More stories

  • in

    Differential side-effects of Bacillus thuringiensis bioinsecticide on non-target Drosophila flies

    1.
    United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019—Data Booklet (ST/ESA/ SER.A/377), (2019). https://population.un.org/wpp/Publications/Files/WPP2019_DataBooklet.pdf
    2.
    Pimentel, D. & Burgess, M. Environmental and economic costs of the application of pesticides primarily in the United States. In Integrated Pest Management: Innovation-Development Process (eds Peshin, R. & Dhawan, A. K.) 47–71 (Springer, Dordrecht, 2014). https://doi.org/10.1007/978-1-4020-8992-3_4
    Google Scholar 

    3.
    Devine, G. J. & Furlong, M. J. Insecticide use: Contexts and ecological consequences. Agric. Hum. Values 24(3), 281–306. https://doi.org/10.1007/s10460-007-9067-z (2007).
    Article  Google Scholar 

    4.
    Sanchis, V. & Bourguet, D. Bacillus thuringiensis: Applications in agriculture and insect resistance management. A review. Agron. Sustain. Dev. 28(1), 11–20. https://doi.org/10.1051/agro:2007054 (2008).
    Article  Google Scholar 

    5.
    WHO report. WHO specifications and evaluations for public health pesticides: Bacillus thuringiensis subspecies israelensis strain AM65-52. (World Health Organization, Geneva, 2007).

    6.
    Rizzati, V., Briand, O., Guillou, H. & Gamet-Payrastre, L. Effects of pesticide mixtures in human and animal models: An update of the recent literature. Chem. Biol. Interact. 254, 231–246. https://doi.org/10.1016/j.cbi.2016.06.003 (2016).
    Article  PubMed  CAS  Google Scholar 

    7.
    Lacey, L. A. et al. Insect pathogens as biological control agents: Back to the future. J. Invertebr. Pathol. 132, 1–41. https://doi.org/10.1016/j.jip.2015.07.009 (2015).
    Article  PubMed  CAS  Google Scholar 

    8.
    Adang, M. J., Crickmore, N. & Jurat-Fuentes, J. L. Diversity of Bacillus thuringiensis Crystal Toxins and Mechanism of Action. Adv. Insect Physiol. 47, 39–87. https://doi.org/10.1016/B978-0-12-800197-4.00002-6 (2014).
    Article  Google Scholar 

    9.
    Crickmore, N. Bacillus thuringiensis toxin classification. In Bacillus thuringiensis and Lysinibacillus sphaericus. (eds Fiuza, L.M. et al.) ISBN 978-3-319-56677-1, 41-52, (Spinger, Cham, 2017).

    10.
    WHO report. Guideline specification for bacterial larvicides for public health use. WHO document WHO/CDS/CPC/WHOPES/99.2 (World Health Organization, Geneva, 1999).

    11.
    Bravo, A., Pacheco, S., Gomez, I., Garcia-Gomez B., Onofre, J., Soberon, M. Insecticidal Proteins from Bacillus thuringiensis and their Mechanism of Action. In Bacillus thuringiensis and Lysinibacillus sphaericus (eds Fiuza, L.M. et al.) ISBN 978-3-319-56677-1, 53–66, (Spinger, Cham, 2017).

    12.
    Palma, L., Muñoz, D., Berry, C., Murillo, J. & Caballero, P. Bacillus thuringiensis toxins: An overview of their biocidal activity. Toxins 6(12), 3296–3325. https://doi.org/10.3390/toxins6123296 (2014).
    Article  PubMed  PubMed Central  CAS  Google Scholar 

    13.
    Ben-Dov, E. et al. Extended screening by PCR for seven cry-group genes from field-collected strains of Bacillus thuringiensis. Appl. Environ. Microb. 63(12), 4883–4890. https://doi.org/10.1128/aem.63.12.4883-4890.1997 (1997).
    CAS  Google Scholar 

    14.
    Berry, C. et al. Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis. Appl. Environ. Microbiol. 68(10), 5082–5095. https://doi.org/10.1128/aem.68.10.5082-5095.2002 (2002).
    Article  PubMed  PubMed Central  CAS  Google Scholar 

    15.
    Bravo, A., Gill, S. S. & Soberon, M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49, 423–435. https://doi.org/10.1016/j.toxicon.2006.11.022 (2007).
    Article  PubMed  CAS  Google Scholar 

    16.
    Wei, J. et al. Activation of Bt protoxin Cry1Ac in resistant and susceptible cotton bollworm. PLoS ONE 11(6), e0156560. https://doi.org/10.1371/journal.pone.0156560 (2016).
    Article  PubMed  PubMed Central  CAS  Google Scholar 

    17.
    Bravo, A., Likitvivatanavong, S., Gill, S. S. & Soberon, M. Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 41(7), 423–431. https://doi.org/10.1016/j.ibmb.2011.02.006 (2011).
    Article  PubMed  PubMed Central  CAS  Google Scholar 

    18.
    Caccia, S. et al. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism. Proc. Natl. Acad. Sci. USA 113(34), 9486–9491. https://doi.org/10.1073/pnas.1521741113 (2016).
    Article  PubMed  CAS  Google Scholar 

    19.
    Glare, T.R., O’Callaghan, M. Bacillus thuringiensis: Biology, Ecology and Safety. ISBN: 9780471496304, 350, (Wiley, New York, 2000).

    20.
    Rubio-Infante, N. & Moreno-Fierros, L. An overview of the safety and biological effects of Bacillus thuringiensis Cry toxins in mammals. J. Appl. Toxicol. 36, 630–648. https://doi.org/10.1002/jat.3252 (2016).
    Article  PubMed  CAS  Google Scholar 

    21.
    EFSA Panel on Biological Hazards (BIOHAZ). Risks for public health related to the presence of Bacillus cereus and other Bacillus spp. including Bacillus thuringiensis in foodstuffs. EFSA J. https://doi.org/10.2903/j.efsa.2016.4524 (2016).
    Article  Google Scholar 

    22.
    Amichot, M., Curty, C., Benguettat-Magliano, O., Gallet, A. & Wajnberg, E. Side effects of Bacillus thuringiensis var. kurstaki on the hymenopterous parasitic wasp Trichogramma chilonis. Environ. Sci. Pollut. Res. Int. 23, 3097–3103. https://doi.org/10.1007/s11356-015-5830-7 (2016).
    Article  PubMed  CAS  Google Scholar 

    23.
    Renzi, M. T. et al. Chronic toxicity and physiological changes induced in the honey bee by the exposure to fipronil and Bacillus thuringiensis spores alone or combined. Ecotoxicol. Environ. Saf. 127, 205–213. https://doi.org/10.1016/j.ecoenv.2016.01.028 (2016).
    Article  PubMed  CAS  Google Scholar 

    24.
    Caquet, T., Roucaute, M., Le Goff, P. & Lagadic, L. Effects of repeated field applications of two formulations of Bacillus thuringiensis var. israelensis on non-target saltmarsh invertebrates in Atlantic coastal wetlands. Ecotoxicol. Environ. Saf. 74, 1122–1130. https://doi.org/10.1016/j.ecoenv.2011.04.028 (2011).
    Article  PubMed  CAS  Google Scholar 

    25.
    Duguma, D. et al. Microbial communities and nutrient dynamics in experimental microcosms are altered after the application of a high dose of Bti. J. Appl. Ecol. 52, 763–773. https://doi.org/10.1111/1365-2664.12422 (2015).
    Article  CAS  Google Scholar 

    26.
    Venter, H. J. & Bøhn, T. Interactions between Bt crops and aquatic ecosystems: A review. Environ. Toxicol. Chem. 35(12), 2891–2902. https://doi.org/10.1002/etc.3583 (2016).
    Article  PubMed  CAS  Google Scholar 

    27.
    van Frankenhuyzen, K. Specificity and cross-order activity of Bacillus thuringiensis pesticidal proteins. In Bacillus thuringiensis and Lysinibacillus sphaericus (eds Fiuza, L.M. et al.) ISBN 978-3-319-56677-1, 127–172, (Springer, Cham, 2017).

    28.
    Bizzarri, M. F. & Bishop, A. H. The ecology of Bacillus thuringiensis on the phylloplane: Colonization from soil, plasmid transfer, and interaction with larvae of Pieris brassicae. Microb. Ecol. 56(1), 133–139. https://doi.org/10.1007/s00248-007-9331-1 (2008).
    Article  PubMed  CAS  Google Scholar 

    29.
    Raymond, B., Wyres, K. L., Sheppard, S. K., Ellis, R. J. & Bonsall, M. B. Environmental factors determining the epidemiology and population genetic structure of the Bacillus cereus group in the field. PLoS Pathog. 6(5), e1000905. https://doi.org/10.1371/journal.ppat.1000905 (2010).
    Article  PubMed  PubMed Central  CAS  Google Scholar 

    30.
    Hendriksen, N. B. & Hansen, B. M. Long-term survival and germination of Bacillus thuringiensis var. kurstaki in a field trial. Can. J. Microbiol. 48(3), 256–261. https://doi.org/10.1139/w02-009 (2002).
    Article  PubMed  CAS  Google Scholar 

    31.
    Hung, T. P. et al. Persistence of detectable insecticidal proteins from Bacillus thuringiensis (Cry) and toxicity after adsorption on contrasting soils. Environ. Pollut. 208, 318–325. https://doi.org/10.1016/j.envpol.2015.09.046 (2016).
    Article  PubMed  CAS  Google Scholar 

    32.
    Hung, T. P. et al. Fate of insecticidal Bacillus thuringiensis Cry protein in soil: Differences between purified toxin and biopesticide formulation. Pest Manag. Sci. 72, 2247–2253. https://doi.org/10.1002/ps.4262 (2016).
    Article  PubMed  CAS  Google Scholar 

    33.
    Enger, K. S. et al. Evaluating the long-term persistence of Bacillus spores on common surfaces. Microb. Biotechnol. 11(6), 1048–1059. https://doi.org/10.1111/1751-7915.13267 (2018).
    Article  PubMed  PubMed Central  CAS  Google Scholar 

    34.
    Couch, T.L. Industrial fermentation and formulation of entomopathogenic bacteria. In Entomopathogenic Bacteria: From Laboratory to Field Application (eds Charles, J.-F. et al.) ISBN 978-90-481-5542-2, 297–316.43, (Springer, Dordrecht, 2000).

    35.
    Brar, S. K., Verma, M., Tyagi, R. D. & Valéro, J. R. Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides. Process Biochem. 41(2), 323–342. https://doi.org/10.1016/j.procbio.2005.07.015 (2006).
    Article  CAS  Google Scholar 

    36.
    Setlow, P. Spore resistance properties. Microbiol. Spectr. 2(5), TBS-0003-2012. https://doi.org/10.1128/microbiolspec.TBS-0003-2012 (2014).
    Article  CAS  Google Scholar 

    37.
    European Food Safety Authority. Conclusion on the peer review of the pesticide risk assessment of the active substance Bacillus thuringiensis subsp. Kurstaki (strains ABTS 351, PB 54, SA 11, SA 12, EG 2348). EFSA J. 10(2), 2540. https://doi.org/10.2903/j.efsa.2012.2540 (2012).
    Article  CAS  Google Scholar 

    38.
    Bächli, G. TaxoDros: The database on Taxonomy of Drosophilidae: Database 2020/1.https://www.taxodros.uzh.ch. (1999–2020).

    39.
    Tennessen, J. M. & Thummel, C. S. Coordinating growth and maturation—Insights from Drosophila. Curr. Biol. 21(18), R750–R757. https://doi.org/10.1016/j.cub.2011.06.033 (2011).
    Article  PubMed  PubMed Central  CAS  Google Scholar 

    40.
    Benz, G. & Perron, J. M. The toxic action of Bacillus thuringiensis “exotoxin” on Drosophila reared in yeast-containing and yeast-free media. Experientia 23(10), 871–872 (1967).
    PubMed  CAS  Google Scholar 

    41.
    Saadoun, I., Al-Moman, F., Obeidat, M., Meqdam, M. & Elbetieha, A. Assessment of toxic potential of local Jordanian Bacillus thuringiensis strains on Drosophila melanogaster and Culex sp. (Diptera). J. Appl. Microbiol. 90, 866–872. https://doi.org/10.1046/j.1365-2672.2001.01315.x (2001).
    Article  PubMed  CAS  Google Scholar 

    42.
    Khyami-Horani, H. Toxicity of Bacillus thuringiensis and B. sphaericus to laboratory populations of Drosophila melanogaster (Diptera: Drosophilidae). J. Basic Microbiol. 42(2), 105–110. https://doi.org/10.1002/1521-4028(200205)42:23.0.CO;2-S (2002). 
    Article  PubMed  Google Scholar 

    43.
    Obeidat, M. Toxicity of local Bacillus thuringiensis isolates against Drosophila melanogaster. WJAS 4(2), 161–167 (2008).
    Google Scholar 

    44.
    Obeidat, M., Khymani-Horani, H. & Al-Momani, F. Toxicity of Bacillus thuringiensis β-exotoxins and δ-endotoxins to Drosophila melanogaster, Ephestia kuhniella and human erythrocytes. Afr. J. Biotechnol. 11(46), 10504–10512 (2012).
    Google Scholar 

    45.
    Cossentine, J., Robertson, M. & Xu, D. Biological activity of Bacillus thuringiensis in Drosophila suzukii (Diptera: Drosophilidae). J. Econ. Entomol. 109(3), 1–8. https://doi.org/10.1093/jee/tow062 (2016).
    Article  CAS  Google Scholar 

    46.
    Biganski, S., Jehle, J. A. & Kleepies, R. G. Bacillus thuringiensis serovar israelensis has no effect on Drosophila suzukii Matsumura. J. Appl. Entomol. 142, 33–36. https://doi.org/10.1111/jen.12415 (2017).
    Google Scholar 

    47.
    Haller, S., Romeis, J. X. R. & Meissle, M. Effects of purified or plant-produced Cry proteins on Drosophila melanogaster (Diptera: Drosophilidae) larvae. Sci. Rep. 7(1), 11172. https://doi.org/10.1038/s41598-017-10801-4 (2017).
    ADS  Article  PubMed  PubMed Central  CAS  Google Scholar 

    48.
    Benado, M. & Brncic, D. An eight-year phenological study of a local drosophilid community in Central Chile. J. Zool. Syst. Evol. Res. 32, 51–63. https://doi.org/10.1111/j.1439-0469.1994.tb00470.x (1994).
    Article  Google Scholar 

    49.
    Nunney, L. The colonization of oranges by the cosmopolitan Drosophila. Oecologia 108, 552–561. https://www.jstor.org/stable/4221451 (1996).
    ADS  PubMed  Google Scholar 

    50.
    Mitsui, H. & Kimura, M. T. Coexistence of drosophilid flies: Aggregation, patch size diversity and parasitism. Ecol. Res. 15, 93–100.  https://doi.org/10.1046/j.1440-1703.2000.00328.x (2000).
    Google Scholar 

    51.
    Withers, P. & Allemand, R. Les drosophiles de la région Rhône-Alpes (Diptera, Drosophilidae). Bull. Soc. Entomol. Fr. 117(4), 473–482. https://www.persee.fr/doc/bsef_0037-928x_2012_num_117_4_3076 (2012).
    Google Scholar 

    52.
    Stevens, T., Song, S., Bruning, J. B., Choo, A. & Baxter, S. W. Expressing a moth abcc2 gene in transgenic Drosophila causes susceptibility to Bt Cry1Ac without requiring a cadherin-like protein receptor. Insect Biochem. Mol. Biol. 80, 61–70. https://doi.org/10.1016/j.ibmb.2016.11.008 (2017).
    Article  PubMed  CAS  Google Scholar 

    53.
    George, Z., Crickmore, N. Bacillus thuringiensis applications in agriculture. In Bacillus thuringiensis Biotechnology (ed Sansinenea, E.) 392, (Springer, Dordrecht, 2012).

