More stories

  • in

    Marine organic carbon burial increased forest fire frequency during Oceanic Anoxic Event 2

    1.
    Freeman, K. H. & Hayes, J. M. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Glob. Biogeochem. Cycles 6, 185–198 (1992).
    Google Scholar 
    2.
    Pancost, R. D. et al. Further evidence for the development of photic-zone euxinic conditions during Mesozoic oceanic anoxic events. J. Geol. Soc. London 161, 353–364 (2004).
    Google Scholar 

    3.
    Monteiro, F. M., Pancost, R. D., Ridgwell, A. & Donnadieu, Y. Nutrients as the dominant control on the spread of anoxia and euxinia across the Cenomanian-Turonian oceanic anoxic event (OAE2): model-data comparison. Paleoceanography 27, PA4209 (2012).
    Google Scholar 

    4.
    Schlanger, S. O. & Jenkyns, H. C. Cretaceous oceanic anoxic events: causes and consequences. Geol. Mijnbouw 55, 179–184 (1976).
    Google Scholar 

    5.
    Jones, M. M. et al. Astronomical pacing of relative sea level during Oceanic Anoxic Event 2: preliminary studies of the expanded SH#1 Core, Utah. Geol. Soc. Am. Bull. 131, 1702–1722 (2019).
    Google Scholar 

    6.
    Gale, A. S. & Christenson, W. K. Occurrence of the belemnite Actinocamax plenus in the Cenomanian of SE France and its significance. Bull. Geol. Soc. Den. 43, 68–77 (1996).
    Google Scholar 

    7.
    O’Connor, L. K. et al. A re-evaluation of the Plenus Cold Event, and the links between CO2, temperature, and seawater chemistry during OAE 2. Paleoceanogr. Paleoclimatol. 35, e2019PA003631 (2019).
    Google Scholar 

    8.
    Kuhnt, W. et al. Unravelling the onset of Cretaceous Oceanic Anoxic Event 2 in an extended sediment archive from the Tarfaya-Laayoune Basin, Morocco. Paleoceanogr. Paleoclimatol. 32, 923–946 (2017).
    Google Scholar 

    9.
    Kuroda, J. & Ohkouchi, N. Implications of spatiotemporal distribution of black shales deposited during the Cretaceous oceanic anoxic event-2. Paleontol. Res. 10, 345–358 (2006).
    Google Scholar 

    10.
    Owens, J. D., Lyons, T. W. & Lowery, C. M. Quantifying the missing sink for global organic carbon burial during a Cretaceous oceanic anoxic event. Earth Planet. Sci. Lett. 499, 83–94 (2018).
    Google Scholar 

    11.
    Berner, R. A. Phanerozoic atmospheric oxygen: new results using the GEOCARBSULF model. Am. J. Sci. 309, 603–606 (2009).
    Google Scholar 

    12.
    Baker, S. J., Hesselbo, S. P., Lenton, T. M., Duarte, L. V. & Belcher, C. M. Charcoal evidence that rising atmospheric oxygen terminated Early Jurassic ocean anoxia. Nat. Commun. 8, 15018 (2017).
    Google Scholar 

    13.
    Kump, L. R. Terrestrial feedback in atmosphere oxygen regulation by fire and phosphorus. Nature 335, 152–154 (1988).
    Google Scholar 

    14.
    Watson, A., Lovelock, J. E. & Margulis, L. Methanogenesis, fires and the regulation of atmospheric oxygen. Biosystems 10, 293–298 (1978).
    Google Scholar 

    15.
    Bond, W. J. & Scott, A. C. Fire and the spread of flowering plants in the Cretaceous. New Phytol. 188, 1137–1150 (2010).
    Google Scholar 

    16.
    Brown, S. A. E., Scott, A. C., Glasspool, I. J. & Collinson, W. E. Cretaceous wildfires and their impact on the Earth system. Cretac. Res. 36, 162–190 (2012).
    Google Scholar 

    17.
    Glasspool, I. J. & Scott, A. C. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nat. Geosci. 3, 627–630 (2010).
    Google Scholar 

    18.
    Baker, S. J. et al. CO2-induced climate forcing on the fire record during the initiation of Cretaceous oceanic anoxic event 2. Geol. Soc. Am. Bull. 132, 321–333 (2019).
    Google Scholar 

    19.
    Zhang, M., Dai, S., Du, B., Ji, L. & Hu, S. Mid-Cretaceous hothouse climate and the expansion of early angiosperms. Acta Geol. Sin. Engl. 92, 2004–2025 (2018).
    Google Scholar 

    20.
    Blumer, M. Polycyclic aromatic compounds in nature. Sci. Am. 234, 35–45 (1976).
    Google Scholar 

    21.
    Lima, A. L. C., Farrington, J. W. & Reddy, C. M. Combustion-derived polycyclic aromatic hydrocarbons in the environment—a review. Environ. Forensics 6, 109–113 (2005).
    Google Scholar 

    22.
    Youngblood, W. W. & Blumer, M. Polycyclic aromatic hydrocarbons in the environment: homologous series in soils and recent marine sediments. Geochim. Cosmochim. Acta 39, 1303–1314 (1975).
    Google Scholar 

    23.
    Killops, S. D. & Massoud, M. S. Polycyclic aromatic hydrocarbons of pyrolytic origin in ancient sediments: evidence for Jurassic vegetation fires. Org. Geochem. 18, 1–7 (1992).
    Google Scholar 

    24.
    Finkelstein, D. B., Pratt, L. M., Curtin, T. M. & Brassell, S. C. Wildfires and seasonal aridity recorded in Late Cretaceous strata from south-eastern Arizona, USA. Sedimentology 52, 587–599 (2005).
    Google Scholar 

    25.
    Belcher, C. M., Finch, P., Collinson, M. E., Scott, A. C. & Grassineau, N. V. Geochemical evidence for combustion of hydrocarbons during the K-T impact event. Proc. Natl Acad. Sci. USA 106, 4112–4117 (2009).
    Google Scholar 

    26.
    Tsikos, H. et al. Carbon-isotope stratigraphy recorded by the Cenomanian-Turonian Oceanic Anoxic Event: correlation and implications based on three key localities. J. Geol. Soc. London 161, 711–719 (2004).
    Google Scholar 

    27.
    Jarvis, I., Lignum, J. S., Grocke, D. R., Jenkyns, H. C. & Pearce, M. A. Black shale deposition, atmospheric CO2 drawdown, and cooling during the Cenomanian-Turonian Oceanic Anoxic Event. Paleoceanography 26, PA3201 (2011).
    Google Scholar 

    28.
    Joo, Y. J. & Sageman, B. B. Cenomanian to Campanian carbon isotope chemostratigraphy from the western interior basin, USA. J. Sediment. Res. 84, 529–542 (2014).
    Google Scholar 

    29.
    Jenkyns, H. C., Dickson, A. J., Ruhl, M. & van den Boorn, S. H. J. M. Basalt-seawater interaction, the Plenus Cold Event, enhanced weathering and geochemical change: deconstructing Oceanic Anoxic Event 2 (Cenomanian-Turonian, Late Cretaceous). Sedimentology 64, 16–43 (2017).
    Google Scholar 

    30.
    Heimhofer, U. et al. Vegetation response to exceptional global warmth during Oceanic Anoxic Event 2. Nat. Commun. 9, 3832 (2018).
    Google Scholar 

    31.
    Elder, W. P. Geometry of Upper Cretaceous bentonite beds: implications about volcanic source areas and paleowind patterns, western interior, United States. Geology 16, 835–838 (1988).
    Google Scholar 

    32.
    He, T., Pausas, J. G., Belcher, C. M., Schwilk, D. W. & Lamont, B. B. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol. 194, 751–759 (2012).
    Google Scholar 

    33.
    Belcher, C. M. & Hudspith, V. A. Changes to Cretaceous surface fire behavior influenced the spread of the early angiosperms. New Phytol. 213, 1521–1532 (2016).
    Google Scholar 

    34.
    Chumakov, N. M. et al. Climate belts of the mid-Cretaceous time. Stratigr. Geol. Correl. 3, 241–260 (1995).
    Google Scholar 

    35.
    Hasegawa, H. et al. Drastic shrinking of the Hadley circulation during the mid-Cretaceous Supergreenhouse. Clim. Past 8, 1323–1337 (2012).
    Google Scholar 

    36.
    Hay, W. W. Possible solutions to several enigmas of Cretaceous climate. Int. J. Earth Sci. 108, 587–620 (2018).
    Google Scholar 

    37.
    Hay, W. W. & Floegel, S. New thoughts about the Cretaceous climate and oceans. Earth Sci. Rev. 115, 262–272 (2012).
    Google Scholar 

    38.
    Scopelliti, G. et al. High-resolution geochemical and biotic records of the Tethyan ‘Bonarelli Level’ (OAE2, latest Cenomanian) from the Calabianca-Guidaloca composite section, northwestern Sicily, Italy. Palaeogeogr. Palaeoclimatol. Palaeoecol. 208, 293–317 (2004).
    Google Scholar 

    39.
    Charbonnier, G. et al. Obliquity pacing of the hydrological cycle during the Oceanic Anoxic Event 2. Earth Planet. Sci. Lett. 499, 266–277 (2018).
    Google Scholar 

    40.
    Van Helmond, N. A. G. M. et al. A perturbed hydrological cycle during Oceanic Anoxic Event 2. Geology 42, 123–126 (2014).
    Google Scholar 

    41.
    Carr, A. S. et al. Leaf wax n-alkane distributions in arid zone South African flora: environmental controls, chemotaxonomy and palaeoecological implications. Org. Geochem. 67, 72–84 (2014).
    Google Scholar 

    42.
    Denis, E. H., Pedentchouk, N., Schouten, S., Pagani, M. & Freeman, K. H. Fire and ecosystem change in the Arctic across the Paleocene-Eocene Thermal Maximum. Earth Planet. Sci. Lett. 467, 149–156 (2017).
    Google Scholar 

    43.
    Mills, B. J. E., Belcher, C. M., Lenton, T. M. & Newton, R. J. A modeling case for high atmospheric oxygen concentrations during the Mesozoic and Cenozoic. Geology 22, 1023–1026 (2016).
    Google Scholar 

    44.
    Bergman, N. M., Lenton, T. M. & Watson, A. J. COPSE: a new model of biogeochemical cycling over Phanerozoic time. Am. J. Sci. 304, 397–437 (2004).
    Google Scholar 

    45.
    Kump, L. Chemical stability of the atmosphere and ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 75, 123–136 (1989).
    Google Scholar 

    46.
    Saltzman, M. R. et al. Pulse of atmospheric oxygen during the late Cambrian. Proc. Natl Acad. Sci. USA 108, 3876–3881 (2011).
    Google Scholar 

    47.
    Huang, J. et al. The global oxygen budget and its future projection. Sci. Bull. 63, 1180–1186 (2018).
    Google Scholar 

    48.
    Klages, J. P. et al. Temperature rainforests near the South Pole during peak Cretaceous warmth. Nature 580, 81–86 (2020).
    Google Scholar 

    49.
    Turgeon, S. C. & Creaser, R. A. Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode. Nature 454, 323–326 (2008).
    Google Scholar 

    50.
    Jones, M. M., Sageman, B. B. & Selby, D. Stratigraphic record of OAE2 from the Western Interior Basin (N. America): new insights from osmium isotopes (OSi) and the expanded Big Water, UT site. In Society for Sedimentary Geology (SEPM) Research Conference on Oceanic Anoxic Events (Oral Presentation) (2016).

    51.
    Arinobu, T., Ishiwatari, R., Kaiho, K. & Lamolda, M. A. Spike of pyrosynthetic polycyclic aromatic hydrocarbons associated with an abrupt decrease in δ13C of a terrestrial biomarker at the Cretaceous-Tertiary boundary at Caravaca, Spain. Geology 27, 723–726 (1999).
    Google Scholar 

    52.
    Finkelstein, D. B., Pratt, L. M. & Brassell, S. C. Can biomass burning produce a globally significant carbon-isotope excursion in the sedimentary record? Earth Planet. Sci. Lett. 250, 501–510 (2006).
    Google Scholar 

    53.
    Barclay, R. S., McElwain, J. C. & Sageman, B. B. Carbon sequestration activated by a volcanic CO2 pulse during Ocean Anoxic Event 2. Nat. Geosci. 3, 205–208 (2010).
    Google Scholar 

    54.
    van Bentum, E. C., Reichart, G.-J., Forster, A. & Sinninghe Damsté, J. S. Latitudinal differences in the amplitude of the OAE-2 carbon isotopic excursion: pCO2 and paleo productivity. Biogeosciences 9, 717–731 (2012).
    Google Scholar 

    55.
    Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).
    Google Scholar 

    56.
    Shen, W., Sun, Y., Lin, Y., Liu, D. & Chai, P. Evidence for wildfire in the Meishan section and implications for Permian-Triassic events. Geochim. Cosmochim. Acta 75, 1992–2006 (2011).
    Google Scholar 

    57.
    Raison, R. J. Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformations: a review. Plant Soil 51, 73–108 (1979).
    Google Scholar 

    58.
    Spencer, C. N. & Hauer, F. R. Phosphorus and nitrogen dynamics in streams during a wildfire. J. North Am. Benthol. Soc. 10, 24–30 (1991).
    Google Scholar 

    59.
    Moody, J. A. & Martin, D. A. Initial hydrologic and geomorphic response following a wildfire in the Colorado Front Range. Earth Surf. Process. Landf. 26, 1049–1070 (2001).
    Google Scholar 

    60.
    Guieu, C., Bonnet, S., Wagener, T. & Loye-Piot, M.-D. Biomass burning as a source of dissolved iron to the open ocean? Geophys. Res. Lett. 32, L19608 (2005).
    Google Scholar 

    61.
    Shakesby, R. A. & Doerr, S. H. Wildfire as a hydrological and geomorphological agent. Earth Sci. Rev. 74, 269–307 (2006).
    Google Scholar 

    62.
    Kaiho, K. et al. A forest fire and soil erosion event during the Late Devonian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 392, 272–280 (2013).
    Google Scholar 

    63.
    Barkley, A. E. et al. African biomass burning is a substantial source of phosphorus deposition to the Amazon, tropical Atlantic Ocean, and Southern Ocean. Proc. Natl Acad. Sci. USA 116, 16216–16221 (2019).
    Google Scholar 

    64.
    Leckie, R. M., Yuretich, R. F., West, O. L. O., Finkelstein, D. & Schmidt, M. in Stratigraphy and Paleoenvironments of the Cretaceous Western Interior Seaway, USA Vol. 6 (eds Dean, W. E. & Arthur, M. A.) 101–126 (Society for Sedimentary Geology, 1998).

    65.
    Pogge von Strandmann, P. A. E., Jenkyns, H. C. & Woodfine, R. G. Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2. Nat. Geosci. 6, 668–672 (2013).
    Google Scholar 

    66.
    Blättler, C. L., Jenkyns, H. C., Reynard, L. M. & Henderson, G. H. Significant increases in global weathering during Oceanic Anoxic Events 1a and 2 indicated by calcium isotopes. Earth Planet. Sci. Lett. 309, 77–88 (2011).
    Google Scholar 

    67.
    Knoll, M. A. & James, W. C. Effect of the advent and diversification of vascular land plants on mineral weathering through geologic time. Geology 15, 1099–1102 (1987).
    Google Scholar 

    68.
    Lenton, T. M. & Watson, A. J. Redfield revisited: what regulates the oxygen content of the atmosphere? Glob. Biogeochem. Cycles 14, 149–168 (2000).
    Google Scholar 

    69.
    Likens, G. E., Bormann, F. H. & Johnson, N. M. in Some Perspectives of the Major Biogeochemical Cycles (ed. Likens, G. E.) 93–112 (John Wiley & Sons, 1981).

