More stories

  • in

    Effect of emergence time on growth and fecundity of Rapistrum rugosum and Brassica tournefortii in the northern region of Australia

    1.
    Krishnan, G., Holshouser, D. L. & Nissen, S. J. Weed control in soybean (Glycine max) with green manure crops. Weed Technol. 12, 97–102 (1998).
    Article  Google Scholar 
    2.
    Parsons, W. T., Parsons, W. T. & Cuthbertson, E. G. Noxious weeds of Australia (CSIRO Publishing, Canberra, 2001).
    Google Scholar 

    3.
    Whish, J. P. M., Sindel, B. M., Jessop, R. S. & Felton, W. L. The effect of row spacing and weed density on yield loss of chickpea. Aust. J. Agric. Res. 53, 1335–1340 (2002).
    Article  Google Scholar 

    4.
    McDonald, G. K., Hollaway, K. L. & McMurray, L. Increasing plant density improves weed competition in lentil (Lens culinaris). Aust. J. Exp. Agric. 47, 48–56 (2007).
    Article  Google Scholar 

    5.
    Manalil, S., Werth, J., Jackson, R., Chauhan, B. S. & Preston, C. An assessment of weed flora 14 years after the introduction of glyphosate-tolerant cotton in Australia. Crop Pasture Sci. 68, 773–780 (2017).
    Article  Google Scholar 

    6.
    Adkins, S. W. et al. Weeds resistant to chlorsulfuron and atrazine from the north-east grain region of Australia. Weed Res. 37, 343–349 (1997).
    Article  Google Scholar 

    7.
    Manalil, S., Ali, H. H. & Chauhan, B. S. Germination ecology of turnip weed (Rapistrum rugosum (L.) All.) in the northern regions of Australia. PLoS ONE 13, e0201023 (2018).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    8.
    Llewellyn, R. et al. Impact of Weeds in Australian Grain Production (Grains Research and Development Corporation, Canberra, 2016).
    Google Scholar 

    9.
    Chauhan, B. S., Gill, G. & Preston, C. African mustard (Brassica tournefortii) germination in southern Australia. Weed Sci. 54, 891–897 (2006).
    CAS  Article  Google Scholar 

    10.
    Chauhan, B. S., Gill, G. & Preston, C. Factors affecting turnipweed (Rapistrum rugosum) seed germination in southern Australia. Weed Sci. 54, 1032–1036 (2006).
    CAS  Article  Google Scholar 

    11.
    Wilson, B. J. & Wilson, J. T. Effect of time of seedling emergence on seed production and time to flowering of eight weeds, in 6th Australian Weeds Conference.’ Gold Coast, Queensland, Australia, Queensland Weed Society. https://www.cawsorgau/awc/1981/awc198110351.pdf (1981).

    12.
    Minnich, R. A. & Sanders, A. C. Brassica tournefortii Gouan. In Invasive Plants of California’s Wildlands (eds Bossard, C. C. et al.) 68–72 (University of California Press, Berkeley, 2000).
    Google Scholar 

    13.
    Patterson, D. T. Research on exotic weeds. In Exotic Plant Pests and North American Agriculture (eds Wilson, C. L. & Graham, C. L.) 381–393 (Academic Press, New York, 1983).
    Google Scholar 

    14.
    Meekins, J. F. & McCarthy, B. C. Competitive ability of Alliaria petiolata (garlic mustard, Brassicaceae), an invasive, nonindigenous forest herb. Int J Plant Sci. 160, 743–752 (1999).
    Article  Google Scholar 

    15.
    Heap, I. International Survey of Herbicide Resistant Weeds. https://weedscience.org (NOAA, 2019).

    16.
    Manalil, S. & Chauhan, B. S. Interference of turnipweed (Rapistrum rugosum) and Mexican pricklepoppy (Argemone mexicana) in wheat. Weed Sci. 67, 666–672 (2019).
    Article  Google Scholar 

    17.
    Gill, G. S. & Davidson, R. M. Weed interference. In Australian Weed Management Systems (ed. Sindel, B. M.) 61–80 (R.G. and F.J. Richardson, Meredith, 2000).
    Google Scholar 

    18.
    Mahajan, G., Mutti, N. K., Jha, P., Walsh, M. & Chauhan, B. S. Evaluation of dormancy breaking methods for enhanced germination in four biotypes of Brassica tournefortii. Sci. Rep. 8, 17103 (2018).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    19.
    Trader, M. R., Brooks, M. L. & Draper, J. V. Seed production by the non-native Brassica tournefortii (Sahara mustard) along desert roadsides. Madrono 53, 313–321 (2006).
    Article  Google Scholar 

    20.
    Lindström, J. & Kokko, H. Cohort effects and population dynamics. Ecol. Lett. 5, 338–344 (2002).
    Google Scholar 

    21.
    Hussain, S., Khaliq, A., Matloob, A., Fahad, S. & Tanveer, A. Interference and economic threshold level of little seed canary grass in wheat under different sowing times. Environ. Sci. Pollut. Res. 22, 441–449 (2015).
    Google Scholar 

    22.
    Estorninos, L. E., Gealy, D. R., Gbur, E. E., Talbert, R. E. & McClelland, M. R. Rice and red rice interference. II. Rice response to population densities of three red rice (Oryza sativa) ecotypes. Weed Sci. 53, 683–689 (2005).
    CAS  Google Scholar 

    23.
    Knezevic, S. Z., Weise, S. F. & Swanton, C. J. Interference of redroot pigweed (Amaranthus retroflexus) in corn (Zea mays). Weed Sci. 42, 568–573 (1994).
    CAS  Article  Google Scholar 

    24.
    Bosnic, A. C. & Swanton, C. J. Influence of barnyardgrass (Echinochloa crus-galli) time of emergence and density on corn (Zea mays). Weed Sci. 45, 276–282 (1997).
    CAS  Article  Google Scholar 

    25.
    Willenborg, C. J., May, W. E., Gulden, R. H., Lafond, G. P. & Shirtliffe, S. J. Influence of wild oat (Avena fatua) relative time of emergence and density on cultivated oat yield, wild oat seed production, and wild oat contamination. Weed Sci. 53, 342–352 (2005).
    CAS  Article  Google Scholar 

    26.
    Borchert, R. et al. Photoperiodic induction of synchronous flowering near the Equator. Nature 433, 627 (2005).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Morellato, L. P. C. et al. Linking plant phenology to conservation biology. Biol. Conserv. 195, 60–72 (2016).
    Article  Google Scholar 

    28.
    Ekeleme, F., Forcella, F., Archer, D. W., Akobundu, I. O. & Chikoye, D. Seedling emergence model for tropic ageratum (Ageratum conyzoides). Weed Sci. 53, 55–61 (2005).
    CAS  Article  Google Scholar 

    29.
    Hock, S. M., Knezevic, S. Z., Martin, A. R. & Lindquist, J. L. Soybean row spacing and weed emergence time influence weed competitiveness and competitive indices. Weed Sci. 54, 38–46 (2006).
    CAS  Article  Google Scholar 

    30.
    Spaunhorst, D. J. et al. Phenology of five Palmer amaranth (Amaranthus palmeri) populations grown in northern Indiana and Arkansas. Weed Sci. 66, 457–469 (2018).
    Article  Google Scholar 

    31.
    Mobli, A., Mijani, S., Ghanbari, A. & Rastgoo, M. Seed germination and emergence of two flax-leaf alyssum (Alyssum linifolium Steph. ex. Willd.) populations in response to environmental factors. Crop Pasture Sci. 70, 807–813 (2019).
    Article  Google Scholar 

    32.
    Faraji, A. Determination of phenological response of spring canola (Brassica napus L.) genotypes to sowing date, temperature and photoperiod. Seed Plant Prod. J. 1, 25–41 (2010).
    Google Scholar 

    33.
    Salehian, H., Jamshidi, M., Karamzade, H. & Modaresi, H. An investigation of the phenology some weed species. Int. J. Agron. Plant Prod. 4, 1511–1520 (2013).
    Google Scholar 

    34.
    Baskin, J. M. & Baskin, C. C. A classification system for seed dormancy. Seed Sci Res. 14, 1–16 (2004).
    ADS  Article  Google Scholar 

    35.
    Baskin, J. M., Baskin, C. C. & Li, X. Taxonomy, anatomy and evolution of physical dormancy in seeds. Plant Species Biol. 15, 139–152 (2000).
    Article  Google Scholar 

    36.
    Huang, J. Z. et al. Effect of temperature and photoperiod on the phenological development of wild mustard (Sinapis arvensis L.). Field Crops Res. 70, 75–86 (2001).
    Article  Google Scholar 

    37.
    Hatfield, J. L. et al. Climate impacts on agriculture: implications for crop production. Agron. J. 103, 351–370 (2011).
    Article  Google Scholar 

    38.
    Hatfield, J. L. & Prueger, J. H. Temperature extremes: effect on plant growth and development. Weather Clim. Extremes 10, 4–10 (2015).
    Article  Google Scholar 

    39.
    Ghersa, C. M. & Holt, J. S. Using phenology prediction in weed management: a review. Weed Res. 35, 461–470 (1995).
    Article  Google Scholar 

    40.
    Deen, W., Hunt, T. & Swanton, C. J. Influence of temperature, photoperiod, and irradiance on the phenological development of common ragweed (Ambrosia artemisiifolia). Weed Sci. 46, 555–560 (1998).
    CAS  Google Scholar 

    41.
    O’Donovan, J. T., Remy, E. A. D. S., O’Sullivan, P. A., Dew, D. A. & Sharma, A. K. Influence of the relative time of emergence of wild oat (Avena fatua) on yield loss of barley (Hordeum vulgare) and wheat (Triticum aestivum). Weed Sci. 33, 498–503 (1985).
    Google Scholar 

    42.
    Chikoye, D., Weise, S. F. & Swanton, C. J. Influence of common ragweed (Ambrosia artemisiifolia) time of emergence and density on white bean (Phaseolus vulgaris). Weed Sci. 43, 375–380 (1995).
    CAS  Google Scholar 

    43.
    Hartzler, R. G., Battles, B. A. & Nordby, D. Effect of common waterhemp (Amaranthus rudis) emergence date on growth and fecundity in soybean. Weed Sci. 52, 242–245 (2004).
    CAS  Google Scholar 

    44.
    Gioria, M. & Pyšek, P. Early bird catches the worm: germination as a critical step in plant invasion. Biol. Invasions. 19(4), 1055–1080 (2017).
    Google Scholar 

    45.
    Bajwa, A. A., Chauhan, B. S. & Adkins, S. W. Germination ecology of two Australian biotypes of ragweed parthenium (Parthenium hysterophorus) relates to their invasiveness. Weed Sci. 66, 62–70 (2018).
    Article  Google Scholar 

    46.
    Harrison, S. K. Interference and seed production by common lambsquarters (Chenopodium album) in soybeans (Glycine max). Weed Sci. 38, 113–118 (1990).
    ADS  Article  Google Scholar 

    47.
    Chauhan, B. S. & Johnson, D. E. Implications of narrow crop row spacing and delayed Echinochloa colona and Echinochloa crus-galli emergence for weed growth and crop yield loss in aerobic rice. Field Crops Res. 117, 177–182 (2010).
    Article  Google Scholar 

    48.
    Simard, M. J. & Benoit, D. L. Potential pollen and seed production from early-and late-emerging common ragweed in corn and soybean. Weed Technol. 26, 510–516 (2012).
    Article  Google Scholar 

    49.
    Fahad, S. et al. Consequences of narrow crop row spacing and delayed Echinochloa colona and Trianthema portulacastrum emergence for weed growth and crop yield loss in maize. Weed Res. 54, 475–483 (2014).
    Article  Google Scholar 

    50.
    Thullen, R. J. & Keeley, P. E. Germination, growth, and seed production of Ipomoea hederacea when planted at monthly intervals. Weed Sci. 31, 837–840 (1983).
    Article  Google Scholar  More

  • in

    Gene-informed decomposition model predicts lower soil carbon loss due to persistent microbial adaptation to warming