    54.
    Nepoux, V., Haag, C. R. & Kawecki, T. J. Effects of inbreeding on aversive learning in Drosophila. J. Evol. Biol. 23, 2333–2345. https://doi.org/10.1111/j.1420-9101.2010.02094.x (2010).
    Article  PubMed  CAS  Google Scholar 

    55.
    Vantaux, A., Ouattarra, I., Lefèvre, T. & Dabiré, K. R. Effects of larvicidal and larval nutritional stresses on Anopheles gambiae development, survival and competence for Plasmodium falciparum. Parasite. Vector. 9, 226. https://doi.org/10.1186/s13071-016-1514-5 (2016).
    Article  CAS  Google Scholar 

    56.
    Moret, Y. & Schmid-Hempel, P. Survival for immunity: The price of immune system activation for bumblebee workers. Science 290(5494), 1166–1168. https://doi.org/10.1126/science.290.5494.1166 (2000).
    ADS  Article  PubMed  CAS  Google Scholar 

    57.
    Kutzer, M. A. & Armitage, S. A. O. The effect of diet and time after bacterial infection on fecundity, resistance, and tolerance in Drosophila melanogaster. Ecol. Evol. 6(13), 4229–4242. https://doi.org/10.1002/ece3.2185 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    58.
    Andersen, L. H., Kristensen, T. N., Loeschcke, V., Toft, S. & Mayntz, D. Protein and carbohydrate composition of larval food affects tolerance to thermal stress and desiccation in adult Drosophila melanogaster. J. Insect Physiol. 56, 336–340. https://doi.org/10.1016/j.jinsphys.2009.11.006 (2010).
    Article  PubMed  CAS  Google Scholar 

    59.
    Rion, S. & Kawecki, T. J. Evolutionary biology of starvation resistance: What we have learned from Drosophila. J. Evol. Biol. 20(5), 1655–1664. https://doi.org/10.1111/j.1420-9101.2007.01405.x (2007).
    Article  PubMed  CAS  Google Scholar 

    60.
    Burger, J. M. S., Buechel, S. D. & Kawecki, T. J. Dietary restriction affects lifespan but not cognitive aging in Drosophila melanogaster. Aging Cell 9, 327–335. https://doi.org/10.1111/j.1474-9726.2010.00560.x (2010).
    Article  PubMed  CAS  Google Scholar 

    61.
    Khazaeli, A. A. & Curtsinger, J. W. Genetic analysis of extended lifespan in Drosophila melanogaster III. On the relationship between artificially selected and wild stocks. Genetica 109, 245–253. https://doi.org/10.1023/a:1017569318401 (2000).
    Article  PubMed  CAS  Google Scholar 

    62.
    Atkinson, W. & Shorrocks, B. Breeding site specificity in the domestic species of Drosophila. Oecologia 29(3), 223–232. https://www.jstor.org/stable/4215461 (1977).
    ADS  PubMed  CAS  Google Scholar 

    63.
    Walsh, D. B. et al. Drosophila suzukii (Diptera: Drosophilidae): Invasive pest of ripening soft fruit expanding its geographic range and damage potential. J. Integr. Pest Manag. https://doi.org/10.1603/IPM10010 (2011).
    Article  Google Scholar 

    64.
    Delbac, L. et al. Drosophila suzukii est-elle une menace pour la vigne?. Phytoma 679, 16–21 (2014).
    Google Scholar 

    65.
    Poyet, M. et al. Invasive host for invasive pest: When the Asiatic cherry fly (Drosophila suzukii) meets the American black cherry (Prunus serotine) in Europe. Agric. For. Entomol. 16(3), 251–259. https://doi.org/10.1111/afe.12052 (2014).
    Article  Google Scholar 

    66.
    Poulin, B., Lefebvre, G. & Paz, L. Red flag for green spray: Adverse trophic effects of Bti on breeding birds. J. Appl. Ecol. 47, 884–889. https://doi.org/10.1111/j.1365-2664.2010.01821.x (2010).
    Article  Google Scholar 

    67.
    Zeigler, D.R. Bacillus genetic stock center catalog of strains, 7th edition. Part 2: Bacillus thuringiensis and Bacillus cereus. http://www.bgsc.org/_catalogs/Catpart2.pdf (1999).

    68.
    Gonzales, J. M. Jr., Brown, B. J. & Carlton, B. C. Transfer of Bacillus thuringiensis plasmids coding for δ-endotoxin among strains of B. thuringiensis and B. cereus. Proc. Natl Acad. Sci. USA 79, 6951–6955. https://doi.org/10.1073/pnas.79.22.6951 (1982).
    ADS  Article  Google Scholar 

    69.
    Santos, M., Borash, D. J., Joshi, A., Bounlutay, N. & Mueller, L. D. Density-dependent natural selection in Drosophila: Evolution of growth rate and body size. Evolution 51(2), 420–432. https://doi.org/10.2307/2411114 (1997).
    Article  PubMed  Google Scholar 

    70.
    Bradberry, S. M., Proudfoot, A. T. & Vale, J. A. Glyphosate poisoning. Toxicol. Rev. 23(3), 159–167. https://doi.org/10.2165/00139709-200423030-00003 (2004).
    Article  PubMed  CAS  Google Scholar 

    71.
    R Development Core Team. R: A language and environment for statistical computing. ISBN 3-900051-07-0 https://www.R-project.org (R Foundation for Statistical Computing, Vienna, 2008).

    72.
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).
    Google Scholar 

    73.
    Kosmidis I. brglm: Bias Reduction in Binary-Response Generalized Linear Models. R package version 0.6.1, https://www.ucl.ac.uk/~ucakiko/software.html, (2017).

    74.
    Horton, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometrical J. 50(3), 346–363. https://doi.org/10.1002/bimj.200810425 (2008).
    MathSciNet  Article  Google Scholar 

    75.
    Therneau, T.M., Grambsch, P.M. Modeling Survival Data: Extending The Cox Model. ISBN 0-387-98784-3 (Springer, New York, 2000).

    76.
    Therneau, T.M. coxme: Mixed Effects Cox Models. R package version 2.2-5. https://CRAN.R-project.org/package=coxme (2015). More

  • in

    Utilizing conductivity of seawater for bioelectric measurement of fish

    For sustainable use of marine-animal resources, preservation of endangered species, and conservation of ecosystems, it is very important to understand the biology of individual marine animal. From the viewpoints of physiology, ethology, and environmentology, marine animals have been studied by bioelectric measurement1,2,3,4, bio-logging5,6,7,8,9, and DNA (genome) analysis10,11,12,13,14,15, respectively. Recent technological innovations helped studies on bio-logging and DNA analysis advance rapidly, but advancement of bioelectric-measurement technology, which has existed for a long time, lags behind those of bio-logging and DNA analysis.
    Now, aiming to obtain good harvests, the aquaculture industry requires bioelectric measurements to grasp the health condition of marine animals from pathophysiological viewpoints. Moreover, the electrocardiogram (ECG), which is a kind of bioelectric measurement, carries high expectations because it can evaluate psychological stress of marine animals just as it can evaluate that of humans16,17,18,19. Moreover, ECG can be used in fish ethological- and physiological studies2,4, so innovating techniques and devices for ECG measurement will contribute to developing these studies.
    In regards to bioelectric measurement targeting marine animals, to prevent electric short-circuiting between the pair of bioelectrodes via seawater (which is conductive), one or multiple pairs of bioelectrodes are embedded inside the living body by incision surgery20,21, which can impose a heavy workload on inexperienced experimenters. Moreover, the animal can often become agitated without anesthesia and consume much physical energy when the electrodes are implanted into its body. To reduce these burdens, we propose a novel method of measuring bioelectric signals—which utilizes the conductivity of seawater surrounding the animal—by using only one bioelectrode attached at each measurement point (in contrast to the conventional method, which requires a pair of bioelectrodes). To the best of our knowledge, a similar method has not been reported.
    In this paper, the proposed method of bioelectric measurement for marine animals under the seawater is first overviewed. Next, the bioelectric measurement system for the chosen experimental subjects, namely, fish, is described, and the availability of the proposed method is verified. Then, the experimental procedures and results of bioelectric measurements are presented. Finally, possible applications of the proposed method are discussed. More

  • in

    Protists as catalyzers of microbial litter breakdown and carbon cycling at different temperature regimes

    1.
    Singh BK, Bardgett RD, Smith P, Reay DS. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol. 2010;8:779–90.
    CAS  Article  Google Scholar 
    2.
    Schlesinger WH, Andrews JA. Soil respiration and the global carbon cycle. Biogeochemistry. 2000;48:7–20.
    CAS  Article  Google Scholar 

    3.
    Kallenbach CM, Frey SD, Grandy AS. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat Commun. 2016;7:13630.
    CAS  Article  Google Scholar 

    4.
    Six J, Frey SD, Thiet RK, Batten KM. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J. 2006;70:555–69.
    CAS  Article  Google Scholar 

    5.
    Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, et al. Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol. 2019;17:569–86.
    CAS  Article  Google Scholar 

    6.
    Zhou J, Xue K, Xie J, Deng Y, Wu L, Cheng X, et al. Microbial mediation of carbon-cycle feedbacks to climate warming. Nat Clim Change. 2012;2:106–10.
    CAS  Article  Google Scholar 

    7.
    Aerts R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos. 1997;79:439–49.
    Article  Google Scholar 

    8.
    Bradford MA, Veen GFC, Bonis A, Bradford EM, Classen AT, Cornelissen JHC, et al. A test of the hierarchical model of litter decomposition. Nat Ecol Evol. 2017;1:1836–45.
    Article  Google Scholar 

    9.
    Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.
    CAS  Article  Google Scholar 

    10.
    Geisen S, Mitchell EAD, Adl S, Bonkowski M, Dunthorn M, Ekelund F, et al. Soil protists: a fertile frontier in soil biology research. FEMS Microbiol Rev. 2018;42:293–323.
    CAS  Article  Google Scholar 

    11.
    Oliverio AM, Geisen S, Delgado-Baquerizo M, Maestre FT, Turner BL, Fierer N. The global-scale distributions of soil protists and their contributions to belowground systems. Sci Adv. 2020;6:eaax8787.
    Article  Google Scholar 

    12.
    Rose JM, Vora NM, Countway PD, Gast RJ, Caron DA. Effects of temperature on growth rate and gross growth efficiency of an Antarctic bacterivorous protist. ISME J. 2009;3:252–60.
    CAS  Article  Google Scholar 

    13.
    Schulz-Bohm K, Geisen S, Wubs ERJ, Song C, de Boer W, Garbeva P. The prey’s scent—volatile organic compound mediated interactions between soil bacteria and their protist predators. ISME J. 2017;11:817–20.
    CAS  Article  Google Scholar 

    14.
    Kuikman PJ, Jansen AG, van Veen JA, Zehnder AJB. Protozoan predation and the turnover of soil organic carbon and nitrogen in the presence of plants. Biol Fertil Soils. 1990;10:22–28.
    CAS  Article  Google Scholar 

    15.
    Crowther TW, Boddy L, Hefin Jones T. Functional and ecological consequences of saprotrophic fungus–grazer interactions. ISME J. 2012;6:1992–2001.
    CAS  Article  Google Scholar 

    16.
    Bradford MA, Tordoff GM, Eggers T, Jones TH, Newington JE. Microbiota, fauna, and mesh size interactions in litter decomposition. Oikos. 2002;99:317–23.
    Article  Google Scholar 

    17.
    Jousset A, Rochat L, Pechy-Tarr M, Keel C, Scheu S, Bonkowski M. Predators promote defence of rhizosphere bacterial populations by selective feeding on non-toxic cheaters. ISME J. 2009;3:666–74.
    CAS  Article  Google Scholar 

    18.
    Crowther TW, Thomas SM, Maynard DS, Baldrian P, Covey K, Frey SD, et al. Biotic interactions mediate soil microbial feedbacks to climate change. Proc Natl Acad Sci. 2015;112:7033.
    CAS  Article  Google Scholar 

    19.
    Serna-Chavez HM, Fierer N, van Bodegom PM. Global drivers and patterns of microbial abundance in soil. Glob Ecol Biogeogr. 2013;22:1162–72.
    Article  Google Scholar 

