1.
Oke, T. R. City size and the urban heat island. Atmos. Environ. 1967(7), 769–779 (1973).
ADS Article Google Scholar
2.
Zhou, B., Rybski, D. & Kropp, J. P. The role of city size and urban form in the surface urban heat island. Sci. Rep. 7, 1–9 (2017).
Article CAS Google Scholar
3.
Fenoglio, M. S., Rossetti, M. R., Videla, M. & Baselga, A. Negative effects of urbanization on terrestrial arthropod communities: A meta-analysis. Glob. Ecol. Biogeogr. 29, 1412–1429. https://doi.org/10.1111/geb.13107 (2020).
Article Google Scholar
4.
McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).
Article Google Scholar
5.
Philpott, S. M. et al. Local and landscape drivers of carabid activity, species richness, and traits in urban gardens in coastal California. Insects 10, 112 (2019).
PubMed Central Article Google Scholar
6.
Weller, B. & Ganzhorn, J. U. Carabid beetle community composition, body size, and fluctuating asymmetry along an urban-rural gradient. Basic Appl. Ecol. 5, 193–201 (2004).
Article Google Scholar
7.
Alaruikka, D., Kotze, D. J., Matveinen, K. & Niemelä, J. Carabid beetle and spider assemblages along a forested urban–rural gradient in southern Finland. J. Insect Conserv. 6, 195–206 (2002).
Article Google Scholar
8.
Burkman, C. E. & Gardiner, M. M. Spider assemblages within greenspaces of a deindustrialized urban landscape. Urban Ecosyst. 18, 793–818 (2015).
Article Google Scholar
9.
Kaltsas, D., Panayiotou, E., Chatzaki, M. & Mylonas, M. Ground spider assemblages (Araneae: Gnaphosidae) along an urban-rural gradient in the city of Heraklion, Greece. Eur. J. Entomol. 111, 59 (2014).
Article Google Scholar
10.
Magura, T., Horváth, R. & Tóthmérész, B. Effects of urbanization on ground-dwelling spiders in forest patches, Hungary. Landsc. Ecol. 25, 621–629 (2010).
Article Google Scholar
11.
Shochat, E., Stefanov, W. L., Whitehouse, M. E. A. & Faeth, S. H. Urbanization and spider diversity: influences of human modification of habitat structure and productivity. Urban Ecology 14, 455–472 (2008).
Article Google Scholar
12.
Liu, K.-L., Peng, M.-H., Hung, Y.-C. & Neoh, K.-B. Effects of park size, peri-urban forest spillover, and environmental filtering on diversity, structure, and morphology of ant assemblages in urban park. Urban Ecosyst. 22, 643–656 (2019).
Article Google Scholar
13.
Brudvig, L. A., Damschen, E. I., Tewksbury, J. J., Haddad, N. M. & Levey, D. J. Landscape connectivity promotes plant biodiversity spillover into non-target habitats. Proc. Natl. Acad. Sci. USA 106, 9328–9332 (2009).
ADS CAS PubMed Article Google Scholar
14.
McIntyre, N. E., Rango, J., Fagan, W. F. & Faeth, S. H. Ground arthropod community structure in a heterogeneous urban environment. Landsc. Urban Plan. 52, 257–274. https://doi.org/10.1016/S0169-2046(00)00122-5 (2001).
Article Google Scholar
15.
Menke, S. B. et al. Urban areas may serve as habitat and corridors for dry-adapted, heat tolerant species; an example from ants. Urban Ecosyst. 14, 135–163 (2011).
Article Google Scholar
16.
Dunning, J. B., Danielson, B. J. & Pulliam, H. R. Ecological processes that affect populations in complex landscapes. Oikos 65, 169–175 (1992).
Article Google Scholar
17.
MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography Vol. 1 (Princeton University Press, Princeton, 2001).
Google Scholar
18.
Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J. Biogeogr. 31, 79–92 (2004).
Article Google Scholar
19.
Burkman, C. E. & Gardiner, M. M. Urban greenspace composition and landscape context influence natural enemy community composition and function. Biol. Control 75, 58–67 (2014).
Article Google Scholar
20.
Burks, J. M. & Philpott, S. M. Local and landscape drivers of parasitoid abundance, richness, and composition in urban gardens. Environ. Entomol. 46, 201–209 (2017).
PubMed Article Google Scholar
21.
Magura, T., Lövei, G. L. & Tóthmérész, B. Conversion from environmental filtering to randomness as assembly rule of ground beetle assemblages along an urbanization gradient. Sci. Rep. 8, 1–9 (2018).
CAS Article Google Scholar
22.