    Site description and sampling
    This experimental site was established in July 2009 at the Kessler Atmospheric and Ecological Field Station (KAEFS) in the US Great Plains in McClain County, Oklahoma (34̊ 59ʹN, 97̊ 31ʹW)14,48. Experimental design and site description were described in detail previously25. Briefly, Ambrosia trifida, Solanum carolinense and Euphorbia dentate belonging to C3 forbs, and Tridens flavus, Sporobolus compositus and Sorghum halapense belonging to C4 grasses are dominant in the site25,48. Annual mean temperature is 16.3 °C and annual precipitation is 914 mm, based on Oklahoma Climatological Survey data from 1948 to 1999. The soil type of this site is Port–Pulaski–Keokuk complex with 51% of sand, 35% of silt and 13% of clay, which is a well-drained soil that is formed in loamy sediment on flood plains. The soil has a high available water holding capacity (37%), neutral pH and 1.2 g cm−3 bulk density with 1.9% total organic matter and 0.1% total nitrogen (N)25,48. Four blocks were used in the field site experiment, in which warming is a primary factor. Two levels of warming (ambient and +3 °C) were set for four pairs of 2.5 m × 1.75 m plots by utilizing a real or dummy infrared radiator (Kalglo Electronics, Bethlehem, PA, USA). In the warmed plots, a real infrared radiator was suspended 1.5 m above the ground, and the dummy infrared radiator was suspended to simulate a shading effect of the device in the control plots.
    In this study, eight surface (0–15 cm) soil samples, four from the warmed and four from the control plots, were collected annually at approximately the date of peak plant biomass (September or October) from 2010 to 2016. Three soil cores (2.5 cm diameter × 15 cm depth) were taken by using a soil sampler tube in each plot and composited to have enough samples for soil chemistry, microbiology and molecular biology analyses. A total of 56 soil samples were analyzed in this study.
    Environmental and soil chemical measurements
    Precipitation data were obtained from the Oklahoma Mesonet Station (Washington Station)48 located 200 m away from our experiment site, and 12-month version of the standardized precipitation-evapotranspiration index (SPEI-12) was used as annual drought index49. Air temperature, soil temperature and volumetric soil water content were described in detail previously25. Specifically, air temperature and soil temperature at the depth of 7.5 cm in the center of each field plot were measured by using Constantan-copper thermocouples wired to a Campbell Scientific CR10x data logger (Campbell Scientific, UT, USA). A portable time domain reflectometer (Soil Moisture Equipment Corp.) was used to measure soil moisture from the soil surface to a 15-cm depth once or twice a month. Three measurements of soil moisture were performed in each plot and the average of three technical replicates were used in further analyses.
    All soil samples were analyzed to determine soil total organic carbon (TOC), total nitrogen (TN), soil nitrate (NO3−) and ammonia (NH4+) by the Soil, Water, and Forage Analytical Laboratory at Oklahoma State University (Stillwater, OK, USA). Soil pH was measured using a pH meter with a calibrated combined glass electrode50.
    Aboveground plant communities
    Aboveground plant community investigations were annually conducted at peak biomass (usually September)48,51. Aboveground plant biomass, separated into C3 and C4 species, was indirectly estimated by a modified pin-touch method48,51. Detailed description of biomass estimation is provided by Sherry et al.52. A pin frame used in this study is 1 m long and have 10 pins 10 cm apart at 30° from vertical. Pins with a 0.75 m length were raised within the frame to count hits up to 1 m high (hits over 1 m are negligible at this site). The pin frame was placed in the center of each plot to record the contact numbers of the pins separately with C3 and C4 plants (e.g., leaves and stems). The contact numbers of C3 and C4 plants were then used to estimate plant biomass using calibration equations derived from calibration plots, which were located near the experimental plots. Biomass in the calibration plots was clipped at a height of 10 cm above the ground at approximately the date of peak plant biomass (September or October). All of the species in plant community within each plot were identified to estimate species richness. Clipped plant materials were oven-dried and then correlated with the total contact number. C3 and C4 plant biomasses were estimated by using the calibration equation of contact number and plant biomass. All of the species within each plot were identified to estimate species richness of plants.
    Ecosystem C fluxes and soil respiration
    Ecosystem C fluxes and soil respirations were measured once or twice a month between 10:00 and 15:00 (local time) from January 2010 to December 2016 by following previous methods14,48. One square aluminum frame (0.5 m × 0.5 m) was inserted in the soil at 2 cm depth in each plot to provide a flat base between the soil surface and the CO2 sampling chamber. NEE and ecosystem respiration (ER) were measured using LI-6400 portable photosynthesis system (LI-COR). Gross primary productivity (GPP) was estimated as the difference between NEE and ER. Meanwhile, soil surface respiration was monthly measured using a LI-8100A soil flux system attached to a soil CO2 flux chamber (LI-COR). Measurements were taken above a PVC collar (80 cm2 in area and 5 cm in depth) and a PVC tube (80 cm2 in area and 70 cm in depth) in each plot. The PVC tube was permanently fixed on the ground to cut off old plant roots and prevent new roots from growing inside the tube. Any aboveground parts of living plants were removed from the PVC tubes and collars before each measurement. The CO2 efflux measured above the PVC tubes represented heterotrophic respiration (Rh) from soil microbes, while that measured above the PVC collars represented soil total respiration (Rt) including heterotrophic and autotrophic respiration (Rh and Ra) from soil microbes and plant root, respectively.
    Soil decomposition rate
    Weighted cellulose filter paper (Whatman CAT No. 1442-090) was placed into fiberglass mesh bags and placed vertically at 0–10 cm soil depth in each plot in March 2016. All of decomposition bags were collected back in September 2016, rinsed and dried at 60 °C for weighing. The percentage of mass loss was calculated to represent soil decomposition rate.
    Molecular analyses of soil samples
    The C substrate utilization patterns of soil microbial communities in 2016 were analyzed by BIOLOG EcoPlateTM (BIOLOG). The BIOLOG EcoPlateTM contains 31 of the most useful labile carbon sources for soil community analysis, which are repeated three times in each plate. In this study, the plates with diluted soil supernatant (0.5 g soil with 45 mL 0.85% NaCl) were incubated in a BIOLOG OmniLog PM System at 25 °C for 4.5 days. The color change of each well was shown as absorbance curve. The net area under the absorbance versus time curve was calculated to represent physiological activity of various C sources53. The average value from three replicates was used for analyses in this study.
    Soil total DNA was extracted from 1.5 g soil by freeze-grinding and SDS-based lysis54, and purified with a MoBio PowerSoil DNA isolation kit (MoBio Laboratories)25. Then, 10 ng DNA per sample were used for library construction and amplicon sequencing. Amplicons sequencing was performed with cautions in terms of experimental preparations and data analyses to ensure sequence representativeness and semi-quantitative nature55. The V4 region of bacterial and archaeal 16S rRNA genes were amplified with the primer set 515F (5ʹ-GTGCCAGCMGCCGCGGTAA-3′) and 806R (5ʹ-GGACTACHVGGGTWTCTAAT-3ʹ), and fungal ITSs between 5.8S and 28S rRNA genes were amplified with the primer set ITS7F (5ʹ-GTGARTCATCGARTCTTTG-3ʹ) and ITS4R (5ʹ-TCCTCCGCTTATTGATATGC-3ʹ). PCR products from different samples were sequenced on a MiSeq platform (Illumina, Inc.) using 2 × 250 pair-end sequencing kit. Raw sequences were submitted to our Galaxy sequence analysis pipeline (http://zhoulab5.rccc.ou.edu:8080) to further analyze according to the protocol in the pipeline25. Finally, OTUs were clustered by UPARSE56 at 97% identity for both 16S rRNA gene and ITS. All sequences were randomly resampled to 30,000 sequences for 16S rRNA gene and 10,000 sequences for ITS per sample. Representative sequences of OTUs were annotated taxonomically by the Ribosomal Database Project (RDP) Classifier with 50% confidence estimates.
    GeoChip 5.0 M, a functional gene array57, was used for all 56 samples from 2010 to 2016. GeoChip hybridization, scanning and data processing were performed in the Institute for Environmental Genomics, University of Oklahoma57,58. Specifically, 800 ng of purified soil DNA of each sample was mixed with 5.5 µl random primers (Life Technologies, random hexamers, 3 µg/µl), diluted with nuclease-free water to 35 µl, heated to 99 °C for 5 min, and placed on ice immediately. The labeling master mix (15 µl), including 0.5 µl of Cy-3 dUTP (25 nM; GE Healthcare), 2.5 µl of dNTP (2.5 mM dTTP, 5 mM dAGC-TP), 1 µl of Klenow (imer; San Diego, CA; 40 U ml−1), 5 µl Klenow buffer, and 2.5 µl of water, was added in the sample mixed solution. The samples were incubated at 37 °C for 6 h in a thermocycler, and then incubated at 95 °C for 3 min to inactivate the enzyme. Subsequently, samples were protected from the light as much as possible. Labeled DNA was cleaned using a QIAquick purification kit (Qiagen) according the manufacturer’s instructions and then dried thoroughly in a SpeedVac (45 °C, 45 min; ThermoSavant).
    Labeled DNA was resuspended into 27.5 µl of DNase-free water, and then mixed completely with 99.4 µl of hybridization solution, containing 63.5 µl of formamide (10% final concentration), 2 × HI-RPM hybridization buffer, 12.7 µl of 10 × aCGH blocking agent, 0.05 μg/µl Cot-1 DNA, and 10 pM CORS58. The mixed solution was denatured at 95 °C for 3 min, and then incubated at 37 °C for 30 min. The DNA solution was centrifuged at 6000 × g for 1 min to collect liquid at the bottom of the tube. 110 µl of the solution was pipetted into the center of the well of the gasket slide. The array slide was placed on the gasket slide, sealed using a SureHyb chamber, hybridized at 67 °C for 24 h at 20 rpm in a hybridization oven. After hybridization, slides were washed in room temperature with Wash Buffer 1 (Agilent) and Wash Buffer 2 (Agilent).
    The slides were imaged as a Multi-TIFF with a NimbleGen MS200 Microarray Scanner (Roche NimbleGen, Inc., Madison, WI, United States). The raw signals from NimbleGen were submitted to the Microarray Data Manager on our website (http://ieg.ou.edu/microarray), cleaned, normalized and analyzed using the data-analysis pipeline. Briefly, probe quality was assessed, and poor or low signal probes were removed. Probe spots with coefficient of variance (CV; probe signal SD/signal) >0.8 were removed. Then, the signal-to-noise ratio (SNR) was calculated. As suggested by Agilent, the average signal of Agilent’s negative control probes within each subarray was used as the background signal for the probes in that subarray instead of the local background typically used. The signal intensity for each spot was corrected by subtracting the background signal intensity. If the net difference was30%, aligned length >20 a.a., and e-value More

  • in

    Consequences of different sample drying temperatures for accuracy of biomass inventories in forest ecosystems

    1.
    Thuiller, W. et al. Consequences of climate change on the tree of life in Europe. Nature 470, 531–534 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, 2013).
    Google Scholar 

    3.
    Sohngen, B. & Tian, X. Global climate change impacts on forests and markets. For. Policy Econ. 72, 18–26 (2016).
    Article  Google Scholar 

    4.
    Fawzy, S., Osman, A. I., Doran, J. & Rooney, D. W. Strategies for mitigation of climate change: a review. Environ. Chem. Lett. https://doi.org/10.1007/s10311-020-01059-w (2020).
    Article  Google Scholar 

    5.
    Luyssaert, S. et al. Trade-offs in using European forests to meet climate objectives. Nature 562, 259 (2018).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Seidl, R., Schelhaas, M.-J., Rammer, W. & Verkerk, P. J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Change 4, 806–810 (2014).
    ADS  CAS  Article  Google Scholar 

    7.
    Osman, A. I. Mass spectrometry study of lignocellulosic biomass combustion and pyrolysis with NOx removal. Renew. Energy 146, 484–496 (2020).
    CAS  Article  Google Scholar 

    8.
    Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J. & Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 1, 56 (2010).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    9.
    Qambrani, N. A., Rahman, Md. M., Won, S., Shim, S. & Ra, C. Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: a review. Renew. Sustain. Energy Rev. 79, 255–273 (2017).
    CAS  Article  Google Scholar 

    10.
    Choi, S. H. & Manousiouthakis, V. I. On the carbon cycle impact of combustion of harvested plant biomass vs. fossil carbon resources. Comput. Chem. Eng. 140, 106942 (2020).
    CAS  Article  Google Scholar 

    11.
    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Laiho, R. & Laine, J. Tree stand biomass and carbon content in an age sequence of drained pine mires in southern Finland. For. Ecol. Manag. 93, 161–169 (1997).
    Article  Google Scholar 

    13.
    Martin, A. R. & Thomas, S. C. A reassessment of carbon content in tropical trees. PLoS ONE 6, e23533 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    14.
    Jagodziński, A. M., Dyderski, M. K., Gęsikiewicz, K. & Horodecki, P. Tree- and stand-level biomass estimation in a Larix decidua Mill. Chronosequence. Forests 9, 587 (2018).
    Article  Google Scholar 

    15.
    Teobaldelli, M., Somogyi, Z., Migliavacca, M. & Usoltsev, V. A. Generalized functions of biomass expansion factors for conifers and broadleaved by stand age, growing stock and site index. For. Ecol. Manag. 257, 1004–1013 (2009).
    Article  Google Scholar 

    16.
    Forrester, D. I. et al. Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate. For. Ecol. Manag. 396, 160–175 (2017).
    Article  Google Scholar 

    17.
    Jagodziński, A. M. et al. How do tree stand parameters affect young Scots pine biomass? Allometric equations and biomass conversion and expansion factors. For. Ecol. Manag. 409, 74–83 (2018).
    Article  Google Scholar 

    18.
    Picard, N., Saint-Andre, L. & Henry, M. Manual for building tree volume and biomass allometric equations: from field measurement to prediction. (Food and Agricultural Organization of the United Nations and Centre de Coopération Internationale en Recherche Agronomique pour le Développement, 2012).

    19.
    Grote, R., Schuck, J., Block, J. & Pretzsch, H. Oberirdische holzige Biomasse in Kiefern-/Buchen- und Eichen-/Buchen-Mischbeständen. Forstwiss. Cent. Ver. Mit Tharandter Forstl. Jahrb. 122, 287–301 (2003).
    Google Scholar 

    20.
    Zhang, L., Zhang, Y., Wang, H., Zou, J. & Siemann, E. Chinese Tallow trees (Triadica sebifera) from the invasive range outperform those from the native range with an active soil community or phosphorus fertilization. PLoS ONE 8, e74233 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Frouz, J. et al. Development of canopy cover and woody vegetation biomass on reclaimed and unreclaimed post-mining sites. Ecol. Eng. 84, 233–239 (2015).
    Article  Google Scholar 

    22.
    Mangla, S., Sheley, R. L., James, J. J. & Radosevich, S. R. Intra and interspecific competition among invasive and native species during early stages of plant growth. Plant Ecol. 212, 531–542 (2011).
    Article  Google Scholar 

    23.
    Gómez-García, E., Crecente-Campo, F. & Diéguez-Aranda, U. Tarifas de biomasa aérea para abedul (Betula pubescens Ehrh.) y roble (Quercus robur L.) en el noroeste de España. Madera Bosques 19, 71–91 (2013).
    Google Scholar 

    24.
    Albert, K., Annighöfer, P., Schumacher, J. & Ammer, C. Biomass equations for seven different tree species growing in coppice-with-standards forests in Central Germany. Scand. J. For. Res. 29, 210–221 (2014).
    Article  Google Scholar 

    25.
    Repola, J. Biomass equations for birch in Finland. Silva Fenn. 42, 605–624 (2008).
    Article  Google Scholar 

    26.
    Uri, V. et al. Biomass production and carbon sequestration in a fertile silver birch (Betula pendula Roth) forest chronosequence. For. Ecol. Manag. 267, 117–126 (2012).
    Article  Google Scholar 

    27.
    Sellin, A. et al. Elevated air humidity affects hydraulic traits and tree size but not biomass allocation in young silver birches (Betula pendula). Front. Plant Sci. 6, 1–10 (2015).
    Article  Google Scholar 

    28.
    Xiao, C.-W. et al. Above- and belowground biomass and net primary production in a 73-year-old Scots pine forest. Tree Physiol. 23, 505–516 (2003).
    PubMed  Article  PubMed Central  Google Scholar 

    29.
    Yuste, J. C. et al. Contrasting net primary productivity and carbon distribution between neighboring stands of Quercus robur and Pinus sylvestris. Tree Physiol. 25, 701–712 (2005).
    CAS  Article  Google Scholar 

    30.
    Petersson, H. & Ståhl, G. Functions for below-ground biomass of Pinus sylvestris, Picea abies, Betula pendula and Betula pubescens in Sweden. Scand. J. For. Res. 21, 84–93 (2006).
    Article  Google Scholar 

    31.
    Repola, J. & AhnlundUlvcrona, K. Modelling biomass of young and dense Scots pine (Pinus sylvestris L.) dominated mixed forests in northern Sweden. Silva Fenn. 48, 1190 (2014).
    Article  Google Scholar 

    32.
    Ozolinčius, R., Mikšys, V. & Stakénas, V. Above-ground phytomass and light regime in Norway spruce stands planted with different initial density. Biomass Bioenergy 11, 201–206 (1996).
    Article  Google Scholar 

    33.
    Johansson, T. Sprouting ability and biomass production of downy and silver birch stumps of different diameters. Biomass Bioenergy 32, 944–951 (2008).
    Article  Google Scholar 

    34.
    Pajtík, J., Konôpka, B. & Lukac, M. Individual biomass factors for beech, oak and pine in Slovakia: a comparative study in young naturally regenerated stands. Trees 25, 277–288 (2011).
    Article  Google Scholar 

    35.
    Gezici-Koç, Ö, Erich, S. J. F., Huinink, H. P., van der Ven, L. G. J. & Adan, O. C. G. Bound and free water distribution in wood during water uptake and drying as measured by 1D magnetic resonance imaging. Cellulose 24, 535–553 (2017).
    Article  CAS  Google Scholar 

    36.
    Samuelsson, R., Nilsson, C. & Burvall, J. Sampling and GC-MS as a method for analysis of volatile organic compounds (VOC) emitted during oven drying of biomass materials. Biomass Bioenergy 30, 923–928 (2006).
    CAS  Article  Google Scholar 

    37.
    Samuelsson, R., Burvall, J. & Jirjis, R. Comparison of different methods for the determination of moisture content in biomass. Biomass Bioenergy 30, 929–934 (2006).
    CAS  Article  Google Scholar 

    38.
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, 2020).