    70.
    Boudinot, F. G. et al. Neritic ecosystem response to Oceanic Anoxic Event 2 in the Cretaceous Western Interior Seaway, USA. Palaeogeogr. Palaeoclimaol. Palaeoecol. 546, 109673 (2020).
    Google Scholar 

    71.
    Sinninghe Damsté, J. S., van Bentum, E. C., Reichart, G.-J., Pross, J. & Schouten, S. A CO2 decrease-driven cooling and increased latitudinal temperature gradient during the mid-Cretaceous Oceanic Anoxic Event 2. Earth Planet. Sci. Lett. 293, 97–103 (2010).
    Google Scholar 

    72.
    Van Helmond, N. A. G. M. et al. Equatorward phytoplankton migration during a cold spell within the Late Cretaceous super-greenhouse. Biogeosciences 13, 2856–2872 (2016).
    Google Scholar 

    73.
    Forster, A., Schouten, S., Moriya, K., Wilson, P. A. & Sinninghe Damsté, J. S. Tropical warming and intermittent cooling during the Cenomanian/Turonian oceanic anoxic event 2: sea surface temperature records from the equatorial Atlantic. Paleoceanogr. 22, PA1219 (2007).
    Google Scholar 

    74.
    Boudinot, F. G. and Sepúlveda, J. Organic geochemistry of SH#1 core: fires. PANGAEA https://doi.pangaea.de/10.1594/PANGAEA.921198 (2020). More

  • in

    Changes in transcriptomic response to salinity stress induce the brackish water adaptation in a freshwater snail

    1.
    Gienapp, P., Teplitsky, C., Alho, J. S., Mills, J. A. & Merilä, J. Climate change and evolution: disentangling environmental and genetic responses. Mol. Ecol. 17, 167–178 (2008).
    CAS  Article  Google Scholar 
    2.
    Anderson, J. T., Inouye, D. W., McKinney, A. M., Colautti, R. I. & Mitchell-Olds, T. Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proc. R. Soc. B Biol. Sci. 279, 3843–3852 (2012).
    Article  Google Scholar 

    3.
    Siemann, E. & Rogers, W. E. Genetic differences in growth of an invasive tree species. Ecol. Lett. 4, 514–518 (2001).
    Article  Google Scholar 

    4.
    Bossdorf, O., Prati, D., Auge, H. & Schmid, B. Reduced competitive ability in an invasive plant. Ecol. Lett. 7, 346–353 (2004).
    Article  Google Scholar 

    5.
    Maron, J. L., Vilà, M., Bommarco, R., Elmendorf, S. & Beardsley, P. Rapid evolution of an invasive plant. Ecol. Monogr. 74, 261–280 (2004).
    Article  Google Scholar 

    6.
    Byrne, K. & Nichols, R. A. Culex pipiens in London underground tunnels: differentiation between surface and subterranean populations. Heredity 82, 7–15 (1999).
    Article  Google Scholar 

    7.
    Lee, C. E. Rapid and repeated invasions of fresh water by the copepod Eurytemora affinis. Evolution 53, 1423–1434 (1999).
    Article  Google Scholar 

    8.
    Linnen, C. R. et al. Adaptive evolution of multiple traits through multiple mutations at a single gene. Science 339, 1312–1316 (2013).
    ADS  CAS  Article  Google Scholar 

    9.
    Yeh, P. J. & Price, T. D. Adaptive phenotypic plasticity and the successful colonization of a novel environment. Am. Nat. 164, 531–542 (2004).
    Article  Google Scholar 

    10.
    Price, T. D., Yeh, P. J. & Harr, B. Phenotypic plasticity and the evolution of a socially selected trait following colonization of a novel environment. Am. Nat. 172, S49–S62 (2008).
    Article  Google Scholar 

    11.
    Lande, R. Evolution of phenotypic plasticity in colonizing species. Mol. Ecol. 24, 2038–2045 (2015).
    Article  Google Scholar 

    12.
    Chevin, L. M. & Lande, R. Adaptation to marginal habitats by evolution of increased phenotypic plasticity. J. Evol. Biol. 24, 1462–1476 (2011).
    Article  Google Scholar 

    13.
    Orizaola, G. & Laurila, A. Developmental plasticity increases at the northern range margin in a warm-dependent amphibian. Evol. Appl. 9, 471–478 (2016).
    Article  Google Scholar 

    14.
    Nyamukondiwa, C., Kleynhans, E. & Terblanche, J. S. Phenotypic plasticity of thermal tolerance contributes to the invasion potential of Mediterranean fruit flies (Ceratitis capitata). Ecol. Entomol. 35, 565–575 (2010).
    Article  Google Scholar 

    15.
    Richards, C. L., Bossdorf, O., Muth, N. Z., Gurevitch, J. & Pigliucci, M. Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecol. Lett. 9, 981–993 (2006).
    Article  Google Scholar 

    16.
    Crispo, E. Modifying effects of phenotypic plasticity on interactions among natural selection, adaptation and gene flow. J. Evol. Biol. 21, 1460–1469 (2008).
    CAS  Article  Google Scholar 

    17.
    Baldwin, J. M. A new factor in evolution. Am. Nat. 30(441–451), 536–553 (1896).
    Article  Google Scholar 

    18.
    Waddington, C. H. Genetic assimilation. Adv. Genet. 10, 257–293 (1961).
    CAS  Article  Google Scholar 

    19.
    Price, T. D., Qvarnström, A. & Irwin, D. E. The role of phenotypic plasticity in driving genetic evolution. Proc. R. Soc. B Biol. Sci. 270, 1433–1440 (2003).
    Article  Google Scholar 

    20.
    Lande, R. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. J. Evol. Biol. 22, 1435–1446 (2009).
    Article  Google Scholar 

    21.
    Levis, N. A. & Pfennig, D. W. Evaluating ‘Plasticity-First’ evolution in nature: key criteria and empirical approaches. Trends Ecol. Evol. 31, 563–574 (2016).
    Article  Google Scholar 

    22.
    Charmantier, G. Ontogeny of osmoregulation in crustaceans: a review. Invertebr. Reprod. Dev. 33, 177–190 (1998).
    CAS  Article  Google Scholar 

    23.
    Cervetto, G., Gaudy, R. & Pagano, M. Influence of salinity on the distribution of Acartia tonsa (Copepoda, Calanoida). J. Exp. Mar. Bio. Ecol. 239, 33–45 (1999).
    Article  Google Scholar 

    24.
    Ho, P.-T. et al. Impacts of salt stress on locomotor and transcriptomic responses in the intertidal gastropod Batillaria attramentaria. Biol. Bull. 236, 224–241 (2019).
    Article  Google Scholar 

    25.
    Yang, S. et al. The salinity tolerance of the invasive golden apple snail (Pomacea canaliculata). Molluscan Res. 38, 90–98 (2018).
    Article  Google Scholar 

    26.
    Deaton, L. E., Derby, J. G. S., Subhedar, N. & Greenberg, M. J. Osmoregulation and salinity tolerance in two species of bivalve mollusc: Limnoperna fortunei and Mytilopsis leucophaeta. J. Exp. Mar. Bio. Ecol. 133, 67–79 (1989).
    Article  Google Scholar 

    27.
    Jordan, P. J. & Deaton, L. E. Osmotic regulation and salinity tolerance in the freshwater snail Pomacea bridgesi and the freshwater clam Lampsilis teres. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 122, 199–205 (1999).
    Article  Google Scholar 

    28.
    Bouétard, A., Côte, J., Besnard, A. L., Collinet, M. & Coutellec, M. A. Environmental versus anthropogenic effects on population adaptive divergence in the freshwater snail Lymnaea stagnalis. PLoS ONE https://doi.org/10.1371/journal.pone.0106670 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    29.
    Sinclair, C. S. Surfing snails: population genetics of the land snail Ventridens ligera (Stylommatophora: Zonitidae) in the Potomac Gorge. Am. Malacol. Bull. 28, 105–112 (2010).
    Article  Google Scholar 

    30.
    Hartl, D. L. & Clark, A. G. Principles of Population Genetics 4th edn. (Sinauer, Sunderland, 2007).
    Google Scholar 

    31.
    Dmitrieva, N. I. & Burg, M. B. Elevation of extracellular NaCl increases secretion of von Willebrand Factor from endothelial cells. FASEB J. 27, 686.3 (2013).
    Google Scholar 

    32.
    Mansour, M. M. F. Nitrogen containing compounds and adaptation of plants to salinity stress. Biol. Plant. 43, 491–500 (2000).
    CAS  Article  Google Scholar 

    33.
    Somero, G. N. & Bowlus, R. D. Osmolytes and metabolic end products of molluscs: the design of compatible solute systems. in Mollusca, Vol. 2. Environ. Biochem. Physiol. 77–100 (1983).

    34.
    Lv, J. et al. Transcriptome analysis of Portunus trituberculatus in response to salinity stress provides insights into the molecular basis of osmoregulation. PLoS ONE https://doi.org/10.1371/journal.pone.0082155 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    35.
    Wiesenthal, A. A., Müller, C., Harder, K. & Hildebrandt, J. P. Alanine, proline and urea are major organic osmolytes in the snail Theodoxus fluviatilis under hyperosmotic stress. J. Exp. Biol. https://doi.org/10.1242/jeb.193557 (2019).
    Article  PubMed  Google Scholar 

    36.
    Yamanaka, O. & Takeuchi, R. UMATracker: an intuitive image-based tracking platform. J. Exp. Biol. https://doi.org/10.1242/jeb.182469 (2018).
    Article  PubMed  Google Scholar 

    37.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
    CAS  Article  Google Scholar 

    38.
    Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).
    CAS  Article  Google Scholar 

    39.
    Li, B. & Dewey, C. N. Assembly of non-unique insertion content using next-generation sequencing. BMC Bioinform. https://doi.org/10.1186/1471-2105-12-S6-S3 (2011).
    Article  Google Scholar 

    40.
    Sun, J., Nishiyama, T., Shimizu, K. & Kadota, K. TCC: An R package for comparing tag count data with robust normalization strategies. BMC Bioinform. https://doi.org/10.1186/1471-2105-14-219 (2013).
    Article  Google Scholar 

    41.
    Tang, M., Sun, J., Shimizu, K. & Kadota, K. Evaluation of methods for differential expression analysis on multi-group RNA-seq count data. BMC Bioinform. https://doi.org/10.1186/s12859-015-0794-7 (2015).
    Article  Google Scholar 

    42.
    Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).
    CAS  Article  Google Scholar 

    43.
    Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).
    CAS  Article  Google Scholar 

    44.
    McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
    CAS  Article  Google Scholar 

    45.
    Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180, 977–993 (2008).
    Article  Google Scholar 

    46.
    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).
    Article  Google Scholar  More

  • in

    Frugivore-fruit size relationships between palms and mammals reveal past and future defaunation impacts

    1.
    Fleming, T. H. & Kress, W. J. The Ornaments of Life: Coevolution and Conservation in the Tropics (Univ. Chicago Press, 2013).
    Google Scholar 
    2.
    Comita, L. S. et al. Testing predictions of the Janzen-Connell hypothesis: a meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival. J. Ecol. 102, 845–856 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    3.
    Howe, H. F. & Smallwood, J. Ecology of seed dispersal. Annu. Rev. Ecol. Syst. 13, 201–228 (1982).
    Article  Google Scholar 

    4.
    Jordano, P. in Seeds: The Ecology of Regeneration in Plant Communities 2nd edn (ed. Fenner, M.) 125–165 (CABI, 2000).

    5.
    Janzen, D. H. & Martin, P. S. Neotropical anachronisms: the fruits the gomphotheres ate. Science 215, 19–27 (1982).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Guimarães, P. R., Galetti, M. & Jordano, P. Seed dispersal anachronisms: rethinking the fruits extinct megafauna ate. PLoS ONE 3, e1745 (2008).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    7.
    Galetti, M. et al. Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340, 1086–1090 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Bender, I. M. A. et al. Morphological trait matching shapes plant-frugivore networks across the Andes. Ecography 41, 1910–1919 (2018).
    Article  Google Scholar 

    9.
    Faurby, S. & Svenning, J. C. Historic and prehistoric human-driven extinctions have reshaped global mammal diversity patterns. Divers. Distrib. 21, 1155–1166 (2015).
    Article  Google Scholar 

    10.
    Smith, F. A., Smith, R. E. E., Lyons, S. K. & Payne, J. L. Body size downgrading of mammals over the late Quaternary. Science 360, 310–313 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Martin, P. & Klein, R. Quaternary Extinctions: A Prehistoric Revolution. (Univ. Arizona Press, 1984).
    Google Scholar 

    13.
    Campos-Arceiz, A. & Blake, S. Megagardeners of the forest—the role of elephants in seed dispersal. Acta Oecol. 37, 542–553 (2011).
    ADS  Article  Google Scholar 

    14.
    Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Carbone, C., Cowlishaw, G., Isaac, N. & Rowcliffe, J. M. How far do animals go? Determinants of day range in mammals. Am. Nat. 165, 290–297 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    16.
    Pires, M. M., Guimaraes, P. R., Galetti, M. & Jordano, P. Pleistocene megafaunal extinctions and the functional loss of long-distance seed-dispersal services. Ecography 41, 153–163 (2018).
    Article  Google Scholar 

    17.
    Galetti, M. et al. Ecological and evolutionary legacy of megafauna extinctions. Biol. Rev. 93, 845–862 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    18.
    Jansen, P. A. et al. Thieving rodents as substitute dispersers of megafaunal seeds. Proc. Natl Acad. Sci. USA 109, 12610–12615 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Onstein, R. E. et al. To adapt or go extinct? The fate of megafaunal palm fruits under past global change. Proc. R. Soc. B 285, 20180882 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    20.
    Young, H. S., McCauley, D. J., Galetti, M. & Dirzo, R. Patterns, causes, and consequences of Anthropocene defaunation. Annu. Rev. Ecol. Evolut. Syst. 47, 333–358 (2016).
    Article  Google Scholar 

    21.
    Galetti, M. & Dirzo, R. Ecological and evolutionary consequences of living in a defaunated world. Biol. Conserv. 163, 1–6 (2013).
    Article  Google Scholar 

    22.
    Emer, C., Galetti, M., Pizo, M. A., Jordano, P. & Verdú, M. Defaunation precipitates the extinction of evolutionarily distinct interactions in the Anthropocene. Sci. Adv. 5, eaav6699 (2019).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Gardner, C. J., Bicknell, J. E., Baldwin-Cantello, W., Struebig, M. J. & Davies, Z. G. Quantifying the impacts of defaunation on natural forest regeneration in a global meta-analysis. Nat. Commun. 10, 4590 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    24.
    Dransfield, J. et al. Genera Palmarum — The Evolution and Classification of Palms (Royal Botanic Gardens, 2008).
    Google Scholar 

    25.
    Couvreur, T. L. P. & Baker, W. J. Tropical rain forest evolution: palms as a model group. BMC Biol. 11, 48 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    26.
    Terborgh, J. W. in Conservation Biology: the Science of Scarcity and Diversity (ed. Soulé, M. E.) 330–344 (Sinauer Associates, 1986).

    27.
    Zona, S. & Henderson, A. A review of animal-mediated seed dispersal of palms. Selbyana 11, 6–21 (1989).
    Google Scholar 

    28.
    Muñoz, G., Trøjelsgaard, K. & Kissling, W. D. A synthesis of animal-mediated seed dispersal of palms reveals distinct biogeographical differences in species interactions. J. Biogeogr. 46, 466–484 (2019).
    Article  Google Scholar 

    29.
    Kissling, W. D. et al. PalmTraits 1.0: a species-level functional trait database for palms worldwide. Sci. Data 6, 178 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    30.
    Govaerts, R. & Dransfield, J. World Checklist of Palms (Royal Botanic Gardens, 2005).
    Google Scholar 

    31.
    Brummitt, R. K., Pando, F., Hollis, S. & Brummitt, N. A. World Geographical Scheme for Recording Plant Distributions (TDWG, 2001).

    32.
    Cade, B. S. Model averaging and muddled multimodel inferences. Ecology 96, 2370–2382 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    33.
    Wheelwright, N. T. Fruit size, gape width, and the diets of fruit-eating birds. Ecology 66, 808–818 (1985).
    Article  Google Scholar 

    34.
    Lord, J. M. Frugivore gape size and the evolution of fruit size and shape in southern hemisphere floras. Austral Ecol. 29, 430–436 (2004).
    Article  Google Scholar 

    35.
    Levey, D. J. Seed size and fruit-handling techniques of avian frugivores. Am. Nat. 129, 471–485 (1987).
    Article  Google Scholar 

    36.
    Corlett, R. T. How to be a frugivore (in a changing world). Acta Oecol. 37, 674–681 (2011).
    ADS  Article  Google Scholar 

    37.
    Göldel, B., Kissling, W. D. & Svenning, J. C. Geographical variation and environmental correlates of functional trait distributions in palms (Arecaceae) across the New World. Bot. J. Linn. Soc. 179, 602–617 (2015).
    Article  Google Scholar 

    38.
    Kissling, W. D. et al. Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide. Proc. Natl Acad. Sci. USA 109, 7379–7384 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    39.
    Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the causes of late Pleistocene extinctions on the continents. Science 306, 70–75 (2004).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Sandom, C., Faurby, S., Sandel, B. & Svenning, J. C. Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc. R. Soc. B 281, 20133254 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    41.
    Doughty, C. E. et al. Megafauna extinction, tree species range reduction, and carbon storage in Amazonian forests. Ecography 39, 194–203 (2015).
    Article  Google Scholar 

    42.
    Galetti, M., Donatti, C. I., Pires, A. S., Guimarães Jr, P. R. & Jordano, P. Seed survival and dispersal of an endemic Atlantic forest palm: the combined effects of defaunation and forest fragmentation. Bot. J. Linn. Soc. 151, 141–149 (2006).
    Article  Google Scholar 

    43.
    Beaune, D., Fruth, B., Bollache, L., Hohmann, G. & Bretagnolle, F. Doom of the elephant-dependent trees in a Congo tropical forest. For. Ecol. Manag. 295, 109–117 (2013).
    Article  Google Scholar 

