More stories

  • in

    The MARAS dataset, vegetation and soil characteristics of dryland rangelands across Patagonia

    1.
    MEA, M. E. A. Millennium ecosystem assessment. Ecosystems and Human Well-Being: Biodiversity Synthesis, Published by World Resources Institute, Washington, DC (2005).
    2.
    Cherlet, M. et al. World Atlas of Desertification: Rethinking Land Degradation and Sustainable Land Management. (Publications Office of the European Union, 2018).

    3.
    Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nature Climate Change 6, 166 (2016).
    ADS  Article  Google Scholar 

    4.
    Gaitán, J. J. et al. Biotic and abiotic drivers of topsoil organic carbon concentration in drylands have similar effects at regional and global scales. Ecosystems 22, 1445–1456 (2019).
    Article  Google Scholar 

    5.
    Middleton, N., Stringer, L., Goudie, A. & Thomas, D. The forgotten billion: MDG achievement in the drylands. (UNCCD Secretariat, 2011).

    6.
    Reynolds, J. F. et al. Global Desertification: Building a. Science for Dryland Development. Science 316, 847–851 (2007).
    CAS  PubMed  Google Scholar 

    7.
    Bestelmeyer, B. T. et al. Land management in the American Southwest: A State-and-Transition approach to Ecosystem Complexity. Environmental Management 34, 38–51 (2004).
    Article  Google Scholar 

    8.
    Maestre, F. T. et al. Structure and functioning of dryland ecosystems in a changing world. Annual review of ecology, evolution, and systematics 47, 215–237 (2016).
    Article  Google Scholar 

    9.
    Maestre, F., Salguero-Gómez, R. & Quero, J. It’s getting hotter in here: determining and projecting the impacts of global change on dryland ecosystems and on the people living in them. Philosophical Transactions of the Royal Society B: Biological Sciences 367, 3062–3075 (2012).
    Article  Google Scholar 

    10.
    Tongway, D. & Hindley, N. L. Landscape Function Analysis: Procedures for monitoring and assessing landscapes. With special reference to Minesites and Rangelands. Vol. 1 (CSIRO, 2004).

    11.
    Sankey, T. T., Leonard, J. M. & Moore, M. M. Unmanned aerial vehicle− Based rangeland monitoring: examining a century of vegetation changes. Rangeland Ecology & Management 72, 858–863 (2019).
    Article  Google Scholar 

    12.
    Watson, I. W., Novelly, P. E. & Thomas, P. W. E. Monitoring changes in pastoral rangelands – the Western Australian Rangeland Monitoring System (WARMS). The Rangeland Journal 29, 191–205 (2007).
    Article  Google Scholar 

    13.
    White, A. et al. AUSPLOTS rangelands survey protocols manual. (University of Adelaide Press, 2012).

    14.
    Guerin, G. R. et al. Opportunities for integrated ecological analysis across inland Australia with standardised data from Ausplots Rangelands. PloS one 12 (2017).

    15.
    Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).
    ADS  CAS  Article  Google Scholar 

    16.
    Herrick, J. E., Van Zee, J. W., Havstad, K. M., Burkett, L. M. & Whitford, W. G. Monitoring Manual for Grassland, Shrubland and Savanna Ecosystems. Vol. I (USDA-ARS Jornada Experimental Range, 2005).

    17.
    Oliva, G. et al. Monitoring drylands: The MARAS system. Journal of Arid Environments 161, 55–63 (2019).
    ADS  Article  Google Scholar 

    18.
    Oliva, G., Escobar, J., Siffredi, G., Salomone, J. & Buono, G. In Monitoring Patagonian Rangelands: The MARAS System. Monitoring Science and Technology Symposium. Denver CO. (eds C. Aguirre-Bravo, P. Pellicane, D. Burns, & S. Draggan) 188–193 (U.S. Dept. Agriculture, Forest Service, 2006).

    19.
    Oliva, G. et al. Manual para la instalación y lectura de monitores MARAS. Vol. 1 (PNUD, 2011).

    20.
    Bran, D. et al. Regiones Ecológicas Homogéneas de la Patagonia Argentina., (INTA, 2005).

    21.
    Oliva, G. et al. Installation Manual for MARAS Monitors: Environmental monitoring for arid and semiarid lands (PNUD, 2011).

    22.
    Hernández, F., Ríos, C. & Perotto-Baldivieso, H. L. Evolutionary history of herbivory in the Patagonian steppe: The role of climate, ancient megafauna, and guanaco. Quaternary Science Reviews 220, 279–290 (2019).
    ADS  Article  Google Scholar 

    23.
    Borrelli, P. In Ganadería ovina sustentable en la Patagonia Austral Vol. Cap 5 (eds P Borrelli & G Oliva) 131-162 (INTA, 2001).

    24.
    Cornforth, I. S. & Sinclair, A. G. Fertiliser recommendations for pastures and crops in New Zealand. (New Zealand Ministry of Agriculture, 1984).

    25.
    Elissalde, N., Escobar, J. & Nakamatsu, V. Inventario y evaluación de pastizales naturales de la zona arida y semiarida de la Patagonia. (INTA Trelew, 2002).

    26.
    McLaren, C. A. Dry Sheep Equivalents for comparing different classes of livestock. 4 (Department of Primary Industries, State of Victoria, Victoria, 1997).

    27.
    INIA. Revisión y análisis de las bases históricas y científicas del uso de la equivalencia ovino:bovino “Hacia una nueva equivalencia para ser utilizada en Uruguay”. (INIA, 2012).

    28.
    SRM, G. R. S. C. A Glossary of terms used in range management: a definition of terms commonly used in range management. (Society for Range Management, 1989).

    29.
    Oliva, G. et al. The MARAS dataset, vegetation and soil characteristics of dryland rangelands across Patagonia. figshare https://doi.org/10.6084/m9.figshare.c.4789113 (2020).

    30.
    Tongway, D. Rangeland soil condition assessment manual. (CSIRO. Division of Wildlife and Ecology, 1994).

    31.
    Daget, P. & Poissonet, J. Une methode d’analyse phytologique des prairies. Ann Argr. France 22, 5–41 (1971).
    Google Scholar 

    32.
    Halloy, S. & Barratt, B. I. P. Patterns of abundance and morphology as indicators of ecosystem status: A meta-analysis. Ecological Complexity 4, 128–147 (2007).
    Article  Google Scholar 

    33.
    Zuloaga, F., Morrone, O. & Belgrano, M. Catálogo de las Plantas Vasculares del Cono Sur. Versión base de datos en sitio web. (Instituto Darwinion, 2009).

    34.
    Ludwig, J. A., Wilcox, B. P., Breshears, D. D., Tongway, D. J. & Imeson, A. C. Vegetation patches and runoff–erosion as interacting ecohydrological processes in semiarid landscapes. Ecology 86, 288–297 (2005).
    Article  Google Scholar 

    35.
    Walkley, A. & Black, I. A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science 37, 29–38 (1934).
    ADS  CAS  Article  Google Scholar 

    36.
    Schulte, E. & Hoskins, B. Recommended soil organic matter tests. Recommended Soil Testing Procedures for the North Eastern USA. Northeastern Regional Publication, 52-60 (1995).

    37.
    López, C., Rial, P., Elissalde, N., Llanos, E. & Behr, S. Grandes paisajes de la Patagonia Argentina. (INTA, 2005).

    38.
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International journal of climatology 37, 4302–4315 (2017).
    ADS  Article  Google Scholar 

    39.
    Elzinga, C. L., Salzer, D. W. & Willoughby, J. W. Measuring & Monitoring Plant Populations. (BLM National Business Center, 1998).

    40.
    Magurran, A. E. Measuring Biological Diversity. (Blackwell Publishing, 2004).

    41.
    Oliva, G. et al. Estado de los Recursos Naturales de la Patagonia Sur 66 (INTA CRPATSU, Trelew, 2017).

    42.
    Gaitan, J. J. et al. Vegetation structure is as important as climate for explaining ecosystem function across Patagonian rangelands. Journal of Ecology 102, 1419–1428 (2014).
    Article  Google Scholar 

    43.
    Gaitán, J. J. et al. Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppes. Ecological Indicators 34, 181–191 (2013).
    Article  Google Scholar 

    44.
    Gaitán, J. J. et al. Plant species richness and shrub cover attenuate drought effects on ecosystem functioning across Patagonian rangelands. Biology letters 10, 20140673 (2014).
    Article  Google Scholar 

    45.
    Gaitán, J. J. et al. Aridity and Overgrazing Have Convergent Effects on Ecosystem Structure and Functioning in Patagonian Rangelands. Land Degradation & Development 29, 210–218 (2017).
    Article  Google Scholar 

    46.
    Oliva, G., et al.) 1115-1117 (IRC 2016).

    47.
    Domínguez Díaz, E., Oliva, G. E., Báez Madariaga, J., Suárez Navarro, Á. & Pérez Castillo, C. Efectos del pastoreo holístico sobre la estructura y composición vegetal en praderas naturalizadas de uso ganadero, provincia de Última Esperanza, región de Magallanes, Chile. Anales del Instituto de la Patagonia 46, 17–28 (2018).
    Article  Google Scholar 

    48.
    Borrelli, P. et al. Estándar para la regeneración y la sustentabilidad de los pastizales (GRASS). The Nature Conservancy, OVIS 21 (2013).

    49.
    T. exchange. RWS, Responsible Wool Standard. 73 (London, 2016).

    50.
    Cabrera, A. Fitogeografia de la República Argentina. Boletín de la Sociedad Argentina de Botánica 14, 1–42 (1971).
    Google Scholar 

    51.
    León, R., Bran, D., Collantes, M., Paruelo, J. & Soriano, A. Grandes unidades de vegetación de la Patagonia extra andina. Ecologia Austral 8, 125–144 (1998).
    Google Scholar 

    52.
    Luebert, F. & Pliscoff, P. Sinopsis bioclimática y vegetacional de Chile. (Santiago de Chile: Editorial Universitaria, 2006). More

  • in

    Phage gene expression and host responses lead to infection-dependent costs of CRISPR immunity

    1.
    van Belkum A, Soriaga LB, LaFave MC, Akella S, Veyrieras JB, Barbu EM, et al. Phylogenetic distribution of CRISPR-Cas systems in antibiotic-resistant Pseudomonas aeruginosa. MBio. 2015;6:e01796–15.
    2.
    Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJ, et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2019;18:1–17.

    3.
    Portillo MC, Gonzalez JM. CRISPR elements in the Thermococcales: evidence for associated horizontal gene transfer in Pyrococcus furiosus. J Appl Genet. 2009;50:421–30.
    CAS  PubMed  Article  Google Scholar 

    4.
    Watson BN, Staals RH, Fineran, PC. CRISPR-Cas-mediated phage resistance enhances horizontal gene transfer by transduction. MBio. 2018;9:e02406–17.

    5.
    Varble A, Meaden S, Barrangou R, Westra ER, Marraffini LA. Recombination between phages and CRISPR-cas loci facilitates horizontal gene transfer in staphylococci. Nat Microbiol. 2019;4:956–63.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Levin BR. Nasty viruses, costly plasmids, population dynamics, and the conditions for establishing and maintaining CRISPR-mediated adaptive immunity in bacteria. PLoS Genet. 2010;6:e1001171.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    7.
    van Houte S, Buckling A, Westra ER. Evolutionary ecology of prokaryotic immune mechanisms. Microbiol Mol Biol Rev. 2016;80:745–63.
    PubMed  PubMed Central  Article  Google Scholar 

    8.
    Rollie C, Chevallereau A, Watson BN, Chyou TY, Fradet O, McLeod I, et al. Targeting of temperate phages drives loss of type I CRISPR-Cas systems. Nature. 2020;578:149–53.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Westra ER, van Houte S, Oyesiku-Blakemore S, Makin B, Broniewski JM, Best A, et al. Parasite exposure drives selective evolution of constitutive versus inducible defense. Curr Biol. 2015;25:1043–9.
    CAS  PubMed  Article  Google Scholar 

    10.
    Vale PF, Lafforgue G, Gatchitch F, Gardan R, Moineau S, Gandon S. Costs of CRISPR-Cas-mediated resistance in Streptococcus thermophilus. Proc R Soc B: Biol Sci. 2015;282:20151270.
    Article  CAS  Google Scholar 

    11.
    van Houte S, Ekroth AK, Broniewski JM, Chabas H, Ashby B, Bondy-Denomy J, et al. The diversity-generating benefits of a prokaryotic adaptive immune system. Nature. 2016;532:385–8.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    12.
    Stern A, Keren L, Wurtzel O, Amitai G, Sorek R. Self-targeting by CRISPR: gene regulation or autoimmunity? Trends Genet. 2010;26:335–40.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Levy A, Goren MG, Yosef I, Auster O, Manor M, Amitai G, et al. CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature. 2015;520:505–10.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    14.
    Vercoe RB, Chang JT, Dy RL, Taylor C, Gristwood T, Clulow JS, et al. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLoS Genet. 2013;9:e1003454.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Staals RH, Jackson SA, Biswas A, Brouns SJ, Brown CM, Fineran PC. Interference-driven spacer acquisition is dominant over naive and primed adaptation in a native CRISPR–Cas system. Nat Commun. 2016;7:1–13.
    Article  CAS  Google Scholar 

    16.
    Weissman JL, Stoltzfus A, Westra ER, Johnson PL. Avoidance of Self during CRISPR immunization. Trends Microbiol. 2020;28:543–53.

