Gene loss through pseudogenization contributes to the ecological diversification of a generalist Roseobacter lineage
1.
Nowell RW, Green S, Laue BE, Sharp PM. The extent of genome flux and its role in the differentiation of bacterial lineages. Genome Biol Evol. 2014;6:1514–29.
PubMed PubMed Central Article CAS Google Scholar
2.
Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature. 2000;405:299–304.
CAS PubMed Article Google Scholar
3.
Wiedenbeck J, Cohan FM. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev. 2011;35:957–76.
CAS PubMed PubMed Central Article Google Scholar
4.
Albalat R, Cañestro C. Evolution by gene loss. Nat Rev Genet. 2016;17:379–91.
CAS PubMed Article Google Scholar
5.
Jacq C, Miller JR, Brownlee GG. A pseudogene structure in 5S DNA of Xenopus laevis. Cell. 1977;12:109–20.
CAS PubMed Article Google Scholar
6.
Li W-H, Gojobori T, Nei M. Pseudogenes as a paradigm of neutral evolution. Nature. 1981;292:237–9.
CAS PubMed Article Google Scholar
7.
Ohta T. The nearly neutral theory of molecular evolution. Annu Rev Ecol Syst. 1992;23:263–86.
Article Google Scholar
8.
Bolotin E, Hershberg R. Gene loss dominates as a source of genetic variation within clonal pathogenic bacterial species. Genome Biol Evol. 2015;7:2173–87.
CAS PubMed PubMed Central Article Google Scholar
9.
Hottes AK, Freddolino PL, Khare A, Donnell ZN, Liu JC, Tavazoie S. Bacterial adaptation through loss of function. PLoS Genet. 2013;9:e1003617.
CAS PubMed PubMed Central Article Google Scholar
10.
Sharma V, Hecker N, Roscito JG, Foerster L, Langer BE, Hiller M. A genomics approach reveals insights into the importance of gene losses for mammalian adaptations. Nat Commun. 2018;9:1–9.
Article CAS Google Scholar
11.
Sokurenko EV, Hasty DL, Dykhuizen DE. Pathoadaptive mutations: gene loss and variation in bacterial pathogens. Trends Microbiol. 1999;7:191–5.
CAS PubMed Article Google Scholar
12.
Ortega AP, Villagra NA, Urrutia IM, Valenzuela LM, Talamilla-Espinoza A, Hidalgo AA, et al. Lose to win: marT pseudogenization in Salmonella enterica serovar Typhi contributed to the surV-dependent survival to H2O2, and inside human macrophage-like cells. Infect Genet Evol. 2016;45:111–21.
CAS PubMed Article Google Scholar
13.
Goodhead I, Darby AC. Taking the pseudo out of pseudogenes. Curr Opin Microbiol. 2015;23:102–9.
CAS PubMed Article Google Scholar
14.
Johnson LJ. Pseudogene rescue: an adaptive mechanism of codon reassignment. J Evol Biol. 2010;23:1623–30.
CAS PubMed Article Google Scholar
15.
Librado P, Vieira FG, Rozas J. BadiRate: estimating family turnover rates by likelihood-based methods. Bioinformatics. 2012;28:279–81.
CAS PubMed Article Google Scholar
16.
David LA, Alm EJ. Rapid evolutionary innovation during an Archaean genetic expansion. Nature. 2011;469:93–96.
CAS PubMed Article Google Scholar
17.
Avni E, Montoya D, Lopez D, Modlin R, Pellegrini M, Snir S. A phylogenomic study quantifies competing mechanisms for pseudogenization in prokaryotes—the Mycobacterium leprae case. PLoS One. 2017;13:e0204322.
Article CAS Google Scholar
18.
Ochman H. The nature and dynamics of bacterial genomes. Science. 2006;311:1730–3.
CAS PubMed Article Google Scholar
19.
Grote J, Thrash JC, Huggett MJ, Landry ZC, Carini P, Giovannoni SJ, et al. Streamlining and core genome conservation among highly divergent members of the SAR11 clade. mBio. 2012;3:e00252–12.
CAS PubMed PubMed Central Article Google Scholar
20.
Giovannoni SJ, Cameron Thrash J, Temperton B. Implications of streamlining theory for microbial ecology. ISME J. 2014;8:1553–65.
