More stories

  • in

    Gene loss through pseudogenization contributes to the ecological diversification of a generalist Roseobacter lineage

    1.
    Nowell RW, Green S, Laue BE, Sharp PM. The extent of genome flux and its role in the differentiation of bacterial lineages. Genome Biol Evol. 2014;6:1514–29.
    PubMed  PubMed Central  Article  CAS  Google Scholar 
    2.
    Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature. 2000;405:299–304.
    CAS  PubMed  Article  Google Scholar 

    3.
    Wiedenbeck J, Cohan FM. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev. 2011;35:957–76.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Albalat R, Cañestro C. Evolution by gene loss. Nat Rev Genet. 2016;17:379–91.
    CAS  PubMed  Article  Google Scholar 

    5.
    Jacq C, Miller JR, Brownlee GG. A pseudogene structure in 5S DNA of Xenopus laevis. Cell. 1977;12:109–20.
    CAS  PubMed  Article  Google Scholar 

    6.
    Li W-H, Gojobori T, Nei M. Pseudogenes as a paradigm of neutral evolution. Nature. 1981;292:237–9.
    CAS  PubMed  Article  Google Scholar 

    7.
    Ohta T. The nearly neutral theory of molecular evolution. Annu Rev Ecol Syst. 1992;23:263–86.
    Article  Google Scholar 

    8.
    Bolotin E, Hershberg R. Gene loss dominates as a source of genetic variation within clonal pathogenic bacterial species. Genome Biol Evol. 2015;7:2173–87.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Hottes AK, Freddolino PL, Khare A, Donnell ZN, Liu JC, Tavazoie S. Bacterial adaptation through loss of function. PLoS Genet. 2013;9:e1003617.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Sharma V, Hecker N, Roscito JG, Foerster L, Langer BE, Hiller M. A genomics approach reveals insights into the importance of gene losses for mammalian adaptations. Nat Commun. 2018;9:1–9.
    Article  CAS  Google Scholar 

    11.
    Sokurenko EV, Hasty DL, Dykhuizen DE. Pathoadaptive mutations: gene loss and variation in bacterial pathogens. Trends Microbiol. 1999;7:191–5.
    CAS  PubMed  Article  Google Scholar 

    12.
    Ortega AP, Villagra NA, Urrutia IM, Valenzuela LM, Talamilla-Espinoza A, Hidalgo AA, et al. Lose to win: marT pseudogenization in Salmonella enterica serovar Typhi contributed to the surV-dependent survival to H2O2, and inside human macrophage-like cells. Infect Genet Evol. 2016;45:111–21.
    CAS  PubMed  Article  Google Scholar 

    13.
    Goodhead I, Darby AC. Taking the pseudo out of pseudogenes. Curr Opin Microbiol. 2015;23:102–9.
    CAS  PubMed  Article  Google Scholar 

    14.
    Johnson LJ. Pseudogene rescue: an adaptive mechanism of codon reassignment. J Evol Biol. 2010;23:1623–30.
    CAS  PubMed  Article  Google Scholar 

    15.
    Librado P, Vieira FG, Rozas J. BadiRate: estimating family turnover rates by likelihood-based methods. Bioinformatics. 2012;28:279–81.
    CAS  PubMed  Article  Google Scholar 

    16.
    David LA, Alm EJ. Rapid evolutionary innovation during an Archaean genetic expansion. Nature. 2011;469:93–96.
    CAS  PubMed  Article  Google Scholar 

    17.
    Avni E, Montoya D, Lopez D, Modlin R, Pellegrini M, Snir S. A phylogenomic study quantifies competing mechanisms for pseudogenization in prokaryotes—the Mycobacterium leprae case. PLoS One. 2017;13:e0204322.
    Article  CAS  Google Scholar 

    18.
    Ochman H. The nature and dynamics of bacterial genomes. Science. 2006;311:1730–3.
    CAS  PubMed  Article  Google Scholar 

    19.
    Grote J, Thrash JC, Huggett MJ, Landry ZC, Carini P, Giovannoni SJ, et al. Streamlining and core genome conservation among highly divergent members of the SAR11 clade. mBio. 2012;3:e00252–12.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    20.
    Giovannoni SJ, Cameron Thrash J, Temperton B. Implications of streamlining theory for microbial ecology. ISME J. 2014;8:1553–65.
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    Buchan A, González JM, Moran MA. Overview of the marine Roseobacter lineage. Appl Environ Microbiol. 2005;71:5665–77.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Luo H, Moran MA. How do divergent ecological strategies emerge among marine bacterioplankton lineages? Trends Microbiol. 2015;23:577–84.
    CAS  PubMed  Article  Google Scholar 

    23.
    Luo H, Moran MA. Evolutionary ecology of the marine Roseobacter clade. Microbiol Mol Biol Rev. 2014;78:573–87.
    PubMed  PubMed Central  Article  Google Scholar 

    24.
    Tujula NA, Crocetti GR, Burke C, Thomas T, Holmström C, Kjelleberg S. Variability and abundance of the epiphytic bacterial community associated with a green marine Ulvacean alga. ISME J. 2010;4:301–11.
    PubMed  Article  Google Scholar 

    25.
    Littman RA, Willis BL, Pfeffer C, Bourne DG. Diversities of coral-associated bacteria differ with location, but not species, for three acroporid corals on the Great Barrier Reef. FEMS Microbiol Ecol. 2009;68:152–63.
    CAS  PubMed  Article  Google Scholar 

    26.
    Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I. The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol. 2007;5:355–62.
    CAS  PubMed  Article  Google Scholar 

    27.
    Sweet MJ, Croquer A, Bythell JC. Bacterial assemblages differ between compartments within the coral holobiont. Coral Reefs. 2011;30:39–52.
    Article  Google Scholar 

    28.
    Crossland CJ, Barnes DJ, Borowitzka MA. Diurnal lipid and mucus production in the staghorn coral Acropora acuminata. Mar Biol. 1980;60:81–90.
    CAS  Article  Google Scholar 

    29.
    Shashar N, Stambler N. Endolithic algae within corals—life in an extreme environment. J Exp Mar Biol Ecol. 1992;163:277–86.
    CAS  Article  Google Scholar 

    30.
    Highsmith RC. Lime-boring algae in hermatypic coral skeletons. J Exp Mar Biol Ecol. 1981;55:267–81.
    Article  Google Scholar 

    31.
    Kühl M, Holst G, Larkum AWD, Ralph PJ. Imaging of oxygen dynamics within the endolithic algal community of the massive coral Porites lobata. J Phycol. 2008;44:541–50.
    PubMed  Article  CAS  Google Scholar 

    32.
    Kalhoefer D, Thole S, Voget S, Lehmann R, Liesegang H, Wollher A, et al. Comparative genome analysis and genome-guided physiological analysis of Roseobacter litoralis. BMC Genomics. 2011;12:324.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Lachnit T, Fischer M, Künzel S, Baines JF, Harder T. Compounds associated with algal surfaces mediate epiphytic colonization of the marine macroalga Fucus vesiculosus. FEMS Microbiol Ecol. 2013;84:411–20.
    CAS  PubMed  Article  Google Scholar 

    34.
    Singh RP, Reddy CRK. Seaweed–microbial interactions: key functions of seaweed-associated bacteria. FEMS Microbiol Ecol. 2014;88:213–30.
    CAS  PubMed  Article  Google Scholar 

    35.
    Khailov KM, Burlakova ZP. Release of dissolved organic matter by marine seaweeds and distribution of their total organic production to inshore communities. Limnol Oceanogr. 1969;14:521–7.
    Article  Google Scholar 

    36.
    Wai TC, Ng JSS, Leung KMY, Dudgeon D, Williams GA. The source and fate of organic matter and the significance of detrital pathways in a tropical coastal ecosystem. Limnol Oceanogr. 2008;53:1479–92.
    CAS  Article  Google Scholar 

    37.
    Braeckman U, Pasotti F, Vázquez S, Zacher K, Hoffmann R, Elvert M, et al. Degradation of macroalgal detritus in shallow coastal Antarctic sediments. Limnol Oceanogr. 2019;64:1423–41.
    CAS  PubMed  PubMed Central  Google Scholar 

    38.
    Moran MA, Belas R, Schell MA, Gonzalez JM, Sun F, Sun S, et al. Ecological genomics of marine roseobacters. Appl Environ Microbiol. 2007;73:4559–69.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Sonnenschein EC, Nielsen KF, D’Alvise P, Porsby CH, Melchiorsen J, Heilmann J, et al. Global occurrence and heterogeneity of the Roseobacter clade species Ruegeria mobilis. ISME J. 2017;11:569–83.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Slightom RN, Buchan A. Surface colonization by marine roseobacters: integrating genotype and phenotype. Appl Environ Microbiol. 2009;75:6027–37.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Thole S, Kalhoefer D, Voget S, Berger M, Engelhardt T, Liesegang H, et al. Phaeobacter gallaeciensis genomes from globally opposite locations reveal high similarity of adaptation to surface life. ISME J. 2012;6:2229–44.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Newton RJ, Griffin LE, Bowles KM, Meile C, Gifford S, Givens CE, et al. Genome characteristics of a generalist marine bacterial lineage. ISME J. 2010;4:784–98.
    CAS  PubMed  Article  Google Scholar 

    43.
    Brinkhoff T, Giebel H-A, Simon M. Diversity, ecology, and genomics of the Roseobacter clade: a short overview. Arch Microbiol. 2008;189:531–9.
    CAS  PubMed  Article  Google Scholar 

    44.
    Luo H, Löytynoja A, Moran MA. Genome content of uncultivated marine Roseobacters in the surface ocean. Environ Microbiol. 2012;14:41–51.
    CAS  PubMed  Article  Google Scholar 

    45.
    Lerat E, Ochman H. Ψ-Φ: Exploring the outer limits of bacterial pseudogenes. Genome Res. 2004;14:2273–8.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Lerat E, Ochman H. Recognizing the pseudogenes in bacterial genomes. Nucleic Acids Res. 2005;33:3125–32.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Kuo C-H, Ochman H. The extinction dynamics of bacterial pseudogenes. PLoS Genet. 2010;6:e1001050.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    48.
    Umezaki I. Ecological studies of Sargassum hemiphyllum C. AGARDH in Obama Bay, Japan Sea. Nippon Suisan Gakkaishi. 1984;50:1677–83.
    Article  Google Scholar 

    49.
    Tam TW, Ang PO. Repeated physical disturbances and the stability of sub-tropical coral communities in Hong Kong. China Aquat Conserv Mar Freshw Ecosyst. 2008;18:1005–24.
    Article  Google Scholar 

    50.
    Cheang CC, Chu KH, Ang PO. Phylogeography of the marine macroalga Sargassum hemiphyllum (Phaeophyceae, Heterokontophyta) in northwestern Pacific. Mol Ecol. 2010;19:2933–48.
    CAS  PubMed  Article  Google Scholar 

    51.
    Raghunathan C, Venkataraman K. Diversity and distribution of corals and their associated fauna of Rani Jhansi Marine National Park, Andaman and Nicobar Islands. In: Venkataraman K, Raghunathan C, Sivaperuman C, (eds). Ecology of Faunal Communities on the Andaman and Nicobar Islands. Berlin, Heidelberg: Springer; 2012. p. 177–208.
    Google Scholar 