Corcos, D. et al. Impact of urbanization on predator and parasitoid insects at multiple spatial scales. PLoS ONE 14, e0214068 (2019).
CAS PubMed PubMed Central Article Google Scholar
23.
Folgarait, P. J. Ant biodiversity and its relationship to ecosystem functioning: a review. Biodivers. Conserv. 7, 1221–1244 (1998).
Article Google Scholar
24.
Hölldobler, B. & Wilson, E. O. The Ants (Harvard University Press, Cambridge, 1990).
Google Scholar
25.
Hölldobler, B. & Wilson, E. O. Journey to the Ants: A Story of Scientific Exploration (Harvard University Press, Cambridge, 1994).
Google Scholar
26.
Nichols, E. et al. Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biol. Conserv. 141, 1461–1474 (2008).
Article Google Scholar
27.
Hanks, L. M. Influence of the larval host plant on reproductive strategies of cerambycid beetles. Annu. Rev. Entomol. 44, 483–505 (1999).
CAS PubMed Article Google Scholar
28.
Kevan, P. G. & Baker, H. G. Insects as flower vistors and pollinators. Ann. Rev. Entomol. 28, 407–453 (1983).
Article Google Scholar
29.
Haddad, C. R., Louw, S. V. & Dippenaar-Schoeman, A. S. An assessment of the biological control potential of Heliophanus pistaciae (Araneae: Salticidae) on Nysius natalensis (Hemiptera: Lygaeidae), a pest of pistachio nuts. Biol. Control 31, 83–90 (2004).
Article Google Scholar
30.
Cotes, B. et al. Spider communities and biological control in native habitats surrounding greenhouses. Insects 9, 33 (2018).
PubMed Central Article Google Scholar
31.
Michalko, R. & Pekar, S. Different hunting strategies of generalist predators result in functional differences. Oecologia 181, 1187–1197. https://doi.org/10.1007/s00442-016-3631-4 (2016).
ADS Article PubMed PubMed Central Google Scholar
32.
Michalko, R., Pekár, S., Dul’a, M., Entling, M. H. & McGeoch, M. Global patterns in the biocontrol efficacy of spiders: a meta-analysis. Glob. Ecol. Biogeogr. 28, 1366–1378. https://doi.org/10.1111/geb.12927 (2019).
Article Google Scholar
33.
Nyffeler, M. & Birkhofer, K. An estimated 400–800 million tons of prey are annually killed by the global spider community. Sci. Nat. 104, 30 (2017).
Article CAS Google Scholar
34.
Meineke, E. K., Dunn, R. R., Sexton, J. O. & Frank, S. D. Urban warming drives insect pest abundance on street trees. PLoS ONE 8, e59687 (2013).
ADS CAS PubMed PubMed Central Article Google Scholar
35.
Christie, F. J. & Hochuli, D. F. Elevated levels of herbivory in urban landscapes: are declines in tree health more than an edge effect?. Ecol. Soc. 10, 10 (2005).
Article Google Scholar
36.
Bolton, B. Identification Guide to the Ant Genera of the World (Harvard University Press, Cambridge, 1994).
Google Scholar
37.
Lin, C. Systematic and Zoogeographic Studies on the Ant Subfamily Myrmicinae in Taiwan (Hymenoptera: Formicidae), Ph. D. Dissertation, National Taiwan University Press, Taiwan (1998).
38.
Johnson, N. F. & Triplehorn, C. A. Borror and DeLong’s Introduction to the Study of Insects (Thompson Brooks/Cole Belmont, CA, 2005).
Google Scholar
39.
Timms, L. L. et al. Does species-level resolution matter? Taxonomic sufficiency in terrestrial arthropod biodiversity studies. Insect Conserv. Diver. 6, 453–462 (2013).
Article Google Scholar
40.
Blanche, K. R., Andersen, A. N. & Ludwig, J. A. Rainfall-contingent detection of fire impacts: responses of beetles to experimental fire regimes. Ecol. Appl. 11, 86–96 (2001).
Article Google Scholar
41.
Lassau, S. A., Hochuli, D. F., Cassis, G. & Reid, C. A. M. Effects of habitat complexity on forest beetle diversity: do functional groups respond consistently?. Divers. Distrib. 11, 73–82 (2005).
Article Google Scholar
42.
Grimbacher, P. S., Catterall, C. P. & Kitching, R. L. Detecting the effects of environmental change above the species level with beetles in a fragmented tropical rainforest landscape. Ecol. Entomol. 33, 66–79 (2008).
Google Scholar
43.
Gardiner, M. et al. Landscape composition influences patterns of native and exotic lady beetle abundance. Divers. Distrib. 15, 554–564 (2009).