    17.
    Koonin EV. Open questions: CRISPR biology. BMC Biol. 2018;16:1–3.
    Article  CAS  Google Scholar 

    18.
    Patterson AG, Yevstigneyeva MS, Fineran PC. Regulation of CRISPR–Cas adaptive immune systems. Curr Opin Microbiol. 2017;37:1–7.
    CAS  PubMed  Article  Google Scholar 

    19.
    Quax TE, Voet M, Sismeiro O, Dillies MA, Jagla B, Coppee JY, et al. Massive activation of archaeal defense genes during viral infection. J Virol. 2013;87:8419–28.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    20.
    Young JC, Dill BD, Pan C, Hettich RL, Banfield JF, Shah M, et al. Phage-induced expression of CRISPR-associated proteins is revealed by shotgun proteomics in Streptococcus thermophilus. PloS ONE. 2012;7:e38077.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Agari Y, Sakamoto K, Tamakoshi M, Oshima T, Kuramitsu S, Shinkai A. Transcription profile of Thermus thermophilus CRISPR systems after phage infection. J Mol Biol. 2010;395:270–81.
    CAS  PubMed  Article  Google Scholar 

    22.
    Chabas H, van Houte S, Høyland-Kroghsbo NM, Buckling A, Westra ER. Immigration of susceptible hosts triggers the evolution of alternative parasite defence strategies. Proc R Soc B: Biol Sci. 2016;283:20160721.
    Article  Google Scholar 

    23.
    Pawluk A, Staals RH, Taylor C, Watson BN, Saha S, Fineran PC, et al. Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species. Nat Microbiol. 2016;1:1–6.
    Article  CAS  Google Scholar 

    24.
    Bondy-Denomy J, Garcia B, Strum S, Du M, Rollins MF, Hidalgo-Reyes Y, et al. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins. Nature. 2015;526:136–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Stanley SY, Borges AL, Chen KH, Swaney DL, Krogan NJ, Bondy-Denomy J, et al. Anti-CRISPR-associated proteins are crucial repressors of anti-CRISPR transcription. Cell. 2019;178:1452–64.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Cady KC, Bondy-Denomy J, Heussler GE, Davidson AR, O’Toole GA. The CRISPR/Cas adaptive immune system of Pseudomonas aeruginosa mediates resistance to naturally occurring and engineered phages. J Bacteriol. 2012;194:5728–38.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Chevallereau A, Meaden S, Fradet O, Landsberger M, Maestri A, Biswas A, et al. Exploitation of the cooperative behaviors of anti-CRISPR phages. Cell Host Microbe. 2020;27:189–98.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–12.
    Article  Google Scholar 

    29.
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 2014;30:614–20.
    CAS  PubMed  Article  Google Scholar 

    31.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
    CAS  PubMed  Article  Google Scholar 

    32.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Mahé F, Rognes T, Quince C, de Vargas C, Dunthorn M. Swarm v2: highly-scalable and high-resolution amplicon clustering. PeerJ. 2015;3:e1420.
    PubMed  PubMed Central  Article  Google Scholar 

    34.
    Chao A. Nonparametric estimation of the number of classes in a population. Scand J Stat. 1984;11:265–70.

    35.
    Biswas A, Staals RH, Morales SE, Fineran PC, Brown CM. CRISPRDetect: a flexible algorithm to define CRISPR arrays. BMC Genom. 2016;17:1–14.
    Article  CAS  Google Scholar 

    36.
    Biswas A, Gagnon JN, Brouns SJ, Fineran PC, Brown CM. CRISPRTarget: bioinformatic prediction and analysis of crRNA targets. RNA Biol. 2013;10:817–27.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Joshi N. & Fass J. Sickle: A sliding-window, adaptive, quality-based trimming tool for fastQ files (version 1.33) [software]. 2011. https://github.com/najoshi/sickle.

    38.
    Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–60.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    41.
    Galili T. dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics. 2015;31:3718–20.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Richter C, Dy RL, McKenzie RE, Watson BN, Taylor C, Chang JT, et al. Priming in the Type IF CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer. Nucleic Acids Res. 2014;42:8516–26.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Fineran PC, Gerritzen MJ, Suárez-Diez M, Künne T, Boekhorst J, van Hijum SA, et al. Degenerate target sites mediate rapid primed CRISPR adaptation. Proc Natl Acad Sci USA. 2014;111:E1629–38.
    CAS  PubMed  Article  Google Scholar 

    44.
    Xue C, Seetharam AS, Musharova O, Severinov K, Brouns J, Severin SJ, et al. CRISPR interference and priming varies with individual spacer sequences. Nucleic Acids Res. 2015;43:10831–47.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Wortham BW, Oliveira MA, Patel CN. Polyamines in bacteria: pleiotropic effects yet specific mechanisms. In: (eds Perry RD, Fetherston JD). The genus Yersinia. New York, NY: Springer; 2007. p. 106–15.

    46.
    Bru JL, Rawson B, Trinh C, Whiteson K, Høyland-Kroghsbo NM, Siryaporn A. PQS produced by the Pseudomonas aeruginosa stress response repels swarms away from bacteriophage and antibiotics. J Bacteriol. 2019;201:e00383–19.

    47.
    Doron S, Fedida A, Hernández-Prieto MA, Sabehi G, Karunker I, Stazic D, et al. Transcriptome dynamics of a broad host-range cyanophage and its hosts. ISME J. 2016;10:1437–55.
    CAS  PubMed  Article  Google Scholar 

    48.
    Landsberger M, Gandon S, Meaden S, Rollie C, Chevallereau A, Chabas H, et al. Anti-CRISPR phages cooperate to overcome CRISPR-Cas immunity. Cell. 2018;174:908–16.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Wei Y, Terns RM, Terns MP. Cas9 function and host genome sampling in Type II-A CRISPR-Cas adaptation. Genes Dev. 2015;29:356–61.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Fokine A, Rossmann MG. Common evolutionary origin of procapsid proteases, phage tail tubes, and tubes of bacterial type VI secretion systems. Structure. 2016;24:1928–35.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Modell JW, Jiang W, Marraffini LA. CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity. Nature. 2017;544:101–4.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    van Sluijs L, van Houte S, van Der Oost J, Brouns SJ, Buckling A, Westra ER. Addiction systems antagonize bacterial adaptive immunity. FEMS Microbiol Lett. 2019;366:fnz047.
    CAS  PubMed  PubMed Central  Google Scholar 

    53.
    Wagemans J, Blasdel BG, Van den Bossche A, Uytterhoeven B, De Smet J, Paeshuyse J, et al. Functional elucidation of antibacterial phage ORFans targeting Pseudomonas aeruginosa. Cell Microbiol. 2014;16:1822–35.
    CAS  PubMed  Article  Google Scholar 

    54.
    van Houte S, Ros VI, van Oers MM. Walking with insects: molecular mechanisms behind parasitic manipulation of host behaviour. Mol Ecol. 2013;22:3458–75.
    PubMed  Article  Google Scholar 

    55.
    Taylor TB, Buckling A. Bacterial motility confers fitness advantage in the presence of phages. J Evolut Biol. 2013;26:2154–60.
    CAS  Article  Google Scholar 

    56.
    Heussler GE, Cady KC, Koeppen K, Bhuju S, Stanton BA, O’Toole GA. Clustered regularly interspaced short palindromic repeat-dependent, biofilm-specific death of Pseudomonas aeruginosa mediated by increased expression of phage-related genes. MBio. 2015;6:e00129–15.

    57.
    Hernandez CA, Koskella B. Phage resistance evolution in vitro is not reflective of in vivo outcome in a plant‐bacteria‐phage system. Evolution. 2019;73:2461–75.
    CAS  PubMed  Article  Google Scholar 

    58.
    Alseth EO, Pursey E, Luján AM, McLeod I, Rollie C, Westra ER. Bacterial biodiversity drives the evolution of CRISPR-based phage resistance. Nature. 2019;574:549–52.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Westra E, Levin BR. How important is CRISPR-Cas for protecting natural populations of bacteria against infections with badass DNAs? BioRxiv. 2020. https://www.biorxiv.org/content/10.1101/2020.02.05.935965v2. More

  • in

    Phylogeny resolved, metabolism revealed: functional radiation within a widespread and divergent clade of sponge symbionts

    1.
    Bergquist PR. Sponges. London, United Kingdom: Hutchinson and Co. Ltd; 1978.
    2.
    Brain CKB, Prave AR, Hoffmann KH, Fallick AE, Botha A, Herd DA, et al. The first animals: Ca. 760-million-year-old sponge-like fossils from Namibia. S Afr J Sci. 2012;108:1–8.
    Article  Google Scholar 

    3.
    Hooper JNA, van Soest RWM. Systema Porifera: a guide to the classification of sponges. New York: Kluwer Academic/Plenum Publishers; 2002.
    Google Scholar 

    4.
    Webster NS. Sponge disease: a global threat? Environ Microbiol. 2007;9:1363–75.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Bell JJ. The functional roles of marine sponges. Estuar Coast Shelf Sci. 2008;79:341–53.
    Article  Google Scholar 

    6.
    de Goeij JM, van Oevelen D, Vermeij MJA, Middelburg JJ, Osinga R, de Goeij AFPM, et al. Surviving in a Marine Desert: the sponge loop retains resources within coral reefs. Science. 2013;342:108–10.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    7.
    Taylor MW, Radax R, Steger D, Wagner M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev. 2007;71:295–347.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Wehrl M, Steinert M, Hentschel U. Bacterial uptake by the marine sponge Aplysina aerophoba. Microb Ecol. 2007;53:355–65.
    PubMed  Article  PubMed Central  Google Scholar 

    9.
    Thomas T, Rusch D, DeMaere MZ, Yung PY, Lewis M, Halpern A, et al. Functional genomic signatures of sponge bacteria reveal unique and shared features of symbiosis. ISME J. 2010;4:1557–67.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Nguyen MTHD, Liu M, Thomas T. Ankyrin-repeat proteins from sponge symbionts modulate amoebal phagocytosis. Mol Ecol. 2013;23:1635–45.
    PubMed  Article  CAS  Google Scholar 

    11.
    Reynolds D, Thomas T. Evolution and function of eukaryotic-like proteins from sponge symbionts. Mol Ecol. 2016;25:5242–53.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Jahn MT, Arkhipova K, Markert SM, Stigloher C, Lachnit T, Pita L, et al. A phage protein aids bacterial symbionts in eukaryote immune evasion. Cell Host Microbe. 2019;26:542–50.e5.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Degnan SM. The surprisingly complex immune gene repertoire of a simple sponge, exemplified by the NLR genes: a capacity for specificity? Dev Comp Immunol. 2015;48:269–74.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Hentschel U, Usher KM, Taylor MW. Marine sponges as microbial fermenters. FEMS Microbiol Ecol. 2006;55:167–77.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Moitinho-Silva L, Steinert G, Nielsen S, Hardoim CCP, Wu YC, McCormack GP, et al. Predicting the HMA-LMA status in marine sponges by machine learning. Front Microbiol. 2017;8:1–14.
    Article  Google Scholar 

    16.
    Moitinho-Silva L, Nielsen S, Amir A, Gonzalez A, Ackermann GL, Cerrano C, et al. The sponge microbiome project. Gigascience. 2017;6:1–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, et al. Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol. 2002;68:4431–40.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Simister RL, Deines P, Botté ES, Webster NS, Taylor MW. Sponge-specific clusters revisited: a comprehensive phylogeny of sponge-associated microorganisms. Environ Microbiol. 2012;14:517–24.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Taylor MW, Tsai P, Simister RL, Deines P, Botte E, Ericson G, et al. “Sponge-specific” bacteria are widespread (but rare) in diverse marine environments. ISME J. 2013;7:438–43.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Croué J, West NJ, Escande M-L, Intertaglia L, Lebaron P, Suzuki MT. A single betaproteobacterium dominates the microbial community of the crambescidine-containing sponge Crambe crambe. Sci Rep. 2013;3:2583.
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    Fan L, Reynolds D, Liu M, Stark M, Kjelleberg S, Webster NS, et al. Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. PNAS. 2012;109:E1878–87.
    CAS  PubMed  Article  Google Scholar 

    22.
    Simister RL, Taylor MW, Rogers KM, Schupp PJ, Deines P. Temporal molecular and isotopic analysis of active bacterial communities in two New Zealand sponges. FEMS Microbiol Ecol. 2013;85:195–205.
    PubMed  Article  Google Scholar 

    23.
    Gantt SE, López-Legentil S, Erwin PM. Stable microbial communities in the sponge Crambe crambe from inside and outside a polluted Mediterranean harbor. FEMS Microbiol Lett. 2017;364:1–7.
    Article  CAS  Google Scholar 

    24.
    Bin JeongJ, Kim KH, Park JS. Sponge-specific unknown bacterial groups detected in marine sponges collected from Korea through barcoded pyrosequencing. J Microbiol Biotechnol. 2015;25:1–10.
    Article  Google Scholar 

    25.
    Thiel V, Neulinger SC, Staufenberger T, Schmaljohann R, Imhoff JF. Spatial distribution of sponge-associated bacteria in the Mediterranean sponge Tethya aurantium. FEMS Microbiol Ecol. 2006;59:47–63.
    PubMed  Article  CAS  Google Scholar 

    26.
    Fieth RA, Gauthier M-EA, Bayes J, Green KM, Degnan SM. Ontogenetic changes in the bacterial symbiont community of the tropical demosponge Amphimedon queenslandica: metamorphosis is a new beginning. Front Mar Sci. 2016;3:1–20.
    Article  Google Scholar 

    27.
    Batani G. Fluorescence in situ hybridisation for the localisation and culturing of marine bacteria: co-localisation of symbionts in sponges (Unpublished PhD thesis chapter). UNSW Sydney. 2018.

    28.
    Waterworth SC, Jiwaji M, Kalinski JCJ, Parker-Nance S, Dorrington RA. A place to call home: an analysis of the bacterial communities in two Tethya rubra Samaai and Gibbons 2005 populations in algoa bay, South Africa. Mar Drugs. 2017;15:95.
    PubMed Central  Article  CAS  Google Scholar 

    29.
    Wu S, Ou H, Liu T, Wang D, Zhao J. Structure and dynamics of microbiomes associated with the marine sponge Tedania sp. during its life cycle. FEMS Microbiol Ecol. 2018;94:1–9.
    Article  CAS  Google Scholar 

    30.
    Matcher GF, Waterworth SC, Walmsley TA, Matsatsa T, Parker-Nance S, Davies-Coleman MT, et al. Keeping it in the family: coevolution of latrunculid sponges and their dominant bacterial symbionts. Microbiologyopen. 2017;6:1–13.
    Article  CAS  Google Scholar 

    31.
    Jackson SA, Flemer B, McCann A, Kennedy J, Morrissey JP, O’Gara F, et al. Archaea appear to dominate the microbiome of Inflatella pellicula deep sea sponges. PLoS ONE. 2013;8:1–8.
    Google Scholar 

    32.
    Steinert G, Taylor MW, Deines P, Simister RL, de Voogd NJ, Hoggard M, et al. In four shallow and mesophotic tropical reef sponges from Guam the microbial community largely depends on host identity. PeerJ. 2016;4:e1936.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    33.
    Gauthier M-EA, Watson JR, Degnan SM. Draft genomes shed light on the dual bacterial symbiosis that dominates the microbiome of the coral reef sponge Amphimedon queenslandica. Front Mar Sci. 2016;3:1–18.
    Article  Google Scholar 

    34.
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Cold Spring Harb Lab Press. 2014;25:1043–55.
    Google Scholar 

    35.
    Mukherjee S, Stamatis D, Bertsch J, Ovchinnikova G, Verezemska O, Isbandi M, et al. Genomes OnLine database (GOLD) v.6: data updates and feature enhancements. Nucleic Acids Res. 2017;45:D446–56.
    CAS  PubMed  Article  Google Scholar 

