1.
United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019—Data Booklet (ST/ESA/ SER.A/377), (2019). https://population.un.org/wpp/Publications/Files/WPP2019_DataBooklet.pdf
2.
Pimentel, D. & Burgess, M. Environmental and economic costs of the application of pesticides primarily in the United States. In Integrated Pest Management: Innovation-Development Process (eds Peshin, R. & Dhawan, A. K.) 47–71 (Springer, Dordrecht, 2014). https://doi.org/10.1007/978-1-4020-8992-3_4
Google Scholar
3.
Devine, G. J. & Furlong, M. J. Insecticide use: Contexts and ecological consequences. Agric. Hum. Values 24(3), 281–306. https://doi.org/10.1007/s10460-007-9067-z (2007).
Article Google Scholar
4.
Sanchis, V. & Bourguet, D. Bacillus thuringiensis: Applications in agriculture and insect resistance management. A review. Agron. Sustain. Dev. 28(1), 11–20. https://doi.org/10.1051/agro:2007054 (2008).
Article Google Scholar
5.
WHO report. WHO specifications and evaluations for public health pesticides: Bacillus thuringiensis subspecies israelensis strain AM65-52. (World Health Organization, Geneva, 2007).
6.
Rizzati, V., Briand, O., Guillou, H. & Gamet-Payrastre, L. Effects of pesticide mixtures in human and animal models: An update of the recent literature. Chem. Biol. Interact. 254, 231–246. https://doi.org/10.1016/j.cbi.2016.06.003 (2016).
Article PubMed CAS Google Scholar
7.
Lacey, L. A. et al. Insect pathogens as biological control agents: Back to the future. J. Invertebr. Pathol. 132, 1–41. https://doi.org/10.1016/j.jip.2015.07.009 (2015).
Article PubMed CAS Google Scholar
8.
Adang, M. J., Crickmore, N. & Jurat-Fuentes, J. L. Diversity of Bacillus thuringiensis Crystal Toxins and Mechanism of Action. Adv. Insect Physiol. 47, 39–87. https://doi.org/10.1016/B978-0-12-800197-4.00002-6 (2014).
Article Google Scholar
9.
Crickmore, N. Bacillus thuringiensis toxin classification. In Bacillus thuringiensis and Lysinibacillus sphaericus. (eds Fiuza, L.M. et al.) ISBN 978-3-319-56677-1, 41-52, (Spinger, Cham, 2017).
10.
WHO report. Guideline specification for bacterial larvicides for public health use. WHO document WHO/CDS/CPC/WHOPES/99.2 (World Health Organization, Geneva, 1999).
11.
Bravo, A., Pacheco, S., Gomez, I., Garcia-Gomez B., Onofre, J., Soberon, M. Insecticidal Proteins from Bacillus thuringiensis and their Mechanism of Action. In Bacillus thuringiensis and Lysinibacillus sphaericus (eds Fiuza, L.M. et al.) ISBN 978-3-319-56677-1, 53–66, (Spinger, Cham, 2017).
12.
Palma, L., Muñoz, D., Berry, C., Murillo, J. & Caballero, P. Bacillus thuringiensis toxins: An overview of their biocidal activity. Toxins 6(12), 3296–3325. https://doi.org/10.3390/toxins6123296 (2014).
Article PubMed PubMed Central CAS Google Scholar
13.
Ben-Dov, E. et al. Extended screening by PCR for seven cry-group genes from field-collected strains of Bacillus thuringiensis. Appl. Environ. Microb. 63(12), 4883–4890. https://doi.org/10.1128/aem.63.12.4883-4890.1997 (1997).
CAS Google Scholar
14.
Berry, C. et al. Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis. Appl. Environ. Microbiol. 68(10), 5082–5095. https://doi.org/10.1128/aem.68.10.5082-5095.2002 (2002).
Article PubMed PubMed Central CAS Google Scholar
15.
Bravo, A., Gill, S. S. & Soberon, M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49, 423–435. https://doi.org/10.1016/j.toxicon.2006.11.022 (2007).
Article PubMed CAS Google Scholar
16.
Wei, J. et al. Activation of Bt protoxin Cry1Ac in resistant and susceptible cotton bollworm. PLoS ONE 11(6), e0156560. https://doi.org/10.1371/journal.pone.0156560 (2016).