    39.
    Jabłoński, M. & Budniak, P. Estimating above-ground woody biomass of forests in Poland for UNECE/FAO and UNFCCC reporting. For. Res. Pap. 75, 277–289 (2014).
    Google Scholar 

    40.
    Claessens, H., Oosterbaan, A., Savill, P. & Rondeux, J. A review of the characteristics of black alder (Alnus glutinosa (L.) Gaertn.) and their implications for silvicultural practices. Forestry 83, 163–175 (2010).
    Article  Google Scholar 

    41.
    Horodecki, P. & Jagodziński, A. M. Tree species effects on litter decomposition in pure stands on afforested post-mining sites. For. Ecol. Manag. 406, 1–11 (2017).
    Article  Google Scholar 

    42.
    Horodecki, P., Nowiński, M. & Jagodziński, A. M. Advantage of mixed tree stands in restoration of upper soil layers on post-mining sites: a five-year leaf litter decomposition experiment. Land Degrad. Dev. 30, 3–13 (2019).
    Article  Google Scholar 

    43.
    Repola, J. Models for vertical wood density of Scots pine, Norway spruce and birch stems, and their application to determine average wood density. Silva Fenn. 40, 4 (2006).
    Google Scholar 

    44.
    Poorter, H. et al. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytol. 208, 736–749 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    45.
    Annighöfer, P. et al. Species-specific and generic biomass equations for seedlings and saplings of European tree species. Eur. J. For. Res. 135, 313–329 (2016).
    Article  Google Scholar 

    46.
    Schepaschenko, D. et al. A dataset of forest biomass structure for Eurasia. Sci. Data 4, 201770 (2017).
    Article  Google Scholar 

    47.
    Muukkonen, P. Generalized allometric volume and biomass equations for some tree species in Europe. Eur. J. For. Res. 126, 157–166 (2007).
    Article  Google Scholar 

    48.
    Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    49.
    Flores, O. et al. An evolutionary perspective on leaf economics: phylogenetics of leaf mass per area in vascular plants. Ecol. Evol. 4, 2799–2811 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    50.
    Paź-Dyderska, S., Dyderski, M. K., Nowak, K. & Jagodziński, A. M. On the sunny side of the crown: quantification of intra-canopy SLA variation among 179 taxa. For. Ecol. Manag. 472, 118254 (2020).
    Article  Google Scholar 

    51.
    Zanne, A. E. et al. Global Wood Density Database. (2009) https://datadryad.org/handle/10255/dryad.235.

    52.
    Kleyer, M. et al. The LEDA Traitbase: a database of life-history traits of the Northwest European flora. J. Ecol. 96, 1266–1274 (2008).
    Article  Google Scholar 

    53.
    FAO. Global Forest Resources Assessment. (UN Food and Agriculture Organization, 2015).

    54.
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    55.
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest: tests in linear mixed effects models. J. Stat. Softw. 82, 13 (2017).
    Article  Google Scholar 

    56.
    Bartoń, K. MuMIn: Multi-Model Inference. (2017). https://cran.r-project.org/package=MuMIn (Accessed 12 Aug 2020).

    57.
    Jagodziński, A. M., Dyderski, M. K., Gęsikiewicz, K. & Horodecki, P. Effects of stand features on aboveground biomass and biomass conversion and expansion factors based on a Pinus sylvestris L. chronosequence in Western Poland. Eur. J. For. Res. 138, 673–683 (2019).
    Article  Google Scholar 

    58.
    Jagodziński, A. M., Dyderski, M. K. & Horodecki, P. Differences in biomass production and carbon sequestration between highland and lowland stands of Picea abies (L.) H. Karst. and Fagus sylvatica L. For. Ecol. Manag. 474, 118329 (2020).
    Article  Google Scholar  More

  • in

    Thousands of reptile species threatened by under-regulated global trade

    Website sampling
    We used five different search terms, all translations of ‘reptiles for sale’ (reptile à vendre, reptilien zu verkaufen, 爬虫類の販売, reptil para la venta), on the appropriately localized version of two search engines (Google: https://www.google.com/, https://www.google.fr/, https://www.google.de/, https://www.google.jp/, https://www.google.es/ and Bing: https://www.bing.com/?cc=en, https://www.bing.com/?cc=fr, https://www.bing.com/?cc=de, https://www.bing.com/?cc=jp, https://www.bing.com/?cc=es) to retrieve a list of reptile selling websites, extracting URLs using the XML v.3.99.0.339, assertthat v.0.2.140 and stringr v.1.4.0 packages41 in R v.3.5.342 and R studio v.1.2.133543 (Supplementary Code 1). We completed searches in Firefox44, while signed out of search engine accounts and in a private window to minimise browsing history’s impact on searches.
    Once we had generated a list of search result URLs, we manually reviewed each URL’s content—679 websites led to 151 searchable reptile selling websites. Our review had three goals: ensure the website was selling reptiles, check whether the website terms and conditions did not explicitly forbid automated data collection, and identify the most appropriate method of searching the content of the website (see Supplementary Data 1 for example of review datasheet).
    We employed a hierarchy of five search methods depending on the structure of the website and the display of stocklists (Supplementary Code 3). The hierarchical approach minimised the analysis of irrelevant pages and minimised server load.
    (1) Searched only a single html or pdf page. Where the seller has supplied a full list of stock, we could review all animals sold with only a single page using the downloadr v.0.4 package45. Occasionally animals were listed on large pages that displayed a store’s full non-animal stock as well. For stocklists supplied as a pdf, we manually downloaded them and accessed the text using the pdftools v.2.2 package46.
    (2) Systematic cycling through search results. Forty-nine websites with adequate search functions allowed us to request all reptiles for sale, then examine the pages of search results one-by-one. We employed this method when website search results contained the complete details of the reptiles for sale on the search page. We ceased cycling through search pages when a URL returned a 404 error, or when 100 pages had been cycled through. Hundred pages were surveyed to prevent endless cycling back onto initial pages, or deriving errors from misinterpreting the number of search pages returned, while still exceeding the number of pages on most sites. We performed a post hoc review of ten sites searched using a cycle search method to check whether species ordering could have led systematic biases for names near the beginning of the alphabet or price. For four websites we could not determine how species were ordered, for six websites species listings were ordered by date, and for one website, species were ordered by popularity. Thus even for sites with more pages, we feel the results will not be impacted by biases given the inconsistency of approach for ordering entries on different sites. The 100-page limit may have led to missing species on large websites, but undercounting likely only affected a small portion of the websites searched via cycling methods and overlap between websites species lists mitigate suboptimal sampling on any particular website (see species-accumulation curves, Supplementary Figs. 1 and 2).
    (3) Systematic cycling followed by level 1 crawl. We employed this method when sites had adequate search functionality but the details or full names of species for sale were buried one level deeper into the search results. In these instances, we ran a level 1 crawl on every search results page (Rcrawler v.0.1.9.1 package47). We followed the same stop criteria as the single page systematic cycling, 404 error or 100 search result pages.
    (4) Basic level 1 crawl. Some sites had a full species list but split between clades or categories. In this case we passed the page containing links to all the different clade lists and completed a level 1 crawl40.
    (5) Basic level 2 crawl. We required a level 2 crawl47 when the subsection of reptiles for sale was more specific. For example, to detect a Boa constrictor on a site that divided its stock multiple times would require moving from the ‘snake’ section, through to the ‘Boa’ section where the details of the stock are listed.
    We employed these five search methods hierarchically, 1–5, and included 20 s delays between crawled requests to minimise server load on reptile selling websites. For search method 3, there was a significant chance of duplicated pages being returned; we removed duplicated pages prior to keyword searching. A few sites required multiple methods to extract complete stocklists. For search methods 3, 4 and 5, we limited the crawl further by selecting (where possible) keywords within a website’s URL that must be included for a page to be searched. For example, a website may list animals on pages that all include the pattern ‘/category=reptiles/’, therefore limiting the search of irrelevant non-stock pages.
    We augmented our 2019 snapshot sampling by exploring the archived web pages stored on the Internet Archive48. For the most species-rich site (from the 2019 snapshot) we retrieved all archived web pages using the Internet Archive’s Wayback machine API49, adapting code from the wayback v.0.4.0 package50, with functions from httr v.1.4.151, jsonlite v.1.6.152, downloader v.0.445, lubridate v.1.7.453 and tibble v.2.1.3 packages54. We limited the search to pages directly pertaining to sales.
    Though our online search analysis provided the number of mentions per species per page, we do not detail these numbers because sellers may list multiple individuals at once, sellers may post the same advertisement numerous times, or that advertisements can be repeated on different pages within the same website. Therefore, numbers derived from online analysis did not provide a reliable estimate of numbers per species for sale, and we elected to restrict analysis to binary species appearances.
    Keyword generation
    We use the complete list of 11,050 reptiles created by Reptile Database16, updated 14 August 2019, as our naming standard. We downloaded the complete list from http://www.reptile-database.org/data/, then fed the list of species into code designed to query and extract all common names, historic scientific names and locality information for each species from Reptile Database. The extraction code made use of functions from stringr v.1.4.041, XML v.3.99.0.339, xml2 v.1.2.255 and rvest v.0.3.5 packages56. We combined the resulting list with names, both common and scientific, supplied by CITES (http://checklist.cites.org/#/en [accessed 6 September 2019]) using the dplyr v.0.8.4 package57 (Supplementary Code 2). Five CITES listed species had no matching counterpart in the Reptile Database; we determined that this was caused by minor spelling mistakes. We included both spellings in our complete list of species keywords. Overall, our species keyword list comprised all scientific and common names from both Reptile Database and CITES (Supplementary Data 2), with an average of 5.82 ± 0.06 s.e. (standard error) per species and grand total of 64,342 terms (s.e. calculated using the pracma v.2.2.5 package58). Common names were predominantly English, French, German or Spanish, but occasionally included local names. We compared the number of species detected via scientific names, to the number of species detected via a combination of scientific and common names because previous work highlighted that, while correlated, they can produce different search results59.
    Keyword searching and species comparison
    On a site by site basis, we cleaned each page’s html code of extraneous punctuation, numbers and spacing, replacing them with single spaces. That way, two-word keywords split by line breaks, punctuation or double-spacing appeared the same as those split only by spaces.
    After cleaning the html code, we searched each page for keyword matches using the stringr v.1.4.0 package41 (Supplementary Code 4, 5). Because of the large quantity of keywords and the high computational cost of collation string matching, we used a fixed string matching set to be case insensitive. Fixed string matching has the disadvantage of being sensitive to variation in how diacritics or ligatures are displayed as single or multiple characters. Our keyword searches returned the website, page number (as an index relating to the total number of pages retrieved from a given website), the keywords detected, and the corresponding Reptile Database name (Supplementary Data 3).
    We searched the pages obtained from The Internet Archive48 using the same list of species (Supplementary Code 4, 7). Because there is likely a connection between the number of pages available and the number of species detected, we regressed the number of species detected in a year against the number of pages searched (n = 15, intercept = 483.72, gradient = 1.65). We excluded 2002, 2003 and 2019 for this regression because they had considerably fewer pages than all other years (mean of 3.7 ± 1.2 pages, compared to mean of 296.6 ± 48.8 pages). We plotted the residuals from the regression alongside counts of unique species per year and the number of species included in CITES appendices. To show the sensitivity to the keywords used, we counted the number of unique species in two ways: (1) counting all species detected using either scientific or common name keywords, (2) counting species only detected using scientific name keywords. The two keyword groups produce slightly different yearly species lists; therefore, changing the number of unique species per year and yearly residuals.
    We compared the list of species names generated by our keyword searches to those listed in CITES. Because names of species have changed, we first converted the CITES scientific names to the most recent Reptile Database used name. However, due to species synonymisations, splits and name changes, comparisons between the list of traded species and CITES species contain some ambiguity. The ambiguity can be seen in the variation between the number of traded species covered by CITES when comparing to only the top Reptile Database name, versus when comparing the CITES list to any historically used name of traded species. For general reporting we used the more generous matching using any historic name, boosting the estimations of CITES coverage. For examination of counts of CITES covered species traded over time (Fig. 2d) we used the more stringent single name matching because of the added complexity of a changing list of CITES species and the assumption that new CITES listings would use the most recently accepted name.
    Data exploration and display
    We used forcats v.0.4.060 and dplyr v.0.8.457 to manipulate data, and ggplot2 v.3.2.161, scico v.1.1.062, ggpubr v.0.263 and ggforce v.0.3.164 to generate the plots. We undertook keyword searching in R v.3.5.342 and R studio v.1.2.133543. Silhouette images were obtained from http://phylopic.org/, in cases where the images were not public domain for free from attribution they were produced by Aline M. Ghilardi (CC BY-NC 3.0) and Roberto Díaz Sibaja (CC BY 3.0).
    We explored the completeness of our samples—2019 snapshot and temporal—in two ways. The first was only applied to the snapshot data. We built an accumulation curve illustrating the relationship between the number of sites sampled and the number of species detected. We accomplished this by randomly resampling a subset of websites, increasing the subsample by one website until all were included. We repeated the resampling process 100 times, and plotted the results with a loess smoothed curve. The second method we applied to both snapshot and temporal data. Using the iNEXT v.2.0.19 package65,66, treating our data as raw incidences, we calculated both sample-size and coverage-based rarefaction and extrapolation metrics providing us with estimates of total species richness and sample completeness. For snapshot data we used ‘website’ (n = 151) as the resampling method, for the temporal data we used ‘year’ (2002–2019, n = 18).
    We compared our data to two international trade databases (compiled species list is available in Supplementary Data 5, code for review of data sources is available in Supplementary Code 9): CITES and United States Fish and Wildlife Service’s Law Enforcement Management Information System (LEMIS). Following the online web scraping, the same types of analysis and cleaning were applied to all three databases. CITES data was retrieved from https://trade.cites.org/# on 13 May 2020) using the comparative tabulations for all ‘reptilia’ and the appropriate years (the snapshot of 2019, and 2004–2019) to download all reptile species traded over this time. We retrieved LEMIS data67,68 (v.1.1.0) via R using the lemis package69 (Supplementary Code 6). LEMIS data includes records of imports to the USA, alongside information pertaining to purpose, quantity, origin, date among other metadata, therefore quantitative data on imports for each species, or based on origins and source could be calculated in R using dplyr v.0.8.457. As for the CITES species lists, the unstandardised LEMIS names were matched to those present in Reptile Database (operating as our backbone nomenclature), leading to both synonymisations and splits. A LEMIS name was converted to a Reptile Database name if it matched any current, common, or historically used name. Names would fail to match if misspelled. By LEMIS naming, there were 639 instances of genus level listing, that were matched to 510 Reptile Database names. Of the 510 converted names, 442 appeared in other sources, suggesting genus level listings in LEMIS did not inflate species counts. Outside of generic level listings, 83 full names could not be matched. We compared the 83 names to the traded list from other sources, looking for names with fewer than 5 different characters (using the similiars v.0.1.0 package70); 56 species were found to be present in other sources by this metric. Those that failed to be converted were not included in total species counts; as final counts were entirely based on Reptile Database explicit species naming. Final species counts from all data sources are based on unique Reptile Database names and do not include any remaining generic identifiers after this synonymization/split process.
    Though the research focused on the percentages of species vulnerable to trade based on various forms of IUCN and CITES categorisation, we made some efforts to quantify the proportions of items with different statuses within CITES and LEMIS. Quantifications were made using a number of different approaches. Online assessments were not directly quantified due to the possibility of listing the same individuals multiple times, or having mixed batches of specimens with variable numbers. For CITES we used the summary statistics tool in ArcMap 10.3 to quantify the means and totals for the numbers exported and imported (and listings of both are provided throughout where the numbers differ), and the range for each species or endangerment status is provided in text (or a single number if they were the same). RedList status was associated with the data by joining the scientific name field between the two databases. Sums were made for various sources, purposes and endangerment statuses for CITES data using this same approach, based on the 2004–2019 data from the CITES trade portal. ‘Terms’ (i.e., skins) were also explored, recategorising the standard terms (57 were used for reptiles) into nine (i.e., fashion, live, food, decorative, medicinal, specimen, egg, body, other uses), then summing the total item number imported and exported and determining the percentage. In addition to this we tried to quantify the trade in wild captured individuals within CITES. To try to represent individuals, terms from the CITES trade database were filtered to only include bodies, carapaces, eggs, live, shells, skeletons, skins, specimens, trophies, as most of these are mutually exclusive, though the huge quantity of reptile leather and meat could not be converted to representative individuals, skins or bodies listed as weights were also removed. Following from this the individuals from each source imported and exported could be calculated to percentages of individuals from the wild or captive bred within CITES, though these percentage values were very similar to summed total values showing the results are consistent. To investigate the extent of wild capture in LEMIS data, we restricted our summaries to items that represent individuals (whole dead bodies, live eggs, dead specimens, live individuals, full specimens, substantially whole skins, and full animal trophies), filtering out 75.6% other reptile items (79,812,310/105,536,941) leaving us 25,724,631 items to review source and purpose. The filter terms are close to those used in other recent publications which also quantified elements of trade (“live”, “bodies”, “skins”, “gall bladder”, “skulls”, “heads”, “tails”, “trophies” and “skeletons”)71, but we also excluded body-parts that may have come from the same individual (i.e., skin and skull) which may otherwise inflate numbers (79,812,310 items including skulls and skeletons; 79,796,472 excluding skulls and skeletons). The filtering to individuals made negligible difference in summaries of origin (wild or captive): 58.17% wild-sourced without the filter, 58.05% wild-sourced with the filter (61,390,757/105,536,941 without; 14,933,888/25,724,631 with); 41.32% captive sourced without the filter, 41.23% captive sourced with the filter (43,611,039/10,5536,941 without; 10,605,330/25,724,631 with). Our quantification of non-commercial trade was calculated by the number of individual animal items listed as Scientific, Reintroduction, or Biomedical research; our quantification of captive sourced trade was calculated by the number of individual animal items listed as being bred/born in captivity, commercially bred, or from ranching operations. We excluded all instances of NA in either purpose or source filters (127,881 reptile items had a missing source, purpose, or description). We additionally include clade-based analysis of source, as some taxa (i.e., crocodylia) may be more impacted for fashion trade and are imported in greater numbers. For clade-based summaries of wild capture, we summarised the quantity of traded items by genus, and further simplified the genus-summary to clade using Reptile Database genera and family information. For genera missing from Reptile Database (e.g., where genus information was family such as Varanidae), we manually assigned the clade.
    Maps were created using the Global Assessment of Reptile Distributions (GARD) database72 combined with each species list as appropriate using join field and then connecting by scientific names in ArcMap 10.3 based on the corrected lists. Join by field was also used to connect species to their RedList status (downloaded from https://www.iucnredlist.org/search) and CITES appendix (from http://checklist.cites.org/#/en). To create hotspot vulnerability maps we extracted each group with different IUCN classes then used ‘count overlapping polygons’ to count the number of species with each status in any given area. This was then repeated separately for the species listed within each of the three data sources, to map the species listed as traded within each separately in addition to the total number in trade.
    To obtain overall number of species and percentage of species we separated each species polygon for species in trade, and all species using QGIS, then converted them to rasters with a resolution of ~1 km using ArcCatalog. Mosaic to new raster was then used in groups of 200 species, then all mosaics added to determine overall richness for reptiles, and richness for reptiles in trade, and the percentage of reptiles in trade determined using the raster calculator ((traded_species/all_species)*100). Other trends, i.e., the percentage of species coming from different sources or with different statuses was calculated in Excel using basic approaches to quantify listings with different qualities (i.e., seized, wild, commercial and personal use) and the percentage with that status within CITES based on the number of exports and imports. For more extensive analysis of multiple factors, summary statistics were used in ArcMap after joining fields to connect species data from traded specimens of the three data sources with RedList assessments. This provided some simple statistics to further understand patterns as detailed in text, as CITES data lacks the detail of some other data sources; it was largely used to understand what species were in trade relative to existing regulations and threat.
    To determine trends on a country basis we joined the CITES appendix and RedList status to the GARD layer. We used QGIS to separate a global country layer (http://thematicmapping.org/downloads/world_borders.php) into constituent countries, then clipped the GARD layer into each country with trade status noted. ISO2 codes were added to each of the country layers, then each country merged again to list each species and country and thus provide a species list for all countries within the GARD database. The number of species in and out of trade, and with and without an appendix was then calculated for each species using summary statistics, and this was repeated for each RedList status (Supplementary Data 6). For all species listed in Reptile Database but with no GARD layer, countries were listed separately and the process repeated based on the listing on the website, then the total combined with that from the GARD layer to map country richness, and the number of species with each trade status and endangerment to provide an understanding of the level of potential threat to the reptile faunas of different regions based on the trade, threat and CITES appendix of species listed in those countries.
    For exploration of the time lag between species descriptions and their detection in the trade, we relied on the date of description from the author details supplied by Reptile Database. We extracted the earliest description date for each species using the stringr v.1.4.0 package41 (Supplementary Code 8), and compared this to the year reported alongside the archived pages or trade date in LEMIS. For species detected only in the snapshot data we used 2019 as their date of appearance in the trade and did not include them in the calculation of mean lag time. We only included species that had been detected directly with the scientific name of the new descriptions, subsequent name changes or common names were ignored for this analysis. We also excluded species listed as only being traded for LEMIS non-commercial purposes in this part of analysis.
    Reporting summary
    Further information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Marine organic carbon burial increased forest fire frequency during Oceanic Anoxic Event 2