Article Google Scholar
44.
Team, Q. D. QGIS Geographic Information System.Open Source Geospatial Foundation Project (2020).
45.
Barton, K. Package ‘MuMIn’. R package version 1(40), 4 (2018).
Google Scholar
46.
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2017).
Google Scholar
47.
Gray, C. L., Simmons, B. I., Fayle, T. M., Mann, D. J. & Slade, E. M. Are riparian forest reserves sources of invertebrate biodiversity spillover and associated ecosystem functions in oil palm landscapes?. Biol. Conserv. 194, 176–183 (2016).
Article Google Scholar
48.
Neoh, K.-B. et al. The effect of remnant forest on insect successional response in tropical fire-impacted peatland: a bi-taxa comparison. PLoS ONE 12, e0174388 (2017).
PubMed PubMed Central Article CAS Google Scholar
49.
Santos, M. N., Delabie, J. H. C. & Queiroz, J. M. Biodiversity conservation in urban parks: a study of ground-dwelling ants (Hymenoptera: Formicidae) in Rio de Janeiro City. Urban Ecosyst. 22, 927–942 (2019).
Article Google Scholar
50.
Carpintero, S. & Reyes-López, J. Effect of park age, size, shape and isolation on ant assemblages in two cities of southern Spain. Entomol. Sci. 17, 41–51 (2014).
Article Google Scholar
51.
Tsai, C.-Y. Diversity, Community Structure and Morphological Patterns of Ground-Dwelling Ant in Urban-Rural Interface Master thesis, National Chung Hsing University (2019).
52.
Hogg, B. N. & Daane, K. M. Aerial dispersal ability does not drive spider success in a crop landscape. Ecol. Entomol. 43, 683–694 (2018).
Article Google Scholar
53.
Morse, D. H. Some determinants of dispersal by crab spiderlings. Ecology 74, 427–432 (1993).
ADS Article Google Scholar
54.
Bristowe, W. S. The distribution and dispersal of spiders. Proc. Zool. Soc. Lond. 99, 633–657 (1929).
Article Google Scholar
55.
de Souza, D. R., dos Santos, S. G., Munhae, C. D. & Morini, M. S. D. Diversity of epigeal ants (Hymenoptera: Formicidae) in urban areas of Alto Tiete. Sociobiology 59, 703–717 (2014).
Google Scholar
56.
Pećarević, M., Danoff-Burg, J. & Dunn, R. R. Biodiversity on broadway – enigmatic diversity of the societies of ants (Formicidae) on the streets of New York City. PLoS ONE 5, e13222 (2010).
ADS PubMed PubMed Central Article CAS Google Scholar
57.
Vasconcelos, H. L., Vilhena, J. M. S., Magnusson, W. E. & Albernaz, A. L. K. M. Long-term effects of forest fragmentation on Amazonian ant communities. J. Biogeogr. 33, 1348–1356 (2006).
Article Google Scholar
58.
Otoshi, M. D., Bichier, P. & Philpott, S. M. Local and landscape correlates of spider activity density and species richness in urban gardens. Environ. Entomol. 44, 1043–1051 (2015).
PubMed Article Google Scholar
59.
Lacasella, F. et al. Asymmetrical responses of forest and “beyond edge” arthropod communities across a forest–grassland ecotone. Biodivers. Conserv. 24, 447–465 (2015).
Article Google Scholar
60.
Boetzl, F. A., Schneider, G. & Krauss, J. Asymmetric carabid beetle spillover between calcareous grasslands and coniferous forests. J. Insect Conserv. 20, 49–57 (2016).
Article Google Scholar
61.
Fusser, M. S. et al. Interactive effects of local and landscape factors on farmland carabids. Agric. For. Entomol. 20, 549–557 (2018).
Article Google Scholar
62.
Magura, T., Lövei, G. L. & Tóthmérész, B. Does urbanization decrease diversity in ground beetle (Carabidae) assemblages?. Glob. Ecol. Biogeogr. 19, 16–26 (2010).
Article Google Scholar
63.
Magura, T., Lövei, G. L. & Tóthmérész, B. Edge responses are different in edges under natural versus anthropogenic influence: a meta-analysis using ground beetles. Ecol. Evol. 7, 1009–1017 (2017).
PubMed PubMed Central Article Google Scholar
64.
Delgado, J. D., Arroyo, N. L., Arévalo, J. R. & Fernández-Palacios, J. M. Edge effects of roads on temperature, light, canopy cover, and canopy height in laurel and pine forests (Tenerife, Canary Islands). Landsc. Urban Plan. 81, 328–340 (2007).
