Brandl MT. Microbiology of the phyllosphere. Appl Environ Microbiol. 2003;69:1875–83.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Lindemann J, Constantinidou HA, Barchet WR, Upper CD. Plants as sources of airborne bacteria, including ice nucleation-active bacteria. Appl Environ Microbiol. 1982;44:1059–63.

    16.
    Butterworth J, McCartney HA. The dispersal of bacteria from leaf surfaces by water splash. J Appl Bacteriol. 1991;71:484–96.

    17.
    Wickman HH. Deposition, adhesion, and release of bioaerosols. Atmos Microb Aerosols. 1994;5:99–165.

    18.
    Aylor DE, Parlange JY. Ventilation required to entrain small particles from leaves. Plant Physiol. 1975;56:97–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Lighthart B, Shaffer BT, Marthi B, Ganio LM. Artificial wind-gust liberation of microbial bioaerosols previously deposited on plants. Aerobiologia. 1993;9:189–96.
    Article  Google Scholar 

    20.
    Jones AM, Harrison RM. The effects of meteorological factors on atmospheric bioaerosol concentrations—a review. Sci Total Environ. 2004;326:151–80.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Andreae MO, Merlet P. Emission of trace gases and aerosols from biomass burning. Glob Biogeochem Cycles. 2001;15:955–66.
    CAS  Article  Google Scholar 

    22.
    Yang Y, Chan C, Tao J, Lin M, Engling G, Zhang Z, et al. Observation of elevated fungal tracers due to biomass burning in the Sichuan Basin at Chengdu City, China. Sci Total Environ. 2012;431:68–77.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Rajput P, Anjum MH, Gupta T. One year record of bioaerosols and particles concentration in Indo-Gangetic Plain: implications of biomass burning emissions to high-level of endotoxin exposure. Environ Pollut. 2017;224:98–106.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Kobziar LN, Pingree MRA, Larson H, Dreaden TJ, Green S, Smith JA. Pyroaerobiology: the aerosolization and transport of viable microbial life by wildland fire. Ecosphere. 2018;9:e02507.
    Article  Google Scholar 

    25.
    Mims SA, Mims IIIFM. Fungal spores are transported long distances in smoke from biomass fires. Atmos Environ. 2004;38:651–5.
    CAS  Article  Google Scholar 

    26.
    Bonde MR, Prescott JM, Matsumoto TT, Peterson GL. Possible dissemination of teliospores of Tilletia-indica by the practice of burning wheat stubble. Am Phytopathol Soc. 1987;77:639.

    27.
    Hu W, Wang Z, Huang S, Ren L, Yue S, Li P, et al. Biological aerosol particles in polluted regions. Curr Pollut Rep. 2020;6:65–89.

    28.
    Urbanski SP, Reeves MC, Corley RE, Silverstein RP, Hao WMM. Contiguous United States wildland fire emission estimates during 2003-2015 | Rocky Mountain Research Station. Earth Syst Sci Data. 2018;10:2241–74.
    Article  Google Scholar 

    29.
    Kobziar LN, Pingree MRA, Watts AC, Nelson KN, Dreaden TJ, Ridout M. Accessing the Life in Smoke: A New Application of Unmanned Aircraft Systems (UAS) to Sample Wildland Fire Bioaerosol Emissions and Their Environment. 2019;15.

    30.
    Petters MD, Parsons MT, Prenni AJ, DeMott PJ, Kreidenweis SM, Carrico CM, et al. Ice nuclei emissions from biomass burning. J Geophys Res. 2009;114:D07209.
    Google Scholar 

    31.
    McCluskey CS, DeMott PJ, Prenni AJ, Levin EJT, McMeeking GR, Sullivan AP, et al. Characteristics of atmospheric ice nucleating particles associated with biomass burning in the US: prescribed burns and wildfires. J Geophys Res Atmos. 2014;119:10458–70.
    Article  Google Scholar 

    32.
    Maki LR, Galyan EL, Chang-Chien M-M, Caldwell DR. Ice nucleation induced by Pseudomonas syringae. Appl Environ Microbiol. 1974;28:456–59.

    33.
    DeMott PJ, Prenni AJ, Liu X, Kreidenweis SM, Petters MD, Twohy CH, et al. Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc Natl Acad Sci USA. 2010;107:11217–22.
    CAS  PubMed  Article  Google Scholar 

    34.
    Urbanski S. Wildland fire emissions, carbon, and climate: emission factors. For Ecol Manag. 2013;317:51–60.

    35.
    Schnell RC, Vali G. Atmospheric ice nuclei from decomposing vegetation. Nature. 1972;236:163–5.
    Article  Google Scholar 

    36.
    Beattie GA, Lindow SE. The secret life of foliar bacterial pathogens on leaves. Ann Rev Phytopathol. 1995;33:145–72.

    37.
    Baldrian P. Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol Rev. 2016;41:fuw040.
    Article  CAS  Google Scholar 

    38.
    Vali G, Christensen M, Fresh RW, Galyan EL, Maki LR, Schnell RC. Biogenic ice nuclei—2. Bacterial Sources. J Atmos Sci. 1976;33:1565–70.
    Article  Google Scholar 

    39.
    FNAI. Guide to the natural communities of Florida: 2010 edition. Tallahassee; Florida Natural Areas Inventory. 2010.

    40.
    Moore RA, Hanlon R, Powers C, Schmale DG, Christner BC. Scavenging of sub-micron to micron-sized microbial aerosols during simulated rainfall. Atmosphere. 2020;11:80.
    Article  Google Scholar 

    41.
    Vali G. Quantitative evaluation of experimental results an the heterogeneous freezing nucleation of supercooled liquids. J Atmos Sci. 1971;28:402–9.
    Article  Google Scholar 

    42.
    Murray BJ, O’Sullivan D, Atkinson JD, Webb ME. Ice nucleation by particles immersed in supercooled cloud droplets. Chem Soc Rev. 2012;41:6519.
    CAS  PubMed  Article  Google Scholar 

    43.
    DeMott PJ, Prenni AJ. New directions: need for defining the numbers and sources of biological aerosols acting as ice nuclei. Atmos Environ. 2010;44:1944–5.
    CAS  Article  Google Scholar 

    44.
    Turner S, Pryer KM, Miao VPW, Palmer JD. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J. Eukaryot. Microbiol. 1999;46:327–338.

    45.
    Lane DJ. 16S/23S rRNA sequencing. In: Nucleic acid techniques in bacterial systematics. (Eds Stackebrandt E and Goodfellow M) John Wiley and Sons: New York, NY; 1991.

    46.
    Reinhardt ED, Keane RE, Brown JK. First order fire effects model: FOFEM 4.0, user’s guide. Missoula; U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 1997.

    47.
    Kreye JK, Varner JM, Kobziar LN. Long-duration soil heating resulting from forest floor duff smoldering in longleaf pine ecosystems. For Sci. 2020;66:1–13.

    48.
    Kreye JK, Brewer NW, Morgan P, Varner JM, Smith AMS, Hoffman CM, et al. Fire behavior in masticated fuels: a review. Ecol Manag. 2014;314:193–207.
    Article  Google Scholar 

    49.
    R Core Team. A language and environment for statistical computing. R Core Team; Vienna, Austria. 2018.

    50.
    Wickham H. ggplot2: elegant graphics for data analysis. Springer-Verlag: New York; 2016.

    51.
    Yu G, Smith DK, Zhu H, Guan Y, Lam TT-Y. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2017;8:28–36.
    Article  Google Scholar 

    52.
    Radzi bin Abas M, Oros DR, Simoneit BRT. Biomass burning as the main source of organic aerosol particulate matter in Malaysia during haze episodes. Chemosphere. 2004;55:1089–95.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Rajput P, Sarin M, Sharma D, Singh D. Characteristics and emission budget of carbonaceous species from post-harvest agricultural-waste burning in source region of the Indo-Gangetic Plain. Tellus B Chem Phys Meteorol. 2014;66:21026.
    Article  Google Scholar 

    54.
    Reid JS, Koppmann R, Eck TF, Eleuterio DP. A review of biomass burning emissions part II: intensive physical properties of biomass burning particles. Atmos Chem Phys. 2005;5:799–825.
    CAS  Article  Google Scholar 

    55.
    Hungershoefer K, Zeromskiene K, Iinuma Y, Helas G, Trentmann J, Trautmann T, et al. Modelling the optical properties of fresh biomass burning aerosol produced in a smoke chamber: results from the EFEU campaign. Atmos Chem Phys. 2008;8:3427–39.
    CAS  Article  Google Scholar 

