Fruit host-dependent fungal communities in the microbiome of wild Queensland fruit fly larvae
1.
Flint, H. J., Scott, K. P., Louis, P. & Duncan, S. H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 9, 577. https://doi.org/10.1038/nrgastro.2012.156 (2012).
CAS Article PubMed Google Scholar
2.
Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267. https://doi.org/10.1126/science.1223813 (2012).
ADS CAS Article Google Scholar
3.
Zhang, Z., Jiao, S., Li, X. & Li, M. Bacterial and fungal gut communities of Agrilus mali at different developmental stages and fed different diets. Sci. Rep. 8, 15634 (2018).
ADS PubMed PubMed Central Article CAS Google Scholar
4.
Engel, P. & Moran, N. A. The gut microbiota of insects–diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735 (2013).
CAS PubMed Article Google Scholar
5.
Paine, T., Raffa, K. & Harrington, T. Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annu. Rev. Entomol. 42, 179–206 (1997).
CAS PubMed Article Google Scholar
6.
Yun, J. H. et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microbiol. 80, 5254–5264 (2014).
PubMed PubMed Central Article CAS Google Scholar
7.
Fukatsu, T. & Ishikawa, H. A novel eukaryotic extracellular symbiont in an aphid, Astegopteryx styraci (Homoptera, Aphididae, Hormaphidinae). J. Insect Physiol. 38, 765–773 (1992).
Article Google Scholar
8.
Malacrinò, A., Schena, L., Campolo, O., Laudani, F. & Palmeri, V. Molecular analysis of the fungal microbiome associated with the olive fruit fly Bactrocera oleae. Fungal Ecol. 18, 67–74 (2015).
Article Google Scholar
9.
Vega, F. E. & Blackwell, M. Insect-Fungal Associations: Ecology and Evolution (Oxford University Press, Oxford, 2005).
Google Scholar
10.
Stefanini, I. Yeast-insect associations: it takes guts. Yeast 35, 315–330 (2018).
CAS PubMed PubMed Central Article Google Scholar
11.
Boyce, A. Bionomics of the walnut husk fly, Rhagoletis completa. Hilgardia 8, 363–579 (1934).
Article Google Scholar
12.
Fanson, B. G. & Taylor, P. W. Protein: carbohydrate ratios explain life span patterns found in Queensland fruit fly on diets varying in yeast: sugar ratios. Age 34, 1361–1368 (2012).
CAS PubMed Article Google Scholar
13.
Moadeli, T., Mainali, B., Ponton, F. & Taylor, P. Evaluation of yeasts in gel larval diet for Queensland fruit fly, Bactrocera tryoni. J. Appl. Entomol. 142, 679–688 (2018).
CAS Article Google Scholar
14.
Nash, W. J. & Chapman, T. Effect of dietary components on larval life history characteristics in the Medfly (Ceratitis capitata: Diptera, Tephritidae). PLoS ONE 9, e86029 (2014).
ADS PubMed PubMed Central Article CAS Google Scholar
15.
Nestel, D. & Nemny-Lavy, E. Nutrient balance in medfly, Ceratitis capitata, larval diets affects the ability of the developing insect to incorporate lipid and protein reserves. Entomol. Exp. Appl. 126, 53–60. https://doi.org/10.1111/j.1570-7458.2007.00639.x (2008).
CAS Article Google Scholar
16.
Nestel, D., Nemny-Lavy, E. & Chang, C. L. Lipid and protein loads in pupating larvae and emerging adults as affected by the composition of Mediterranean fruit fly (Ceratitis capitata) meridic larval diets. Arch. Insect Biochem. Physiol. 56, 97–109. https://doi.org/10.1002/arch.20000 (2004).
CAS Article PubMed Google Scholar
17.
Mori, B. A. et al. Enhanced yeast feeding following mating facilitates control of the invasive fruit pest Drosophila suzukii. J. Appl. Ecol. 54, 170–177. https://doi.org/10.1111/1365-2664.12688 (2017).
Article Google Scholar
18.
Stamps, J. A., Yang, L. H., Morales, V. M. & Boundy-Mills, K. L. Drosophila regulate yeast density and increase yeast community similarity in a natural substrate. PLoS ONE 7, e42238. https://doi.org/10.1371/journal.pone.0042238 (2012).
ADS CAS Article PubMed PubMed Central Google Scholar
19.
Anagnostou, C., Dorsch, M. & Rohlfs, M. Influence of dietary yeasts on Drosophila melanogaster life-history traits. Entomol. Exp. Appl. 136, 1–11. https://doi.org/10.1111/j.1570-7458.2010.00997.x (2010).