    44.
    Wotton, D. M. & Kelly, D. Frugivore loss limits recruitment of large-seeded trees. Proc. R. Soc. B 278, 3345–3354 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    45.
    Harrison, R. D. et al. Consequences of defaunation for a tropical tree community. Ecol. Lett. 16, 687–694 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    46.
    Pérez-Méndez, N., Jordano, P., García, C. & Valido, A. The signatures of Anthropocene defaunation: cascading effects of the seed dispersal collapse. Sci. Rep. 6, 24820 (2016).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    47.
    Nevo, O. et al. Frugivores and the evolution of fruit colour. Biol. Lett. 14, 20180377 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    48.
    Nevo, O., Razafimandimby, D., Jeffrey, J. A. J., Schulz, S. & Ayasse, M. Fruit scent as an evolved signal to primate seed dispersal. Sci. Adv. 4, eaat4871 (2018).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Bueno, R. S. et al. Functional redundancy and complementarities of seed dispersal by the last neotropical megafrugivores. PLoS ONE 8, e56252 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Sekar, N., Lee, C.-L. & Sukumar, R. Functional nonredundancy of elephants in a disturbed tropical forest. Conserv. Biol. 31, 1152–1162 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    51.
    Campos-Arceiz, A., Traeholt, C., Jaffar, R., Santamaria, L. & Corlett, R. T. Asian tapirs are no elephants when it comes to seed dispersal. Biotropica 44, 220–227 (2012).
    Article  Google Scholar 

    52.
    Corlett, R. T. The impact of hunting on the mammalian fauna of tropical asian forests. Biotropica 39, 292–303 (2007).
    Article  Google Scholar 

    53.
    Vidal, M. M., Pires, M. M. & Guimarães Jr, P. R. Large vertebrates as the missing components of seed-dispersal networks. Biol. Conserv. 163, 42–48 (2013).
    Article  Google Scholar 

    54.
    Heinen, J. H., van Loon, E. E., Hansen, D. M. & Kissling, W. D. Extinction-driven changes in frugivore communities on oceanic islands. Ecography 41, 1245–1255 (2017).
    Article  Google Scholar 

    55.
    Valido, A. & Olesen, J. M. Frugivory and seed dispersal by lizards: a global review. Front. Ecol. Evolut. 7, 49 (2019).
    Article  Google Scholar 

    56.
    Florens, F. B. V. et al. Disproportionately large ecological role of a recently mass-culled flying fox in native forests of an oceanic island. J. Nat. Conserv. 40, 85–93 (2017).
    Article  Google Scholar 

    57.
    Vizentin-Bugoni, J. et al. Structure, spatial dynamics, and stability of novel seed dispersal mutualistic networks in Hawai‘i. Science 364, 78–82 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Muñoz-Gallego, R., Fedriani, J. M. & Traveset, A. Non-native mammals are the main seed dispersers of the ancient mediterranean palm Chamaerops humilis L. in the balearic islands: rescuers of a lost seed dispersal service? Front. Ecol. Evolut. 7, 161 (2019).
    Article  Google Scholar 

    59.
    Pires, M. M. Rewilding ecological communities and rewiring ecological networks. Perspect. Ecol. Conserv. 15, 257–265 (2017).
    Google Scholar 

    60.
    Schleuning, M. et al. Ecological networks are more sensitive to plant than to animal extinction under climate change. Nat. Commun. 7, 13965 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Maisels, F. et al. Devastating decline of forest elephants in central Africa. PLoS ONE 8, e59469 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Valiente-Banuet, A. et al. Beyond species loss: the extinction of ecological interactions in a changing world. Funct. Ecol. 29, 299–307 (2014).
    Article  Google Scholar 

    63.
    Tucker, M. A. et al. Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Sales, L. P., Ribeiro, B. R., Pires, M. M., Chapman, C. A. & Loyola, R. Recalculating route: dispersal constraints will drive the redistribution of Amazon primates in the Anthropocene. Ecography 42, 1789–1801 (2019).
    Article  Google Scholar 

    65.
    Humphreys, A. M., Govaerts, R., Ficinski, S. Z., Lughadha, E. N. & Vorontsova, M. S. Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nat. Ecol. Evolut. 3, 1043–1047 (2019).
    Article  Google Scholar 

    66.
    Cronk, Q. Plant extinctions take time. Science 353, 446–447 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    Svenning, J. C. et al. Science for a wilder Anthropocene: synthesis and future directions for trophic rewilding research. Proc. Natl Acad. Sci. USA 113, 898–906 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    68.
    Galetti, M., Pires, A. S., Brancalion, P. H. & Fernandez, F. A. Reversing defaunation by trophic rewilding in empty forests. Biotropica 49, 5–8 (2017).
    Article  Google Scholar 

    69.
    Fricke, E. C., Tewksbury, J. J. & Rogers, H. S. Defaunation leads to interaction deficits, not interaction compensation, in an island seed dispersal network. Glob. Change Biol. 24, e190–e200 (2017).
    Article  Google Scholar 

    70.
    Meyer, C., Weigelt, P. & Kreft, H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol. Lett. 19, 992–1006 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    71.
    Kissling, W. D. et al. Quaternary and pre-Quaternary historical legacies in the global distribution of a major tropical plant lineage. Glob. Ecol. Biogeogr. 21, 909–921 (2012).
    Article  Google Scholar 

    72.
    Cheke, A. S. & Dahl, J. F. The Status of bats on western Indian Ocean islands, with special reference to Pteropus. Mammalia 45, 205–238 (1981).
    Article  Google Scholar 

    73.
    Prescott, G. W., Williams, D. R., Balmford, A., Green, R. E. & Manica, A. Quantitative global analysis of the role of climate and people in explaining late Quaternary megafaunal extinctions. Proc. Natl Acad. Sci. USA 109, 4527–4531 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    74.
    Martin, P. S. in Quaternary Extinctions: A Prehistoric Revolution (eds Martin, P. S. & Klein, R. G.) 354–403 (Univ. Arizona Press, 1984).

    75.
    Miller, G. H. et al. Ecosystem collapse in Pleistocene Australia and a human role in megafaunal extinction. Science 309, 287–290 (2005).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    76.
    Faurby, S. et al. PHYLACINE 1.2: the phylogenetic atlas of mammal macroecology. Ecology 99, 2626 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    77.
    Kissling, W. D. et al. Establishing macroecological trait datasets: digitalization, extrapolation, and validation of diet preferences in terrestrial mammals worldwide. Ecol. Evolut. 4, 2913–2930 (2014).
    Article  Google Scholar 

    78.
    International Union for Conservation of Nature and Natural Resources. The IUCN Red List of threatened species. Version 2018-2. IUCN http://www.iucnredlist.org (2018).

    79.
    Tiffney, B. H. Vertebrate dispersal of seed plants through time. Annu. Rev. Ecol. Evolut. Syst. 35, 1–29 (2004).
    Article  Google Scholar 

    80.
    Franãğa, L. D. M. et al. Review of feeding ecology data of Late Pleistocene mammalian herbivores from South America and discussions on niche differentiation. Earth Sci. Rev. 140, 158–165 (2015).
    ADS  Article  CAS  Google Scholar 

    81.
    MacFadden, B. J. & Shockey, B. J. Ancient feeding ecology and niche differentiation of Pleistocene mammalian herbivores from Tarija, Bolivia: morphological and isotopic evidence. Paleobiology 23, 77–100 (1997).
    Article  Google Scholar 

    82.
    Morosi, E. & Ubilla, M. Dietary and palaeoenvironmental inferences in Neolicaphrium recens Frenguelli, 1921 (Litopterna, Proterotheriidae) using carbon and oxygen stable isotopes (Late Pleistocene; Uruguay). Hist. Biol. 31, 196–202 (2017).
    Article  Google Scholar 

    83.
    MacFadden, B. J. Diet and habitat of toxodont megaherbivores (Mammalia, Notoungulata) from the late Quaternary of South and Central America. Quat. Res. 64, 113–124 (2005).
    Article  Google Scholar 

    84.
    Domingo, L., Prado, J. L. & Alberdi, M. T. The effect of paleoecology and paleobiogeography on stable isotopes of Quaternary mammals from South America. Quat. Sci. Rev. 55, 103–113 (2012).
    ADS  Article  Google Scholar 

    85.
    DeSantis, L. R. G., Field, J. H., Wroe, S. & Dodson, J. R. Dietary responses of Sahul (Pleistocene Australia-New Guinea) megafauna to climate and environmental change. Paleobiology 43, 181–195 (2017).
    Article  Google Scholar 

    86.
    Karger, D. N. et al. Data descriptor: climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    87.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Article  Google Scholar 

    88.
    Braconnot, P. et al. Evaluation of climate models using palaeoclimatic data. Nat. Clim. Change 2, 417–424 (2012).
    ADS  Article  Google Scholar 

    89.
    Kissling, W. D. & Carl, G. Spatial autocorrelation and the selection of simultaneous autoregressive models. Glob. Ecol. Biogeogr. 17, 59–71 (2008).
    Article  Google Scholar 

    90.
    Bivand, R. et al. spatialreg: spatial regression analysis. GitHub https://r-spatial.github.io/spatialreg/ (2019).

    91.
    Burnham, K. P. & Anderson, D. R. Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach 2nd edn (Springer, 2002).

    92.
    Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodel inference in ecology and evolution: challenges and solutions. J. Evolut. Biol. 24, 699–711 (2011).
    CAS  Article  Google Scholar 

    93.
    Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    94.
    Bartoń, K. MuMIn: multi-model inference. CRAN https://cran.r-project.org/package=MuMIn (2019).

    95.
    Galipaud, M., Gillingham, M. A. F. & Dechaume-Moncharmont, F.-X. A farewell to the sum of Akaike weights: The benefits of alternative metrics for variable importance estimations in model selection. Methods Ecol. Evolut. 8, 1668–1678 (2017).
    Article  Google Scholar 

    96.
    Zuber, V. & Strimmer, K. High-dimensional regression and variable selection using CAR scores. Stat. Appl. Genet. Mol. Biol. 10, 34 (2011).
    MathSciNet  MATH  Article  Google Scholar 

    97.
    Grömping, U. Relative importance for linear regression in R: the package relaimpo. J. Stat. Softw. 17, 1–27 (2006).
    Article  Google Scholar 

    98.
    Mooers, A. Ø., Faith, D. P. & Maddison, W. P. Converting endangered species categories to probabilities of extinction for phylogenetic conservation prioritization. PLoS ONE 3, e3700 (2008).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    99.
    Davis, M., Faurby, S. & Svenning, J. C. Mammal diversity will take millions of years to recover from the current biodiversity crisis. Proc. Natl Acad. Sci. USA 115, 11262–11267 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    100.
    International Union for Conservation of Nature and Natural Resources. IUCN Red List categories and criteria: version 3.1, 2nd edn (IUCN, 2012).

    101.
    Hoffmann, M. et al. The impact of conservation on the status of the world’s vertebrates. Science 330, 1503–1509 (2010).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    102.
    Di Marco, M. et al. A retrospective evaluation of the global decline of carnivores and ungulates. Conserv. Biol. 28, 1109–1118 (2014).
    PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Landscape configuration and habitat complexity shape arthropod assemblage in urban parks

    1.
    Oke, T. R. City size and the urban heat island. Atmos. Environ. 1967(7), 769–779 (1973).
    ADS  Article  Google Scholar 
    2.
    Zhou, B., Rybski, D. & Kropp, J. P. The role of city size and urban form in the surface urban heat island. Sci. Rep. 7, 1–9 (2017).
    Article  CAS  Google Scholar 

    3.
    Fenoglio, M. S., Rossetti, M. R., Videla, M. & Baselga, A. Negative effects of urbanization on terrestrial arthropod communities: A meta-analysis. Glob. Ecol. Biogeogr. 29, 1412–1429. https://doi.org/10.1111/geb.13107 (2020).
    Article  Google Scholar 

    4.
    McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).
    Article  Google Scholar 

    5.
    Philpott, S. M. et al. Local and landscape drivers of carabid activity, species richness, and traits in urban gardens in coastal California. Insects 10, 112 (2019).
    PubMed Central  Article  Google Scholar 

    6.
    Weller, B. & Ganzhorn, J. U. Carabid beetle community composition, body size, and fluctuating asymmetry along an urban-rural gradient. Basic Appl. Ecol. 5, 193–201 (2004).
    Article  Google Scholar 

    7.
    Alaruikka, D., Kotze, D. J., Matveinen, K. & Niemelä, J. Carabid beetle and spider assemblages along a forested urban–rural gradient in southern Finland. J. Insect Conserv. 6, 195–206 (2002).
    Article  Google Scholar 

    8.
    Burkman, C. E. & Gardiner, M. M. Spider assemblages within greenspaces of a deindustrialized urban landscape. Urban Ecosyst. 18, 793–818 (2015).
    Article  Google Scholar 

    9.
    Kaltsas, D., Panayiotou, E., Chatzaki, M. & Mylonas, M. Ground spider assemblages (Araneae: Gnaphosidae) along an urban-rural gradient in the city of Heraklion, Greece. Eur. J. Entomol. 111, 59 (2014).
    Article  Google Scholar 

    10.
    Magura, T., Horváth, R. & Tóthmérész, B. Effects of urbanization on ground-dwelling spiders in forest patches, Hungary. Landsc. Ecol. 25, 621–629 (2010).
    Article  Google Scholar 

    11.
    Shochat, E., Stefanov, W. L., Whitehouse, M. E. A. & Faeth, S. H. Urbanization and spider diversity: influences of human modification of habitat structure and productivity. Urban Ecology 14, 455–472 (2008).
    Article  Google Scholar 

    12.
    Liu, K.-L., Peng, M.-H., Hung, Y.-C. & Neoh, K.-B. Effects of park size, peri-urban forest spillover, and environmental filtering on diversity, structure, and morphology of ant assemblages in urban park. Urban Ecosyst. 22, 643–656 (2019).
    Article  Google Scholar 

    13.
    Brudvig, L. A., Damschen, E. I., Tewksbury, J. J., Haddad, N. M. & Levey, D. J. Landscape connectivity promotes plant biodiversity spillover into non-target habitats. Proc. Natl. Acad. Sci. USA 106, 9328–9332 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    14.
    McIntyre, N. E., Rango, J., Fagan, W. F. & Faeth, S. H. Ground arthropod community structure in a heterogeneous urban environment. Landsc. Urban Plan. 52, 257–274. https://doi.org/10.1016/S0169-2046(00)00122-5 (2001).
    Article  Google Scholar 

    15.
    Menke, S. B. et al. Urban areas may serve as habitat and corridors for dry-adapted, heat tolerant species; an example from ants. Urban Ecosyst. 14, 135–163 (2011).
    Article  Google Scholar 

    16.
    Dunning, J. B., Danielson, B. J. & Pulliam, H. R. Ecological processes that affect populations in complex landscapes. Oikos 65, 169–175 (1992).
    Article  Google Scholar 

    17.
    MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography Vol. 1 (Princeton University Press, Princeton, 2001).
    Google Scholar 

    18.
    Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J. Biogeogr. 31, 79–92 (2004).
    Article  Google Scholar 

    19.
    Burkman, C. E. & Gardiner, M. M. Urban greenspace composition and landscape context influence natural enemy community composition and function. Biol. Control 75, 58–67 (2014).
    Article  Google Scholar 

    20.
    Burks, J. M. & Philpott, S. M. Local and landscape drivers of parasitoid abundance, richness, and composition in urban gardens. Environ. Entomol. 46, 201–209 (2017).
    PubMed  Article  Google Scholar 

    21.
    Magura, T., Lövei, G. L. & Tóthmérész, B. Conversion from environmental filtering to randomness as assembly rule of ground beetle assemblages along an urbanization gradient. Sci. Rep. 8, 1–9 (2018).
    CAS  Article  Google Scholar 

    22.
    Corcos, D. et al. Impact of urbanization on predator and parasitoid insects at multiple spatial scales. PLoS ONE 14, e0214068 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Folgarait, P. J. Ant biodiversity and its relationship to ecosystem functioning: a review. Biodivers. Conserv. 7, 1221–1244 (1998).
    Article  Google Scholar 

    24.
    Hölldobler, B. & Wilson, E. O. The Ants (Harvard University Press, Cambridge, 1990).
    Google Scholar 

    25.
    Hölldobler, B. & Wilson, E. O. Journey to the Ants: A Story of Scientific Exploration (Harvard University Press, Cambridge, 1994).
    Google Scholar 

    26.
    Nichols, E. et al. Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biol. Conserv. 141, 1461–1474 (2008).
    Article  Google Scholar 

    27.
    Hanks, L. M. Influence of the larval host plant on reproductive strategies of cerambycid beetles. Annu. Rev. Entomol. 44, 483–505 (1999).
    CAS  PubMed  Article  Google Scholar 

    28.
    Kevan, P. G. & Baker, H. G. Insects as flower vistors and pollinators. Ann. Rev. Entomol. 28, 407–453 (1983).
    Article  Google Scholar 

    29.
    Haddad, C. R., Louw, S. V. & Dippenaar-Schoeman, A. S. An assessment of the biological control potential of Heliophanus pistaciae (Araneae: Salticidae) on Nysius natalensis (Hemiptera: Lygaeidae), a pest of pistachio nuts. Biol. Control 31, 83–90 (2004).
    Article  Google Scholar 

    30.
    Cotes, B. et al. Spider communities and biological control in native habitats surrounding greenhouses. Insects 9, 33 (2018).
    PubMed Central  Article  Google Scholar 

    31.
    Michalko, R. & Pekar, S. Different hunting strategies of generalist predators result in functional differences. Oecologia 181, 1187–1197. https://doi.org/10.1007/s00442-016-3631-4 (2016).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    32.
    Michalko, R., Pekár, S., Dul’a, M., Entling, M. H. & McGeoch, M. Global patterns in the biocontrol efficacy of spiders: a meta-analysis. Glob. Ecol. Biogeogr. 28, 1366–1378. https://doi.org/10.1111/geb.12927 (2019).
    Article  Google Scholar 

    33.
    Nyffeler, M. & Birkhofer, K. An estimated 400–800 million tons of prey are annually killed by the global spider community. Sci. Nat. 104, 30 (2017).
    Article  CAS  Google Scholar 

    34.
    Meineke, E. K., Dunn, R. R., Sexton, J. O. & Frank, S. D. Urban warming drives insect pest abundance on street trees. PLoS ONE 8, e59687 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Christie, F. J. & Hochuli, D. F. Elevated levels of herbivory in urban landscapes: are declines in tree health more than an edge effect?. Ecol. Soc. 10, 10 (2005).
    Article  Google Scholar 

    36.
    Bolton, B. Identification Guide to the Ant Genera of the World (Harvard University Press, Cambridge, 1994).
    Google Scholar 

    37.
    Lin, C. Systematic and Zoogeographic Studies on the Ant Subfamily Myrmicinae in Taiwan (Hymenoptera: Formicidae), Ph. D. Dissertation, National Taiwan University Press, Taiwan (1998).