    56.
    Robertson KM, Hsieh YP, Bugna GC. Fire environment effects on particulate matter emission factors in Southeastern US pine-grasslands. Atmos Environ. 2014;99:104–11.
    CAS  Article  Google Scholar 

    57.
    Santos-Burgoa C, Rosas I, Yela A. Occurrence of airborne enteric bacteria in Mexico city. Aerobiologia. 1994;10:39–45.
    Article  Google Scholar 

    58.
    Ziemba LD, Beyersdorf AJ, Chen G, Corr CA, Crumeyrolle SN, Diskin G, et al. Airborne observations of bioaerosol over the Southeast United States using a Wideband Integrated Bioaerosol Sensor. J Geophys Res Atmos. 2016;121:8506–24.
    CAS  Article  Google Scholar 

    59.
    Yousefi V, Rama DBK. Monitoring of air for microbial and metal contamination at selected sites in the vicinity of Johannesburg, South Africa. Sci Total Environ. 1992;116:159–67.
    CAS  PubMed  Article  Google Scholar 

    60.
    Bauer H, Kasper-Giebl A, Löflund M, Giebl H, Hitzenberger R, Zibuschka F, et al. The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols. Atmos Res. 2002;64:109–19.
    CAS  Article  Google Scholar 

    61.
    Hara K, Zhang D. Bacterial abundance and viability in long-range transported dust. Atmos Environ. 2012;47:20–5.
    CAS  Article  Google Scholar 

    62.
    Vela GR. Survival of Azotobacter in dry soil. Appl Microbiol. 1974;28:77–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Henriques AO, Moran CP. Structure and assembly of the bacterial endospore coat. Methods. 2000;20:95–110.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Julien B, Kaiser AD, Garza A. Spatial control of cell differentiation in Myxococcus xanthus. Proc Natl Acad Sci USA. 2000;97:9098–103.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Almatroudi A, Tahir S, Hu H, Chowdhury D, Gosbell IB, Jensen SO, et al. Staphylococcus aureus dry-surface biofilms are more resistant to heat treatment than traditional hydrated biofilms. J Hosp Infect. 2018;98:161–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    66.
    Joyce R, Lavender H, Farrar J, Werth JT, Weber CF, D’Andrilli J, et al. Characterization and source identification of biological ice nucleating particles deposited year-round in subtropical precipitation. Appl Environ Microbiol. 2019;85:1–21.

    67.
    Rosenfeld D, Yu X, Liu G, Xu X, Zhu Y, Yue Z, et al. Glaciation temperatures of convective clouds ingesting desert dust, air pollution and smoke from forest fires. Geophys Res Lett. 2011;38:1–5.

    68.
    Koren I, Kaufman YJ, Remer LA, Martins JV. Measurement of the effect of Amazon Smoke on inhibition of cloud formation. Science (80-). 2004;303:1342–5.
    CAS  Article  Google Scholar 

    69.
    Lohmann U. A glaciation indirect aerosol effect caused by soot aerosols. Geophys Res Lett. 2002;29:1052.
    Article  Google Scholar 

    70.
    Sassen K, Khvorostyanov VI. Cloud effects from boreal forest fire smoke: evidence for ice nucleation from polarization lidar data and cloud model simulations. Environ Res Lett. 2008;3:025006.
    Article  Google Scholar 

    71.
    Rosenfeld D, Rudich Y, Lahav R. Desert dust suppressing precipitation: a possible desertification feedback loop. Proc Natl Acad Sci USA. 2001;98:5975–80.
    CAS  PubMed  Article  Google Scholar 

    72.
    Andreae MO, Rosenfeld D, Artaxo P, Costa AA, Frank GP, Longo KM, et al. Smoking rain clouds over the Amazon. Science (80-). 2004;303:1337–42.
    CAS  Article  Google Scholar 

    73.
    Rosenfeld D. TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys Res Lett. 1999;26:3105–8.
    Article  Google Scholar 

    74.
    Peterson DA, Campbell JR, Hyer EJ, Fromm MD, Kablick GP, Cossuth JH, et al. Wildfire-driven thunderstorms cause a volcano-like stratospheric injection of smoke. npj Clim Atmos Sci. 2018;1:1–8.

    75.
    Yu P, Toon OB, Bardeen CG, Zhu Y, Rosenlof KH, Portmann RW, et al. Black carbon lofts wildfire smoke high into the stratosphere to form a persistent plume. Science (80-). 2019;365:587–90.
    CAS  Article  Google Scholar 

    76.
    Val Martin M, Kahn R, Tosca M. A Global analysis of wildfire smoke injection heights derived from space-based multi-angle imaging. Remote Sens. 2018;10:1609.
    Article  Google Scholar 

    77.
    Shukla PR, Skea J, Buendia EC, Masson-Delmotte V, Pörtner H-O, Roberts DC, et al. Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. The Intergovernmental Panel on Climate Change. 2019.

    78.
    Aylor DE. Spread of plant disease on a continental scale: role of aerial dispersal of pathogens. Ecology. 2003;84:1989–97.
    Article  Google Scholar 

    79.
    Nagarajan S, Singh DV. Long-distance dispersion of rust pathogens. Annu Rev Phytopathol. 1990;28:139–53.
    CAS  PubMed  Article  Google Scholar 

    80.
    Abatzoglou JT, Williams AP. Impact of anthropogenic climate change on wildfire across western US forests. Proc Natl Acad Sci USA. 2016;113:11770–5.
    CAS  PubMed  Article  Google Scholar 

    81.
    Sharples JJ, Cary GJ, Fox-Hughes P, Mooney S, Evans JP, Fletcher MS, et al. Natural hazards in Australia: extreme bushfire. Clim Change. 2016;139:85–99.
    Article  Google Scholar 

    82.
    Fernandes K, Verchot L, Baethgen W, Gutierrez-Velez V, Pinedo-Vasquez M, Martius C. Heightened fire probability in Indonesia in non-drought conditions: the effect of increasing temperatures. Environ Res Lett. 2017;12:054002.
    Article  Google Scholar 

    83.
    Le Page Y, Morton D, Hartin C, Bond-Lamberty B, Pereira JMC, Hurtt G, et al. Synergy between land use and climate change increases future fire risk in Amazon forests. Earth Syst Dyn. 2017;8:1237–46.
    Article  Google Scholar  More

  • in

    Bark beetle outbreak enhances biodiversity and foraging habitat of native bees in alpine landscapes of the southern Rocky Mountains

    1.
    Veblen, T. T., Hadley, K. S., Reid, M. S. & Rebertus, A. J. The response of subalpine forests to spruce beetle outbreak in Colorado. Ecology 72, 213–231 (1991).
    Article  Google Scholar 
    2.
    Edburg, S. L. et al. Cascading impacts of bark beetle-caused tree mortality on coupled biogeophysical and biogeochemical processes. Front. Ecol. Environ. 10, 416–424 (2012).
    Article  Google Scholar 

    3.
    Raffa, K. F. et al. Cross-scale drivers of natural disturbance prone to anthropogenic amplification: The dynamics of bark beetle eruptions. Bioscience 58, 501–517 (2008).
    Article  Google Scholar 

    4.
    McFarlane, B. L., Stumpf-Allen, R. G. C. & Watson, D. O. Public perceptions of natural disturbance in Canada’s national parks: The case of the mountain pine beetle (Dendroctonus ponderosae Hopkins). Biol. Conserv. 130, 340–348 (2006).
    Article  Google Scholar 

    5.
    Morris, J. L. et al. Bark beetles as agents of change in social-ecological systems. Front. Ecol. Environ. 16, S34–S43 (2018).
    Article  Google Scholar 

    6.
    Beudert, B. et al. Bark beetles increase biodiversity while maintaining drinking water quality. Conserv. Lett. 8, 272–281 (2014).
    Article  Google Scholar 

    7.
    Colorado State Forest Service. Report on the Health of Colorado Forests (Colorado State Forest Service Media, Fort Collins, 2014).
    Google Scholar 

    8.
    Meddens, A. J. & Hicke, J. A. Spatial and temporal patterns of Landsat-based detection of tree mortality caused by a mountain pine beetle outbreak in Colorado, USA. For. Ecol. Manag. 322, 78–88 (2014).
    Article  Google Scholar 