Article Google Scholar
65.
Gaublomme, E., Hendrickx, F., Dhuyvetter, H. & Desender, K. The effects of forest patch size and matrix type on changes in carabid beetle assemblages in an urbanized landscape. Biol. Conserv. 141, 2585–2596 (2008).
Article Google Scholar
66.
Soga, M., Kanno, N., Yamaura, Y. & Koike, S. Patch size determines the strength of edge effects on carabid beetle assemblages in urban remnant forests. J. Insect Conserv. 17, 421–428 (2013).
Article Google Scholar
67.
Schroeder, L. M. Population levels and flight phenology of bark beetle predators in stands with and without previous infestations of the bark beetle Tomicus piniperda. For. Ecol. Manag. 123, 31–40 (1999).
Article Google Scholar
68.
Clarke, K. M., Fisher, B. L. & LeBuhn, G. The influence of urban park characteristics on ant (Hymenoptera, Formicidae) communities. Urban Ecosyst. 11, 317–334 (2008).
Article Google Scholar
69.
Ivanov, K. & Keiper, J. Ant (Hymenoptera: Formicidae) diversity and community composition along sharp urban forest edges. Biodivers. Conserv. 19, 3917–3933 (2010).
Article Google Scholar
70.
Molnár, T., Magura, T., Tóthmérész, B. & Elek, Z. Ground beetles (Carabidae) and edge effect in oak-hornbeam forest and grassland transects. Eur. J. Soil Biol. 37, 297–300 (2001).
Article Google Scholar
71.
Rodrigues, E. N. L., Mendonça, M. D. S. & Costa-Schmidt, L. E. Spider diversity responds strongly to edge effects but weakly to vegetation structure in riparian forests of Southern Brazil. Arthropod 8, 123–133 (2014).
Article Google Scholar
72.
Bolger, D. T., Suarez, A. V., Crooks, K. R., Morrison, S. A. & Case, T. J. Arthropods in urban habitat fragments in southern California: area, age, and edge effects. Ecol. Appl. 10, 1230–1248 (2000).
Article Google Scholar
73.
Suarez, A. V., Bolger, D. T. & Case, T. J. Effects of fragmentation and invasion on native ant communities in coastal southern California. Ecology 79, 2041–2056 (1998).
Article Google Scholar
74.
Bolger, D. T. Spatial and temporal variation in the Argentine ant edge effect: implications for the mechanism of edge limitation. Biol. Conserv. 136, 295–305 (2007).
Article Google Scholar
75.
Holway, D. A. Edge effects of an invasive species across a natural ecological boundary. Biol. Conserv. 121, 561–567 (2005).
Article Google Scholar
76.
Yamaguchi, T. Influence of urbanization on ant distribution in parks of Tokyo and Chiba City, Japan I. Analysis of ant species richness. Ecol. Res. 19, 209–216 (2004).
Article Google Scholar
77.
MacGregor-Fors, I. et al. City “green” contributions: the role of urban greenspaces as reservoirs for biodiversity. Forests 7, 146 (2016).
Article Google Scholar
78.
Nagy, D. D., Magura, T., Horváth, R., Debnár, Z. & Tóthmérész, B. Arthropod assemblages and functional responses along an urbanization gradient: a trait-based multi-taxa approach. Urban For. Urban Greece 30, 157–168 (2018).
Article Google Scholar
79.
Andersen, A. N. Ants: Standard Methods for Measuring and Monitoring Biodiversity 25–34 (Smithsonian Institution Press, Washington, DC, 2000).
Google Scholar
80.
Luke, S. H., Fayle, T. M., Eggleton, P., Turner, E. C. & Davies, R. G. Functional structure of ant and termite assemblages in old growth forest, logged forest and oil palm plantation in Malaysian Borneo. Biodivers. Conserv. 23, 2817–2832 (2014).
Article Google Scholar
81.
Kyrö, K. et al. Local habitat characteristics have a stronger effect than the surrounding urban landscape on beetle communities on green roofs. Urban For. Urban Greece. 29, 122–130 (2018).
Article Google Scholar
82.
Chung, A. Y. C., Eggleton, P., Speight, M. R., Hammond, P. M. & Chey, V. K. The diversity of beetle assemblages in different habitat types in Sabah, Malaysia. Entomol. Res. B 90, 475–496 (2000).
CAS Article Google Scholar
83.
Robinson, W. H. Urban Insects and Arachnids: A Handbook of Urban Entomology (Cambridge University Press, Cambridge, 2005).
Google Scholar
84.