    20.
    Scharlemann JPW, Tanner EVJ, Hiederer R, Kapos V. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag. 2014;5:81–91.
    CAS  Article  Google Scholar  More

  • in

    Habitat preferences of Southern Ground-hornbills in the Kruger National Park: implications for future conservation measures

    The decision by an individual to move from one area to another is mediated by a number of factors, such as resource quality and availability, predation risk and local environmental conditions, all of which will influence its survival and reproductive output1,4. The challenge for conservationists is understanding how these individual decisions can affect population dynamics, home ranges and ultimately species’ survival1.
    Home ranges of carnivores should overlap and in some cases envelop those of their prey species. Southern Ground-hornbills feed on a variety of prey, ranging from snakes, rabbits and birds to invertebrates12,18. Through tracking Southern Ground-hornbill movements, we were able to show that group home ranges during the early and late dry seasons were larger than in the wet season. As the Southern Ground-hornbill breeding season in South Africa coincides with the warm, wet summer months, prey availability, especially that of invertebrates, is expected to be higher20,21, suggesting that individuals would not need to travel as extensively to find sufficient food. Furthermore, in the late dry season, groups used between 76 and 115% of their home ranges. This was likely a result of having to increase their search for food and relaxation of the central place foraging required around the nest during the breeding season.
    Previous research on Southern Ground-hornbill home ranges has recorded group densities ranging from one group per 4000 ha (communal areas in Zimbabwe22), to one group every 10,000 ha (KNP14), with one group in the Limpopo Valley having a home range close to 20,000 ha21. These results were obtained by direct observations of active nest sites or using VHF radio transmitters. In our study using GPS data, we showed that home range sizes of Southern Ground-hornbills within KNP vary considerably. Despite this, our results confirmed the findings of Theron et al.21 and Zoghby et al.20, demonstrating a restricted and contracted home range during the breeding season, when group movements are concentrated around the nest site (central place foraging). Presumably, breeding success would influence the extent of wet seasonal home range for Southern Ground-hornbills, with groups abandoning their central place foraging behaviour when nests fail. Wyness19 reported that of four Southern Ground-hornbill groups studied in the Association of Private Nature Reserves (APNR) adjacent to the KNP, the three that bred successfully in the year of their study showed a breeding season range reduction to between 24–36% of their non-breeding home range. The unsuccessful group used 70% of their home range during this time19. Surprisingly, the groups within the KNP did not show such a definitive pattern in home range size reduction associated with breeding success, although all groups that attempted breeding did show a wet seasonal home range reduction. Of the six Southern Ground-hornbill groups monitored in our study, four groups bred successfully, one group’s attempt failed (Ngotso Camp), and the breeding status for the third group (Shingwedzi) was unknown. The groups that bred successfully used 21–97% of their respective home ranges, with the unsuccessful group using 85% of their home range (See Table 1).
    Southern Ground-hornbills are known to favour more open habitats for foraging20,23. Our results supported this, with groups selecting the open woodland and grassland habitat types year-round, following their availability within the landscape.
    Although Southern Ground-hornbill seasonal territory size differed significantly amongst the groups, they all showed a decrease in the amount of low shrubland and an increase in the amount of grassland habitat used with increased territory size. Similarly, as seasonal territory sizes increased, the amount of low-medium woody cover (25–50%) decreased. Thus, when selecting an area for a reintroduction of Southern Ground-hornbill groups, the ratio of low-medium woody cover (low shrubland) to grassland, calculated based on the national land cover datasets available, should be taken into account, as this will likely influence the home range size and the number of groups that could be supported in an area.
    Although an understanding of the changes and restrictions in territory size is important for the management of a species, the types of movements adopted within a population will influence the management actions needed for their conservation, such as ensuring connectivity or access to certain resources1. Conservation policy and management actions are less effective when interventions do not integrate both the spatial and temporal changes in habitat use and the scale of species movements1,3. The results from the first-passage time analysis of Southern Ground-hornbill movements showed that the different groups did not consistently demonstrate seasonal patterns in the scale at which they concentrated their foraging efforts. The mean distances travelled for all trajectory paths, classified as active foraging behaviour, were similar and lower in the late wet and early dry seasons compared with the late dry and early wet seasons. Movement between foraging resource patches or mean relocation distances were highest in the wet season months, with the maximum mean distances travelled during the early wet season and the start of the breeding period. Overall prey abundance for Southern Ground-hornbills is generally higher in the wetter months, resulting in a decrease in relocation distances. Our results support the theory that Southern Ground-hornbill wet season movements are most likely influenced by the need to travel to and from the nest site to provision prey to the incubating female and growing nestling. Once resources closer to the nest are depleted, the distances travelled to access additional habitats and prey would likely increase.
    Southern Ground-hornbills seemingly prefer nest sites surrounded by more open woodland habitat24,25. Habitat structure and the diversity of habitat types within a 3 km radius around the nest site positively influenced Southern Ground-hornbill nesting success. An increase in the density of woody habitat surrounding the nest site, however, had a negative impact on Southern Ground-hornbill breeding success24, possibly owing to decreased foraging opportunities, an increased risk of predation or an increase in foraging effort beyond a value which is beneficial.
    Habitat structure will likely promote or inhibit the types of movement that can occur in an area. The results from the multinomial regression (Table 5) indicate that the likelihood of a movement behaviour being classified as “foraging” within the open woodland, grassland and dense thicket habitat types was higher than the behaviour being attributed to “relocating”. This is to be expected for open woodland, and grassland habitats as these are both ideal open foraging habitats for Southern Ground-hornbills20,23 and are used year-round in proportion to their availability. Southern Ground-hornbills spend around 70% of their day walking12 and have been shown to travel distances of up to 10.6 km in a day20. Having to navigate through dense thicket vegetation in an area may increase the amount of time spent there, possibly accounting for why this habitat type is predicted to be used more for “foraging”-type behaviour as opposed to “relocating” behaviour. Travel through areas of low shrubland habitat was considered “relocating” behaviour, suggesting that within this habitat type, it is more profitable for Southern Ground-hornbills to move further, and the corresponding chance of finding food greater, than conducting area-restricted searches and spending longer periods concentrated in one patch.
    When comparing movements between habitats allocated to “resting” as opposed to “foraging”, the time spent in all habitats was most likely as a result of “foraging”. As GPS locations were only recorded during the day, switching off at dusk (~ 18h00) when Southern Ground-hornbills would roost for the night, habitat preferences for “resting” movements may not have been recorded. Moreover, during the day, Southern Ground-hornbills may not be actively selecting for specific habitat types in which to roost or rest. They may simply be roosting or resting at a chosen site to escape the midday heat within the habitat type in which they were “foraging” or “relocating”.
    We were unable to explore differences in movement relating to specific characteristics of the tagged bird (age, sex, helper versus breeder status, etc.) in our study. However, future research should consider study designs able to account for these potential differences, as García-Jiménez et al.26 showed that both the breeding season and sex of the individual influence displacement and distance travelled in Pyrenean Bearded Vultures (Gypaetus barbatus). They found that all individuals travelled more in the breeding season, with females having greater cumulative and maximum distances regardless of the season. More

  • in

    Fuzzy sets allow gaging the extent and rate of species range shift due to climate change

    1.
    Lomolino, M. V., Riddle, B. R. & Brown, J. H. Biogeography (Sinauer Associates Inc, Sunderland, 2006).
    Google Scholar 
    2.
    Chamorro, D., Olivero, J., Real, R. & Muñoz, A.-R. Environmental factors determining the establishment of the African Long-legged Buzzard Buteo rufinus cirtensis in Western Europe. Ibis (Lond. 1859). 159, 331–342 (2017).
    Google Scholar 

    3.
    Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful ?. Glob. Ecol. Biogeogr. 12, 361–371 (2003).
    Google Scholar 

    4.
    Sun, J. et al. Modeling the potential distribution of Zelkova schneideriana under different human activity intensities and climate change patterns in China. Glob. Ecol. Conserv. 21, e00840 (2020).
    Google Scholar 

    5.
    Mackey, B. & Lindemayer, D. Towards a hierarchical the spatial distribution of animals. J. Biogeogr. 28, 1147–1166 (2011).
    Google Scholar 

    6.
    Márquez, A. L., Real, R., Olivero, J. & Estrada, A. Combining climate with other influential factors for modelling the impact of climate change on species distribution. Clim. Change 108, 135–157 (2011).
    ADS  Google Scholar 

    7.
    IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014) https://doi.org/10.1017/CBO9781107415324.004.

    8.
    Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).
    ADS  CAS  PubMed  Google Scholar 

    9.
    Karl, T. R. & Trenberth, K. E. Modern global climate change. Science (80-). 302, 1719–1723 (2003).
    ADS  CAS  Google Scholar 

    10.
    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).
    ADS  CAS  PubMed  Google Scholar 

    11.
    Lazo-Cancino, D. et al. The impacts of climate change on the habitat distribution of the vulnerable Patagonian-Fueguian species Ctenomys magellanicus (Rodentia, Ctenomyidae). J. Arid Environ. 173, 104016 (2019).
    Google Scholar 

    12.
    Borzée, A. et al. Climate change-based models predict range shifts in the distribution of the only Asian plethodontid salamander: Karsenia koreana. Sci. Rep. 9, 11838 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    13.
    Thomas, C. D. & Lennon, J. J. Birds extend their ranges northwards. Nature 399, 213 (1999).
    ADS  CAS  Google Scholar 

    14.
    Wallingford, P. D. et al. Adjusting the lens of invasion biology to focus on the impacts of climate-driven range shifts. Nat. Clim. Change. 10, 398–405 (2020).
    ADS  Google Scholar 

    15.
    Castro, A., Muñoz, A.-R. & Real, R. Modelling the spatial distribution of the Tengmalm’s owl Aegolius funereus in its Southwestern Palaeartic limit (NE Spain). Ardeola 55, 71–85 (2008).
    Google Scholar 

    16.
    Thomas, C. D. et al. Ecological and evolutionary processes at expanding range margins. Nature 411, 577–581 (2001).
    ADS  CAS  PubMed  Google Scholar 

    17.
    Huntley, B. et al. Potential impacts of climatic change upon geographical distribution of birds. Ibis (Lond. 1859). 148, 8–28 (2006).
    Google Scholar 

    18.
    Maclean, I. M. D. et al. Climate change causes rapid changes in the distribution and site abundance of birds in winter. Glob. Change. Biol. 14, 2489–2500 (2008).
    Google Scholar 

    19.
    Elorriaga, J. & Muñoz, A.-R. First breeding record of North African Long-legged Buzzard Buteo rufinus cirtensis in continental Europe. Br. Birds 103, 399–401 (2010).
    Google Scholar 

    20.
    Nieto, I., Chamorro, D., Palomo, L. J., Real, R. & Muñoz, A.-R. Is the Eurasian Reed Warbler a regular wintering species in the Iberian Peninsula? Ringing data say yes. Acta Ornithol. 53, 61–68 (2018).
    Google Scholar 

    21.
    Ambrosini, R. et al. Climate change and the long-term northward shift in the African wintering range of the barn swallow Hirundo rustica. Clim. Res. 49, 131–141 (2011).
    Google Scholar 

    22.
    Møller, A. P., Rubolini, D. & Lehikoinen, E. Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc. Natl. Acad. Sci. U. S. A. 105, 16195–16200 (2008).
    ADS  PubMed  PubMed Central  Google Scholar 

    23.
    Real, R., Márquez, A. L., Olivero, J. & Estrada, A. Species distribution models in climate change scenarios are still not useful for informing policy planning: An uncertainty assessment using fuzzy logic. Ecography (Cop.) 33, 304–314 (2010).
    Google Scholar 

    24.
    Root, T. L. & Schneider, S. H. Conservation and climate change: The challenges ahead. Conserv. Biol. 20, 706–708 (2006).
    PubMed  Google Scholar 

    25.
    Hahn, S., Bauer, S. & Liechti, F. The natural link between Europe and Africa—2.1 billion birds on migration. Oikos 118, 624–626 (2009).
    Google Scholar 

    26.
    Evans, P. R. & Lathbury, G. W. Raptor migration across the Strait of Gibraltar. Ibis (Lond. 1859). 115, 572–585 (1972).
    Google Scholar 

    27.
    Bijlsma, R. G. Bottleneck Areas for Migratory Birds in the Mediterranean Region: An Assessment of the Problems and Recommendations for Action. (ICBP Study report no. 18, 1987).

    28.
    Gantenbein, B. & Largiadèr, C. R. The phylogeographic importance of the Strait of Gibraltar as a gene flow barrier in terrestrial arthropods: A case study with the scorpion Buthus occitanus as model organism. Mol. Phylogenet. Evol. 28, 119–130 (2003).
    CAS  PubMed  Google Scholar 

    29.
    García-Mudarra, J. L., Ibáñez, C. & Juste, J. The Straits of Gibraltar: Barrier or bridge to Ibero-Moroccan bat diversity?. Biol. J. Linn. Soc. 96, 434–450 (2009).
    Google Scholar 

    30.
    Carranza, S., Harris, D. J., Arnold, E. N., Batista, V. & de la Gonzalez, V. Phylogeography of the lacertid lizard, Psammodromus algirus, in Iberia and across the Strait of Gibraltar. J. Biogeogr. 33, 1279–1288 (2006).
    Google Scholar 

    31.
    de Juana, E. & Comite de Rarezas de la Sociedad Española de Ornitología, (SEO). Observaciones de Aves raras en España, año 1995. Ardeola44, 119–141 (1997).

    32.
    de Juana, E. & Comité Ibérico de Rarezas de la Sociedad Española de Ornitología, (SEO). Observaciones homologadas de aves raras en España y Portugal. Informe de 1992. Ardeola41, 103–117 (1994).