Article Google Scholar
20.
Rohlfs, M. & Kürschner, L. Saprophagous insect larvae, Drosophila melanogaster, profit from increased species richness in beneficial microbes. J. Appl. Entomol. 134, 667–671. https://doi.org/10.1111/j.1439-0418.2009.01458.x (2010).
Article Google Scholar
21.
Menezes, C. et al. A Brazilian social bee must cultivate fungus to survive. Curr. Biol. 25, 2851–2855. https://doi.org/10.1016/j.cub.2015.09.028 (2015).
CAS Article PubMed Google Scholar
22.
Yun, J. H., Jung, M. J., Kim, P. S. & Bae, J. W. Social status shapes the bacterial and fungal gut communities of the honey bee. Sci. Rep. 8, 2019. https://doi.org/10.1038/s41598-018-19860-7 (2018).
ADS CAS Article PubMed PubMed Central Google Scholar
23.
DeLeon-Rodriguez, C. M. & Casadevall, A. Cryptococcus neoformans: tripping on acid in the phagolysosome. Front. Microbiol. 7, 164. https://doi.org/10.3389/fmicb.2016.00164 (2016).
Article PubMed PubMed Central Google Scholar
24.
Hajek, A. & St. Leger, R. Interactions between fungal pathogens and insect hosts. Annu. Rev. Entomol. 39, 293–322. https://doi.org/10.1146/annurev.en.39.010194.001453 (1994).
Article Google Scholar
25.
Lu, H. L., Wang, J. B., Brown, M. A., Euerle, C. & Leger, R. J. S. Identification of Drosophila mutants affecting defense to an entomopathogenic fungus. Sci. Rep. 5, 12350 (2015).
ADS PubMed PubMed Central Article Google Scholar
26.
Almeida, J. E., Batista Filho, A., Oliveira, F. C. & Raga, A. Pathogenicity of the entomopathogenic fungi and nematode on medfly Ceratitis capitata (Wied.)(Diptera: Tephritidae). BioAssay https://doi.org/10.14295/BA.v2 (2007).
Article Google Scholar
27.
Lacey, L. A., Frutos, R., Kaya, H. & Vail, P. Insect pathogens as biological control agents: do they have a future?. Biol. Control 21, 230–248 (2001).
Article Google Scholar
28.
Ortu, S., Cocco, A. & Dau, R. Evaluation of the entomopathogenic fungus Beauveria bassiana strain ATCC 74040 for the management of Ceratitis capitata. B. Insectol. 62, 245–252 (2009).
Google Scholar
29.
Quesada-Moraga, E., Ruiz-García, A. & Santiago-Alvarez, C. Laboratory evaluation of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae against puparia and adults of Ceratitis capitata (Diptera: Tephritidae). J. Econ. Entomol. 99, 1955–1966 (2006).
CAS PubMed Article Google Scholar
30.
Clarke, A. R., Powell, K. S., Weldon, C. W. & Taylor, P. W. The ecology of Bactrocera tryoni (Diptera: Tephritidae): what do we know to assist pest management?. Ann. Appl. Biol. 158, 26–54 (2011).
Article Google Scholar
31.
Dominiak, B. C. & Daniels, D. Review of the past and present distribution of Mediterranean fruit fly (Ceratitis capitata Wiedemann) and Queensland fruit fly (Bactrocera tryoni Froggatt) in Australia. Aust. J. Entomol. 51, 104–115 (2012).
Article Google Scholar
32.
Sutherst, R. W., Collyer, B. S. & Yonow, T. The vulnerability of Australian horticulture to the Queensland fruit fly, Bactrocera (Dacus) tryoni, under climate change. Aust. J. Agric. Res. 51, 467–480 (2000).
Article Google Scholar
33.
Dominiak, B., Westcott, A. & Barchia, I. Release of sterile Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), at Sydney, Australia. Aust. J. Exp. Agric. 43, 519–528 (2003).
Article Google Scholar
34.
Deutscher, A. T. et al. Near full-length 16S rRNA gene next-generation sequencing revealed Asaia as a common midgut bacterium of wild and domesticated Queensland fruit fly larvae. Microbiome 6, 85 (2018).
PubMed PubMed Central Article Google Scholar
35.
Drew, R., Courtice, A. & Teakle, D. Bacteria as a natural source of food for adult fruit flies (Diptera: Tephritidae). Oecologia 60, 279–284. https://doi.org/10.1007/BF00376839 (1983).
ADS CAS Article PubMed Google Scholar
36.