PubMed PubMed Central Article Google Scholar
21.
Buchan A, González JM, Moran MA. Overview of the marine Roseobacter lineage. Appl Environ Microbiol. 2005;71:5665–77.
CAS PubMed PubMed Central Article Google Scholar
22.
Luo H, Moran MA. How do divergent ecological strategies emerge among marine bacterioplankton lineages? Trends Microbiol. 2015;23:577–84.
CAS PubMed Article Google Scholar
23.
Luo H, Moran MA. Evolutionary ecology of the marine Roseobacter clade. Microbiol Mol Biol Rev. 2014;78:573–87.
PubMed PubMed Central Article Google Scholar
24.
Tujula NA, Crocetti GR, Burke C, Thomas T, Holmström C, Kjelleberg S. Variability and abundance of the epiphytic bacterial community associated with a green marine Ulvacean alga. ISME J. 2010;4:301–11.
PubMed Article Google Scholar
25.
Littman RA, Willis BL, Pfeffer C, Bourne DG. Diversities of coral-associated bacteria differ with location, but not species, for three acroporid corals on the Great Barrier Reef. FEMS Microbiol Ecol. 2009;68:152–63.
CAS PubMed Article Google Scholar
26.
Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I. The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol. 2007;5:355–62.
CAS PubMed Article Google Scholar
27.
Sweet MJ, Croquer A, Bythell JC. Bacterial assemblages differ between compartments within the coral holobiont. Coral Reefs. 2011;30:39–52.
Article Google Scholar
28.
Crossland CJ, Barnes DJ, Borowitzka MA. Diurnal lipid and mucus production in the staghorn coral Acropora acuminata. Mar Biol. 1980;60:81–90.
CAS Article Google Scholar
29.
Shashar N, Stambler N. Endolithic algae within corals—life in an extreme environment. J Exp Mar Biol Ecol. 1992;163:277–86.
CAS Article Google Scholar
30.
Highsmith RC. Lime-boring algae in hermatypic coral skeletons. J Exp Mar Biol Ecol. 1981;55:267–81.
Article Google Scholar
31.
Kühl M, Holst G, Larkum AWD, Ralph PJ. Imaging of oxygen dynamics within the endolithic algal community of the massive coral Porites lobata. J Phycol. 2008;44:541–50.
PubMed Article CAS Google Scholar
32.
Kalhoefer D, Thole S, Voget S, Lehmann R, Liesegang H, Wollher A, et al. Comparative genome analysis and genome-guided physiological analysis of Roseobacter litoralis. BMC Genomics. 2011;12:324.
CAS PubMed PubMed Central Article Google Scholar
33.
Lachnit T, Fischer M, Künzel S, Baines JF, Harder T. Compounds associated with algal surfaces mediate epiphytic colonization of the marine macroalga Fucus vesiculosus. FEMS Microbiol Ecol. 2013;84:411–20.
CAS PubMed Article Google Scholar
34.
Singh RP, Reddy CRK. Seaweed–microbial interactions: key functions of seaweed-associated bacteria. FEMS Microbiol Ecol. 2014;88:213–30.
CAS PubMed Article Google Scholar
35.
Khailov KM, Burlakova ZP. Release of dissolved organic matter by marine seaweeds and distribution of their total organic production to inshore communities. Limnol Oceanogr. 1969;14:521–7.
Article Google Scholar
36.
Wai TC, Ng JSS, Leung KMY, Dudgeon D, Williams GA. The source and fate of organic matter and the significance of detrital pathways in a tropical coastal ecosystem. Limnol Oceanogr. 2008;53:1479–92.
CAS Article Google Scholar
37.
Braeckman U, Pasotti F, Vázquez S, Zacher K, Hoffmann R, Elvert M, et al. Degradation of macroalgal detritus in shallow coastal Antarctic sediments. Limnol Oceanogr. 2019;64:1423–41.
CAS PubMed PubMed Central Google Scholar
38.
Moran MA, Belas R, Schell MA, Gonzalez JM, Sun F, Sun S, et al. Ecological genomics of marine roseobacters. Appl Environ Microbiol. 2007;73:4559–69.
CAS PubMed PubMed Central Article Google Scholar
39.