    38.
    Johnson, N. F. & Triplehorn, C. A. Borror and DeLong’s Introduction to the Study of Insects (Thompson Brooks/Cole Belmont, CA, 2005).
    Google Scholar 

    39.
    Timms, L. L. et al. Does species-level resolution matter? Taxonomic sufficiency in terrestrial arthropod biodiversity studies. Insect Conserv. Diver. 6, 453–462 (2013).
    Article  Google Scholar 

    40.
    Blanche, K. R., Andersen, A. N. & Ludwig, J. A. Rainfall-contingent detection of fire impacts: responses of beetles to experimental fire regimes. Ecol. Appl. 11, 86–96 (2001).
    Article  Google Scholar 

    41.
    Lassau, S. A., Hochuli, D. F., Cassis, G. & Reid, C. A. M. Effects of habitat complexity on forest beetle diversity: do functional groups respond consistently?. Divers. Distrib. 11, 73–82 (2005).
    Article  Google Scholar 

    42.
    Grimbacher, P. S., Catterall, C. P. & Kitching, R. L. Detecting the effects of environmental change above the species level with beetles in a fragmented tropical rainforest landscape. Ecol. Entomol. 33, 66–79 (2008).
    Google Scholar 

    43.
    Gardiner, M. et al. Landscape composition influences patterns of native and exotic lady beetle abundance. Divers. Distrib. 15, 554–564 (2009).
    Article  Google Scholar 

    44.
    Team, Q. D. QGIS Geographic Information System.Open Source Geospatial Foundation Project (2020).

    45.
    Barton, K. Package ‘MuMIn’. R package version 1(40), 4 (2018).
    Google Scholar 

    46.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2017).
    Google Scholar 

    47.
    Gray, C. L., Simmons, B. I., Fayle, T. M., Mann, D. J. & Slade, E. M. Are riparian forest reserves sources of invertebrate biodiversity spillover and associated ecosystem functions in oil palm landscapes?. Biol. Conserv. 194, 176–183 (2016).
    Article  Google Scholar 

    48.
    Neoh, K.-B. et al. The effect of remnant forest on insect successional response in tropical fire-impacted peatland: a bi-taxa comparison. PLoS ONE 12, e0174388 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    49.
    Santos, M. N., Delabie, J. H. C. & Queiroz, J. M. Biodiversity conservation in urban parks: a study of ground-dwelling ants (Hymenoptera: Formicidae) in Rio de Janeiro City. Urban Ecosyst. 22, 927–942 (2019).
    Article  Google Scholar 

    50.
    Carpintero, S. & Reyes-López, J. Effect of park age, size, shape and isolation on ant assemblages in two cities of southern Spain. Entomol. Sci. 17, 41–51 (2014).
    Article  Google Scholar 

    51.
    Tsai, C.-Y. Diversity, Community Structure and Morphological Patterns of Ground-Dwelling Ant in Urban-Rural Interface Master thesis, National Chung Hsing University (2019).

    52.
    Hogg, B. N. & Daane, K. M. Aerial dispersal ability does not drive spider success in a crop landscape. Ecol. Entomol. 43, 683–694 (2018).
    Article  Google Scholar 

    53.
    Morse, D. H. Some determinants of dispersal by crab spiderlings. Ecology 74, 427–432 (1993).
    ADS  Article  Google Scholar 

    54.
    Bristowe, W. S. The distribution and dispersal of spiders. Proc. Zool. Soc. Lond. 99, 633–657 (1929).
    Article  Google Scholar 

    55.
    de Souza, D. R., dos Santos, S. G., Munhae, C. D. & Morini, M. S. D. Diversity of epigeal ants (Hymenoptera: Formicidae) in urban areas of Alto Tiete. Sociobiology 59, 703–717 (2014).
    Google Scholar 

    56.
    Pećarević, M., Danoff-Burg, J. & Dunn, R. R. Biodiversity on broadway – enigmatic diversity of the societies of ants (Formicidae) on the streets of New York City. PLoS ONE 5, e13222 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    57.
    Vasconcelos, H. L., Vilhena, J. M. S., Magnusson, W. E. & Albernaz, A. L. K. M. Long-term effects of forest fragmentation on Amazonian ant communities. J. Biogeogr. 33, 1348–1356 (2006).
    Article  Google Scholar 

    58.
    Otoshi, M. D., Bichier, P. & Philpott, S. M. Local and landscape correlates of spider activity density and species richness in urban gardens. Environ. Entomol. 44, 1043–1051 (2015).
    PubMed  Article  Google Scholar 

    59.
    Lacasella, F. et al. Asymmetrical responses of forest and “beyond edge” arthropod communities across a forest–grassland ecotone. Biodivers. Conserv. 24, 447–465 (2015).
    Article  Google Scholar 

    60.
    Boetzl, F. A., Schneider, G. & Krauss, J. Asymmetric carabid beetle spillover between calcareous grasslands and coniferous forests. J. Insect Conserv. 20, 49–57 (2016).
    Article  Google Scholar 

    61.
    Fusser, M. S. et al. Interactive effects of local and landscape factors on farmland carabids. Agric. For. Entomol. 20, 549–557 (2018).
    Article  Google Scholar 

    62.
    Magura, T., Lövei, G. L. & Tóthmérész, B. Does urbanization decrease diversity in ground beetle (Carabidae) assemblages?. Glob. Ecol. Biogeogr. 19, 16–26 (2010).
    Article  Google Scholar 

    63.
    Magura, T., Lövei, G. L. & Tóthmérész, B. Edge responses are different in edges under natural versus anthropogenic influence: a meta-analysis using ground beetles. Ecol. Evol. 7, 1009–1017 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    64.
    Delgado, J. D., Arroyo, N. L., Arévalo, J. R. & Fernández-Palacios, J. M. Edge effects of roads on temperature, light, canopy cover, and canopy height in laurel and pine forests (Tenerife, Canary Islands). Landsc. Urban Plan. 81, 328–340 (2007).
    Article  Google Scholar 

    65.
    Gaublomme, E., Hendrickx, F., Dhuyvetter, H. & Desender, K. The effects of forest patch size and matrix type on changes in carabid beetle assemblages in an urbanized landscape. Biol. Conserv. 141, 2585–2596 (2008).
    Article  Google Scholar 

    66.
    Soga, M., Kanno, N., Yamaura, Y. & Koike, S. Patch size determines the strength of edge effects on carabid beetle assemblages in urban remnant forests. J. Insect Conserv. 17, 421–428 (2013).
    Article  Google Scholar 

    67.
    Schroeder, L. M. Population levels and flight phenology of bark beetle predators in stands with and without previous infestations of the bark beetle Tomicus piniperda. For. Ecol. Manag. 123, 31–40 (1999).
    Article  Google Scholar 

    68.
    Clarke, K. M., Fisher, B. L. & LeBuhn, G. The influence of urban park characteristics on ant (Hymenoptera, Formicidae) communities. Urban Ecosyst. 11, 317–334 (2008).
    Article  Google Scholar 

    69.
    Ivanov, K. & Keiper, J. Ant (Hymenoptera: Formicidae) diversity and community composition along sharp urban forest edges. Biodivers. Conserv. 19, 3917–3933 (2010).
    Article  Google Scholar 

    70.
    Molnár, T., Magura, T., Tóthmérész, B. & Elek, Z. Ground beetles (Carabidae) and edge effect in oak-hornbeam forest and grassland transects. Eur. J. Soil Biol. 37, 297–300 (2001).
    Article  Google Scholar 

    71.
    Rodrigues, E. N. L., Mendonça, M. D. S. & Costa-Schmidt, L. E. Spider diversity responds strongly to edge effects but weakly to vegetation structure in riparian forests of Southern Brazil. Arthropod 8, 123–133 (2014).
    Article  Google Scholar 

    72.
    Bolger, D. T., Suarez, A. V., Crooks, K. R., Morrison, S. A. & Case, T. J. Arthropods in urban habitat fragments in southern California: area, age, and edge effects. Ecol. Appl. 10, 1230–1248 (2000).
    Article  Google Scholar 

    73.
    Suarez, A. V., Bolger, D. T. & Case, T. J. Effects of fragmentation and invasion on native ant communities in coastal southern California. Ecology 79, 2041–2056 (1998).
    Article  Google Scholar 

    74.
    Bolger, D. T. Spatial and temporal variation in the Argentine ant edge effect: implications for the mechanism of edge limitation. Biol. Conserv. 136, 295–305 (2007).
    Article  Google Scholar 

    75.
    Holway, D. A. Edge effects of an invasive species across a natural ecological boundary. Biol. Conserv. 121, 561–567 (2005).
    Article  Google Scholar 

    76.
    Yamaguchi, T. Influence of urbanization on ant distribution in parks of Tokyo and Chiba City, Japan I. Analysis of ant species richness. Ecol. Res. 19, 209–216 (2004).
    Article  Google Scholar 

    77.
    MacGregor-Fors, I. et al. City “green” contributions: the role of urban greenspaces as reservoirs for biodiversity. Forests 7, 146 (2016).
    Article  Google Scholar 

    78.
    Nagy, D. D., Magura, T., Horváth, R., Debnár, Z. & Tóthmérész, B. Arthropod assemblages and functional responses along an urbanization gradient: a trait-based multi-taxa approach. Urban For. Urban Greece 30, 157–168 (2018).
    Article  Google Scholar 

    79.
    Andersen, A. N. Ants: Standard Methods for Measuring and Monitoring Biodiversity 25–34 (Smithsonian Institution Press, Washington, DC, 2000).
    Google Scholar 

    80.
    Luke, S. H., Fayle, T. M., Eggleton, P., Turner, E. C. & Davies, R. G. Functional structure of ant and termite assemblages in old growth forest, logged forest and oil palm plantation in Malaysian Borneo. Biodivers. Conserv. 23, 2817–2832 (2014).
    Article  Google Scholar 

    81.
    Kyrö, K. et al. Local habitat characteristics have a stronger effect than the surrounding urban landscape on beetle communities on green roofs. Urban For. Urban Greece. 29, 122–130 (2018).
    Article  Google Scholar 

    82.
    Chung, A. Y. C., Eggleton, P., Speight, M. R., Hammond, P. M. & Chey, V. K. The diversity of beetle assemblages in different habitat types in Sabah, Malaysia. Entomol. Res. B 90, 475–496 (2000).
    CAS  Article  Google Scholar 

    83.
    Robinson, W. H. Urban Insects and Arachnids: A Handbook of Urban Entomology (Cambridge University Press, Cambridge, 2005).
    Google Scholar 

    84.
    Tsafack, N. et al. Carabid community structure in northern China grassland ecosystems: Effects of local habitat on species richness, species composition and functional diversity. PeerJ 6, e6197 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    85.
    Magura, T., Tóthmérész, B. & Elek, Z. Impacts of leaf-litter addition on carabids in a conifer plantation. Biodivers. Conserv. 14, 475–491 (2005).
    Article  Google Scholar 

    86.
    Koivula, M., Punttila, P., Haila, Y. & Nicnielii, J. Leaf litter and the small-scale distribution of carabid beetles (Coleoptera, Carabidae) in the boreal forest. Ecography 22, 424–435 (1999).
    Article  Google Scholar 

    87.
    Argañaraz, C. I., Rubio, G. D. & Gleiser, R. M. Spider communities in urban green patches and their relation to local and landscape traits. Biodivers. Conserv. 27, 981–1009 (2018).
    Article  Google Scholar 

    88.
    Lowe, E. C., Wilder, S. M. & Hochuli, D. F. Persistence and survival of the spider Nephila plumipes in cities: do increased prey resources drive the success of an urban exploiter?. Urban Ecosyst. 19, 705–720 (2016).
    Article  Google Scholar 

    89.
    Meineke, E. K., Holmquist, A. J., Wimp, G. M. & Frank, S. D. Changes in spider community composition are associated with urban temperature, not herbivore abundance. J. Urban Ecol. 3, juv010 (2017).
    Article  Google Scholar 

    90.
    Huseynov, E. F. Natural prey of the jumping spider Menemerus taeniatus (Araneae: Salticidae). Eur. J. Entomol. 102, 797–799 (2005).
    Article  Google Scholar 

    91.
    Johnson, S. R. Use of coleopteran prey by Phidippus audax (Araneae, Salticidae) in tallgrass prairie wetlands. J. Arachnol. 24, 39–42 (1996).
    Google Scholar 

    92.
    Allan, R. A. & Elgar, M. A. Exploitation of the green tree ant, Oecophylla smaragdina, by the salticid spider Cosmophasis bitaeniata. Aust. J. Zool. 49, 129–137 (2001).
    Article  Google Scholar 

    93.
    Touyama, Y., Ihara, Y. & Ito, F. Argentine ant infestation affects the abundance of the native myrmecophagic jumping spider Siler cupreus Simon in Japan. Insectes Soc. 55, 144–146 (2008).
    Article  Google Scholar 

    94.
    Hogg, B. N. & Daane, K. M. Impacts of exotic spider spillover on resident arthropod communities in a natural habitat. Ecol. Entomol. 40, 69–77 (2015).
    Article  Google Scholar 

    95.
    Marino, P. C. & Landis, D. A. Effect of landscape structure on parasitoid diversity and parasitism in agroecosystems. Ecol. Appl. 6, 276–284 (1996).
    Article  Google Scholar 

    96.
    Boccaccio, L. & Petacchi, R. Landscape effects on the complex of Bactrocera oleae parasitoids and implications for conservation biological control. Biocontrol 54, 607 (2009).
    Article  Google Scholar 

    97.
    Boetzl, F. A., Krimmer, E., Krauss, J. & Steffan-Dewenter, I. Agri-environmental schemes promote ground-dwelling predators in adjacent oilseed rape fields: Diversity, species traits and distance-decay functions. J. Appl. Ecol. 56, 10–20 (2019).
    Article  Google Scholar 

    98.
    Gagic, V. et al. Food web structure and biocontrol in a four-trophic level system across a landscape complexity gradient. Proc. R. Soc. B 278, 2946–2953 (2011).
    PubMed  Article  Google Scholar 

    99.
    Philpott, S. M. & Bichier, P. Local and landscape drivers of predation services in urban gardens. Ecol. Appl. 27, 966–976 (2017).
    PubMed  Article  Google Scholar 

    100.
    Eötvös, C. B., Lövei, G. L. & Magura, T. Predation pressure on sentinel insect prey along a riverside urbanization gradient in Hungary. Insects 11, 97 (2020).
    PubMed Central  Article  PubMed  Google Scholar 

    101.
    Eötvös, C. B., Magura, T. & Lövei, G. L. A meta-analysis indicates reduced predation pressure with increasing urbanization. Landsc. Urban Plan. 180, 54–59 (2018).
    Article  Google Scholar 

    102.
    Mata, L. et al. Conserving herbivorous and predatory insects in urban green spaces. Sci. Rep. 7, 40970 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    103.
    Croci, S., Butet, A., Georges, A., Aguejdad, R. & Clergeau, P. Small urban woodlands as biodiversity conservation hot-spot: a multi-taxon approach. Landsc. Ecol. 23, 1171–1186 (2008).
    Article  Google Scholar  More

  • in

    Safety and functional enrichment of gut microbiome in healthy subjects consuming a multi-strain fermented milk product: a randomised controlled trial

    Study design
    The study was a single-center, randomized, double-blind, controlled study, stratified by sex in four parallel groups with a 1:1:1:1 allocation ratio: the Test 1, Control 1, Test 3 and Control 3 groups, receiving one (Test 1 and Control 1) or three (Test 3 and Control 3) bottles per day of the Test or the Control product. The study period was split into three subperiods (Fig. 1): a 2-week washout period (day 14 to day 0), a 4-week period of Test or Control product consumption (day 0 to day 28) and a 4-week follow-up period (day 28 to day 56). Dietary restrictions were imposed throughout the entire study period (from day 14 to day 56), with prohibition of the consumption of other fermented dairy products, probiotics, vitamins and mineral supplements, to limit potential interference with the evaluation of the Test product effects. Each subject attended five visits to a clinical unit (Harrison Clinical Research, Munich, Germany): inclusion visit (V1-day 14), randomization visit (V2-day 0), two evaluation visits (V3-day 14, V4-day 28), and an end-of-study evaluation visit (V5-day 56). Blood and stool samples were collected for assessments of eligibility and of the safety evaluation criteria at V1, 2, 3 and 4 (blood) and V2, 3, 4, and 5 (stool). Each visit had to take place within 2 days of the scheduled visit date (± 2 days) to ensure a consistent adequacy between the times of clinical and biological measures and the duration of each corresponding period of product intake or follow-up between subjects. This study was performed in accordance with the principles of the Declaration of Helsinki, the French Huriet law, and ICH-GCP recommendations, and was approved by the ethics committee of the Bavarian Medical Association, Munich, Germany. All volunteers provided written informed consent. This trial was registered on the ClinicalTrials.gov, with the registration number NCT01108419 (date of registration April 22, 2010). The study was funded by Danone Research (France).
    Figure 1

    Clinical study design.