    36.
    Huntemann M, Ivanova NN, Mavromatis K, James Tripp H, Paez-Espino D, Palaniappan K, et al. The standard operating procedure of the DOE-JGI microbial genome annotation pipeline (MGAP v.4). Stand Genom Sci. 2015;10:4–9.
    Article  CAS  Google Scholar 

    37.
    Eddy S. Profile hidden Markov models. Bioinformatics. 1998;14:755–63.
    CAS  PubMed  Article  Google Scholar 

    38.
    Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28:1823–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, et al. ARB: a software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.
    Article  CAS  Google Scholar 

    41.
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–5.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2020;36:1925–7.
    Google Scholar 

    44.
    Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol. 2005;187:6258–64.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. Peer J Prepr. 2016;4:e1900v1.
    Google Scholar 

    47.
    Thomas T, Moitinho-Silva L, Lurgi M, Björk JR, Easson C, Astudillo-García C, et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun. 2016;7:11870.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Díez-Vives C, Moitinho-Silva L, Nielsen S, Reynolds D, Thomas T. Expression of eukaryotic-like protein in the microbiome of sponges. Mol Ecol. 2017;26:1432–51.
    Article  CAS  Google Scholar 

    49.
    Öztürk B, De Jaeger L, Smidt H, Sipkema D. Culture-dependent and independent approaches for identifying novel halogenases encoded by Crambe crambe (marine sponge) microbiota. Sci Rep. 2013;3:1–9.
    Article  Google Scholar 

    50.
    Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:1–16.
    Article  Google Scholar 

    51.
    Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    52.
    Li B, Ruotti V, Stewart RM, Thomson JA, Dewey CN. RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics. 2010;26:493–500.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    53.
    Wagner GP, Kin K, Lynch VJ. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 2012;131:281–5.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    54.
    Webster NS, Hill RT. The culturable microbial community of the great barrier reef sponge Rhopaloeides odorabile is dominated by an α-Proteobacterium. Mar Biol. 2001;138:843–51.
    CAS  Article  Google Scholar 

    55.
    Engelberts JP, Robbins SJ, de Goeij JM, Aranda M, Bell SC, Webster NS. Characterization of a sponge microbiome using an integrative genome-centric approach. ISME J. 2020;14:1100–10.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Moitinho-Silva L, Díez-Vives C, Batani G, Esteves AIS, Jahn MT, Thomas T. Integrated metabolism in sponge-microbe symbiosis revealed by genome-centered metatranscriptomics. ISME J. 2017;11:1651–66.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Lobb B, Tremblay BJM, Moreno-Hagelsieb G, Doxey AC. An assessment of genome annotation coverage across the bacterial tree of life. Microb Genom. 2020;6:e000341.
    PubMed Central  Google Scholar 

    58.
    Lopez JV, Ranzer LK, Ledger A, Schoch B, Duckworth A, Mccarthy PJ, et al. Comparison of bacterial diversity within the coral reef sponge, axinella corrugata, the encrusting coral erythropodium caribaeorum. Proc. 11 Int. Coral Reef Symp. 2008;2:1362–6.
    Google Scholar 

    59.
    Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer KH, et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol. 2014;12:635–45.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    60.
    Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J. 2017;11:2399–406.
    PubMed  PubMed Central  Article  Google Scholar 

    61.
    Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-smith M, Doud D, Jarett J, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725–31.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Chuvochina M, Rinke C, Parks DH, Rappé MS, Tyson GW, Yilmaz P, et al. The importance of designating type material for uncultured taxa. Syst Appl Microbiol. 2019;42:15–21.
    PubMed  Article  PubMed Central  Google Scholar 

    63.
    Tripp E. Crowell’s handbook of classical mythology. New York: Thomas Y. Crowell Company; 1970.

    64.
    Athanassakis AN. Hesiod: Theogony, Works and Days, Shield. 2nd ed. Baltimore and London: The John Hopkins University Press; 2005.

    65.
    Webster NS, Negri AP, Munro MMHG, Battershill CN. Diverse microbial communities inhabit Antarctic sponges. Environ Microbiol. 2004;6:288–300.
    PubMed  Article  PubMed Central  Google Scholar 

    66.
    Coelho FJRC, Cleary DFR, Gomes NCM, Pólonia ARM, Huang YM, Liu LL, et al. Sponge prokaryote communities in Taiwanese coral reef and shallow hydrothermal vent ecosystems. Microb Ecol. 2018;75:239–54.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    Sipkema D, de Caralt S, Morillo JA, Al-Soud WAB, Sørensen SJ, Smidt H, et al. Similar sponge-associated bacteria can be acquired via both vertical and horizontal transmission. Environ Microbiol. 2015;17:3807–21.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    68.
    Bjork JR, Diez-Vives C, Astudillo-Garcia C, Archie E, Montoya JM. Vertical transmission of sponge microbiota is inconsistent and unfaithful. Nat Ecol Evol. 2019;3:1172–83.
    PubMed  PubMed Central  Article  Google Scholar 

    69.
    Gonzalez-Zapata FL, Bongaerts P, Ramírez-Portilla C, Adu-Oppong B, Walljasper G, Reyes A, et al. Holobiont diversity in a reef-building coral over its entire depth range in the mesophotic zone. Front Mar Sci. 2018;5:1–13.
    Article  Google Scholar 

    70.
    Yang S, Sun W, Zhang F, Li Z. Phylogenetically diverse denitrifying and ammonia-oxidizing bacteria in corals Alcyonium gracillimum and Tubastraea coccinea. Mar Biotechnol. 2013;15:540–51.
    CAS  PubMed  Article  Google Scholar 

    71.
    Høj L, Levy N, Baillie BK, Clode PL, Strohmaier RC, Siboni N, et al. Crown-of-thorns sea star Acanthaster cf. solaris has tissue—characteristic microbiomes with potential roles in health and reproduction. Appl Environ Microbiol. 2018;84:1–18.
    Article  Google Scholar 

    72.
    Schmitt S, Deines P, Behnam F, Wagner M, Taylor MW. Chloroflexi bacteria are more diverse, abundant, and similar in high than in low microbial abundance sponges. FEMS Microbiol Ecol. 2011;78:497–510.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    73.
    Bergquist PR, Kelly-Borges M. An evaluation of the genus Tethya (Porifera: Demospongiae: Hadromerjda) with descriptions of new species from the southwest Pacific. Beagle Rec Mus Art Galleries North Territ. 1991;8:37–72.
    Google Scholar 

    74.
    Hoshino T, Yilmaz LS, Noguera DR, Daims H, Wagner M. Quantification of target molecules needed to detect microorganisms by fluorescence in situ hybridization (FISH) and catalyzed reporter deposition-FISH. Appl Environ Microbiol. 2008;74:5068–77.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Moran NA, Wernegreen JJ. Lifestyle evolution in symbiotic bacteria: insights from genomics. Trends Ecol Evol. 2000;15:321–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    76.
    Vacelet J, Donadey C. Electron microscope study of the association between some sponges and bacteria. J Exp Mar Bio Ecol. 1977;30:301–14.
    Article  Google Scholar 

    77.
    Maldonado M. Intergenerational transmission of symbiotic bacteria in oviparous and viviparous demosponges, with emphasis on intracytoplasmically-compartmented bacterial types. J Mar Biol Assoc UK. 2007;87:1701–13.
    Article  Google Scholar 

    78.
    Ilan M, Abelson A. The life of a sponge in a sandy lagoon. Biol Bull. 1995;189:363–9.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    79.
    Borisov VB, Gennis RB, Hemp J, Verkhovsky MI. The cytochrome bd respiratory oxygen reductases. Biochim Biophys Acta Bioenerg. 2011;1807:1398–413.
    CAS  Article  Google Scholar 

    80.
    Lavy A, Keren R, Yahel G, Ilan M. Intermittent hypoxia and prolonged suboxia measured in situ in a marine sponge. Front Mar Sci. 2016;3:1–11.
    Article  Google Scholar 

    81.
    Hoffmann F, Larsen O, Thiel V, Rapp HT, Pape T, Michaelis W, et al. An anaerobic world in sponges. Geomicrobiol J. 2005;22:1–10.
    Article  Google Scholar 

    82.
    Moreno-Vivian C, Cabello C, Martinez-Luque M, Blasco R, Castillo F. Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J Bacteriol. 1999;181:6573–84.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    83.
    Toffanin A, Wu Q, Maskus M, Casella S, Abruña HD, Shapleigh JP. Characterization of the gene encoding nitrite reductase and the physiological consequences of its expression in the nondenitrifying Rhizobium “hedysari” strain HCNT1. Appl Environ Microbiol. 1996;62:4019–25.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    84.
    Jones PM, George AM. The ABC transporter structure and mechanism: perspectives on recent research. Cell Mol Life Sci. 2004;61:682–99.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    85.
    Mulligan C, Fischer M, Thomas GH. Tripartite ATP-independent periplasmic (TRAP) transporters in bacteria and archaea. FEMS Microbiol Rev. 2011;35:68–86.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    86.
    Vastermark A, Wollwage S, Houle ME, Rio R, Saier MH. Expansion of the APC superfamily of secondary carriers. Proteins Struct Funct Bioinform. 2014;82:2797–811.
    CAS  Article  Google Scholar 

    87.
    Pao SS, Paulsen IT, Saier MH. Major facilitator superfamily. Microbiol Mol Biol Rev. 1998;62:1–34.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    88.
    Ziegler C, Bremer E, Krämer R. The BCCT family of carriers: from physiology to crystal structure. Mol Microbiol. 2010;78:13–34.
    CAS  PubMed  PubMed Central  Google Scholar 

    89.
    Andrade SLA, Einsle O. The Amt/Mep/Rh family of ammonium transport proteins (Review). Mol Membr Biol. 2007;24:357–65.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    90.
    Kamke J, Sczyrba A, Ivanova N, Schwientek P, Rinke C, Mavromatis K, et al. Single-cell genomics reveals complex carbohydrate degradation patterns in poribacterial symbionts of marine sponges. ISME J. 2013;7:2287–300.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    91.
    Clifford EL, Hansell DA, Varela MM, Nieto-Cid M, Herndl GJ, Sintes E. Crustacean zooplankton release copious amounts of dissolved organic matter as taurine in the ocean. Limnol Oceanogr. 2017;62:2745–58.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    92.
    Karimi E, Keller-Costa T, Slaby BM, Cox CJ, da Rocha UN, Hentschel U, et al. Genomic blueprints of sponge-prokaryote symbiosis are shared by low abundant and cultivatable Alphaproteobacteria. Sci Rep. 2019;9:1–15.
    Article  CAS  Google Scholar 

    93.
    Dahl C, Franz B, Hensen D, Kesselheim A, Zigann R. Sulfite oxidation in the purple sulfur bacterium Allochromatium vinosum: Identification of SoeABC as a major player and relevance of SoxYZ in the process. Microbiology. 2013;159:2626–38.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    94.
    Bardischewsky F, Quentmeier A, Friedrich CG. The flavoprotein SoxF functions in chemotrophic thiosulfate oxidation of Paracoccus pantotrophus in vivo and in vitro. FEMS Microbiol Lett. 2006;258:121–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    95.
    Gregersen LH, Bryant DA, Frigaard NU. Mechanisms and evolution of oxidative sulfur metabolism in green sulfur bacteria. Front Microbiol. 2011;2:1–14.
    Article  CAS  Google Scholar 

    96.
    Lavy A, Keren R, Yu K, Thomas BC, Alvarez-Cohen L, Banfield JF, et al. A novel Chromatiales bacterium is a potential sulfide oxidizer in multiple orders of marine sponges. Environ Microbiol. 2018;20:800–14.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    97.
    Tian R-M, Wang Y, Bougouffa S, Gao ZM, Cai L, Bajic V, et al. Genomic analysis reveals versatile heterotrophic capacity of a potentially symbiotic sulfur-oxidizing bacterium in sponge. Environ Microbiol. 2014;16:3548–61.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    98.
    Keller MD, Kiene RP, Matrai PA, Bellows WK. Production of glycine betaine and dimethylsulfoniopropionate in marine phytoplankton. II. N-limited chemostat cultures. Mar Biol. 1999;135:249–57.
    CAS  Article  Google Scholar 

    99.
    Diaz MR, Visscher PT, Taylor BF. Metabolism of dimethylsulfoniopropionate and glycine betaine by a marine bacterium. FEMS Microbiol Lett. 1992;96:61–5.
    CAS  Article  Google Scholar 

    100.
    Sun J, Steindler L, Thrash JC, Halsey KH, Smith DP, Carter AE, et al. One carbon metabolism in SAR11 pelagic marine bacteria. PLoS ONE. 2011;6:e23973.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    101.
    Equar MY, Tani Y, Mihara H. Purification and properties of glycine oxidase from pseudomonas putida KT2440. J Nutr Sci Vitaminol. 2015;61:506–10.
    CAS  PubMed  Article  Google Scholar 

    102.
    Karimi E, Slaby BM, Soares AR, Blom J, Hentschel U, Costa R. Metagenomic binning reveals versatile nutrient cycling and distinct adaptive features in alphaproteobacterial symbionts of marine sponges. FEMS Microbiol Ecol. 2018;94:1–18.
    Article  CAS  Google Scholar 

    103.
    Moreno-Pino M, Cristi A, Gillooly JF, Trefault N. Characterizing the microbiomes of Antarctic sponges: a functional metagenomic approach. Sci Rep. 2020;10:1–12.
    Article  CAS  Google Scholar 

    104.
    Mayer J, Huhn T, Habeck M, Denger K, Hollemeyer K, Cook AM. 2,3-Dihydroxypropane-1-sulfonate degraded by Cupriavidus pinatubonensis JMP134: purification of dihydroxypropanesulfonate 3-dehydrogenase. Microbiology. 2010;156:1556–64.
    CAS  PubMed  Article  Google Scholar 

    105.
    Michael AJ. Polyamines in eukaryotes, bacteria, and archaea. J Biol Chem. 2016;291:14896–903.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    106.
    Tsukamoto S, Kato H, Hirota H, Fusetani N. Pseudoceratidine: a new antifouling spermidine derivative from the marine sponge Pseudoceratina purpurea. Tetrahedron Lett. 1996;37:1439–40.
    CAS  Article  Google Scholar 

    107.
    Igarashi K, Kashiwagi K. Polyamine transport in bacteria and yeast. Biochem J. 1999;344:633–42.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    108.
    Shah P, Swiatlo E. A multifaceted role for polyamines in bacterial pathogens. Mol Microbiol. 2008;68:4–16.
    CAS  PubMed  Article  Google Scholar 

    109.
    Schneider BL, Reitzer L. Pathway and enzyme redundancy in putrescine catabolism in Escherichia coli. J Bacteriol. 2012;194:4080–8.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    110.
    Mou X, Sun S, Rayapati P, Moran MA. Genes for transport and metabolism of spermidine in Ruegeria pomeroyi DSS-3 and other marine bacteria. Aquat Microb Ecol. 2010;58:311–21.
    Article  Google Scholar 

    111.
    Dasu VV, Nakada Y, Ohnishi-Kameyama M, Kimura K, Itoh Y. Characterization and a role of Pseudomonas aeruginosa spermidine dehydrogenase in polyamine catabolism. Microbiology. 2006;152:2265–72.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    112.
    Tofalo R, Cocchi S, Suzzi G. Polyamines and gut microbiota. Front Nutr. 2019;6:1–5.
    Article  CAS  Google Scholar 

    113.
    Sharfstein ST, Keasling JD. Polyphosphate metabolism in Escherichia coli. Ann N Y Acad Sci. 1994;745:77–91.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    114.
    Zhang F, Blasiak LC, Karolin JO, Powell RJ, Geddes CD, Hill RT. Phosphorus sequestration in the form of polyphosphate by microbial symbionts in marine sponges. Proc Natl Acad Sci USA. 2015;112:4381–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    115.
    Wang L, Yan J, Wise MJ, Liu Q, Asenso J, Huang Y, et al. Distribution patterns of polyphosphate metabolism pathway and its relationships with bacterial durability and virulence. Front Microbiol. 2018;9:1–10.
    Article  Google Scholar 

    116.
    Romano S, Schulz-Vogt HN, González JM, Bondarev V. Phosphate limitation induces drastic physiological changes, virulence-related gene expression, and secondary metabolite production in Pseudovibrio sp. strain FO-BEG1. Appl Environ Microbiol. 2015;81:3518–28.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    117.
    Bergquist PR. In: eLS (ed) Porifera (Sponges). John Wiley & Sons, Ltd. 2001.