Article PubMed PubMed Central CAS Google Scholar
17.
Bravo, A., Likitvivatanavong, S., Gill, S. S. & Soberon, M. Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 41(7), 423–431. https://doi.org/10.1016/j.ibmb.2011.02.006 (2011).
Article PubMed PubMed Central CAS Google Scholar
18.
Caccia, S. et al. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism. Proc. Natl. Acad. Sci. USA 113(34), 9486–9491. https://doi.org/10.1073/pnas.1521741113 (2016).
Article PubMed CAS Google Scholar
19.
Glare, T.R., O’Callaghan, M. Bacillus thuringiensis: Biology, Ecology and Safety. ISBN: 9780471496304, 350, (Wiley, New York, 2000).
20.
Rubio-Infante, N. & Moreno-Fierros, L. An overview of the safety and biological effects of Bacillus thuringiensis Cry toxins in mammals. J. Appl. Toxicol. 36, 630–648. https://doi.org/10.1002/jat.3252 (2016).
Article PubMed CAS Google Scholar
21.
EFSA Panel on Biological Hazards (BIOHAZ). Risks for public health related to the presence of Bacillus cereus and other Bacillus spp. including Bacillus thuringiensis in foodstuffs. EFSA J. https://doi.org/10.2903/j.efsa.2016.4524 (2016).
Article Google Scholar
22.
Amichot, M., Curty, C., Benguettat-Magliano, O., Gallet, A. & Wajnberg, E. Side effects of Bacillus thuringiensis var. kurstaki on the hymenopterous parasitic wasp Trichogramma chilonis. Environ. Sci. Pollut. Res. Int. 23, 3097–3103. https://doi.org/10.1007/s11356-015-5830-7 (2016).
Article PubMed CAS Google Scholar
23.
Renzi, M. T. et al. Chronic toxicity and physiological changes induced in the honey bee by the exposure to fipronil and Bacillus thuringiensis spores alone or combined. Ecotoxicol. Environ. Saf. 127, 205–213. https://doi.org/10.1016/j.ecoenv.2016.01.028 (2016).
Article PubMed CAS Google Scholar
24.
Caquet, T., Roucaute, M., Le Goff, P. & Lagadic, L. Effects of repeated field applications of two formulations of Bacillus thuringiensis var. israelensis on non-target saltmarsh invertebrates in Atlantic coastal wetlands. Ecotoxicol. Environ. Saf. 74, 1122–1130. https://doi.org/10.1016/j.ecoenv.2011.04.028 (2011).
Article PubMed CAS Google Scholar
25.
Duguma, D. et al. Microbial communities and nutrient dynamics in experimental microcosms are altered after the application of a high dose of Bti. J. Appl. Ecol. 52, 763–773. https://doi.org/10.1111/1365-2664.12422 (2015).
Article CAS Google Scholar
26.
Venter, H. J. & Bøhn, T. Interactions between Bt crops and aquatic ecosystems: A review. Environ. Toxicol. Chem. 35(12), 2891–2902. https://doi.org/10.1002/etc.3583 (2016).
Article PubMed CAS Google Scholar
27.
van Frankenhuyzen, K. Specificity and cross-order activity of Bacillus thuringiensis pesticidal proteins. In Bacillus thuringiensis and Lysinibacillus sphaericus (eds Fiuza, L.M. et al.) ISBN 978-3-319-56677-1, 127–172, (Springer, Cham, 2017).
28.
Bizzarri, M. F. & Bishop, A. H. The ecology of Bacillus thuringiensis on the phylloplane: Colonization from soil, plasmid transfer, and interaction with larvae of Pieris brassicae. Microb. Ecol. 56(1), 133–139. https://doi.org/10.1007/s00248-007-9331-1 (2008).
Article PubMed CAS Google Scholar
29.
Raymond, B., Wyres, K. L., Sheppard, S. K., Ellis, R. J. & Bonsall, M. B. Environmental factors determining the epidemiology and population genetic structure of the Bacillus cereus group in the field. PLoS Pathog. 6(5), e1000905. https://doi.org/10.1371/journal.ppat.1000905 (2010).
Article PubMed PubMed Central CAS Google Scholar
30.
Hendriksen, N. B. & Hansen, B. M. Long-term survival and germination of Bacillus thuringiensis var. kurstaki in a field trial. Can. J. Microbiol. 48(3), 256–261. https://doi.org/10.1139/w02-009 (2002).