    Full size image

    Subject selection
    Subjects were screened between March and April 2010, and the study lasted from March 29th 2010 (first subject included) to June 25th 2010 (last subject completed). The following eligibility criteria were assessed at subject inclusion (V1). The inclusion criteria were: male or female volunteers providing written informed consent, aged from 18 to 55 years, with a body mass index (BMI) of 18.5 to 30.0 kg/m2, free-living and considered to be in good health on the basis of a clinical examination, with a normal defecation pattern and either menopausal or with an approved method of contraception if female. Non-inclusion criteria were: any allergy, hypersensitivity to any component of the study product, including lactose, systemic or topical treatment (at the time of inclusion or in the previous 4 weeks) likely to interfere with the evaluation of the study parameters (antibiotics, intestinal or respiratory antiseptics, antirheumatic agents, anti-inflammatory drugs [except for aspirin or equivalent at doses preventing from platelet aggregation or blood clotting] and steroids prescribed for chronic inflammatory diseases), any symptoms of respiratory or gastrointestinal common infectious diseases, a history of chronic metabolic or gastrointestinal disease, abdominal pain or any other severe progressive or chronic disease (cardiac, respiratory, etc.), immunodeficiency, eating disorders or a medicated diet, pregnancy or breast-feeding. The following eligibility criteria were also assessed at the randomization visit (V2): compliance with the dietary and medication restriction (as defined in the non-inclusion criteria) between V1 and V2, negative pregnancy test and parameters within the normal range in the blood samples collected at V1, and absence of common infectious disease symptoms.
    Product intervention
    The Test product was a fermented dairy drink containing Lactobacillus paracasei CNCM I-1518, Lactobacillus paracasei CNCM I-3689 and Lactobacillus rhamnosus CNCM I-3690 strains, with 107 to 109 colony-forming units (CFU)/g of product, and four yogurt strains (Lactobacillus bulgaricus CNCM I-2787, Streptococcus thermophilus CNCM I-2773, Streptococcus thermophilus CNCM I-2835, Streptococcus thermophilus CNCM I-2778). Counts were measured for each of the bacterial strains present in the Test product, at the start and end of the authorized storage period (shelf life). Means and ranges of strains counts from the batches of product used in the study are provided in Supplementary Table S1. The Control product was a non-fermented dairy drink, acidified with lactic acid and containing pectin as a stabilizer. Both the Test and Control products were sweetened and multi-fruit flavored. Both products were similar in terms of their appearance, packaging, nutritional content (isocaloric) and taste, to ensure the maintenance of double-blinding (both the participants and key study personnel, including the outcome assessors) until the database was locked and the request by the statistician for unblinding (the only staff not blinded being those involved in the preparation of the study products). Products were manufactured in a pilot plant approved by the national health authorities for the production of dairy products for human consumption. They were supplied by Danone Research, France and stored at + 4 ± 2 °C, with a shelf life of 37 days. Analyses were performed to guarantee the absence of microbiological contaminants in all products. Subjects were randomly assigned to the Test or Control group according to a randomization list established before the start of the study by an external statistician. The randomization list contained balanced blocks, stratified by sex, with the allocation of an incremental number linked to product number given by an IWRS system, and was kept confidential at the sponsor’s premises in order to ensure allocation concealment. The subjects were then asked to ingest either one (100 g) or three (3 × 100 g) bottles of the Test or Control product daily, in accordance with their randomization group, for the entire 4-week product-consumption period (28 days). Subjects with three doses per day were recommended to consume no more than two doses at the same time. Compliance was evaluated by the investigator on the basis of the daily reporting of product consumption by each participant in a personal diary and a count of unused bottles.
    Outcomes
    The primary aim of the study was to compare product safety between the Test 1 and Control 1 groups over the 4-week period of product consumption. The safety evaluation was based on the following parameters: adverse events, physical examination, hematology, metabolism profile, markers of hepatic, kidney and thyroid function, inflammatory markers, bowel habits and frequency of digestive symptoms. Additional information about safety parameters is provided in Supporting Information.
    As secondary criteria, safety parameters were also analyzed for the Test 3 and Control 3 groups, over the period of product consumption (V2 to V4), and for both 1 and 3 product doses during other periods: the follow-up period (V4–V5) and the whole experimental period (V2–V5). Stool samples were also subjected to testing to detect and quantify the strains present in the Test product and to analyze the microbiota, for both doses and different study periods (see details and methods below).
    Procedure
    At each visit, from V1 to V5, subjects underwent a physical examination and vital signs were recorded. Subjects completed a personal diary throughout the 10-week study period, which was collected and examined at each visit by the investigator. This diary included daily reports of study product consumption, the intake of unauthorized products, concomitant medication, symptoms, frequency and consistency of stool and a weekly scoring from the Frequency of Digestive Symptoms questionnaire. The physical activity and smoking habits of the subjects were recorded at each visit. Blood samples were collected for analyses after overnight fasting every two weeks from V1 to V4. The measure of calprotectin concentration, the detection and quantification of strains from the Test product, and the evaluation of the microbiota profile were performed on stool samples collected at each visit from V2 to V5. The study was performed in accordance with the protocol and the statistical analysis plan with no major change during the course of the trial.
    Safety monitoring committee
    A safety and monitoring committee (SMC), composed of three independent experts in internal medicine, hepato-gastro-enterology and pharmacology, performed an unblinded review of the subject withdrawals, the protocol deviations, the statistical analyses of study parameters and the individual data in the event of abnormal values for safety results. The statistical results were presented after the database lock by the study scientist and statistician to the SMC during two meetings. The SMC then presented its conclusions concerning the safety of the daily ingestion of the Test product at the two doses evaluated.
    Stool collection, DNA extraction
    We collected fecal samples from 90 subjects at four time points (Test 1 (N = 22), Test 3 (N = 23), Control 1 (N = 21), Control 3 (N = 24)) in RNAlater solution (Ambion, Courtaboeuf, France). Fecal DNA was extracted by mechanical lysis (FastprepFP120; ThermoSavant, Illkirch, France) followed by phenol/chloroform-based extraction, as previously described39. The DNA preparation was subjected to quality control by spectrophotometry on a NanoDrop 2000c spectrophotometer (Thermo Fisher). The DNA was analyzed by quantitative polymerase chain reaction (qPCR), 16S rRNA gene sequencing and whole-genome sequencing.
    Quantitative PCR
    Three strains, Lactobacillus paracasei subsp. paracasei CNCM I-1518, Lactobacillus paracasei subsp. paracasei CNCM I-3689 and Lactobacillus rhamnosus CNCM I-3690, were quantified by qPCR, as previously described39, with specific primers (Supplementary Table S2). Values were reported as median and interquartile range.
    16S RNA gene sequencing, processing and analysis
    16S RNA gene sequencing was performed as previously described18. Amplification was performed with the V3-V4 primers for the 16S rRNA (forward: CCTACGGGNGGCWGCAG, reverse: GACTACHVGGGTATCTAATCC). The samples were loaded into flow cells in an Illumina MiSeq 300PE Sequencing Platform, in accordance with the manufacturer’s instructions. Analyses were performed with QIIME (v. 19). The sequences were filtered for quality and a mean of 99,437 ± 36,973 reads per sample were retained. Reads were clustered into operational taxonomic units (OTUs; 97% identity threshold) with VSEARCH, and representative sequences for each OTU were aligned and taxonomically assigned with the SILVA database (v. 119). Alpha-diversity was assessed at genus level. Beta diversity was assessed with Bray–Curtis dissimilarity, Jensen-Shannon divergence, and weighted and unweighted UniFrac on genera and OTUs.
    Metagenomic shotgun sequencing and preprocessing
    Following standard DNA quality control and quantification, sequencing libraries were prepared with the Nextera XT DNA sample preparation kit in accordance with the manufacturer’s instructions. An overview of the bioinformatic pipeline used in this study is provided in Supplementary Fig. S1. We generated a mean of 35 million (± 8 million) paired-end reads per sample. Read cleaning, filtering and mapping were performed with NGLess version 0.740. An augmented catalog was built from the Integrated Gene Catalog (IGC)41 enriched with genes from the sequencing and de novo assembly of these 107 metagenomes and the seven bacterial genomes present in the Test product (Supplementary Fig. S2). Mapping and count matrix generation were also performed with NGLess. The taxonomic profile was extracted from the count matrix with the Metagenomic Species Pan-Genomes database42. For functional characterization, the catalog was annotated with functional data from the Kyoto encyclopedia of genes and genomes (KEGG, https://www.genome.jp/kegg/)43.
    Functional contribution
    Metagenomic gene count matrices were aggregated at KEGG orthologous (KO) levels, for the whole gene set and for genes from L. rhamnosus and L. paracasei from the Test product only. We estimated the contribution of the Test product to each KO, by dividing each KO relative abundance level for the Test product by the corresponding value for the whole gene set. A pseudocount of one was added. Corresponding KO relative abundances for the 31 universally distributed marker genes from Ciccarelli et al.44 were also obtained, to estimate the minimal functional contribution of each Test product gene. All KOs for the Test product with a contribution strictly higher than the minimal contribution, constituting a significant functional contribution of the Test product to the gut metagenome, were extracted for downstream analysis. KEGG BRITE and module annotations were used to explore this functional contribution, focusing on enzymes and transporters. We then assessed the extent to which this significant functional contribution set was shared by the other metagenomic species pan-genomes (MSPs).
    Statistical analysis
    Clinical parameters
    No data on adverse events were available to assess the sample size required. The decision to include 24 subjects per group was thus made on the basis of previously published safety studies45,46. For assessment of the safety of consuming the Test product, in comparison to the Control product, adverse events were recorded (MedDRA version 13) and used to evaluate the number of subjects with at least one adverse event, and the total number of adverse events overall, and by relationship to the study product, intensity, seriousness, action taken, and subject outcome. Additional physical examination data, blood parameters, calprotectin concentration in feces, and questionnaires about bowel movements, stool consistency and the frequency of digestive symptoms were collected throughout the period of product consumption and were analyzed as raw data or in terms of clinical significance relative to the baseline value. No formal statistical tests has been performed to assess the safety and study conclusions were based on nominal statistics as described hereafter, on individual data and on overall agreement of the SMC. For quantitative variables, Cohen’s d was calculated for the change from baseline after 4-week product consumption in Test and Control groups as follows: Cohen’s d = (Average raw change from baseline in Test group − Average raw change from baseline in Control group)/Pooled standard deviation at baseline. Cohen’s d values around 0.50 are considered to be of medium magnitude, and those around or above 0.80 are considered to be large47,48. In this study, an absolute Cohen’s d value above 0.5 was considered to be large enough to detect a potential difference between the Test and Control groups. For qualitative binary parameters, the relative risk (RR) and its 95% confidence interval (CI) were calculated by the normal approximation method. Safety analyses were performed on all randomized subjects who had consumed the Test or Control product at least once, i.e. the full analysis set (FAS) population. Statistical analyses were performed with the Statistical Analysis Systems statistical software package version 9.1.3 (Windows XP Professional; SAS Institute, Cary, NC, USA).
    Gut microbiota
    We used non-parametric tests to analyze qPCR data, alpha and beta-diversity, gene and species richness within individuals, between groups, at baseline and over time. Differential analyses were performed with DESeq2 (version 1.14.1)49 and ZIBR50. For all tests, the alpha risk was set at 0.05 after FDR adjustment by the Benjamini–Hochberg procedure. Network analysis was performed with the SPIEC-EASI R package (version 1.0.751). All statistical analyses were performed, and graphs were plotted with R software (version 3.6.0). Details of the analyses and parameters are provided in Supporting Information. More

  • in

    Soil moisture dominates dryness stress on ecosystem production globally

    Coupling of SM and VPD confounds ecosystem dryness stress
    The difficulty to disentangle the respective effects of SM and VPD stems from the fact that SM and VPD are strongly coupled through land–atmosphere interactions7,20. In addition, field experiments that manipulate atmospheric humidity and temperature at the ecosystem scale are lacking21. Given the strong SM-VPD coupling (Fig. 1c), e.g., on the yearly scale, both lower SM and higher VPD are associated with lower ecosystem gross primary production (GPP), indicated by SIF (Fig. 1a, b). This underlies the use of either SM or VPD alone as proxy for dryness stress on ecosystem production in many current models. Note a global spatially contiguous SIF data set was mainly used in this study, which was generated by using the machine-learning algorithm to train SIF observations from Orbiting Carbon Observatory-2 (OCO-2)22. We display the yearly scale because it is typically used to represent the condition of strong SM-VPD coupling globally11, and the study time period mainly spans from 2001 to 2016. However, as SM and VPD are strongly coupled, it is possible that the correlation between SM and SIF is a byproduct of the correlation between VPD and SIF, or vice versa. As a consequence of SM-VPD coupling, the correlations of yearly SM and VPD with SIF is very similar globally (Fig. 1d). Consequently, the correlation between SM and VPD constitutes a confounding factor that is often overlooked when assessing the role of SM and VPD in determining the impact of dryness stress on ecosystem production. There are still low correlations between SIF and SM or VPD in the northern high latitudes or tropical regions, which suggests possible temperature or radiation effects and requires further investigation.
    Fig. 1: Strong coupling of soil moisture and vapor pressure deficit confounds ecosystem dryness stress.

    a–c Spatial distribution of Pearson’s correlation coefficient between solar-induced chlorophyll fluorescence (SIF) and soil moisture (SM) (r(SIF, SM)), SIF and vapor pressure deficit (VPD) (r(SIF, VPD)), and SM and VPD (r(SM, VPD)), at the yearly scale. Regions with sparse vegetation and regions without valid data are masked in gray. d Relationship between yearly r(SIF, VPD) and yearly r(SIF,SM) across land vegetated areas. Color shows the relative density of data points, with higher density in black and lower density in yellow.

    Full size image

    Decoupling of SM and VPD globally
    At yearly scale, there is a strong negative correlation between SM and VPD, indicating that low SM is always accompanied by high VPD (Fig. 1c), which is consistent with previous findings7,20. From yearly to monthly, weekly, and daily scale, the correlations between SM and VPD are generally decreasing (Fig. 2d), but remain large across extensive areas, such as central South America, Sub-Saharan Africa, India, and Southeast Asia (Fig. 2a and Supplementary Fig. 1). However, when binning the data into 10 bins according to percentiles of either SM or VPD per pixel, we find that the correlation coefficient between SM and VPD in each bin becomes approximately zero (Fig. 2b–d and Supplementary Figs. 2 and 3). This shows that SM and VPD are generally decoupled at daily scale in both SM and VPD bins.
    Fig. 2: Decoupling of soil moisture and vapor pressure deficit.

    a–c Spatial distribution of Pearson’s correlation coefficient between soil moisture (SM) and vapor pressure deficit (VPD) at daily scale, averaged over daily SM bins, and averaged over daily VPD. Regions with sparse vegetation and regions without valid data are masked in gray. d Violin plots of correlations between SM and VPD from yearly to daily bins across land vegetated areas. White dots indicate the median values, gray boxes cover the interquartile range, and thin gray lines reach the 5th and 95th percentiles.