    9.
    Rhoades, P. R., Davis, T. S., Tinkham, W. T. & Hoffman, C. M. Effects of seasonality, forest structure, and understory plant richness on bee community assemblage in a southern Rocky Mountain mixed conifer forest. Ann. Entomol. Soc. Am. 111, 278–284 (2018).
    Google Scholar 

    10.
    Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).
    Article  Google Scholar 

    11.
    Harrington, T. B. & Edwards, M. B. Understory vegetation, resource availability, and litterfall responses to pine thinning and woody vegetation control in longleaf pine plantations. Can. J. For. Res. 29, 1055–1064 (1999).
    Article  Google Scholar 

    12.
    Takafumi, H. & Hiura, T. Effects of disturbance history and environmental factors on the diversity and productivity of understory vegetation in a cool-temperate forest in Japan. For. Ecol. Manag. 257, 843–857 (2009).
    Article  Google Scholar 

    13.
    Coleman, T. W. et al. Accuracy of aerial detection surveys for mapping insect and disease disturbances in the United States. For. Ecol. Manag. 430, 321–326 (2018).
    Article  Google Scholar 

    14.
    Holway, J. G. & Ward, R. T. Phenology of alpine plants in northern Colorado. Ecology 46, 73–83 (1965).
    Article  Google Scholar 

    15.
    R Core Team. R: A Language and Environment for Statistical Programming. R Foundation for Statistical Computing, Vienna, Austria. www.R-project.org. (2020).

    16.
    Brown, M. B. & Forsythe, A. B. Robust tests for the equality of variances. J. Am. Stat. Assoc. 69, 346–367 (1974).
    MATH  Google Scholar 

    17.
    Colwell, R. K. et al. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J. Plant Ecol. 5, 3–21 (2012).
    Article  Google Scholar 

    18.
    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).
    Article  Google Scholar 

    19.
    Hsieh, T.C., Ma, K.H. & Chao, A. iNext: Interpolation and extrapolation for species diversity. R package V 2.0.20 (2020).

    20.
    Galbraith, S. M., Cane, J. H., Moldenke, A. R. & Rivers, J. W. Wild bee diversity increases with local fire severity in a fire-prone landscape. Ecosphere 10, e02668. https://doi.org/10.1002/ecs2.2668 (2019).
    Article  Google Scholar 

    21.
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 

    22.
    Oksanen, J., Guillaume-Blanchet, F., Friendly, M., Kindt, R., Legendre, P. & McGlinn, D., et al. Community ecology package ‘vegan’. R package V 2.5-6 (2019).

    23.
    McCabe, L. M., Cobb, N. S. & Butterfield, B. J. Environmental filtering of body size and darker coloration in pollinator communities indicate thermal restrictions on bees, but not flies, at high elevations. PeerJ 7, e7867. https://doi.org/10.7717/peerj.7867 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    24.
    Oyen, K. J., Giri, S. & Dillon, M. E. Altitudinal variation in bumble bee (Bombus) critical thermal limits. J. Therm. Biol. 59, 52–57 (2016).
    Article  Google Scholar 

    25.
    Woodard, S. H. Bumble bee ecophysiology: Integrating the changing environment and the organism. Curr. Opin. Insect Sci. 22, 101–108 (2017).
    Article  Google Scholar 

    26.
    Carper, A. L. & Bowers, M. D. The Conservation Value of Woody Debris for Cavity-Nesting Bees on Boulder County Open Space (Boulder County Open Space Final Report, Boulder, 2017).
    Google Scholar 

    27.
    Klutsch, J. G. et al. Stand characteristics and downed woody debris accumulations associated with a mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreak in Colorado. For. Ecol. Manag. 258, 641–649 (2009).
    Article  Google Scholar 

    28.
    Fayt, P., Machmer, M. M. & Steeger, C. Regulation of spruce bark beetles by woodpeckers—A literature review. For. Ecol. Manag. 206, 1–14 (2005).
    Article  Google Scholar 

    29.
    Galbraith, S. M., Cane, J. H., Moldenke, A. R. & Rivers, J. W. Salvage logging reduces wild bee diversity, but not abundance, in severely burned mixed-conifer forest. For. Ecol. Manag. 453, 117622 (2019).
    Article  Google Scholar 

    30.
    Angers, V. A., Drapeau, P. & Bergeron, Y. Mineralization rates and factors influencing snag decay in four North American boreal tree species. Can. J. For. Res. 42, 157–166 (2011).
    Article  Google Scholar 

    31.
    Miller-Struttmann, N. E. & Galen, C. High-altitude multi-taskers: Bumble bee food plant use broadens along an altitudinal productivity gradient. Oecologia 176, 1033–1045 (2014).
    ADS  Article  Google Scholar 

    32.
    Burkle, L. A., Simanonok, M. P., Durney, J. S., Myers, J. A. & Belote, R. T. Wildfires influence abundance, diversity, and intraspecific and interspecific trait variation of native bees and flowering plants across burned and unburned landscapes. Front. Ecol. Evol. 7, 252. https://doi.org/10.3389/fevo.2019.00252 (2019).
    Article  Google Scholar 

    33.
    Owen, E. L., Bale, J. S. & Hayward, S. A. L. Can winter-active bumblebees survive the cold? Assessing the cold tolerance of Bombus terrestris audax and the effects of pollen feeding. PLoS ONE 8, e80061. https://doi.org/10.1371/journal.pone.0080061 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    34.
    Rodriguez, A. & Kouki, J. Disturbance-mediated heterogeneity drives pollinator diversity in boreal managed forest ecosystems. Ecol. Appl. 27, 589–602 (2017).
    Article  Google Scholar 

    35.
    Cane, J. H. & Neff, J. L. Predicted fates of ground-nesting bees in soil heated by wildfire: Thermal tolerances of life stages and a survey of nesting depths. Biol. Conserv. 144, 2631–2636 (2011).
    Article  Google Scholar 

    36.
    Odanaka, K., Gibbs, J., Turley, N. E., Isaacs, R. & Brudvig, L. A. Canopy thinning, not agricultural history, determines early responses of wild bees to longleaf pine savanna restoration. Restor. Ecol. 28, 138–146 (2020).
    Article  Google Scholar 

    37.
    Rubene, D., Schroeder, M. & Ranius, T. Diversity patterns of wild bees and wasps in managed boreal forests: Effects of spatial structure, local habitat and surrounding landscape. Biol. Conserv. 184, 201–208 (2015).
    Article  Google Scholar 

    38.
    Mielke, J. L. Rate of deterioration of beetle-killed Engelmann spruce. J. For. 48, 882–888 (1950).
    Google Scholar 

    39.
    Raphael, M. G. & Morrison, M. L. Decay and dynamics of snags in the Sierra Nevada, California. For. Sci. 33, 774–783 (1987).
    Google Scholar 

    40.
    Rhoades, P. R. et al. Sampling technique affects detection of habitat factors influencing wild bee communities. J. Insect Conserv. 21, 703–714 (2017).
    Article  Google Scholar 

    41.
    Westphal, C. et al. Measuring bee diversity in different European habitats and biogeographical regions. Ecol. Monogr. 78, 653–671 (2008).
    Article  Google Scholar 

    42.
    Romme, W. H., Knight, D. H. & Yavitt, J. B. Mountain pine beetle outbreaks in the Rocky Mountains: Regulators of primary productivity?. Am. Nat. 127, 484–494 (1986).
    Article  Google Scholar 

    43.
    Nelson, K. N., Rocca, M. E., Diskin, M., Aoki, C. F. & Romme, W. H. Predictors of bark beetle activity and scale-dependent spatial heterogeneity change during the course of an outbreak in a subalpine forest. Landsc. Ecol. 29, 97–109 (2014).
    Article  Google Scholar 

    44.
    Lozier, J. D., Strange, J. P. & Koch, J. B. Landscape heterogeneity predicts gene flow in a widespread polymorphic bumble bee, Bombus bifarius (Hymenoptera: Apidae). Conserv. Genet. 14, 1099–1110 (2013).
    Article  Google Scholar 

    45.
    Boscolo, D., Tokumoto, P. M., Ferreira, P. A., Ribeiro, J. W. & dos Santos, J. S. Positive responses of flower visiting bees to landscape heterogeneity depend on functional connectivity levels. Perspect. Ecol. Evol. 15, 18–24 (2017).
    Google Scholar 