    52.
    Ang PO. Phenology of Sargassum spp. in Tung Ping Chau Marine Park, Hong Kong SAR, China. J Appl Phycol. 2006;18:629–36.
    Article  Google Scholar 

    53.
    Huggett MJ, Apprill A. Coral microbiome database: Integration of sequences reveals high diversity and relatedness of coral-associated microbes. Environ Microbiol Rep. 2019;11:372–85.
    PubMed  Article  Google Scholar 

    54.
    Passel MWJ, van, Marri PR, Ochman H. The emergence and fate of horizontally acquired genes in Escherichia coli. PLoS Comput Biol. 2008;4:e1000059.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    55.
    Ochman H. Distinguishing the ORFs from the ELFs: short bacterial genes and the annotation of genomes. Trends Genet. 2002;18:335–7.
    CAS  PubMed  Article  Google Scholar 

    56.
    Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238.
    PubMed  PubMed Central  Article  Google Scholar 

    57.
    Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.
    CAS  Article  Google Scholar 

    58.
    Schliep KP. Phangorn: phylogenetic analysis in R. Bioinformatics. 2011;27:592–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Liu Y, Harrison PM, Kunin V, Gerstein M. Comprehensive analysis of pseudogenes in prokaryotes: widespread gene decay and failure of putative horizontally transferred genes. Genome Biol. 2004;5:R64.
    PubMed  PubMed Central  Article  Google Scholar 

    60.
    Halldal P. Photosynthetic capacities and photosynthetic action spectra of endozoic algae of the massive coral Favia. Biol Bull. 1968;134:411–24.
    CAS  Article  Google Scholar 

    61.
    Shibata K, Haxo FT. Light transmission and spectral distribution through epi- and endozoic algal layers in the brain coral, Favia. Biol Bull. 1969;136:461–8.
    CAS  Article  Google Scholar 

    62.
    Park JT, Uehara T. How bacteria consume their own exoskeletons (turnover and recycling of cell wall peptidoglycan). Microbiol Mol Biol Rev. 2008;72:211–27.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Mauck J, Chan L, Glaser L. Turnover of the cell wall of gram-positive bacteria. J Biol Chem. 1971;246:1820–7.
    CAS  PubMed  Google Scholar 

    64.
    Goodell E. Recycling of murein by Escherichia coli. J Bacteriol. 1985;163:305–10.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Uehara T, Suefuji K, Jaeger T, Mayer C, Park JT. MurQ etherase is required by Escherichia coli in order to metabolize Anhydro-N-Acetylmuramic acid obtained either from the environment or from its own cell wall. J Bacteriol. 2006;188:1660–2.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Dik DA, Marous DR, Fisher JF, Mobashery S. Lytic transglycosylases: concinnity in concision of the bacterial cell wall. Crit Rev Biochem Mol Biol. 2017;52:503–42.
    PubMed  PubMed Central  Article  Google Scholar 

    67.
    Jiang H, Kong R, Xu X. The N-acetylmuramic acid 6-phosphate etherase gene promotes growth and cell differentiation of cyanobacteria under light-limiting conditions. J Bacteriol. 2010;192:2239–45.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Ferrer LM, Szmant AM. Nutrient regeneration by the endolithic community in coral skeletons. In: Proceedings of the 6th International Coral Reef Symposium 1988. pp 1–4.

    69.
    Risk MJ, Muller HR. Porewater in coral heads: evidence for nutrient regeneration. Limnol Oceanogr. 1983;28:1004–8.
    Article  Google Scholar 

    70.
    Yu LJ, Wu JR, Zheng ZZ, Lin CC, Zhan XB. Changes in gene transcription and protein expression involved in the response of Agrobacterium sp. ATCC 31749 to nitrogen availability during curdlan production. Appl Biochem Microbiol. 2011;47:487–93.
    CAS  Article  Google Scholar 

    71.
    Wada S, Aoki M, Mikami A, Komatsu T, Tsuchiya Y, Sato T, et al. Bioavailability of macroalgal dissolved organic matter in seawater. Mar Ecol Prog Ser. 2008;370:33–44.
    CAS  Article  Google Scholar 

    72.
    Essenberg MK, Cooper RA. Two ribose-5-phosphate isomerases from Escherichia coli K12: partial characterisation of the enzymes and consideration of their possible physiological roles. Eur J Biochem. 1975;55:323–32.
    CAS  PubMed  Article  Google Scholar 

    73.
    Nelson CE, Goldberg SJ, Wegley Kelly L, Haas AF, Smith JE, Rohwer F, et al. Coral and macroalgal exudates vary in neutral sugar composition and differentially enrich reef bacterioplankton lineages. ISME J. 2013;7:962–79.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Mulligan C, Fischer M, Thomas GH. Tripartite ATP-independent periplasmic (TRAP) transporters in bacteria and archaea. FEMS Microbiol Rev. 2011;35:68–86.
    CAS  PubMed  Article  Google Scholar 

    75.
    Beyenbach KW, Wieczorek H. The V-type H+ ATPase: molecular structure and function, physiological roles and regulation. J Exp Biol. 2006;209:577–89.
    CAS  PubMed  Article  Google Scholar 

    76.
    Guadayol Ò, Silbiger NJ, Donahue MJ, Thomas FIM. Patterns in temporal variability of temperature, oxygen and pH along an environmental gradient in a coral reef. PLoS One. 2014;9:e85213.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    77.
    Bodenmiller DM, Spiro S. The yjeB(nsrR) gene of Escherichia coli encodes a nitric oxide-sensitive transcriptional regulator. J Bacteriol. 2006;188:874–81.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    78.
    Gilberthorpe NJ, Lee ME, Stevanin TM, Read RC, Poole RK. NsrR: a key regulator circumventing Salmonella enterica serovar Typhimurium oxidative and nitrosative stress in vitro and in IFN-γ-stimulated J774.2 macrophages. Microbiology. 2007;153:1756–71.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    79.
    da Fonseca RR, Johnson WE, O’Brien SJ, Vasconcelos V, Antunes A. Molecular evolution and the role of oxidative stress in the expansion and functional diversification of cytosolic glutathione transferases. BMC Evol Biol. 2010;10:281.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    80.
    Green ER, Mecsas J. Bacterial secretion systems—an overview. Microbiol Spectr. 2016;4:1–32.
    CAS  Article  Google Scholar 

    81.
    Ansari MI, Schiwon K, Malik A, Grohmann E. Biofilm formation by environmental bacteria. In: Malik A, Grohmann E (eds). Environmental protection strategies for sustainable development. 2012. Springer Netherlands, Dordrecht, pp 341–77.

    82.
    Meron D, Efrony R, Johnson WR, Schaefer AL, Morris PJ, Rosenberg E, et al. Role of flagella in virulence of the coral pathogen Vibrio coralliilyticus. Appl Environ Microbiol. 2009;75:5704–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    83.
    Attmannspacher U, Scharf BE, Harshey RM. FliL is essential for swarming: motor rotation in absence of FliL fractures the flagellar rod in swarmer cells of Salmonella enterica. Mol Microbiol. 2008;68:328–41.
    CAS  PubMed  Article  Google Scholar 

    84.
    Fernando SC, Wang J, Sparling K, Garcia GD, Francini-Filho RB, de Moura RL, et al. Microbiota of the major south atlantic reef building coral Mussismilia. Micro Ecol. 2015;69:267–80.
    Article  Google Scholar 

    85.
    Pollock FJ, McMinds R, Smith S, Bourne DG, Willis BL, Medina M, et al. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat Commun. 2018;9:4921.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    86.
    Marcelino VR, van Oppen MJ, Verbruggen H. Highly structured prokaryote communities exist within the skeleton of coral colonies. ISME J. 2018;12:300–3.
    PubMed  Article  Google Scholar 

    87.
    Hill C. Virulence or niche factors: what’s in a name? J Bacteriol. 2012;194:5725–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    88.
    Egan S, Harder T, Burke C, Steinberg P, Kjelleberg S, Thomas T. The seaweed holobiont: understanding seaweed–bacteria interactions. FEMS Microbiol Rev. 2013;37:462–76.
    CAS  PubMed  Article  Google Scholar 

    89.
    Levy A, Salas Gonzalez I, Mittelviefhaus M, Clingenpeel S, Herrera Paredes S, Miao J, et al. Genomic features of bacterial adaptation to plants. Nat Genet. 2018;50:138–50.
    CAS  Article  Google Scholar 

    90.
    Koren O, Rosenberg E. Bacteria associated with mucus and tissues of the coral Oculina patagonica in summer and winter. Appl Environ Microbiol. 2006;72:5254–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    91.
    Wang X, Grus WE, Zhang J. Gene losses during human origins. PLoS Biol. 2006;4:e52.
    PubMed  PubMed Central  Article  CAS  Google Scholar  More

  • in

    Direct interactions with commensal streptococci modify intercellular communication behaviors of Streptococcus mutans

    Inhibition of cell signaling by commensal streptococci
    To study how S. mutans ComRS signaling could be impacted by the presence of a competing species, we empirically optimized a dual-species model system (Fig. 1a) in which a strain of S. mutans carrying the promoter regions of comS or comX (PcomS, PcomX) fused to a codon-optimized green fluorescence protein (gfp) reporter gene could be cocultured with wild-type strains of Streptococcus gordonii DL1, Streptococcus sanguinis SK150, or S. sp. A12. All experiments were performed in chemically defined medium (CDM) [38, 39] because activation of the ComRS circuit occurs spontaneously in CDM as cell density increases, with no need for addition of synthetic XIP or overexpression of the gene for the XIP precursor (comS) (Supplementary Fig. 1). CDM is also heavily buffered with phosphate, which is advantageous because ComRS signaling is optimal at neutral pH values [40, 41]. The buffer also prevents the generation of strongly acidic conditions by S. mutans, which is detrimental to the comparatively acid-sensitive commensal Streptococcus spp.
    Fig. 1: Loss of S. mutans peptide signaling in presence of competitor.

    a An oral Streptococcus spp. competitor strain (blue) was cocultured in chemically defined medium (CDM) with an S. mutans PcomX::gfp reporter strain (green). As cell density of the reporter strain increases during growth, the XIP peptide that originates from the comS gene will be produced and accumulates extracellularly. XIP is then reimported into the cell through the Opp oligopeptide permease, binds to ComR and activates the comX promoter. Additionally, intracellular signaling occurs with ComS binding directly to ComR. The reporter strain harbors a plasmid, pDL278, carrying a copy of gfp that is driven by the comX promoter (PcomX) to monitor ComRS signaling activation. b Cocultures of the S. mutans PcomX::gfp reporter strain grown with either S. mutans UA159 (control, green circles), S. gordonii DL1 (blue squares), S. sanguinis SK150 (orange triangles), or S. sp. A12 (red diamonds). Colored, non-connected symbols represent relative fluorescent units (RFUs) plotted on the left y-axis, while black, connected lines with symbols represent growth of the cocultures over the course of the experiment measured by optical density at 600 nm plotted on the right y-axis. Data are averages from three biological replicates of the experiment. c Percentage of each species remaining within the coculture after 18 h of monitoring, determined by colony forming unit (CFU) plating. The PcomX::gfp reporter strain is represented in the orange bars, while the competitor, listed on the left y-axis, is represented in blue. Average of collected CFUs is shown to the right. Data represent averages from three biological replicates of the experiment that was conducted in panel (b). d Cocultures of the S. mutans PcomX::gfp reporter strain in which 5 µM sXIP was added prior to the start of the experiment. e Cocultures of the S. mutans PcomX::gfp reporter strain that contains a plasmid that overexpresses the XIP peptide precursor, ComS. Control represents the PcomX::gfp reporter that contained an empty vector only.

