Reproductive characteristics of American bullfrogs (Lithobates catesbeianus) in their invasive range of the Pacific Northwest, USA
1.
Elton, C. The Ecology of Invasions by Animals and Plants (Methuen, London, 1958).
Google Scholar
2.
Simberloff, D. Invasive Species: What Everyone Needs to Know (Oxford University Press, Oxford, 2013).
Google Scholar
3.
Ehrenfeld, J. G. Ecosystem consequences of biological invasions. Annu. Rev. Ecol. Evol. Syst. 41, 59–80 (2010).
Article Google Scholar
4.
Simberloff, D. How common are invasion-induced ecosystem impacts?. Biol. Invasions 13, 1255–1268 (2011).
Article Google Scholar
5.
Simberloff, D. Invasional meltdown 6 years later: important phenomenon, unfortunate metaphor, or both?. Ecol. Lett. 9, 912–919 (2006).
PubMed Article Google Scholar
6.
Fukami, T. et al. Above- and below-ground impacts of introduced predators in seabird-dominated island ecosystems. Ecol. Lett. 9, 1299–1307 (2006).
PubMed Article Google Scholar
7.
Gibbons, J. W. et al. The global decline of reptiles Deja Vu amphibians. Bioscience 50, 653–666 (2000).
Article Google Scholar
8.
Blackburn, T. M., Cassey, P., Duncan, R. P., Evans, K. L. & Gaston, K. J. Avian extinction and mammalian introductions on oceanic islands. Science 305, 1955 (2004).
ADS PubMed Article CAS Google Scholar
9.
Paini, D. R. et al. Global threat to agriculture from invasive species. Proc. Natl. Acad. Sci. 113, 7575–7579 (2016).
PubMed Article CAS Google Scholar
10.
Juliano, S. A. & Lounibos, L. P. Ecology of invasive mosquitoes: effects on resident species and on human health. Ecol. Lett. 8, 558–574 (2005).
PubMed PubMed Central Article Google Scholar
11.
Pimentel, D., Lach, L., Zuniga, R. & Morrison, D. Environmental and economic costs of nonindigenous species in the United States. Bioscience 50, 53–65 (2000).
Article Google Scholar
12.
Rogers, W. E. Invasive species. In Reference Module Earth Systems and Environmental Sciences (ed. Flow, E. S.) (Elsevier, Amsterdam, 2017).
Google Scholar
13.
Booth, B. D., Murphy, S. D. & Swanton, C. J. Weed Ecology in Natural and Agricultural Systems (CABI publishing, Wallingford, 2003).
Google Scholar
14.
White, E. M., Wilson, J. C. & Clarke, A. R. Biotic indirect effects: a neglected concept in invasion biology. Divers. Distrib. 12, 443–455 (2006).
Article Google Scholar
15.
Hui, C. et al. Defining invasiveness and invasibility in ecological networks. Biol. Invasions 18, 971–983 (2016).
Article Google Scholar
16.
Ricciardi, A., Hoopes, M. F., Marchetti, M. P. & Lockwood, J. L. Progress toward understanding the ecological impacts of nonnative species. Ecol. Monogr. 83, 263–282 (2013).
Article Google Scholar
17.
Kolar, C. S. & Lodge, D. M. Progress in invasion biology: predicting invaders. Trends Ecol. Evol. 16, 199–204 (2001).
PubMed Article Google Scholar
18.
Lodge, D. M. Biological invasions: lessons for ecology. Trends Ecol. Evol. 8, 133–137 (1993).
PubMed Article CAS Google Scholar
19.
Savidge, J. A., Qualls, F. J. & Rodda, G. H. Reproductive biology of the brown tree snake, Boiga irregularis (Reptilia: Colubridae), during colonization of Guam and comparison with that in their native range. Pac. Sci. 61, 191–199 (2007).
Article Google Scholar
20.
Gardner, P. G., Frazer, T. K., Jacoby, C. A. & Yanong, R. P. E. Reproductive biology of invasive lionfish (Pterois spp.). Front. Mar. Sci. 2, 7 (2015).
Article Google Scholar
21.
Van Kleunen, M., Dawson, W., Schlaepfer, D., Jeschke, J. M. & Fischer, M. Are invaders different? A conceptual framework of comparative approaches for assessing determinants of invasiveness. Ecol. Lett. 13, 947–958 (2010).
PubMed Google Scholar
22.
Barnosky, A. D. et al. Has the Earth/’s sixth mass extinction already arrived?. Nature 471, 51–57 (2011).
ADS PubMed Article CAS Google Scholar
23.
Ceballos, G. et al. Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).
ADS PubMed PubMed Central Article Google Scholar
24.