    1.
    Freeman, K. H. & Hayes, J. M. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Glob. Biogeochem. Cycles 6, 185–198 (1992).
    Google Scholar 
    2.
    Pancost, R. D. et al. Further evidence for the development of photic-zone euxinic conditions during Mesozoic oceanic anoxic events. J. Geol. Soc. London 161, 353–364 (2004).
    Google Scholar 

    3.
    Monteiro, F. M., Pancost, R. D., Ridgwell, A. & Donnadieu, Y. Nutrients as the dominant control on the spread of anoxia and euxinia across the Cenomanian-Turonian oceanic anoxic event (OAE2): model-data comparison. Paleoceanography 27, PA4209 (2012).
    Google Scholar 

    4.
    Schlanger, S. O. & Jenkyns, H. C. Cretaceous oceanic anoxic events: causes and consequences. Geol. Mijnbouw 55, 179–184 (1976).
    Google Scholar 

    5.
    Jones, M. M. et al. Astronomical pacing of relative sea level during Oceanic Anoxic Event 2: preliminary studies of the expanded SH#1 Core, Utah. Geol. Soc. Am. Bull. 131, 1702–1722 (2019).
    Google Scholar 

    6.
    Gale, A. S. & Christenson, W. K. Occurrence of the belemnite Actinocamax plenus in the Cenomanian of SE France and its significance. Bull. Geol. Soc. Den. 43, 68–77 (1996).
    Google Scholar 

    7.
    O’Connor, L. K. et al. A re-evaluation of the Plenus Cold Event, and the links between CO2, temperature, and seawater chemistry during OAE 2. Paleoceanogr. Paleoclimatol. 35, e2019PA003631 (2019).
    Google Scholar 

    8.
    Kuhnt, W. et al. Unravelling the onset of Cretaceous Oceanic Anoxic Event 2 in an extended sediment archive from the Tarfaya-Laayoune Basin, Morocco. Paleoceanogr. Paleoclimatol. 32, 923–946 (2017).
    Google Scholar 

    9.
    Kuroda, J. & Ohkouchi, N. Implications of spatiotemporal distribution of black shales deposited during the Cretaceous oceanic anoxic event-2. Paleontol. Res. 10, 345–358 (2006).
    Google Scholar 

    10.
    Owens, J. D., Lyons, T. W. & Lowery, C. M. Quantifying the missing sink for global organic carbon burial during a Cretaceous oceanic anoxic event. Earth Planet. Sci. Lett. 499, 83–94 (2018).
    Google Scholar 

    11.
    Berner, R. A. Phanerozoic atmospheric oxygen: new results using the GEOCARBSULF model. Am. J. Sci. 309, 603–606 (2009).
    Google Scholar 

    12.
    Baker, S. J., Hesselbo, S. P., Lenton, T. M., Duarte, L. V. & Belcher, C. M. Charcoal evidence that rising atmospheric oxygen terminated Early Jurassic ocean anoxia. Nat. Commun. 8, 15018 (2017).
    Google Scholar 

    13.
    Kump, L. R. Terrestrial feedback in atmosphere oxygen regulation by fire and phosphorus. Nature 335, 152–154 (1988).
    Google Scholar 

    14.
    Watson, A., Lovelock, J. E. & Margulis, L. Methanogenesis, fires and the regulation of atmospheric oxygen. Biosystems 10, 293–298 (1978).
    Google Scholar 

    15.
    Bond, W. J. & Scott, A. C. Fire and the spread of flowering plants in the Cretaceous. New Phytol. 188, 1137–1150 (2010).
    Google Scholar 

    16.
    Brown, S. A. E., Scott, A. C., Glasspool, I. J. & Collinson, W. E. Cretaceous wildfires and their impact on the Earth system. Cretac. Res. 36, 162–190 (2012).
    Google Scholar 

    17.
    Glasspool, I. J. & Scott, A. C. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nat. Geosci. 3, 627–630 (2010).
    Google Scholar 

    18.
    Baker, S. J. et al. CO2-induced climate forcing on the fire record during the initiation of Cretaceous oceanic anoxic event 2. Geol. Soc. Am. Bull. 132, 321–333 (2019).
    Google Scholar 

    19.
    Zhang, M., Dai, S., Du, B., Ji, L. & Hu, S. Mid-Cretaceous hothouse climate and the expansion of early angiosperms. Acta Geol. Sin. Engl. 92, 2004–2025 (2018).
    Google Scholar 

    20.
    Blumer, M. Polycyclic aromatic compounds in nature. Sci. Am. 234, 35–45 (1976).
    Google Scholar 

    21.
    Lima, A. L. C., Farrington, J. W. & Reddy, C. M. Combustion-derived polycyclic aromatic hydrocarbons in the environment—a review. Environ. Forensics 6, 109–113 (2005).
    Google Scholar 

    22.
    Youngblood, W. W. & Blumer, M. Polycyclic aromatic hydrocarbons in the environment: homologous series in soils and recent marine sediments. Geochim. Cosmochim. Acta 39, 1303–1314 (1975).
    Google Scholar 

    23.
    Killops, S. D. & Massoud, M. S. Polycyclic aromatic hydrocarbons of pyrolytic origin in ancient sediments: evidence for Jurassic vegetation fires. Org. Geochem. 18, 1–7 (1992).
    Google Scholar 

    24.
    Finkelstein, D. B., Pratt, L. M., Curtin, T. M. & Brassell, S. C. Wildfires and seasonal aridity recorded in Late Cretaceous strata from south-eastern Arizona, USA. Sedimentology 52, 587–599 (2005).
    Google Scholar 

    25.
    Belcher, C. M., Finch, P., Collinson, M. E., Scott, A. C. & Grassineau, N. V. Geochemical evidence for combustion of hydrocarbons during the K-T impact event. Proc. Natl Acad. Sci. USA 106, 4112–4117 (2009).
    Google Scholar 

    26.
    Tsikos, H. et al. Carbon-isotope stratigraphy recorded by the Cenomanian-Turonian Oceanic Anoxic Event: correlation and implications based on three key localities. J. Geol. Soc. London 161, 711–719 (2004).
    Google Scholar 

    27.
    Jarvis, I., Lignum, J. S., Grocke, D. R., Jenkyns, H. C. & Pearce, M. A. Black shale deposition, atmospheric CO2 drawdown, and cooling during the Cenomanian-Turonian Oceanic Anoxic Event. Paleoceanography 26, PA3201 (2011).
    Google Scholar 

    28.
    Joo, Y. J. & Sageman, B. B. Cenomanian to Campanian carbon isotope chemostratigraphy from the western interior basin, USA. J. Sediment. Res. 84, 529–542 (2014).
    Google Scholar 

    29.
    Jenkyns, H. C., Dickson, A. J., Ruhl, M. & van den Boorn, S. H. J. M. Basalt-seawater interaction, the Plenus Cold Event, enhanced weathering and geochemical change: deconstructing Oceanic Anoxic Event 2 (Cenomanian-Turonian, Late Cretaceous). Sedimentology 64, 16–43 (2017).
    Google Scholar 

    30.
    Heimhofer, U. et al. Vegetation response to exceptional global warmth during Oceanic Anoxic Event 2. Nat. Commun. 9, 3832 (2018).
    Google Scholar 

    31.
    Elder, W. P. Geometry of Upper Cretaceous bentonite beds: implications about volcanic source areas and paleowind patterns, western interior, United States. Geology 16, 835–838 (1988).
    Google Scholar 

    32.
    He, T., Pausas, J. G., Belcher, C. M., Schwilk, D. W. & Lamont, B. B. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol. 194, 751–759 (2012).
    Google Scholar 

    33.
    Belcher, C. M. & Hudspith, V. A. Changes to Cretaceous surface fire behavior influenced the spread of the early angiosperms. New Phytol. 213, 1521–1532 (2016).
    Google Scholar 

    34.
    Chumakov, N. M. et al. Climate belts of the mid-Cretaceous time. Stratigr. Geol. Correl. 3, 241–260 (1995).
    Google Scholar 