    118.
    Kovacs-Simon A, Titball RW, Michell SL. Lipoproteins of bacterial pathogens. Infect Immun. 2011;79:548–61.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    119.
    Aoki S, Ito M, Iwasaki W. From β- To α-proteobacteria: The origin and evolution of rhizobial nodulation genes nodij. Mol Biol Evol. 2013;30:2494–508.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    120.
    Darby AC, Cho NH, Fuxelius HH, Westberg J, Andersson SGE. Intracellular pathogens go extreme: genome evolution in the Rickettsiales. Trends Genet. 2007;23:511–20.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    121.
    Kuo CH, Ochman H. Inferring clocks when lacking rocks: the variable rates of molecular evolution in bacteria. Biol Direct. 2009;4:35.
    PubMed  PubMed Central  Article  CAS  Google Scholar  More

  • in

    A database for risk assessment and comparative genomic analysis of foodborne Vibrio parahaemolyticus in China

    1.
    Letchumanan, V., Chan, K. G. & Lee, L. H. Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques. Front. Microbiol. 5, 705, https://doi.org/10.3389/fmicb.2014.00705 (2014).
    Article  PubMed  PubMed Central  Google Scholar 
    2.
    DePaola, A., Hopkins, L. H., Peeler, J. T., Wentz, B. & McPhearson, R. M. Incidence of Vibrio parahaemolyticus in U.S. coastal waters and oysters. Appl. Environ. Microbiol. 56, 2299–2302 (1990).
    CAS  Article  Google Scholar 

    3.
    Daniels, N. A. et al. Emergence of a new Vibrio parahaemolyticus serotype in raw oysters: a prevention quandary. JAMA. 284, 1541–1545, https://doi.org/10.1001/jama.284.12.1541 (2000).
    CAS  Article  PubMed  Google Scholar 

    4.
    McLaughlin, J. B. et al. Outbreak of Vibrio parahaemolyticus gastroenteritis associated with Alaskan oysters. N. Engl. J. Med. 353, 1463–1470, https://doi.org/10.1056/NEJMoa051594 (2005).
    CAS  Article  PubMed  Google Scholar 

    5.
    Ralph, A. & Currie, B. J. Vibrio vulnificus and V. parahaemolyticus necrotising fasciitis in fishermen visiting an estuarine tropical northern Australian location. J. Infect. 54, e111–114, https://doi.org/10.1016/j.jinf.2006.06.015 (2007).
    Article  PubMed  Google Scholar 

    6.
    Akther, F. et al. Major tdh(+)Vibrio parahaemolyticus serotype changes temporally in the Bay of Bengal estuary of Bangladesh. Infect. Genet. Evol. 41, 153–159, https://doi.org/10.1016/j.meegid.2016.04.003 (2016).
    Article  PubMed  Google Scholar 

    7.
    Caburlotto, G. et al. Occurrence and molecular characterisation of Vibrio parahaemolyticus in crustaceans commercialised in Venice area, Italy. Int. J. Food Microbiol. 220, 39–49, https://doi.org/10.1016/j.ijfoodmicro.2015.12.007 (2016).
    CAS  Article  PubMed  Google Scholar 

    8.
    Arakawa, E. et al. Emergence and prevalence of a novel Vibrio parahaemolyticus O3:K6 clone in Japan. Jpn. J. Infect. Dis. 52, 246–247 (1999).
    CAS  PubMed  Google Scholar 

    9.
    Leal, N. C. et al. Vibrio parahaemolyticus serovar O3:K6 gastroenteritis in northeast Brazil. J. Appl. Microbiol. 105, 691–697, https://doi.org/10.1111/j.1365-2672.2008.03782.x (2008).
    CAS  Article  PubMed  Google Scholar 

    10.
    Shaw, K. S., Sapkota, A. R., Jacobs, J. M., He, X. & Crump, B. C. Recreational swimmers’ exposure to Vibrio vulnificus and Vibrio parahaemolyticus in the Chesapeake Bay, Maryland, USA. Environ. Int. 74, 99–105, https://doi.org/10.1016/j.envint.2014.09.016 (2015).
    Article  PubMed  Google Scholar 

    11.
    Liu, J. et al. Trends of foodborne diseases in China: lessons from laboratory-based surveillance since 2011. Front. Med. 12, 48–57, https://doi.org/10.1007/s11684-017-0608-6 (2018).
    Article  PubMed  Google Scholar 

    12.
    Paudyal, N. et al. A meta-analysis of major foodborne pathogens in Chinese food commodities between 2006 and 2016. Foodborne Pathog. Dis. 15, 187–197, https://doi.org/10.1089/fpd.2017.2417 (2018).
    CAS  Article  PubMed  Google Scholar 

    13.
    Deng, C., Deng, Y. & Yi, J. Analysis of microbial food poisoning from 2010 to 2016 in Sanya city. Hainan Med. J. 28, 2723–2725 (2017).
    Google Scholar 

    14.
    Xu, X. et al. Prevalence, pathogenicity, and serotypes of Vibrio parahaemolyticus in shrimp from Chinese retail markets. Food Control. 46, 81–85, https://doi.org/10.1016/j.foodcont.2014.04.042 (2014).
    Article  Google Scholar 

    15.
    Xie, T., Wu, Q., Xu, X., Zhang, J. & Guo, W. Prevalence and population analysis of Vibrio parahaemolyticus in aquatic products from South China markets. FEMS Microbiol. Lett. 362, https://doi.org/10.1093/femsle/fnv178 (2015).

    16.
    Xu, X., Cheng, J., Wu, Q., Zhang, J. & Xie, T. Prevalence, characterization, and antibiotic susceptibility of Vibrio parahaemolyticus isolated from retail aquatic products in North China. BMC Microbiol. 16, 32, https://doi.org/10.1186/s12866-016-0650-6 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    17.
    Xie, T., Xu, X., Wu, Q., Zhang, J. & Cheng, J. Prevalence, molecular characterization, and antibiotic susceptibility of Vibrio parahaemolyticus from Ready-to-Eat foods in China. Front. Microbiol. 7, 549, https://doi.org/10.3389/fmicb.2016.00549 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    18.
    Pang, R. et al. Comparative genomic analysis reveals the potential risk of Vibrio parahaemolyticus isolated from Ready-To-Eat foods in China. Front. Microbiol. 10, 186, https://doi.org/10.3389/fmicb.2019.00186 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    19.
    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477, https://doi.org/10.1089/cmb.2012.0021 (2012).
    MathSciNet  CAS  Article  PubMed  PubMed Central  Google Scholar 

    20.
    Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 30, 2068–2069, https://doi.org/10.1093/bioinformatics/btu153 (2014).
    CAS  Article  PubMed  Google Scholar 

    21.
    Page, A. J. et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 31, 3691–3693, https://doi.org/10.1093/bioinformatics/btv421 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    22.
    Nabil-Fareed, A., Zhemin, Z., Sergeant, M. J. & Achtman, M. A genomic overview of the population structure of Salmonella. PLoS Genet. 14, e1007261, https://doi.org/10.1371/journal.pgen.1007261 (2018).
    CAS  Article  Google Scholar 

    23.
    Nakamura, T., Yamada, K. D., Tomii, K. & Katoh, K. Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics. 34, 2490–2492, https://doi.org/10.1093/bioinformatics/bty121 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    24.
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One. 5, e9490, https://doi.org/10.1371/journal.pone.0009490 (2010).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    25.
    Pang, R. & Wu, Q. A database for risk assessment and comparative genomic analysis of foodborne Vibrio parahaemolyticus in China. figshare https://doi.org/10.6084/m9.figshare.12210287 (2020).

    26.
    Pang, R. & Wu, Q. Genome assemblies and annotations of food-borne Vibrio parahaemolyticus strains. figshare https://doi.org/10.6084/m9.figshare.12004416 (2020).

    27.
    Pang, R. et al. Comparative genomic analysis of foodborne Vibrio parahaemolyticus in China. NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP253458 (2020).

    28.
    Chen, Y. et al. Foodborne disease outbreaks in 2006 report of the National Foodborne Disease Surveillance Network, China. Wei Sheng Yan Jiu. 39, 331–334 (2010).
    PubMed  Google Scholar 

    29.
    Li, L. et al. Comparative genomic analysis of clinical and environmental strains provides insight into the pathogenicity and evolution of Vibrio parahaemolyticus. BMC Genomics. 15, 1135, https://doi.org/10.1186/1471-2164-15-1135 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    30.
    McInerney, J. O., McNally, A. & O’Connell, M. J. Why prokaryotes have pangenomes. Nat. Microbiol. 2, 17040, https://doi.org/10.1038/nmicrobiol.2017.40 (2017).
    CAS  Article  PubMed  Google Scholar 

    31.
    Gonzalez-Escalona, N., Jolley, K. A., Reed, E. & Martinez-Urtaza, J. Defining a core genome multilocus sequence typing scheme for the global epidemiology of Vibrio parahaemolyticus. J. Clin. Microbiol. 55, 1682–1697, https://doi.org/10.1128/JCM.00227-17 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar  More

  • in

    Rethinking swimming performance tests for bottom-dwelling fish: the case of European glass eel (Anguilla anguilla)

    The ability to accurately estimate swimming performance is crucial to predict whether river infrastructure is likely to negatively impact fish movement (see e.g.25). This is particularly relevant for the conservation of endangered species, including the European eel that strongly depends on longitudinal movements between the ocean and rearing habitat within rivers and streams. As eel are catadromous, it is the juvenile life-stage that embarks on the upstream migration, and, due to their small size, the rate and extent of their movement is restricted by their swimming performance and ability to negotiate in-stream barriers such as weirs and barrages15.
    Current approaches used to estimate the swimming performance of glass eel suffer from several major limitations, including the selection of representative flow velocities and accommodation of temperature effects on fish swimming time-to-fatigue. Specifically, the commonly-employed average cross-sectional velocity is not representative of the hydrodynamics experienced by glass eel, since this fish swims close to the channel bed, where the flow velocity is lower. Moreover, water temperature may have an important influence on swimming performance, which generally peaks at an optimum temperature, and ceases at some critical minimum and maximum threshold. To address these shortcomings, the present study integrated constant velocity swimming-performance tests with Computational Fluid Dynamics (CFD) to facilitate the reliable estimation of the velocities experienced by eel in the near-wall region. The developed CFD model was relatively simple to calibrate and allowed for the construction of the reported swimming curves. The k-ε closure method permitted a time efficient modelling process to be adopted that enabled systematic exploration of the velocity magnitude in the spatial domain with excellent resolution. To our knowledge, this is the first time CFD tools are used to provide velocity data that are integrated with the results of experiments on swimming performance of fish.
    The dimensions of the channel used to test fish swimming performance can have an important influence on swimming performance curves. McCleave23 studied the swimming activity of juvenile European eel (mean fish length, 7.2 cm, ranging from 6.9 to 7.5 cm) in a darkened, rectangular swimming chamber. The average cross-sectional velocity U ranged from 0.25 to 0.5 ms-1, whereby the total swimming time-to-fatigue decreased from 146 to 16 s, respectively. The water temperatures in that study (ranged from 11.1–13.3 °C) were quite similar to our 12 °C treatment, but the overall performance was greater in our study, with total swimming time (tf) at U = 0.25 and 0.5 ms-1 being approximately 220 and 40 s, respectively (based on regression analysis), despite the almost-identical mean fish length. The key difference between the two studies was the length of swimming area, which was 1.16 m in our study ( > 15 times the mean length of the fish), and 0.5 m in McCleave23. Likewise, cross-sectional area also appears to be influential. Based on tests using a swimming length of 1.8 m, Clough and Turnpenny33 measured the swimming performance of juvenile eel through a narrow, circular Perspex pipe (0.04 m diameter). Using the developed swimming curve in Clough and Turnpenny33, the burst swimming velocity (total swimming time equal to 20 s) for a 7.0 cm long juvenile eel at a water temperature of 11.1 °C was 0.41 ms-1. Based on the results of our study conducted at 12 °C, we predict glass eel to be able to swim 70 s at an average flow velocity U = 0.41 ms-1. These comparisons may indicate the importance of both the length and the total volume of the working section when testing swimming performance in hydraulic facilities.
    In our study, burst-and-coast swimming was increasingly observed for near-bottom velocities (Ub) exceeding 0.2 ms-1(i.e., average cross-sectional velocity  > 0.3 ms-1). This suggests that the burst-and-coast swimming mode is beneficial under higher velocities because intermittent swimming bestows energetic benefits. Indeed, it is well known that gait transitions, including burst-and-coast swimming, enables recovery and thus enhanced swimming performance19,37. Failure to provide sufficient test space can prevent the subject fish from displaying behaviors that can enhance performance, resulting in conservative estimates of swimming capability19.
    The average cross-sectional velocity is clearly not representative of swimming conditions of bottom-dwelling fish, like Anguillidae, that gain energetic advantages by exploiting the low velocities characterizing near-wall flow regions. The present study demonstrates that, contextually to the flow conditions explored herein, differences in swimming-curve intercepts ranged between 18 and 32%. These differences are essentially equivalent to the average observed differences between U and Ub, which can be explained with the following scaling arguments. In open channel flows, near-bottom velocities Ub scale with the friction velocity, ({rm{u}}_{*})(a fundamental scaling velocity equal to the square root of the shear stress, τ0, divided by the water density, i.e. ({rm{u}}_{*}=sqrt{{uptau }_{0}/uprho })), which is related to the average velocity U via the Darcy-Weisbach friction factor (f) as ({rm{u}}_{*}=rm{U}sqrt{frac{rm{f}}{8}}). The near bed velocities ({rm{U}}_{rm{b}}) were averaged over a 3 mm thick volume of water, which embraces the so-called viscous sub-layer, the buffer sub-layer and, for some experimental conditions it may capture the logarithmic layer38. This is easy to demonstrate by scaling the height of the averaging volume (i.e. 3 mm) by means of the viscous length scale (upupsilon/ {rm{u}}_{*}). This non-dimensional height reaches, at most, the value of 73 which is indicative of a flow region within the logarithmic layer. Therefore, within the averaging volume it is fair to state that ({rm{U}}_{rm{b}}approx Oleft(10{rm{u}}_{*}right)) and hence37,

    $${rm{U}}_{rm{b}}propto {f}^{1/2}rm{U}.$$
    (2)