    Full size image

    When the PcomX::gfp reporter strain was cocultured with wild-type S. mutans UA159 (control), robust ComRS signaling was observed as cell density increased (Fig. 1b). However, when cocultured with a competitor Streptococcus spp., no signal from the S. mutans reporter could be detected above background levels; i.e., the nonspecific fluorescence generated by an S. mutans strain that did not contain a copy of the gfp gene. The lack of fluorescence in the cocultures with commensals was not due to growth inhibition of S. mutans as the reporter strain constituted 10 ± 3%, 37 ± 5%, or 54 ± 3% of the total colony forming units (CFUs) recovered after 18 h of coculturing with S. gordonii DL1, S. sanguinis SK150, or S. sp. A12, respectively (Fig. 1c). The quantity of S. mutans cells in the commensal cocultures compared favorably with the recovery of the reporter strain (54 ± 5%) in coculture with wild-type S. mutans UA159. Of note, the fact that equal proportions of reporter and wild-type S. mutans were recovered from cocultures demonstrated that the presence of the GFP gene fusion did not compromise the fitness of the reporter strain, further verified by growth rate comparisons between wild-type and reporter strains (Supplementary Fig. 1).
    Two strategies were implemented to try to recover active ComRS signaling by the reporter strain during cocultivation with commensal streptococci. First, synthetic XIP was added to the cocultures to a final concentration of 5 µM just prior to the beginning of the fluorescence monitoring phase of the experiments, and cocultures were observed as above. No detectable fluorescence signal was recorded above background in the cocultures, with or without exogenously added XIP (Fig. 1d). Second, a plasmid encoding a copy of the XIP precursor comS under the control of a highly expressed constitutive promoter (P23) [42] was introduced into the S. mutans reporter strain; we previously reported that overexpression of comS could strongly activate PcomX [28]. However, no increase in GFP expression was observed in cocultures of the comS overexpressing strain with the commensals, whereas signaling was greatly enhanced when cocultured with strain UA159 as a control (Fig. 1e).
    To ensure these observations were not limited to only planktonic growth conditions, we examined S. mutans ComRS signaling in cocultured biofilm populations. While almost all cells harboring the PcomX::gfp reporter were GFP-positive in the control biofilms (coculture of the reporter with wild-type S. mutans), confocal imaging of biofilms containing competitor streptococci uniformly showed that almost no S. mutans cells were expressing detectable GFP (Fig. 2a). However, in some frames (0.22 × 0.22 mm frames, ~30,000 S. mutans cells per frame), a small number of cells (1–3 cells per frame) were GFP-positive. When 3D renderings of these areas within the biofilm were constructed, GFP-positive cells were found close to the substratum (Fig. 2b and Movie S1, same area of biofilm as top panel of Fig. 2b). Also, PcomX-active cells were not necessarily confined to distinct S. mutans microcolonies, and in some cases could be seen adjacent to the competitor streptococci, which carried a constitutively expressed red fluorescent protein (DsRed2) for their identification. To quantify the different types of cells in the biofilm populations, we physically dispersed the biofilms by sonication and analyzed the populations by flow cytometry (Supplementary Fig. 2). About 1 in 10,000 S. mutans cells counted displayed activation of PcomX within the biofilms, which was similar to the proportions of GFP-expressing cells in planktonic growth conditions (Supplemental Table 1).
    Fig. 2: S. mutans peptide signaling in coculture biofilms.

    a 3D volume projections of imaged biofilms in the XY-orientation (from the top looking down). Each biofilm contains either S. mutans UA159 with a constitutive gfp reporter plasmid (top row), or the PcomX::gfp reporter plasmid (bottom row) that was cocultured with either S. mutans (control; left), S. gordonii DL1 (middle), or S. sp. A12 (right) who all constitutively produce DsRed2. To the right of each expanded color image is the black and white image capture of each individual channel: blue (top), green (middle), and red (bottom). b Zoomed image frames of PcomX-active cells within cocultured biofilms with S. gordonii DL1. The images captured are a single z plane near or at the biofilm substratum. Two different areas of the biofilm (top and bottom rows) were imaged. Each panel represents one color channel of blue (SYTO 42 stained; total cells), green (PcomX::gfp positive cells), or red (S. gordonii P23::DsRed2) followed by the merged image on the far right. The top panel of (b) is the same area of biofilm shown in Movie S1.

    Full size image

    Commensal signaling inhibition is dependent on cell contact
    Changes in phenotypes that are observed when two different species of bacteria are cocultured can usually be induced by secreted molecules from one of the bacterial strains [1]. We suspected that molecule(s) secreted by the competitor strains are required for shutting down cell–cell signaling in S. mutans. To explore this hypothesis, we cultured the competitors individually overnight and collected the supernatant fluids after centrifugation. The supernates were then filter sterilized, pH adjusted from ~6.3 to 7.0 with NaOH, and carbohydrate was added back to achieve a final concentration of added glucose to 20 mM. We then inoculated our reporter strain into the commensal supernates and monitored fluorescence activity (Fig. 3a). Surprisingly, ComRS signaling was readily observed in all supernates. In fact, reporter activity tended to be higher in the supernates of competitors compared to controls.
    Fig. 3: Cell contact dependence in signaling inhibition.

    a Growth and fluorescence of S. mutans PcomX::gfp reporter strain in spent supernatant fluids of either S. mutans UA159 (control, green circles), S. gordonii DL1 (blue squares), S. sanguinis SK150 (orange triangles), or S. sp. A12 (red diamonds). Depiction on top shows methods used to treat supernatant fluids following harvesting and prior to reporter strain inoculation. Overnight cultures of selected strains where centrifuged, spent supernates removed, filter sterilized, the pH was adjusted to 7.0 and 20 mM additional glucose was added. The PcomX::gfp reporter strain was then inoculated and monitored for 18 h in a Synergy 2 multimode plate reader. b Growth of cocultures in a transwell apparatus. The PcomX::gfp reporter strain was first inoculated in 0.1 mL of CDM medium in a 96-well microtiter plate. The transwell plate was then overlaid on top of the 96-well plate, and 0.1 mL of CDM inoculated with either S. mutans UA159 (control, green circles), S. gordonii DL1 (blue squares), S. sanguinis SK150 (orange triangles), or S. sp. A12 (red diamonds) was added to the top chamber, as shown. Cultures of the reporter strain and competitor were separated by a 0.4 µM pore size polycarbonate filter membrane. Fluorescence (RFUs) of the reporter strain was monitored for 18 h.

    Full size image

    In another experiment to confirm these results, we grew competitor and our reporter strains together in a transwell apparatus, so that both bacterial strains shared the same growth medium, but were physically separated by 0.4 µm pore size polycarbonate membrane that would allow passage of small molecule(s) between the chambers (Fig. 3b). Even in the transwell system, cell signaling was robust in cocultures containing competitor species. This result is consistent with data showing that the proximity of live commensal cells with S. mutans prior to signal activation is required for the signaling inhibition.
    Impairment of S. mutans cell signaling by oral commensals is conserved across species
    We next screened a collection of low-passage oral streptococci that had been previously genome sequenced [43] to determine whether the ability to inhibit S. mutans ComRS signaling was conserved across commensal species and to assess whether the presence or absence of certain genes might contribute to inhibition of peptide signaling. Ten different low-passage clinical isolates of S. gordonii, ten isolates of S. sanguinis, and five isolates of S. sp. A12-related organisms [19] were cocultured with our S. mutans ComRS signaling reporter. The S. sp. A12-related organisms included strains classified as A12-like (A13 and BCC21), as Streptococcus australis (G1 and G2), or as Streptococcus parasanguinis (A1). Interestingly, significant production of GFP by S. mutans was evident when cultured with one isolate of S. sanguinis (BCC64) and with three isolates that were classified as A12-related (BCC21, G1 and G2) (Fig. 4a). However, these results were most likely due to the inability of these isolates to grow well within the CDM medium during the course of the experiment (Supplementary Fig. 3). In fact, after 18 h of monitoring, these isolates comprised  0.1 after 12 h as monitored using a Bioscreen system, see Supplementary Fig. 3) inhibited PcomX activation. Thus, if a commensal strain could grow in CDM, even somewhat poorly, it could completely inhibit ComRS signaling.
    Fig. 4: Conservation of ComRS signaling antagonism across oral isolates.

    a Relative fluorescent units (RFUs) of the S. mutans PcomX::gfp reporter strain cocultured with clinical oral isolates of either S. gordonii, S. sanguinis or S. sp. A12-like strains. Relative fluorescent units were recorded after coculture inoculation at 1:1 ratio and 12 h of incubation at 37 °C. Results from four biological replicates of the experiment are shown. b RFUs after 12 h of incubation of the PcomX::gfp reporter harbored in various S. mutans clinical isolates. The PcomX::gfp reporter strain was cocultured with either S. mutans UA159 (control; black dots and bars) or an oral competitor streptococci (S. sp. A12, red dots and bars).

    Full size image

    We also tested several genomically and phenotypically diverse isolates of S. mutans [44, 45], both in coculture with our PcomX::gfp reporter in the UA159 background (Supplementary Fig. 4) and against competitor Streptococcus spp., after transformation of the S. mutans strains with the PcomX reporter plasmid (Fig. 4b). Various levels of spontaneous activation of the PcomX::gfp reporter were observed among the different S. mutans strains in monocultures in CDM, consistent with recent reports showing strain-dependent differences in S. mutans peptide signaling [46]. One isolate, Smu107 (R221), had undetectable levels of GFP in monoculture in CDM alone. All others showed activity above baseline. However, when cocultured with S. sp. A12, ComRS signaling was inhibited to an extent similar to that observed with strain wild-type UA159. Therefore, the ability to obstruct ComRS signaling is conserved among isolates of S. gordonii, S. sanguinis, and A12-related streptococci, and inhibition by commensals is similarly conserved in genomically diverse isolates of S. mutans.
    Relatively small proportions of live commensal streptococci can inhibit signaling
    To verify that the ability of the competitor species to grow (viability) was required for inhibition of peptide signaling, we used two different treatments of the competitor species S. sp. A12 after it was grown to mid-exponential phase: 80 °C for 0.5 h in a heating block (Fig. 5a) or treatment with 4% paraformaldehyde for 1 h at ambient temperature (Fig. 5b). After treatment, the inactivated commensal cells were washed and resuspended in fresh CDM and then mixed with the S. mutans reporter strain to begin the experiment. With heat-treated cells, some ComRS signal activity was evident, but not near the levels seen with S. mutans-only controls. However, when the paraformaldehyde-treated cells were used, the competitor did not inhibit signaling and fluorescence, with levels being similar to the S. mutans-only control. Importantly, we determined that there was a greater number of live cells, by plating and counting CFUs, for the competitor after heat treatment, compared to paraformaldehyde fixing (Supplementary Fig. 5), which likely explains the difference in effects on PcomX activation. These results support that metabolically active and growing competitors are required for S. mutans ComRS signaling obstruction.
    Fig. 5: Importance of oral competitor cell density in signaling inhibition.