Measey, G. J. et al. Ongoing invasions of the African clawed frog, Xenopus laevis: a global review. Biol. Invasions 14, 2255–2270 (2012).
Article Google Scholar
25.
Bucciarelli, G. M., Blaustein, A. R., Garcia, T. S. & Kats, L. B. Invasion complexities: the diverse impacts of nonnative species on amphibians. Copeia 2014, 611–632 (2014).
Article Google Scholar
26.
Measey, G. J. et al. A global assessment of alien amphibian impacts in a formal framework. Divers. Distrib. 22, 970–981 (2016).
Article Google Scholar
27.
Kumschick, S. et al. Impact assessment with different scoring tools: how well do alien amphibian assessments match?. NeoBiota 33, 53–66 (2017).
Article Google Scholar
28.
Kraus, F. Impacts from invasive reptiles and amphibians. Annu. Rev. Ecol. Evol. Syst. 46, 75–97 (2015).
Article Google Scholar
29.
Selechnik, D., Rollins, L. A., Brown, G. P., Kelehear, C. & Shine, R. The things they carried: the pathogenic effects of old and new parasites following the intercontinental invasion of the Australian cane toad (Rhinella marina). Int. J. Parasitol. Parasites Wildl. 6, 375–385 (2017).
PubMed Article CAS Google Scholar
30.
Shine, R. Invasive species as drivers of evolutionary change: cane toads in tropical Australia. Evol. Appl. 5, 107–116 (2012).
PubMed Article Google Scholar
31.
Adams, M. J. & Pearl, C. A. Problems and opportunities managing invasive bullfrogs: is there any hope? In Biological Invaders in Inland Waters: Profiles, Distribution, and Threats (ed. Gherardi, F.) 679–693 (Springer, Dordrecht, 2007).
Google Scholar
32.
Pili, A. N., Supsup, C. E., Sy, E. Y., Diesmos, M. L. L. & Diesmos, A. C. Spatial dynamics of invasion and distribution of alien frogs in a biodiversity hotspot archipelago. In Island Invasives: Scaling Up to Meet the Challenge 337–347 (IUCN, 2019).
33.
Pearl, C., Adams, M., Leuthold, N. & Bury, R. Amphibian occurrence and aquatic invaders in a changing landscape: implications for wetland mitigation in the Willamette valley, Oregon, USA. Wetlands 25, 76–88 (2005).
Article Google Scholar
34.
Govindarajulu, P., Price, W. M. S. & Anholt, B. R. Introduced bullfrogs (Rana catesbeiana) in western Canada: has their ecology diverged?. J. Herpetol. 40, 249–260 (2006).
Article Google Scholar
35.
Bai, C., Liu, X., Fisher, M. C., Garner, T. W. J. & Li, Y. Global and endemic Asian lineages of the emerging pathogenic fungus Batrachochytrium dendrobatidis widely infect amphibians in China. Divers. Distrib. 18, 307–318 (2012).
Article Google Scholar
36.
Rago, A., While, G. M. & Uller, T. Introduction pathway and climate trump ecology and life history as predictors of establishment success in alien frogs and toads. Ecol. Evol. 2, 1437–1445 (2012).
PubMed PubMed Central Article Google Scholar
37.
Xuan, L., Yiming, L. & McGarrity, M. Geographical variation in body size and sexual size dimorphism of introduced American bullfrogs in southwestern China. Biol. Invasions 12, 2037–2047 (2010).
Article Google Scholar
38.
Both, C. et al. Widespread occurrence of the American Bullfrog, Lithobates catesbeianus (Shaw, 1802) (Anura: Ranidae) Brazil. South Am. J. Herpetol. 6, 127–134 (2011).
Article Google Scholar
39.
Bøhn, T., Terje Sandlund, O., Amundsen, P.-A. & Primicerio, R. Rapidly changing life history during invasion. Oikos 106, 138–150 (2004).
Article Google Scholar
40.
Lima, S. L., Costa, C. L. S., Agostinho, C. A., Andrade, D. R. & Pereira, H. P. Estimate of bullfrog size at first sexual maturation, Rana catesbeiana, in the intensive growing Anfigranja system. Rev. Bras. Zootec. Braz. J. Anim. Sci. 27, 416–420 (1998).
Google Scholar
41.
Leivas, P. T., Moura, M. O. & Favaro, L. F. The reproductive biology of the invasive Lithobates catesbeianus (Amphibia:Anura). J. Herpetol. 46, 153–161 (2012).
Article Google Scholar
42.
Bruneau, M. & Magnin, E. Croissance, nutrition et reproduction des ouaouarons Rana catesbeiana Shaw (Amphibia Anura) des Laurentides au nord de Montreal. Can. J. Zool. 58, 175–183 (1980).