    35.
    Hasegawa, H. et al. Drastic shrinking of the Hadley circulation during the mid-Cretaceous Supergreenhouse. Clim. Past 8, 1323–1337 (2012).
    Google Scholar 

    36.
    Hay, W. W. Possible solutions to several enigmas of Cretaceous climate. Int. J. Earth Sci. 108, 587–620 (2018).
    Google Scholar 

    37.
    Hay, W. W. & Floegel, S. New thoughts about the Cretaceous climate and oceans. Earth Sci. Rev. 115, 262–272 (2012).
    Google Scholar 

    38.
    Scopelliti, G. et al. High-resolution geochemical and biotic records of the Tethyan ‘Bonarelli Level’ (OAE2, latest Cenomanian) from the Calabianca-Guidaloca composite section, northwestern Sicily, Italy. Palaeogeogr. Palaeoclimatol. Palaeoecol. 208, 293–317 (2004).
    Google Scholar 

    39.
    Charbonnier, G. et al. Obliquity pacing of the hydrological cycle during the Oceanic Anoxic Event 2. Earth Planet. Sci. Lett. 499, 266–277 (2018).
    Google Scholar 

    40.
    Van Helmond, N. A. G. M. et al. A perturbed hydrological cycle during Oceanic Anoxic Event 2. Geology 42, 123–126 (2014).
    Google Scholar 

    41.
    Carr, A. S. et al. Leaf wax n-alkane distributions in arid zone South African flora: environmental controls, chemotaxonomy and palaeoecological implications. Org. Geochem. 67, 72–84 (2014).
    Google Scholar 

    42.
    Denis, E. H., Pedentchouk, N., Schouten, S., Pagani, M. & Freeman, K. H. Fire and ecosystem change in the Arctic across the Paleocene-Eocene Thermal Maximum. Earth Planet. Sci. Lett. 467, 149–156 (2017).
    Google Scholar 

    43.
    Mills, B. J. E., Belcher, C. M., Lenton, T. M. & Newton, R. J. A modeling case for high atmospheric oxygen concentrations during the Mesozoic and Cenozoic. Geology 22, 1023–1026 (2016).
    Google Scholar 

    44.
    Bergman, N. M., Lenton, T. M. & Watson, A. J. COPSE: a new model of biogeochemical cycling over Phanerozoic time. Am. J. Sci. 304, 397–437 (2004).
    Google Scholar 

    45.
    Kump, L. Chemical stability of the atmosphere and ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 75, 123–136 (1989).
    Google Scholar 

    46.
    Saltzman, M. R. et al. Pulse of atmospheric oxygen during the late Cambrian. Proc. Natl Acad. Sci. USA 108, 3876–3881 (2011).
    Google Scholar 

    47.
    Huang, J. et al. The global oxygen budget and its future projection. Sci. Bull. 63, 1180–1186 (2018).
    Google Scholar 

    48.
    Klages, J. P. et al. Temperature rainforests near the South Pole during peak Cretaceous warmth. Nature 580, 81–86 (2020).
    Google Scholar 

    49.
    Turgeon, S. C. & Creaser, R. A. Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode. Nature 454, 323–326 (2008).
    Google Scholar 

    50.
    Jones, M. M., Sageman, B. B. & Selby, D. Stratigraphic record of OAE2 from the Western Interior Basin (N. America): new insights from osmium isotopes (OSi) and the expanded Big Water, UT site. In Society for Sedimentary Geology (SEPM) Research Conference on Oceanic Anoxic Events (Oral Presentation) (2016).

    51.
    Arinobu, T., Ishiwatari, R., Kaiho, K. & Lamolda, M. A. Spike of pyrosynthetic polycyclic aromatic hydrocarbons associated with an abrupt decrease in δ13C of a terrestrial biomarker at the Cretaceous-Tertiary boundary at Caravaca, Spain. Geology 27, 723–726 (1999).
    Google Scholar 

    52.
    Finkelstein, D. B., Pratt, L. M. & Brassell, S. C. Can biomass burning produce a globally significant carbon-isotope excursion in the sedimentary record? Earth Planet. Sci. Lett. 250, 501–510 (2006).
    Google Scholar 

    53.
    Barclay, R. S., McElwain, J. C. & Sageman, B. B. Carbon sequestration activated by a volcanic CO2 pulse during Ocean Anoxic Event 2. Nat. Geosci. 3, 205–208 (2010).
    Google Scholar 

    54.
    van Bentum, E. C., Reichart, G.-J., Forster, A. & Sinninghe Damsté, J. S. Latitudinal differences in the amplitude of the OAE-2 carbon isotopic excursion: pCO2 and paleo productivity. Biogeosciences 9, 717–731 (2012).
    Google Scholar 

    55.
    Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).
    Google Scholar 

    56.
    Shen, W., Sun, Y., Lin, Y., Liu, D. & Chai, P. Evidence for wildfire in the Meishan section and implications for Permian-Triassic events. Geochim. Cosmochim. Acta 75, 1992–2006 (2011).
    Google Scholar 

    57.
    Raison, R. J. Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformations: a review. Plant Soil 51, 73–108 (1979).
    Google Scholar 

    58.
    Spencer, C. N. & Hauer, F. R. Phosphorus and nitrogen dynamics in streams during a wildfire. J. North Am. Benthol. Soc. 10, 24–30 (1991).
    Google Scholar 

    59.
    Moody, J. A. & Martin, D. A. Initial hydrologic and geomorphic response following a wildfire in the Colorado Front Range. Earth Surf. Process. Landf. 26, 1049–1070 (2001).
    Google Scholar 

    60.
    Guieu, C., Bonnet, S., Wagener, T. & Loye-Piot, M.-D. Biomass burning as a source of dissolved iron to the open ocean? Geophys. Res. Lett. 32, L19608 (2005).
    Google Scholar 

    61.
    Shakesby, R. A. & Doerr, S. H. Wildfire as a hydrological and geomorphological agent. Earth Sci. Rev. 74, 269–307 (2006).
    Google Scholar 

    62.
    Kaiho, K. et al. A forest fire and soil erosion event during the Late Devonian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 392, 272–280 (2013).
    Google Scholar 

    63.
    Barkley, A. E. et al. African biomass burning is a substantial source of phosphorus deposition to the Amazon, tropical Atlantic Ocean, and Southern Ocean. Proc. Natl Acad. Sci. USA 116, 16216–16221 (2019).
    Google Scholar 

    64.
    Leckie, R. M., Yuretich, R. F., West, O. L. O., Finkelstein, D. & Schmidt, M. in Stratigraphy and Paleoenvironments of the Cretaceous Western Interior Seaway, USA Vol. 6 (eds Dean, W. E. & Arthur, M. A.) 101–126 (Society for Sedimentary Geology, 1998).

    65.
    Pogge von Strandmann, P. A. E., Jenkyns, H. C. & Woodfine, R. G. Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2. Nat. Geosci. 6, 668–672 (2013).
    Google Scholar 

    66.
    Blättler, C. L., Jenkyns, H. C., Reynard, L. M. & Henderson, G. H. Significant increases in global weathering during Oceanic Anoxic Events 1a and 2 indicated by calcium isotopes. Earth Planet. Sci. Lett. 309, 77–88 (2011).
    Google Scholar 

    67.
    Knoll, M. A. & James, W. C. Effect of the advent and diversification of vascular land plants on mineral weathering through geologic time. Geology 15, 1099–1102 (1987).
    Google Scholar 

    68.
    Lenton, T. M. & Watson, A. J. Redfield revisited: what regulates the oxygen content of the atmosphere? Glob. Biogeochem. Cycles 14, 149–168 (2000).
    Google Scholar 

    69.
    Likens, G. E., Bormann, F. H. & Johnson, N. M. in Some Perspectives of the Major Biogeochemical Cycles (ed. Likens, G. E.) 93–112 (John Wiley & Sons, 1981).

    70.
    Boudinot, F. G. et al. Neritic ecosystem response to Oceanic Anoxic Event 2 in the Cretaceous Western Interior Seaway, USA. Palaeogeogr. Palaeoclimaol. Palaeoecol. 546, 109673 (2020).
    Google Scholar 

    71.
    Sinninghe Damsté, J. S., van Bentum, E. C., Reichart, G.-J., Pross, J. & Schouten, S. A CO2 decrease-driven cooling and increased latitudinal temperature gradient during the mid-Cretaceous Oceanic Anoxic Event 2. Earth Planet. Sci. Lett. 293, 97–103 (2010).
    Google Scholar 

    72.
    Van Helmond, N. A. G. M. et al. Equatorward phytoplankton migration during a cold spell within the Late Cretaceous super-greenhouse. Biogeosciences 13, 2856–2872 (2016).
    Google Scholar 

    73.
    Forster, A., Schouten, S., Moriya, K., Wilson, P. A. & Sinninghe Damsté, J. S. Tropical warming and intermittent cooling during the Cenomanian/Turonian oceanic anoxic event 2: sea surface temperature records from the equatorial Atlantic. Paleoceanogr. 22, PA1219 (2007).
    Google Scholar 

    74.
    Boudinot, F. G. and Sepúlveda, J. Organic geochemistry of SH#1 core: fires. PANGAEA https://doi.pangaea.de/10.1594/PANGAEA.921198 (2020). More

  • in

    Changes in transcriptomic response to salinity stress induce the brackish water adaptation in a freshwater snail

    1.
    Gienapp, P., Teplitsky, C., Alho, J. S., Mills, J. A. & Merilä, J. Climate change and evolution: disentangling environmental and genetic responses. Mol. Ecol. 17, 167–178 (2008).
    CAS  Article  Google Scholar 
    2.
    Anderson, J. T., Inouye, D. W., McKinney, A. M., Colautti, R. I. & Mitchell-Olds, T. Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proc. R. Soc. B Biol. Sci. 279, 3843–3852 (2012).
    Article  Google Scholar 

    3.
    Siemann, E. & Rogers, W. E. Genetic differences in growth of an invasive tree species. Ecol. Lett. 4, 514–518 (2001).
    Article  Google Scholar 

    4.
    Bossdorf, O., Prati, D., Auge, H. & Schmid, B. Reduced competitive ability in an invasive plant. Ecol. Lett. 7, 346–353 (2004).
    Article  Google Scholar 

    5.
    Maron, J. L., Vilà, M., Bommarco, R., Elmendorf, S. & Beardsley, P. Rapid evolution of an invasive plant. Ecol. Monogr. 74, 261–280 (2004).
    Article  Google Scholar 

    6.
    Byrne, K. & Nichols, R. A. Culex pipiens in London underground tunnels: differentiation between surface and subterranean populations. Heredity 82, 7–15 (1999).
    Article  Google Scholar 

    7.
    Lee, C. E. Rapid and repeated invasions of fresh water by the copepod Eurytemora affinis. Evolution 53, 1423–1434 (1999).
    Article  Google Scholar 

    8.
    Linnen, C. R. et al. Adaptive evolution of multiple traits through multiple mutations at a single gene. Science 339, 1312–1316 (2013).
    ADS  CAS  Article  Google Scholar 

    9.
    Yeh, P. J. & Price, T. D. Adaptive phenotypic plasticity and the successful colonization of a novel environment. Am. Nat. 164, 531–542 (2004).
    Article  Google Scholar 

    10.
    Price, T. D., Yeh, P. J. & Harr, B. Phenotypic plasticity and the evolution of a socially selected trait following colonization of a novel environment. Am. Nat. 172, S49–S62 (2008).
    Article  Google Scholar 

    11.
    Lande, R. Evolution of phenotypic plasticity in colonizing species. Mol. Ecol. 24, 2038–2045 (2015).
    Article  Google Scholar 

    12.
    Chevin, L. M. & Lande, R. Adaptation to marginal habitats by evolution of increased phenotypic plasticity. J. Evol. Biol. 24, 1462–1476 (2011).
    Article  Google Scholar 

    13.
    Orizaola, G. & Laurila, A. Developmental plasticity increases at the northern range margin in a warm-dependent amphibian. Evol. Appl. 9, 471–478 (2016).
    Article  Google Scholar 

    14.
    Nyamukondiwa, C., Kleynhans, E. & Terblanche, J. S. Phenotypic plasticity of thermal tolerance contributes to the invasion potential of Mediterranean fruit flies (Ceratitis capitata). Ecol. Entomol. 35, 565–575 (2010).
    Article  Google Scholar 

    15.
    Richards, C. L., Bossdorf, O., Muth, N. Z., Gurevitch, J. & Pigliucci, M. Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecol. Lett. 9, 981–993 (2006).
    Article  Google Scholar 

    16.
    Crispo, E. Modifying effects of phenotypic plasticity on interactions among natural selection, adaptation and gene flow. J. Evol. Biol. 21, 1460–1469 (2008).
    CAS  Article  Google Scholar 

    17.
    Baldwin, J. M. A new factor in evolution. Am. Nat. 30(441–451), 536–553 (1896).
    Article  Google Scholar 

    18.
    Waddington, C. H. Genetic assimilation. Adv. Genet. 10, 257–293 (1961).
    CAS  Article  Google Scholar 

    19.
    Price, T. D., Qvarnström, A. & Irwin, D. E. The role of phenotypic plasticity in driving genetic evolution. Proc. R. Soc. B Biol. Sci. 270, 1433–1440 (2003).
    Article  Google Scholar 

    20.
    Lande, R. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. J. Evol. Biol. 22, 1435–1446 (2009).
    Article  Google Scholar 

    21.
    Levis, N. A. & Pfennig, D. W. Evaluating ‘Plasticity-First’ evolution in nature: key criteria and empirical approaches. Trends Ecol. Evol. 31, 563–574 (2016).
    Article  Google Scholar 

    22.
    Charmantier, G. Ontogeny of osmoregulation in crustaceans: a review. Invertebr. Reprod. Dev. 33, 177–190 (1998).
    CAS  Article  Google Scholar 

    23.
    Cervetto, G., Gaudy, R. & Pagano, M. Influence of salinity on the distribution of Acartia tonsa (Copepoda, Calanoida). J. Exp. Mar. Bio. Ecol. 239, 33–45 (1999).
    Article  Google Scholar 

    24.
    Ho, P.-T. et al. Impacts of salt stress on locomotor and transcriptomic responses in the intertidal gastropod Batillaria attramentaria. Biol. Bull. 236, 224–241 (2019).
    Article  Google Scholar 

    25.
    Yang, S. et al. The salinity tolerance of the invasive golden apple snail (Pomacea canaliculata). Molluscan Res. 38, 90–98 (2018).
    Article  Google Scholar 

    26.
    Deaton, L. E., Derby, J. G. S., Subhedar, N. & Greenberg, M. J. Osmoregulation and salinity tolerance in two species of bivalve mollusc: Limnoperna fortunei and Mytilopsis leucophaeta. J. Exp. Mar. Bio. Ecol. 133, 67–79 (1989).
    Article  Google Scholar 

    27.
    Jordan, P. J. & Deaton, L. E. Osmotic regulation and salinity tolerance in the freshwater snail Pomacea bridgesi and the freshwater clam Lampsilis teres. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 122, 199–205 (1999).
    Article  Google Scholar 

    28.
    Bouétard, A., Côte, J., Besnard, A. L., Collinet, M. & Coutellec, M. A. Environmental versus anthropogenic effects on population adaptive divergence in the freshwater snail Lymnaea stagnalis. PLoS ONE https://doi.org/10.1371/journal.pone.0106670 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    29.
    Sinclair, C. S. Surfing snails: population genetics of the land snail Ventridens ligera (Stylommatophora: Zonitidae) in the Potomac Gorge. Am. Malacol. Bull. 28, 105–112 (2010).
    Article  Google Scholar 

    30.
    Hartl, D. L. & Clark, A. G. Principles of Population Genetics 4th edn. (Sinauer, Sunderland, 2007).
    Google Scholar 

    31.
    Dmitrieva, N. I. & Burg, M. B. Elevation of extracellular NaCl increases secretion of von Willebrand Factor from endothelial cells. FASEB J. 27, 686.3 (2013).
    Google Scholar 

    32.
    Mansour, M. M. F. Nitrogen containing compounds and adaptation of plants to salinity stress. Biol. Plant. 43, 491–500 (2000).
    CAS  Article  Google Scholar 

    33.
    Somero, G. N. & Bowlus, R. D. Osmolytes and metabolic end products of molluscs: the design of compatible solute systems. in Mollusca, Vol. 2. Environ. Biochem. Physiol. 77–100 (1983).