    46.
    Ründlof, M., Nilsson, H. & Smith, H. G. Interacting effects of farming practice and landscape context on bumble bees. Biol. Conserv. 141, 417–426 (2008).
    Article  Google Scholar 

    47.
    Andersson, G. K., Ekroos, J., Stjernman, M., Ründlof, M. & Smith, H. G. Effects of farming intensity, crop rotation and landscape heterogeneity on field bean pollination. Agric. Ecosyst. Environ. 184, 145–148 (2014).
    Article  Google Scholar 

    48.
    Moreira, E. F., Boscolo, D. & Viana, B. F. Spatial heterogeneity regulates plant–pollinator networks across multiple landscape scales. PLoS ONE 10, e0123628. https://doi.org/10.1371/journal.pone.0123628 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar  More

  • in

    Developing the hydrological dependency structure between streamgage and reservoir networks

    Developing the interdependency between reservoirs and streamgages across a river network (Fig. 1a) is essentially merging three data sets (attributes of dams, streamgages, and river flow lines) (Table 1) to create a unidirectional graph or network18,19. In the resulting graph, each node of the network represents a streamgage or reservoir with the connecting stems between pairs of nodes represent river reaches in-between those streamgages or reservoir pairs (Fig. 1b). In this merged unidirectional graph, point information can be stored as attributes as the node of the unidirectional graph. We represent a reservoir-streamgage network as an ‘edge list’18,19 a table of information defined by flow connectivity between network nodes (streamgage or reservoir). In this edge list, each row is a connection link (edge) from one node to another containing NHDPlusflowlines4 attribute such as unique identifiers (ComID) and distances along the river path.
    Table 1 Data sources.
    Full size table

    We provide our dataset as an edge list that can be easily adopted in various geospatial applications. The motivation to present the combined dataset in a robust format is to enable end-users from varied backgrounds to use the dataset in a conventional network data format. For clarity, hereafter, we refer to the nodes of our unified edge list as ‘points’ which can be either a dam or a streamgage. In the rest of the article, attributes of NHDPlusV2 are summarized in Table 2 and written in italics. We use the word ‘node’ only in the context of NHDFlowlines’ connecting nodes and its attributes.
    Table 2 Glossary of terms.
    Full size table

    Combined reservoir-streamgage data is created by traversing on the NHDPlusflowlines4 network from headwaters to the downstream-most node(s) of each watershed, in a parallel fashion. The proposed method is summarized schematically in Fig. 2. We used various C++ 20 based R packages (dplyr21 and sf 22) for data handling and geospatial analysis. Headwater flow lines that have at least one point are analyzed first. Points (reservoirs or streamgages) are ordered according to their increasing distance from headwater based on ascending values of ArbolateSum of each NHDFlowline feature. At first, for each point, its nearest NHDFlowline and its ComID are recorded. Thus, each river reach where any streamgage or reservoir is located, all vector attributes of that flow line can be accessed from NHDPlusV24 database. Nearest NHDflowlines of these points are grouped by LevelPathID, which ensures all features along a river are uniquely grouped. Next, a parallel node search along the downstream direction is carried out for each group identified in the previous step based on LevelPathID. The downstream parallel node search is essentially a depth-first-search18,19 – a network traversal technique that recursively explores downstream point features (reservoirs or streamgages) till all points along a river (grouped by LevelPathID) are identified. At this iterative step, we account for different conditions such as river junctions (e.g., divergences, convergences, or both), boundary of a watershed, isolated network, and coastlines or end of a stream reach.
    Fig. 2

    Schematic of the methodology. Words in italics font indicate attributes from the NHDPlusV2 database.

    Full size image

    For the application of the proposed algorithm to CRB, we relate spatial information (latitude, longitude) of each point (reservoirs or streamgages) along with attributes such as (1) unique identifiers (NID ID for reservoirs and USGS site number for streamgages), (2) ComID of nearest NHDFlowline, (3) distance of each point from end nodes of the nearest NHDFlowline, and (4) distance between each point and its immediate upstream and downstream point. Additional information can also be retrieved from the output edge list for specific applications depending on specific requirements of a network analysis problem. For example, to understand the cumulative effect of dams in CRB on flow alteration in the downstream river reach, a subset of network is used from the edge list where network nodes are the reservoirs and streamflow at gages located immediately downstream of these dams are the variables of interest23. Thus, the developed riverine connectivity between streamgage and reservoirs can be used to extract additional information (e.g., reservoir storage, drainage area of the streamgage, etc.) from the individual nodes.
    Input data sources
    For CRB, the dataset combines dams24 from the National Inventory of Dams (NID) and streamgages25 from the United States Geological Survey (USGS) (Fig. 1a, Table 1). The NID24 is a database from the US Army Corps of Engineers (USACE) documenting information about more than 90,000 water control infrastructures (mainly dams) across the CONUS and US territories. This dataset includes information about a dam’s type, purpose, size, location, and classification of downstream potential hazard. According to this dataset, there are 1344 dams within the CRB (Water Resources Regions 14 and 15), which we used for the present study. Information on dams was retrieved using the R package dams26.
    The National Water Information System (NWIS) database contains point measurements of water-related data (e.g., surface water, groundwater) collected at more than 1.5 million sites across the CONUS. This dataset contains records from 1899 to present water data for the nation. Around 20,000 streamflow gage stations are included in the NWIS dataset, of which 1656 are located within CRB (Regions 14 and 15).
    In order to characterize the CRB stream network, we used high-resolution NHDPlusV2 dataset4 available from ftp://ftp.horizon-systems.com/NHDplus/NHDPlusV21/Data/. Our main purpose in utilizing the NHDPlusV2 database is to obtain high-quality streamflow lines and attributes (characterized by VAA), acting as the basis of upstream and downstream identification of dam-streamgage interdependency. We consider vector data of all input spatial datasets to develop the interdependent structure between reservoirs and streamgages over the CRB. For developing the RICON17 database using Vector Processing Units (VPU’s) in NHDPlusV2 dataset for watershed regions 14 and 15, the network analysis is carried out over the entire upper and lower CRB to maintain continuity in the river network from Glenn Canyon dam (outlet of water resources region 14) to Hoover dam which is located approximately 590 kilometers downstream in region 15.
    Data preparation
    In geospatial data merging, if two or more-point shapefiles are used, one can simply join the attribute tables of each shapefile by a common ID. Using unique identifiers of each of the data sets, we can concatenate any string pattern (e.g., “Point.”, “Pt”) to make a simple, unique identifier (node number) for the merged points. Given the number of points or nodes NP (NP = NR + NG) where NR is the number of reservoirs and NG is the number of streamgages. At this stage, we only keep common IDs such as latitude, longitude, and point name and river information, if available, for the merged point dataset. For network analysis, we do not retrieve any other attributes to reduce the memory requirement. In data preparation, the first step is to identify the nearest river reach of each point feature (reservoirs or gages). This can be achieved easily using any available geographic information tool. We used the nearest feature identification technique in sf package22 in R along with string matching for identifying the nearest NHDflowline feature. This step can be computationally demanding, depending on the size of the datasets and geospatial tools used. Accuracy of this step is also subjected to the resolution of the river network data.
    For each node (reservoir or streamgage), (1) nearest NHDflowline and (2) distance from either endpoint of the nearest flowline to the node must be recorded in this step (see data preparation panel in Fig. 1). The nearest NHDflowline feature of each geospatial point is linked by the unique identification number (ComID) of the stream reach. Once the nearest river reach is identified for each reservoir or streamgage, these points are snapped to their nearest NHDflowline. Distance between each snapped point from network headwaters is calculated using the NHDPlusV2 flowlines’ attribute Arbolate Sum, which ensures that for all upstream features, the length from headwaters is always increasing from upstream to downstream irrespective of the number of tributaries joining the main path. This distance from headwaters is simply a summation of the Arbolate Sum of the nearest NHDflowline feature and the distance of the point (dam or gage) from the end node (upstream node) of this flowline. For faster computation, identification of the nearest flowline is carried out using the R package sf 22 a C++ 20 based R14 package for simple geospatial analysis. For developing the current dataset, we identify the nearest flowline feature using the following three steps:
    (1)
    First, all input shapefiles are transformed to a planar coordinate system Universal Transverse Mercator (UTM). For coordinate system conversion, the UTM zone of each point should be calculated for each watershed region. For simplicity, the zone with the maximum number of points is used for the entire region. This method can lead to erroneous conversion while handling a vast watershed at once, such as Mississippi. We carried out this step separately for each VPU in the NHDPlusV2 dataset for CRB.