Sonnenschein EC, Nielsen KF, D’Alvise P, Porsby CH, Melchiorsen J, Heilmann J, et al. Global occurrence and heterogeneity of the Roseobacter clade species Ruegeria mobilis. ISME J. 2017;11:569–83.
CAS PubMed Article PubMed Central Google Scholar
40.
Slightom RN, Buchan A. Surface colonization by marine roseobacters: integrating genotype and phenotype. Appl Environ Microbiol. 2009;75:6027–37.
CAS PubMed PubMed Central Article Google Scholar
41.
Thole S, Kalhoefer D, Voget S, Berger M, Engelhardt T, Liesegang H, et al. Phaeobacter gallaeciensis genomes from globally opposite locations reveal high similarity of adaptation to surface life. ISME J. 2012;6:2229–44.
CAS PubMed PubMed Central Article Google Scholar
42.
Newton RJ, Griffin LE, Bowles KM, Meile C, Gifford S, Givens CE, et al. Genome characteristics of a generalist marine bacterial lineage. ISME J. 2010;4:784–98.
CAS PubMed Article Google Scholar
43.
Brinkhoff T, Giebel H-A, Simon M. Diversity, ecology, and genomics of the Roseobacter clade: a short overview. Arch Microbiol. 2008;189:531–9.
CAS PubMed Article Google Scholar
44.
Luo H, Löytynoja A, Moran MA. Genome content of uncultivated marine Roseobacters in the surface ocean. Environ Microbiol. 2012;14:41–51.
CAS PubMed Article Google Scholar
45.
Lerat E, Ochman H. Ψ-Φ: Exploring the outer limits of bacterial pseudogenes. Genome Res. 2004;14:2273–8.
CAS PubMed PubMed Central Article Google Scholar
46.
Lerat E, Ochman H. Recognizing the pseudogenes in bacterial genomes. Nucleic Acids Res. 2005;33:3125–32.
CAS PubMed PubMed Central Article Google Scholar
47.
Kuo C-H, Ochman H. The extinction dynamics of bacterial pseudogenes. PLoS Genet. 2010;6:e1001050.
PubMed PubMed Central Article CAS Google Scholar
48.
Umezaki I. Ecological studies of Sargassum hemiphyllum C. AGARDH in Obama Bay, Japan Sea. Nippon Suisan Gakkaishi. 1984;50:1677–83.
Article Google Scholar
49.
Tam TW, Ang PO. Repeated physical disturbances and the stability of sub-tropical coral communities in Hong Kong. China Aquat Conserv Mar Freshw Ecosyst. 2008;18:1005–24.
Article Google Scholar
50.
Cheang CC, Chu KH, Ang PO. Phylogeography of the marine macroalga Sargassum hemiphyllum (Phaeophyceae, Heterokontophyta) in northwestern Pacific. Mol Ecol. 2010;19:2933–48.
CAS PubMed Article Google Scholar
51.
Raghunathan C, Venkataraman K. Diversity and distribution of corals and their associated fauna of Rani Jhansi Marine National Park, Andaman and Nicobar Islands. In: Venkataraman K, Raghunathan C, Sivaperuman C, (eds). Ecology of Faunal Communities on the Andaman and Nicobar Islands. Berlin, Heidelberg: Springer; 2012. p. 177–208.
Google Scholar
52.
Ang PO. Phenology of Sargassum spp. in Tung Ping Chau Marine Park, Hong Kong SAR, China. J Appl Phycol. 2006;18:629–36.
Article Google Scholar
53.
Huggett MJ, Apprill A. Coral microbiome database: Integration of sequences reveals high diversity and relatedness of coral-associated microbes. Environ Microbiol Rep. 2019;11:372–85.
PubMed Article Google Scholar
54.
Passel MWJ, van, Marri PR, Ochman H. The emergence and fate of horizontally acquired genes in Escherichia coli. PLoS Comput Biol. 2008;4:e1000059.
PubMed PubMed Central Article CAS Google Scholar
55.
Ochman H. Distinguishing the ORFs from the ELFs: short bacterial genes and the annotation of genomes. Trends Genet. 2002;18:335–7.
CAS PubMed Article Google Scholar
56.
Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238.
PubMed PubMed Central Article Google Scholar
57.
