More stories

  • in

    Vegetation traits of pre-Alpine grasslands in southern Germany

    Study area
    The study area is located in the TERENO Pre-Alpine Observatory28,29 in southern Bavaria, Germany (Fig. 2). The ten test plots are situated on three sites at different elevations: Fendt (FE), Rottenbuch (RB), and Eschenlohe (EL). Table 1 gives an overview about the main characteristics of these sites and the plots.
    Fig. 2

    Location of the study sites (pink stars). Background: Sentinel-2b (27/04/2018), true colour composite (contains modified Copernicus Sentinel data [2018], processed by ESA). Used coordinate reference system: EPSG: 25832. EL = Eschenlohe, FE = Fendt, RB = Rottenbuch.

    Full size image

    Table 1 Site and plot characteristics.
    Full size table

    Geologically, the plots in FE are located in the major structural unit of the molasse basin of the Bavarian Alpine foreland, while the other ones lie in the major structural unit of the Alps with the major tectonic units folded molasse (RB) and northern calcareous Alps (EL)33. Glacial erosion and Quaternary deposition processes influenced most of the molasse area. Therefore, alluvial structures and moraines largely effect soil parent material here28. The dominant soil types in the northern part of the study area are Cambisols, Luvisols, and Regosols, and in the southern part Rendzic Leptosols and Calcaric Cambisols. Gleysols and Histosols characterize areas along the course of rivers and areas of recent and paleo lakes28. According to the Köppen-Geiger climate classification the study area has a warm temperate climate without a dry season and warm summers (Cfb)34. Mean annual precipitation at the study sites varied between 1008 mm and 1419 mm35, and mean annual air temperature between 8.0 °C and 8.6 °C36 (see Table 1). The land cover around the study sites is characterized by a mix of pastures, natural grasslands, forests (needle-leaf, broad-leaf, mixed), discontinuous urban fabric, and in EL additionally peat bogs37. All ten plots are situated on managed grasslands, the dominant land use around the study sites. The management intensity of the plots range from very extensive management with only one cut and no fertilizer application per year to intensive management with five cuts and five slurry applications per year (Table 1).
    Sampling design
    The field campaign with UAS flights and vegetation sampling took place on 24–25 April 2018 at ten different grassland plots (FE1, FE2, FE3, FE4, RB1, RB2, RB3, EL1, EL2, EL3). Plots were selected by i) visual characterisation of standing biomass to select plots that differ in management as well as soil nutrient and water status (based on talks with local farmers and corresponding field visits; no specific method was applied), and that fulfil other criteria such as ii) homogeneous, flat area, iii) accessibility (including permission by farmers), and iv) proximity of the plots to ideally cover several plots with one UAS flight.
    When designing the sampling strategy, a perspective linkage of the sample data to Sentinel-2 images with a spatial resolution of 10 m × 10 m was taken into account. Therefore, we adapted the sampling strategy proposed by Baret et al.38 for the validation of medium spatial resolution land satellite products. The authors suggested relatively flat and homogeneous validation sites of 3 km × 3 km for validating data of sensors with a spatial resolution of up to 1 km × 1 km. Their validation sites were sampled at several so called elementary sampling units (ESUs, 20 m × 20 m). These ESUs were spread across the validation site using a division of the site in nine 1 km × 1 km squares (three to five ESUs per square) with a higher sampling density in the central square (five to seven ESUs)38.
    In our study, we used 30 m × 30 m plots that were ideally sampled at 12 subplots (corresponding to the ESUs of Baret et al.38) of 0.25 m × 0.25 m (Fig. 1). We divided each plot in nine equally sized squares of 10 m × 10 m, in which we randomly placed one subplot. Following the suggestions of Baret et al.38, we sampled the central square with a higher density (i.e. with four subplots). Compared to Baret et al.38 we targeted a smaller number of subplots per plot (12 instead of 30 to 50) as our plot size is notably smaller than their plot size and hence it is easier to select a homogenous area. During the sampling campaign, we needed to reduce the number of subplots in the central square for EL1 (11 subplots were sampled) and EL2 (9 subplots) due to time constraints. In all other plots, we sampled 12 subplots.
    Preparations in the field
    Some arrangements needed to be done in the field prior to sampling to prepare accompanying UAS flights. The resulting images of these UAS flights were used among others for retrieving the exact location of the subplots. After the localisation of the plots in the field (aiming for a north-orientation of one plot site), bright 0.5 m × 0.5 m flakeboards were distributed in the plots at the approximate locations of the subplots (Fig. 3). These flakeboards were used to identify the location of the subplots in the orthophotos that were generated from images of the UAS.
    Fig. 3