    Note that the friction factor (f) may depend on: (i) the Reynolds number (i.e., (rm{Re}=rm{U}4rm{R}/upnu), where U is the average cross-sectional velocity, R is the hydraulic radius defined as the ratio between the wet area and the wet perimeter of the channel cross-section and ν is the water kinematic viscosity); (ii) the relative roughness of the flow; or (iii) both, if the flow is in the hydraulically-smooth, hydraulically-rough and -transition regime, respectively. In the present paper, experiments were carried out in the hydraulically-smooth regime, therefore we can assume (f=0.316{rm{Re}}^{-1/4})39 and hence, from Eq. (2) we obtain

    $${rm{U}}_{rm{b}}propto {(rm{Re}}^{-1/8})rm{U},$$
    (3)

    where the proportionality coefficient is of order 1. From Fig. 2b, it is possible to infer that the average velocity U can be expressed as

    $$rm{U}={rm{alpha }}_{1}{rm{t}}_{rm{ac}}^{{beta }_{1}},$$
    (4)

    where ({rm{alpha }}_{1}=1.099) and ({beta }_{1}= -0.266). Coupling Eqs. (3) and (4) leads to

    $${rm{U}}_{rm{b}} propto {left(frac{rm{R U}}{upnu }right)}^{- frac{1}{8}}{{alpha }}_{1}{rm{t}}_{rm{ac}}^{{upbeta }_{1}}= {left(frac{rm{R}}{upnu }right)}^{- frac{1}{8}}{rm{U}}^{-frac{1}{8}}{{alpha }}_{1 }{rm{t}}_{rm{ac}}^{{upbeta }_{1}}={left(frac{rm{R}}{upnu }right)}^{- frac{1}{8}}{{{alpha }}_{1 }}^{left( 1- frac{1}{8}right)}{rm{ t}}_{rm{ac}}^{left(1 – frac{1}{8}right){upbeta }_{1}}.$$
    (5)

    As observed in Fig. 2b, Eq. (5) demonstrates that referring to the near-bottom velocity Ub rather than the average cross-sectional velocity U, leads to a reduction of the intercept coefficient of a factor scaling as ({left(frac{rm{R}}{upnu }right)}^{- frac{1}{8}}{{rm{alpha }}_{1 }}^{left(- frac{1}{8}right)}), corresponding to a 24–26% reduction, which is very similar to that observed experimentally (i.e., 18–32%, see “Results” section). In addition, the exponent ({upbeta }_{1}) undergoes a reduction of about 1/8, i.e. 12.5%, which compares very well with the 14% variation of the power-law exponents associated with the swimming curves plotted in Fig. 2b and reported in the results section.
    The active swimming time of glass eel (tac) decreases with increasing near-bottom velocity and, for a given bottom velocity, tac increases with increasing water temperature (in the range 8–18 °C). This implies that, at higher temperatures, eel can sustain prescribed flow-velocities for longer times. Interestingly, for any temperature, Ub scales with tac as ({rm{U}}_{rm{b}}sim {rm{t}}_{rm{ac}}^{upbeta }) with (upbeta cong -) 1/3, on average. This may have some interesting implications which are now discussed.
    It can be speculated that the flow resistance experienced by glass eel can be quantified as a drag force ({rm{F}}_{rm{D}}) that scales as (rho {rm{C}}_{rm{D}}a{rm{U}}_{rm{b}}^{2}), where (rho) is the water density, ({rm{C}}_{rm{D}}) is the fish drag coefficient and (a) is the fish frontal area. The power used by glass eel (i.e. the energy spent per unit time) to hold their position against a current, can be expressed as (rm{P}= rho {rm{C}}_{rm{D}}it{a}{rm{U}}_{rm{b}}^{3}) and the total energy spent by the fish is therefore (rm{E}={rm{Pt}}_{rm{ac}}=rho {rm{C}}_{rm{D}}it{a}{rm{U}}_{rm{b}}^{3}{rm{t}}_{rm{ac}}). In the experiments reported herein, eel had an almost uniform body-size (i.e. a similar frontal area a) and, therefore, for a specific water temperature, (rho) and (a) can be considered approximately as constant. For a prescribed water-temperature, the drag coefficient ({rm{C}}_{rm{D}}) of the eel might retain some Reynolds number dependence (in general, the ({rm{C}}_{rm{D}}) of a slender body immersed in a moving fluid reduces with increasing Re due to the weakening of viscous forces with respect to pressure forces in the total drag force experienced by the body), which translates, essentially, into a dependence on ({rm{U}}_{rm{b}}). However, the range of Reynolds numbers experienced by glass eel in the experiments presented herein is too small to induce significant variations in ({rm{C}}_{rm{D}}), which can therefore be considered, in good approximation, as constant. Therefore, it can be also reasonably assumed that the energy spent by the eel during a fatigue experiment, scales as (rm{E}sim {rm{U}}_{rm{b}}^{3}{rm{t}}_{rm{ac}}). However, since the near-bottom velocity scales approximately as ({rm{U}}_{rm{b}}sim {rm{t}}_{rm{ac}}^{-1/3}) (Fig. 3a), it follows that the energy spent by the eel is equal to a constant which is a function of temperature only. This suggests that, for a specific water temperature, the energy spent by a fish in a fatigue test is constant and independent on flow intensity levels (i.e. ({rm{U}}_{rm{b}})) or, in other words, this means that the swimming performance of glass eel might be energy-limited. Clearly, this hypothesis needs to be further substantiated by more experimental work allowing for direct measurement of oxygen (and hence energy) consumption during fatigue tests, possibly carried out using the framework of analysis presented herein. It could be also important to find an experimental, non-invasive technique able to track transparent glass eel while moving in flumes or swimming chambers (e.g.40,41). This will allow a better understanding of the link between swimming speed variability at constant flow and energy consumption16.
    In the analyzed range of water temperatures (which represents common temperatures experienced by glass eel during upstream migration32) and flow velocities (Fig. 3b), Eq. (1) can be used to design a fish-pass or to evaluate its effectiveness for glass eel migration in a prescribed river reach. For instance, Vowles et al.42 proposed eel tiles as a cost-effective solution for mitigating the impacts of anthropogenic barriers to juvenile eel migration. Equation (1) can be used to verify whether velocities in the fish-pass are in an acceptable range, depending on the flow stage and the length of the eel tiles. Equation (1) provides also an estimate of the time needed by glass eel to circumvent dams and weirs or possible delays during migration. However, care would be needed in extrapolating the proposed formula to different water temperatures and larger velocities, compared to those analyzed in the present study. In the domain of application of Eq. (1), it can be speculated that ({rm{U}}_{rm{b}}) scales with temperature as (sim {rm{T}}^{updelta }), where δ is, on average, 0.77. Various effects are lumped into this exponent. Overall, for one velocity, the drag force ({rm{F}}_{rm{D}}) may increase by decreasing temperature because the density and the dynamic viscosity of water increase and this leads to increased values of pressure and viscous forces, respectively. This means that, for a given near-bottom velocity ({rm{U}}_{rm{b}}), water viscosity may cause the fish to get tired sooner (i.e. lower ({rm{t}}_{rm{ef}})) at low temperatures than at high temperatures. Furthermore, the temperature exponent is probably dictated by fish-metabolism. In terms of temperature range and related effects on glass eel swimming performance, similar results were found by other authors in the literature. For instance, Harrison et al.32 reports that low temperatures (below 10 °C) are known to reduce glass eel activity and that, in general, there is a positive correlation between temperature and upstream-migration speed. Furthermore, it was demonstrated that European eel muscle contractility and efficiency decrease rapidly with water temperature below 10 °C43,44. Therefore, low temperatures in rivers may affect eel ecology through both hydrodynamics and physiology, by exerting a direct limiting effect on the movement of the individual. The mechanism controlling the entire breadth of temperatures over which glass eel can have the highest or the lowest swimming performance is still not clear and further research is needed to extend the selected temperature range to achieve comprehensive results for this species. Since European eel is widely distributed across different European climates, we highlight that further investigation can be directed to better determine whether and how water temperature may affect eel swimming performance in different climatic environments and in the context of climate change. More

  • in

    The macroevolutionary landscape of short-necked plesiosaurians

    1.
    Vermeij, G. J. & Motani, R. Land to sea transitions in vertebrates: The dynamics of colonization. Paleobiology 44, 237–250 (2018).
    Article  Google Scholar 
    2.
    Motani, R. Evolution of fish-shaped reptiles (Reptilia: Ichthyopterygia) in their physical environments and constraints. Annu. Rev. Earth Planet. Sci. 33, 395–420 (2005).
    ADS  CAS  Article  Google Scholar 

    3.
    Mccurry, M. R. et al. The remarkable convergence of skull shape in crocodilians and toothed whales. Proc. R. Soc. B Biol. Sci. 284, 9–11 (2017).
    Google Scholar 

    4.
    McCurry, M. R. et al. The repeated evolution of dental apicobasal ridges in aquatic-feeding mammals and reptiles. Biol. J. Linn. Soc. https://doi.org/10.1093/biolinnean/blz025 (2019).
    Article  Google Scholar 

    5.
    Lindgren, J., Caldwell, M. W., Konishi, T. & Chiappe, L. M. Convergent evolution in aquatic tetrapods: Insights from an exceptional fossil mosasaur. PLoS ONE 5, e11998 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    6.
    Lindgren, J., Polcyn, M. J. & Young, B. A. Landlubbers to leviathans: Evolution of swimming in mosasaurine mosasaurs. Paleobiology 37, 445–469 (2011).
    Article  Google Scholar 

    7.
    Kelley, N. P. & Motani, R. Trophic convergence drives morphological convergence in marine tetrapods. Biol. Lett. 11, 1–5 (2015).
    Article  Google Scholar 

    8.
    Makádi, L., Caldwell, M. W. & Ösi, A. The first freshwater mosasauroid (Upper Cretaceous, Hungary) and a new clade of basal mosasauroids. PLoS ONE 7, e51781 (2012).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    9.
    O’Keefe, F. R. A cladistic analysis and taxonomic revision of the Plesiosauria (Reptilia:Sauropterygia). Acta Zool. Fenn. 213, 1–63 (2001).
    Google Scholar 

    10.
    O’Keefe, F. R. The evolution of plesiosaur and pliosaur morphotypes in the Plesiosauria (Reptilia: Sauropterygia). Palaeobiology 28, 101–112 (2002).
    Article  Google Scholar 

    11.
    Fischer, V., Benson, R. B. J., Druckenmiller, P. S., Ketchum, H. F. & Bardet, N. The evolutionary history of polycotylid plesiosaurians. R. Soc. Open Sci. 5, 172177 (2018).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Soul, L. C. & Benson, R. B. J. Developmental mechanisms of macroevolutionary change in the tetrapod axis: A case study of Sauropterygia. Evolution (N. Y.) 71, 1164–1177 (2017).
    Google Scholar 

    13.
    Foffa, D., Young, M. T., Stubbs, T. L., Dexter, K. G. & Brusatte, S. L. The long-term ecology and evolution of marine reptiles in a Jurassic seaway. Nat. Ecol. Evol. 2, 1548–1555 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    14.
    Stubbs, T. L. & Benton, M. J. Ecomorphological diversifications of Mesozoic marine reptiles: The roles of ecological opportunity and extinction. Paleobiology https://doi.org/10.1017/pab.2016.15 (2016).
    Article  Google Scholar 

    15.
    Zverkov, N. G., Fischer, V., Madzia, D. & Benson, R. B. J. Increased Pliosaurid dental disparity across the jurassic—Cretaceous transition. Palaeontology 61, 825–846 (2018).
    Article  Google Scholar 

    16.
    Fischer, V., Bardet, N., Benson, R. B. J., Arkhangelsky, M. S. & Friedman, M. Extinction of fish-shaped marine reptiles associated with reduced evolutionary rates and global environmental volatility. Nat. Commun. 7, 1–11 (2016).
    Google Scholar 

    17.
    Fischer, V. Taxonomy of Platypterygius campylodon and the diversity of the last ichthyosaurs. PeerJ 4, 1–21 (2016).
    CAS  Google Scholar 

    18.
    Ridgway, S. H. & Harrison, R. The Second Book of Dolphins and the Porpoise. Handbook of Marine Mammals (Academic Press, Cambridge, 1999).
    Google Scholar 

    19.
    Fischer, V. et al. Plasticity and convergence in the evolution of short-necked plesiosaurs. Curr. Biol. 27, 1667–1676 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    R Core Team. R: A language and environment for statistical computing. (2016).

    21.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, New York, 2016).
    Google Scholar 

    22.
    de Vries, A. & Ripley, B. D. ggdendro: Create Dendrograms and Tree Diagrams Using ‘ggplot2’ (2016).

    23.
    Galili, T. dendextend: An R package for visualizing, adjusting, and comparing trees of hierarchical clustering. Bioinformatics 31, 3718–3720 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Auguie, B. gridExtra: Miscellaneous Functions for ‘Grid’ Graphics (2017).