    (2)
    After this, the nearest stream reach is identified for each point, and its ComID is noted.

    (3)
    Next, each point’s names and the information about the nearest NHDflowline are gathered as text from point shapefiles. These river names are then compared with NHDPlusV2 GNIS_NAME (Geographic Names Information System) by a robust text comparison method. This attribute is present for the majority of the main stem rivers and their tributaries. This step considers that the point might be located below or upstream or near or at another point or flow reach as well as at a tributary or canal or ditch or dike relative to the main flow path. Whenever no matching string is found at this step based on the nearest flowline identified in step 2, a warning is issued. A warning is also issued whenever NHDPlusV2 flowlines GNIS_NAME is blank. For points where a warning is issued, additional checks are carried out. First, the distance from these points to all flowlines within a user-specified buffer distance is calculated. Suppose the nearest line feature in step 2 gave a warning. In that case, the algorithm looks for successive nearest line feature, within a buffer distance of 1 km, using a combination of distance comparison and fuzzy string matching27 between GNIS_NAMEs of these flowlines within the buffer distance and the name of a given point (USGS station name for a streamgage; and NID dam name and river names for the reservoirs). This buffer distance is carefully chosen depending on the resolution of the data, units of distance measurement, and the difference between the distances to successive lines from the point of interest. This step issues warning suggesting visual checks which may be manually handled. Visual checks are only issued whenever a new flowline is chosen using fuzzy string matching over the nearest one identified in step 2. To decide on a viable buffer distance and accuracy of the snapping algorithm, we used a subset of national gage locations provided by NHD as a benchmark for linking streamgages with NHDFlowlines. We tested a range of buffer distances 100 m, 200 m, 500 m, 1 km, and 10 km, and counted the number of erroneously assigned flowlines. For the said buffer distances, 5.8–7.5% of streamgages needed correction. The visual warnings for dams are checked manually and corrected if needed. With a 1 km buffer distance, the algorithm issued visual warnings for 45 dams out of 1344. After manually checking each of them, the nearest lines for ten dams needed to be adjusted (see Table SI 1). Overall, if a visual warning is issued for less than 10% of the points, we posit that the snapping process is satisfactory as warnings at this stage do not necessarily mean a wrong flow line is linked to a point. It may merely denote that the name of the NHDflowline feature is missing in NHDPlusV2 dataset which is acceptable as not all minor river reaches and small tributaries have an associated river name in NHDPlusV2 data. Upon the availability of higher resolution spatial data, this threshold can be made more stringent.

    Identification of the nearest NHDflowline feature is critical for the overall reliability of the dataset. Additional validation of this step is carried out by comparing the ComID of nearest flow lines of each gage used in the current study, with that of the gages provided in NHDPlusV2 dataset. Errors at this step may arise from sources, such as inaccurate coordinate transformation, wrong choice of the buffering distance during point snapping. In this data preparation stage, we join the NHDPlus hydrography datasets for regions 14 and 15 and create a single input data (NHD_data.RData).
    Network analysis
    Initial network data is created by traversing the NHDPlusflowlines network from headwaters to the downstream most node(s) of each watershed, in a parallel fashion (Fig. 2, ‘Network Analysis’ panel). We extensively used the R14 package dplyr21 in this work. We use three NHDPlusv2 database files (.dbf files) for each watershed – NHDflowline, PlusflowlineVAA, and Plusflow – using the following steps:
    (1)
    In the NHDPlusV2 dataset, headwaters or upstream most stream reaches are designated by the attribute StartFlag being 1. Headwater flowlines with at least one point are analyzed first (Step 2a in Fig. 2). Points are ordered according to their increasing distance from headwater. The downstream most point of the analyzed headwater flowlines are selected, and from each such point, network analysis is carried out recursively along the downstream direction.

    (2)
    At this stage, points downstream of headwater lines but without any upstream points (i.e., reservoirs or streamgages) are also selected for further analysis. Nearest NHDflowlines for each of these points are grouped by LevelPathID, ensuring all features along the river segment are uniquely grouped.

    (3)
    Next, a parallel and recursive node search along the downstream direction is carried out for each group identified in the previous step using ‘Move downstream’ function (Fig. 2). Input arguments for this function are x– points under consideration (node numbers, ComID of the nearest flowline, dP, dHW) and ‘PATH’ – ‘main’ or ‘minor’ flow path along which the recursive node search is carried out. For a ‘main’ path (Step 2b in Fig. 2), LevelPathID of upstream and downstream NHDFlowline are the same, whereas, for a ‘minor’ path (Step 2c in Fig. 2), LevelPathID’s are different for an upstream or downstream stream reach connection. This is essentially a depth-first search along a given river stem and given PATH that builds network connectivity from upstream to downstream by recursively updating x (Fig. 2). At this iterative step, we account for different conditions such as river junctions (e.g., divergences, convergences, or both), boundary of a watershed, isolated network, and coastlines or end of a stream reach. ‘Move downstream’ function accesses the NHDPlusV2 VPU tables (PlusFlow, PlusFlowlineVAA, and NHDFlowlines).

    In this method, the raw or initial output is a connectivity matrix – a NP × NP square matrix where NP is the total number of points (all dams and gages) analyzed. While the raw output in this format is easy to compute and handle, a connectivity matrix for a large dataset of a riverine network can often be a huge sparse matrix. We present our final dataset as an edge list for better memory usage and ease of incorporating additional information on points and flowlines, which is a popular and efficient representation tool of tree data structure. The edge list consists of nodes and edges information for the entire river network. The nodes are the infrastructures along the flowlines and edges are the connecting river reaches in between successive infrastructure. This highly flexible and robust edge list can be easily used in any traditional network search algorithm. Although we generate a separate edge list for each drainage basin, they can be easily merged by identifying the ComID’s of the NHDPlusflowlines that represent the basin outlet(s). More

  • in

    Quantifying the effect of human practices on S. cerevisiae vineyard metapopulation diversity

    1.
    Romano, P., Ciani, M. & Fleet, G. Yeast Ecology of Wine Production in Yeast in the Production of Wine 2–31 (Springer, New York, 2020).
    Google Scholar 
    2.
    Zott, K., Miot-Sertier, C., Claisse, O., Lonvaud-Funel, A. & Masneuf-Pomarede, I. Dynamics and diversity of non-Saccharomyces yeasts during the early stages in winemaking. Int. J. Food Microbiol. 125(2), 197–203 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Zott, K. et al. Characterization of the yeast ecosystem in grape must and wine using real-time PCR. Food Microbiol. 27(5), 559–567 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Goddard, M. R. Quantifying the complexities of Saccharomyces cerevisiae’s ecosystem engineering via fermentation. Ecology 89(8), 2077–2082 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    5.
    Salvadó, Z., Arroyo-López, F. N., Barrio, E., Querol, A. & Guillamón, J. M. Quantifying the individual effects of ethanol and temperature on the fitness advantage of Saccharomyces cerevisiae. Food Microbiol. 28(6), 1155–1161 (2011).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    6.
    Mcgovern, P. E., Hartung, U., Badler, V. R., Glusker, D. L. & Exner, L. J. The Beginnings of Winemaking and Viticulture in the Ancient Near East and Egypt. Expedition 39(1), 3–21 (1997).
    Google Scholar 

    7.
    Cavalieri, D., McGovern, P. E., Hartl, D. L., Mortimer, R. & Polsinelli, M. Evidence for S. cerevisiae fermentation in ancient wine. J. Mol. Evol. 57(1), S226–S232 (2003).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Fay, J. C. & Benavides, J. A. Evidence for domesticated and wild populations of Saccharomyces cerevisiae. PLoS Genet. 1(1), e5 (2005).
    PubMed Central  Article  CAS  Google Scholar 

    9.
    Legras, J. L., Merdinoglu, D., Cornuet, J. M. & Karst, F. Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Mol. Ecol. 16(10), 2091–2102 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Almeida, P. et al. A population genomics insight into the Mediterranean origins of wine yeast domestication. Mol. Ecol. 24(21), 5412–5427 (2015).
    PubMed  PubMed Central  Google Scholar 

    11.
    Dubourdieu, D. et al. Identification de souches de levures de vin par l’analyse de leur AND mitochondrial. Connaissance Vigne Vin 4, 267–278 (1987).
    Google Scholar 