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.
CAS Article Google Scholar
58.
Schliep KP. Phangorn: phylogenetic analysis in R. Bioinformatics. 2011;27:592–3.
CAS PubMed PubMed Central Article Google Scholar
59.
Liu Y, Harrison PM, Kunin V, Gerstein M. Comprehensive analysis of pseudogenes in prokaryotes: widespread gene decay and failure of putative horizontally transferred genes. Genome Biol. 2004;5:R64.
PubMed PubMed Central Article Google Scholar
60.
Halldal P. Photosynthetic capacities and photosynthetic action spectra of endozoic algae of the massive coral Favia. Biol Bull. 1968;134:411–24.
CAS Article Google Scholar
61.
Shibata K, Haxo FT. Light transmission and spectral distribution through epi- and endozoic algal layers in the brain coral, Favia. Biol Bull. 1969;136:461–8.
CAS Article Google Scholar
62.
Park JT, Uehara T. How bacteria consume their own exoskeletons (turnover and recycling of cell wall peptidoglycan). Microbiol Mol Biol Rev. 2008;72:211–27.
CAS PubMed PubMed Central Article Google Scholar
63.
Mauck J, Chan L, Glaser L. Turnover of the cell wall of gram-positive bacteria. J Biol Chem. 1971;246:1820–7.
CAS PubMed Google Scholar
64.
Goodell E. Recycling of murein by Escherichia coli. J Bacteriol. 1985;163:305–10.
CAS PubMed PubMed Central Article Google Scholar
65.
Uehara T, Suefuji K, Jaeger T, Mayer C, Park JT. MurQ etherase is required by Escherichia coli in order to metabolize Anhydro-N-Acetylmuramic acid obtained either from the environment or from its own cell wall. J Bacteriol. 2006;188:1660–2.
CAS PubMed PubMed Central Article Google Scholar
66.
Dik DA, Marous DR, Fisher JF, Mobashery S. Lytic transglycosylases: concinnity in concision of the bacterial cell wall. Crit Rev Biochem Mol Biol. 2017;52:503–42.
PubMed PubMed Central Article Google Scholar
67.
Jiang H, Kong R, Xu X. The N-acetylmuramic acid 6-phosphate etherase gene promotes growth and cell differentiation of cyanobacteria under light-limiting conditions. J Bacteriol. 2010;192:2239–45.
CAS PubMed PubMed Central Article Google Scholar
68.
Ferrer LM, Szmant AM. Nutrient regeneration by the endolithic community in coral skeletons. In: Proceedings of the 6th International Coral Reef Symposium 1988. pp 1–4.
69.
Risk MJ, Muller HR. Porewater in coral heads: evidence for nutrient regeneration. Limnol Oceanogr. 1983;28:1004–8.
Article Google Scholar
70.
Yu LJ, Wu JR, Zheng ZZ, Lin CC, Zhan XB. Changes in gene transcription and protein expression involved in the response of Agrobacterium sp. ATCC 31749 to nitrogen availability during curdlan production. Appl Biochem Microbiol. 2011;47:487–93.
CAS Article Google Scholar
71.
Wada S, Aoki M, Mikami A, Komatsu T, Tsuchiya Y, Sato T, et al. Bioavailability of macroalgal dissolved organic matter in seawater. Mar Ecol Prog Ser. 2008;370:33–44.
CAS Article Google Scholar
72.
Essenberg MK, Cooper RA. Two ribose-5-phosphate isomerases from Escherichia coli K12: partial characterisation of the enzymes and consideration of their possible physiological roles. Eur J Biochem. 1975;55:323–32.
CAS PubMed Article Google Scholar
73.
Nelson CE, Goldberg SJ, Wegley Kelly L, Haas AF, Smith JE, Rohwer F, et al. Coral and macroalgal exudates vary in neutral sugar composition and differentially enrich reef bacterioplankton lineages. ISME J. 2013;7:962–79.
CAS PubMed PubMed Central Article Google Scholar
74.
Mulligan C, Fischer M, Thomas GH. Tripartite ATP-independent periplasmic (TRAP) transporters in bacteria and archaea. FEMS Microbiol Rev. 2011;35:68–86.
CAS PubMed Article Google Scholar
75.