    33.
    Copete, J. L. et al. Observaciones de Aves Raras en España, 2012 y 2013. Ardeola 62, 453–508 (2015).
    Google Scholar 

    34.
    Dies, J. I. et al. Observaciones de Aves Raras en España, 2008. Ardeola 57, 481–516 (2010).
    Google Scholar 

    35.
    Elorriaga, J. & Muñoz, A.-R. Hybridisation between the Common Buzzard Buteo buteo buteo and the North African race of Long-legged Buzzard Buteo rufinus cirtensis in the Strait of Gibraltar: Prelude or preclude to colonisation?. Ostrich J. Afr. Ornithol. 84, 41–45 (2013).
    Google Scholar 

    36.
    Chamorro, D., Olivero, J., Real, R. & Muñoz, A.-R. El cambio del clima y la Barrera Biogeográfica del Estrecho de Gibraltar para las aves africanas. In Avances en biogeografía: Áreas de distribución: entre puentes y barreras (eds. Zotano, J. G., et al.) 172–180 (Tundra Ediciones, 2016).

    37.
    Ramírez, J. et al. Spring movements of Rüppell’s Vulture Gyps rueppellii across the Strait of Gibraltar. Ostrich 82, 71–73 (2011).
    Google Scholar 

    38.
    del Hoyo, J., Elliott, A. & Sargatal, J. Handbook of the Birds of the World. Vol. 2. New World Vultures to Guineafowl. (Lynx Edicions, Barcelona, 1994).

    39.
    Ferguson-Lees, J. & Christie, D. A. Raptors of the World (Houghton Mifflin Harcourt, Boston, 2001).
    Google Scholar 

    40.
    Irby, L. H. The Ornithology of the Straits of Gibraltar (Taylor & Francis, Abingdon, 1895).
    Google Scholar 

    41.
    Ávila, A., Guirado, M. A. & Navarrete, J. Observaciones de Aves Raras. Busardo Moro. Ardeola 51, 548 (2004).
    Google Scholar 

    42.
    Cramp, S. & Simmons, K. E. L. Handbook of the Birds of Europe, the Middle East and North Africa: The Birds of the Western Palearctic. Vol. 2: Hawks to Bustards. (Oxford University Press., Oxford, 1980).

    43.
    Zadeh, L. A. Fuzzy sets. Inf. Control 8, 338–353 (1965).
    MATH  Google Scholar 

    44.
    Real, R. et al. Conservation biogeography of ecologically interacting species: The case of the Iberian lynx and the European rabbit. Divers. Distrib. 15, 390–400 (2009).
    Google Scholar 

    45.
    Olivero, J., Real, R. & Márquez, A. L. Fuzzy chorotypes as a conceptual tool to improve insight into biogeographic patterns. Syst. Biol. 60, 645–660 (2011).
    PubMed  Google Scholar 

    46.
    Olivero, J. et al. Recent loss of closed forests is associated with Ebola virus disease outbreaks. Sci. Rep. 7, 14291 (2017).
    ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

    47.
    Robertson, M. P., Villet, M. H. & Palmer, A. R. A fuzzy classification technique for predicting species’ distributions: Applications using invasive alien plants and indigenous insects. Divers. Distrib. 10, 461–474 (2004).
    Google Scholar 

    48.
    Salski, A. Ecological applications of fuzzy logic. In Ecological Informatics (ed. Recknagel, F.) 3–14 (Springer, New York, 2006).

    49.
    Real, R., Barbosa, A. M. & Bull, J. W. Species distributions, quantum theory, and the enhancement of biodiversity measures. Syst. Biol. 66, 453–462 (2017).
    PubMed  Google Scholar 

    50.
    Acevedo, P. & Real, R. Favourability: Concept, distinctive characteristics and potential usefulness. Naturwissenschaften 99, 515–522 (2012).
    ADS  CAS  PubMed  Google Scholar 

    51.
    Hosmer, D. W. & Lemeshow, S. Goodness of fit tests for the multiple logistic regression model. Commun. Stat. Theory Methods 9, 1043–1069 (1980).
    MATH  Google Scholar 

    52.
    Thévenot, M., Vernon, R. & Bergier, P. The Birds of Morocco: An Annotated Checklist. BOU Checklist No. 20. (British Ornithologist’s Union, 2003).

    53.
    Muñoz, A.-R., Márquez, A. L. & Real, R. An approach to consider behavioral plasticity as a source of uncertainty when forecasting species’ response to climate change. Ecol. Evol. 5, 2359–2373 (2015).
    PubMed  PubMed Central  Google Scholar 

    54.
    Muñoz, A.-R., Real, R., Barbosa, A. M. & Vargas, J. M. Modelling the distribution of Bonelli’s eagle in Spain: Implications for conservation planning. Divers. Distrib. 11, 477–486 (2005).
    Google Scholar 

    55.
    Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Modell. 135, 147–186 (2000).
    Google Scholar 

    56.
    Guisan, A. & Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).
    Google Scholar 

    57.
    Gouveia, S. F. et al. Ecophysics reload—exploring applications of theoretical physics in macroecology. Ecol. Modell. 424, 109032 (2020).
    Google Scholar 

    58.
    Cramp, S. Handbook of the Birds of Europe, the Middle East and North Africa: The birds of the Western Paleartic, Vol. VI. (Oxford University Press, Oxford, 1992).

    59.
    Hardin, G. The competitive exclusion principle. Science (80-). 131, 1292–1297 (1960).
    ADS  CAS  Google Scholar 

    60.
    Jowers, M. J. et al. Unravelling population processes over the Late Pleistocene driving contemporary genetic divergence in Palearctic buzzards. Mol. Phylogenet. Evol. 134, 269–281 (2019).
    PubMed  Google Scholar 

    61.
    Waters, J. M., Fraser, C. I. & Hewitt, G. M. Founder takes all: Density-dependent processes structure biodiversity. Trends Ecol. Evol. 28, 78–85 (2013).
    PubMed  Google Scholar 

    62.
    Gil-Velasco, M. et al. Observaciones de Aves Raras en España, 2017. Ardeola 66, 169–204 (2019).
    Google Scholar 

    63.
    Gutiérrez, R. et al. Observaciones De Aves Raras En España, 2011. Ardeola 60, 437–506 (2013).
    Google Scholar 

    64.
    Gutiérrez, R. et al. Observaciones aves raras en España, 2010. Ardeola 59, 353–411 (2012).
    Google Scholar 

    65.
    Jara, J. et al. Comité Português de Raridades. Anuário Ornitológico da SPEA 7, 140 (2010).
    Google Scholar 

    66.
    Corso, A. Successful mixed breeding of Atlas Long-legged Buzzard and Common Buzzard on Pantelleria, Italy, in 2008. Dutch Bird. 31, 224–226 (2009).
    Google Scholar 

    67.
    Väli, Ü et al. Widespread hybridization between the Greater Spotted Eagle Aquila clanga and the Lesser Spotted Eagle Aquila pomarina (Aves: Accipitriformes) in Europe. Biol. J. Linn. Soc. 100, 725–736 (2010).
    Google Scholar 

    68.
    del Junco, O. & González, B. L. nueva especie de Vencejo en el Paleártico: Apus caffer. Ardeola 13, 115–127 (1969).
    Google Scholar 

    69.
    Ferrero, J. J. Situación del Elanio azul (Elanus caeruleus) en el Mediterráneo. In Biología y Conservación de las Rapaces Mediterráneas,1994 (eds. Muntaner, J. & Mayol, J.) 101–115 (SEO, Sociedad Española de Ornitología, 1996).

    70.
    Ramírez, J., Simón, M., Solís, S., Pérez, C. & García, E. Vencejo Moro Apus affinis Observaciones de Aves Raras en España. Ardeola 49, 161 (2002).
    Google Scholar 

    71.
    Molina, B., Prieta, J., Lorenzo, J. A. & López-Jurado, C. Noticiario Ornitológico. Ardeola 66, 205–255 (2019).
    Google Scholar 

    72.
    Logeais, J.-M. Première nidification de l’Élanion blanc Elanus caeruleus en Maine-et-Loire. Crex 13, 45–50 (2015).
    Google Scholar 

    73.
    Balbontín, J., Negro, J. J., Sarasola, J. H., Ferrero, J. J. & Rivera, D. Land-use changes may explain the recent range expansion of the Black-shouldered Kite Elanus caeruleus in southern Europe. Ibis (Lond. 1859). 150, 707–716 (2008).
    Google Scholar 

    74.
    Ferrero, J. J. & Onrubia, A. Elanio azul Elanus caeruleus. In Libro Rojo de las Aves de España (eds Madroño, A. et al.) 113–116 (SEO/BirdLife, Madrid, 2004).
    Google Scholar 

    75.
    Knaus, P. et al. Swiss Breeding Bird Atlas 2013–2016. Distribution and Population Trends of Birds in Switzerland and Liechtenstein (Swiss Ornithological Institute, Sempach, 2018).
    Google Scholar 

    76.
    Pulido-Pastor, A., Márquez, A. L., García-Barros, E. & Real, R. Identification of potential source and sink areas for butterflies on the Iberian Peninsula. Insect Conserv. Divers. 11, 479–492 (2018).
    Google Scholar 

    77.
    Muñoz, A.-R. & Real, R. Assessing the potential range expansion of the exotic monk parakeet in Spain. Divers. Distrib. 12, 656–665 (2006).
    Google Scholar 

    78.
    Niamir, A., Skidmore, A. K., Muñoz, A. R., Toxopeus, A. G. & Real, R. Incorporating knowledge uncertainty into species distribution modelling. Biodivers. Conserv. 28, 571–588 (2019).
    Google Scholar 

    79.
    Muñoz, A.-R. & Real, R. Distribution of Bonelli’s Eagle Aquila fasciata in southern Spain: Scale may matter. Acta Ornithol. 48, 93–101 (2013).
    Google Scholar 

    80.
    Barbosa, A. M. & Real, R. Applying fuzzy logic to comparative distribution modelling: A case study with two sympatric amphibians. Sci. World J. 2012, 1–10 (2012).
    Google Scholar 

    81.
    Maguire, B. J. Niche response structure and the analytical potentials of its relationship to the habitat. Am. Nat. 107, 213–246 (1973).
    Google Scholar 

    82.
    Mill, H. The International Geography (D. Appleton and Company, Boston, 1902).
    Google Scholar 

    83.
    Udvardy, M. D. F. A classification of the Biogeographical Provinces of the World. (1975).

    84.
    Font, I. Climatología de España y Portugal (Ediciones Universidad de Salamanca, Salamanca, 2000).
    Google Scholar 

    85.
    Crovello, T. J. Quantitative Biogeography: An Overview. Taxon 30, 563–575 (1981).
    Google Scholar 

    86.
    Márquez, A. L., Real, R. & Vargas, J. M. Methods for comparison of biotic regionalizations: The case of pteridophytes in the Iberian Peninsula. Ecography (Cop.) 24, 659–670 (2001).
    Google Scholar 

    87.
    Barreau, D., Bergier, P. & Lesne, L. Lávifaune de l’Oukaïmeden, 2200–3600m (Haut Atlas, Maroc). L’Oiseau la R.F.O.57, 307–367 (1987).

    88.
    Rodriguez, G., Elorriaga, J. & Ramirez, J. Identification of Atlas Long-Legged Buzzard (Buteo rufinus cirtensis) and its status in Europe. Bird. World 26, 147–173 (2013).
    Google Scholar 

    89.
    IUCN. Buteo rufinus. The IUCN Red List of Threatened Species. Version 2018-2. https://www.iucnredlist.org (2017).

    90.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Google Scholar 

    91.
    Kirkevåg, A. et al. Aerosol-cloud-climate interactions in the climate model CAM-Oslo. Tellus Ser. A Dyn. Meteorol. Oceanogr. 60A, 492–512 (2008).
    Google Scholar 

    92.
    Collins, W. J. et al. Development and evaluation of an Earth-System model—HadGEM2. Geosci. Model Dev. 4, 1051–1075 (2011).
    ADS  Google Scholar 

    93.
    Fa, J. E. et al. Integrating sustainable hunting in biodiversity protection in central Africa: Hot spots, weak spots, and strong spots. PLoS ONE 9, e112367 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    94.
    Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A practical and powerful approach to Multiple Testing. J. R. Stat. Soc. Ser. B. 57, 289–300 (1995).
    MathSciNet  MATH  Google Scholar 

    95.
    García, L. V. Controlling the false discovery rate in ecological research. Trends Ecol. Evol. 18, 553–554 (2003).
    Google Scholar 

    96.
    Benjamini, Y. & Yekutieli, D. The control of the false discovery rate in multiple testing under depencency. Ann. Stat. 29, 1165–1188 (2001).
    MATH  Google Scholar 

    97.
    Hosmer, D. W. & Lemeshow, S. Applied Logistic Regression (Wiley, Hoboken, 2000).
    Google Scholar 

    98.
    Real, R., Barbosa, A. M. & Vargas, J. M. Obtaining environmental favourability functions from logistic regression. Environ. Ecol. Stat. 13, 237–245 (2006).
    MathSciNet  Google Scholar 

    99.
    Muñoz, A.-R., Jiménez-Valverde, A., Márquez, A. L., Moleón, M. & Real, R. Environmental favourability as a cost-efficient tool to estimate carrying capacity. Divers. Distrib. 21, 1388–1400 (2015).
    Google Scholar 

    100.
    Hosmer, D. W. & Lemeshow, S. Assessing the fit of the model. In Applied Logistic Regression 157–158 (Wiley, Hoboken, 2000).