    34.
    Lv, J. et al. Transcriptome analysis of Portunus trituberculatus in response to salinity stress provides insights into the molecular basis of osmoregulation. PLoS ONE https://doi.org/10.1371/journal.pone.0082155 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    35.
    Wiesenthal, A. A., Müller, C., Harder, K. & Hildebrandt, J. P. Alanine, proline and urea are major organic osmolytes in the snail Theodoxus fluviatilis under hyperosmotic stress. J. Exp. Biol. https://doi.org/10.1242/jeb.193557 (2019).
    Article  PubMed  Google Scholar 

    36.
    Yamanaka, O. & Takeuchi, R. UMATracker: an intuitive image-based tracking platform. J. Exp. Biol. https://doi.org/10.1242/jeb.182469 (2018).
    Article  PubMed  Google Scholar 

    37.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
    CAS  Article  Google Scholar 

    38.
    Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).
    CAS  Article  Google Scholar 

    39.
    Li, B. & Dewey, C. N. Assembly of non-unique insertion content using next-generation sequencing. BMC Bioinform. https://doi.org/10.1186/1471-2105-12-S6-S3 (2011).
    Article  Google Scholar 

    40.
    Sun, J., Nishiyama, T., Shimizu, K. & Kadota, K. TCC: An R package for comparing tag count data with robust normalization strategies. BMC Bioinform. https://doi.org/10.1186/1471-2105-14-219 (2013).
    Article  Google Scholar 

    41.
    Tang, M., Sun, J., Shimizu, K. & Kadota, K. Evaluation of methods for differential expression analysis on multi-group RNA-seq count data. BMC Bioinform. https://doi.org/10.1186/s12859-015-0794-7 (2015).
    Article  Google Scholar 

    42.
    Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).
    CAS  Article  Google Scholar 

    43.
    Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).
    CAS  Article  Google Scholar 

    44.
    McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
    CAS  Article  Google Scholar 

    45.
    Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180, 977–993 (2008).
    Article  Google Scholar 

    46.
    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).
    Article  Google Scholar  More

  • in

    Frugivore-fruit size relationships between palms and mammals reveal past and future defaunation impacts

    1.
    Fleming, T. H. & Kress, W. J. The Ornaments of Life: Coevolution and Conservation in the Tropics (Univ. Chicago Press, 2013).
    Google Scholar 
    2.
    Comita, L. S. et al. Testing predictions of the Janzen-Connell hypothesis: a meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival. J. Ecol. 102, 845–856 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    3.
    Howe, H. F. & Smallwood, J. Ecology of seed dispersal. Annu. Rev. Ecol. Syst. 13, 201–228 (1982).
    Article  Google Scholar 

    4.
    Jordano, P. in Seeds: The Ecology of Regeneration in Plant Communities 2nd edn (ed. Fenner, M.) 125–165 (CABI, 2000).

    5.
    Janzen, D. H. & Martin, P. S. Neotropical anachronisms: the fruits the gomphotheres ate. Science 215, 19–27 (1982).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Guimarães, P. R., Galetti, M. & Jordano, P. Seed dispersal anachronisms: rethinking the fruits extinct megafauna ate. PLoS ONE 3, e1745 (2008).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    7.
    Galetti, M. et al. Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340, 1086–1090 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Bender, I. M. A. et al. Morphological trait matching shapes plant-frugivore networks across the Andes. Ecography 41, 1910–1919 (2018).
    Article  Google Scholar 

    9.
    Faurby, S. & Svenning, J. C. Historic and prehistoric human-driven extinctions have reshaped global mammal diversity patterns. Divers. Distrib. 21, 1155–1166 (2015).
    Article  Google Scholar 

    10.
    Smith, F. A., Smith, R. E. E., Lyons, S. K. & Payne, J. L. Body size downgrading of mammals over the late Quaternary. Science 360, 310–313 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Martin, P. & Klein, R. Quaternary Extinctions: A Prehistoric Revolution. (Univ. Arizona Press, 1984).
    Google Scholar 

    13.
    Campos-Arceiz, A. & Blake, S. Megagardeners of the forest—the role of elephants in seed dispersal. Acta Oecol. 37, 542–553 (2011).
    ADS  Article  Google Scholar 

    14.
    Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Carbone, C., Cowlishaw, G., Isaac, N. & Rowcliffe, J. M. How far do animals go? Determinants of day range in mammals. Am. Nat. 165, 290–297 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    16.
    Pires, M. M., Guimaraes, P. R., Galetti, M. & Jordano, P. Pleistocene megafaunal extinctions and the functional loss of long-distance seed-dispersal services. Ecography 41, 153–163 (2018).
    Article  Google Scholar 

    17.
    Galetti, M. et al. Ecological and evolutionary legacy of megafauna extinctions. Biol. Rev. 93, 845–862 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    18.
    Jansen, P. A. et al. Thieving rodents as substitute dispersers of megafaunal seeds. Proc. Natl Acad. Sci. USA 109, 12610–12615 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Onstein, R. E. et al. To adapt or go extinct? The fate of megafaunal palm fruits under past global change. Proc. R. Soc. B 285, 20180882 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    20.
    Young, H. S., McCauley, D. J., Galetti, M. & Dirzo, R. Patterns, causes, and consequences of Anthropocene defaunation. Annu. Rev. Ecol. Evolut. Syst. 47, 333–358 (2016).
    Article  Google Scholar 

    21.
    Galetti, M. & Dirzo, R. Ecological and evolutionary consequences of living in a defaunated world. Biol. Conserv. 163, 1–6 (2013).
    Article  Google Scholar 

    22.
    Emer, C., Galetti, M., Pizo, M. A., Jordano, P. & Verdú, M. Defaunation precipitates the extinction of evolutionarily distinct interactions in the Anthropocene. Sci. Adv. 5, eaav6699 (2019).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Gardner, C. J., Bicknell, J. E., Baldwin-Cantello, W., Struebig, M. J. & Davies, Z. G. Quantifying the impacts of defaunation on natural forest regeneration in a global meta-analysis. Nat. Commun. 10, 4590 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    24.
    Dransfield, J. et al. Genera Palmarum — The Evolution and Classification of Palms (Royal Botanic Gardens, 2008).
    Google Scholar 

    25.
    Couvreur, T. L. P. & Baker, W. J. Tropical rain forest evolution: palms as a model group. BMC Biol. 11, 48 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    26.
    Terborgh, J. W. in Conservation Biology: the Science of Scarcity and Diversity (ed. Soulé, M. E.) 330–344 (Sinauer Associates, 1986).

    27.
    Zona, S. & Henderson, A. A review of animal-mediated seed dispersal of palms. Selbyana 11, 6–21 (1989).
    Google Scholar 

    28.
    Muñoz, G., Trøjelsgaard, K. & Kissling, W. D. A synthesis of animal-mediated seed dispersal of palms reveals distinct biogeographical differences in species interactions. J. Biogeogr. 46, 466–484 (2019).
    Article  Google Scholar 

    29.
    Kissling, W. D. et al. PalmTraits 1.0: a species-level functional trait database for palms worldwide. Sci. Data 6, 178 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    30.
    Govaerts, R. & Dransfield, J. World Checklist of Palms (Royal Botanic Gardens, 2005).
    Google Scholar 

    31.
    Brummitt, R. K., Pando, F., Hollis, S. & Brummitt, N. A. World Geographical Scheme for Recording Plant Distributions (TDWG, 2001).

    32.
    Cade, B. S. Model averaging and muddled multimodel inferences. Ecology 96, 2370–2382 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    33.
    Wheelwright, N. T. Fruit size, gape width, and the diets of fruit-eating birds. Ecology 66, 808–818 (1985).
    Article  Google Scholar 

    34.
    Lord, J. M. Frugivore gape size and the evolution of fruit size and shape in southern hemisphere floras. Austral Ecol. 29, 430–436 (2004).
    Article  Google Scholar 

    35.
    Levey, D. J. Seed size and fruit-handling techniques of avian frugivores. Am. Nat. 129, 471–485 (1987).
    Article  Google Scholar 

    36.
    Corlett, R. T. How to be a frugivore (in a changing world). Acta Oecol. 37, 674–681 (2011).
    ADS  Article  Google Scholar 

    37.
    Göldel, B., Kissling, W. D. & Svenning, J. C. Geographical variation and environmental correlates of functional trait distributions in palms (Arecaceae) across the New World. Bot. J. Linn. Soc. 179, 602–617 (2015).
    Article  Google Scholar 

    38.
    Kissling, W. D. et al. Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide. Proc. Natl Acad. Sci. USA 109, 7379–7384 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    39.
    Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the causes of late Pleistocene extinctions on the continents. Science 306, 70–75 (2004).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Sandom, C., Faurby, S., Sandel, B. & Svenning, J. C. Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc. R. Soc. B 281, 20133254 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    41.
    Doughty, C. E. et al. Megafauna extinction, tree species range reduction, and carbon storage in Amazonian forests. Ecography 39, 194–203 (2015).
    Article  Google Scholar 

    42.
    Galetti, M., Donatti, C. I., Pires, A. S., Guimarães Jr, P. R. & Jordano, P. Seed survival and dispersal of an endemic Atlantic forest palm: the combined effects of defaunation and forest fragmentation. Bot. J. Linn. Soc. 151, 141–149 (2006).
    Article  Google Scholar 

    43.
    Beaune, D., Fruth, B., Bollache, L., Hohmann, G. & Bretagnolle, F. Doom of the elephant-dependent trees in a Congo tropical forest. For. Ecol. Manag. 295, 109–117 (2013).
    Article  Google Scholar 

    44.
    Wotton, D. M. & Kelly, D. Frugivore loss limits recruitment of large-seeded trees. Proc. R. Soc. B 278, 3345–3354 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    45.
    Harrison, R. D. et al. Consequences of defaunation for a tropical tree community. Ecol. Lett. 16, 687–694 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    46.
    Pérez-Méndez, N., Jordano, P., García, C. & Valido, A. The signatures of Anthropocene defaunation: cascading effects of the seed dispersal collapse. Sci. Rep. 6, 24820 (2016).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    47.
    Nevo, O. et al. Frugivores and the evolution of fruit colour. Biol. Lett. 14, 20180377 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    48.
    Nevo, O., Razafimandimby, D., Jeffrey, J. A. J., Schulz, S. & Ayasse, M. Fruit scent as an evolved signal to primate seed dispersal. Sci. Adv. 4, eaat4871 (2018).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Bueno, R. S. et al. Functional redundancy and complementarities of seed dispersal by the last neotropical megafrugivores. PLoS ONE 8, e56252 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Sekar, N., Lee, C.-L. & Sukumar, R. Functional nonredundancy of elephants in a disturbed tropical forest. Conserv. Biol. 31, 1152–1162 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    51.
    Campos-Arceiz, A., Traeholt, C., Jaffar, R., Santamaria, L. & Corlett, R. T. Asian tapirs are no elephants when it comes to seed dispersal. Biotropica 44, 220–227 (2012).
    Article  Google Scholar 

    52.
    Corlett, R. T. The impact of hunting on the mammalian fauna of tropical asian forests. Biotropica 39, 292–303 (2007).
    Article  Google Scholar 

    53.
    Vidal, M. M., Pires, M. M. & Guimarães Jr, P. R. Large vertebrates as the missing components of seed-dispersal networks. Biol. Conserv. 163, 42–48 (2013).
    Article  Google Scholar 

    54.
    Heinen, J. H., van Loon, E. E., Hansen, D. M. & Kissling, W. D. Extinction-driven changes in frugivore communities on oceanic islands. Ecography 41, 1245–1255 (2017).
    Article  Google Scholar 

    55.
    Valido, A. & Olesen, J. M. Frugivory and seed dispersal by lizards: a global review. Front. Ecol. Evolut. 7, 49 (2019).
    Article  Google Scholar 

    56.
    Florens, F. B. V. et al. Disproportionately large ecological role of a recently mass-culled flying fox in native forests of an oceanic island. J. Nat. Conserv. 40, 85–93 (2017).
    Article  Google Scholar 

    57.
    Vizentin-Bugoni, J. et al. Structure, spatial dynamics, and stability of novel seed dispersal mutualistic networks in Hawai‘i. Science 364, 78–82 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Muñoz-Gallego, R., Fedriani, J. M. & Traveset, A. Non-native mammals are the main seed dispersers of the ancient mediterranean palm Chamaerops humilis L. in the balearic islands: rescuers of a lost seed dispersal service? Front. Ecol. Evolut. 7, 161 (2019).
    Article  Google Scholar 

    59.
    Pires, M. M. Rewilding ecological communities and rewiring ecological networks. Perspect. Ecol. Conserv. 15, 257–265 (2017).
    Google Scholar 

    60.
    Schleuning, M. et al. Ecological networks are more sensitive to plant than to animal extinction under climate change. Nat. Commun. 7, 13965 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Maisels, F. et al. Devastating decline of forest elephants in central Africa. PLoS ONE 8, e59469 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Valiente-Banuet, A. et al. Beyond species loss: the extinction of ecological interactions in a changing world. Funct. Ecol. 29, 299–307 (2014).
    Article  Google Scholar 

    63.
    Tucker, M. A. et al. Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Sales, L. P., Ribeiro, B. R., Pires, M. M., Chapman, C. A. & Loyola, R. Recalculating route: dispersal constraints will drive the redistribution of Amazon primates in the Anthropocene. Ecography 42, 1789–1801 (2019).
    Article  Google Scholar 

    65.
    Humphreys, A. M., Govaerts, R., Ficinski, S. Z., Lughadha, E. N. & Vorontsova, M. S. Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nat. Ecol. Evolut. 3, 1043–1047 (2019).
    Article  Google Scholar 

    66.
    Cronk, Q. Plant extinctions take time. Science 353, 446–447 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    Svenning, J. C. et al. Science for a wilder Anthropocene: synthesis and future directions for trophic rewilding research. Proc. Natl Acad. Sci. USA 113, 898–906 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    68.
    Galetti, M., Pires, A. S., Brancalion, P. H. & Fernandez, F. A. Reversing defaunation by trophic rewilding in empty forests. Biotropica 49, 5–8 (2017).
    Article  Google Scholar 

    69.
    Fricke, E. C., Tewksbury, J. J. & Rogers, H. S. Defaunation leads to interaction deficits, not interaction compensation, in an island seed dispersal network. Glob. Change Biol. 24, e190–e200 (2017).
    Article  Google Scholar 

    70.
    Meyer, C., Weigelt, P. & Kreft, H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol. Lett. 19, 992–1006 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    71.
    Kissling, W. D. et al. Quaternary and pre-Quaternary historical legacies in the global distribution of a major tropical plant lineage. Glob. Ecol. Biogeogr. 21, 909–921 (2012).
    Article  Google Scholar 

    72.
    Cheke, A. S. & Dahl, J. F. The Status of bats on western Indian Ocean islands, with special reference to Pteropus. Mammalia 45, 205–238 (1981).
    Article  Google Scholar 

    73.
    Prescott, G. W., Williams, D. R., Balmford, A., Green, R. E. & Manica, A. Quantitative global analysis of the role of climate and people in explaining late Quaternary megafaunal extinctions. Proc. Natl Acad. Sci. USA 109, 4527–4531 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    74.
    Martin, P. S. in Quaternary Extinctions: A Prehistoric Revolution (eds Martin, P. S. & Klein, R. G.) 354–403 (Univ. Arizona Press, 1984).