    12.
    Querol, A., Barrio, E., Huerta, T. & Ramón, D. Molecular monitoring of wine fermentations conducted by active dry yeast strains. Appl. Environ. Microbiol. 58(9), 2948–2953 (1992).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Cappello, M. S., Bleve, G., Grieco, F., Dellaglio, F. & Zacheo, G. Characterization of Saccharomyces cerevisiae strains isolated from must of grape grown in experimental vineyard. J. Appl. Microbiol. 97(6), 1274–1280 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Schuller, D., Alves, H., Dequin, S. & Casal, M. Ecological survey of Saccharomyces cerevisiae strains from vineyards in the Vinho Verde Region of Portugal. FEMS Microbiol. Ecol. 51(2), 167–177 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Cubillos, F. A., Vásquez, C., Faugeron, S., Ganga, A. & Martínez, C. Self-fertilization is the main sexual reproduction mechanism in native wine yeast populations. FEMS Microbiol. Ecol. 67(1), 162–170 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Vezinhet, F., Blondin, B. & Hallet, J. N. Chromosomal DNA patterns and mitochondrial DNA polymorphism as tools for identification of enological strains of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 32(5), 568–571 (1990).
    CAS  Article  Google Scholar 

    17.
    Frezier, V. & Dubourdieu, D. Ecology of yeast strains Saccharomyces cerevisiae during spontaneous fermentation in Bordeaux Winery. Am. J. Enol. Vitic. 43(4), 375–380 (1992).
    Google Scholar 

    18.
    Versavaud, A., Courcoux, P., Roulland, C., Dulau, L. & Hallet, J. N. Genetic diversity and geographical distribution of wild Saccharomyces cerevisiae strains from the wine-producing area of Charentes, France. Appl. Environ. Microbiol. 61(10), 3521–3529 (1995).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Valero, E., Cambon, B., Schuller, D., Casal, M. & Dequin, S. Biodiversity of Saccharomyces yeast strains from grape berries of wine-producing areas using starter commercial yeasts. FEMS Yeast Res. 7, 317–329 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Ness, F., Lavalle, F., Dubourdieu, D., Aigle, M. & Dulau, L. Identification of yeast strains unsing polymerase chain reaction. J. Sci Food Agric. 62, 89–94 (1993).
    CAS  Google Scholar 

    21.
    Legras, J. L. & Karst, F. Optimisation of interdelta analysis for Saccharomyces cerevisiae strain characterisation. FEMS Microbiol. Lett. 221(2), 249–255 (2003).
    CAS  PubMed  PubMed Central  Google Scholar 

    22.
    Ciani, M., Mannazzu, I., Marinangeli, P., Clementi, F. & Martini, A. Contribution of winery-resident Saccharomyces cerevisiae strains to spontaneous grape must fermentation. Antonie Van Leeuwenhoek 85(2), 159–164 (2004).
    CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Le Jeune, C., Erny, C., Demuyter, C. & Lollier, M. Evolution of the population of Saccharomyces cerevisiae from grape to wine in a spontaneous fermentation. Food Microbiol. 23(8), 709–716 (2006).
    PubMed  PubMed Central  Google Scholar 

    24.
    Vigentini, I. et al. The vintage effect overcomes the terroir effect: A three year survey on the wine yeast biodiversity in Franciacorta and Oltrepo Pavese, two Northern Italian Vine-Growing Areas. Microbiology 161(Pt_2), 362–373 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    25.
    Legras, J. L., Ruh, O., Merdinoglu, D. & Karst, F. Selection of hypervariable microsatellite loci for the characterization of Saccharomyces cerevisiae strains. Int. J. Food Microbiol. 102(1), 73–83 (2005).
    CAS  PubMed  PubMed Central  Google Scholar 

    26.
    Schuller, D. et al. Genetic characterization of commercial Saccharomyces cerevisiae isolates recovered from vineyard environments. Yeast 24(8), 625–636 (2007).
    CAS  PubMed  PubMed Central  Google Scholar 

    27.
    Schuller, D. et al. Genetic diversity and population structure of Saccharomyces cerevisiae strains isolated from different grape varieties and winemaking regions. PLoS ONE 7(2), e32507 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    28.
    Catlin, D. H. et al. Metapopulation viability of an endangered shorebird depends on dispersal and human-created habitats: Piping plovers (Charadrius melodus) and prairie rivers. Mov. Ecol. 4, 6 (2016).
    PubMed  PubMed Central  Google Scholar 

    29.
    Knight, S. & Goddard, M. R. Quantifying separation and similarity in a Saccharomyces cerevisiae metapopulation. ISME J. 9(2), 361–370 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    30.
    Knight, S. J., Karon, O. & Goddard, M. R. Small scale fungal community differentiation in a vineyard system. Food Microbiol. 87, 103358 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    31.
    Goddard, M. R., Anfang, N., Tang, R., Gardner, R. C. & Jun, C. A Distinct population of Saccharomyces cerevisiae in New Zealand: Evidence for local dispersal by insects and human-aided global dispersal in Oak Barrels. Environ. Microbiol. 12(1), 63–73 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Stefanini, I. et al. Role of social wasps in Saccharomyces cerevisiae ecology and evolution. Proc. Natl. Acad. Sci. U.S.A. 109(33), 13398–13403 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Buser, C. C., Newcomb, R. D., Gaskett, A. C. & Goddard, M. R. Niche construction initiates the evolution of mutualistic interactions. Ecol. Lett. 17(10), 1257–1264 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    34.
    Francesca, N., Canale, D. E., Settanni, L. & Moschetti, G. Dissemination of Wine-Related Yeasts by Migratory Birds. Environmental Microbiology Reports 4(1), 105–112 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    35.
    Gayevskiy, V. & Goddard, M. R. Geographic delineations of yeast communities and populations associated with vines and wines in New Zealand. ISME J. 6(7), 1281–1290 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Cordero-Bueso, G., Arroyo, T. & Valero, E. A long term field study of the effect of fungicides penconazole and sulfur on yeasts in the vineyard. Int. J. Food Microbiol. 189, 189–194 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Oliva, J. et al. Influence of fungicides on grape yeast content and its evolution in the fermentation. Commun. Agric. Appl. Biol. Sci. 72, 181–189 (2007).
    CAS  PubMed  PubMed Central  Google Scholar 

    38.
    Cordero-Bueso, G. et al. Influence of the farming system and vine variety on yeast communities associated with grape berries. Int. J. Food Microbiol. 145(1), 132–139 (2011).
    PubMed  Article  Google Scholar 

    39.
    Milanović, V., Comitini, F. & Ciani, M. Grape berry yeast communities: Influence of fungicide treatments. Int. J. Food Microbiol. 161, 240–246 (2013).
    PubMed  Article  CAS  Google Scholar 

    40.
    de Celis, M. et al. Diversity of Saccharomyces Cerevisiae yeasts associated to spontaneous and inoculated fermenting grapes from Spanish Vineyards. Lett. Appl. Microbiol. 68(6), 580–588 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    41.
    Valero, E., Schuller, D., Cambon, B., Casal, M. & Dequin, S. Dissemination and survival of commercial wine yeast in the vineyard: A large-scale, three-years study. FEMS Yeast Res. 5, 959–969 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Franco-Duarte, R. et al. Intrastrain genomic and phenotypic variability of the commercial Saccharomyces cerevisiae strain Zymaflore VL1 reveals microevolutionary adaptation to vineyard environments. FEMS Yeast Res. 15(6), fov063 (2015).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    43.
    Cordero-Bueso, G., Arroyo, T., Serrano, A. & Valero, E. Remanence and survival of commercial yeast in different ecological niches of the vineyard. FEMS Microbiol. Ecol. 77, 429–437 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    44.
    Mortimer, R. & Polsinelli, M. On the origins of wine yeast. Res. Microbiol. 150(3), 199–204 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Rosini, G., Federici, F. & Martini, A. Yeast flora of grape berries during ripening. Microb. Ecol. 8(1), 83–89 (1982).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Bokulich, N. A., Ohta, M., Richardson, P. M. & Mills, D. A. Monitoring seasonal changes in winery-resident microbiota. PLoS ONE 8(6), e66437 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Dion, R. Aux origines du vignoble bordelais: La création du vignoble bordelais, Angers, Éditions de l’Ouest (1952).