    Sampling design. (a) Scheme of a sampling plot with subplots. The location of subplots within a 10 m × 10 m square was chosen randomly; (b) Location of a subplot with respect to the flakeboard.

    Full size image

    Additionally, several ground control points (GCPs) were distributed in the overflight area of the UAS. The exact location of the GCPs’ centre was measured with a Global Navigation Satellite System (GNSS) receiver (Viva GNSS GS 10, Leica Geosystems AG, Switzerland) in static mode for 10 minutes. The data from the GNSS was reprocessed with Leica Geo Office 8.3 software (Leica Geosystems AG, Heerbrugg, Switzerland) utilising reference data from the satellite positioning service of the surveying administration of the federal states of Germany (SAPOS) for the real reference stations 0285-Garmisch, 0270-Bad Tölz, and 1271-Weilheim. The reference data were obtained via the SAPOS website of Bavaria (https://sapos.bayern.de/). The accuracy of the used GNSS in post-processing mode is 0.003 m in horizontal direction and 0.005 m in vertical direction39. The transformation of the corrected coordinates from ellipsoidal heights to physical (geoid-based) heights (height system: DHHN2016, EPSG 7837) was done with the online processing service “CRS-Transformation Bayern” from SAPOS (https://sapos.bayern.de/coord_tm.php). The transformation accuracy for this height transformation is 0.005 m40.
    The UAS flights were conducted after the preparation of the respective field site, followed by the field measurements and vegetation sampling. A RGB camera (Sony Cyber-shot WX 220, Sony Corp., Minato, Japan) mounted on a fixed-wing UAS (eBee, senseFly, Cheseaux-sur-Lausanne, Switzerland) was used to acquire high-resolution images of the study sites. In total, four UAS-flights were necessary to cover all ten plots – one in FE, one in RB and two in EL (EL-N, EL-S).
    Acquisition of field measurements and field samples
    The methods for acquiring in-situ data of canopy height, destructive vegetation sampling, and subsequent sample processing were adapted from the Integrated Carbon Observation System (ICOS) instructions for vegetation measurements in grasslands41,42.
    Canopy height measurements and sampling for biomass and element content measurements
    After the UAS flight, first the subplot area was identified (0.3 m south of the corresponding flakeboard, one site centred and parallel to the flakeboard, see Fig. 3b). Second, the bulk canopy height of the grassland canopy within the subplot was measured with a platemeter, which had the same area as the subplot for destructive sampling (0.25 m × 0.25 m) and was build according to the ICOS instructions41. The plate of the platemeter was constructed from acrylic glass and weighed 1680 g. Third, a metallic sampling frame (size: 0.25 m × 0.25 m × 0.03 m) was put on the subplot. After verifying that the sampling frame was not sliding on the vegetation, the vegetation within the sampling frame was clipped down to stubble height (0.03 m) with a manual grass cutter for later determination of biomass and element contents. Finally, the clipped vegetation was put in a labelled paper bag, then in an airtight plastic bag and afterwards in a cooling box until further processing in the laboratory.
    Sampling for leaf mass per area determination
    Additional samples were taken outside the subplots (within a radius of 2 m; one sample per subplot) to determine LMA. First, the area percentage of the PFTs legumes, other forbs and graminoids of the 30 m × 30 m plot was visually estimated (rough estimation based on field observations, no specific method applied). Then, the corresponding number of samples for each PFT was determined in relation to the number of subplots. That is, if the percentage of PFTs is e.g. 50% graminoids, 25% legumes, and 25% other forbs, and we have 12 subplots, there were six samples for graminoids, three for legumes and three for other forbs in this plot. At each subplot we took one LMA sample for just one specific PFT. One LMA sample consisted of fully expanded, undamaged leaves of the selected PFT originating from different individuals. The number of leaves per sample varied between one and seven depending on the leave size and the species composition of the PFT. However, the species composition could just be considered for dominant and easily distinguishable species, as the team was not specifically trained in grassland botany. Therefore, multiple species samples occurred mainly for forb samples. The clipped leaves were wrapped in humid paper. Then, the sample was put in a labelled plastic bag which was hermetically closed before it was placed in the cooling box.
    Sample processing in the laboratory
    After transportation, the samples were stored in the fridge and/or in a cooling room at 4 °C until further processing. Sample processing in the lab started within one to nine days after the sampling date.
    Samples for the determination of biomass, green area index, and element content
    The samples were removed from the plastic bags and weighed. The weight of the fresh material was multiplied by 16 to determine the fresh weight per 1 m² (Biom wm). Afterwards, the sample material was sorted into the PFT non-green vegetation (NG; representing photosynthetically inactive structures), legumes (L), non-leguminous forbs (F), and graminoids (G). Then, the fresh weight of each PFT was determined. The sorting was done either on the full sample or on a representative smaller subsample in case there was a lot of sample material. For taking a subsample, the vegetation material was thoroughly mixed and then a handful of material was taken out. The remaining material was dried and further processed/analysed for C and N content like the PFT specific samples.
    The total hemi-surface area of the green material (GA) needs to be obtained to determine the GAI of a sample. As we have flat vegetation structures, we used a planimeter (LI-3100A Area Meters, LI-COR, USA) to obtain the hemi-surface area. The hemi-surface area was measured separately for each PFT of a sample, but not for the non-green vegetation. The GAI of a certain PFT (GAIPFT) was then calculated by dividing the hemi-surface area of the PFT (GAPFT) by the area of the subplot (A; 0.25 m × 0.25 m) and in case a subsample was taken by multiplying with the ratio of the fresh weight of the sample (Biomass wmsample) to the subsample (Biomass wmsubsample):