    25.
    Benson, R. B. J. & Druckenmiller, P. S. Faunal turnover of marine tetrapods during the Jurassic-Cretaceous transition. Biol. Rev. 89, 1–23 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    26.
    Goloboff, P. A. & Catalano, S. A. TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics https://doi.org/10.1111/cla.12160 (2016).
    Article  Google Scholar 

    27.
    Bapst, D. W. paleotree: An R package for paleontological and phylogenetic analyses of evolution. Methods Ecol. Evol. 3, 803–807 (2012).
    Article  Google Scholar 

    28.
    Revelle, W. psych: Procedures for Psychological, Psychometric, and Personality Research (2018).

    29.
    Suzuki, R. & Shimodaira, H. Pvclust: Hierarchical Clustering with P-Values via Multiscale Bootstrap Resampling, 1–13 (2015).

    30.
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 

    31.
    Oksanen, J. et al.vegan: Community Ecology Package (2019).

    32.
    Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Slowikowski, K. ggrepel: Automatically Position Non-overlapping Text Labels with ‘ggplot2’ (2019).

    34.
    Sievert, C. plotly for R (2018).

    35.
    Venables, W. N. & Ripley, B. D. MASS: Modern Applied Statistics with S (Springer, New York, 2002).
    Google Scholar 

    36.
    Marshall, C. R. The evolution of morphogenetic fitness landscapes: Conceptualising the interplay between the developmental and ecological drivers of morphological innovation. Aust. J. Zool. 62, 3–17 (2014).
    Article  Google Scholar 

    37.
    Boucher, F. C., Démery, V., Conti, E., Harmon, L. J. & Uyeda, J. A general model for estimating macroevolutionary landscapes. Syst. Biol. 67, 1–16 (2017).
    Google Scholar 

    38.
    Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).
    Article  Google Scholar 

    39.
    Hijmans, R. J. Raster: Geographic Data Analysis and Modeling (2019).

    40.
    Andrew Barr, W. The morphology of the bovid calcaneus: Function, phylogenetic signal, and allometric scaling. J. Mamm. Evol. https://doi.org/10.1007/s10914-018-9446-9 (2018).
    Article  Google Scholar 

    41.
    Ketchum, H. F. & Benson, R. B. J. A new pliosaurid (Sauropterygia, Plesiosauria) from the Oxford Clay Formation (Middle Jurassic, Callovian) of England: Evidence for a gracile, longirostrine grade of Early-Middle Jurassic pliosaurids. Spec. Pap. Palaeontol. 86, 109–129 (2011).
    Google Scholar 

    42.
    Albright, L. B., Gillette, D. D. & Titus, A. L. Plesiosaurs from the upper cretaceous (Cenomanian–Turonian) tropic shale of southern Utah, part 2: Polycotylidae. J. Vertebr. Paleontol. 27, 41–58 (2007).
    Article  Google Scholar 

    43.
    Páramo-Fonseca, M. E., Benavides-Cabra, C. D. & Gutiérrez, I. E. A new specimen of Stenorhynchosaurus munozi Pliosauridae ), from the Barremian of Colombia: New morphological features and ontogenetic implications. J. Vertebr. Paleontol. 39, 1–16 (2019).
    Article  Google Scholar 

    44.
    Stayton, C. T. The definition, recognition, and interpretation of convergent evolution, and two new measures for quantifying and assessing the significance of convergence. Evolution (N. Y.) 69, 2140–2153 (2015).
    Google Scholar 

    45.
    Stayton, C. T. Package convevol. 14 (2018).

    46.
    Button, D. J. & Zanno, L. E. Repeated evolution of divergent modes of herbivory in non-avian dinosaurs. Curr. Biol. 30, 158–168 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Castiglione, S. et al. A new, fast method to search for morphological convergence with shape data. PLoS ONE 14, e0226949 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Raia, P. et al. RRphylo: Phylogenetic ridge regression methods for comparative studies. Methods Ecol. Evol. 9, 974–983 (2019).
    Google Scholar 

    49.
    Guillerme, T. dispRity: A modular R package for measuring disparity. Methods Ecol. Evol. 9, 1755 (2018).
    Article  Google Scholar 

    50.
    McCurry, M. R., Walmsley, C. W., Fitzgerald, E. M. G. & McHenry, C. R. The biomechanical consequences of longirostry in crocodilians and odontocetes. J. Biomech. 56, 61–70 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Foffa, D. et al. Functional anatomy and feeding biomechanics of a giant Upper Jurassic pliosaur (Reptilia: Sauropterygia) from Weymouth Bay, Dorset, UK. J. Anat. 225, 209–219 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    52.
    Schubert, B. W. & Ungar, P. S. Wear facets and enamel spalling in tyrannosaurid dinosaurs. Acta Palaeontol. Pol. 50, 93–99 (2005).
    Google Scholar 

    53.
    Madzia, D., Sachs, S. & Lindgren, J. Morphological and phylogenetic aspects of the dentition of Megacephalosaurus eulerti, a pliosaurid from the Turonian of Kansas, USA, with remarks on the cranial anatomy of the taxon. Geol. Mag. https://doi.org/10.1017/S0016756818000523 (2018).
    Article  Google Scholar 

    54.
    Madzia, D. A reappraisal of Polyptychodon (Plesiosauria) from the Cretaceous of England. PeerJ 4, e1998 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    55.
    Bardet, N., Fischer, V. & Machalski, M. Large predatory marine reptiles from the Albian-Cenomanian of Annopol, Poland. Geol. Mag. 153, 1–16 (2016).
    ADS  CAS  Article  Google Scholar 

    56.
    Pierce, S. E., Angielczyk, K. D. & Rayfield, E. J. Shape and mechanics in thalattosuchian (Crocodylomorpha) skulls: Implications for feeding behaviour and niche partitioning. J. Anat. 215, 555–576 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Da Silva, V. M. F. & Best, R. C. Amazon river dolphin (Inia) preys on turtle (Podocnemis). Investig. Cetacea 8, 253–256 (1992).
    Google Scholar 

    58.
    Hocking, D. P., Marx, F. G., Park, T., Fitzgerald, E. M. G. & Evans, A. R. A behavioural framework for the evolution of feeding in predatory aquatic mammals. Proc. R. Soc. B Biol. Sci. 284, 20162750 (2017).
    Article  Google Scholar 

    59.
    Wiens, J. J. & Graham, C. H. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).
    Article  Google Scholar 

    60.
    Schumacher, B. A., Carpenter, K. & Everhart, M. J. A new Cretaceous Pliosaurid (Reptilia, Plesiosauria) from the Carlile Shale (middle Turonian) of Russell County, Kansas. J. Vertebr. Paleontol. 33, 613–628 (2013).
    Article  Google Scholar 

    61.
    Benson, R. B. J. et al. A giant pliosaurid skull from the Late Jurassic of England. PLoS ONE 8, e65989 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    O’Gorman, J. P., Gasparini, Z. & Spalletti, L. A. A new Pliosaurus species (Sauropterygia, Plesiosauria) from the Upper Jurassic of Patagonia: New insights on the Tithonian morphological disparity of mandibular symphyseal morphology. J. Paleontol. https://doi.org/10.1017/jpa.2017.82 (2018).
    Article  Google Scholar 

    63.
    Knutsen, E. M., Druckenmiller, P. S. & Hurum, J. A new species of Pliosaurus (Sauropterygia: Plesiosauria) from the Middle Volgian of central Spitsbergen, Norway. Nor. J. Geol. 92, 235–258 (2012).
    Google Scholar 

    64.
    Tarlo, L. B. A review of the upper Jurassic pliosaurs. Bull. Br. Museum Nat. Hist. Geol. 4, 145–189 (1960).
    Google Scholar 

    65.
    Zverkov, N. G. & Prilepskaya, N. E. A prevalence of Arthropterygius (Ichthyosauria: Ophthalmosauridae) in the Late Jurassic—Earliest Cretaceous of the Boreal Realm. PeerJ 7, e6799 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    66.
    Delsett, L. L. et al. Mesozoic marine reptiles from Spitsbergen and their ecosystems. Geol. Today 35, 20–25 (2019).
    Article  Google Scholar 

    67.
    Adams, D. A. Trinacromerum bonneri, new species, last and fastest pliosaur of the Western Interior Seaway. Texas J. Sci. 49, 179–198 (1997).
    Google Scholar 

    68.
    Monnet, C. The Cenomanian-Turonian boundary mass extinction (Late Cretaceous): New insights from ammonoid biodiversity patterns of Europe, Tunisia and the Western Interior (North America). Palaeogeogr. Palaeoclimatol. Palaeoecol. 282, 88–104 (2009).
    Article  Google Scholar 

    69.
    Iba, Y. et al. Belemnite extinction and the origin of modern cephalopods 35 m.y. prior to the Cretaceous-Paleogene event. Geology 39, 483–486 (2011).
    ADS  Article  Google Scholar 

    70.
    Bengtson, P. & Kakabadze, M. V. Ammonites and the mid-Cretaceous saga. Cretac. Res. 88, 90 (2018).
    Article  Google Scholar 

    71.
    Bardet, N. et al. Mesozoic marine reptile palaeobiogeography in response to drifting plates. Gondwana Res. 26, 869–887 (2014).
    ADS  Article  Google Scholar 

    72.
    Bardet, N., Houssaye, A., Rage, J.-C. & Suberbiola, X. P. The Cenomanian-Turonian (Late Cretaceous) radiation of marine squamates (Reptilia): The role of the Mediterranean Tethys. Bull. la Soc. Géol. Fr. 179, 605–622 (2008).
    Article  Google Scholar 

    73.
    Polcyn, M. J., Jacobs, L. L., Araújo, R., Schulp, A. S. & Mateus, O. Physical drivers of mosasaur evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 400, 17–27 (2014).
    Article  Google Scholar 

    74.
    Condamine, F. L., Romieu, J. & Guinot, G. Climate cooling and clade competition likely drove the decline of lamniform sharks. Proc. Natl. Acad. Sci. U.S.A. 116, 20584–20590 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Guinot, G., Underwood, C. J., Cappetta, H. & Ward, D. J. Sharks (Elasmobranchii: Euselachii) from the Late Cretaceous of France and the UK. J. Syst. Palaeontol. 11, 589–671 (2013).
    Article  Google Scholar 

    76.
    Cavin, L., Forey, P. L. & Lécuyer, C. Correlation between environment and Late Mesozoic ray-finned fish evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 245, 353–367 (2007).
    Article  Google Scholar 

    77.
    O’Gorman, J. P. Elasmosaurid phylogeny and paleobiogeography, with a reappraisal of Aphrosaurus furlongi from the Maastrichtian of the Moreno Formation. J. Vertebr. Paleontol. 39, e1692025 (2020).
    Article  Google Scholar 

    78.
    Skelton, P. W., Spicer, R. A., Kelley, S. & Gilmour, I. The Cretaceous World (Cambridge University Press, Cambridge, 2003).
    Google Scholar 

    79.
    Schumacher, B. A. A ‘woollgari-zone mosasaur’ (Squamata; Mosasauridae) from the Carlile Shale (Lower Middle Turonian) of central Kansas and the stratigraphic overlap of early mosasaurs and pliosaurid plesiosaurs. Trans. Kansas Acad. Sci. 114, 1–14 (2011).
    Article  Google Scholar 

    80.
    Zverkov, N. G. & Pervushov, E. M. A gigantic pliosaurid from the Cenomanian (upper Cretaceous) of the Volga Region, Russia. Cretac. Res https://doi.org/10.1016/j.cretres.2020.104419 (2020).
    Article  Google Scholar 

    81.
    Robin O’Keefe, F. et al. Cranial anatomy of Morturneria seymourensis from Antarctica, and the evolution of filter feeding in plesiosaurs of the Austral Late Cretaceous. J. Vertebr. Paleontol. 4634, e1347570 (2017).
    Article  Google Scholar 

    82.
    Serratos, D. J., Druckenmiller, P. & Benson, R. B. J. A new elasmosaurid (Sauropterygia, Plesiosauria) from the Bearpaw Shale (Late Cretaceous, Maastrichtian) of Montana demonstrates multiple evolutionary reductions of neck length within Elasmosauridae. J. Vertebr. Paleontol. 1278608, 1–25 (2017).
    Google Scholar 

    83.
    Losos, J. B. Convergence, adaptation, and constraint. Evolution (N. Y.) 65, 1827–1840 (2011).
    Google Scholar 

    84.
    Korn, D., Hopkins, M. J. & Walton, S. A. Extinction space—A method for the quantification and classification of changes in morphospace across extinction boundaries. Evolution (N. Y.) https://doi.org/10.1111/evo.12162 (2013).
    Article  Google Scholar 

    85.
    Friedman, M. Explosive morphological diversification of spiny-finned teleost fishes in the aftermath of the end-Cretaceous extinction. Proc. R. Soc. B Biol. Sci. 277, 1675–1683 (2010).
    Article  Google Scholar 

    86.
    Mahler, D. L., Ingram, T., Revell, L. J. & Losos, J. B. Exceptional convergence on the macroevolutionary landscape. Science 341, 292–295 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    87.
    Pigot, A. L. et al. Macroevolutionary convergence connects morphological form to ecological function in birds. Nat. Ecol. Evol. 4, 230–239 (2020).
    PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Future climate change vulnerability of endemic island mammals

    1.
    Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. Biodiversity: the ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Pereira, H. M. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    3.
    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    4.
    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    5.
    Kier, G. et al. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl Acad. Sci. USA 106, 9322–9327 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    6.
    Işik, K. Rare and endemic species: why are they prone to extinction? Turk. J. Bot. 35, 411–417 (2011).
    Google Scholar 

    7.
    Harter, D. E. V. et al. Impacts of global climate change on the floras of oceanic islands – projections, implications and current knowledge. Perspect. Plant Ecol. Evol. Syst. 17, 160–183 (2015).
    Article  Google Scholar 

    8.
    Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Chang. 5, 215–224 (2015).
    ADS  Article  Google Scholar 

    9.
    de los Ríos, C., Watson, J. E. M. & Butt, N. Persistence of methodological, taxonomical, and geographical bias in assessments of species’ vulnerability to climate change: a review. Glob. Ecol. Conserv. 15, e00412 (2018).
    Article  Google Scholar 

    10.
    Williams, S. E., Shoo, L. P., Isaac, J. L., Hoffmann, A. A. & Langham, G. Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol. 6, e325 (2008).
    PubMed Central  Article  CAS  PubMed  Google Scholar 

    11.
    Foden, W. B. et al. Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8, e65427 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Intergovernmental Panel on Climate Change. Climate change 2007: impacts, adaptation and vulnerability. https://www.ipcc.ch/report/ar4/wg2/ (2007).