Article PubMed CAS Google Scholar
31.
Hung, T. P. et al. Persistence of detectable insecticidal proteins from Bacillus thuringiensis (Cry) and toxicity after adsorption on contrasting soils. Environ. Pollut. 208, 318–325. https://doi.org/10.1016/j.envpol.2015.09.046 (2016).
Article PubMed CAS Google Scholar
32.
Hung, T. P. et al. Fate of insecticidal Bacillus thuringiensis Cry protein in soil: Differences between purified toxin and biopesticide formulation. Pest Manag. Sci. 72, 2247–2253. https://doi.org/10.1002/ps.4262 (2016).
Article PubMed CAS Google Scholar
33.
Enger, K. S. et al. Evaluating the long-term persistence of Bacillus spores on common surfaces. Microb. Biotechnol. 11(6), 1048–1059. https://doi.org/10.1111/1751-7915.13267 (2018).
Article PubMed PubMed Central CAS Google Scholar
34.
Couch, T.L. Industrial fermentation and formulation of entomopathogenic bacteria. In Entomopathogenic Bacteria: From Laboratory to Field Application (eds Charles, J.-F. et al.) ISBN 978-90-481-5542-2, 297–316.43, (Springer, Dordrecht, 2000).
35.
Brar, S. K., Verma, M., Tyagi, R. D. & Valéro, J. R. Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides. Process Biochem. 41(2), 323–342. https://doi.org/10.1016/j.procbio.2005.07.015 (2006).
Article CAS Google Scholar
36.
Setlow, P. Spore resistance properties. Microbiol. Spectr. 2(5), TBS-0003-2012. https://doi.org/10.1128/microbiolspec.TBS-0003-2012 (2014).
Article CAS Google Scholar
37.
European Food Safety Authority. Conclusion on the peer review of the pesticide risk assessment of the active substance Bacillus thuringiensis subsp. Kurstaki (strains ABTS 351, PB 54, SA 11, SA 12, EG 2348). EFSA J. 10(2), 2540. https://doi.org/10.2903/j.efsa.2012.2540 (2012).
Article CAS Google Scholar
38.
Bächli, G. TaxoDros: The database on Taxonomy of Drosophilidae: Database 2020/1.https://www.taxodros.uzh.ch. (1999–2020).
39.
Tennessen, J. M. & Thummel, C. S. Coordinating growth and maturation—Insights from Drosophila. Curr. Biol. 21(18), R750–R757. https://doi.org/10.1016/j.cub.2011.06.033 (2011).
Article PubMed PubMed Central CAS Google Scholar
40.
Benz, G. & Perron, J. M. The toxic action of Bacillus thuringiensis “exotoxin” on Drosophila reared in yeast-containing and yeast-free media. Experientia 23(10), 871–872 (1967).
PubMed CAS Google Scholar
41.
Saadoun, I., Al-Moman, F., Obeidat, M., Meqdam, M. & Elbetieha, A. Assessment of toxic potential of local Jordanian Bacillus thuringiensis strains on Drosophila melanogaster and Culex sp. (Diptera). J. Appl. Microbiol. 90, 866–872. https://doi.org/10.1046/j.1365-2672.2001.01315.x (2001).
Article PubMed CAS Google Scholar
42.
Khyami-Horani, H. Toxicity of Bacillus thuringiensis and B. sphaericus to laboratory populations of Drosophila melanogaster (Diptera: Drosophilidae). J. Basic Microbiol. 42(2), 105–110. https://doi.org/10.1002/1521-4028(200205)42:23.0.CO;2-S (2002).
Article PubMed Google Scholar
43.
Obeidat, M. Toxicity of local Bacillus thuringiensis isolates against Drosophila melanogaster. WJAS 4(2), 161–167 (2008).
Google Scholar
44.
Obeidat, M., Khymani-Horani, H. & Al-Momani, F. Toxicity of Bacillus thuringiensis β-exotoxins and δ-endotoxins to Drosophila melanogaster, Ephestia kuhniella and human erythrocytes. Afr. J. Biotechnol. 11(46), 10504–10512 (2012).
Google Scholar
45.