    101.
    Chamorro, D., Nieto, I., Real, R. & Muñoz, A. Wintering areas on the move in the face of warmer winters. Ornis Fenn. 96, 1–14 (2019).
    Google Scholar 

    102.
    Wald, A. Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans. Am. Math. Soc. 54, 426–482 (1943).
    MathSciNet  MATH  Google Scholar 

    103.
    Lobo, J. M., Jiménez-valverde, A. & Real, R. AUC: A misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17, 145–151 (2008).
    Google Scholar 

    104.
    Romero, D., Olivero, J. & Real, R. Comparative assessment of different methods for using land-cover variables for distribution modelling of Salamandra salamandra longirotris. Environ. Conserv. 40, 48–59 (2012).
    Google Scholar 

    105.
    Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20, 37–46 (1960).
    Google Scholar 

    106.
    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).
    Google Scholar 

    107.
    Barbosa, A. M., Real, R., Muñoz, A.-R. & Brown, J. A. New measures for assessing model equilibrium and prediction mismatch in species distribution models. Divers. Distrib. 19, 1333–1338 (2013).
    Google Scholar 

    108.
    Romo, H., García-Barros, E., Márquez, A. L., Moreno, J. C. & Real, R. Effects of climate change on the distribution of ecologically interacting species: Butterflies and their main food plants in Spain. Ecography (Cop.) 37, 1063–1072 (2014).
    Google Scholar 

    109.
    Muñoz, A.-R., Márquez, A. L. & Real, R. Updating known distribution models for forecasting climate change impact on endangered species. PLoS ONE 8, e65462 (2013).
    ADS  PubMed  PubMed Central  Google Scholar 

    110.
    Romero, D., Olivero, J. & Real, R. Accounting for uncertainty in assessing the impact of climate change on biodiversity hotspots in Spain. Anim. Biodivers. Conserv. 42, 355–367 (2019).
    Google Scholar 

    111.
    Daget, P. Ordenation des profils ecologiques. Nat. Monspel. Ser. Bot. 26, 109–128 (1977).
    Google Scholar 

    112.
    Gauch, H. G. Multivariate Analysis in Community Ecology. (Cambridge University Press, Cambridge, 1982). https://doi.org/10.1017/CBO9780511623332.

    113.
    Real, R., Guerrero, J. C., Antúnez, A., Olivero, J. & Vargas, J. M. Geographic responses of amphibian species to environmental gradients in Southern Spain. I. Individualistic patterns. Boletín la Real Soc. Española Hist. Nat. (Sec. Biol.) 96, 251–261 (2001).
    Google Scholar 

    114.
    Antúnez, A. & Mendonza, M. Factores que determinan el área de distribución geográfica de las especies: Conceptos, modelos y métodos de análisis. In Objetivos y Métodos Biogeográficos. Aplicaciones en Herpetología. Monografías de Herpetología (eds. Vargas, J. M., et al.) vol. 2, 51–72 (Asociación Herpetológica Española, 1992).

    115.
    Kou, X., Li, Q. & Liu, S. Quantifying species’ range shifts in relation to climate change: A case study of Abies spp. in China. PLoS ONE 6, e23115 (2011).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    116.
    US Geological Survey. GTOPO30. (Land processes distributed active archive center (LPDAAC), EROS data center, 1996). More

  • in

    Local-scale Arctic tundra heterogeneity affects regional-scale carbon dynamics

    Study region
    The Barrow Peninsula (~1800 km2) is situated on the northern limit of the Arctic Coastal Plain (Fig. 1). The mean annual temperature, precipitation, and snowfall are −11.2 °C, 115 mm, and 958 mm, respectively (1981–2010)35 and the maximum thaw depth ranges from 30 to 90 cm36,37. This continuous permafrost region is characterized by meso-scale (tens to hundreds of square kilometers) drained thaw lake basins (DTLBs) and interstitial tundra9,38, which are composed of a mosaic of fine-scale polygonal tundra landforms (tens to hundreds of square meters). Excluding lakes and rivers, the dominant polygonal tundra landforms in this region includes low-center (LC) polygon, flat-center (FC) polygon, high-center (HC) polygon, coalescent LC polygon, drained slopes (DS), nonpatterned DTLB (nDTLB), and thermokarst ponds, which cover an estimated 34, 24, 16, 11, 11, 3, and 1% of the land surface area, respectively9,13. Due to the similarity in morphological and physiological characteristics of coalescent LC polygons and thermokarst ponds, they are rarely differentiated in field observations. Therefore, both these landforms are combined and referred to as Ponds in the proceeding analysis. Though multiple vegetation communities may be found on each tundra landform, communities typically assemble along a soil moisture gradient representative of each landform21. These community–landform associations are identified as follows: dry Salix heath–DS, dry Luzula heath–HC, moist–wet Carex–Oncophorus meadow–FC, moist–wet Carex–Eriophorum meadow–LC, wet Dupontia meadow–nDTLB, and wet Arctophila pond margin–Pond21.
    Model parameterization and validation
    We synthesized an extensive collection of field data measured on the Barrow Peninsula to parameterize and validate DOS-TEM (Supplementary Table 1 and Fig. 3). The majority of this data was acquired by scientific initiatives: (1) International Biological Research Program during the early 1970s21,38,39,40, (2) Next Generation Ecosystem Experiments between 2010 and 201641,42,43,44,45,46,47, and (3) Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) during 2011–201548. In addition, we leveraged key ancillary datasets including: soil carbon pedons (i.e., 100 cm soil cores)22,23,24,30,38,39,49,50,51, vegetation carbon and nitrogen21,38,39,40,52, eddy covariance measurements48, and polygonal tundra landform maps9,13.
    Fig. 3: Validation of modeled carbon fluxes and carbon pools.

    Monthly net ecosystem exchange (NEE) fluxes measured by the CARVE eddy covariance tower (71°19’22.72”N, 156°35’47.74”W, a) during 2011–2015, were compared with NEE fluxes simulated with DOS-TEM (dashed line in b). Negative NEE indicates carbon uptake, while positive NEE indicates loss. Footprint % indicates the accumulated percentage of measured NEE used to compare with modeled NEE, weighted by polygonal landform (DS drained slope, HC high center, FC flat center, LC low center, nDTLB nonpatterned drained thaw lake basins) using the Kormann and Meixner93 flux footprint model (e.g., a). Modeled carbon pools (colored circles; c) were compared to 44 pedons collected (solid gray circles with standard error bars) and validated against 11 independent random subset of soil carbon pedons (open circles) measured on each respective landform across the Barrow Peninsula.

    Full size image

    Modeled carbon fluxes were compared to net ecosystem exchange (NEE) measurements from the CARVE tower near Utqiaġvik (71°19′22.72′N, 156°35′47.74′W). The tower footprint (~250 m radius) was located in a heterogeneous tundra site composed of all dominant polygonal tundra landforms (exception of Ponds). Although we identified good correspondence with modeled and measured NEE for most of our observations, DOS-TEM underestimated respiratory losses during the zero-curtain seasonal freeze and thaw isothermal period (e.g., September and October)53, resulting in an underestimate of the 1 to 1 line (R2 = 0.46, p 4 km2), while random error became increasingly positive with scale, increasing by 1.4% for every 1 km2 coarsening of spatial scale. Random errors ranged from 3.9 to 22.8% associated with fine to coarse-scale representation of tundra landforms.
    Fig. 6: Misrepresentation of polygonal tundra landforms with scale.

    Differences in landform distribution across spatial scales are relative to the highest resolution (0.0009 km2; pie chart). Data are representative of mean landform distributions across six subregions on the Barrow Peninsula. Negative and positive values indicate an overestimate and underestimate of polygonal tundra landforms, respectively.

    Full size image

    Both the bias error and random error were significantly minimized at fine scales (Fig. 5a), as twenty-first century soil carbon was only overestimated by a maximum of 3.7 and ±7.4%, respectively. This is in contrast to coarser spatial scales as bias and random error sharply increased at 8, 16, and 25 km2 by −6.1% (±10.7%), −17.0% (±22.1%), and −12.6% (±35.5%), respectively (Fig. 5a). The increase in spatial scale led to the overestimation in the area of low productivity thermokarst lakes (1.1% for every 1 km2) and underestimated wet productive landforms such as Ponds (−0.5% for every 1 km2) and LC polygons (−0.5% for every 1 km2; Fig. 6). This underestimation of wet landforms was particularly concerning as wet landforms have been regionally identified as those most sensitive to change59,60,61, while representing a significant proportion of the regional carbon cycle9,60,62,63.
    Influence of tundra heterogeneity and model spatial scale
    To evaluate the causes, consequences, and mitigation strategies for twenty-first century errors of prediction (i.e., bias and random error), we examined the combined influence of both tundra heterogeneity and model spatial scale. Correlation matrices clarified the potential causes of variable prediction errors, while hierarchical cluster analysis implemented using Euclidean distance and McQuitty linkage methods were used for grouping tundra heterogeneity and model spatial scales with similar errors of prediction to identify potential mitigation strategies or recommendations for future modeling applications.
    Correlation matrices supported our presumption that an overestimation of lakes and underestimation of productive wet landforms altered the quantification of landscape-level soil carbon stocks, as bias error was strongly negatively correlated with lake cover (r = −0.98) and positively correlated with wet landforms (r = 0.94; Fig. 7). We found an inverse correlation in bias error as the prevalence of lake cover increased with spatial scale at the expense of nearly all other landforms, but in particular the landforms in low abundance such as tundra ponds (Figs. 6 and 7). Similar to the identified influence of spatial scale on random error (Fig. 4), correlations were highly positively related with model spatial scale (r = 0.99; Fig. 7), reinforcing the impact of coarsening model scale on uncertainty propagation.
    Fig. 7: Pearson’s correlations of uncertainty metrics (bias and random error) and spatial attributes.

    The larger the bubble the greater the p value. Landform categories dry and wet include spatial data from “DS + HC” and “FC + LC + nDTLB+Pond”, respectively. See Supplementary Fig. 3 for correlation bubble plots of all clusters.

    Full size image

    Overall, bias error was linked with the misrepresentation of tundra landforms as spatial scale increased (Fig. 7 and Supplementary Fig. 4). Therefore, we next elucidated the influence of heterogeneity and scale on random error. Though random error was correlated with spatial scale, we explored the variability across tundra heterogeneity and scale. The lowest and highest random errors occurred at the finest (≤4 km2) and coarsest (≥16 km2) spatial scales, respectively (Fig. 8). Landform clusters include one or more landforms and landform groups needed to represent tundra heterogeneity on the Barrow Peninsula. Random error was constrained to ±4.5% by considering 5 or 6 tundra landform groups at fine scales. However, at coarse scales these heterogeneous groups also showcased the greatest errors (±28.9%) due to the high number of landforms parameterized within increasingly uncertain landform distributions as scale increased (Figs. 5 and 8). The lowest error among clusters was identified in landform cluster 2 (i.e., ±3.4%; dry and wet), likely due to biogeophysical similarities (i.e., soil anaerobicity, soil available nitrogen, productivity gradients) between dry versus wet landforms (Supplementary Table 1) and similar responses to climate change (e.g., Fig. 4a). Interestingly, even at coarse scales the error found in cluster 2 remained lower than all other landform clusters. Although the “tundra-biome” cluster 1 had a relatively low random error across spatial scales (Fig. 8), this result would not be directly transferable to other modeling applications as we leveraged (i) a robust dataset for model parameterization and (ii) high-resolution polygonal tundra landform maps, currently unavailable across the Arctic for initializing and weighting model parameterization data. The importance of our data assimilation and landform weighting protocol was confirmed by testing the performance of a single unweighted landform parameterization (i.e., HC polygon) extrapolated across the Barrow Peninsula. We found random error to double (±15%) that of cluster 1 at fine scales (≤4 km2) and nearly triple (±45%) at coarse scales ( >8 km2). Therefore, to best simulate dynamically changing carbon pools in permafrost soils, our analysis recommends a minimum of two landform groups (i.e., dry and wet) at a maximum model spatial scale of ≤4 km2 (Fig. 8).
    Fig. 8: Heat-map of random error for all tundra heterogeneity and model spatial scales.

    Warm to cool colors represent high to low random error (transformed to improve visualization). Hierarchical clustering grouped random error for all landform clusters (i.e., landforms and groups to represent the heterogeneity on the Barrow Peninsula) using a ~50% similarity cut-off for group membership. Mean random errors (transparent white circles) are presented for each landform cluster and model spatial scale.

    Full size image

    Implications for modeling soil carbon dynamics in Arctic tundra
    Current uncertainties among Pan-Arctic model projections reflect inadequate spatial and temporal data needed to initialize, parameterize, and validate key Arctic ecosystem processes55,56,64. This study overcame many of these limitations by leveraging a legacy of data (1973–2016) collected from the data-rich Barrow Peninsula to constrain parameter, climate, and model uncertainties, to improve the representation of Arctic tundra heterogeneity across model spatial scales. We identify a scale-dependent balance between tundra heterogeneity and model spatial scale, linked with the decoupling of actual and simulated tundra landform distributions as spatial scales increased (Figs. 5 and 6). The scale-dependency of model process representation is supported by ground-based assessments, as the drivers of carbon dynamics vary across local (e.g., drainage conditions affecting aerobic/anaerobic processes), regional (e.g., vegetation distribution), and landscape scales (e.g., climate variability). Though we identified relatively minimal differences in carbon accumulation rates between polygonal tundra landforms, this was not necessarily surprising as Arctic coastal tundra landforms are relatively young ( More

  • in

    Spatial variations in the stable isotope composition of the benthic algae, Halimeda tuna, and implications for paleothermometry

    1.
    Bathurst, R. G. C. Carbonate sediments and their diagenesis (Elsevier, Amsterdam, 1971).
    Google Scholar 
    2.
    Beach, K. et al. Variability in the ecophysiology of Halimeda spp. (Chlorphyta, Bryopsidales) on Conch Reef, Florida Keys, USA. J. Phycol. 39, 633–643 (2003).
    CAS  Article  Google Scholar 

    3.
    Vroom, P. S. et al. Field biology of Halimeda tuna (Bryopsidales, Chlorophyta) across a depth gradient: Comparative growth, survivorship, recruitment, and reproduction. Hydrobiologia 501, 149–166 (2003).
    Article  Google Scholar 

    4.
    Littler, M. M., Littler, D. S., Blair, S. M. & Norris, J. N. Deepest known plant life discovered on an uncharted seamount. Science 227, 57–59 (1985).
    ADS  CAS  PubMed  Article  Google Scholar 

    5.
    Littler, M. M., Littler, D. S., Blair, S. M. & Norris, J. N. Deep-water plant communities from an uncharted seamount off San Salvador Island, Bahamas: Distribution, abundance, and primary productivity. Deep Sea Res. Part A Oceanogr. Res. Pap. 33, 881–892 (1986).
    ADS  CAS  Article  Google Scholar 

    6.
    Blair, S. M. & Norris, J. N. The deep-water species of Halimeda Lamouroux (Halimedaceae, Chlorophyta) from San Salvador Island, Bahamas: Species composition, distribution and depth records. Coral Reefs 6, 227–236 (1988).
    ADS  Article  Google Scholar 