    13.
    Chin, A., Kyne, P. M., Walker, T. I. & McAuley, R. B. An integrated risk assessment for climate change: analysing the vulnerability of sharks and rays on Australia’s Great Barrier Reef. Glob. Chang. Biol. 16, 1936–1953 (2010).
    ADS  Article  Google Scholar 

    14.
    Ameca y Juárez, E. I., Mace, G. M., Cowlishaw, G. & Pettorelli, N. Natural population die-offs: causes and consequences for terrestrial mammals. Trends Ecol. Evol. 27, 272–277 (2012).
    PubMed  Article  Google Scholar 

    15.
    Foden, W. B. et al. Climate change vulnerability assessment of species. Wiley Interdiscip. Rev. Clim. Chang. 10, e551 (2019).
    Article  Google Scholar 

    16.
    Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 12, 361–371 (2003).
    Article  Google Scholar 

    17.
    Garcia, R. A., Burgess, N. D., Cabeza, M., Rahbek, C. & Araújo, M. B. Exploring consensus in 21st century projections of climatically suitable areas for African vertebrates. Glob. Chang. Biol. 18, 1253–1269 (2012).
    ADS  Article  Google Scholar 

    18.
    Visconti, P. et al. Projecting global biodiversity indicators under future development scenarios. Conserv. Lett. 9, 5–13 (2016).
    Article  Google Scholar 

    19.
    Morin, X. & Thuiller, W. Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology 90, 1301–1313 (2009).
    PubMed  Article  Google Scholar 

    20.
    Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. B Biol. Sci. 367, 1665–1679 (2012).
    Article  Google Scholar 

    21.
    Pearson, R. G. et al. Life history and spatial traits predict extinction risk due to climate change. Nat. Clim. Chang. 4, 217–221 (2014).
    ADS  Article  Google Scholar 

    22.
    Hossain, M. A., Kujala, H., Bland, L. M., Burgman, M. & Lahoz-Monfort, J. J. Assessing the impacts of uncertainty in climate-change vulnerability assessments. Divers. Distrib. 25, 1234–1245 (2019).
    Google Scholar 

    23.
    Parravicini, V. et al. Global mismatch between species richness and vulnerability of reef fish assemblages. Ecol. Lett. 17, 1101–1110 (2014).
    PubMed  Article  Google Scholar 

    24.
    Li, D., Wu, S., Liu, L., Zhang, Y. & Li, S. Vulnerability of the global terrestrial ecosystems to climate change. Glob. Chang. Biol. 24, 4095–4106 (2018).
    ADS  PubMed  Article  Google Scholar 

    25.
    Spooner, F. E. B., Pearson, R. G. & Freeman, R. Rapid warming is associated with population decline among terrestrial birds and mammals globally. Glob. Chang. Biol. 24, 4521–4531 (2018).
    ADS  PubMed  Article  Google Scholar 

    26.
    Moilanen, A., Wilson, K. A. & Possingham, H. P. Spatial Conservation Prioritization: Quantitative Methods and Computational Tools (Oxford University Press, 2009).

    27.
    Brooks, T. M. et al. Global biodiversity conservation priorities. Science 313, 58–61 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    28.
    Rondinini, C., Rodrigues, A. S. L. & Boitani, L. The key elements of a comprehensive global mammal conservation strategy. Philos. Trans. R. Soc. B Biol. Sci. 366, 2591–2597 (2011).
    Article  Google Scholar 

    29.
    Leclerc, C., Courchamp, F. & Bellard, C. Insular threat associations within taxa worldwide. Sci. Rep. 8, 6393 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    30.
    Pacifici, M., Visconti, P. & Rondinini, C. A framework for the identification of hotspots of climate change risk for mammals. Glob. Chang. Biol. 24, 1626–1636 (2018).
    ADS  PubMed  Article  Google Scholar 

    31.
    Dickinson, M. G., Orme, C. D. L., Suttle, K. B. & Mace, G. M. Separating sensitivity from exposure in assessing extinction risk from climate change. Sci. Rep. 4, 6898 (2015).
    Article  CAS  Google Scholar 

    32.
    González-Suárez, M., Gómez, A. & Revilla, E. Which intrinsic traits predict vulnerability to extinction depends on the actual threatening processes. Ecosphere 4, art76 (2013).
    Article  Google Scholar 

    33.
    Pimm, S., Raven, P., Peterson, A., Şekercioǧlu, Ç. H. & Ehrlich, P. R. Human impacts on the rates of recent, present, and future bird extinctions. Proc. Natl Acad. Sci. USA 103, 10941–10946 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    34.
    Jansson, R. Extinction risks from climate change: macroecological and historical insights. F1000 Biol. Rep. 1, 44 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    35.
    Ferreira, M. T. et al. Implications of climate change to the design of protected areas: the case study of small islands (Azores). PLoS ONE 14, e0218168 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    37.
    Gaüzère, P., Jiguet, F. & Devictor, V. Can protected areas mitigate the impacts of climate change on bird’s species and communities? Divers. Distrib. 22, 625–637 (2016).
    Article  Google Scholar 

    38.
    Heinen, J. H., van Loon, E. E., Hansen, D. M. & Kissling, W. D. Extinction-driven changes in frugivore communities on oceanic islands. Ecography 41, 1245–1255 (2018).
    Article  Google Scholar 

    39.
    Pacifici, M. et al. Species’ traits influenced their response to recent climate change. Nat. Clim. Chang. 7, 205–208 (2017).
    ADS  Article  Google Scholar 

    40.
    Angert, A. L. et al. Do species’ traits predict recent shifts at expanding range edges? Ecol. Lett. 14, 677–689 (2011).
    PubMed  Article  Google Scholar 

    41.
    Estrada, A., Morales-Castilla, I., Caplat, P. & Early, R. Usefulness of species traits in predicting range shifts. Trends Ecol. Evol. 31, 190–203 (2016).
    PubMed  Article  Google Scholar 

    42.
    Morrison, L., Estrada, A. & Early, R. Species traits suggest European mammals facing the greatest climate change are also least able to colonize new locations. Divers. Distrib. 24, 1321–1332 (2018).
    Article  Google Scholar 

    43.
    Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    44.
    Whittaker, R. J. & Fernández-Palacios, J. M. Island Biogeography: Ecology, Evolution, and Conservation (Oxford University Press, Oxford, 2007).

    45.
    Wheatley, C. J. et al. Climate change vulnerability for species—assessing the assessments. Glob. Chang. Biol. 23, 3704–3715 (2017).
    ADS  PubMed  Article  Google Scholar 

    46.
    Butt, N. et al. Challenges in assessing the vulnerability of species to climate change to inform conservation actions. Biol. Conserv. 199, 10–15 (2016).
    Article  Google Scholar 

    47.
    Ofori, B. Y., Stow, A. J., Baumgartner, J. B. & Beaumont, L. J. Influence of adaptive capacity on the outcome of climate change vulnerability assessment. Sci. Rep. 7, 12979 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    48.
    Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Chang. 8, 713–717 (2018).
    ADS  Article  Google Scholar 

    49.
    Hannah, L. et al. Fine-grain modeling of species’ response to climate change: holdouts, stepping-stones, and microrefugia. Trends Ecol. Evol. 29, 390–397 (2014).
    PubMed  Article  Google Scholar 

    50.
    Bellard, C., Leclerc, C. & Courchamp, F. Impact of sea level rise on the 10 insular biodiversity hotspots. Glob. Ecol. Biogeogr. 23, 203–212 (2014).
    Article  Google Scholar 

    51.
    Ameca y Juárez, E. I., Mace, G. M., Cowlishaw, G., Cornforth, W. A. & Pettorelli, N. Assessing exposure to extreme climatic events for terrestrial mammals. Conserv. Lett. 6, 145–153 (2013).
    Article  Google Scholar 

    52.
    Maxwell, S. L., Venter, O., Jones, K. R. & Watson, J. E. M. Integrating human responses to climate change into conservation vulnerability assessments and adaptation planning. Ann. NY Acad. Sci. 1355, 98–116 (2015).
    ADS  PubMed  Article  Google Scholar 

    53.
    Martin, T. G. & Watson, J. E. M. Intact ecosystems provide best defence against climate change. Nat. Clim. Chang. 6, 122–124 (2016).
    ADS  Article  Google Scholar 

    54.
    IUCN. The IUCN red list of threatened species (version 2018-2). http://www.iucnredlist.org (2018).

    55.
    Weigelt, P., Jetz, W. & Kreft, H. Bioclimatic and physical characterization of the world’s islands. Proc. Natl Acad. Sci. USA 110, 15307–11532 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    56.
    Williams, J. W., Jackson, S. T. & Kutzbach, J. E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl Acad. Sci. USA 104, 5738–5742 (2007).
    ADS  CAS  PubMed  Article  Google Scholar 

    57.
    Bellard, C. et al. Vulnerability of biodiversity hotspots to global change. Glob. Ecol. Biogeogr. 23, 1376–1386 (2014).
    Article  Google Scholar 

    58.
    Veloz, S. D. et al. No-analog climates and shifting realized niches during the late quaternary: implications for 21st-century predictions by species distribution models. Glob. Chang. Biol. 18, 1698–1713 (2012).
    ADS  Article  Google Scholar 

    59.
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Article  Google Scholar 

    60.
    Intergovernmental Panel on Climate Change. Climate change 2013: the physical science basis. https://www.ipcc.ch/report/ar5/wg1/ (2013).

    61.
    Veloz, S. et al. Identifying climatic analogs for Wisconsin under 21st-century climate-change scenarios. Clim. Change 112, 1037–1058 (2012).
    ADS  Article  Google Scholar 

    62.
    Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).
    Article  Google Scholar 

    63.
    Pacifici, M. et al. Generation length for mammals. Nat. Conserv. 5, 89–94 (2013).
    Article  Google Scholar 

    64.
    Leclerc, C., Villéger, S., Marino, C. & Bellard, C. Global changes threaten functional and taxonomic diversity of insular species worldwide. Divers. Distrib. 26, 402–414 (2020).
    Article  Google Scholar 

    65.
    Thomas, C. D. et al. Protected areas facilitate species’ range expansions. Proc. Natl Acad. Sci. USA 109, 14063–14068 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    66.
    Mazaris, A. D. et al. Evaluating the connectivity of a protected areas’ network under the prism of global change: the efficiency of the European Natura 2000 Network for four birds of prey. PLoS ONE 8, e59640 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    67.
    Isaac, N. J. B., Turvey, S. T., Collen, B., Waterman, C. & Baillie, J. E. M. Mammals on the edge: conservation priorities based on threat and phylogeny. PLoS ONE 2, e296 (2007).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Faurby, S. et al. PHYLACINE 1.2: the phylogenetic atlas of mammal macroecology. Ecology 99, 2626–2626 (2018).
    PubMed  Article  Google Scholar 

    69.
    Winter, M., Devictor, V. & Schweiger, O. Phylogenetic diversity and nature conservation: where are we? Trends Ecol. Evol. 28, 199–204 (2013).
    PubMed  Article  Google Scholar 

    70.
    IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. https://ipbes.net/global-assessment (2019).

    71.
    Balmford, A. Extinction filters and current resilience: the significance of past selection pressures for conservation biology. Trends Ecol. Evol. 11, 193–196 (1996).
    CAS  PubMed  Article  Google Scholar 

    72.
    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    73.
    Allan, J. D. et al. Joint analysis of stressors and ecosystem services to enhance restoration effectiveness. Proc. Natl Acad. Sci. USA 110, 372–377 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    74.
    Halpern, B. S. & Fujita, R. Assumptions, challenges, and future directions in cumulative impact analysis. Ecosphere 4, art131 (2013).
    Article  Google Scholar 

    75.
    Hwang, C.-L. & Yoon, K. Multiple Attribute Decision Making: Methods and Applications, Vol. 186 (Springer-Verlag, New York, 1981).

    76.
    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2008). More

  • in

    Wildland fire as an atmospheric source of viable microbial aerosols and biological ice nucleating particles

    1.
    Amato P, Brisebois E, Draghi M, Duchane C, Fröhloch-Nowoisky J, Huffman JA, et al. Main biological aerosols, specificities, abundance, and diversity. In: Delort A-M, Amato P, editors. Microbiology of aerosols. 1st ed. John Wiley & Sons, Inc.; Hoboken, New Jersey, USA. 2018. p. 3–11.
    2.
    Burrows SM, Butler T, Jöckel P, Tost H, Kerkweg A, Pöschl U, et al. Bacteria in the global atmosphere—part 2: modeling of emissions and transport between different ecosystems. Atmos Chem Phys. 2009;9:9281–97.
    CAS  Article  Google Scholar 

    3.
    Wilkinson DM, Koumoutsaris S, Mitchell EAD, Bey I. Modelling the effect of size on the aerial dispersal of microorganisms. J Biogeogr. 2012;39:89–97.
    Article  Google Scholar 

    4.
    Bryan NC, Christner BC, Guzik TG, Granger DJ, Stewart MF. Abundance and survival of microbial aerosols in the troposphere and stratosphere. ISME J. 2019;13:2789–99.
    CAS  PubMed  Article  Google Scholar 

    5.
    Amato P, Joly M, Schaupp C, Attard E, Möhler O, Morris CE, et al. Survival and ice nucleation activity of bacteria as aerosols in a cloud simulation chamber. Atmos Chem Phys. 2015;15:6455–65.
    CAS  Article  Google Scholar 

    6.
    Brown JKM, Hovmøller MS. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science. 2002;297:537–41.
    CAS  PubMed  Article  Google Scholar 

    7.
    Douwes J, Thorne P, Pearce N, Heederik D. Bioaerosol health effects and exposure assessment: progress and prospects. Ann Occup Hyg. 2003;47:187–200.
    CAS  PubMed  Google Scholar 

    8.
    Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, et al. Emerging fungal threats to animal, plant and ecosystem health. Nature. 2012;484:186–94.
    CAS  PubMed  Article  Google Scholar 

    9.
    Huffman JA, Prenni AJ, DeMott PJ, Pöhlker C, Mason RH, Robinson NH, et al. High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmos Chem Phys. 2013;13:6151–64.
    Article  CAS  Google Scholar 

    10.
    Möhler O, Demott PJ, Vali G, Levin Z. Microbiology and atmospheric processes: the role of biological particles in cloud physics. Biogeosciences. 2007;1059–71.

    11.
    Morris CE, Conen F, Alex Huffman J, Phillips V, Pöschl U, Sands DC. Bioprecipitation: a feedback cycle linking Earth history, ecosystem dynamics and land use through biological ice nucleators in the atmosphere. Glob Change Biol. 2014;20:341–51.
    Article  Google Scholar 

    12.
    Sands DC, Langhans VE, Scharen AL, de Smet G. The association between bacteria and rain and possible resultant meteorological implications. J Hung Meteorol Ser. 1982;86:148–52.
    Google Scholar 

    13.
    Burrows SM, Elbert W, Lawrence MG, Pöschl U. Bacteria in the global atmosphere—part 1: review and synthesis of literature data for different ecosystems. Atmos Chem Phys. 2009;9:9263–80.
    CAS  Article  Google Scholar 

    14.
    Lindow SE, Brandl MT. Microbiology of the phyllosphere. Appl Environ Microbiol. 2003;69:1875–83.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Lindemann J, Constantinidou HA, Barchet WR, Upper CD. Plants as sources of airborne bacteria, including ice nucleation-active bacteria. Appl Environ Microbiol. 1982;44:1059–63.