Cossentine, J., Robertson, M. & Xu, D. Biological activity of Bacillus thuringiensis in Drosophila suzukii (Diptera: Drosophilidae). J. Econ. Entomol. 109(3), 1–8. https://doi.org/10.1093/jee/tow062 (2016).
Article CAS Google Scholar
46.
Biganski, S., Jehle, J. A. & Kleepies, R. G. Bacillus thuringiensis serovar israelensis has no effect on Drosophila suzukii Matsumura. J. Appl. Entomol. 142, 33–36. https://doi.org/10.1111/jen.12415 (2017).
Google Scholar
47.
Haller, S., Romeis, J. X. R. & Meissle, M. Effects of purified or plant-produced Cry proteins on Drosophila melanogaster (Diptera: Drosophilidae) larvae. Sci. Rep. 7(1), 11172. https://doi.org/10.1038/s41598-017-10801-4 (2017).
ADS Article PubMed PubMed Central CAS Google Scholar
48.
Benado, M. & Brncic, D. An eight-year phenological study of a local drosophilid community in Central Chile. J. Zool. Syst. Evol. Res. 32, 51–63. https://doi.org/10.1111/j.1439-0469.1994.tb00470.x (1994).
Article Google Scholar
49.
Nunney, L. The colonization of oranges by the cosmopolitan Drosophila. Oecologia 108, 552–561. https://www.jstor.org/stable/4221451 (1996).
ADS PubMed Google Scholar
50.
Mitsui, H. & Kimura, M. T. Coexistence of drosophilid flies: Aggregation, patch size diversity and parasitism. Ecol. Res. 15, 93–100. https://doi.org/10.1046/j.1440-1703.2000.00328.x (2000).
Google Scholar
51.
Withers, P. & Allemand, R. Les drosophiles de la région Rhône-Alpes (Diptera, Drosophilidae). Bull. Soc. Entomol. Fr. 117(4), 473–482. https://www.persee.fr/doc/bsef_0037-928x_2012_num_117_4_3076 (2012).
Google Scholar
52.
Stevens, T., Song, S., Bruning, J. B., Choo, A. & Baxter, S. W. Expressing a moth abcc2 gene in transgenic Drosophila causes susceptibility to Bt Cry1Ac without requiring a cadherin-like protein receptor. Insect Biochem. Mol. Biol. 80, 61–70. https://doi.org/10.1016/j.ibmb.2016.11.008 (2017).
Article PubMed CAS Google Scholar
53.
George, Z., Crickmore, N. Bacillus thuringiensis applications in agriculture. In Bacillus thuringiensis Biotechnology (ed Sansinenea, E.) 392, (Springer, Dordrecht, 2012).
54.
Nepoux, V., Haag, C. R. & Kawecki, T. J. Effects of inbreeding on aversive learning in Drosophila. J. Evol. Biol. 23, 2333–2345. https://doi.org/10.1111/j.1420-9101.2010.02094.x (2010).
Article PubMed CAS Google Scholar
55.
Vantaux, A., Ouattarra, I., Lefèvre, T. & Dabiré, K. R. Effects of larvicidal and larval nutritional stresses on Anopheles gambiae development, survival and competence for Plasmodium falciparum. Parasite. Vector. 9, 226. https://doi.org/10.1186/s13071-016-1514-5 (2016).
Article CAS Google Scholar
56.
Moret, Y. & Schmid-Hempel, P. Survival for immunity: The price of immune system activation for bumblebee workers. Science 290(5494), 1166–1168. https://doi.org/10.1126/science.290.5494.1166 (2000).
ADS Article PubMed CAS Google Scholar
57.
Kutzer, M. A. & Armitage, S. A. O. The effect of diet and time after bacterial infection on fecundity, resistance, and tolerance in Drosophila melanogaster. Ecol. Evol. 6(13), 4229–4242. https://doi.org/10.1002/ece3.2185 (2016).
Article PubMed PubMed Central Google Scholar
58.
Andersen, L. H., Kristensen, T. N., Loeschcke, V., Toft, S. & Mayntz, D. Protein and carbohydrate composition of larval food affects tolerance to thermal stress and desiccation in adult Drosophila melanogaster. J. Insect Physiol. 56, 336–340. https://doi.org/10.1016/j.jinsphys.2009.11.006 (2010).
Article PubMed CAS Google Scholar
59.