Beyenbach KW, Wieczorek H. The V-type H+ ATPase: molecular structure and function, physiological roles and regulation. J Exp Biol. 2006;209:577–89.
CAS PubMed Article Google Scholar
76.
Guadayol Ò, Silbiger NJ, Donahue MJ, Thomas FIM. Patterns in temporal variability of temperature, oxygen and pH along an environmental gradient in a coral reef. PLoS One. 2014;9:e85213.
PubMed PubMed Central Article CAS Google Scholar
77.
Bodenmiller DM, Spiro S. The yjeB(nsrR) gene of Escherichia coli encodes a nitric oxide-sensitive transcriptional regulator. J Bacteriol. 2006;188:874–81.
CAS PubMed PubMed Central Article Google Scholar
78.
Gilberthorpe NJ, Lee ME, Stevanin TM, Read RC, Poole RK. NsrR: a key regulator circumventing Salmonella enterica serovar Typhimurium oxidative and nitrosative stress in vitro and in IFN-γ-stimulated J774.2 macrophages. Microbiology. 2007;153:1756–71.
CAS PubMed PubMed Central Article Google Scholar
79.
da Fonseca RR, Johnson WE, O’Brien SJ, Vasconcelos V, Antunes A. Molecular evolution and the role of oxidative stress in the expansion and functional diversification of cytosolic glutathione transferases. BMC Evol Biol. 2010;10:281.
PubMed PubMed Central Article CAS Google Scholar
80.
Green ER, Mecsas J. Bacterial secretion systems—an overview. Microbiol Spectr. 2016;4:1–32.
CAS Article Google Scholar
81.
Ansari MI, Schiwon K, Malik A, Grohmann E. Biofilm formation by environmental bacteria. In: Malik A, Grohmann E (eds). Environmental protection strategies for sustainable development. 2012. Springer Netherlands, Dordrecht, pp 341–77.
82.
Meron D, Efrony R, Johnson WR, Schaefer AL, Morris PJ, Rosenberg E, et al. Role of flagella in virulence of the coral pathogen Vibrio coralliilyticus. Appl Environ Microbiol. 2009;75:5704–7.
CAS PubMed PubMed Central Article Google Scholar
83.
Attmannspacher U, Scharf BE, Harshey RM. FliL is essential for swarming: motor rotation in absence of FliL fractures the flagellar rod in swarmer cells of Salmonella enterica. Mol Microbiol. 2008;68:328–41.
CAS PubMed Article Google Scholar
84.
Fernando SC, Wang J, Sparling K, Garcia GD, Francini-Filho RB, de Moura RL, et al. Microbiota of the major south atlantic reef building coral Mussismilia. Micro Ecol. 2015;69:267–80.
Article Google Scholar
85.
Pollock FJ, McMinds R, Smith S, Bourne DG, Willis BL, Medina M, et al. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat Commun. 2018;9:4921.
PubMed PubMed Central Article CAS Google Scholar
86.
Marcelino VR, van Oppen MJ, Verbruggen H. Highly structured prokaryote communities exist within the skeleton of coral colonies. ISME J. 2018;12:300–3.
PubMed Article Google Scholar
87.
Hill C. Virulence or niche factors: what’s in a name? J Bacteriol. 2012;194:5725–7.
CAS PubMed PubMed Central Article Google Scholar
88.
Egan S, Harder T, Burke C, Steinberg P, Kjelleberg S, Thomas T. The seaweed holobiont: understanding seaweed–bacteria interactions. FEMS Microbiol Rev. 2013;37:462–76.
CAS PubMed Article Google Scholar
89.
Levy A, Salas Gonzalez I, Mittelviefhaus M, Clingenpeel S, Herrera Paredes S, Miao J, et al. Genomic features of bacterial adaptation to plants. Nat Genet. 2018;50:138–50.
CAS Article Google Scholar
90.
Koren O, Rosenberg E. Bacteria associated with mucus and tissues of the coral Oculina patagonica in summer and winter. Appl Environ Microbiol. 2006;72:5254–9.
CAS PubMed PubMed Central Article Google Scholar
91.
Wang X, Grus WE, Zhang J. Gene losses during human origins. PLoS Biol. 2006;4:e52.
PubMed PubMed Central Article CAS Google Scholar More