    7.
    Drew, E. A. & Abel, K. M. Studies on Halimeda: II. Reproduction, particularly the seasonality of gametangia formation, in a number of species from the Great Barrier Reef Province. Coral Reefs 6, 207–218 (1988).
    ADS  Article  Google Scholar 

    8.
    Johns, H. D. & Moore, C. H. Reef to basin sediment transport using Halimeda as a sediment tracer, Grand Cayman Island. West Indies. Coral Reefs 6, 187–193 (1988).
    ADS  Article  Google Scholar 

    9.
    Schupp, P. J. & Paul, V. J. Calcium carbonate and secondary metabolites in tropical seaweeds: Variable effects on herbivorous fishes. Ecology 75, 1172–1185 (1993).
    Article  Google Scholar 

    10.
    Littler, M. M. & Littler, D. S. Blade abandonment/proliferation: a novel mechanism for rapid epiphyte control in marine macrophytes. Ecology 80, 1736–1746 (1999).
    Article  Google Scholar 

    11.
    Wefer, G. Carbonate production by algae Halimeda, Penicillus and Padina. Nature 285, 323–324 (1980).
    ADS  CAS  Article  Google Scholar 

    12.
    Wiman, S. K. & McKendree, W. G. Distribution of Halimeda plants and sediments on and around a patch reef near Old Rhodes Key Florida. J. Sediment. Res. 45, 415–421 (1975).
    Google Scholar 

    13.
    Mankiewicz, C. Occurrence and paleocologic significance of Halimeda in late Miocene reefs, southeastern Spain. Coral Reefs 6, 271–279 (1988).
    ADS  Article  Google Scholar 

    14.
    Hillis, L. W. The calcareous reef alga Halimeda (Chlorophyta, Byropsidales): A cretaceous genus that diversified in the cenozoic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 166, 89–100 (2001).
    Article  Google Scholar 

    15.
    Stanley, S. M. Effects of global seawater chemistry on biomineralization: Past, present, and future. Chem. Rev. 108, 4483–4498 (2008).
    CAS  PubMed  Article  Google Scholar 

    16.
    Wefer, G. & Berger, W. H. Stable isotope composition of benthic calcareous algae from Bermuda. J. Sediment. Res. 51, 459–465 (1981).
    CAS  Google Scholar 

    17.
    Flügel, E. Halimeda: paleontological record and palaeoenvironmental significance. Coral Reefs 6, 123–130 (1988).
    ADS  Article  Google Scholar 

    18.
    Rao, V. P. et al. Late quaternary Halimeda bioherms and aragonitic faecal pellet-dominated sediments on the carbonate platform of the western continental shelf of India. Mar. Geol. 121, 293–315 (1994).
    ADS  Article  Google Scholar 

    19.
    Stanley, S. M., Ries, J. B. & Hardie, L. A. Nonlinear partial differential equations and applications: From the Cover: Low-magnesium calcite produced by coralline algae in seawater of Late Cretaceous composition. Proc. Natl. Acad. Sci. 99, 15323–15326 (2002).
    ADS  CAS  PubMed  Article  Google Scholar 

    20.
    Stanley, S. M. Influence of seawater chemistry on biomineralization throughout phanerozoic time: Paleontological and experimental evidence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 232, 214–236 (2006).
    Article  Google Scholar 

    21.
    Brachert, T. C. et al. High salinity variability during the early Messinian revealed by stable isotope signatures from vermetid and Halimeda reefs of the Mediterranean region. Geol. Romana 40, 51–66 (2007).
    Google Scholar 

    22.
    Urey, H. C. The thermodynamic properties of isotopic substances. J. Chem. Soc. 31, 562–581 (1947).
    Article  Google Scholar 

    23.
    Urey, H. C., Lowenstam, H. A., Epstein, S. & McKINNEY, C. R. Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and the southeastern United States. Geol. Soc. Am. Bull. 62, 399 (1951).
    ADS  CAS  Article  Google Scholar 

    24.
    Epstein, S., Buchsbaum, R., Lowenstam, H. & Urey, H. C. Carbonate-water isotopic temperature scale. Geol. Soc. Am. Bull. 62, 417 (1951).
    ADS  CAS  Article  Google Scholar 

    25.
    Epstein, S., Buchsbaum, R., Lowenstam, H. A. & Urey, H. C. Revised carbonate-water isotopic temperature scale. Geol. Soc. Am. Bull. 64, 1315 (1953).
    ADS  CAS  Article  Google Scholar 

    26.
    Tabouret, H. et al. Simultaneous use of strontium: calcium and barium: calcium ratios in otoliths as markers of habitat: Application to the European eel (Anguilla anguilla) in the Adour basin South West France. Mar. Environ. Res. 70, 35–45 (2010).
    CAS  PubMed  Article  Google Scholar 

    27.
    Ren, L. et al. Deconvolving the δ18O seawater component from subseasonal coral δ18O and Sr/Ca at Rarotonga in the southwestern subtropical Pacific for the period 1726 to 1997. Geochim. Cosmochim. Acta 67, 1609–1621 (2003).
    ADS  CAS  Article  Google Scholar 

    28.
    Grossman, E. L. & Ku, T.-L. Oxygen and carbon isotope fractionation in biogenic aragonite: Temperature effects. Chem. Geol. 59, 59–74 (1986).
    CAS  Article  Google Scholar 

    29.
    Weber, J. N. & Woodhead, P. M. J. Temperature dependence of oxygen-18 concentration in reef coral carbonates. J. Geophys. Res. 77, 463–473 (1972).
    ADS  CAS  Article  Google Scholar 

    30.
    Patterson, W. P. & Walter, L. M. Syndepositional diagenesis of modern platform carbonates: Evidence from isotopic and minor element data. Geology 22, 127–130 (1994).
    ADS  CAS  Article  Google Scholar 

    31.
    Hillis-Colinvaux, L. Ecology and taxonomy of Halimeda: primary producer of coral reefs. In Advances in Marine Biology 1–327 (Academic Press, New york, 1980).
    Google Scholar 

    32.
    Lee, D. & Carpenter, S. J. Isotopic disequilibrium in marine calcareous algae. Chem. Geol. 172, 307–329 (2001).
    ADS  CAS  Article  Google Scholar 

    33.
    Wizemann, A., Meyer, F. W. & Westphal, H. A new model for the calcification of the green macro-alga Halimeda opuntia (Lamouroux). Coral Reefs 33, 951–964 (2014).
    ADS  Article  Google Scholar 

    34.
    Holmes, C. W. delta 18 O variations in the Halimeda of Virgin Islands sands; evidence of cool water in the Northeast Caribbean, late Holocene. J. Sediment. Res. 53, 429–438 (1983).
    CAS  Google Scholar 

    35.
    Peach, K. E., Koch, M. S., Blackwelder, P. L., Guerrero-Given, D. & Kamasawa, N. Primary utricle structure of six Halimeda species and potential relevance for ocean acidification tolerance. Bot. Mar. 60, 1–11 (2017).
    Article  Google Scholar 

    36.
    Peach, K. E., Koch, M. S., Blackwelder, P. L. & Manfrino, C. Calcification and photophysiology responses to elevated pCO2 in six Halimeda species from contrasting irradiance environments on Little Cayman Island reefs. J. Exp. Mar. Biol. Ecol. 486, 114–126 (2017).
    CAS  Article  Google Scholar 

    37.
    Aharon, P. Recorders of reef environment histories: Stable isotopes in corals, giant clams, and calcareous algae. Coral Reefs 10, 71–90 (1991).
    ADS  Article  Google Scholar 

    38.
    Wefer, G. & Berger, W. H. Isotope paleontology: growth and composition of extant calcareous species. Mar. Geol. 100, 207–248 (1991).
    ADS  CAS  Article  Google Scholar 

    39.
    Wefer, G. & Killingley, J. S. Carbon isotopes in organic matter from a benthic alga Halimeda incrassata (Bermuda): Effects of light intensity. Chem. Geol. 59, 321–326 (1986).
    CAS  Article  Google Scholar 

    40.
    McConnaughey, T. 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochim. Cosmochim. Acta 53, 151–162 (1989).
    ADS  CAS  Article  Google Scholar 

    41.
    Mcconnaughey, T. 13C and 18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects. Geochim. Cosmochim. Acta 53, 163–171 (1989).
    ADS  CAS  Article  Google Scholar 

    42.
    Robbins, L. L., Knorr, P. O. & Hallock, P. Response of Halimeda to ocean acidification: field and laboratory evidence. Biogeosci. Discuss. 6, 4895–4918 (2009).
    ADS  Article  Google Scholar 

    43.
    Price, N., Hamilton, S., Tootell, J. & Smith, J. Species-specific consequences of ocean acidification for the calcareous tropical green algae Halimeda. Mar. Ecol. Prog. Ser. 440, 67–78 (2011).
    ADS  CAS  Article  Google Scholar 

    44.
    Sinutok, S., Hill, R., Doblin, M. A., Wuhrer, R. & Ralph, P. J. Warmer more acidic conditions cause decreased productivity and calcification in subtropical coral reef sediment-dwelling calcifiers. Limnol. Oceanogr. 56, 1200–1212 (2011).
    ADS  CAS  Article  Google Scholar 

    45.
    Barry, S. C., Frazer, T. K. & Jacoby, C. A. Production and carbonate dynamics of Halimeda incrassata (Ellis) Lamouroux altered by Thalassia testudinum Banks and Soland ex König. J. Exp. Mar. Biol. Ecol. 444, 73–80 (2013).
    CAS  Article  Google Scholar 

    46.
    Vogel, N. et al. Calcareous green alga Halimeda tolerates ocean acidification conditions at tropical carbon dioxide seeps: Halimeda growing at CO 2 seeps. Limnol. Oceanogr. 60, 263–275 (2015).
    ADS  CAS  Article  Google Scholar 

    47.
    Campbell, J. E., Fisch, J., Langdon, C. & Paul, V. J. Increased temperature mitigates the effects of ocean acidification in calcified green algae (Halimeda spp). Coral Reefs 35, 357–368 (2016).
    ADS  Article  Google Scholar 

    48.
    Peach, K., Koch, M. & Blackwelder, P. Effects of elevated pCO2 and irradiance on growth, photosynthesis and calcification in Halimeda discoidea. Mar. Ecol. Prog. Ser. 544, 143–158 (2016).
    ADS  CAS  Article  Google Scholar 

    49.
    Prathep, A., Kaewsrikhaw, R., Mayakun, J. & Darakrai, A. The effects of light intensity and temperature on the calcification rate of Halimeda macroloba. J. Appl. Phycol. 30, 3405–3412 (2018).
    CAS  Article  Google Scholar 

    50.
    Teichberg, M., Fricke, A. & Bischof, K. Increased physiological performance of the calcifying green macroalga Halimeda opuntia in response to experimental nutrient enrichment on a Caribbean coral reef. Aquat. Bot. 104, 25–33 (2013).
    CAS  Article  Google Scholar 

    51.
    Duarte, C. M. et al. Stable Isotope (δ13C, δ15N, δ18O, δD) Composition and Nutrient Concentration of Red Sea Primary Producers. Front. Mar. Sci. 5, 298 (2018).
    Article  Google Scholar 

    52.
    Leichter, J. J., Deane, G. B. & Stokes, M. D. Spatial and temporal variability of internal wave forcing on a coral reef. J. Phys. Oceanogr. 35, 1945–1962 (2005).
    ADS  Article  Google Scholar 

    53.
    Leichter, J. J., Stewart, H. L. & Miller, S. L. Episodic nutrient transport to Florida coral reefs. Limnol. Oceanogr. 48, 1394–1407 (2003).
    ADS  Article  Google Scholar 

    54.
    Leichter, J. J. et al. Nitrogen and oxygen isotopic signatures of subsurface nitrate seaward of the Florida Keys reef tract. Limnol. Oceanogr. 52, 1258–1267 (2007).
    ADS  CAS  Article  Google Scholar 

    55.
    Leichter, J. J., Stokes, M. D., Vilchis, L. I. & Fiechter, J. Regional synchrony of temperature variation and internal wave forcing along the Florida Keys reef tract. J. Geophys. Res. Oceans 119, 548–558 (2014).
    ADS  Article  Google Scholar 

    56.
    Davis, K. A., Leichter, J. J., Hench, J. L. & Monismith, S. G. Effects of western boundary current dynamics on the internal wave field of the Southeast Florida shelf. J. Geophys. Res. 113, C09010 (2008).
    ADS  Google Scholar 

    57.
    Leichter, J. J., Wing, S. R., Miller, S. L. & Denny, M. W. Pulsed delivery of subthermocline water to Conch Reef (Florida Keys) by internal tidal bores. Limnol. Oceanogr. 41, 1490–1501 (1996).
    ADS  CAS  Article  Google Scholar 

    58.
    Lee, T. N. et al. Influence of Florida current, gyres and wind-driven circulation on transport of larvae and recruitment in the Florida Keys coral reefs. Cont. Shelf Res. 12, 971–1002 (1992).
    ADS  Article  Google Scholar 

    59.
    Lee, T. N., Schott, F. A. & Zantopp, R. Florida current: Low-frequency variability as observed with moored current meters during April 1982 to June 1983. Science 227, 298–302 (1985).
    ADS  CAS  PubMed  Article  Google Scholar 

    60.
    Lee, T. N. & Mayer, D. A. Low-frequency current variability and spin-off eddies along the shelf off southeast Florida. J. Mar. Res. 35, 193–220 (1987).
    Google Scholar 

    61.
    Boyer, J. N. & Jones, R. D. A view from the bridge: external and internal forces affecting the ambient water quality of the Florida Keys National Marine Sanctuary (FKNMS). In The Everglades, Florida Bay, and Coral Reefs of the Florida Keys: An Ecosystem Sourcebook (eds Porter, J. W. & Porter, K. G.) 609–628 (CRC Press, Boca Raton, 2002).
    Google Scholar 