    Cocultures of the S. mutans PcomX::gfp reporter strain with untreated or treated cells by either a 0.5 h heat inactivation at 80 °C or b 1 h suspension in 4% paraformaldehyde. Data represent averages from three biological replicates. c Dilution of an oral competitor streptococci (S. sp. A12) in coculture with the S. mutans PcomX::gfp reporter strain. Legend (top left) refers to the amount of S. sp. A12 within the coculture at the time of initial inoculation. Bottom: addition of either control (UA159; blue squares) or an oral competitor streptococci (S. gordonii DL1; orange triangles) at 4.5 h to a growing culture of the S. mutans PcomX::gfp strain when competence activation was d fully detected, e beginning to be detected, or f not yet detected. See Supplementary Fig. 7 for comparisons at 4.5 and 12 h, specifically.

    Full size image

    Based on the intermediate inhibitory effects seen with reduced proportions of a live competitor on our reporter strain, i.e. with heat-treated cells, we tested whether some minimal proportion of live competitor was required to exert effects on ComRS signaling. We utilized S. sp. A12 and varied the percentage of S. mutans and S. sp. A12 in the cocultures, after determining that the proportions of cells recovered after 18 h were similar to the proportions in the initial inocula (Supplementary Fig. 6). Complete inhibition of S. mutans ComRS signaling occurred when S. sp. A12 constituted ≥6.3% of the initial inoculum (Fig. 5c). At 3.1 or 1.6% of S. sp. A12, reporter activity was detectable, but at lower levels than when no S. sp. A12 was present. No difference in S. mutans reporter activity was observed when  More

  • in

    The grim truth behind eyewitness accounts of sea serpents

    Hundreds of people in the nineteenth-century United States reported seeing the Gloucester Sea Serpent (above), which was probably a marine creature bedecked with fishing debris. Credit: Museum of Fine Arts, Boston

    Fisheries
    30 September 2020

    Centuries-old ‘unidentified marine objects’ hint that sea creatures have been getting entangled in fishing lines since before the invention of plastic.

    ‘Sea serpents’ spotted around Great Britain and Ireland in the nineteenth century were probably whales and other marine animals ensnared in fishing gear — long before the advent of the plastic equipment usually blamed for such entanglements.
    The snaring of sea creatures in fishing equipment is often considered a modern phenomenon, because the hemp and cotton ropes used in the past degraded more quickly than their plastic counterparts. But Robert France at Dalhousie University in Truro, Canada, identified 51 probable entanglements near Great Britain and Ireland dating as far back as 1809.
    France analysed 214 accounts of ‘unidentified marine objects’ from the early nineteenth century to 2000, looking for observations of a monster that had impressive length, a series of humps protruding above the sea surface and a fast, undulating movement through the water. France says that such accounts describe not sea serpents but whales, basking sharks (Cetorhinus maximus) or other marine animals trailing fishing gear such as buoys or other floats.
    Such first-hand accounts could help researchers to construct a better picture of historical populations of marine species and the pressures they faced, France says. More

  • in

    Three questions to ask before using model outputs for decision support

    Models are developed for a specific purpose and by the need to address certain questions about real systems. Models therefore focus on aspects of the real system that are considered important in answering these questions. Consequently, different models exist for the same system. Without knowing its purpose, it is impossible to assess whether a model’s outputs can be used to support decisions affecting the real world.
    Model purposes fall into three main categories: demonstration, understanding, and prediction. Given these different purposes, models also reflect different scopes. Models for demonstration are designed to explore ideas, demonstrate the consequences of certain assumptions, and thereby help communicate key concepts and mechanisms. For example, at the onset of the Covid-19 pandemic simple mathematical models were used to demonstrate how lowering the basic reproduction value, R0, would lead to “flattening the curve” of infections over time. This is an important logical prediction that helped to make key decisions, but it does not, and cannot, say anything about how effective interventions like social distancing are in reducing R0.
    Models for understanding are aimed at exploring how different components of a system interact to shape observed behavior of real systems. For example, a model can mechanistically represent movement and contact rates of individuals. The model can be run to let R0 emerge and then explore how R0 changes with interventions such as social distancing. Such models are not necessarily numerically precise, but they provide mechanistic understanding that helps to evaluate the consequences of alternative management measures.
    Finally, models for prediction focus on numerical precision. They tend to be more detailed and complex and rely heavily on data for calibration. Their ability to make future projections therefore depends on the quality of data used for model calibration. Such models still do not predict the future with precision, as this is impossible11, but they provide important estimates of alternative future scenarios12.
    Decision makers can benefit from all three types of models if they use them according to their given purpose. Modelers should therefore state a model’s purpose clearly and upfront. By asking this first screening question, one of the most common misuses of models can be prevented: using them for purposes for which they were not designed13. More

  • in

    Extensive new Anopheles cryptic species involved in human malaria transmission in western Kenya

    Overview of molecular determination of Anopheles species
    Out of the 3556 Anopheles mosquitoes, 87.1% (3099/3556) were determined by species-specific PCRs or multiplex-PCRs and sequencing as major species An. gambiae sensu stricto (hereafter referred to as An. gambiae) (1440), An. arabiensis (718), and An. funestus sensu stricto (hereafter referred to as An. funestus) (941) in the five study sites (Fig. 1, Table 1, Supplementary Fig. S1). A subset of 21 randomly selected individuals from each major species identified by PCRs were confirmed by ITS2 sequencing based on similarity ( > 98%) to the sequences of anopheline voucher species retrieved from NCBI GenBank database (Supplementary Fig. S2).
    Figure 1

    Maps of sampling sites and Anopheles species distribution in western Kenya. (a) distribution of Anopheles major species; (b) distribution of Anopheles rare species. Pie-chart showed the abundance of Anopheles specimens for each site. The maps were generated using ArcGIS Pro 2.6 software. Map source: ESRI, CGIAR, and USGS (available at: www.esri.com).

    Full size image

    Table 1 Species composition of Anopheles mosquitoes determined by molecular approaches in western Kenya.
    Full size table

    The remaining 457 collected anophelines (12.9%) were classified into 18 rare species groups based on ITS2 sequence homology. Except for two species groups (An. sp.18 and An. sp.19), the ITS2 sequences of all the species were identified as different species based on their similarity ( > 98%) to the sequences of Anopheles voucher species retrieved from NCBI GenBank database (Supplementary Fig. S2). The ITS2 sequences of two species could not match with similarity  > 98% threshold to reference anopheline sequences or known vector species in GenBank databases, suggesting the existence of novel cryptic species.
    Pairwise comparison of ITS2 sequence similarities of the 21 Anopheles species indicated that except for one pair with 98.5% identity between An. gambiae and An. arabiensis, all pairs showed a similarity of 90% or less with confirmed species classifications (Supplementary Table S1). Phylogenetic tree analysis indicated that the 21 species belong to two different Subgenus (Subgenus Cellia Theobald and Subgenus Anopheles Meigen) in five species series groups, including Myzomyia, Neocellia, Pyretophorus, Cellia, and Myzorhynchus series (Fig. 2, Supplementary Table S2). The two new species An. sp.18 and An. sp.19 as well as An. sp.17 (a recently reported species13) belong to two different series groups, and An. sp.18 belongs to a different Subgenus (Subgenus Anopheles Meigen). The ITS2 sequence of An. sp.9 is homogenous with that of An. theileri (GenBank acc. JN994151) and An. sp. 9 BSL-2014 (GenBank acc. KJ522821)14. The ITS2 sequences obtained in the study are available in GenBank with accession numbers: MT408564-MT408584.
    Figure 2

    Molecular phylogenetic analysis of ITS2 sequences by Maximum Likelihood method. The phylogenetic tree was constructed using MEGA 7.0 software based on the Kimura 2-parameter model with 1000 bootstrap replicates. Pink filled diamonds showed the major species; red filled circles indicated the novel cryptic species tested positive for Plasmodium infections.

    Full size image

    Comparison of morphological and molecular identifications
    Of the 3556 mosquitoes tested, 3226 (90.7%) samples with available morphological data were used to evaluate the accuracy of morphological identification as compared to molecular identification. Among the 3226 mosquito samples, 2192 (67.9%) individuals were morphologically identified as An. gambiae s.l., 938 (29.1%) as An. funestus, 94 (2.9%) as An. coustani, and the remaining 2 (0.1%) as An. pharoensis (Table 2). The An. gambiae s.l. complex and An. funestus group (An. funestus, An. cf.rivulorum, and An. leesoni) had a similar percentage of matches (gambiae complex: 85.8%, 1881/2192, funestus group: 85.2%, 799/938) between molecular assay and morphological identification, while only 53.2% of specimens morphologically identified as An. coustani were confirmed by the molecular assay (50/94). Based on molecular assays, An. gambiae s.l. complex had the lowest misidentification (4.3%), followed by An. funestus group (6.8%), while 18.0% (11/61) An. coustani specimens were morphologically misidentified as An. gambiae complex (9) or An. funestus (2). Based on morphological identification, less than 15% of specimens morphologically assigned to An. gambiae complex (14.2%) or An. funestus group (14.8%) were identified as other species, while there were 44 specimens morphologically assigned to An. coustani (46.8%) that were classified by molecular assay into 9 anopheline species, including An. rufipes (17), An. funestus (7), and An. gambiae complex (6). Overall, more than 60% (264/427) of the rare species were morphologically misidentified as An. gambiae s.l. Specifically, nearly 20% (81/427) and 7.2% (31/427) of rare species were misidentified as An. funestus and An. coustani, respectively, whereas only 11.7% (50/427) of the rare species were correctly identified as An. coustani. Altogether, 84.0% (2710/3226) identification alignment was observed between the morphological and molecular analysis (Table 2).
    Table 2 Comparison of morphological and molecular identifications in Anopheles mosquitoes from western Kenya.
    Full size table

    Comparison of Anopheles species distributions and diversity
    Overall, the three major species were found in all five study sites but at varying proportions. Anopheles funestus accounted for a large proportion (44.7–98.2%) of species observed throughout the five study sites (Fig. 1A, Table 1). Anopheles gambiae was the predominant species in two highland sites (56.7% in Emutete and 61.3% in Iguhu) and one lowland site (47.73% in Kombewa), whereas An. gambiae was nearly absent in Homa Bay (0.4%), a lowland site, and Kisii (0.6%), a highland site. An. arabiensis, was observed in high proportion in lowland areas (Homa Bay: 70.8% and Kombewa: 24.9%) than in highland areas, which ranged from 1.8% (Emutete) to 5.2% (Iguhu).
    Seventeen of 18 rare species were identified in the highland areas, whereas only six rare species were detected in the lowland areas, suggesting that cryptic species might be more related to the sympatric An. gambiae than An. arabiensis. In lowland sites, the most abundant rare anopheline species was An. sp.15 (n = 17), followed by An. rufipes (n = 14) and An. cf.rivulorum (n = 14), whereas multiple rare species (such as An. christyi, An. sp.1, and An. sp.17) were identified in the highlands (Fig. 1B, Table 1).
    A significantly higher species diversity was observed in the highland areas than in the lowland areas (Shannon index H, t-test, t =  − 6.59, df = 3419, p  More