    75.
    Miller, G. H. et al. Ecosystem collapse in Pleistocene Australia and a human role in megafaunal extinction. Science 309, 287–290 (2005).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    76.
    Faurby, S. et al. PHYLACINE 1.2: the phylogenetic atlas of mammal macroecology. Ecology 99, 2626 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    77.
    Kissling, W. D. et al. Establishing macroecological trait datasets: digitalization, extrapolation, and validation of diet preferences in terrestrial mammals worldwide. Ecol. Evolut. 4, 2913–2930 (2014).
    Article  Google Scholar 

    78.
    International Union for Conservation of Nature and Natural Resources. The IUCN Red List of threatened species. Version 2018-2. IUCN http://www.iucnredlist.org (2018).

    79.
    Tiffney, B. H. Vertebrate dispersal of seed plants through time. Annu. Rev. Ecol. Evolut. Syst. 35, 1–29 (2004).
    Article  Google Scholar 

    80.
    Franãğa, L. D. M. et al. Review of feeding ecology data of Late Pleistocene mammalian herbivores from South America and discussions on niche differentiation. Earth Sci. Rev. 140, 158–165 (2015).
    ADS  Article  CAS  Google Scholar 

    81.
    MacFadden, B. J. & Shockey, B. J. Ancient feeding ecology and niche differentiation of Pleistocene mammalian herbivores from Tarija, Bolivia: morphological and isotopic evidence. Paleobiology 23, 77–100 (1997).
    Article  Google Scholar 

    82.
    Morosi, E. & Ubilla, M. Dietary and palaeoenvironmental inferences in Neolicaphrium recens Frenguelli, 1921 (Litopterna, Proterotheriidae) using carbon and oxygen stable isotopes (Late Pleistocene; Uruguay). Hist. Biol. 31, 196–202 (2017).
    Article  Google Scholar 

    83.
    MacFadden, B. J. Diet and habitat of toxodont megaherbivores (Mammalia, Notoungulata) from the late Quaternary of South and Central America. Quat. Res. 64, 113–124 (2005).
    Article  Google Scholar 

    84.
    Domingo, L., Prado, J. L. & Alberdi, M. T. The effect of paleoecology and paleobiogeography on stable isotopes of Quaternary mammals from South America. Quat. Sci. Rev. 55, 103–113 (2012).
    ADS  Article  Google Scholar 

    85.
    DeSantis, L. R. G., Field, J. H., Wroe, S. & Dodson, J. R. Dietary responses of Sahul (Pleistocene Australia-New Guinea) megafauna to climate and environmental change. Paleobiology 43, 181–195 (2017).
    Article  Google Scholar 

    86.
    Karger, D. N. et al. Data descriptor: climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    87.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Article  Google Scholar 

    88.
    Braconnot, P. et al. Evaluation of climate models using palaeoclimatic data. Nat. Clim. Change 2, 417–424 (2012).
    ADS  Article  Google Scholar 

    89.
    Kissling, W. D. & Carl, G. Spatial autocorrelation and the selection of simultaneous autoregressive models. Glob. Ecol. Biogeogr. 17, 59–71 (2008).
    Article  Google Scholar 

    90.
    Bivand, R. et al. spatialreg: spatial regression analysis. GitHub https://r-spatial.github.io/spatialreg/ (2019).

    91.
    Burnham, K. P. & Anderson, D. R. Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach 2nd edn (Springer, 2002).

    92.
    Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodel inference in ecology and evolution: challenges and solutions. J. Evolut. Biol. 24, 699–711 (2011).
    CAS  Article  Google Scholar 

    93.
    Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    94.
    Bartoń, K. MuMIn: multi-model inference. CRAN https://cran.r-project.org/package=MuMIn (2019).

    95.
    Galipaud, M., Gillingham, M. A. F. & Dechaume-Moncharmont, F.-X. A farewell to the sum of Akaike weights: The benefits of alternative metrics for variable importance estimations in model selection. Methods Ecol. Evolut. 8, 1668–1678 (2017).
    Article  Google Scholar 

    96.
    Zuber, V. & Strimmer, K. High-dimensional regression and variable selection using CAR scores. Stat. Appl. Genet. Mol. Biol. 10, 34 (2011).
    MathSciNet  MATH  Article  Google Scholar 

    97.
    Grömping, U. Relative importance for linear regression in R: the package relaimpo. J. Stat. Softw. 17, 1–27 (2006).
    Article  Google Scholar 

    98.
    Mooers, A. Ø., Faith, D. P. & Maddison, W. P. Converting endangered species categories to probabilities of extinction for phylogenetic conservation prioritization. PLoS ONE 3, e3700 (2008).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    99.
    Davis, M., Faurby, S. & Svenning, J. C. Mammal diversity will take millions of years to recover from the current biodiversity crisis. Proc. Natl Acad. Sci. USA 115, 11262–11267 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    100.
    International Union for Conservation of Nature and Natural Resources. IUCN Red List categories and criteria: version 3.1, 2nd edn (IUCN, 2012).

    101.
    Hoffmann, M. et al. The impact of conservation on the status of the world’s vertebrates. Science 330, 1503–1509 (2010).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    102.
    Di Marco, M. et al. A retrospective evaluation of the global decline of carnivores and ungulates. Conserv. Biol. 28, 1109–1118 (2014).
    PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Landscape configuration and habitat complexity shape arthropod assemblage in urban parks

    1.
    Oke, T. R. City size and the urban heat island. Atmos. Environ. 1967(7), 769–779 (1973).
    ADS  Article  Google Scholar 
    2.
    Zhou, B., Rybski, D. & Kropp, J. P. The role of city size and urban form in the surface urban heat island. Sci. Rep. 7, 1–9 (2017).
    Article  CAS  Google Scholar 

    3.
    Fenoglio, M. S., Rossetti, M. R., Videla, M. & Baselga, A. Negative effects of urbanization on terrestrial arthropod communities: A meta-analysis. Glob. Ecol. Biogeogr. 29, 1412–1429. https://doi.org/10.1111/geb.13107 (2020).
    Article  Google Scholar 

    4.
    McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).
    Article  Google Scholar 

    5.
    Philpott, S. M. et al. Local and landscape drivers of carabid activity, species richness, and traits in urban gardens in coastal California. Insects 10, 112 (2019).
    PubMed Central  Article  Google Scholar 

    6.
    Weller, B. & Ganzhorn, J. U. Carabid beetle community composition, body size, and fluctuating asymmetry along an urban-rural gradient. Basic Appl. Ecol. 5, 193–201 (2004).
    Article  Google Scholar 

    7.
    Alaruikka, D., Kotze, D. J., Matveinen, K. & Niemelä, J. Carabid beetle and spider assemblages along a forested urban–rural gradient in southern Finland. J. Insect Conserv. 6, 195–206 (2002).
    Article  Google Scholar 

    8.
    Burkman, C. E. & Gardiner, M. M. Spider assemblages within greenspaces of a deindustrialized urban landscape. Urban Ecosyst. 18, 793–818 (2015).
    Article  Google Scholar 

    9.
    Kaltsas, D., Panayiotou, E., Chatzaki, M. & Mylonas, M. Ground spider assemblages (Araneae: Gnaphosidae) along an urban-rural gradient in the city of Heraklion, Greece. Eur. J. Entomol. 111, 59 (2014).
    Article  Google Scholar 

    10.
    Magura, T., Horváth, R. & Tóthmérész, B. Effects of urbanization on ground-dwelling spiders in forest patches, Hungary. Landsc. Ecol. 25, 621–629 (2010).
    Article  Google Scholar 

    11.
    Shochat, E., Stefanov, W. L., Whitehouse, M. E. A. & Faeth, S. H. Urbanization and spider diversity: influences of human modification of habitat structure and productivity. Urban Ecology 14, 455–472 (2008).
    Article  Google Scholar 

    12.
    Liu, K.-L., Peng, M.-H., Hung, Y.-C. & Neoh, K.-B. Effects of park size, peri-urban forest spillover, and environmental filtering on diversity, structure, and morphology of ant assemblages in urban park. Urban Ecosyst. 22, 643–656 (2019).
    Article  Google Scholar 

    13.
    Brudvig, L. A., Damschen, E. I., Tewksbury, J. J., Haddad, N. M. & Levey, D. J. Landscape connectivity promotes plant biodiversity spillover into non-target habitats. Proc. Natl. Acad. Sci. USA 106, 9328–9332 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    14.
    McIntyre, N. E., Rango, J., Fagan, W. F. & Faeth, S. H. Ground arthropod community structure in a heterogeneous urban environment. Landsc. Urban Plan. 52, 257–274. https://doi.org/10.1016/S0169-2046(00)00122-5 (2001).
    Article  Google Scholar 

    15.
    Menke, S. B. et al. Urban areas may serve as habitat and corridors for dry-adapted, heat tolerant species; an example from ants. Urban Ecosyst. 14, 135–163 (2011).
    Article  Google Scholar 

    16.
    Dunning, J. B., Danielson, B. J. & Pulliam, H. R. Ecological processes that affect populations in complex landscapes. Oikos 65, 169–175 (1992).
    Article  Google Scholar 

    17.
    MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography Vol. 1 (Princeton University Press, Princeton, 2001).
    Google Scholar 

    18.
    Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J. Biogeogr. 31, 79–92 (2004).
    Article  Google Scholar 

    19.
    Burkman, C. E. & Gardiner, M. M. Urban greenspace composition and landscape context influence natural enemy community composition and function. Biol. Control 75, 58–67 (2014).
    Article  Google Scholar 

    20.
    Burks, J. M. & Philpott, S. M. Local and landscape drivers of parasitoid abundance, richness, and composition in urban gardens. Environ. Entomol. 46, 201–209 (2017).
    PubMed  Article  Google Scholar 

    21.
    Magura, T., Lövei, G. L. & Tóthmérész, B. Conversion from environmental filtering to randomness as assembly rule of ground beetle assemblages along an urbanization gradient. Sci. Rep. 8, 1–9 (2018).
    CAS  Article  Google Scholar 

    22.
    Corcos, D. et al. Impact of urbanization on predator and parasitoid insects at multiple spatial scales. PLoS ONE 14, e0214068 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Folgarait, P. J. Ant biodiversity and its relationship to ecosystem functioning: a review. Biodivers. Conserv. 7, 1221–1244 (1998).
    Article  Google Scholar 

    24.
    Hölldobler, B. & Wilson, E. O. The Ants (Harvard University Press, Cambridge, 1990).
    Google Scholar 

    25.
    Hölldobler, B. & Wilson, E. O. Journey to the Ants: A Story of Scientific Exploration (Harvard University Press, Cambridge, 1994).
    Google Scholar 

    26.
    Nichols, E. et al. Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biol. Conserv. 141, 1461–1474 (2008).
    Article  Google Scholar 

    27.
    Hanks, L. M. Influence of the larval host plant on reproductive strategies of cerambycid beetles. Annu. Rev. Entomol. 44, 483–505 (1999).
    CAS  PubMed  Article  Google Scholar 

    28.
    Kevan, P. G. & Baker, H. G. Insects as flower vistors and pollinators. Ann. Rev. Entomol. 28, 407–453 (1983).
    Article  Google Scholar 

    29.
    Haddad, C. R., Louw, S. V. & Dippenaar-Schoeman, A. S. An assessment of the biological control potential of Heliophanus pistaciae (Araneae: Salticidae) on Nysius natalensis (Hemiptera: Lygaeidae), a pest of pistachio nuts. Biol. Control 31, 83–90 (2004).
    Article  Google Scholar 

    30.
    Cotes, B. et al. Spider communities and biological control in native habitats surrounding greenhouses. Insects 9, 33 (2018).
    PubMed Central  Article  Google Scholar 

    31.
    Michalko, R. & Pekar, S. Different hunting strategies of generalist predators result in functional differences. Oecologia 181, 1187–1197. https://doi.org/10.1007/s00442-016-3631-4 (2016).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    32.
    Michalko, R., Pekár, S., Dul’a, M., Entling, M. H. & McGeoch, M. Global patterns in the biocontrol efficacy of spiders: a meta-analysis. Glob. Ecol. Biogeogr. 28, 1366–1378. https://doi.org/10.1111/geb.12927 (2019).
    Article  Google Scholar 

    33.
    Nyffeler, M. & Birkhofer, K. An estimated 400–800 million tons of prey are annually killed by the global spider community. Sci. Nat. 104, 30 (2017).
    Article  CAS  Google Scholar 

    34.
    Meineke, E. K., Dunn, R. R., Sexton, J. O. & Frank, S. D. Urban warming drives insect pest abundance on street trees. PLoS ONE 8, e59687 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Christie, F. J. & Hochuli, D. F. Elevated levels of herbivory in urban landscapes: are declines in tree health more than an edge effect?. Ecol. Soc. 10, 10 (2005).
    Article  Google Scholar 

    36.
    Bolton, B. Identification Guide to the Ant Genera of the World (Harvard University Press, Cambridge, 1994).
    Google Scholar 

    37.
    Lin, C. Systematic and Zoogeographic Studies on the Ant Subfamily Myrmicinae in Taiwan (Hymenoptera: Formicidae), Ph. D. Dissertation, National Taiwan University Press, Taiwan (1998).