    $$GA{I}_{PFT}=frac{G{A}_{PFT}}{A}frac{Biom,w{m}_{sample}}{Biom,w{m}_{subsample}}$$
    (1)

    The total GAI (GAItot) of the sample was calculated by summing the GAI of each PFT:

    $$GA{I}_{tot}=sum GA{I}_{PFT}=GA{I}_{L}+GA{I}_{F}+GA{I}_{G}$$
    (2)

    After the planimeter measurements the samples were dried in an oven at 65 °C until constant weight was achieved. Then, the dry weight of each PFT of each sample was measured (dmPFT). The total weight of dry biomass of a sample (Biomass dm) was obtained by summing up the dry weights of all PFTs and if applicable the dry weight of the remaining material (dmrest) of a sample and then scaled to 1 m²:

    $$Biomass,dm=16times sum d{m}_{PFT}=16times (d{m}_{NG}+d{m}_{L}+d{m}_{F}+d{m}_{G}+d{m}_{rest})$$
    (3)

    The percentage of each PFT (PPFT) with respect to the total dry biomass weight of the sorted material (either subsample or full sample) (ΣdmPFT) was calculated as follows:

    $${P}_{PFT}=frac{d{m}_{PFT}}{sum d{m}_{PFT}}times 100=frac{d{m}_{PFT}}{d{m}_{NG}+d{m}_{L}+d{m}_{F}+d{m}_{G}}times 100$$
    (4)

    The plant water content (PWC) was calculated from the weight of the fresh (Biom wm) and dry biomass (Biom dm) as follows:

    $$PWC=frac{Biom,wm-Biom,dm}{Biom,wm}times 100$$
    (5)