    Full size image

    Disentangling the relative role of SM of VPD
    We now disentangle the respective effects of SM and VPD in limiting ecosystem production by exploiting the fact that SM and VPD are decoupled in binned daily SM or VPD data (Fig. 2). SM and VPD are also largely decoupled in 4-day bins, which is the temporal resolution of the mainly used SIF data set (Supplementary Figs. 4 and 5). The analysis is guided by the assumption that if SM dominates dryness stress, low SM will limit ecosystem production regardless of VPD variations (Supplementary Fig. 6a, c). In the same way, if VPD dominates dryness stress, high VPD will limit ecosystem production regardless of SM variations (Supplementary Fig. 6b, d).
    To illustrate this further, we select an example pixel located in Mali (West Africa). Without decoupling SM and VPD, it is difficult to conclude whether the decrease in SIF is caused by low SM, high VPD, or both in conjunction (Fig. 3a, b). However, when looking at the variation of SIF across VPD gradients in SM bins (without SM-VPD coupling), high VPD does not reduce SIF but even increase SIF a bit under moderate SM conditions (Fig. 3c). In contrast, low SM reduces SIF noticeably in VPD bins (Fig. 3d). This shows that high VPD does not limit SIF in the absence of the SM-VPD coupling at the example pixel, whereas low SM can still limit SIF. In other words, the apparent VPD limitation on SIF is largely the byproduct of SM-VPD coupling. The respective effects of SM and VPD on SIF is also illustrated in Fig. 3e. The changes in SIF from low VPD to high VPD without SM-VPD coupling (termed ΔSIF(VPD|SM)) can quantify the VPD stress on SIF. Likewise, changes in SIF from high SM to low SM without SM-VPD coupling (termed ΔSIF(SM|VPD)) quantify the SM stress on SIF. The effect of SM and VPD on SIF is estimated using two approaches: (i) SIF in the maximum VPD bin minus SIF in the minimum VPD bin or SIF in the minimum SM bin minus SIF in the maximum SM bin; (ii) using linear regression to derive changes in SIF caused by high VPD or low SM. The two approaches lead to similar results (Methods and Supplementary Fig. 16). As shown in Fig. 3f, the SM effect is strong at the example location (ΔSIF(SM|VPD) = −0.17 mW m−2 nm−2 sr−1), in contrast to the VPD effect (ΔSIF(VPD|SM) = −0.03 mW m−2 nm−2 sr−1). Thus, the comparison of (ΔSIF(SM|VPD) and ΔSIF(VPD|SM) enables the disentangling of their relative role in governing dryness stress.
    Fig. 3: Disentangling soil moisture and vapor pressure deficit limitation effects.

    a Daily solar-induced chlorophyll fluorescence (SIF) versus daily vapor pressure deficit (VPD). b Daily SIF versus daily soil moisture (SM). c Daily SIF versus daily VPD, binned by SM. d Daily SIF versus daily SM, binned by VPD. c, d circles denote the averaged SIF within each bin of VPD and SM. e Average SIF in each percentile bin of SM and VPD. The cyan arrows indicate the VPD limitations on SIF without SM-VPD coupling (ΔSIF(VPD|SM)), and the orange arrows indicate the SM limitations on SIF without SM-VPD coupling (ΔSIF(SM|VPD)). For better readability, only four arrows are shown. f Distribution of ΔSIF(VPD|SM) and ΔSIF(SM|VPD). Circles denote the ΔSIF(VPD|SM) and ΔSIF(SM|VPD) in each bin. Squares denote the corresponding mean. The example pixel is located in Mali, West Africa at 14.25°N, −4.75°E. See Methods for more details.

    Full size image

    Next, we examine the respective SM and VPD effects on SIF globally. To ensure comparability in space, the SIF time series at each pixel are normalized by the average SIF exceeding the 90th percentile. Temperature and radiation can also limit ecosystem production, therefore, we have filtered out days when other meteorological drivers were likely to be more important than SM or VPD in limiting ecosystem carbon and water fluxes throughout the analyses, following previous studies12,23. We find that ΔSIF(SM|VPD) is negative across most vegetated land areas, robustly indicating the limiting role of low SM to SIF (Fig. 4a, b) and consistent with plant physiological understanding and previous studies4,7. The units refer to the fractions relative to average SIF exceeding the 90th percentile in each grid cell. Large ΔSIF(SM|VPD) are identified in mid-latitudes, including southern North America, central Eurasia, southern Africa, and Australia. In contrast, ΔSIF(VPD|SM) is small and close to 0 across large areas, but it was larger than ΔSIF(SM|VPD) in tropical Africa surrounding the equator (Fig. 4c, d). Globally, a change from the wettest SM to the driest SM under constant VPD reduces SIF by up to 14.9% on average, whereas a change in VPD from lowest to highest quantiles under constant SM has little effect on SIF (−3.8%) on average. Locally, the areas where the strength of SM effects on SIF (|ΔSIF(SM|VPD)|) exceeds that of VPD effects (|ΔSIF(VPD|SM)|) are widespread, which is also visible along the latitudinal gradient (Fig. 4e, f). In total, |ΔSIF(SM|VPD)| is larger than |ΔSIF(VPD|SM)| across 71.3% of land vegetated areas with valid data, by contrast, VPD is more important than SM in 26.7% of corresponding areas. Furthermore, our findings suggest that many previous estimates of the role of VPD on ecosystem production are likely exaggerated16,24 as they did not account for the strong SM-VPD coupling as a confounding factor. In boreal and tropical regions, both SM and VPD have little effect on SIF, which is controlled by radiation and temperature7,25. The spatial patterns of ΔSIF(SM|VPD)—ΔSIF(VPD|SM) are robust to the choice of the particular forcing data set (Supplementary Figs. 7–11). However, when using the GOME-2 SIF and SCIAMACHY SIF with the local overpass time at 9:30 am and 10:00 am, the VPD effects are weaker than that in CSIF (reducing SIF by 0.1% and 0.02% on average globally), including most of Africa (excluding the Sahara) as well as large areas of central South America, southern Asia, and Australia (Supplementary Figs. 9–11). This raise a caveat that using SIF retrieved in the morning would underestimate the VPD effects. To further test the robustness of our result, we standardized the SIF by photosynthetically active radiation (PAR) to remove possible radiation effects26, limited the data to a narrow temperature range to remove possible temperature effects and aggregated data to a coarser time resolution or using 20 percentile bins, yielding similar results (Supplementary Figs. 12–15). Thus, we demonstrate that SM is the dominant factor in driving the response of ecosystem production to dryness at the ecosystem scale across most land vegetated areas, except for tropical and boreal areas.
    Fig. 4: Effect of soil moisture and vapor pressure deficit on ecosystem production globally.

    a, c, e Spatial distribution of the changes in solar-induced chlorophyll fluorescence (SIF) caused by low soil moisture (SM) (ΔSIF(SM|VPD)) and high vapor pressure deficit (VPD) (ΔSIF(VPD|SM)), and their differences in absolute values (i.e., |ΔSIF(SM|VPD)|−|ΔSIF(VPD|SM)|). b, d, f Zonal means of SM and VPD effects on SIF and their differences in absolute values. The units refer to the fractions relative to average SIF exceeding the 90th percentile in each grid cell. Black lines indicate the mean values, and gray shaded bands show the standard deviation. Regions with sparse vegetation and regions without valid data are masked in white.

    Full size image

    Different from a recent global assessment of SM stress on ecosystem production that estimates the relation between SM stress and background climate from a small sample of flux sites18, our results build on data with global coverage and hence provide spatially explicit information of SM stress. Further converting the SIF decrease to the actual carbon loss would largely help quantify changes in terrestrial carbon fluxes under drought. Furthermore, our conclusions contradict many laboratory experiments that show strong VPD effects on stomatal conductance at the leaf scale27,28. This again indicates that the stomatal sensitivity to VPD do not definitely determine the same VPD response of plant water and carbon fluxes at the ecosystem scale29,30, but some ecosystem scale measurements reveal that stomatal sensitivity to VPD can matter in some cases11,12. Key processes driving the weak plant photosynthesis response to VPD at the ecosystem scale need to be addressed in future work, such as the role of ecosystem water use efficiency, water storage and hydraulic strategies29.
    Dependence of SM stress on climate and vegetation gradients
    We find that SM limitation effects (ΔSIF(SM|VPD) are largest in semi-arid ecosystems (Fig. 5a), including shrubland, grassland, and savannah ecosystems. These are the ecosystems that are the main drivers of the interannual variability in global terrestrial CO2 flux31,32. In contrast, VPD effects are much weaker in these regions (Fig. 4c). This suggests that SM could be more important than VPD in driving interannual variability of global terrestrial carbon uptake. As SM stress is strongest in drylands, the projected expansion of drylands33 is likely to increase the influence of SM on the future global carbon cycle. In addition, we find that regions with lower tree fraction exhibit a larger response to SM stress globally (Fig. 5b). This is in line with recent findings34, and further verifies the robustness of our results. Our findings also highlights the differential dryness response of ecosystems along a tree cover gradient.
    Fig. 5: Dependence of soil moisture dryness stress on climate and vegetation gradients.

    Violin plots of soil moisture (SM) limitation effects (ΔSIF(SM|VPD)) across a aridity gradients and b tree cover gradients. c Violin plots of the sensitivity of solar-induced chlorophyll fluorescence (SIF) to SM (i.e., (frac{{delta SIF}}{{delta SM}}|_{VPD})) within different plant functional types: SHR(S), shrubland (south of 45° N); GRA, grassland; CRO, cropland; WSA(S), woody savanna (south of 45° N); SAV, savanna. White dots indicate the median values, gray boxes cover the interquartile range, and thin gray lines reach the 5th and 95th percentiles.

    Full size image

    The representation of dryness stress on plant photosynthetic CO2 assimilation can differ largely between TEMs and is considered one of the largest uncertainties in predicting future land carbon uptake and climate35,36,37. Their representations in TEMs often uses an empirical function that only varies by plant functional type (PFT)38, which have generally not been validated against observational empirical data. Therefore, we explored the observed standardized sensitivity of SIF to SM. We find that the sensitivity of ecosystem production to changes in SM can vary largely even in the same PFT with strong observed dryness effects (Fig. 5c). This is consistent with recent findings that the grassland’s sensitivity to dryness can vary greatly39. The differences of dryness response in the same PFT are, e.g., related to plant species, plant height and plant hydraulic processes, such as plasticity variations in xylem and mesophyll conductance, embolism resistance, or water storage40. At present, evaluating and incorporating more plant hydraulic processes into the next generation of terrestrial ecosystems is on the way41. Our results of dryness effects on ecosystem production thus enables an evaluation of further TEM evolution.
    In summary, we provide global results of SM and VPD stress on SIF and demonstrate that SM, rather than VPD, is the dominant driver leading to drought limitation on vegetation productivity at the ecosystem level across most vegetated land areas. VPD stress on ecosystem production is almost lost across large areas without SM-VPD coupling. We thus make the case for revisiting the role of VPD in previous studies that neglected the strong SM-VPD coupling. Furthermore, models that do not correctly disentangle the respective VPD and SM limitations cannot adequately predict the dryness stress on ecosystems and associated rough risks to human well-being. The next challenge is to incorporate the observations to constrain the representation of dryness stress on plants in models, which would also reduce uncertainties in the projection of terrestrial CO2 fluxes and associated climate projections. More

  • in

    Coupled changes in soil organic carbon fractions and microbial community composition in urban and suburban forests

    1.
    Hui, D., Deng, Q., Tian, H. & Luo, Y. Climate Change and Carbon Sequestration in Forest Ecosystems 555–594 (Springer, New York, 2017).
    Google Scholar 
    2.
    Lal, R. & Augustin, B. Carbon Sequestration in Urban Ecosystems (Springer, Dordrecht, 2012).
    Google Scholar 

    3.
    Zhang, J. & Sta, P. Effects of urbanization on forest vegetation, soil and landscape. Acta Ecol. Sin. 19, 654–658 (1999).
    Google Scholar 

    4.
    George, K., Ziska, L. H., Bunce, J. A. & Quebedeaux, B. Elevated atmospheric CO2 concentration and temperature across an urban–rural transect. Atmos. Environ. 41, 7654–7665. https://doi.org/10.1016/j.atmosenv.2007.08.018 (2007).
    ADS  CAS  Article  Google Scholar 

    5.
    Pouyat, R. V. et al. Soil Carbon in Urban Forest Ecosystems (CRC Press, Cambridge, 2003).
    Google Scholar 

    6.
    Zhang, W. et al. Methane uptake in forest soils along an urban-to-rural gradient in Pearl River Delta, South China. Sci. Rep. 4, 5120. https://doi.org/10.1038/srep05120 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    7.
    Zhou, D. et al. Spatiotemporal trends of urban heat island effect along the urban development intensity gradient in China. Sci. Total Environ. 544, 617–626. https://doi.org/10.1016/j.scitotenv.2015.11.168 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    8.
    Norman, J., MacLean, H. L. & Kennedy, C. A. Comparing high and low residential density: Life-cycle analysis of energy use and greenhouse gas emissions. J. Urban Plan. Dev. 132, 10–21. https://doi.org/10.1061//ASCE/0733-9488/2006/132:1/10 (2006).
    Article  Google Scholar 

    9.
    Carreiro, M. M. & Tripler, C. E. Forest remnants along urban-rural gradients: Examining their potential for global change research. Ecosystems 8, 568–582. https://doi.org/10.1007/s10021-003-0172-6 (2005).
    Article  Google Scholar 

    10.
    Meng, L. et al. Responses of ecosystem carbon cycle to experimental warming: A meta-analysis. Ecology 94, 726. https://doi.org/10.1890/12-0279.1 (2013).
    Article  Google Scholar 

    11.
    Lukac, M. et al. Forest soil carbon cycle under elevated CO2—A case of increased throughput?. Forestry 82, 75–86. https://doi.org/10.1093/forestry/cpn041 (2009).
    Article  Google Scholar 

    12.
    Luo, Y. & Weng, E. Dynamic disequilibrium of the terrestrial carbon cycle under global change. Trends Ecol. Evol. 26, 96–104. https://doi.org/10.1016/j.tree.2010.11.003 (2011).
    Article  PubMed  Google Scholar 

    13.
    Deng, Q. et al. Effects of CO2 enrichment, high nitrogen deposition and high precipitation on a model forest ecosystem in southern China. Chin. J. Plant Ecol. 33, 1023–1033 (2009).
    Google Scholar 

    14.
    De Graaff, M., Van Groenigen, K., Six, J. & Hungate, B. K. C. Interactions between plant growth and soil nutrient cycling under elevated CO2: A meta-analysis. Glob. Change Biol. 12, 2077–2091. https://doi.org/10.1111/j.1365-2486.2006.01240.x (2010).
    Article  Google Scholar 

    15.
    Chen, X., Deng, Q., Lin, G., Lin, M. & Wei, H. Changing rainfall frequency affects soil organic carbon concentrations by altering non-labile soil organic carbon concentrations in a tropical monsoon forest. Sci. Total Environ. 644, 762–769. https://doi.org/10.1016/j.scitotenv.2018.07.035 (2018).
    ADS  CAS  Article  PubMed  Google Scholar 

    16.
    Stockmann, U. et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric. Ecosyst. Environ. 164, 80–99. https://doi.org/10.1016/j.agee.2012.10.001 (2013).
    CAS  Article  Google Scholar 

    17.
    von Lützow, M. et al. SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biol. Biochem. 39, 2183–2207. https://doi.org/10.1016/j.soilbio.2007.03.007 (2007).
    CAS  Article  Google Scholar 

    18.
    Garten, C. T. Comparison of forest soil carbon dynamics at five sites along a latitudinal gradient. Geoderma 167–168, 30–40. https://doi.org/10.1016/j.geoderma.2011.08.007 (2011).
    ADS  CAS  Article  Google Scholar 

    19.
    Mclauchlan, K. K. & Hobbie, S. E. Comparison of labile soil organic matter fractionation techniques. Soil Sci. Soc. Am. J. 68, S34–S34. https://doi.org/10.2136/sssaj2004.1616 (2004).
    Article  Google Scholar 

    20.
    von Lützow, M. et al. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions—A review. Eur. J. Soil Sci. 57, 426–445. https://doi.org/10.1111/j.1365-2389.2006.00809.x (2006).
    CAS  Article  Google Scholar 

    21.
    Schmidt, M. W. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56. https://doi.org/10.1038/nature10386 (2011).
    ADS  CAS  Article  PubMed  Google Scholar 

    22.
    Pan, G. et al. Soil carbon sequestration with bioactivity: A new emerging frontier for sustainable soil management. Adv. Earth Sci. 30, 940–951 (2015).
    CAS  Google Scholar 

    23.
    You, Y. et al. Relating microbial community structure to functioning in forest soil organic carbon transformation and turnover. Ecol. Evol. 4, 633–647. https://doi.org/10.1002/ece3.969 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    24.
    Shao, S. et al. Linkage of microbial residue dynamics with soil organic carbon accumulation during subtropical forest succession. Soil Biol. Biochem. 114, 114–120. https://doi.org/10.1016/j.soilbio.2017.07.007 (2017).
    CAS  Article  Google Scholar 

    25.
    Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter?. Glob. Change Biol. 19, 988–995. https://doi.org/10.1111/gcb.12113 (2013).
    ADS  Article  Google Scholar 

    26.
    Newbound, M., Bennett, L. T., Tibbits, J. & Kasel, S. Soil chemical properties, rather than landscape context, influence woodland fungal communities along an urban-rural gradient. Austral. Ecol. 37, 236–247. https://doi.org/10.1111/j.1442-9993.2011.02269.x (2012).
    Article  Google Scholar 

    27.
    Chai, L. et al. Urbanization altered regional soil organic matter quantity and quality: Insight from excitation emission matrix (EEM) and parallel factor analysis (PARAFAC). Chemosphere 220, 249–258. https://doi.org/10.1016/j.chemosphere.2018.12.132 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 

    28.
    Wang, Y. D., Wang, H. M., Xu, M. J., Ma, Z. Q. & Wang, Z. L. Soil organic carbon stocks and CO2 effluxes of native and exotic pine plantations in subtropical China. CATENA 128, 167–173. https://doi.org/10.1016/j.catena.2015.02.003 (2015).
    CAS  Article  Google Scholar 

    29.
    Zhou, G. et al. Old-growth forests can accumulate carbon in soils. Science 314, 1417. https://doi.org/10.1126/science.1130168 (2006).
    ADS  CAS  Article  PubMed  Google Scholar 