    38.
    Johnson, N. F. & Triplehorn, C. A. Borror and DeLong’s Introduction to the Study of Insects (Thompson Brooks/Cole Belmont, CA, 2005).
    Google Scholar 

    39.
    Timms, L. L. et al. Does species-level resolution matter? Taxonomic sufficiency in terrestrial arthropod biodiversity studies. Insect Conserv. Diver. 6, 453–462 (2013).
    Article  Google Scholar 

    40.
    Blanche, K. R., Andersen, A. N. & Ludwig, J. A. Rainfall-contingent detection of fire impacts: responses of beetles to experimental fire regimes. Ecol. Appl. 11, 86–96 (2001).
    Article  Google Scholar 

    41.
    Lassau, S. A., Hochuli, D. F., Cassis, G. & Reid, C. A. M. Effects of habitat complexity on forest beetle diversity: do functional groups respond consistently?. Divers. Distrib. 11, 73–82 (2005).
    Article  Google Scholar 

    42.
    Grimbacher, P. S., Catterall, C. P. & Kitching, R. L. Detecting the effects of environmental change above the species level with beetles in a fragmented tropical rainforest landscape. Ecol. Entomol. 33, 66–79 (2008).
    Google Scholar 

    43.
    Gardiner, M. et al. Landscape composition influences patterns of native and exotic lady beetle abundance. Divers. Distrib. 15, 554–564 (2009).
    Article  Google Scholar 

    44.
    Team, Q. D. QGIS Geographic Information System.Open Source Geospatial Foundation Project (2020).

    45.
    Barton, K. Package ‘MuMIn’. R package version 1(40), 4 (2018).
    Google Scholar 

    46.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2017).
    Google Scholar 

    47.
    Gray, C. L., Simmons, B. I., Fayle, T. M., Mann, D. J. & Slade, E. M. Are riparian forest reserves sources of invertebrate biodiversity spillover and associated ecosystem functions in oil palm landscapes?. Biol. Conserv. 194, 176–183 (2016).
    Article  Google Scholar 

    48.
    Neoh, K.-B. et al. The effect of remnant forest on insect successional response in tropical fire-impacted peatland: a bi-taxa comparison. PLoS ONE 12, e0174388 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    49.
    Santos, M. N., Delabie, J. H. C. & Queiroz, J. M. Biodiversity conservation in urban parks: a study of ground-dwelling ants (Hymenoptera: Formicidae) in Rio de Janeiro City. Urban Ecosyst. 22, 927–942 (2019).
    Article  Google Scholar 

    50.
    Carpintero, S. & Reyes-López, J. Effect of park age, size, shape and isolation on ant assemblages in two cities of southern Spain. Entomol. Sci. 17, 41–51 (2014).
    Article  Google Scholar 

    51.
    Tsai, C.-Y. Diversity, Community Structure and Morphological Patterns of Ground-Dwelling Ant in Urban-Rural Interface Master thesis, National Chung Hsing University (2019).

    52.
    Hogg, B. N. & Daane, K. M. Aerial dispersal ability does not drive spider success in a crop landscape. Ecol. Entomol. 43, 683–694 (2018).
    Article  Google Scholar 

    53.
    Morse, D. H. Some determinants of dispersal by crab spiderlings. Ecology 74, 427–432 (1993).
    ADS  Article  Google Scholar 

    54.
    Bristowe, W. S. The distribution and dispersal of spiders. Proc. Zool. Soc. Lond. 99, 633–657 (1929).
    Article  Google Scholar 

    55.
    de Souza, D. R., dos Santos, S. G., Munhae, C. D. & Morini, M. S. D. Diversity of epigeal ants (Hymenoptera: Formicidae) in urban areas of Alto Tiete. Sociobiology 59, 703–717 (2014).
    Google Scholar 

    56.
    Pećarević, M., Danoff-Burg, J. & Dunn, R. R. Biodiversity on broadway – enigmatic diversity of the societies of ants (Formicidae) on the streets of New York City. PLoS ONE 5, e13222 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    57.
    Vasconcelos, H. L., Vilhena, J. M. S., Magnusson, W. E. & Albernaz, A. L. K. M. Long-term effects of forest fragmentation on Amazonian ant communities. J. Biogeogr. 33, 1348–1356 (2006).
    Article  Google Scholar 

    58.
    Otoshi, M. D., Bichier, P. & Philpott, S. M. Local and landscape correlates of spider activity density and species richness in urban gardens. Environ. Entomol. 44, 1043–1051 (2015).
    PubMed  Article  Google Scholar 

    59.
    Lacasella, F. et al. Asymmetrical responses of forest and “beyond edge” arthropod communities across a forest–grassland ecotone. Biodivers. Conserv. 24, 447–465 (2015).
    Article  Google Scholar 

    60.
    Boetzl, F. A., Schneider, G. & Krauss, J. Asymmetric carabid beetle spillover between calcareous grasslands and coniferous forests. J. Insect Conserv. 20, 49–57 (2016).
    Article  Google Scholar 

    61.
    Fusser, M. S. et al. Interactive effects of local and landscape factors on farmland carabids. Agric. For. Entomol. 20, 549–557 (2018).
    Article  Google Scholar 

    62.
    Magura, T., Lövei, G. L. & Tóthmérész, B. Does urbanization decrease diversity in ground beetle (Carabidae) assemblages?. Glob. Ecol. Biogeogr. 19, 16–26 (2010).
    Article  Google Scholar 

    63.
    Magura, T., Lövei, G. L. & Tóthmérész, B. Edge responses are different in edges under natural versus anthropogenic influence: a meta-analysis using ground beetles. Ecol. Evol. 7, 1009–1017 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    64.
    Delgado, J. D., Arroyo, N. L., Arévalo, J. R. & Fernández-Palacios, J. M. Edge effects of roads on temperature, light, canopy cover, and canopy height in laurel and pine forests (Tenerife, Canary Islands). Landsc. Urban Plan. 81, 328–340 (2007).
    Article  Google Scholar 

    65.
    Gaublomme, E., Hendrickx, F., Dhuyvetter, H. & Desender, K. The effects of forest patch size and matrix type on changes in carabid beetle assemblages in an urbanized landscape. Biol. Conserv. 141, 2585–2596 (2008).
    Article  Google Scholar 

    66.
    Soga, M., Kanno, N., Yamaura, Y. & Koike, S. Patch size determines the strength of edge effects on carabid beetle assemblages in urban remnant forests. J. Insect Conserv. 17, 421–428 (2013).
    Article  Google Scholar 

    67.
    Schroeder, L. M. Population levels and flight phenology of bark beetle predators in stands with and without previous infestations of the bark beetle Tomicus piniperda. For. Ecol. Manag. 123, 31–40 (1999).
    Article  Google Scholar 

    68.
    Clarke, K. M., Fisher, B. L. & LeBuhn, G. The influence of urban park characteristics on ant (Hymenoptera, Formicidae) communities. Urban Ecosyst. 11, 317–334 (2008).
    Article  Google Scholar 

    69.
    Ivanov, K. & Keiper, J. Ant (Hymenoptera: Formicidae) diversity and community composition along sharp urban forest edges. Biodivers. Conserv. 19, 3917–3933 (2010).
    Article  Google Scholar 

    70.
    Molnár, T., Magura, T., Tóthmérész, B. & Elek, Z. Ground beetles (Carabidae) and edge effect in oak-hornbeam forest and grassland transects. Eur. J. Soil Biol. 37, 297–300 (2001).
    Article  Google Scholar 

    71.
    Rodrigues, E. N. L., Mendonça, M. D. S. & Costa-Schmidt, L. E. Spider diversity responds strongly to edge effects but weakly to vegetation structure in riparian forests of Southern Brazil. Arthropod 8, 123–133 (2014).
    Article  Google Scholar 

    72.
    Bolger, D. T., Suarez, A. V., Crooks, K. R., Morrison, S. A. & Case, T. J. Arthropods in urban habitat fragments in southern California: area, age, and edge effects. Ecol. Appl. 10, 1230–1248 (2000).
    Article  Google Scholar 

    73.
    Suarez, A. V., Bolger, D. T. & Case, T. J. Effects of fragmentation and invasion on native ant communities in coastal southern California. Ecology 79, 2041–2056 (1998).
    Article  Google Scholar 

    74.
    Bolger, D. T. Spatial and temporal variation in the Argentine ant edge effect: implications for the mechanism of edge limitation. Biol. Conserv. 136, 295–305 (2007).
    Article  Google Scholar 

    75.
    Holway, D. A. Edge effects of an invasive species across a natural ecological boundary. Biol. Conserv. 121, 561–567 (2005).
    Article  Google Scholar 

    76.
    Yamaguchi, T. Influence of urbanization on ant distribution in parks of Tokyo and Chiba City, Japan I. Analysis of ant species richness. Ecol. Res. 19, 209–216 (2004).
    Article  Google Scholar 

    77.
    MacGregor-Fors, I. et al. City “green” contributions: the role of urban greenspaces as reservoirs for biodiversity. Forests 7, 146 (2016).
    Article  Google Scholar 

    78.
    Nagy, D. D., Magura, T., Horváth, R., Debnár, Z. & Tóthmérész, B. Arthropod assemblages and functional responses along an urbanization gradient: a trait-based multi-taxa approach. Urban For. Urban Greece 30, 157–168 (2018).
    Article  Google Scholar 

    79.
    Andersen, A. N. Ants: Standard Methods for Measuring and Monitoring Biodiversity 25–34 (Smithsonian Institution Press, Washington, DC, 2000).
    Google Scholar 

    80.
    Luke, S. H., Fayle, T. M., Eggleton, P., Turner, E. C. & Davies, R. G. Functional structure of ant and termite assemblages in old growth forest, logged forest and oil palm plantation in Malaysian Borneo. Biodivers. Conserv. 23, 2817–2832 (2014).
    Article  Google Scholar 

    81.
    Kyrö, K. et al. Local habitat characteristics have a stronger effect than the surrounding urban landscape on beetle communities on green roofs. Urban For. Urban Greece. 29, 122–130 (2018).
    Article  Google Scholar 

    82.
    Chung, A. Y. C., Eggleton, P., Speight, M. R., Hammond, P. M. & Chey, V. K. The diversity of beetle assemblages in different habitat types in Sabah, Malaysia. Entomol. Res. B 90, 475–496 (2000).
    CAS  Article  Google Scholar 

    83.
    Robinson, W. H. Urban Insects and Arachnids: A Handbook of Urban Entomology (Cambridge University Press, Cambridge, 2005).
    Google Scholar 

    84.
    Tsafack, N. et al. Carabid community structure in northern China grassland ecosystems: Effects of local habitat on species richness, species composition and functional diversity. PeerJ 6, e6197 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    85.
    Magura, T., Tóthmérész, B. & Elek, Z. Impacts of leaf-litter addition on carabids in a conifer plantation. Biodivers. Conserv. 14, 475–491 (2005).
    Article  Google Scholar 

    86.
    Koivula, M., Punttila, P., Haila, Y. & Nicnielii, J. Leaf litter and the small-scale distribution of carabid beetles (Coleoptera, Carabidae) in the boreal forest. Ecography 22, 424–435 (1999).
    Article  Google Scholar 

    87.
    Argañaraz, C. I., Rubio, G. D. & Gleiser, R. M. Spider communities in urban green patches and their relation to local and landscape traits. Biodivers. Conserv. 27, 981–1009 (2018).
    Article  Google Scholar 

    88.
    Lowe, E. C., Wilder, S. M. & Hochuli, D. F. Persistence and survival of the spider Nephila plumipes in cities: do increased prey resources drive the success of an urban exploiter?. Urban Ecosyst. 19, 705–720 (2016).
    Article  Google Scholar 

    89.
    Meineke, E. K., Holmquist, A. J., Wimp, G. M. & Frank, S. D. Changes in spider community composition are associated with urban temperature, not herbivore abundance. J. Urban Ecol. 3, juv010 (2017).
    Article  Google Scholar 

    90.
    Huseynov, E. F. Natural prey of the jumping spider Menemerus taeniatus (Araneae: Salticidae). Eur. J. Entomol. 102, 797–799 (2005).
    Article  Google Scholar 

    91.
    Johnson, S. R. Use of coleopteran prey by Phidippus audax (Araneae, Salticidae) in tallgrass prairie wetlands. J. Arachnol. 24, 39–42 (1996).
    Google Scholar 

    92.
    Allan, R. A. & Elgar, M. A. Exploitation of the green tree ant, Oecophylla smaragdina, by the salticid spider Cosmophasis bitaeniata. Aust. J. Zool. 49, 129–137 (2001).
    Article  Google Scholar 

    93.
    Touyama, Y., Ihara, Y. & Ito, F. Argentine ant infestation affects the abundance of the native myrmecophagic jumping spider Siler cupreus Simon in Japan. Insectes Soc. 55, 144–146 (2008).
    Article  Google Scholar 

    94.
    Hogg, B. N. & Daane, K. M. Impacts of exotic spider spillover on resident arthropod communities in a natural habitat. Ecol. Entomol. 40, 69–77 (2015).
    Article  Google Scholar 

    95.
    Marino, P. C. & Landis, D. A. Effect of landscape structure on parasitoid diversity and parasitism in agroecosystems. Ecol. Appl. 6, 276–284 (1996).
    Article  Google Scholar 

    96.
    Boccaccio, L. & Petacchi, R. Landscape effects on the complex of Bactrocera oleae parasitoids and implications for conservation biological control. Biocontrol 54, 607 (2009).
    Article  Google Scholar 

    97.
    Boetzl, F. A., Krimmer, E., Krauss, J. & Steffan-Dewenter, I. Agri-environmental schemes promote ground-dwelling predators in adjacent oilseed rape fields: Diversity, species traits and distance-decay functions. J. Appl. Ecol. 56, 10–20 (2019).
    Article  Google Scholar 

    98.
    Gagic, V. et al. Food web structure and biocontrol in a four-trophic level system across a landscape complexity gradient. Proc. R. Soc. B 278, 2946–2953 (2011).
    PubMed  Article  Google Scholar 

    99.
    Philpott, S. M. & Bichier, P. Local and landscape drivers of predation services in urban gardens. Ecol. Appl. 27, 966–976 (2017).
    PubMed  Article  Google Scholar 

    100.
    Eötvös, C. B., Lövei, G. L. & Magura, T. Predation pressure on sentinel insect prey along a riverside urbanization gradient in Hungary. Insects 11, 97 (2020).
    PubMed Central  Article  PubMed  Google Scholar 

    101.
    Eötvös, C. B., Magura, T. & Lövei, G. L. A meta-analysis indicates reduced predation pressure with increasing urbanization. Landsc. Urban Plan. 180, 54–59 (2018).
    Article  Google Scholar 

    102.
    Mata, L. et al. Conserving herbivorous and predatory insects in urban green spaces. Sci. Rep. 7, 40970 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    103.
    Croci, S., Butet, A., Georges, A., Aguejdad, R. & Clergeau, P. Small urban woodlands as biodiversity conservation hot-spot: a multi-taxon approach. Landsc. Ecol. 23, 1171–1186 (2008).
    Article  Google Scholar  More