Lloyd, A., Drew, R., Teakle, D. & Hayward, A. Bacteria associated with some Dacus species (Diptera: Tephritidae) and their host fruit in Queensland. Aust. J. Biol. Sci. 39, 361–368 (1986).
Article Google Scholar
37.
Morrow, J. L., Frommer, M., Shearman, D. C. & Riegler, M. The microbiome of field-caught and laboratory-adapted Australian tephritid fruit fly species with different host plant use and specialisation. Microb. Ecol. 70, 498–508 (2015).
CAS PubMed Article Google Scholar
38.
Murphy, K. M., Teakle, D. S. & MacRae, I. C. Kinetics of colonization of adult Queensland fruit flies (Bactrocera tryoni) by dinitrogen-fixing alimentary tract bacteria. Appl. Environ. Microbiol. 60, 2508–2517 (1994).
CAS PubMed PubMed Central Article Google Scholar
39.
Thaochan, N., Drew, R., Hughes, J., Vijaysegaran, S. & Chinajariyawong, A. Alimentary tract bacteria isolated and identified with API-20E and molecular cloning techniques from Australian tropical fruit flies Bactrocera cacuminata and B. tryoni. J. Insect Sci. 10, 131 (2010).
CAS PubMed PubMed Central Article Google Scholar
40.
Majumder, R., Sutcliffe, B., Taylor, P. W. & Chapman, T. A. Next-Generation Sequencing reveals relationship between the larval microbiome and food substrate in the polyphagous Queensland fruit fly. Sci. Rep. 9, 1–12 (2019).
Article CAS Google Scholar
41.
Shuttleworth, L. A., Khan, M. A. M., Collins, D., Osborne, T. & Reynolds, O. L. Wild bacterial probiotics fed to larvae of mass-reared Queensland fruit fly [Bactrocera tryoni (Froggatt)] do not impact long-term survival, mate selection, or locomotor activity. Insect Sci. 27, 745–755 (2020).
CAS PubMed Article Google Scholar
42.
Shuttleworth, L. A. et al. A walk on the wild side: gut bacteria fed to mass-reared larvae of Queensland fruit fly [Bactrocera tryoni (Froggatt)] influence development. BMC Biotechnol. 19, 1–11 (2019).
Article CAS Google Scholar
43.
Woruba, D. N. et al. Diet and irradiation effects on the bacterial community composition and structure in the gut of domesticated teneral and mature Queensland fruit fly, Bactrocera tryoni (Diptera: Tephritidae). BMC Microbiol. 19, 281 (2019).
CAS PubMed PubMed Central Article Google Scholar
44.
Majumder, R., Sutcliffe, B., Chapman, T. A. & Taylor, P. W. Microbiome of the Queensland fruit fly through metamorphosis. Microorganisms 8, 795 (2020).
PubMed Central Article PubMed Google Scholar
45.
Deutscher, A. T., Reynolds, O. L. & Chapman, T. A. Yeast: an overlooked component of Bactrocera tryoni (Diptera: Tephritidae) larval gut microbiota. J. Econ. Entomol. 110, 298–300 (2016).
Google Scholar
46.
Piper, A. M., Farnier, K., Linder, T., Speight, R. & Cunningham, J. P. Two gut-associated yeasts in a tephritid fruit fly have contrasting effects on adult attraction and larval survival. J. Chem. Ecol. 43, 891–901 (2017).
CAS PubMed Article Google Scholar
47.
Toju, H., Tanabe, A. S., Yamamoto, S. & Sato, H. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE 7, e40863 (2012).
ADS CAS PubMed PubMed Central Article Google Scholar
48.
Schmidt, P. A. et al. Illumina metabarcoding of a soil fungal community. Soil Biol. Biochem. 65, 128–132 (2013).
CAS Article Google Scholar
49.
Yun, J. H., Jung, M. J., Kim, P. S. & Bae, J. W. Social status shapes the bacterial and fungal gut communities of the honey bee. Sci. Rep. 8, 1–11 (2018).
Article CAS Google Scholar
50.
Ravenscraft, A., Berry, M., Hammer, T., Peay, K. & Boggs, C. Structure and function of the bacterial and fungal gut microbiota of Neotropical butterflies. Ecol. Monogr. 89, e01346 (2019).
Article Google Scholar
51.
Mohammed, W. S., Ziganshina, E. E., Shagimardanova, E. I., Gogoleva, N. E. & Ziganshin, A. M. Comparison of intestinal bacterial and fungal communities across various xylophagous beetle larvae (Coleoptera: Cerambycidae). Sci. Rep. 8, 10073 (2018).
ADS PubMed PubMed Central Article CAS Google Scholar
52.