Article Google Scholar
43.
Shirose, L. J., Brooks, R. J., Barta, J. R. & Desser, S. S. Intersexual differences in growth, mortality, and size at maturity in bullfrogs in central Ontario. Can. J. Zool. 71, 2363–2369 (1993).
Article Google Scholar
44.
Jennings, M. R. & Hayes, M. P. Pre-1900 overharvest of California red-legged frogs (Rana aurora draytonii): the inducement for Bullfrog (Rana catesbeiana) introduction. Herpetologica 41, 94–103 (1985).
Google Scholar
45.
Guariento, R. D., Carneiro, L. S., Jorge, J. S. & Caliman, A. Assessing the risk effects of native predators on the exotic American bullfrog (Lithobates catesbeianus) and their indirect consequences to ecosystem function. Acta Oecologica 91, 50–56 (2018).
ADS Article Google Scholar
46.
Crump, M. L. & Scott, N. J. Jr. Chapter 2. Visual encounter surveys. In Measuring and Monitoring Biological Diversity: Standard Methods for Amphibians (eds Heyer, W. R. et al.) 84–92 (Smithsonian Institution Press, Washington, 1994).
Google Scholar
47.
Browne, R. K. & Zippel, K. Reproduction and larval rearing of amphibians. ILAR J. 48, 214–234 (2007).
PubMed Article CAS Google Scholar
48.
Costa, C. L. S., Lima, S. L., Andrade, D. R. & Agostinho, C. A. Morphological characterization of development stages of male reproduction apparel of bullfrog, Rana catesbeiana, in the intensive Anfigranja system. Rev. Bras. Zootec. Braz. J. Anim. Sci. 27, 651–657 (1998).
Google Scholar
49.
Costa, C. L. S., Lima, S. L., Andrade, D. R. & Agostinho, C. A. Morphological characterization of the development stages of female reproduction apparel of bullfrog, Rana catesbeiana, in the intensive Anfigranja systems. Rev. Bras. Zootec. Braz. J. Anim. Sci. 27, 642–650 (1998).
Google Scholar
50.
Kaefer, I. L., Boelter, R. A. & Cechin, S. Z. Reproductive biology of the invasive bullfrog Lithobates catesbeianus in southern Brazil. Ann. Zool. Fenn. 44, 435–444 (2007).
Google Scholar
51.
Howard, R. D. Sexual dimorphism in bullfrogs. Ecology 62, 303–310 (1981).
Article Google Scholar
52.
Jones, L. L. C., Leonard, W. P. & Olson, D. H. Amphibians of the Pacific Northwest (Seattle Audubon Society, Seattle, 2005).
Google Scholar
53.
Nussbaum, R. A., Brodie, E. D. & Storm, R. M. Amphibians and Reptiles of the Pacific Northwest (University Press of Idaho, Moscow, 1983).
Google Scholar
54.
Govindarajulu, P., Altwegg, R. & Anholt, B. R. Matrix model investigation of invasive species control: bullfrogs on Vancouver Island. Ecol. Appl. 15, 2161–2170 (2005).
Article Google Scholar
55.
Cook, M. T., Heppell, S. S. & Garcia, T. S. Invasive bullfrog larvae lack developmental plasticity to changing hydroperiod. J. Wildl. Manag. 77, 655–662 (2013).
Article Google Scholar
56.
Jennette, M. A., Snodgrass, J. W. & Forester, D. C. Variation in age, body size, and reproductive traits among urban and rural amphibian populations. Urban Ecosyst. 22, 137–147 (2019).
Article Google Scholar
57.
Bredeweg, E. M., Urbina, J., Morzillo, A. T. & Garcia, T. S. Starting on the right foot: carryover effects of larval hydroperiod and terrain moisture on post-metamorphic frog movement behavior. Front. Ecol. Evol. 7, 97 (2019).
Article Google Scholar
58.
Burton, O. J., Phillips, B. L. & Travis, J. M. J. Trade-offs and the evolution of life-histories during range expansion. Ecol. Lett. 13, 1210–1220 (2010).
PubMed Article Google Scholar
59.
Chuang, A. & Peterson, C. R. Expanding population edges: theories, traits, and trade-offs. Glob. Change Biol. 22, 494–512 (2016).
ADS Article Google Scholar
60.
Kelehear, C. & Shine, R. Tradeoffs between dispersal and reproduction at an invasion front of cane toads in tropical Australia. Sci. Rep. 10, 486 (2020).
ADS PubMed PubMed Central Article CAS Google Scholar
61.
Hudson, C. M., Phillips, B. L., Brown, G. P. & Shine, R. Virgins in the vanguard: low reproductive frequency in invasion-front cane toads. Biol. J. Linn. Soc. 116, 743–747 (2015).