  • in

    Azure-winged magpies’ decisions to share food are contingent on the presence or absence of food for the recipient

    1.
    Fehr, E. & Fischbacher, U. The nature of human altruism. Nature 425(6960), 785–791. https://doi.org/10.1038/nature02043 (2003).
    ADS  CAS  Article  PubMed  Google Scholar 
    2.
    Hamann, K., Warneken, F., Greenberg, J. R. & Tomasello, M. Collaboration encourages equal sharing in children but not in chimpanzees. Nature 476(7360), 328–331. https://doi.org/10.1038/nature10278 (2011).
    ADS  CAS  Article  PubMed  Google Scholar 

    3.
    Marshall-Pescini, S., Dale, R., Quervel-Chaumette, M. & Range, F. Critical issues in experimental studies of prosociality in non-human species. Anim. Cogn. 19, 679–705 (2016).
    CAS  Article  Google Scholar 

    4.
    Tan, J., Ariely, D. & Hare, B. Bonobos respond prosocially toward members of other groups. Sci. Rep. https://doi.org/10.1038/s41598-017-15320-w (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    5.
    Warneken, F. & Tomasello, M. Altruistic helping in human infants and young chimpanzees. Science 311(5765), 1301–1303. https://doi.org/10.1126/science.1121448 (2006).
    ADS  CAS  Article  PubMed  Google Scholar 

    6.
    Tennie, C., Jensen, K. & Call, J. The nature of prosociality in chimpanzees. Nat. Commun. 7, 13915 (2016).
    ADS  CAS  Article  Google Scholar 

    7.
    Melis, A. P., Engelmann, J. M. & Warneken, F. Chimpanzee helping is real, not a byproduct. Nat. Commun. 9, 615 (2018).
    ADS  Article  Google Scholar 

    8.
    Cronin, K. A. Prosocial behaviour in animals: the influence of social relationships, communication and rewards. Anim. Behav. 84(5), 1085–1093. https://doi.org/10.1016/j.anbehav.2012.08.009 (2012).
    Article  Google Scholar 

    9.
    Hernandez-Lallement, J., van Wingerden, M., Marx, C., Srejic, M. & Kalenscher, T. Rats prefer mutual rewards in a prosocial choice task. Front. Neurosci. https://doi.org/10.3389/fnins.2014.00443 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    10.
    Quervel-Chaumette, M., Dale, R., Marshall-Pescini, S. & Range, F. Familiarity affects other-regarding preferences in pet dogs. Sci. Rep. https://doi.org/10.1038/srep18102 (2016).
    Article  Google Scholar 

    11.
    Duque, J. F., Leichner, W., Ahmann, H. & Stevens, J. R. Mesotocin influences pinyon jay prosociality. Biol. Lett. 14(4), 20180105. https://doi.org/10.1098/rsbl.2018.0105 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    12.
    Horn, L., Scheer, C., Bugnyar, T. & Massen, J. J. M. Proactive prosociality in a cooperatively breeding corvid, the azure-winged magpie (Cyanopica cyana). Biol. Lett. 12(10), 20160649. https://doi.org/10.1098/rsbl.2016.0649 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    13.
    Brucks, D. & von Bayern, A. M. Parrots voluntarily help each other to obtain food rewards. Curr. Biol. 30, 292–297. https://doi.org/10.1016/j.cub.2019.11.030 (2020).
    CAS  Article  PubMed  Google Scholar 

    14.
    Burkart, J. M. et al. The evolutionary origin of human hyper-cooperation. Nat. Commun. 5, 4747. https://doi.org/10.1038/ncomms5747 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    15.
    Feistner, A. T. C. & McGrew, W. C. Food-sharing in primates: a critical review. In Perspectives in Primate Biology (eds Seth, P. K. & Seth, S.) 21–36 (Today & Tomorrow’s Printers and Publishers, New Delhi, 1989).
    Google Scholar 

    16.
    Hames, R. & McCabe, C. Meal sharing among the Ye’kwana. Hum. Nat. 18(1), 1–21. https://doi.org/10.1007/BF02820843 (2007).
    Article  PubMed  Google Scholar 

    17.
    Kaplan, H. et al. Food sharing among ache foragers: tests of explanatory hypotheses [and Comments and Reply]. Curr. Anthropol. 26(2), 223–246. https://doi.org/10.1086/203251 (1985).
    Article  Google Scholar 

    18.
    Isaac, G. L. I. The Harvey lecture series, 1977–1978. Food sharing and human evolution: archaeological evidence from the Plio-Pleistocene of East Africa. J. Anthropol. Res. 34(3), 311–325. https://doi.org/10.1086/jar.34.3.3629782 (1978).
    Article  Google Scholar 

    19.
    Clutton-Brock, T. H. The Evolution of Parental Care (Princeton University Press, Princeton, 1991).
    Google Scholar 

    20.
    Hamilton, W. D. The genetical evolution of social behaviour. I. J. Theor. Biol. 7(1), 1–16. https://doi.org/10.1016/0022-5193(64)90038-4 (1964).
    MathSciNet  CAS  Article  PubMed  Google Scholar 

    21.
    Fruth, B. & Hohmann, G. Food sharing across borders. Hum. Nat. 29, 91–103. https://doi.org/10.1007/s12110-018-9311-9 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    22.
    Jaeggi, A. V., Stevens, J. M. G. & Van Schaik, C. P. Tolerant food sharing and reciprocity is precluded by despotism among bonobos but not chimpanzees. Am. J. Phys. Anthropol. 143(1), 41–51. https://doi.org/10.1002/ajpa.21288 (2010).
    Article  PubMed  Google Scholar 

    23.
    Wittig, R. M. et al. Food sharing is linked to urinary oxytocin levels and bonding in related and unrelated wild chimpanzees. Proc. R. Soc. B Biol. Sci. 281(1778), 20133096–20133096. https://doi.org/10.1098/rspb.2013.3096 (2014).
    Article  Google Scholar 

    24.
    John, M., Duguid, S., Tomasello, M. & Melis, A. P. How chimpanzees (Pan troglodytes) share the spoils with collaborators and bystanders. PLoS ONE 14(9), e0222795 (2019).
    CAS  Article  Google Scholar 

    25.
    Jaeggi, A. V. & Van Schaik, C. P. The evolution of food sharing in primates. Behav. Ecol. Sociobiol. 65(11), 2125–2140. https://doi.org/10.1007/s00265-011-1221-3 (2011).
    Article  Google Scholar 

    26.
    Carter, G. G. & Wilkinson, G. S. Food sharing in vampire bats: Reciprocal help predicts donations more than relatedness or harassment. Proc. R. Soc. B 280(1753), 20122573. https://doi.org/10.1098/rspb.2012.2573 (2013).
    Article  PubMed  Google Scholar 

    27.
    Wright, B. M., Stredulinsky, E. H., Ellis, G. M. & Ford, J. K. B. Kin-directed food sharing promotes lifetime natal philopatry of both sexes in a population of fish-eating killer whales, Orcinus orca. Anim. Behav. 115, 81–95. https://doi.org/10.1016/j.anbehav.2016.02.025 (2016).
    Article  Google Scholar 

    28.
    Boucherie, P. H., Poulin, N. & Dufour, V. Not much ado about something: behavioural mechanisms of pair bond separation and formation in long-term pairing rooks. Ecoscience 25(1), 71–83. https://doi.org/10.1080/11956860.2017.1414671 (2018).
    Article  Google Scholar 

    29.
    de Kort, S. R., Emery, N. J. & Clayton, N. S. Food sharing in jackdaws, Corvus monedula: what, why and with whom?. Anim. Behav. 72(2), 297–304. https://doi.org/10.1016/j.anbehav.2005.10.016 (2006).
    Article  Google Scholar 

    30.
    Duque, J. F. & Stevens, J. R. Voluntary food sharing in pinyon jays: the role of reciprocity and dominance. Anim. Behav. 122, 135–144. https://doi.org/10.1016/j.anbehav.2016.09.020 (2016).
    Article  Google Scholar 

    31.
    Ostojić, L., Shaw, R. C., Cheke, L. G. & Clayton, N. S. Evidence suggesting that desire-state attribution may govern food sharing in Eurasian jays. Proc. Nat. Ac. Sci. USA 110(10), 4123–4128. https://doi.org/10.1073/pnas.1209926110 (2013).
    ADS  Article  Google Scholar 

    32.
    von Bayern, A., de Kort, S., Clayton, N. & Emery, N. The role of food- and object-sharing in the development of social bonds in juvenile jackdaws (Corvus monedula). Behaviour 144(6), 711–733. https://doi.org/10.1163/156853907781347826 (2007).
    Article  Google Scholar 

    33.
    Shaw, R. C., MacKinlay, R. D., Clayton, N. S. & Burns, K. C. Male New Zealand robins (Petroica longipes) cater to their mate’s desire when sharing food in the wild. Sci. Rep. https://doi.org/10.1038/s41598-017-00879-1 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    34.
    Scheid, C., Schmidt, J. & Noë, R. Distinct patterns of food offering and co-feeding in rooks. Anim. Behav. 76(5), 1701–1707. https://doi.org/10.1016/j.anbehav.2008.07.023 (2008).
    Article  Google Scholar 

    35.
    Legg, E. W., Ostojić, L. & Clayton, N. S. Food sharing and social cognition. Wiley Interdiscip. Rev. Cogn. Sci. 6(2), 119–129. https://doi.org/10.1002/wcs.1329 (2015).
    Article  PubMed  Google Scholar 

    36.
    Jaeggi, A. V. & Gurven, M. Reciprocity explains food sharing in humans and other primates independent of kin selection and tolerated scrounging: a phylogenetic meta-analysis. Proc. R. Soc. B Biol. Sci. 280(1768), 20131615–20131615. https://doi.org/10.1098/rspb.2013.1615 (2013).
    Article  Google Scholar 

    37.
    Samuni, L. et al. Social bonds facilitate cooperative resource sharing in wild chimpanzees. Proc. R. Soc. B 285(1888), 20181643. https://doi.org/10.1098/rspb.2018.1643 (2018).
    Article  PubMed  Google Scholar 

    38.
    Brosnan, S. F. & de Waal, F. B. M. A proximate perspective on reciprocal altruism. Hum. Nat. 13(1), 129–152. https://doi.org/10.1007/s12110-002-1017-2 (2002).
    Article  PubMed  Google Scholar 

    39.
    de Waal, F. B. M. & Luttrell, L. M. Mechanisms of social reciprocity in three primate species: symmetrical relationship characteristics or cognition?. Ethol. Sociobiol. 9(2–4), 101–118. https://doi.org/10.1016/0162-3095(88)90016-7 (1988).
    Article  Google Scholar 