    48.
    Aubin, G., Lavaud, R.P. (1996). Bordeaux: vignoble millénaire.Bordeaux : l’Horizon chimérique. 1, 215.

    49.
    Liti, G. et al. Population genomics of domestic and wild yeasts. Nature 458(7236), 337–341 (2009).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Bruvo, R., Michiels, N. K., D’souza, T. G. & Schulenburg, H. A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Mol. Ecol. 13(7), 2101–2106 (2004).
    CAS  PubMed  PubMed Central  Google Scholar 

    51.
    Gao, H., Williamson, S. & Bustamante, C. D. A Markov chain Monte Carlo approach for joint inference of population structure and inbreeding rates from multilocus genotype data. Genetics 176(3), 1635–1651 (2007).
    PubMed  PubMed Central  Google Scholar 

    52.
    Gayevskiy, V., Klaere, S., Knight, S. & Goddard, M. R. ObStruct: A method to objectively analyse factors driving population structure using Bayesian ancestry profiles. PLoS ONE 9(1), e85196 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    53.
    Sundqvist, L., Keenan, K., Zackrisson, M., Prodöhl, P. & Kleinhans, D. Directional genetic differentiation and relative migration. Ecol. Evol. 6, 3461–3475 (2016).
    PubMed  PubMed Central  Google Scholar 

    54.
    Gayevskiy, V., Lee, S. & Goddard, M. R. European derived Saccharomyces cerevisiae colonisation of New Zealand vineyards aided by humans retorius I, editor. FEMS Yeast Res. 16(7), 091 (2016).
    Google Scholar 

    55.
    Setati, M. E., Jacobson, D., Andong, U. C. & Bauer, F. The vineyard yeast microbiome, a mixed model microbial map. PLoS ONE 7(12), e52609 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    56.
    Cus, F. & Raspor, P. The Effect of Pyrimethanil on the Growth of Wine Yeasts. Lett. Appl. Microbiol. 47(1), 54–59 (2008).
    CAS  PubMed  PubMed Central  Google Scholar 

    57.
    Viel, A. et al. The geographic distribution of Saccharomyces cerevisiae isolates within three italian neighboring winemaking regions reveals strong differences in yeast abundance, genetic diversity and industrial strain dissemination. Front Microbiol 8, 1595 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    58.
    Garijo, P. et al. The occurrence of fungi, yeasts and bacteria in the air of a Spanish winery during vintage. Int. J. Food Microbiol. 125(2), 141–145 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Schacherer, J., Shapiro, J. A., Ruderfer, D. M. & Kruglyak, L. Comprehensive polymorphism survey elucidates population structure of S. cerevisiae. Nature 458(7236), 342–345 (2009).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    White, T., Bruns, T., Lee, S., & Taylor, T. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications (eds Innis, M. et al.), 315–22. (Academic Press, Cambridge, 1990).

    61.
    Granchi, L., Bosco, M., Messini, A. & Vincenzini, M. Rapid detection and quantification of yeast species during spontaneous wine fermentation by PCR-RFLP analysis of the rDNA ITS region. J. Appl. Microbiol. 87(6), 949–956 (1999).
    CAS  PubMed  PubMed Central  Google Scholar 

    62.
    Field, D. & Wills, C. Abundant microsatellite polymorphism in Saccharomyces cerevisiae, and the different distributions of microsatellites in eight prokaryotes and S. cerevisiae, result from strong mutation pressures and a variety of selective forces. Proc. Natl. Acad. Sci. U. S. A. 95(4), 1647–1652 (1998).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    63.
    González Techera, A., Jubany, S., Carrau, F. M. & Gaggero, C. Differentiation of industrial wine yeast strains using microsatellite markers. Lett. Appl. Microbiol. 33(1), 71–75 (2001).
    PubMed  PubMed Central  Google Scholar 

    64.
    Hennequin, C. et al. Microsatellite typing as a new tool for identification of Saccharomyces cerevisiae strains. J. Clin. Microbiol. 39(2), 551–559 (2001).
    CAS  PubMed  PubMed Central  Google Scholar 

    65.
    Pérez, M. A., Gallego, F. J., Martínez, I. & Hidalgo, P. Detection, distribution and selection of microsatellites (SSRs) in the genome of the yeast Saccharomyces cerevisiae as molecular markers. Lett. Appl. Microbiol. 33(6), 461–466 (2001).
    PubMed  PubMed Central  Google Scholar 

    66.
    Bradbury, J. E. et al. A homozygous diploid subset of commercial wine yeast strains. Antonie Van Leeuwenhoek 89(1), 27–37 (2005).
    PubMed  PubMed Central  Google Scholar 

    67.
    Colwell, R. K. Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85(10), 2717–2727 (2004).
    ADS  Google Scholar 

    68.
    Arnaud-Haond, S. & Belkhir, K. GENCLONE: A computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Mol. Ecol. Notes 7(1), 15–17 (2007).
    CAS  Google Scholar 

    69.
    Cormack, R. M. A review of classification. J. R. Stat. Soc. A 134, 321–367 (1971).
    MathSciNet  Google Scholar 

    70.
    Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. Peer J 2, e281 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    71.
    Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
    CAS  Article  Google Scholar 

    72.
    Legras, J. L. et al. Adaptation of S. cerevisiae to fermented food environments reveals remarkable genome plasticity and the footprints of domestication. Mol. Biol. Evol. 35(7), 1712–1727 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    73.
    Suzuki, R., & Shimodaira, H. R package: Pvclust: Hierarchical Clustering with P-values via multiscale bootstrap resampling. (2014).

    74.
    Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 27(2 Part 1), 209–220 (1967).
    CAS  PubMed  PubMed Central  Google Scholar 

    75.
    Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in excel. Population genetic software for teaching and research—An update. Bioinformatics 28(19), 2537–2539 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    76.
    Diniz-Filho, J. A. et al. Mantel test in population genetics. Genet. Mol. Biol. 36(4), 475–485 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    77.
    Jost, L. GST and its relatives do not measure differentiation. Mol. Ecol. 17, 4015–4026 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    78.
    Beerli, P. & Michal, P. Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics 185(1), 313–326 (2010).
    PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Effects of temperature on plasma corticosterone in a native lizard

    1.
    Lau, C. et al. Absence of neurogenic response following robust predator-induced stress response. Neuroscience 339, 276–286 (2016).
    CAS  PubMed  Article  Google Scholar 
    2.
    Park, C. R., Zoladz, P. R., Conrad, C. D., Fleshner, M. & Diamond, D. M. Acute predator stress impairs the consolidation and retrieval of hippocampus-dependent memory in male and female rats. Learn. Mem. 15, 271–280 (2008).
    PubMed  PubMed Central  Article  Google Scholar 

    3.
    Bauer, C. M. et al. Habitat type influences endocrine stress response in the degu (Octodon degus). Gen. Comp. Endocrinol. 186, 136–144 (2013).
    CAS  PubMed  Article  Google Scholar 

    4.
    Rochester, C. J. et al. Reptile and amphibian responses to large-scale wildfires in southern California. J. Herpetol. 44, 333–351 (2010).
    Article  Google Scholar 

    5.
    Romero, L. M., Dickens, M. J. & Cyr, N. E. The reactive scope model—A new model integrating homeostasis, allostasis, and stress. Horm. Behav. 55, 375–389 (2009).
    PubMed  Article  Google Scholar 

    6.
    Romero, L. M. Physiological stress in ecology: Lessons from biomedical research. Trends Ecol. Evol. 19, 249–255 (2004).
    PubMed  Article  Google Scholar 

    7.
    Romero, L. M. & Reed, J. M. Collecting baseline corticosterone samples in the field: is under 3 min good enough?. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 140, 73–79 (2005).
    PubMed  Article  CAS  Google Scholar 

    8.
    Sapolsky, R. M., Romero, L. M. & Munck, A. U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21, 55–89 (2000).
    CAS  PubMed  Google Scholar 

    9.
    Norris, D. & Lopez, K. Hormones and Reproduction of Vertebrates (Academic Press, Cambridge, 2010).
    Google Scholar 

    10.
    Sheriff, M. J., Dantzer, B., Delehanty, B., Palme, R. & Boonstra, R. Measuring stress in wildlife: Techniques for quantifying glucocorticoids. Oecologia 166, 869–887 (2011).
    ADS  Article  Google Scholar 

    11.
    Angilletta, M. J. Thermal and physiological constraints on energy assimilation in a widespread lizard (Sceloporus undulatus). Ecology 82, 3044–3056 (2001).
    Article  Google Scholar 