    16.
    Butterworth J, McCartney HA. The dispersal of bacteria from leaf surfaces by water splash. J Appl Bacteriol. 1991;71:484–96.

    17.
    Wickman HH. Deposition, adhesion, and release of bioaerosols. Atmos Microb Aerosols. 1994;5:99–165.

    18.
    Aylor DE, Parlange JY. Ventilation required to entrain small particles from leaves. Plant Physiol. 1975;56:97–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Lighthart B, Shaffer BT, Marthi B, Ganio LM. Artificial wind-gust liberation of microbial bioaerosols previously deposited on plants. Aerobiologia. 1993;9:189–96.
    Article  Google Scholar 

    20.
    Jones AM, Harrison RM. The effects of meteorological factors on atmospheric bioaerosol concentrations—a review. Sci Total Environ. 2004;326:151–80.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Andreae MO, Merlet P. Emission of trace gases and aerosols from biomass burning. Glob Biogeochem Cycles. 2001;15:955–66.
    CAS  Article  Google Scholar 

    22.
    Yang Y, Chan C, Tao J, Lin M, Engling G, Zhang Z, et al. Observation of elevated fungal tracers due to biomass burning in the Sichuan Basin at Chengdu City, China. Sci Total Environ. 2012;431:68–77.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Rajput P, Anjum MH, Gupta T. One year record of bioaerosols and particles concentration in Indo-Gangetic Plain: implications of biomass burning emissions to high-level of endotoxin exposure. Environ Pollut. 2017;224:98–106.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Kobziar LN, Pingree MRA, Larson H, Dreaden TJ, Green S, Smith JA. Pyroaerobiology: the aerosolization and transport of viable microbial life by wildland fire. Ecosphere. 2018;9:e02507.
    Article  Google Scholar 

    25.
    Mims SA, Mims IIIFM. Fungal spores are transported long distances in smoke from biomass fires. Atmos Environ. 2004;38:651–5.
    CAS  Article  Google Scholar 

    26.
    Bonde MR, Prescott JM, Matsumoto TT, Peterson GL. Possible dissemination of teliospores of Tilletia-indica by the practice of burning wheat stubble. Am Phytopathol Soc. 1987;77:639.

    27.
    Hu W, Wang Z, Huang S, Ren L, Yue S, Li P, et al. Biological aerosol particles in polluted regions. Curr Pollut Rep. 2020;6:65–89.

    28.
    Urbanski SP, Reeves MC, Corley RE, Silverstein RP, Hao WMM. Contiguous United States wildland fire emission estimates during 2003-2015 | Rocky Mountain Research Station. Earth Syst Sci Data. 2018;10:2241–74.
    Article  Google Scholar 

    29.
    Kobziar LN, Pingree MRA, Watts AC, Nelson KN, Dreaden TJ, Ridout M. Accessing the Life in Smoke: A New Application of Unmanned Aircraft Systems (UAS) to Sample Wildland Fire Bioaerosol Emissions and Their Environment. 2019;15.

    30.
    Petters MD, Parsons MT, Prenni AJ, DeMott PJ, Kreidenweis SM, Carrico CM, et al. Ice nuclei emissions from biomass burning. J Geophys Res. 2009;114:D07209.
    Google Scholar 

    31.
    McCluskey CS, DeMott PJ, Prenni AJ, Levin EJT, McMeeking GR, Sullivan AP, et al. Characteristics of atmospheric ice nucleating particles associated with biomass burning in the US: prescribed burns and wildfires. J Geophys Res Atmos. 2014;119:10458–70.
    Article  Google Scholar 

    32.
    Maki LR, Galyan EL, Chang-Chien M-M, Caldwell DR. Ice nucleation induced by Pseudomonas syringae. Appl Environ Microbiol. 1974;28:456–59.

    33.
    DeMott PJ, Prenni AJ, Liu X, Kreidenweis SM, Petters MD, Twohy CH, et al. Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc Natl Acad Sci USA. 2010;107:11217–22.
    CAS  PubMed  Article  Google Scholar 

    34.
    Urbanski S. Wildland fire emissions, carbon, and climate: emission factors. For Ecol Manag. 2013;317:51–60.

    35.
    Schnell RC, Vali G. Atmospheric ice nuclei from decomposing vegetation. Nature. 1972;236:163–5.
    Article  Google Scholar 

    36.
    Beattie GA, Lindow SE. The secret life of foliar bacterial pathogens on leaves. Ann Rev Phytopathol. 1995;33:145–72.

    37.
    Baldrian P. Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol Rev. 2016;41:fuw040.
    Article  CAS  Google Scholar 

    38.
    Vali G, Christensen M, Fresh RW, Galyan EL, Maki LR, Schnell RC. Biogenic ice nuclei—2. Bacterial Sources. J Atmos Sci. 1976;33:1565–70.
    Article  Google Scholar 

    39.
    FNAI. Guide to the natural communities of Florida: 2010 edition. Tallahassee; Florida Natural Areas Inventory. 2010.

    40.
    Moore RA, Hanlon R, Powers C, Schmale DG, Christner BC. Scavenging of sub-micron to micron-sized microbial aerosols during simulated rainfall. Atmosphere. 2020;11:80.
    Article  Google Scholar 

    41.
    Vali G. Quantitative evaluation of experimental results an the heterogeneous freezing nucleation of supercooled liquids. J Atmos Sci. 1971;28:402–9.
    Article  Google Scholar 

    42.
    Murray BJ, O’Sullivan D, Atkinson JD, Webb ME. Ice nucleation by particles immersed in supercooled cloud droplets. Chem Soc Rev. 2012;41:6519.
    CAS  PubMed  Article  Google Scholar 

    43.
    DeMott PJ, Prenni AJ. New directions: need for defining the numbers and sources of biological aerosols acting as ice nuclei. Atmos Environ. 2010;44:1944–5.
    CAS  Article  Google Scholar 

    44.
    Turner S, Pryer KM, Miao VPW, Palmer JD. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J. Eukaryot. Microbiol. 1999;46:327–338.

    45.
    Lane DJ. 16S/23S rRNA sequencing. In: Nucleic acid techniques in bacterial systematics. (Eds Stackebrandt E and Goodfellow M) John Wiley and Sons: New York, NY; 1991.

    46.
    Reinhardt ED, Keane RE, Brown JK. First order fire effects model: FOFEM 4.0, user’s guide. Missoula; U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 1997.

    47.
    Kreye JK, Varner JM, Kobziar LN. Long-duration soil heating resulting from forest floor duff smoldering in longleaf pine ecosystems. For Sci. 2020;66:1–13.

    48.
    Kreye JK, Brewer NW, Morgan P, Varner JM, Smith AMS, Hoffman CM, et al. Fire behavior in masticated fuels: a review. Ecol Manag. 2014;314:193–207.
    Article  Google Scholar 

    49.
    R Core Team. A language and environment for statistical computing. R Core Team; Vienna, Austria. 2018.

    50.
    Wickham H. ggplot2: elegant graphics for data analysis. Springer-Verlag: New York; 2016.

    51.
    Yu G, Smith DK, Zhu H, Guan Y, Lam TT-Y. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2017;8:28–36.
    Article  Google Scholar 

    52.
    Radzi bin Abas M, Oros DR, Simoneit BRT. Biomass burning as the main source of organic aerosol particulate matter in Malaysia during haze episodes. Chemosphere. 2004;55:1089–95.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Rajput P, Sarin M, Sharma D, Singh D. Characteristics and emission budget of carbonaceous species from post-harvest agricultural-waste burning in source region of the Indo-Gangetic Plain. Tellus B Chem Phys Meteorol. 2014;66:21026.
    Article  Google Scholar 

    54.
    Reid JS, Koppmann R, Eck TF, Eleuterio DP. A review of biomass burning emissions part II: intensive physical properties of biomass burning particles. Atmos Chem Phys. 2005;5:799–825.
    CAS  Article  Google Scholar 

    55.
    Hungershoefer K, Zeromskiene K, Iinuma Y, Helas G, Trentmann J, Trautmann T, et al. Modelling the optical properties of fresh biomass burning aerosol produced in a smoke chamber: results from the EFEU campaign. Atmos Chem Phys. 2008;8:3427–39.
    CAS  Article  Google Scholar 

    56.
    Robertson KM, Hsieh YP, Bugna GC. Fire environment effects on particulate matter emission factors in Southeastern US pine-grasslands. Atmos Environ. 2014;99:104–11.
    CAS  Article  Google Scholar 

    57.
    Santos-Burgoa C, Rosas I, Yela A. Occurrence of airborne enteric bacteria in Mexico city. Aerobiologia. 1994;10:39–45.
    Article  Google Scholar 

    58.
    Ziemba LD, Beyersdorf AJ, Chen G, Corr CA, Crumeyrolle SN, Diskin G, et al. Airborne observations of bioaerosol over the Southeast United States using a Wideband Integrated Bioaerosol Sensor. J Geophys Res Atmos. 2016;121:8506–24.
    CAS  Article  Google Scholar 

    59.
    Yousefi V, Rama DBK. Monitoring of air for microbial and metal contamination at selected sites in the vicinity of Johannesburg, South Africa. Sci Total Environ. 1992;116:159–67.
    CAS  PubMed  Article  Google Scholar 

    60.
    Bauer H, Kasper-Giebl A, Löflund M, Giebl H, Hitzenberger R, Zibuschka F, et al. The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols. Atmos Res. 2002;64:109–19.
    CAS  Article  Google Scholar 

    61.
    Hara K, Zhang D. Bacterial abundance and viability in long-range transported dust. Atmos Environ. 2012;47:20–5.
    CAS  Article  Google Scholar 

    62.
    Vela GR. Survival of Azotobacter in dry soil. Appl Microbiol. 1974;28:77–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Henriques AO, Moran CP. Structure and assembly of the bacterial endospore coat. Methods. 2000;20:95–110.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Julien B, Kaiser AD, Garza A. Spatial control of cell differentiation in Myxococcus xanthus. Proc Natl Acad Sci USA. 2000;97:9098–103.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Almatroudi A, Tahir S, Hu H, Chowdhury D, Gosbell IB, Jensen SO, et al. Staphylococcus aureus dry-surface biofilms are more resistant to heat treatment than traditional hydrated biofilms. J Hosp Infect. 2018;98:161–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    66.
    Joyce R, Lavender H, Farrar J, Werth JT, Weber CF, D’Andrilli J, et al. Characterization and source identification of biological ice nucleating particles deposited year-round in subtropical precipitation. Appl Environ Microbiol. 2019;85:1–21.

    67.
    Rosenfeld D, Yu X, Liu G, Xu X, Zhu Y, Yue Z, et al. Glaciation temperatures of convective clouds ingesting desert dust, air pollution and smoke from forest fires. Geophys Res Lett. 2011;38:1–5.

    68.
    Koren I, Kaufman YJ, Remer LA, Martins JV. Measurement of the effect of Amazon Smoke on inhibition of cloud formation. Science (80-). 2004;303:1342–5.
    CAS  Article  Google Scholar 

    69.
    Lohmann U. A glaciation indirect aerosol effect caused by soot aerosols. Geophys Res Lett. 2002;29:1052.
    Article  Google Scholar 

    70.
    Sassen K, Khvorostyanov VI. Cloud effects from boreal forest fire smoke: evidence for ice nucleation from polarization lidar data and cloud model simulations. Environ Res Lett. 2008;3:025006.
    Article  Google Scholar 

    71.
    Rosenfeld D, Rudich Y, Lahav R. Desert dust suppressing precipitation: a possible desertification feedback loop. Proc Natl Acad Sci USA. 2001;98:5975–80.
    CAS  PubMed  Article  Google Scholar 

    72.
    Andreae MO, Rosenfeld D, Artaxo P, Costa AA, Frank GP, Longo KM, et al. Smoking rain clouds over the Amazon. Science (80-). 2004;303:1337–42.
    CAS  Article  Google Scholar 

    73.
    Rosenfeld D. TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys Res Lett. 1999;26:3105–8.
    Article  Google Scholar 

    74.
    Peterson DA, Campbell JR, Hyer EJ, Fromm MD, Kablick GP, Cossuth JH, et al. Wildfire-driven thunderstorms cause a volcano-like stratospheric injection of smoke. npj Clim Atmos Sci. 2018;1:1–8.

    75.
    Yu P, Toon OB, Bardeen CG, Zhu Y, Rosenlof KH, Portmann RW, et al. Black carbon lofts wildfire smoke high into the stratosphere to form a persistent plume. Science (80-). 2019;365:587–90.
    CAS  Article  Google Scholar 

    76.
    Val Martin M, Kahn R, Tosca M. A Global analysis of wildfire smoke injection heights derived from space-based multi-angle imaging. Remote Sens. 2018;10:1609.
    Article  Google Scholar 

    77.
    Shukla PR, Skea J, Buendia EC, Masson-Delmotte V, Pörtner H-O, Roberts DC, et al. Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. The Intergovernmental Panel on Climate Change. 2019.

    78.
    Aylor DE. Spread of plant disease on a continental scale: role of aerial dispersal of pathogens. Ecology. 2003;84:1989–97.
    Article  Google Scholar 

    79.
    Nagarajan S, Singh DV. Long-distance dispersion of rust pathogens. Annu Rev Phytopathol. 1990;28:139–53.
    CAS  PubMed  Article  Google Scholar 

    80.
    Abatzoglou JT, Williams AP. Impact of anthropogenic climate change on wildfire across western US forests. Proc Natl Acad Sci USA. 2016;113:11770–5.
    CAS  PubMed  Article  Google Scholar 

    81.
    Sharples JJ, Cary GJ, Fox-Hughes P, Mooney S, Evans JP, Fletcher MS, et al. Natural hazards in Australia: extreme bushfire. Clim Change. 2016;139:85–99.
    Article  Google Scholar 

    82.
    Fernandes K, Verchot L, Baethgen W, Gutierrez-Velez V, Pinedo-Vasquez M, Martius C. Heightened fire probability in Indonesia in non-drought conditions: the effect of increasing temperatures. Environ Res Lett. 2017;12:054002.
    Article  Google Scholar 

    83.
    Le Page Y, Morton D, Hartin C, Bond-Lamberty B, Pereira JMC, Hurtt G, et al. Synergy between land use and climate change increases future fire risk in Amazon forests. Earth Syst Dyn. 2017;8:1237–46.
    Article  Google Scholar  More