    40.
    Schino, G. & Aureli, F. Primate reciprocity and its cognitive requirements. Evol. Anthropol. 19(4), 130–135. https://doi.org/10.1002/evan.20270 (2010).
    Article  Google Scholar 

    41.
    Stevens, J. R. & Hauser, M. D. Why be nice? Psychological constraints on the evolution of cooperation. Trends Cogn. Sci. 8(2), 60–65. https://doi.org/10.1016/j.tics.2003.12.003 (2004).
    Article  PubMed  Google Scholar 

    42.
    Massen, J. J. M., Behrens, F., Martin, J. S., Stocker, M. & Brosnan, S. F. A comparative approach to affect and cooperative decision-making. Neurosci. Biobehav. Rev. 107, 370–387 (2019).
    Article  Google Scholar 

    43.
    Melis, A. P. et al. Chimpanzees help conspecifics obtain food and non-food items. Proc. R. Soc. B Biol. Sci. 278(1710), 1405–1413. https://doi.org/10.1098/rspb.2010.1735 (2011).
    Article  Google Scholar 

    44.
    Yamamoto, S., Humle, T. & Tanaka, M. Chimpanzees’ flexible targeted helping based on an understanding of conspecifics’ goals. Proc. Nat. Ac. Sci. USA 109(9), 3588–3592. https://doi.org/10.1073/pnas.1108517109 (2012).
    ADS  Article  Google Scholar 

    45.
    Yamamoto, S., Humle, T. & Tanaka, M. Chimpanzees help each other upon request. PLoS ONE 4(10), e7416. https://doi.org/10.1371/journal.pone.0007416 (2009).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    46.
    Horner, V., Carter, J. D., Suchak, M. & de Waal, F. B. M. Spontaneous prosocial choice by chimpanzees. Proc. Nat. Ac. Sci. USA 108(33), 13847–13851. https://doi.org/10.1073/pnas.1111088108 (2011).
    ADS  CAS  Article  Google Scholar 

    47.
    Liebal, K. & Rossano, F. The give and take of food sharing in Sumatran orang-utans, Pongo abelii, and chimpanzees, Pan troglodytes. Anim. Behav. 133, 91–100. https://doi.org/10.1016/j.anbehav.2017.09.006 (2017).
    Article  Google Scholar 

    48.
    Liebal, K., Vaish, A., Haun, D. & Tomasello, M. Does sympathy motivate prosocial behaviour in great apes?. PLoS ONE 9(1), e84299 (2014).
    ADS  Article  Google Scholar 

    49.
    Vaish, A., Carpenter, M. & Tomasello, M. Sympathy through affective perspective taking and its relation to prosocial behavior in toddlers. Dev. Psychol. 45(2), 534–543. https://doi.org/10.1037/a0014322 (2009).
    Article  PubMed  Google Scholar 

    50.
    Kopp, K. S. & Liebal, K. Here you are!—Selective and active food sharing within and between groups in captive Sumatran orangutans (Pongo abelii). Behav. Ecol. Sociobiol. 70(8), 1219–1233. https://doi.org/10.1007/s00265-016-2130-2 (2016).
    Article  Google Scholar 

    51.
    Dufour, V., Pelé, M., Neumann, M., Thierry, B. & Call, J. Calculated reciprocity after all: computation behind token transfer in orang-utans. Biol. Lett. 5, 172–175 (2009).
    CAS  Article  Google Scholar 

    52.
    Dennett, D. C. Intentional systems in cognitive ethology: The “Panglossian paradigm” defended. Behav. Brain Sci. 6(3), 343–355. https://doi.org/10.1017/S0140525X00016393 (1983).
    Article  Google Scholar 

    53.
    Wrangham, R. W. Behavioural ecology of chimpanzees in Gombe National Park, Tanzania(Doctoral thesis)https://doi.org/https://doi.org/10.17863/CAM.16415 (1975).

    54.
    Stevens, J. R. & Stephens, D. W. Food sharing: A model of manipulation by harassment. Behav. Ecol. 13(3), 393–400 (2002).
    Article  Google Scholar 

    55.
    Komeda, S., Yamagishi, S. & Fujioka, M. Cooperative breeding in azure-winged magpies, Cyanopica cyana, living in a region of heavy snowfall. Condor 89(4), 835. https://doi.org/10.2307/1368532 (1987).
    Article  Google Scholar 

    56.
    Bayandonoi, G. Cooperative breeding and anti-predator strategies of the azure-winged magpie (Cyanopica cyanus Pallas, 1776) in northern Mongolia. PhD-thesis, Georg-August_university Göttingen, Germany (2016).

    57.
    Ren, Q.-M. et al. Helper effects in the azure-winged magpie Cyanopica cyana in relation to highly-clumped nesting pattern and high frequency of conspecific nest-raiding. J. Avian Biol. 47(4), 449–456. https://doi.org/10.1111/jav.00783 (2016).
    Article  Google Scholar 

    58.
    Wang, L. et al. Azure-winged magpies solve string-pulling tasks by partial understanding of the physical cognition. Curr. Zool. 65, 385–392. https://doi.org/10.1093/cz/zoy070 (2019).
    Article  PubMed  Google Scholar 

    59.
    Bond, A. B., Wei, C. A. & Kamil, A. C. Cognitive representation in transitive inference: a comparison of four corvid species. Behav. Process. 85(3), 283–292. https://doi.org/10.1016/j.beproc.2010.08.003 (2010).
    Article  Google Scholar 

    60.
    de Buchanan, K. L. et al. Guidelines for the treatment of animals in behavioural research and teaching. Anim. Behav. 83, 301–309 (2012).
    Article  Google Scholar 

    61.
    Madge, S. & Burn, H. Crows and Jays. A Guide to the Crows, Jays and Magpies of the World (Bloomsburry Publishing Plc, London, 2013).
    Google Scholar 

    62.
    Massen, J. J. M., Sterck, E. & de Vos, H. Close social associations in animals and humans: functions and mechanisms of friendship. Behaviour 147(11), 1379–1412. https://doi.org/10.1163/000579510X528224 (2010).
    Article  Google Scholar 

    63.
    Massen, J. J. M., Ritter, C. & Bugnyar, T. Tolerance and reward equity predict cooperation in ravens (Corvus corax). Sci. Rep. https://doi.org/10.1038/srep15021 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    64.
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48 (2015).
    Article  Google Scholar 

    65.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, URL https://www.R-project.org/ (2013).

    66.
    Massen, J. J. M., Bauer, L., Spurny, B., Bugnyar, T. & Kret, M. E. Sharing of science is most likely among male scientists. Sci. Rep. 7, 12927. https://doi.org/10.1038/s41598-017-13491-0 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    67.
    Guerreiro Martins, E. M., Moura, A. C. d. A., Finkenwirth, C., Griesser, M., & Burkart, J. M. Food sharing patterns in three species of callitrichid monkeys (Callithrix jacchus, Leontopithecus chrysomelas, Saguinus midas): Individual and species differences.J. Comp. Psychol. Advance online publication (2019).

    68.
    Fraser, O. N. & Bugnyar, T. The quality of social relationships in ravens. Anim. Behav. 79(4), 927–933 (2010).
    Article  Google Scholar 

    69.
    Miyazawa, E., Seguchi, A., Takahashi, N., Motai, A. & Izawa, E. I. Different patterns of allopreening in the same-sex and opposite-sex interactions of juvenile large-billed crows (Corvus macrorhynchos). Ethology 126(2), 195–206 (2020).
    Article  Google Scholar 

    70.
    Morales Picard, A. et al. Why preen others? Predictors of allopreening in parrots and corvids and comparisons to grooming in great apes. Ethology 126(2), 207–228 (2020).
    Article  Google Scholar 

    71.
    Hattori, Y., Leimgruber, K., Fujita, K. & De Waal, F. B. M. Food-related tolerance in capuchin monkeys (Cebus apella) varies with knowledge of the partner’s previous food-consumption. Behaviour 149, 171–185 (2012).
    Article  Google Scholar 

    72.
    Massen, J. J. M., van den Berg, L. M., Spruijt, B. M. & Sterck, E. H. M. Generous leaders and selfish underdogs: pro-sociality in despotic macaques. PLoS ONE 5(3), e9734 (2010).
    ADS  Article  Google Scholar 

    73.
    Rilling, J. K. et al. Sex differences in the neural and behavioral response to intranasal oxytocin and vasopressin during human social interaction. Psychoneuroendocrinology 39, 237–248 (2014).
    CAS  Article  Google Scholar  More

  • in

    Thermal melanism explains macroevolutionary variation of dorsal pigmentation in Eurasian vipers

    1.
    Caro, T., Merilaita, S. & Stevens, M. The Colours of animals: from Wallace to the present day I. Cryptic coloration. In Natural Selection and Beyond, pp 125–143 (eds Smith, C. H. & Beccaloni, G.) (Oxford University Press, Oxford, 2008).
    Google Scholar 
    2.
    Ruxton, G. D., Sherratt, T. N. & Speed, M. P. Avoiding Attack (Oxford University Press, Oxford, 2004).
    Google Scholar 

    3.
    Protas, M. E. & Patel, N. H. Evolution of coloration patterns. Annu. Rev. Cell Dev. Biol. 24, 425–446 (2008).
    CAS  PubMed  Article  Google Scholar 

    4.
    Stevens, M. & Ruxton, G. D. Linking the evolution and form of warning coloration in nature. Proc. R. Soc. B 279, 417–426 (2011).
    PubMed  Article  Google Scholar 

    5.
    Clusella-Trullas, S., van Wyk, J. H. & Spotila, J. R. Thermal melanism in ectotherms. J. Therm. Biol. 32, 235–245 (2007).
    Article  Google Scholar 

    6.
    Clusella-Trullas, S., Terblanche, J. S., Blackburn, T. M. & Chown, S. L. Testing the thermal melanism hypothesis: a macrophysiological approach. Funct. Ecol. 22, 232–238 (2008).
    Article  Google Scholar 

    7.
    Clusella-Trullas, S., Wyk, J. H. & Spotila, J. R. Thermal benefits of melanism in cordylid lizards: a theoretical and field test. Ecology 90, 2297–2312 (2009).
    PubMed  Article  Google Scholar 

    8.
    Reguera, S., Zamora-Camacho, F. J. & Moreno-Rueda, G. The lizard Psammodromus algirus (Squamata: Lacertidae) is darker at high altitudes. Biol. J. Linn. Soc. 112, 132–141 (2014).
    Article  Google Scholar 

    9.
    King, R. B. Polymorphic populations of the garter snake Thamnophis sirtalis near Lake Erie. Herpetologica 44, 451–458 (1988).
    Google Scholar 

    10.
    Luiselli, L. Reproductive success in melanistic adders: a new hypothesis and some considerations on Andren and Nilson’s (1981) suggestions. Oikos 1992, 601–604 (1992).
    Article  Google Scholar 

    11.
    Capula, M. & Luiselli, L. Reproductive strategies in alpine adders, Vipera berus. The black females bear more often. Acta Oecol. 15, 207–214 (1994).
    Google Scholar 

    12.
    Castella, B. et al. Melanism, body condition and elevational distribution in the asp viper. J. Zool. 290, 273–280 (2013).
    Article  Google Scholar 