    Finally, the dried vegetation material was ground in a ball mill for elemental analysis of C and N.
    Samples for the determination of leaf mass per area
    After returning from the field work, the leaves for the LMA determination were rehydrated until full turgescence. When the leaves were fully expanded, the last mature leaf from each tiller (in case tillers were sampled) were separated and the petiole was recut at the base of the leave blade. Then, the hemi-surface area of each sample was determined with the planimeter. Afterwards, the samples were dried in an oven at 65 °C until constant weight was achieved, before the dry weight of the LMA samples was measured. The LMA of a sample i was calculated by the ratio of the leaf dry weight (Wi) to its fresh area (Ai):

    $$LM{A}_{i}=frac{{W}_{i}}{{A}_{i}}$$
    (6)

    Analysis of C and N content
    The C and N content of the milled vegetation samples was determined using an elemental analyser (varioMax CUBE, Elementar Analysesysteme GmbH, Germany) operated in CNS (carbon, nitrogen, sulphur) mode with the plant method and a weighted sample of 17 mg at the laboratory of the Technical University Munich, Chair of Soil Science, in Freising (Germany). The detection limits of the instrument were 0.020 wt.% for C and 0.015 wt.% for N.
    Due to the sorting of the sample in different PFTs, the C and N contents were obtained specific for each PFT. In cases where a subsample was taken for the sorting into PFT, C and N contents were additionally measured also for the mixed remaining sample material.
    Mean concentrations of C and N for each subplot (plant community C and N) were calculated as follows:

    $$bar{E}={P}_{NG}times {E}_{NG}+{P}_{L}times {E}_{L}+{P}_{F}times {E}_{F}+{P}_{G}times {E}_{G}$$
    (7)

    where (bar{E}) is the mean element content (C or N), PPFT is the percentage of the PFT (NG = non-green, L = legumes, F = non-leguminous forbs, G = graminoids), and EPFT is the element content (C or N) in the PFT.
    Retrieving the coordinates of the subplot centres
    The single images from each UAS flight were processed with the photogrammetric software PIX4D (Pix4Dmapper Pro, Pix4D S.A., Prilly, Switzerland) to obtain orthophotos. The GCPs in the orthophotos were used to georeference the orthophotos. The final spatial resolution of the orthophotos was 0.036 m (FE), 0.034 m (RB), 0.030 m (EL-N), and 0.043 m (EL-S).
    Afterwards, the coordinates of the subplots centres were manually extracted from the high-resolution georeferenced orthophotos utilizing QGIS (Version 3.0.0-Girona)43. The bright flakeboards were visually localised in the images. Then the subplots centres were identified (0.425 m perpendicular away from the middle of the southern flakeboards site) and their coordinates extracted.
    Characterisation of grassland type and plant community composition on the plot-level
    Vegetation relevés were carried out on 18–19 June 2020 for each of the ten 30 m × 30 m plots. Within each plot all vascular plant species were systematically determined and their cover was visually estimated to the nearest percentage as a proxy for abundance. Data is provided as percentage cover per plot. Plant species names were updated according to The Plant List, a working list of all known plant species, aiming to be comprehensive for all species of vascular plants, including flowering plants, conifers, ferns and their allies, and of bryophytes, including mosses and liverworts (theplantlist.org). The grassland type was classified sensu Oberdorfer (1977 and updated since)44. Please note that vegetation relevés from 2020 may slightly differ in relative coverage to actual species specific data from sampling in 2018. Nevertheless, most grassland species reach life spans of several decades and persist through time. More

  • in

    Divergent forest sensitivity to repeated extreme droughts

    1.
    Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).
    CAS  Article  Google Scholar 
    2.
    Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).
    CAS  Article  Google Scholar 

    3.
    IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) (Cambridge Univ. Press, 2012).

    4.
    Schwalm, C. R. et al. Reduction in carbon uptake during turn of the century drought in western North America. Nat. Geosci. 5, 551–556 (2012).
    CAS  Article  Google Scholar 

    5.
    Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).
    CAS  Article  Google Scholar 

    6.
    Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 129 (2015).
    Article  Google Scholar 

    7.
    Dai, A. Drought under global warming: a review. Wiley Interdiscip. Rev. Clim. Change 2, 45–65 (2011).
    Article  Google Scholar 

    8.
    Cook, B. I., Smerdon, J. E., Seager, R. & Coats, S. Global warming and 21st century drying. Clim. Dyn. 43, 2607–2627 (2014).
    Article  Google Scholar 