Article Google Scholar
62.
Courant, J., Secondi, J., Bereiziat, V. & Herrel, A. Resources allocated to reproduction decrease at the range edge of an expanding population of an invasive amphibian. Biol. J. Linn. Soc. 122, 157–165 (2017).
Article Google Scholar
63.
Vimercati, G., Davies, S. J. & Measey, J. Invasive toads adopt marked capital breeding when introduced to a cooler, more seasonal environment. Biol. J. Linn. Soc. 128, 657–671 (2019).
Article Google Scholar
64.
Sol, D. et al. Unraveling the life history of successful invaders. Science 337, 580 (2012).
ADS PubMed Article CAS PubMed Central Google Scholar
65.
Descamps, S. & De Vocht, A. The sterile male release approach as a method to control invasive amphibian populations: a preliminary study on Lithobates catesbeianus. Manag. Biol. Invasions 8, 361–370 (2017).
Article Google Scholar
66.
McCoid, M. J. & Fritts, T. H. Growth and fatbody cycles in feral populations of the African clawed frog, Xenopus laevis (Pipidae), in California with comments on reproduction. Southwest. Nat. 34, 499–505 (1989).
Article Google Scholar
67.
Werner, E. E. Amphibian metamorphosis: growth rate, predation risk, and the optimal size at transformation. Am. Nat. 128, 319–341 (1986).
Article Google Scholar
68.
Howard, R. D. Sexual selection and variation in reproductive success in a long-lived organism. Am. Nat. 122, 301–325 (1983).
ADS Article Google Scholar
69.
Emlen, S. T. ‘Double clutching’ and its possible significance in the bullfrog. Copeia 1977, 749–751 (1977).
Article Google Scholar
70.
Kiesecker, J. M. & Blaustein, A. R. Effects of introduced bullfrogs and smallmouth bass on microhabitat use, growth, and survival of native red-legged frogs (Rana aurora). Conserv. Biol. 12, 776–787 (1998).
Article Google Scholar
71.
Blaustein, A. R. & Kiesecker, J. M. Complexity in conservation: lessons from the global decline of amphibian populations. Ecol. Lett. 5, 597–608 (2002).
Article Google Scholar
72.
Rowe, J. C. et al. Disentangling effects of invasive species and habitat while accounting for observer error in a long-term amphibian study. Ecosphere 10, e02674 (2019).
Article Google Scholar
73.
Sharifian-Fard, M. et al. Ranavirosis in invasive bullfrogs Belgium. Emerg. Infect. Dis. 17, 2371–2372 (2011).
PubMed PubMed Central Article Google Scholar
74.
Gervasi, S. S. et al. Experimental evidence for American bullfrog (Lithobates catesbeianus) susceptibility to chytrid fungus (Batrachochytrium dendrobatidis). EcoHealth 10, 166–171 (2013).
PubMed Article Google Scholar
75.
Martel, A. et al. Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proc. Natl. Acad. Sci. 110, 15325 (2013).
ADS PubMed Article Google Scholar
76.
Urbina, J., Bredeweg, E. M., Garcia, T. S. & Blaustein, A. R. Host-pathogen dynamics among the invasive American bullfrog (Lithobates catesbeianus) and chytrid fungus (Batrachochytrium dendrobatidis). Hydrobiologia 817, 267–277 (2018).
Article CAS Google Scholar
77.
Ficetola, G. F. et al. Pattern of distribution of the American bullfrog Rana catesbeiana in Europe. Biol. Invasions 9, 767–772 (2007).
Article Google Scholar
78.
Ryan, M. J. The reproductive behavior of the bullfrog (Rana catesbeiana). Copeia 1980, 108–114 (1980).
Article Google Scholar
79.
Willis, Y. L., Moyle, D. L. & Baskett, T. S. Emergence, breeding, hibernation, movements and transformation of the bullfrog, Rana catesbeiana Missouri. Copeia 1956, 30–41 (1956).
Article Google Scholar
80.
Wright, A. & Wright, A. Handbook of Frogs and Toads of the United States and Canada (Comstock, London, 1949).
Google Scholar
81.
Raney, E. C. & Ingram, W. M. Growth of tagged frogs (Rana catesbeiana Shaw and Rana clamitans Daudin) under natural conditions. Am. Midl. Nat. 26, 201–206 (1941).
Article Google Scholar
82.
George, I. A study of the bullfrog, Rana catesbeiana Shaw, at Baton Rouge, Louisiana (University of Michigan, Ann Arbor, 1940).
Google Scholar
83.
Wright, A. Frogs: Their Natural History and Utilization. Series: Document (Bureau of Fisheries, United States) no. 888. (Govt. Print. Off, Washington, 1920). More