    13.
    Andrén, C. & Nilson, G. Reproductive success and risk of predation in normal and melanistic colour morphs of the adder, Vipera berus. Biol. J. Linn. Soc. 15, 235–246 (1981).
    Article  Google Scholar 

    14.
    Forsman, A. Heating rates and body temperature variation in melanistic and zigzag Vipera berus: does colour make a difference? In Annales Zoologici Fennici 365–374 (Finnish Zoological and Botanical Publishing Board, 1995)

    15.
    Martínez-Freiría, F., de Lanuza, G. P., Pimenta, A. A., Pinto, T. & Santos, X. Aposematism and crypsis are not enough to explain dorsal polymorphism in the Iberian adder. Acta Oecol. 85, 165–173 (2017).
    ADS  Article  Google Scholar 

    16.
    Valkonen, J. K., Niskanen, M., Björklund, M. & Mappes, J. Disruption or aposematism? Significance of dorsal zigzag pattern of European vipers. Evol. Ecol. 25, 1047–1063 (2011).
    Article  Google Scholar 

    17.
    Pizzigalli, C. et al. Eco-geographical determinants of the evolution of ornamentation in vipers. Biol. J. Linn. Soc. 130, 345–358 (2020).
    Article  Google Scholar 

    18.
    Valkonen, J. K., Nokelainen, O. & Mappes, J. Antipredatory function of head shape for vipers and their mimics. PLoS ONE 6, e22272 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Santos, X. et al. Phylogeographic and environmental correlates support the cryptic function of the zigzag pattern in a European viper. Evol. Ecol. 28, 611–626 (2014).
    Article  Google Scholar 

    20.
    Phelps, T. Old World Vipers, a Natural History of the Azemiopinae and Viperinae (Edition Chimaira, Frankfurt, 2010).
    Google Scholar 

    21.
    Freitas, I. et al. Evaluating taxonomic inflation: towards evidence-based species delimitation in Eurasian vipers (Serpentes: Viperinae). Amphibia-Reptilia 41, 285–311 (2020).
    Article  Google Scholar 

    22.
    Hansen, T. F. & Orzack, S. H. Assessing current adaptation and phylogenetic inertia as explanations of trait evolution: the need for controlled comparisons. Evolution 59, 2063–2972 (2005).
    PubMed  Google Scholar 

    23.
    Blomberg, S. P., Garland, T. J. & Ives, A. R. Testing for phylogenetic signal in comparative data: behavioural traits are more labile. Evolution 57, 717–745 (2003).
    PubMed  Article  Google Scholar 

    24.
    Herrmann, H. W., Joger, U. & Nilson, G. Phylogeny and systematics of viperine snakes. III: resurrection of the genus Macrovipera (Reuss, 1927) as suggested by biochemical evidence. Amphibia-Reptilia 13, 375–392 (1992).
    Article  Google Scholar 

    25.
    Nilson, G. & Andrén, C. The meadow and steppe vipers of Europe and Asia—the Vipera (Acridophaga) ursinii complex. Acta Zool. Acad. Sci. Hung. 47, 87–267 (2001).
    Google Scholar 

    26.
    Brito, J. C., Santos, X., Pleguezuelos, J. M. & Sillero, N. Inferring evolutionary scenarios with geostatistics and geographical information systems for the viperid snakes Vipera latastei and Vipera monticola. Biol. J. Linn. Soc. 95, 790–806 (2008).
    Article  Google Scholar 

    27.
    Martínez-Freiría, F. & Brito, J. C. Integrating classical and spatial multivariate analyses for assessing morphological variability in the endemic Iberian viper Vipera seoanei. J. Zool. Syst. Evol. Res. 51, 122–131 (2013).
    Article  Google Scholar 

    28.
    Porter, W. P. & Gates, D. M. Thermodynamic equilibria of animals with environment. Ecol. Monogr. 39, 245–270 (1969).
    Article  Google Scholar 

    29.
    Porter, W. P. & Norris, K. S. Lizard reflectivity change and its effect on light transmission through body wall. Science 163, 482–484 (1969).
    ADS  CAS  PubMed  Article  Google Scholar 

    30.
    Byers, J. A. Analysis of insect and plant colors in digital images using java software on the internet. Ann. Entomol. Soc. Am. 99, 865–874 (2006).
    Article  Google Scholar 

    31.
    Badiane, A., Pérez i de Lanuza, G., Carmen García-Custodio, M. D., Carazo, P. & Font, E. Colour patch size and measurement error using reflectance spectrophotometry. Methods Ecol. Evol. 8, 1585–1593 (2017).
    Article  Google Scholar 

    32.
    Olsson, M., Stuart-Fox, D. & Ballen, C. Genetics and evolution of colour patterns in reptiles. In Seminars in Cell and Developmental Biology (Vol. 24, No. 6–7) 529–541 (Academic Press, 2013)

    33.
    Ducrest, A. L. et al. Pro-opiomelanocortin gene and melanin-based colour polymorphism in a reptile. Biol. J. Linn. Soc. 111, 160–168 (2014).
    Article  Google Scholar 

    34.
    King, R. B. Mendelian inheritance of melanism in the garter snake Thamnophis sirtalis. Herpetologica 59, 484–489 (2003).
    Article  Google Scholar 

    35.
    Westphal, M. F. & Morgan, T. J. Quantitative genetics of pigmentation development in two populations of the common garter snake, Thamnophis sirtalis. J. Hered. 101, 573–580 (2010).
    CAS  PubMed  Article  Google Scholar 

    36.
    Martínez-Freiría, F. & Santos, X. Assessing the heritability of dorsal pattern shape in Vipera latastei. Amphibia-Reptilia 36, 313–317 (2015).
    Article  Google Scholar 

    37.
    Lorioux, S. et al. Stage dependence of phenotypical and phenological maternal effects: insight into squamate reptile reproductive strategies. Am. Nat. 182, 223–233 (2013).
    PubMed  Article  Google Scholar 

    38.
    Bonnet, X., Lorioux, S., Brischoux, F. & De Crignis, M. Is melanism adaptive in sea kraits?. Amphibia-Reptilia 29, 1–5 (2008).
    Article  Google Scholar 

    39.
    Martínez-Freiría, F., Santos, X., Pleguezuelos, J. M., Lizana, M. & Brito, J. C. Geographical patterns of morphological variation and environmental correlates in contact zones: a multi-scale approach using two Mediterranean vipers (Serpentes). J. Zool. Syst. Evol. Res. 47, 357–367 (2009).
    Article  Google Scholar 

    40.
    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Lanfear, R., Calcott, B., Ho, S. Y. & Guindon, S. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695–1701 (2012).
    CAS  Article  Google Scholar 

    42.
    Rambaut, A. & Drummond, A. J. Tracer v1.6: MCMC Trace Analyses Tool (University of Edinburgh, Edinburgh, 2007).
    Google Scholar 

    43.
    Stadler, T. TreeSim: Simulating Phylogenetic Trees. R package version 2.4. https://CRAN.R-project.org/package=TreeSim (2019)

    44.
    Stümpel, N. & Joger, U. Recent advances in phylogeny and taxonomy of Near and Middle Eastern Vipers—an update. ZooKeys 31, 179 (2009).
    Article  Google Scholar 

    45.
    Göçmen, B., Mebert, K., Karış, M., Oğuz, M. A. & Ursenbacher, S. A new population and subspecies of the critically endangered Anatolian meadow viper Vipera anatolica Eiselt and Baran, 1970 in eastern Antalya province. Amphibia-Reptilia 38, 289–305 (2017).
    Article  Google Scholar 

    46.
    Mebert, K. et al. Mountain vipers in central-eastern Turkey: huge range extensions for four taxa reshape decades of misleading perspectives. Herpetol. Conserv. Biol. 15, 169–187 (2020).
    Google Scholar 

    47.
    Martínez-Freiría, F. et al. Integrative phylogeographical and ecological analysis reveals multiple Pleistocene refugia for Mediterranean Daboia vipers in north-west Africa. Biol. J. Linn. Soc. 122, 366–384 (2017).
    Article  Google Scholar 

    48.
    Freitas, I., Fahd, S., Velo-Antón, G. & Martínez-Freiría, F. Chasing the phantom: biogeography and conservation of Vipera latastei-monticola in the Maghreb (North Africa). Amphibia-Reptilia 39, 145–161 (2018).
    Article  Google Scholar 

    49.
    Ursenbacher, S. et al. Molecular phylogeography of the nose-horned viper (Vipera ammodytes, Linnaeus (1758)): evidence for high genetic diversity and multiple refugia in the Balkan peninsula. Mol. Phylogenet. Evol. 46, 1116–1128 (2008).
    CAS  PubMed  Article  Google Scholar 

    50.
    Stümpel, N., Rajabizadeh, M., Avcı, A., Wüster, W. & Joger, U. Phylogeny and diversification of mountain vipers (Montivipera, Nilson et al., 2001) triggered by multiple Plio-Pleistocene refugia and high-mountain topography in the Near and Middle East. Mol. Phylogenet. Evol. 101, 336–351 (2016).
    PubMed  Article  Google Scholar 

    51.
    Martínez-Freiría, F. et al. Climatic refugia boosted allopatric diversification in western Mediterranean vipers. J. Biogeogr. https://doi.org/10.1111/jbi.13861 (2020).
    Article  Google Scholar 

    52.
    ESRI. ArcGIS 10.5.1, ArcGIS Pro 2.0, and ArcGIS Earth 1.5 Enterprise Deployment (ESRI, California, 2017).
    Google Scholar 

    53.
    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/ (2019)

    54.
    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    Article  Google Scholar 

    55.
    Collyer, M. L. & Adams, D. C. RRPP: RRPP: an R package for fitting linear models to high-dimensional data using residual randomization. Methods Ecol. Evol. 9, 1772–1779 (2018).
    Article  Google Scholar 

    56.
    Collyer, M. L. & Adams, D. C. RRPP: linear model evaluation with randomized residuals in a permutation procedure. Version 0.4.2.9000. https://CRAN.R-project.org/package=RRPP (2019).

    57.
    Adams, D. C. & Felice, R. N. Assessing trait covariation and morphological integration on phylogenies using evolutionary covariance matrices. PLoS ONE 9, e94335 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    58.
    Adams, D. C., Collyer, M. L. & Kaliontzopoulou, A. geomorph: software for geometric morphometric analyses. R package version 3.1.2. https://cran.r-project.org/package=geomorph (2019).

    59.
    Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2018).
    Article  CAS  Google Scholar 

    60.
    Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER: investigating evolutionary radiations. Bioinformatics 24, 129–131 (2008).
    CAS  PubMed  Article  Google Scholar  More

  • in

    Different organic manure sources and NPK fertilizer on soil chemical properties, growth, yield and quality of okra

    1.
    Gemede, H. F., Ratta, N., Haki, G. D., Woldegiorgis, A. Z. & Beyen, F. Nutritional quality and health benefits of “okra” (Abelmoschus esculentus): A review. Int. J. Nutr. Food Sci. 4(2), 208–215 (2015).
    CAS  Google Scholar 
    2.
    Adekiya, A. O., Aboyeji, C. M., Dunsin, O., Adebiyi, O. V. & Oyinlola, O. T. Effect of urea fertilizer and maize cob ash on soil chemical properties, growth, yield, and mineral composition of okra, Abelmoschus esculentus (L.) Moench. J. Hortic. Res. 26(1), 67–76. https://doi.org/10.2478/johr-2018-0008 (2018).
    CAS  Article  Google Scholar 

    3.
    Oyolu, C. Okra seeds: Potential source of high quality vegetable oil. in Proceedings of 5th Annual Conference Horticulture Society,Nigeria, Nsukka (1983).