    30.
    Chen, H. et al. Changes in soil carbon sequestration in Pinus massoniana forests along an urban-to-rural gradient of southern China. Biogeosciences 10, 6609–6616. https://doi.org/10.5194/bg-10-6609-2013 (2013).
    ADS  CAS  Article  Google Scholar 

    31.
    Fang, Y. T., Gundersen, P., Mo, J. M. & Zhu, W. X. Input and output of dissolved organic and inorganic nitrogen in subtropical forests of South China under high air pollution. Biogeosciences 5, 339–352 (2008).
    ADS  CAS  Article  Google Scholar 

    32.
    Hou, E., Xiang, H., Li, J., Li, J. & Wen, D. Heavy metal contamination in soils of remnant natural and plantation forests in an urbanized region of the Pearl River Delta, China. Forests 5, 885–900. https://doi.org/10.3390/f5050885 (2014).
    Article  Google Scholar 

    33.
    Huang, L. The Characteristics of Remnant Lower Subtropical Evergreen Broad-Leaved Forests and Their Relationships with Environmental Factors in Urbanized Areas (South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 2012).
    Google Scholar 

    34.
    Song, P. et al. Effects of historical logging on soil microbial communities in a subtropical forest in southern China. Plant Soil 397, 115–126. https://doi.org/10.1007/s11104-015-2553-y (2015).
    CAS  Article  Google Scholar 

    35.
    Sun, F. F., da Wen, Z., Kuang, Y. W., Li, J. & Zhang, J. G. Concentrations of sulphur and heavy metals in needles and rooting soils of Masson pine (Pinus massoniana L.) trees growing along an urban-rural gradient in Guangzhou, China. Environ. Monit. Assess. 154, 263–274. https://doi.org/10.1007/s10661-008-0394-3 (2009).
    CAS  Article  PubMed  Google Scholar 

    36.
    Groffman, P. M., Pouyat, R. V., McDonnell, M. J., Pickett, S. T. & Zipperer, W. C. Carbon pools and trace gas fluxes in urban forest soils. In Soil Management and Greenhouse Effect: Advances in Soil Science (eds Kimble, J. M. et al.) 147–158 (CRC Press, Amsterdam, 1995).
    Google Scholar 

    37.
    Koerner, B. A. & Klopatek, J. M. Carbon fluxes and nitrogen availability along an urban–rural gradient in a desert landscape. Urban Ecosyst. 13, 1–21. https://doi.org/10.1007/s11252-009-0105-z (2009).
    Article  Google Scholar 

    38.
    Dungait, J. A. J., Hopkins, D. W., Gregory, A. S. & Whitmore, A. P. Soil organic matter turnover is governed by accessibility not recalcitrance. Glob. Change Biol. 18, 1781–1796. https://doi.org/10.1111/j.1365-2486.2012.02665.x (2012).
    ADS  Article  Google Scholar 

    39.
    Leifeld, J. & Kögel-Knabner, I. Soil organic matter fractions as early indicators for carbon stock changes under different land-use?. Geoderma 124, 143–155. https://doi.org/10.1016/j.geoderma.2004.04.009 (2005).
    ADS  CAS  Article  Google Scholar 

    40.
    Pouyat, R., Groffman, P., Yesilonis, I. & Hernandez, L. Soil carbon pools and fluxes in urban ecosystems. Environ. Pollut. 116, S107–S118. https://doi.org/10.1016/s0269-7491(01)00263-9 (2002).
    CAS  Article  PubMed  Google Scholar 

    41.
    Nadelhoffer, K. J. & Raich, J. W. Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology 73, 1139–1147. https://doi.org/10.2307/1940664 (1992).
    Article  Google Scholar 

    42.
    Luo, Z., Feng, W., Luo, Y., Baldock, J. & Wang, E. Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions. Glob. Change Biol. 23, 4430–4439. https://doi.org/10.1111/gcb.13767 (2017).
    ADS  Article  Google Scholar 

    43.
    Urbanová, M., Šnajdr, J. & Baldrian, P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol. Biochem. 84, 53–64. https://doi.org/10.1016/j.soilbio.2015.02.011 (2015).
    CAS  Article  Google Scholar 

    44.
    Bowden, R. D. et al. litter input controls on soil carbon in a temperate deciduous forest. Soil Sci. Soc. Am. J. 78, S66–S75. https://doi.org/10.2136/sssaj2013.09.0413nafsc (2014).
    Article  Google Scholar 

    45.
    Carreiro, M. M., Howe, K., Parkhurst, D. F. & Pouyat, R. V. Variation in quality and decomposability of red oak leaf litter along an urban-rural gradient. Biol. Fertil. Soils 30, 258–268. https://doi.org/10.1007/s003740050617 (1999).
    Article  Google Scholar 

    46.
    Xu, X. & Hirata, E. Decomposition patterns of leaf litter of seven common canopy species in a subtropical forest: N and P dynamics. Plant Soil 273, 279–289. https://doi.org/10.1007/s11104-004-8069-5 (2005).
    CAS  Article  Google Scholar 

    47.
    Wang, Q., Wang, S., Feng, Z. & Huang, Y. Active soil organic matter and its relationship with soil quality. Acta Ecol. Sin. 25, 513–519 (2005).
    CAS  Google Scholar 

    48.
    Hu, S., Coleman, D. C., Carroll, C. R., Hendrix, P. F. & Beare, M. H. Labile soil carbon pools in subtropical forest and agricultural ecosystems as influenced by management practices and vegetation types. Agric. Ecosyst. Environ. 65, 69–78. https://doi.org/10.1016/s0167-8809(97)00049-2 (1997).
    CAS  Article  Google Scholar 

    49.
    Blair, G. J., Lefroy, R. & Lisle, L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Aust. J. Agric. Res. 46, 393–406. https://doi.org/10.1071/AR9951459 (1995).
    Article  Google Scholar 

    50.
    Chen, X. et al. Effects of precipitation on soil organic carbon fractions in three subtropical forests in southern China. J. Plant Ecol. 9(1), 10–19. https://doi.org/10.1093/jpe/rtv027 (2015).
    Article  Google Scholar 

    51.
    Culman, S. W. et al. Permanganate oxidizable carbon reflects a processed soil fraction that is sensitive to management. Soil Sci. Soc. Am. J. 76, 494. https://doi.org/10.2136/sssaj2011.0286 (2012).
    ADS  CAS  Article  Google Scholar 

    52.
    Chen, S., Wang, X. & Lu, F. Research on forest microbial community function variations in urban and suburban forests. Chin. J. Soil Sci. 1, 614–620. https://doi.org/10.1001/archophthalmol.2012.1393 (2012).
    Article  Google Scholar 

    53.
    Zhao, Z. & Guo, H. Effects of urbanization on the quantity changes of microbes in urban-to-rural gradient forest soil. J. Anhui Agric. Sci. 38, 5188–5190 (2010).
    Google Scholar 

    54.
    Hackl, E., Pfeffer, M., Donat, C., Bachmann, G. & Zechmeister-Boltenstern, S. Composition of the microbial communities in the mineral soil under different types of natural forest. Soil Biol. Biochem. 37, 661–671. https://doi.org/10.1016/j.soilbio.2004.08.023 (2005).
    CAS  Article  Google Scholar 

    55.
    Brant, J. B., Myrold, D. D. & Sulzman, E. W. Root controls on soil microbial community structure in forest soils. Oecologia 148, 650–659. https://doi.org/10.1007/s00442-006-0402-7 (2006).
    ADS  Article  PubMed  Google Scholar 

    56.
    Wang, H. et al. Stable soil organic carbon is positively linked to microbial-derived compounds in four plantations of subtropical China. Biogeosci. Discuss. 10, 18093–18119. https://doi.org/10.5194/bgd-10-18093-2013 (2013).
    ADS  Article  Google Scholar 

    57.
    Six, J., Frey, S. D., Thiet, R. K. & Batten, K. M. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J. 70, 555–569. https://doi.org/10.2136/sssaj2004.0347 (2006).
    ADS  CAS  Article  Google Scholar 

    58.
    Ziegler, S. E., Billings, S. A., Lane, C. S., Li, J. & Fogel, M. L. Warming alters routing of labile and slower-turnover carbon through distinct microbial groups in boreal forest organic soils. Soil Biol. Biochem. 60, 23–32. https://doi.org/10.1016/j.soilbio.2013.01.001 (2013).
    CAS  Article  Google Scholar 

    59.
    Baum, C., Fienemann, M., Glatzel, S. & Gleixner, G. Overstory-specific effects of litter fall on the microbial carbon turnover in a mature deciduous forest. For. Ecol. Manage. 258, 109–114. https://doi.org/10.1016/j.foreco.2009.03.047 (2009).
    Article  Google Scholar 

    60.
    Creamer, C. A. et al. Microbial community structure mediates response of soil C decomposition to litter addition and warming. Soil Biol. Biochem. 80, 175–188. https://doi.org/10.1016/j.soilbio.2014.10.008 (2015).
    CAS  Article  Google Scholar 

    61.
    Kramer, C. & Gleixner, G. Variable use of plant- and soil-derived carbon by microorganisms in agricultural soils. Soil Biol. Biochem. 38, 3267–3278. https://doi.org/10.1016/j.soilbio.2006.04.006 (2006).
    CAS  Article  Google Scholar 

    62.
    Brabcová, V., Štursová, M. & Baldrian, P. Nutrient content affects the turnover of fungal biomass in forest topsoil and the composition of associated microbial communities. Soil Biol. Biochem. 118, 187–198. https://doi.org/10.1016/j.soilbio.2017.12.012 (2018).
    CAS  Article  Google Scholar 

    63.
    Kaur, A., Chaudhary, A., Kaur, A., Choudhary, R. & Kaushik, R. Phospholipid fatty acid—A bioindicator of environment monitoring and assessment in soil ecosystem. Curr. Sci. 89, 1103–1112 (2005).
    CAS  Google Scholar 

    64.
    Hanson, C. A., Allison, S. D., Bradford, M. A., Wallenstein, M. D. & Treseder, K. K. Fungal taxa target different carbon sources in forest soil. Ecosystems 11, 1157–1167. https://doi.org/10.1007/s10021-008-9186-4 (2008).
    CAS  Article  Google Scholar 

    65.
    Liu, M., Hu, F. & Chen, X. A review on mechanisms of soil organic carbon stabilization. Acta Ecol. Sin. 27, 2642–2650 (2007).
    CAS  Article  Google Scholar 

    66.
    Fang, Y. et al. Nitrogen deposition and forest nitrogen cycling along an urban-rural transect in southern China. Glob. Change Biol. 17, 872–885. https://doi.org/10.1111/j.1365-2486.2010.02283.x (2011).
    ADS  Article  Google Scholar 

    67.
    Huang, L., Zhu, W., Ren, H., Chen, H. & Wang, J. Impact of atmospheric nitrogen deposition on soil properties and herb-layer diversity in remnant forests along an urban–rural gradient in Guangzhou, southern China. Plant Ecol. 213, 1187–1202. https://doi.org/10.1007/s11258-012-0080-y (2012).
    Article  Google Scholar 

    68.
    He, J. et al. Stoichiometric characteristics of soil C, N and P in subtropical forests along an urban-to-suburb gradient. Chin. J. Ecol. 35, 591–596 (2016).
    Google Scholar 

    69.
    Wu, J. et al. Prolonged acid rain facilitates soil organic carbon accumulation in a mature forest in Southern China. Sci. Total Environ. 544, 94–102. https://doi.org/10.1016/j.scitotenv.2015.11.025 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    70.
    Duan, H., Liu, J., Deng, Q., Chen, X. & Zhang, D. Effects of elevated CO2 and N deposition on plant biomass accumulation and allocation in subtropical forest ecosystems: A mesocosm study. Chin. J. Plant Ecol. 33, 570–579. https://doi.org/10.1080/01443610410001685646 (2009).
    CAS  Article  Google Scholar 

    71.
    Chen, X., Liu, J., Deng, Q., Yan, J. & Zhang, D. Effects of elevated CO2 and nitrogen addition on soil organic carbon fractions in a subtropical forest. Plant Soil 357, 25–34. https://doi.org/10.1007/s11104-012-1145-3 (2012).
    CAS  Article  Google Scholar 

    72.
    Bird, J. A., Herman, D. J. & Firestone, M. K. Rhizosphere priming of soil organic matter by bacterial groups in a grassland soil. Soil Biol. Biochem. 43, 718–725. https://doi.org/10.1016/j.soilbio.2010.08.010 (2011).
    CAS  Article  Google Scholar 

    73.
    Hopkins, F. M. et al. Increased belowground carbon inputs and warming promote loss of soil organic carbon through complementary microbial responses. Soil Biol. Biochem. 76, 57–69. https://doi.org/10.1016/j.soilbio.2014.04.028 (2014).
    CAS  Article  Google Scholar 

    74.
    Curlevski, N. J. A., Drigo, B., Cairney, J. W. G. & Anderson, I. C. Influence of elevated atmospheric CO2 and water availability on soil fungal communities under Eucalyptus saligna. Soil Biol. Biochem. 70, 263–271. https://doi.org/10.1016/j.soilbio.2013.12.010 (2014).
    CAS  Article  Google Scholar 

    75.
    Crow, S. E. et al. Sources of plant-derived carbon and stability of organic matter in soil: Implications for global change. Glob. Change Biol. 15, 2003–2019. https://doi.org/10.1111/j.1365-2486.2009.01850.x (2009).
    ADS  Article  Google Scholar 

    76.
    Fontaine, S., Mariotti, A. & Abbadie, L. The priming effect of organic matter: A question of microbial competition?. Soil Biol. Biochem. 35, 837–843. https://doi.org/10.1016/s0038-0717(03)00123-8 (2003).
    CAS  Article  Google Scholar 

    77.
    Zhou, D., Zhao, S., Liu, S. & Zhang, L. Spatiotemporal trends of terrestrial vegetation activity along the urban development intensity gradient in China’s 32 major cities. Sci. Total Environ. 488–489, 136–145. https://doi.org/10.1016/j.scitotenv.2014.04.080 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    78.
    Liu, L. et al. Interactive effects of nitrogen and phosphorus on soil microbial communities in a tropical forest. PLoS ONE 8, e61188. https://doi.org/10.1371/journal.pone.0061188 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    79.
    Saetre, P. & Bååth, E. Spatial variation and patterns of soil microbial community structure in a mixed spruce–birch stand. Soil Biol. Biochem. 32, 909–917. https://doi.org/10.1016/s0038-0717(99)00215-1 (2000).
    CAS  Article  Google Scholar 

    80.
    Bossio, D. A., Scow, K. M., Gunapala, N. & Graham, K. J. Determinants of soil microbial communities: Effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microb. Ecol. 36, 1–12. https://doi.org/10.1007/s002489900087 (1998).
    CAS  Article  PubMed  Google Scholar 

    81.
    Wei, H., Chen, X., He, J., Zhang, J. & Shen, W. Exogenous nitrogen addition reduced the temperature sensitivity of microbial respiration without altering the microbial community composition. Front. Microbiol. 8, 2382. https://doi.org/10.3389/fmicb.2017.02382 (2017).
    Article  PubMed  PubMed Central  Google Scholar  More

  • in

    Temporal tracking of quantum-dot apatite across in vitro mycorrhizal networks shows how host demand can influence fungal nutrient transfer strategies

    1.
    Wipf D, Krajinski F, van Tuinen D, Recorbet G, Courty P. Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. N Phytol. 2019;223:1–11.
    Article  CAS  Google Scholar 
    2.
    Miller RM, Jastrow JD, Reinhardt DR. External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia. 1995;103:17–23.
    CAS  PubMed  Article  Google Scholar 

    3.
    Leake J, Johnson D, Donnelly D, Muckle G, Boddy L, Read DJ. Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot. 2004;82:1016–45.
    Article  Google Scholar 

    4.
    Bago B, Pfeffer PE, Shachar-Hill Y. Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol. 2000;124:949–58.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    5.
    Drigo B, Pijl AS, Duyts H, Kielak AM, Gamper HA, Houtekamer MJ, et al. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc Natl Acad Sci. 2010;107:10938–42.
    CAS  PubMed  Article  Google Scholar 

    6.
    Giri B, Saxena B. Response of arbuscular mycorrhizal fungi to global climate change and their role in terrestrial ecosystem C and N cycling. In: Varma A, Prasad R, Tuteja N editors. Mycorrhiza—function, diversity, state of the art. Cham: Springer International Publishing; 2017. p. 305–27.