    62.
    Kruczynski, W. L. & McManus, F. Water quality concerns in the Florida Keys: Sources effects, and solutions. In The Everglades, Florida Bay, and Coral Reefs of the Florida Keys: An Ecosystem Sourcebook (eds Porter, J. W. & Porter, K. G.) 827–881 (CRC Press, Boca Raton, 2002).
    Google Scholar 

    63.
    Schmidt, G.A. Global seawater oxygen-18 database. NASA GISShttp://data.giss.nasa.gov/o18data/ (1999).

    64.
    Grossman, E. L. & Ku, T. L. Aragonite-water isotopic paleotemperature scale based on the benthic foraminifer Hoeglundina elegans. Geol. Soc. Am. Abstr. Prog. 13, 464 (1981).
    Google Scholar 

    65.
    Rose, K. A., Roth, B. M. & Smith, E. P. Skill assessment of spatial maps for oceanographic modeling. J. Mar. Syst. 76, 34–48 (2009).
    Article  Google Scholar 

    66.
    Juillet-Leclerc, A. & Schmidt, G. A calibration of the oxygen isotope paleothermometer of coral aragonite from porites. Geophys. Res. Lett. 28, 4135–4138 (2001).
    ADS  CAS  Article  Google Scholar 

    67.
    Böhm, F. et al. Oxygen isotope fractionation in marine aragonite of coralline sponges. Geochim. Cosmochim. Acta 64, 1695–1703 (2000).
    ADS  Article  Google Scholar 

    68.
    Brown, B. E. Coral bleaching: causes and consequences. Coral Reefs 16, S129–S138 (1997).
    Article  Google Scholar 

    69.
    Knowlton, N. & Jackson, J. B. C. The ecology of coral reefs. In Marine Community Ecology (eds Bertness, M. D. et al.) 395–422 (Sinauer Associates Inc., Sunderland, 2001).
    Google Scholar 

    70.
    Wolanski, E. & Pickard, G. Upwelling by internal tides and kelvin waves at the continental shelf break on the Great Barrier Reef. Mar. Freshw. Res. 34, 65 (1983).
    Article  Google Scholar 

    71.
    Wolanski, E. & Hamner, W. M. Topographically controlled fronts in the ocean and their biological influence. Science 241, 177–181 (1988).
    ADS  CAS  PubMed  Article  Google Scholar 

    72.
    Wolanski, E. & Delesalle, B. Upwelling by internal waves, Tahiti, French Polynesia. Cont. Shelf Res. 15, 357–368 (1995).
    ADS  Article  Google Scholar 

    73.
    Wolanski, E. & Deleersnijder, E. Island-generated internal waves at Scott Reef Western Australia. Continent. Shelf Res. 18, 1649–1666 (1998).
    ADS  Article  Google Scholar 

    74.
    Sandstrom, H. & Elliott, J. A. Internal tide and solitons on the Scotian Shelf: A nutrient pump at work. J. Geophys. Res. 89, 6415 (1984).
    ADS  Article  Google Scholar 

    75.
    Holloway, P. E. Internal hydraulic jumps and solitons at a shelf break region on the Australian North West Shelf. J. Geophys. Res. 92, 5405 (1987).
    ADS  Article  Google Scholar 

    76.
    Pineda, J. Predictable upwelling and the shoreward transport of planktonic larvae by internal tidal bores. Science 253, 548–549 (1991).
    ADS  CAS  PubMed  Article  Google Scholar 

    77.
    MacKinnon, J. A. & Gregg, M. C. Mixing on the late-summer New England shelf—Solibores, shear, and stratification. J. Phys. Oceanogr. 33, 1476–1492 (2003).
    ADS  Article  Google Scholar 

    78.
    Smith, J. E., Smith, C. M., Vroom, P. S., Beach, K. L. & Miller, S. Nutrient and growth dynamics of Halimeda tuna on Conch Reef, Florida Keys: Possible influence of internal tides on nutrient status and physiology. Limnol. Oceanogr. 49, 1923–1936 (2004).
    ADS  Article  Google Scholar 

    79.
    Bemis, B. E., Spero, H. J., Bijma, J. & Lea, D. W. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations. Paleoceanography 13, 150–160 (1998).
    ADS  Article  Google Scholar 

    80.
    Bemis, B. E., Spero, H. J. & Thunell, R. C. Using species-specific paleotemperature equations with foraminifera: A case study in the Southern California Bight. Mar. Micropaleontol. 46, 405–430 (2002).
    ADS  Article  Google Scholar 

    81.
    Wellington, G. M., Dunbar, R. B. & Merlen, G. Calibration of stable oxygen isotope signatures in Galápagos corals. Paleoceanography 11, 467–480 (1996).
    ADS  Article  Google Scholar 

    82.
    Lloyd, R. M. Variations in the oxygen and carbon isotope ratios of florida bay mollusks and their environmental significance. J. Geol. 72, 84–111 (1964).
    ADS  CAS  Article  Google Scholar 

    83.
    Swart, P. K. et al. The stable oxygen and carbon isotopic record from a coral growing in Florida Bay: A 160 year record of climatic and anthropogenic influence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 123, 219–237 (1996).
    Article  Google Scholar 

    84.
    Corbett, D. R., Dillon, K., Burnett, W. & Chanton, J. Estimating the groundwater contribution into Florida Bay via natural tracers, 222 Rn and CH 4. Limnol. Oceanogr 45, 1546–1557 (2000).
    ADS  CAS  Article  Google Scholar 

    85.
    Dillon, K. et al. Groundwater flow and phosphate dynamics surrounding a high discharge wastewater disposal well in the Florida Keys. J. Hydrol. 284, 193–210 (2003).
    ADS  CAS  Article  Google Scholar 

    86.
    Paytan, A. et al. Submarine groundwater discharge: An important source of new inorganic nitrogen to coral reef ecosystems. Limnol. Oceanogr. 51, 343–348 (2006).
    ADS  CAS  Article  Google Scholar 

    87.
    Gonzalez, L. A. & Lohmann, K. C. Carbon and oxygen isotopic composition of Holocene reefal carbonates. Geology 13, 811–841 (1985).
    ADS  CAS  Article  Google Scholar 

    88.
    Shinn, E. Spur and groove formation on the Florida reef tract. J. Sediment. Res. 33, 291–303 (1963).
    Google Scholar 

    89.
    Multer, H. G., Gischler, E., Lundberg, J., Simmons, K. R. & Shinn, E. A. Key Largo limestone revisited: Pleistocene shelf-edge facies, Florida Keys, USA. Facies 46, 229–271 (2002).
    Article  Google Scholar 

    90.
    Lidz, B. H., Reich, C. D., Peterson, R. L. & Shinn, E. A. New maps, new information: Coral reefs of the Florida keys. J. Coastal Res. 222, 260–282 (2006).
    Article  Google Scholar 

    91.
    Deane, G. B. & Stokes, M. D. A robust single-cable sensor array for oceanographic use. IEEE J. Oceanic Eng. 27, 760–767 (2002).
    ADS  Article  Google Scholar 

    92.
    Stokes, M. D., Leichter, J. J., Wing, S. & Frew, R. Temperature variability and algal isotopic heterogeneity on a Floridian coral reef. Mar. Ecol. 32, 364–379 (2011).
    ADS  CAS  Article  Google Scholar 

    93.
    Epstein, S. & Mayeda, T. Variation of O18 content of waters from natural sources. Geochim. Cosmochim. Acta 4, 213–224 (1953).
    ADS  CAS  Article  Google Scholar 

    94.
    Monserud, R. A. & Leemans, R. Comparing global vegetation maps with the Kappa statistic. Ecol. Model. 62, 275–293 (1992).
    Article  Google Scholar 

    95.
    Pontius, R. Quantification error versus location error in comparison of categorical maps. Photogr. Eng. Remote Sens. 66, 1011–1016 (2000).
    Google Scholar 

    96.
    Hagen, A. Fuzzy set approach to assessing similarity of categorical maps. Int. J. Geogr. Inf. Sci. 17, 235–249 (2003).
    Article  Google Scholar 

    97.
    Hagen-Zanker, A., Straatman, B. & Uljee, I. Further developments of a fuzzy set map comparison approach. Int. J. Geogr. Inf. Sci. 19, 769–785 (2005).
    Article  Google Scholar 

    98.
    Hagen-Zanker, A. Map comparison methods that simultaneously address overlap and structure. J. Geograph. Syst. 8, 165–185 (2006).
    ADS  Article  Google Scholar 

    99.
    Visser, H. & de Nijs, T. The map comparison kit. Environ. Modell. Softw. 21, 346–358 (2006).
    Article  Google Scholar 

    100.
    Legendre, P. & Fortin, M. J. Spatial pattern and ecological analysis. Vegetatio 80, 107–138 (1989).
    Article  Google Scholar 

    101.
    Fernandez, M. et al. Locality uncertainty and the differential performance of four common niche-based modelling techniques. Biodiv. Inf. 6, 2 (2009).
    Article  Google Scholar 

    102.
    MATLAB. version 9.4.0 (R2018a). Natick, Massachusetts: The MathWorks Inc. (2018).

    103.
    Fernandez, M. et al. Locality uncertainty and the differential performance of four common niche-based modeling techniques. Biodiv. Inf. 6, 2 (2009).
    Article  Google Scholar  More

  • in

    Regulating soil bacterial diversity, community structure and enzyme activity using residues from golden apple snails

    1.
    Duchene, O., Vian, J.-F. & Celette, F. Intercropping with legume for agroecological cropping systems: complementarity and facilitation processes and the importance of soil microorganisms. A review. Agric. Ecosyst. Environ. 240, 148–161. https://doi.org/10.1016/j.agee.2017.02.019 (2017).
    Article  Google Scholar 
    2.
    Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671. https://doi.org/10.1038/nature01014 (2002).
    ADS  CAS  Article  Google Scholar 

    3.
    Duchene, O. et al. Integrating multipurpose perennial grains crops in Western European farming systems. Agric. Ecosyst. Environ. 284, 106591. https://doi.org/10.1016/j.agee.2019.106591 (2019).
    Article  Google Scholar 

    4.
    Karamesouti, M. et al. Land-use and land degradation processes affecting soil resources: evidence from a traditional Mediterranean cropland (Greece). CATENA 132, 45–55. https://doi.org/10.1016/j.catena.2015.04.010 (2015).
    Article  Google Scholar 

    5.
    Guo, J. H. et al. Significant acidification in major Chinese croplands. Science 327, 1008–1010. https://doi.org/10.1126/science.1182570 (2010).
    ADS  CAS  Article  Google Scholar 

    6.
    Brinkmann, N. et al. Intensive tropical land use massively shifts soil fungal communities. Sci. Rep. 9, 3403. https://doi.org/10.1038/s41598-019-39829-4 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    7.
    Muhammed, S. E. et al. Impact of two centuries of intensive agriculture on soil carbon, nitrogen and phosphorus cycling in the UK. Sci. Total Environ. 634, 1486–1504. https://doi.org/10.1016/j.scitotenv.2018.03.378 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    8.
    Galloway, J. N. et al. Transformation of the nitrogen cycling: recent trends, questions, and potential solutions. Science 320, 889–892. https://doi.org/10.1126/science.1136674 (2008).
    ADS  CAS  Article  Google Scholar 

    9.
    Zhao, Y. et al. Soil acidification in China: is controlling SO2 emissions enough? Environ. Sci. Technol. 43, 8021–8026. https://doi.org/10.1021/es901430n (2009).
    ADS  CAS  Article  Google Scholar 

    10.
    Alonso, F. P., Arias, J. S., Fernández, R. O., Fernández, P. G. & Serrano, R. E. Agronomic implications of the supply of lime and gypsum by-products to palexerults from western Spain. Soil Sci. 171, 65–81. https://doi.org/10.1097/01.ss.0000200557.253069.50 (2006).
    ADS  CAS  Article  Google Scholar 

    11.
    Chiu, Y.-W. et al. Alterations of biochemical indicators in hepatopancreas of the golden apple snail, Pomacea canaliculata, from paddy fields in Taiwan. J. Environ. Biol. 35, 667–673 (2014).
    PubMed  PubMed Central  Google Scholar 

    12.
    Dong, S., Zheng, G., Yu, X. & Fu, C. Biological control of golden apple snail, Pomacea canaliculata by Chinese soft-shelled turtle, Pelodiscus sinensis in the wild rice, Zizania latifolia field. Sci. Agric. 69, 142–146. https://doi.org/10.1590/S0103-90162012000200009 (2012).
    Article  Google Scholar 

    13.
    Guo, J., Zhang, J.-E., Zhao, B., Luo, M. & Zhang, C. The role of spotted green pufferfish Tetraodon nigroviridis in controlling golden apple snail Pomacea canaliculata: an effective biological control approach involving a new agent. Biocontrol Sci. Technol. 26, 1100–1112. https://doi.org/10.1080/09583157.2016.1185511 (2016).
    Article  Google Scholar 

    14.
    Olivier, H. M., Jenkins, J. A., Berhow, M. & Carter, J. A pilot study testing a natural and a synthetic molluscicide for controlling invasive apple snails (Pomacea maculata). Bull. Environ. Contam. Toxicol. 96, 289–294. https://doi.org/10.1007/s00128-015-1709-z (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    15.
    Litsinger, J. & Estano, D. B. Management of the golden apple snail Pomacea canaliculata (Lamarck) in rice. Crop Prot. 12, 363–370. https://doi.org/10.1016/0261-2194(93)90079-X (1993).
    Article  Google Scholar 

    16.
    Teo, S. S. Evaluation of different duck varieties for the control of the golden apple snail (Pomacea canaliculata) in transplanted and direct seeded rice. Crop Prot. 20, 599–604. https://doi.org/10.1016/S0261-2194(01)00029-1 (2001).
    Article  Google Scholar 

    17.
    Halwart, M. The golden apple snail Pomacea canaliculata in Asian rice farming systems: present impact and future threat. Int. J. Pest Manag. 40, 199–206. https://doi.org/10.1080/09670879409371882 (1994).
    Article  Google Scholar 

    18.
    Serra, A. The use of golden snail Pomacea Sp. as animal feed in the Philippines. Tropicultura 15, 40–43 (1997).
    Google Scholar 