Rion, S. & Kawecki, T. J. Evolutionary biology of starvation resistance: What we have learned from Drosophila. J. Evol. Biol. 20(5), 1655–1664. https://doi.org/10.1111/j.1420-9101.2007.01405.x (2007).
Article PubMed CAS Google Scholar
60.
Burger, J. M. S., Buechel, S. D. & Kawecki, T. J. Dietary restriction affects lifespan but not cognitive aging in Drosophila melanogaster. Aging Cell 9, 327–335. https://doi.org/10.1111/j.1474-9726.2010.00560.x (2010).
Article PubMed CAS Google Scholar
61.
Khazaeli, A. A. & Curtsinger, J. W. Genetic analysis of extended lifespan in Drosophila melanogaster III. On the relationship between artificially selected and wild stocks. Genetica 109, 245–253. https://doi.org/10.1023/a:1017569318401 (2000).
Article PubMed CAS Google Scholar
62.
Atkinson, W. & Shorrocks, B. Breeding site specificity in the domestic species of Drosophila. Oecologia 29(3), 223–232. https://www.jstor.org/stable/4215461 (1977).
ADS PubMed CAS Google Scholar
63.
Walsh, D. B. et al. Drosophila suzukii (Diptera: Drosophilidae): Invasive pest of ripening soft fruit expanding its geographic range and damage potential. J. Integr. Pest Manag. https://doi.org/10.1603/IPM10010 (2011).
Article Google Scholar
64.
Delbac, L. et al. Drosophila suzukii est-elle une menace pour la vigne?. Phytoma 679, 16–21 (2014).
Google Scholar
65.
Poyet, M. et al. Invasive host for invasive pest: When the Asiatic cherry fly (Drosophila suzukii) meets the American black cherry (Prunus serotine) in Europe. Agric. For. Entomol. 16(3), 251–259. https://doi.org/10.1111/afe.12052 (2014).
Article Google Scholar
66.
Poulin, B., Lefebvre, G. & Paz, L. Red flag for green spray: Adverse trophic effects of Bti on breeding birds. J. Appl. Ecol. 47, 884–889. https://doi.org/10.1111/j.1365-2664.2010.01821.x (2010).
Article Google Scholar
67.
Zeigler, D.R. Bacillus genetic stock center catalog of strains, 7th edition. Part 2: Bacillus thuringiensis and Bacillus cereus. http://www.bgsc.org/_catalogs/Catpart2.pdf (1999).
68.
Gonzales, J. M. Jr., Brown, B. J. & Carlton, B. C. Transfer of Bacillus thuringiensis plasmids coding for δ-endotoxin among strains of B. thuringiensis and B. cereus. Proc. Natl Acad. Sci. USA 79, 6951–6955. https://doi.org/10.1073/pnas.79.22.6951 (1982).
ADS Article Google Scholar
69.
Santos, M., Borash, D. J., Joshi, A., Bounlutay, N. & Mueller, L. D. Density-dependent natural selection in Drosophila: Evolution of growth rate and body size. Evolution 51(2), 420–432. https://doi.org/10.2307/2411114 (1997).
Article PubMed Google Scholar
70.
Bradberry, S. M., Proudfoot, A. T. & Vale, J. A. Glyphosate poisoning. Toxicol. Rev. 23(3), 159–167. https://doi.org/10.2165/00139709-200423030-00003 (2004).
Article PubMed CAS Google Scholar
71.
R Development Core Team. R: A language and environment for statistical computing. ISBN 3-900051-07-0 https://www.R-project.org (R Foundation for Statistical Computing, Vienna, 2008).
72.
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).
Google Scholar
73.
Kosmidis I. brglm: Bias Reduction in Binary-Response Generalized Linear Models. R package version 0.6.1, https://www.ucl.ac.uk/~ucakiko/software.html, (2017).
74.
Horton, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometrical J. 50(3), 346–363. https://doi.org/10.1002/bimj.200810425 (2008).
MathSciNet Article Google Scholar
75.
Therneau, T.M., Grambsch, P.M. Modeling Survival Data: Extending The Cox Model. ISBN 0-387-98784-3 (Springer, New York, 2000).
76.
Therneau, T.M. coxme: Mixed Effects Cox Models. R package version 2.2-5. https://CRAN.R-project.org/package=coxme (2015). More