    9.
    Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000).
    CAS  Article  Google Scholar 

    10.
    Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).
    Article  Google Scholar 

    11.
    Zscheischler, J. et al. A few extreme events dominate global interannual variability in gross primary production. Environ. Res. Lett. 9, 035001 (2014).
    Article  Google Scholar 

    12.
    Miao, S., Zou, C. B. & Breshears, D. D. Vegetation responses to extreme hydrological events: sequence matters. Am. Nat. 173, 113–118 (2008).
    Article  Google Scholar 

    13.
    Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).
    CAS  Article  Google Scholar 

    14.
    Schwalm, C. R. et al. Global patterns of drought recovery. Nature 548, 202–205 (2017).
    CAS  Article  Google Scholar 

    15.
    Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1–23 (1973).
    Article  Google Scholar 

    16.
    Gunderson, L. H. et al. Ecological resilience—in theory and application. Annu. Rev. Ecol. Syst. 31, 425–439 (2000).
    Article  Google Scholar 

    17.
    Ingrisch, J. & Bahn, M. Towards a comparable quantification of resilience. Trends Ecol. Evol. 33, 251–259 (2018).
    Article  Google Scholar 

    18.
    Bartlett, M. K. et al. Global analysis of plasticity in turgor loss point, a key drought tolerance trait. Ecol. Lett. 17, 1580–1590 (2014).
    Article  Google Scholar 

    19.
    Martínez‐Vilalta, J. et al. Hydraulic adjustment of Scots pine across Europe. New Phytol. 184, 353–364 (2009).
    Article  Google Scholar 

    20.
    Hacke, U. G., Stiller, V., Sperry, J. S., Pittermann, J. & McCulloh, K. A. Cavitation fatigue. Embolism and refilling cycles can weaken the cavitation resistance of xylem. Plant Physiol. 125, 779–786 (2001).
    CAS  Article  Google Scholar 

    21.
    Sala, A., Woodruff, D. R. & Meinzer, F. C. Carbon dynamics in trees: feast or famine? Tree Physiol. 32, 764–775 (2012).
    CAS  Article  Google Scholar 

    22.
    Schymanski, S. J., Roderick, M. L., Sivapalan, M., Hutley, L. B. & Beringer, J. A canopy-scale test of the optimal water-use hypothesis. Plant Cell Environ. 31, 97–111 (2008).
    Google Scholar 

    23.
    Zhang, T., Niinemets, Ü., Sheffield, J. & Lichstein, J. W. Shifts in tree functional composition amplify the response of forest biomass to climate. Nature 556, 99–102 (2018).
    CAS  Article  Google Scholar 

    24.
    Anderegg, W. R. et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561, 538–541 (2018).
    CAS  Article  Google Scholar 

    25.
    Royer, P. D. et al. Extreme climatic event-triggered overstorey vegetation loss increases understorey solar input regionally: primary and secondary ecological implications. J. Ecol. 99, 714–723 (2011).
    Article  Google Scholar 

    26.
    Raffa, K. F. et al. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. BioScience 58, 501–517 (2008).
    Article  Google Scholar 

    27.
    Anderegg, W. R., Trugman, A. T., Bowling, D. R., Salvucci, G. & Tuttle, S. E. Plant functional traits and climate influence drought intensification and land–atmosphere feedbacks. Proc. Natl Acad. Sci. USA 116, 14071–14076 (2019).

    28.
    Cailleret, M. et al. A synthesis of radial growth patterns preceding tree mortality. Glob. Change Biol. 23, 1675–1690 (2017).
    Article  Google Scholar 

    29.
    Camarero, J. J., Gazol, A., Sangüesa-Barreda, G., Oliva, J. & Vicente-Serrano, S. M. To die or not to die: early warnings of tree dieback in response to a severe drought. J. Ecol. 103, 44–57 (2015).
    CAS  Article  Google Scholar 

    30.
    Jump, A. S. et al. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Glob. Change Biol. 23, 3742–3757 (2017).
    Article  Google Scholar 