Sutcliffe, B. et al. Diverse fungal lineages in subtropical ponds are altered by sediment-bound copper. Fungal Ecol. 34, 28–42 (2018).
Article Google Scholar
53.
Hamby, K. A., Hernández, A., Boundy-Mills, K. & Zalom, F. G. Associations of yeasts with spotted-wing Drosophila (Drosophila suzukii; Diptera: Drosophilidae) in cherries and raspberries. Appl. Environ. Microbiol. 78, 4869–4873 (2012).
CAS PubMed PubMed Central Article Google Scholar
54.
Kurtzman, C., Fell, J. W. & Boekhout, T. The Yeasts: A Taxonomic Study (Elsevier, Amsterdam, 2011).
Google Scholar
55.
Marchesi, J. R. Prokaryotic and eukaryotic diversity of the human gut. Adv. Appl. Microbiol. 72, 43–62 (2010).
PubMed Article Google Scholar
56.
Xiang, H. et al. Microbial communities in the larval midgut of laboratory and field populations of cotton bollworm (Helicoverpa armigera). Can. J. Microbiol. 52, 1085–1092 (2006).
CAS PubMed Article Google Scholar
57.
Kudo, R., Masuya, H., Endoh, R., Kikuchi, T. & Ikeda, H. Gut bacterial and fungal communities in ground-dwelling beetles are associated with host food habit and habitat. ISME J. 13, 676 (2019).
CAS PubMed Article Google Scholar
58.
Broderick, N. A., Raffa, K. F., Goodman, R. M. & Handelsman, J. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl. Environ. Microbiol. 70, 293–300 (2004).
CAS PubMed PubMed Central Article Google Scholar
59.
Colman, D. R., Toolson, E. C. & Takacs-Vesbach, C. Do diet and taxonomy influence insect gut bacterial communities?. Mol. Ecol. 21, 5124–5137 (2012).
CAS PubMed Article Google Scholar
60.
Quan, A. S. & Eisen, M. B. The ecology of the Drosophila-yeast mutualism in wineries. PLoS ONE 13, e0196440 (2018).
PubMed PubMed Central Article CAS Google Scholar
61.
Starmer, W. T. & Lachance, M. A. Yeast ecology. Yeasts 7, 65–83 (2011).
Article Google Scholar
62.
Molnárová, J., Vadkertiová, R. & Stratilová, E. Extracellular enzymatic activities and physiological profiles of yeasts colonizing fruit trees. J. Basic Microbiol. 54, S74–S84 (2014).
PubMed Article CAS Google Scholar
63.
White, I. M. & Elson-Harris, M. M. Fruit Flies of Economic Significance: Their Identification and Bionomics (CAB International, Wallingford, 1992).
Google Scholar
64.
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).
CAS PubMed Google Scholar
65.
Benson, D. A. et al. GenBank. Nucleic Acids Res. 46, D41–D47 (2018).
CAS PubMed Article Google Scholar
66.
Australia, P. H. The Australian Handbook for the Identification of Fruit Flies. Vol. Version 1.0 (ed. Woods N) 234 (2011).
67.
Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113–118 (1993).
CAS PubMed Article Google Scholar
68.
Hoggard, M. et al. Characterizing the human mycobiota: a comparison of small subunit rRNA, ITS1, ITS2, and large subunit rRNA genomic targets. Front. Microbiol. 9, 2208 (2018).
PubMed PubMed Central Article Google Scholar
69.
Fouts, D. E. et al. Next generation sequencing to define prokaryotic and fungal diversity in the bovine rumen. PLoS ONE 7, e48289 (2012).
ADS CAS PubMed PubMed Central Article Google Scholar
70.
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335 (2010).
CAS PubMed PubMed Central Article Google Scholar
71.
Greenfield, P. Greenfield Hybrid Analysis Pipeline (GHAP) v1 (CSIRO, Canberra, 2017).
Google Scholar
72.
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
CAS PubMed Article Google Scholar
73.
Maidak, B. L. et al. The ribosomal database project (RDP). Nucleic Acids Res. 24, 82–85 (1996).
CAS PubMed PubMed Central Article Google Scholar
74.
Deshpande, V. et al. Fungal identification using a Bayesian classifier and the Warcup training set of internal transcribed spacer sequences. Mycologia 108, 1–5 (2016).
PubMed Article Google Scholar
75.
Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).
CAS PubMed Article Google Scholar
76.
Clarke, K. & Ainsworth, M. A method of linking multivariate community structure to environmental variables. Mar. Ecol. Prog. Ser. 92, 205–205 (1993).
ADS Article Google Scholar More