Tsafack, N. et al. Carabid community structure in northern China grassland ecosystems: Effects of local habitat on species richness, species composition and functional diversity. PeerJ 6, e6197 (2019).
PubMed PubMed Central Article Google Scholar
85.
Magura, T., Tóthmérész, B. & Elek, Z. Impacts of leaf-litter addition on carabids in a conifer plantation. Biodivers. Conserv. 14, 475–491 (2005).
Article Google Scholar
86.
Koivula, M., Punttila, P., Haila, Y. & Nicnielii, J. Leaf litter and the small-scale distribution of carabid beetles (Coleoptera, Carabidae) in the boreal forest. Ecography 22, 424–435 (1999).
Article Google Scholar
87.
Argañaraz, C. I., Rubio, G. D. & Gleiser, R. M. Spider communities in urban green patches and their relation to local and landscape traits. Biodivers. Conserv. 27, 981–1009 (2018).
Article Google Scholar
88.
Lowe, E. C., Wilder, S. M. & Hochuli, D. F. Persistence and survival of the spider Nephila plumipes in cities: do increased prey resources drive the success of an urban exploiter?. Urban Ecosyst. 19, 705–720 (2016).
Article Google Scholar
89.
Meineke, E. K., Holmquist, A. J., Wimp, G. M. & Frank, S. D. Changes in spider community composition are associated with urban temperature, not herbivore abundance. J. Urban Ecol. 3, juv010 (2017).
Article Google Scholar
90.
Huseynov, E. F. Natural prey of the jumping spider Menemerus taeniatus (Araneae: Salticidae). Eur. J. Entomol. 102, 797–799 (2005).
Article Google Scholar
91.
Johnson, S. R. Use of coleopteran prey by Phidippus audax (Araneae, Salticidae) in tallgrass prairie wetlands. J. Arachnol. 24, 39–42 (1996).
Google Scholar
92.
Allan, R. A. & Elgar, M. A. Exploitation of the green tree ant, Oecophylla smaragdina, by the salticid spider Cosmophasis bitaeniata. Aust. J. Zool. 49, 129–137 (2001).
Article Google Scholar
93.
Touyama, Y., Ihara, Y. & Ito, F. Argentine ant infestation affects the abundance of the native myrmecophagic jumping spider Siler cupreus Simon in Japan. Insectes Soc. 55, 144–146 (2008).
Article Google Scholar
94.
Hogg, B. N. & Daane, K. M. Impacts of exotic spider spillover on resident arthropod communities in a natural habitat. Ecol. Entomol. 40, 69–77 (2015).
Article Google Scholar
95.
Marino, P. C. & Landis, D. A. Effect of landscape structure on parasitoid diversity and parasitism in agroecosystems. Ecol. Appl. 6, 276–284 (1996).
Article Google Scholar
96.
Boccaccio, L. & Petacchi, R. Landscape effects on the complex of Bactrocera oleae parasitoids and implications for conservation biological control. Biocontrol 54, 607 (2009).
Article Google Scholar
97.
Boetzl, F. A., Krimmer, E., Krauss, J. & Steffan-Dewenter, I. Agri-environmental schemes promote ground-dwelling predators in adjacent oilseed rape fields: Diversity, species traits and distance-decay functions. J. Appl. Ecol. 56, 10–20 (2019).
Article Google Scholar
98.
Gagic, V. et al. Food web structure and biocontrol in a four-trophic level system across a landscape complexity gradient. Proc. R. Soc. B 278, 2946–2953 (2011).
PubMed Article Google Scholar
99.
Philpott, S. M. & Bichier, P. Local and landscape drivers of predation services in urban gardens. Ecol. Appl. 27, 966–976 (2017).
PubMed Article Google Scholar
100.
Eötvös, C. B., Lövei, G. L. & Magura, T. Predation pressure on sentinel insect prey along a riverside urbanization gradient in Hungary. Insects 11, 97 (2020).
PubMed Central Article PubMed Google Scholar
101.
Eötvös, C. B., Magura, T. & Lövei, G. L. A meta-analysis indicates reduced predation pressure with increasing urbanization. Landsc. Urban Plan. 180, 54–59 (2018).
Article Google Scholar
102.
Mata, L. et al. Conserving herbivorous and predatory insects in urban green spaces. Sci. Rep. 7, 40970 (2017).
ADS CAS PubMed PubMed Central Article Google Scholar
103.
Croci, S., Butet, A., Georges, A., Aguejdad, R. & Clergeau, P. Small urban woodlands as biodiversity conservation hot-spot: a multi-taxon approach. Landsc. Ecol. 23, 1171–1186 (2008).
Article Google Scholar More