    12.
    Angilletta, M. J., Hill, T. & Robson, M. A. Is physiological performance optimized by thermoregulatory behavior? A case study of the eastern fence lizard, Sceloporus undulatus. J. Therm. Biol. 27, 199–204 (2002).
    Article  Google Scholar 

    13.
    Davidson, J. O. et al. Effect of cerebral hypothermia on cortisol and adrenocorticotropic hormone responses after umbilical cord occlusion in preterm fetal sheep. Pediatr. Res. 63, 51–55 (2008).
    CAS  PubMed  Article  Google Scholar 

    14.
    Hume, D. M. & Egdahl, R. H. Effect of hypothermia and of cold exposure on adrenal cortical and medullary secretion. Ann. N. Y. Acad. Sci. 80, 435–444 (1959).
    ADS  CAS  PubMed  Article  Google Scholar 

    15.
    Hinds, D. S., Baudinette, R. V., MacMillen, R. E. & Halpern, E. A. Maximum metabolism and the aerobic factorial scope of endotherms. J. Exp. Biol. 56, 41–56 (1993).
    Google Scholar 

    16.
    Pough, F. H. The advantages of ectothermy for tetrapods. Am. Nat. 115, 92–112 (1980).
    Article  Google Scholar 

    17.
    Angilletta, M. J., Zelic, M. H., Adrian, G. J., Hurliman, A. M. & Smith, C. D. Heat tolerance during embryonic development has not diverged among populations of a widespread species (Sceloporus undulatus). Conserv. Physiol. 1, 1–9 (2013).
    Article  Google Scholar 

    18.
    Crowley, S. R. Thermal sensitivity of sprint-running in the lizard Sceloporus undulatus: Support for a conservative view of thermal physiology. Oecologia 66, 219–225 (1985).
    ADS  PubMed  Article  Google Scholar 

    19.
    Parker, S. L. & Andrews, R. M. Incubation temperature and phenotypic traits of Sceloporus undulatus: Implications for the northern limits of distribution. Oecologia 151, 218–231 (2007).
    ADS  PubMed  Article  Google Scholar 

    20.
    Ensminger, D. C., Langkilde, T., Owen, D. A. S., MacLeod, K. J. & Sheriff, M. J. Maternal stress alters the phenotype of the mother, her eggs, and her offspring in a wild caught lizard. J. Anim. Ecol. 87, 1685–1697 (2018).
    PubMed  Article  Google Scholar 

    21.
    McCormick, G. L., Robbins, T. R., Cavigelli, S. A. & Langkilde, T. Ancestry trumps experience: Transgenerational but not early life stress affects the adult physiological stress response. Horm. Behav. 87, 115–121 (2017).
    CAS  PubMed  Article  Google Scholar 

    22.
    Telemeco, R. S., Simpson, D. Y., Tylan, C., Langkilde, T. & Schwartz, T. S. Contrasting responses of lizards to divergent ecological stressors across biological levels of organization. Integr. Comp. Biol. 59, 292–305 (2019).
    CAS  PubMed  Article  Google Scholar 

    23.
    McCormick, G. L. & Langkilde, T. Immune responses of eastern fence lizards (Sceloporus undulatus) to repeated acute elevation of corticosterone. Gen. Comp. Endocrinol. 204, 135–140 (2014).
    CAS  PubMed  Article  Google Scholar 

    24.
    McCormick, G. L., Shea, K. & Langkilde, T. How do duration, frequency, and intensity of exogenous CORT elevation affect immune outcomes of stress?. Gen. Comp. Endocrinol. 222, 81–87 (2015).
    CAS  PubMed  Article  Google Scholar 

    25.
    Mccormick, G. L., Robbins, T. R., Cavigelli, S. A. & Langkilde, T. Population history with invasive predators predicts innate immune function response to early-life glucocorticoid exposure in lizards. J. Exp. Biol. 222, jeb188359 (2019).
    PubMed  Article  Google Scholar 

    26.
    MacLeod, K. J., Sheriff, M. J., Ensminger, D. C., Owen, D. A. S. & Langkilde, T. Survival and reproductive costs of repeated acute glucocorticoid elevations in a captive, wild animal. Gen. Comp. Endocrinol. https://doi.org/10.1016/j.ygcen.2018.07.006 (2018).
    Article  PubMed  Google Scholar 

    27.
    John-Alder, H. B., Cox, R. M., Haenel, G. J. & Smith, L. C. Hormones, performance and fitness: Natural history and endocrine experiments on a lizard (Sceloporus undulatus). Integr. Comp. Biol. 49, 393–407 (2009).
    CAS  PubMed  Article  Google Scholar 

    28.
    Owen, D. A. S., Sheriff, M. J., Engler, H. I. & Langkilde, T. Sex-dependent effects of maternal stress: Stressed moms invest less in sons than daughters. J. Exp. Zool. Part A 329, 317–322 (2018).
    CAS  Google Scholar 

    29.
    Graham, S. P., Freidenfelds, N. A., Mccormick, G. L. & Langkilde, T. The impacts of invaders: Basal and acute stress glucocorticoid profiles and immune function in native lizards threatened by invasive ants. Gen. Comp. Endocrinol. 176, 400–408 (2012).
    CAS  PubMed  Article  Google Scholar 

    30.
    Phillips, J. B. & Klukowski, M. Influence of season and adrenocorticotropic hormone on corticosterone in free-living female eastern fence lizards (Sceloporus undulatus). Copeia 3, 570–578 (2008).
    Article  Google Scholar 

    31.
    Conant, R. & Collins, J. T. A Field Guide to Reptiles and Amphibians of Eastern and Central North America (Houghton Mifflin Company, Boston, 1998).
    Google Scholar 

    32.
    Carsia, R. V. & John-Alder, H. Seasonal alterations in adrenocortical cell function associated with stress-responsiveness and sex in the eastern fence lizard (Sceloporus undulatus). Horm. Behav. 43, 408–420 (2003).
    CAS  PubMed  Article  Google Scholar 

    33.
    Anderson, L., Nelson, N. & Cree, A. Glucocorticoids in tuatara (Sphenodon punctatus): Some influential factors, and applications in conservation management. Gen. Comp. Endocrinol. 244, 54–59 (2017).
    CAS  PubMed  Article  Google Scholar 

    34.
    Jessop, T. S. et al. Multiscale evaluation of thermal dependence in the glucocorticoid response of vertebrates. Am. Nat. 188, 342–356 (2016).
    PubMed  Article  Google Scholar 

    35.
    Telemeco, R. S. & Addis, E. A. Temperature has species-specific effects on corticosterone in alligator lizards. Gen. Comp. Endocrinol. 206, 184–192 (2014).
    CAS  PubMed  Article  Google Scholar 

    36.
    Cockrem, J. F. Individual variation in glucocorticoid stress responses in animals. Gen. Comp. Endocrinol. 181, 45–58 (2013).
    CAS  PubMed  Article  Google Scholar 

    37.
    Holding, M. L. et al. Wet- and dry-season steroid hormone profiles and stress reactivity of an insular dwarf snake, the Hog Island boa (Boa constrictor imperator). Physiol. Biochem. Zool. 87, 363–373 (2014).
    CAS  PubMed  Article  Google Scholar 

    38.
    Schulte, P. M. The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment. J. Exp. Biol. 218, 1856–1866 (2015).
    PubMed  Article  Google Scholar 

    39.
    Trompeter, W. P. & Langkilde, T. Invader danger: Lizards faced with novel predators exhibit an altered behavioral response to stress. Horm. Behav. 60, 152–158 (2011).
    CAS  PubMed  Article  Google Scholar 

    40.
    Graham, S. P., Freidenfelds, N. A., Robbins, T. R. & Langkilde, T. Are invasive species stressful? The glucocorticoid profile of native lizards exposed to invasive fire ants depends on the context. Physiol. Biochem. Zool. 90, 328–337 (2016).
    PubMed  Article  Google Scholar 

    41.
    Claunch, N. M. et al. Physiological and behavioral effects of exogenous corticosterone in a free-ranging ectotherm. Gen. Comp. Endocrinol. 248, 87–96 (2017).
    CAS  PubMed  Article  Google Scholar 

    42.
    Holding, M. L. et al. Physiological and behavioral effects of repeated handling and short-distance translocations on free-ranging northern Pacific rattlesnakes (Crotalus oreganus oreganus). J. Herpetol. 48, 233–239 (2014).
    Article  Google Scholar  More