    7.
    Field KJ, Pressel S, Duckett JG, Rimington WR, Bidartondo MI. Symbiotic options for the conquest of land. Trends Ecol Evol. 2015;30:477–86.
    PubMed  Article  Google Scholar 

    8.
    Martin FM, Uroz S, Barker DG. Ancestral alliances: plant mutualistic symbioses with fungi and bacteria. Science. 2017;356:eaad4501.
    PubMed  Article  CAS  Google Scholar 

    9.
    Brundrett MC. Coevolution of roots and mycorrhizas of land plants. N Phytol. 2002;154:275–304.
    Article  Google Scholar 

    10.
    Werner GDA, Cornelissen JHC, Cornwell WK, Soudzilovskaia NA, Kattge J, West SA, et al. Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown. Proc Natl Acad Sci. 2018;115:5229–34.
    CAS  PubMed  Article  Google Scholar 

    11.
    Gange AC, Stagg PG, Ward LK. Arbuscular mycorrhizal fungi affect phytophagous insect specialism. Ecol Lett. 2002;5:11–5.
    Article  Google Scholar 

    12.
    Koricheva J, Gange AC, Jones T. Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecology. 2009;90:2088–97.
    PubMed  Article  Google Scholar 

    13.
    Hart MM, Reader RJ, Klironomos JN. Plant coexistence mediated by arbuscular mycorrhizal fungi. Trends Ecol Evol. 2003;18:418–23.
    Article  Google Scholar 

    14.
    Hiiesalu I, Pärtel M, Davison J, Gerhold P, Metsis M, Moora M, et al. Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass. N Phytol. 2014;203:233–44.
    CAS  Article  Google Scholar 

    15.
    Gerz M, Bueno CG, Zobel M, Moora M. Plant community mycorrhization in temperate forests and grasslands: relations with edaphic properties and plant diversity. J Veg Sci. 2016;27:89–99.
    Article  Google Scholar 

    16.
    He X, Critchley C, Bledsoe C. Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). CRC Crit Rev Plant Sci. 2003;22:531–67.
    Article  Google Scholar 

    17.
    Smith, Sally E., and David J. Read. Mycorrhizal symbiosis. 3rd edn. (Academic press, London, 2008).

    18.
    Luginbuehl LH, Menard GN, Kurup S, Van Erp H, Radhakrishnan GV, Breakspear A, et al. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science. 2017;356:1175–8.
    CAS  PubMed  Article  Google Scholar 

    19.
    Liu A, Hamel C, Hamilton RI, Ma BL, Smith DL. Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza. 2000;9:331–6.
    CAS  Article  Google Scholar 

    20.
    Azcón R, Ambrosano E, Charest C. Nutrient acquisition in mycorrhizal lettuce plants under different phosphorus and nitrogen concentration. Plant Sci. 2003;165:1137–45.
    Article  CAS  Google Scholar 

    21.
    Ramírez-Viga TK, Aguilar R, Castillo-Argüero S, Chiappa-Carrara X, Guadarrama P, Ramos-Zapata J. Wetland plant species improve performance when inoculated with arbuscular mycorrhizal fungi: a meta-analysis of experimental pot studies. Mycorrhiza. 2018;28:477–93.
    PubMed  Article  Google Scholar 

    22.
    Weremijewicz J, Janos DP. Common mycorrhizal networks amplify size inequality in Andropogon gerardii monocultures. N Phytol. 2013;198:203–13.
    CAS  Article  Google Scholar 

    23.
    Bücking H, Shachar-Hill Y. Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability. N Phytol. 2005;165:899–912.
    Article  CAS  Google Scholar 

    24.
    Fellbaum CR, Gachomo EW, Beesetty Y, Choudhari S, Strahan GD, Pfeffer PE, et al. Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci. 2012;109:2666–71.
    CAS  PubMed  Article  Google Scholar 

    25.
    Fellbaum CR, Mensah JA, Cloos AJ, Strahan GE, Pfeffer PE, Kiers ET, et al. Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. N Phytol. 2014;203:646–56.
    CAS  Article  Google Scholar 

    26.
    Konvalinková T, Püschel D, Janoušková M, Gryndler M, Jansa J. Duration and intensity of shade differentially affects mycorrhizal growth- and phosphorus uptake responses of Medicago truncatula. Front Plant Sci. 2015;6:1–11.
    Article  Google Scholar 

    27.
    Zheng C, Ji B, Zhang J, Zhang F, Bever JD. Shading decreases plant carbon preferential allocation towards the most beneficial mycorrhizal mutualist. N Phytol. 2015;205:361–8.
    CAS  Article  Google Scholar 

    28.
    Varga S, Kytöviita M. Mycorrhizal benefit differs among the sexes in a gynodioecious species. Ecology. 2010;91:2583–93.
    PubMed  Article  Google Scholar 

    29.
    Merrild MP, Ambus P, Rosendahl S, Jakobsen I. Common arbuscular mycorrhizal networks amplify competition for phosphorus between seedlings and established plants. N Phytol. 2013;200:229–40.
    CAS  Article  Google Scholar 

    30.
    Walder F, Brulé D, Koegel S, Wiemken A, Boller T, Courty PE. Plant phosphorus acquisition in a common mycorrhizal network: regulation of phosphate transporter genes of the Pht1 family in sorghum and flax. N Phytol. 2015;205:1632–45.
    CAS  Article  Google Scholar 

    31.
    Weremijewicz J, Sternberg L, da SLO, Janos DP. Common mycorrhizal networks amplify competition by preferential mineral nutrient allocation to large host plants. N Phytol. 2016;212:461–71.
    CAS  Article  Google Scholar 

    32.
    Werner GDA, Kiers ET. Partner selection in the mycorrhizal mutualism. N Phytol. 2015;205:1437–42.
    Article  Google Scholar 

    33.
    Bachelot B, Lee CT. Dynamic preferential allocation to arbuscular mycorrhizal fungi explains fungal succession and coexistence. Ecology. 2018;99:372–84.
    PubMed  Article  Google Scholar 

    34.
    Wyatt GAK, Kiers ET, Gardner A, West SA. A biological market analysis of the plant-mycorrhizal symbiosis. Evolution. 2014;68:2603–18.
    PubMed  Article  Google Scholar 

    35.
    Noë R, Kiers ET. Mycorrhizal markets, firms, and co-ops. Trends Ecol Evol. 2018;33:777–89.
    PubMed  Article  Google Scholar 

    36.
    Bender SF, Wagg C, van der Heijden MGA. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol Evol. 2016;31:440–52.
    PubMed  Article  Google Scholar 

    37.
    Konvalinková T, Jansa J. Lights off for arbuscular mycorrhiza: on its symbiotic functioning under light deprivation. Front Plant Sci. 2016;7:1–11.
    Article  Google Scholar 

    38.
    Whiteside MD, Werner GDAA, Caldas VEA, van’t Padje A, Dupin SE, Elbers B, et al. Mycorrhizal fungi respond to resource inequality by moving phosphorus from rich to poor patches across networks. Curr Biol. 2019;29:2043–50.e8.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Bailey RE, Nie S. Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J Am Chem Soc. 2003;125:7100–6.
    CAS  PubMed  Article  Google Scholar 

    40.
    Jang E, Jun S, Pu L. High quality CdSeS nanocrystals synthesized by facile single injection process and their electroluminescence. Chem Commun. 2003;24:2964–5.

    41.
    Declerck S, Fortin JA, Strullu DG (eds). In vitro culture of mycorrhizas. Berlin, Heidelberg: Springer; 2005.

    42.
    Engelmoer DJP, Behm JE, Kiers ET. Intense competition between arbuscular mycorrhizal mutualists in an in vitro root microbiome negatively affects total fungal abundance. Mol Ecol. 2014;23:1584–93.
    CAS  PubMed  Article  Google Scholar 

    43.
    Ness RLL, Vlek PLG. Mechanism of calcium and phosphate release from hydroxy-apatite by mycorrhizal hyphae. Soil Sci Soc Am J. 2000;64:949–55.
    CAS  Article  Google Scholar 

    44.
    Tang I-M, Krishnamra N, Charoenphandhu N, Hoonsawat R, Pon-On W. Biomagnetic of apatite-coated cobalt ferrite: a core–shell particle for protein adsorption and pH-controlled release. Nanoscale Res Lett. 2010;6:19.
    PubMed  PubMed Central  Google Scholar 

    45.
    Kawashita M, Taninai K, Li Z, Ishikawa K, Yoshida Y. Preparation of low-crystalline apatite nanoparticles and their coating onto quartz substrates. J Mater Sci Mater Med. 2012;23:1355–62.
    CAS  PubMed  Article  Google Scholar 

    46.
    Sun S, Chan LS, Li Y-L. Flower-like apatite recording microbial processes through deep geological time and its implication to the search for mineral records of life on Mars. Am Miner. 2014;99:2116–25.
    Article  Google Scholar 

    47.
    Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science. 2011;333:880–2.
    CAS  PubMed  Article  Google Scholar 

    48.
    R core team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2018. https://www.r-project.org/.

    49.
    Walker C. A simple blue staining technique for arbuscular mycorrhizal and other root-inhabiting fung. Inoculum. 2005;56:68–9.
    Google Scholar 

    50.
    Rossow MJ, Sasaki JM, Digman MA, Gratton E. Raster image correlation spectroscopy in live cells. Nat Protoc. 2010;5:1761–74.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Whiteside MD, Digman MA, Gratton E, Treseder KK. Organic nitrogen uptake by arbuscular mycorrhizal fungi in a boreal forest. Soil Biol Biochem. 2012;55:7–13.
    CAS  Article  Google Scholar 

    52.
    Bates D, Mächler M, Bolker B, Walker S. “Fitting Linear Mixed-Effects Models Using lme4.” Journal of Statistical Software. 2015. 67;1:1–48.

    53.
    Kuznetsova A, Brockhoff PB, Christensen RHB (2017). “lmerTest Package: Tests in Linear Mixed Effects Models.” Journal of Statistical Software. 2017. 82;13:1–26.

    54.
    Fox J, Weisberg S. An R companion to applied regression. 2nd edn (Sage Publications, Inc, Thousand Oaks CA, 2016).

    55.
    Javot H, Pumplin N, Harrison MJ. Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ. 2007;30:310–22.
    CAS  PubMed  Article  Google Scholar 

    56.
    Konečný J, Hršelová H, Bukovská P, Hujslová M, Jansa J. Correlative evidence for co-regulation of phosphorus and carbon exchanges with symbiotic fungus in the arbuscular mycorrhizal Medicago truncatula. PLoS ONE. 2019;14:1–24.
    Article  CAS  Google Scholar 

    57.
    Keymer A, Pimprikar P, Wewer V, Huber C, Brands M, Bucerius SL, et al. Lipid transfer from plants to arbuscular mycorrhiza fungi. Elife. 2017;6:1–33.
    Article  Google Scholar 

    58.
    Burleigh SH, Cavagnaro T, Jakobsen I. Functional diversity of arbuscular mycorrhizas extends to the expression of plant genes involved in P nutrition. J Exp Bot. 2002;53:1593–601.
    CAS  PubMed  Article  Google Scholar 

    59.
    Smith SE. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol. 2003;133:16–20.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Grønlund M, Albrechtsen M, Johansen IE, Hammer EC, Nielsen TH, Jakobsen I. The interplay between P uptake pathways in mycorrhizal peas: a combined physiological and gene-silencing approach. Physiol Plant. 2013;149:234–48.
    PubMed  Article  CAS  Google Scholar 

    61.
    Smith SE, Smith FA, Jakobsen I. Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. N Phytol. 2004;162:511–24.
    Article  Google Scholar 

    62.
    Watts-Williams SJ, Jakobsen I, Cavagnaro TR, Grønlund M. Local and distal effects of arbuscular mycorrhizal colonization on direct pathway Pi uptake and root growth in Medicago truncatula. J Exp Bot. 2015;66:4061–73.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Pel R, Dupin S, Schat H, Ellers J, Kiers ET, van Straalen NM. Growth benefits provided by different arbuscular mycorrhizal fungi to Plantago lanceolata depend on the form of available phosphorus. Eur J Soil Biol. 2018;88:89–96.
    CAS  Article  Google Scholar 

    64.
    Reynolds HL, Vogelsang KM, Hartley AE, Bever JD, Schultz PA. Variable responses of old-field perennials to arbuscular mycorrhizal fungi and phosphorus source. Oecologia. 2006;147:348–58.
    PubMed  Article  Google Scholar 

    65.
    Lu R, Drubin DG, Sun Y. Clathrin-mediated endocytosis in budding yeast at a glance. J Cell Sci. 2016;129:1531–6.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Fischer-Parton S, Parton RM, Hickey PC, Dijksterhuis J, Atkinson HA, Read ND. Confocal microscopy of FM4-64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae. J Microsc. 2000;198:246–59.
    CAS  PubMed  Article  Google Scholar 

    67.
    Read ND, Kalkman ER. Does endocytosis occur in fungal hyphae? Fungal Genet Biol. 2003;39:199–203.
    CAS  PubMed  Article  Google Scholar 

    68.
    Epp E, Nazarova E, Regan H, Douglas LM, Konopka JB, Vogel J, et al. Clathrin- and arp2/3-independent endocytosis in the fungal pathogen Candida albicans. MBio. 2013;4:e00476–13.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    69.
    Colin Y, Nicolitch O, Turpault MP, Uroz S. Mineral types and tree species determine the functional and taxonomic structures of forest soil bacterial communities. Appl Environ Microbiol. 2017;83:1–23.
    Article  Google Scholar 

    70.
    Fontaine L, Thiffault N, Paré D, Fortin J-A, Piché Y. Phosphate-solubilizing bacteria isolated from ectomycorrhizal mycelium of Picea glauca are highly efficient at fluorapatite weathering. Botany. 2016;94:1183–93.
    CAS  Article  Google Scholar 

    71.
    Alloush GA, Clark RB. Maize response to phosphate rock and arbuscular mycorrhizal fungi in acidic soil. Commun Soil Sci Plant Anal. 2001;32:231–54.
    CAS  Article  Google Scholar 

    72.
    Powell CL, Daniel J. Mycorrhizal fungi stimulate uptake of soluble and insoluble phosphate fertilizer from a phosphate‐deficient soil. N Phytol. 1978;80:351–8.
    CAS  Article  Google Scholar 

    73.
    Jakobsen I, Hammer EC. Nutrient dynamics in arbuscular mycorrhizal networks. In: Horton TR, editor. Mycorrhizal networks. Dordrecht: Springer Netherlands; 2015. p. 91–131.

    74.
    Marler MJ, Zabinski CA, Callaway RM. Mycorrhizae indirectly enhance competitive effects of an invasive forb on a native bunchgrass. Ecology. 1999;80:1180–6.
    Article  Google Scholar 

    75.
    Carey EV, Marler MJ, Callaway RM. Mycorrhizae transfer carbon from a native grass to an invasive weed: evidence from stable isotopes and physiology. Plant Ecol. 2004;172:133–41.
    Article  Google Scholar 

    76.
    van der Heijden MGA. Arbuscular mycorrhizal fungi as support systems for seedling establishment in grassland. Ecol Lett. 2004;7:293–303.
    Article  Google Scholar 

    77.
    van der Heijden MGA, Horton TR. Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J Ecol. 2009;97:1139–50.
    Article  Google Scholar 

    78.
    Digman MA, Brown CM, Sengupta P, Wiseman PW, Horwitz AR, Gratton E. Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophys J. 2005;89:1317–27.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    79.
    Nieves DJ, Li Y, Fernig DG, Levy R. Photothermal raster image correlation spectroscopy of gold nanoparticles in solution and on live cells. R Soc Open Sci. 2015;2:140454.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    80.
    Johnson NC, Graham JH, Smith FA. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. N Phytol. 1997;135:575–85.
    Article  Google Scholar 

    81.
    Johnson NC, Wilson JA, Bowker MA, Wilson JA, Miller RM. Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proc Natl Acad Sci. 2010;107:2093–8.
    CAS  PubMed  Article  Google Scholar 

    82.
    Argüello A, O’Brien MJ, van der Heijden MGA, Wiemken A, Schmid B, Niklaus PA. Options of partners improve carbon for phosphorus trade in the arbuscular mycorrhizal mutualism. Ecol Lett. 2016;19:648–56.
    PubMed  Article  Google Scholar 

    83.
    Noë R, Hammerstein P. Biological markets: supply and demand determine the effect of partner choice in cooperation, mutualism and mating. Behav Ecol Sociobiol. 1994;35:1–11.
    Article  Google Scholar 

    84.
    Werner GDA, Strassmann JE, Ivens ABF, Engelmoer DJP, Verbruggen E, Queller DC, et al. Evolution of microbial markets. Proc Natl Acad Sci. 2014;111:1237–44.
    CAS  PubMed  Article  Google Scholar 

    85.
    Musat N, Musat F, Weber PK, Pett-Ridge J. Tracking microbial interactions with NanoSIMS. Curr Opin Biotechnol. 2016;41:114–21.
    CAS  PubMed  Article  Google Scholar 

    86.
    Bücking H, Mensah JA, Fellbaum CR. Common mycorrhizal networks and their effect on the bargaining power of the fungal partner in the arbuscular mycorrhizal symbiosis. Commun Integr Biol. 2016;9:1–4.
    Article  CAS  Google Scholar 

    87.
    Roger A, Colard A, Angelard C, Sanders IR. Relatedness among arbuscular mycorrhizal fungi drives plant growth and intraspecific fungal coexistence. ISME J. 2013;7:2137–46.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    88.
    Wagg C, Jansa J, Schmid B, van der Heijden MGA. Belowground biodiversity effects of plant symbionts support aboveground productivity. Ecol Lett. 2011;14:1001–9.
    PubMed  Article  Google Scholar 

    89.
    Douglas AE. Conflict, cheats and the persistence of symbioses. N Phytol. 2008;177:849–58.
    Article  Google Scholar  More