    19.
    Wang, J. et al. Using golden apple snail to mitigate its invasion and improve soil quality: a biocontrol approach. Environ. Sci. Pollut. Res. 27, 14903–14914. https://doi.org/10.1007/s11356-020-07998-9 (2020).
    CAS  Article  Google Scholar 

    20.
    Haynes, R. J. & Zhou, Y.-F. Effect of pH and added slag on the extractability of Si in two Si-deficient sugarcane soils. Chemosphere 193, 431–437. https://doi.org/10.1016/j.chemosphere.2017.10.175 (2018).
    ADS  CAS  Article  PubMed  Google Scholar 

    21.
    Rousk, J. et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4, 1340–1351. https://doi.org/10.1038/ismej.2010.58 (2010).
    Article  PubMed  Google Scholar 

    22.
    Lauber, C. L., Strickland, M. S., Bradford, M. A. & Fierer, N. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol. Biochem. 40, 2407–2415. https://doi.org/10.1016/j.soilbio.2008.05.021 (2008).
    CAS  Article  Google Scholar 

    23.
    Ramirez, K. S., Craine, J. M. & Fierer, N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob. Change Biol. 18, 1918–1927. https://doi.org/10.1111/j.1365-2486.2012.02639.x (2012).
    ADS  Article  Google Scholar 

    24.
    Campbell, B. J., Polson, S. W., Hanson, T. E., Mack, M. C. & Schuur, E. A. The effect of nutrient deposition on bacterial communities in Arctic tundra soil. Environ. Microbiol. 12, 1842–1854. https://doi.org/10.1111/j.1462-2920.2010.02189.x (2010).
    CAS  Article  PubMed  Google Scholar 

    25.
    Yu, H. et al. Responses of soil biological traits and bacterial communities to nitrogen fertilization mediate maize yields across three soil types. Soil Till. Res. 185, 61–69. https://doi.org/10.1016/j.still.2018.08.017 (2019).
    Article  Google Scholar 

    26.
    Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. 103, 626–631. https://doi.org/10.1073/pnas.0507535103 (2006).
    ADS  CAS  Article  PubMed  Google Scholar 

    27.
    Roesch, L. F. W. et al. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 1, 283–290. https://doi.org/10.1038/ismej.2007.53 (2007).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    28.
    Waring, B. G., Weintraub, S. R. & Sinsabaugh, R. L. Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils. Biogeochemistry 117, 101–113. https://doi.org/10.1007/s10533-013-9849-x (2014).
    CAS  Article  Google Scholar 

    29.
    Baldrian, P. Microbial enzyme-catalyzed processes in soils and their analysis. Plant Soil Environ. 55, 370–378 (2009).
    CAS  Article  Google Scholar 

    30.
    Jian, S. et al. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: a meta-analysis. Soil Biol. Biochem. 101, 32–43 (2016).
    CAS  Article  Google Scholar 

    31.
    Frankenberger, W. & Bingham, F. Influence of salinity on soil enzyme activities 1. Soil Sci. Soc. Am. J. 46, 1173–1177. https://doi.org/10.2136/sssaj1982.03615995004600060011x (1982).
    ADS  CAS  Article  Google Scholar 

    32.
    Wang, Y. et al. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicol. Environ. Saf. 67, 75–81. https://doi.org/10.1016/j.ecoenv.2006.03.007 (2007).
    CAS  Article  Google Scholar 

    33.
    Camenzind, T., Hättenschwiler, S., Treseder, K. K., Lehmann, A. & Rillig, M. C. Nutrient limitation of soil microbial processes in tropical forests. Ecol. Monogr. 88, 4–21. https://doi.org/10.1002/ecm.1279 (2018).
    Article  Google Scholar 

    34.
    Alvarez, G. et al. Catalytic power of enzymes decreases with temperature: New insights for understanding soil C cycling and microbial ecology under warming. Glob. Change Biol. 24, 4238–4250. https://doi.org/10.1111/gcb.14281 (2018).
    ADS  Article  Google Scholar 

    35.
    Semer, R. & Reddy, K. R. Evaluation of soil washing process to remove mixed contaminants from a sandy loam. J. Hazard. Mater. 45, 45–57. https://doi.org/10.1016/0304-3894(96)82887-1 (1996).
    CAS  Article  Google Scholar 

    36.
    He, Z., Baligar, V., Ritchey, K., Martens, D. & Kemper, W. Factors affecting phosphate rock dissolution in acid soil amended with liming materials and cellulose. Soil Sci. Soc. Am. J. 60, 1596–1601. https://doi.org/10.2136/sssaj1996.03615995006000050045x (1996).
    ADS  CAS  Article  Google Scholar 

    37.
    Moreno, J., Hernández, T. & Garcia, C. Effects of a cadmium-contaminated sewage sludge compost on dynamics of organic matter and microbial activity in an arid soil. Biol. Fertil. Soils 28, 230–237. https://doi.org/10.1007/s003740050487 (1999).
    CAS  Article  Google Scholar 

    38.
    Lauber, C. L., Zhou, N., Gordon, J. I., Knight, R. & Fierer, N. Effect of storage conditions on the assessment of bacterial community structure in soil and human-associated samples. FEMS Microbiol. Lett. 307, 80–86. https://doi.org/10.1111/j.1574-6968.2010.01965.x (2010).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    39.
    Dong, L. et al. Enhanced nitrate-nitrogen removal by modified attapulgite-supported nanoscale zero-valent iron treating simulated groundwater. J. Environ. Manag. 213, 151–158. https://doi.org/10.1016/j.jenvman.2018.02.073 (2018).
    CAS  Article  Google Scholar 

    40.
    Bray, R. H. & Kurtz, L. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59, 39–46 (1945).
    ADS  CAS  Article  Google Scholar 

    41.
    Au-Bell, C. W. et al. High-throughput fluorometric measurement of potential soil extracellular enzyme activities. J. Vis. Exp. 81, e50961. https://doi.org/10.3791/50961 (2013).
    CAS  Article  Google Scholar 

    42.
    Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996. https://doi.org/10.1038/nmeth.2604 (2013).
    CAS  Article  Google Scholar 

    43.
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200. https://doi.org/10.1093/bioinformatics/btr381 (2011).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    44.
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. https://doi.org/10.1093/nar/gks1219 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    45.
    Meenatchi, R. et al. Revealing the impact of global mass bleaching on coral microbiome through 16S rRNA gene-based metagenomic analysis. Microbiol. Res. 233, 126408. https://doi.org/10.1016/j.micres.2019.126408 (2020).
    CAS  Article  Google Scholar 

    46.
    Gotelli, N. J. & Colwell, R. K. Estimating species richness. Biol. Divers. Front. Meas. Assess. 12, 39–54 (2011).
    Google Scholar 

    47.
    Keenan, S. W., Schaeffer, S. M., Jin, V. L. & DeBruyn, J. M. Mortality hotspots: nitrogen cycling in forest soils during vertebrate decomposition. Soil Biol. Biochem. 121, 165–176. https://doi.org/10.1016/j.soilbio.2018.03.005 (2018).
    CAS  Article  Google Scholar 

    48.
    Birla, A., Singh, B., Upadhyay, S. & Sharma, Y. Kinetics studies of synthesis of biodiesel from waste frying oil using a heterogeneous catalyst derived from snail shell. Biores. Technol. 106, 95–100. https://doi.org/10.1016/j.biortech.2011.11.065 (2012).
    CAS  Article  Google Scholar 

    49.
    Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120. https://doi.org/10.1128/AEM.00335-09 (2009).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    50.
    Nicol, G. W., Leininger, S., Schleper, C. & Prosser, J. I. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ. Microbiol. 10, 2966–2978. https://doi.org/10.1111/j.1462-2920.2008.01701.x (2008).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    51.
    Delgado-Baquerizo, M. et al. A global atlas of the dominant bacteria found in soil. Science 359, 320–325. https://doi.org/10.1126/science.aap9516 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    52.
    Li, Q. et al. Biochar amendment decreases soil microbial biomass and increases bacterial diversity in Moso bamboo (Phyllostachys edulis) plantations under simulated nitrogen deposition. Environ. Res. Lett. 13, 1–10. https://doi.org/10.1088/1748-9326/aab53a (2018).
    CAS  Article  Google Scholar 

    53.
    Xiong, J. et al. Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environ. Microbiol. 14, 2457–2466. https://doi.org/10.1111/j.1462-2920.2012.02799.x (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    54.
    Leff, J. W. et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl. Acad. Sci. 112, 10967–10972. https://doi.org/10.1073/pnas.1508382112 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    55.
    Gomez, E., Ferreras, L. & Toresani, S. Soil bacterial functional diversity as influenced by organic amendment application. Biores. Technol. 97, 1484–1489. https://doi.org/10.1016/j.biortech.2005.06.021 (2006).
    CAS  Article  Google Scholar 

    56.
    Freitag, T. E., Chang, L., Clegg, C. D. & Prosser, J. I. Influence of inorganic nitrogen management regime on the diversity of nitrite-oxidizing bacteria in agricultural grassland soils. Appl. Environ. Microbiol. 71, 8323–8334. https://doi.org/10.1128/AEM.71.12.8323-8334.2005 (2005).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    57.
    Zhang, Y. et al. Fertilization shapes bacterial community structure by alteration of soil pH. Front. Microbiol. 8, 1325. https://doi.org/10.3389/fmicb.2017.01325 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    58.
    Nemergut, D. R. et al. The effects of chronic nitrogen fertilization on alpine tundra soil microbial communities: implications for carbon and nitrogen cycling. Environ. Microbiol. 10, 3093–3105. https://doi.org/10.1111/j.1462-2920.2008.01735.x (2008).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    59.
    Zhang, H. et al. Gemmatimonas aurantiaca gen. nov., sp. nov., a Gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. Int. J. Syst. Evol. Microbiol. 53, 1155–1163. https://doi.org/10.1099/ijs.0.02520-0 (2003).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    60.
    Sheng, Y. & Zhu, L. Biochar alters microbial community and carbon sequestration potential across different soil pH. Sci. Total Environ. 622, 1391–1399. https://doi.org/10.1016/j.scitotenv.2017.11.337 (2018).
    ADS  CAS  Article  PubMed  Google Scholar 

    61.
    Cobo-Díaz, J. F. et al. Metagenomic assessment of the potential microbial nitrogen pathways in the rhizosphere of a Mediterranean forest after a wildfire. Microb. Ecol. 69, 895–904. https://doi.org/10.1007/s00248-015-0586-7 (2015).
    Article  PubMed  Google Scholar 

    62.
    Wang, C., Liu, D. & Bai, E. Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biol. Biochem. 120, 126–133. https://doi.org/10.1016/j.soilbio.2018.02.003 (2018).
    CAS  Article  Google Scholar 

    63.
    Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364. https://doi.org/10.1890/05-1839 (2007).
    Article  PubMed  Google Scholar 

    64.
    Jones, R. T. et al. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J. 3, 442–453. https://doi.org/10.1038/ismej.2008.127 (2009).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    65.
    Baker, B. J. et al. Community transcriptomic assembly reveals microbes that contribute to deep-sea carbon and nitrogen cycling. ISME J. 7, 1962–1973. https://doi.org/10.1038/ismej.2013.85 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    66.
    Xu, N., Tan, G., Wang, H. & Gai, X. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur. J. Soil Biol. 74, 1–8. https://doi.org/10.1016/j.ejsobi.2016.02.004 (2016).
    CAS  Article  Google Scholar 

    67.
    Prasanna, S. N. R. Soil pH and its role in cyanobacterial abundance and diversity in rice field soils. Appl. Ecol. Environ. Res. 5, 103–113. https://doi.org/10.15666/aeer/0502_103113 (2007).
    Article  Google Scholar 

    68.
    Shen, C. et al. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol. Biochem. 57, 204–211. https://doi.org/10.1016/j.soilbio.2012.07.013 (2013).
    CAS  Article  Google Scholar 

    69.
    Waldrop, M., Balser, T. & Firestone, M. Linking microbial community composition to function in a tropical soil. Soil Biol. Biochem. 32, 1837–1846. https://doi.org/10.1016/S0038-0717(00)00157-7 (2000).
    CAS  Article  Google Scholar 

    70.
    Bombeo-Tuburan, I., Fukumoto, S. & Rodriguez, E. Use of the golden apple snail, cassava, and maize as feeds for the tiger shrimp, Penaeus monodon, in ponds. Aquaculture 131, 91–100 (1995).
    Article  Google Scholar 

    71.
    DeForest, J. L., Zak, D. R., Pregitzer, K. S. & Burton, A. J. Atmospheric nitrate deposition, microbial community composition, and enzyme activity in northern hardwood forests. Soil Sci. Soc. Am. J. 68, 132–138. https://doi.org/10.2136/sssaj2004.1320 (2004).
    ADS  CAS  Article  Google Scholar 

    72.
    Keeler, B. L., Hobbie, S. E. & Kellogg, L. E. Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites: implications for litter and soil organic matter decomposition. Ecosystems 12, 1–15. https://doi.org/10.1007/s10021-008-9199-z (2009).
    CAS  Article  Google Scholar 

    73.
    Carreiro, M., Sinsabaugh, R., Repert, D. & Parkhurst, D. Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81, 2359–2365. https://doi.org/10.1890/0012-9658(2000)081[2359:MESELD]2.0.CO;2 (2000).
    Article  Google Scholar 

    74.
    Demisie, W. & Zhang, M. Effect of biochar application on microbial biomass and enzymatic activities in degraded red soil. Afr. J. Agric. Res. 10, 755–766. https://doi.org/10.5897/AJAR2013.8209 (2015).
    CAS  Article  Google Scholar 

    75.
    Zheng, M., Huang, J., Chen, H., Wang, H. & Mo, J. Responses of soil acid phosphatase and beta-glucosidase to nitrogen and phosphorus addition in two subtropical forests in southern China. Eur. J. Soil Biol. 68, 77–84. https://doi.org/10.1016/j.ejsobi.2015.03.010 (2015).
    CAS  Article  Google Scholar  More