    4.
    Adekiya, A. O., Agbede, T. M., Aboyeji, C. M., Dunsin, O. & Ugbe, J. O. Green manures and NPK fertilizer effects on soil properties, growth, yield, mineral and vitamin C composition of okra (Abelmoschus esculentus(L.) Moench). J. Saudi Soc. Agric. Sci. 18, 218–223. https://doi.org/10.1016/j.jssas.2017.05.005 (2019).
    Article  Google Scholar 

    5.
    Oladipo, O. G., Olayinka, A. & Aduayi, E. A. Effects of organic amendments on microbial activity, N and P mineralization in an Alfisol. Environ. Manage. J. 2, 30–40 (2005).
    Google Scholar 

    6.
    Maheswarappa, H. P., Nanjappa, H. V., Hegde, M. R. & Prabhu, S. R. Influence of planting material, plant population and organic manures on yield of East Indian galangal (Kaempferia galanga), soil physico-chemical and biological properties. Indian J. Agron. 44(3), 651–657 (1999).
    Google Scholar 

    7.
    Olowoake, A. A. Influence of organic, mineral and organomineral fertilizers on growth, yield, and soil properties in grain amaranth (Amaranthus cruentus L.). J. Org. 1(1), 39–47 (2014).
    Google Scholar 

    8.
    Agbede, T. M. & Adekiya, A. O. Effect of wood ash, poultry manure and NPK fertilizer on soil and leaf nutrient composition, growth and yield of okra (Abelmoschus esculentus). Emirate J. Food Agric. 24(4), 314–321 (2012).
    Google Scholar 

    9.
    Khandaker, M. M., Jusoh, N., Ralmi, N. H. A. & Ismail, S. Z. The effect of different types of organic fertilizers on growth and yield of Abelmoschus esculentus L. Moench (okra). Bulg. J. Agric. Sci. 23(1), 119–125 (2017).
    Google Scholar 

    10.
    Tiamiyu, R. A., Ahmed, H. G. & Muhammad, A. S. Effect of sources of organic manure on growth and yields of okra (Abelmoschus esculentus L.) in Sokoto, Nigeria. Niger. J. Basic Appl. Sci. 20(3), 213–216 (2012).
    Google Scholar 

    11.
    Fagwalawa, L. D. & Yahaya, S. M. Effect organic manure on the growth and yield of okra. Imperial J. Interdiscipl. Res. 2(3), 130–133 (2016).
    Google Scholar 

    12.
    Akinrinde, E. A. & Obigbesan, G. O. Evaluation of the fertility status of selected soils for crop production in five ecological zones of Nigeria. In Proceedings of the 26th Annual Conference of Soil Science Society of Nigeria (ed. Babalola, O.) 279–288 (University of Agriculture, Ibadan, 2000).
    Google Scholar 

    13.
    Mbah, C. N. & Mbagwu, J. S. C. Effect of organic wastes on physiochemical properties up a dystrice leptosol and maize yield in southeastern—Nigeria. Niger. J. Soil Sci. 16, 96–103 (2006).
    Google Scholar 

    14.
    Adekiya, A. O. Legume mulch materials and poultry manure affect soil properties, and growth and fruit yield of tomato. Agric. Conspect. Sci. 83(2), 161–167 (2018).
    Google Scholar 

    15.
    Agbede, T. M., Adekiya, A. O. & Ogeh, J. S. Response of soil properties and yam yield to Chromolaena odorata (Asteraceae) and Tithonia diversifolia (Asteraceae) mulches. Arch. Agron. Soil Sci. 60(2), 209–224 (2014).
    Google Scholar 

    16.
    Wolf, B. & Snyder, G. H. Sustainable Soils: The Place of Organic Matter in Sustaining Soils and Their Productivity (The Haworth Press Inc., New York, 2003).
    Google Scholar 

    17.
    Togun, A. O., Akanbi, W. B. & Adediran, J. A. Growth, nutrient uptake and yield of tomato in response to different plant residue composts. J. Food Agric. Environ. 2(1), 310–316 (2004).
    Google Scholar 

    18.
    Olaniyi, J. O., Akanbi, W. B., Oladiran, O. A. & Ilupeju, O. T. The effect of organo-mineral and inorganic fertilizers on the growth, fruit yield, quality and chemical compositions of Okra. J. Anim. Plant Sci. 1, 1135–1140 (2010).
    Google Scholar 

    19.
    Ajari, O., Tsado, L. E. K., Oladiran, J. A. & Salako, E. A. Plant height and fruit yield of okra as affected by field application of fertilizer and organic matter in Bida, Nigeria. Niger. Agric. J. 34, 74–80 (2003).
    Google Scholar 

    20.
    Adekiya, A. O., Agbede, T. M., Aboyeji, C. M. & Dunsin, O. Response of okra (Abelmoschus esculentus (L.) Moench) and soil properties to different mulch materials in different cropping seasons. Sci. Hortic. 217, 209–216 (2017).
    CAS  Google Scholar 

    21.
    Adekiya, A. O., Agbede, T. M. & Ojeniyi, S. O. The effect of three years of tillage and poultry manure application on soil and plant nutrient composition, growth and yield of cocoyam. Exp. Agric. 52, 466–476 (2016).
    Google Scholar 

    22.
    Agbede, O. O. Understanding Soil and Plant Nutrition (Petra Digital Press, Abuja, 2009).
    Google Scholar 

    23.
    Oyenuga, V.A. & Fetuga, B.I. Dietary importance of fruits and vegetables. in Proceeding First National Seminar on Fruits and Vegetables, 122–131. University of Ibadan. October 13–17 (1975).

    24.
    Rubatizky, V. E. & Yamaguchi, M. World Vegetables: Principles, Production and Nutritive Values 2nd edn. (International Thomas Publishing, Chapman and Hall, New York, 1997).
    Google Scholar 

    25.
    Blumenthal, J., Battenspenrger, D., Cassman, K. G., Mason, K. G. & Pavlista, A. Importance of nitrogen on crop quality and health. In Nitrogen in the Environment: Sources, Problems and Management 2nd edn (eds Hatfield, J. L. & Folett, R. F.) (Elsevier, Amsterdam, 2008).
    Google Scholar 

    26.
    Mani, S. & Ramanathan, K. M. Effect of nitrogen and potassium on the crude fibre content of bhendi fruit on successive stage of picking. South Indian Hortic. 29(2), 100–104 (1981).
    Google Scholar 

    27.
    Ahmad, E., Moaveni, P. & Farahani, H. A. Effects of planting dates and compost on mucilage variations in borage (Borago officinalis L.) under different chemical fertilization systems. Int. J. Biotechnol. Mol. Biol. Res. 1(5), 58–61 (2010).
    Google Scholar 

    28.
    Leroy, B. M. M., Bommele, L., Reheul, D., Moen, M. & de Neve, S. The application of vegetable, fruit and garden waste (VFG) compost in addition to cattle slurry in a silage maize monoculture: Effects on soil fauna and yield. Eur. J. Soil Biol. 43, 91–100 (2007).
    Google Scholar 

    29.
    Lumpkin, H. Organic vegetable production: A theme for international agricultural research. in Proceedings of the seminar on the production and export of organic fruit and vegetables in Asia. https://www.fao.org/DOCREP/006/AD429E/ad429e13.htm. Accessed 8 Dec 2019 (2003).

    30.
    Weston, L. A. & Barth, M. M. Pre-harvest factors affecting post-harvest quality of vegetables. HortScience 32(5), 812–816 (1997).
    Google Scholar 

    31.
    Lefsrud, M. G., Kopsell, D. A., Kopsell, D. E. & Curran-Celentano, J. Air temperature affect biomass and carotenoid pigment accumulation in kale and spinach grown in a controlled environment. HortScience 40(7), 2026–2030 (2005).
    CAS  Google Scholar 

    32.
    Cardoso, M. O. & Berni, R. F. Nitrogen applied in okra under non-tightness grown and residual fertilization. Hortic. Bras. 30, 645–652 (2012).
    Google Scholar 

    33.
    Gee, G. W. Particle-size analysis. In Methods of Soil Analysis, Part 4. Physical Methods (eds Dane, J. H. & Topp, G. C.) 255–293 (Wiley, Hoboken, 2002).
    Google Scholar 

    34.
    Nelson, D. W. & Sommers, L. E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis, Part 3. Chemical Methods (ed. Sparks, D. L.) 961–1010 (Wiley, Hoboken, 1996).
    Google Scholar 

    35.
    Bremner, J. M. Nitrgen-total. In Methods of Soil Analysis, Part 3. Chemical Methods (ed. Sparks, D. L.) 1085–1121 (Wiley, Hoboken, 1996).
    Google Scholar 

    36.
    Frank, K., Beegle, D. & Denning, J. Phosphorus. In Recommended chemical soil test procedures for the North Central Region, North Central Regional Research Publication No. 221 (re-vised) (ed. Brown, J. R.) 21–26 (Missouri Agriculture Experiment Station, Columbia, 1998).
    Google Scholar 

    37.
    Hendershot, W. H. & Lalande, H. Ion exchange and exchangeable cations. In Soil Sampling and Methods of Analysis (ed. Carter, M. R.) (Lewis Publishers, CRC Press, Cambridge, 1993).
    Google Scholar 

    38.
    Omolaiye, J. A. et al. Development of leaf area prediction model of okra (Abelmoschus spp.). Product. Agric. Technol. J. 11(1), 130–136 (2015).
    Google Scholar 

    39.
    AOAC. Official Methods of Analysis of AOAC International (AOAC, Arlington, 2003).
    Google Scholar 

    40.
    Williams, P., El-Baramen, F. J., Nakkow, B. & Rihawi, S. Crop Quality Evaluation Methods and Guidelines (International Centre for Agricultural research in the Dry Area, Aleppo, 1986).
    Google Scholar 

    41.
    Thanatcha, R. & Pranee, A. Extraction and characterization of mucilage in Ziziphus mauritiana Lam. Int. Food Res. J. 18, 201–212 (2011).
    CAS  Google Scholar 

    42.
    Tel, D.A. & Hagarty, M. Soil and Plant Analysis. Study Guide for Agricultural Laboratory Directors and Technologists Working in Tropical Regions. International Institute of Tropical Agriculture, Ibadan, Nigeria, in conjunction with the University of Guelph, Canada (1984).

    43.
    Horwitz, W. & Latimer, G. W. (eds) Official Methods of Analysis of AOAC International (AOAC, Arlington, 2005).
    Google Scholar 

    44.
    Genstat. Genstat 5 Release 3.2 Reference Manual (Oxford University Press, Oxford, 1993).
    Google Scholar  More