    31.
    Saatchi, S. et al. Persistent effects of a severe drought on Amazonian forest canopy. Proc. Natl Acad. Sci. USA 110, 565–570 (2013).
    CAS  Article  Google Scholar 

    32.
    Konings, A. G., Williams, A. P. & Gentine, P. Sensitivity of grassland productivity to aridity controlled by stomatal and xylem regulation. Nat. Geosci. 10, 284–288 (2017).
    CAS  Article  Google Scholar 

    33.
    Carnicer, J. et al. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc. Natl Acad. Sci. USA 108, 1474–1478 (2011).
    CAS  Article  Google Scholar 

    34.
    Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).
    CAS  Article  Google Scholar 

    35.
    Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).
    CAS  Article  Google Scholar 

    36.
    Duffy, P. B., Brando, P., Asner, G. P. & Field, C. B. Projections of future meteorological drought and wet periods in the Amazon. Proc. Natl Acad. Sci. USA 112, 13172–13177 (2015).
    CAS  Article  Google Scholar 

    37.
    Johnson, D. M., McCulloh, K. A., Woodruff, D. R. & Meinzer, F. C. Hydraulic safety margins and embolism reversal in stems and leaves: why are conifers and angiosperms so different? Plant Sci. 196, 48–53 (2012).
    Article  CAS  Google Scholar 

    38.
    Morris, H. et al. A global analysis of parenchyma tissue fractions in secondary xylem of seed plants. New Phytol. 209, 1553–1565 (2016).
    CAS  Article  Google Scholar 

    39.
    DeSoto, L. et al. Low growth resilience to drought is related to future mortality risk in trees. Nat. Commun. 11, 1–9 (2020).
    Article  CAS  Google Scholar 

    40.
    Fisher, R. A. et al. Vegetation demographics in Earth system models: a review of progress and priorities. Glob. Change Biol. 24, 35–54 (2018).
    Article  Google Scholar 

    41.
    Kennedy, D. et al. Implementing plant hydraulics in the Community Land Model, version 5. J. Adv. Model. Earth Syst. 11, 485–513 (2019).
    Article  Google Scholar 

    42.
    Trugman, A. T. et al. Tree carbon allocation explains forest drought-kill and recovery patterns. Ecol. Lett. 21, 1552–1560 (2018).
    CAS  Article  Google Scholar 

    43.
    Trugman, A. T. et al. Climate and plant trait strategies determine tree carbon allocation to leaves and mediate future forest productivity. Glob. Change Biol. 25, 3395–3405 (2019).
    Article  Google Scholar 

    44.
    Scheiter, S., Langan, L. & Higgins, S. I. Next-generation dynamic global vegetation models: learning from community ecology. New Phytol. 198, 957–969 (2013).
    Article  Google Scholar 

    45.
    Vicente-Serrano, S. M., Beguería, S., López-Moreno, J. I., Angulo, M. & El Kenawy, A. A new global 0.5 gridded dataset (1901–2006) of a multiscalar drought index: comparison with current drought index datasets based on the Palmer Drought Severity Index. J. Hydrometeorol. 11, 1033–1043 (2010).
    Article  Google Scholar 

    46.
    Beguería, S., Vicente-Serrano, S. M. & Angulo-Martínez, M. A multiscalar global drought dataset: the SPEIbase: a new gridded product for the analysis of drought variability and impacts. Bull. Am. Meteorol. Soc. 91, 1351–1356 (2010).
    Article  Google Scholar 

    47.
    Beguería, S., Vicente-Serrano, S. M., Reig, F. & Latorre, B. Standardized Precipitation Evapotranspiration Index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 34, 3001–3023 (2014).
    Article  Google Scholar 

    48.
    Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl Acad. Sci. USA 110, 52–57 (2013).
    CAS  Article  Google Scholar 

    49.
    Gazol, A., Camarero, J. J., Anderegg, W. R. L. & Vicente-Serrano, S. M. Impacts of droughts on the growth resilience of Northern Hemisphere forests. Glob. Ecol. Biogeogr. 26, 166–176 (2017).
    Article  Google Scholar 

    50.
    Klesse, S. et al. Sampling bias overestimates climate change impacts on forest growth in the southwestern United States. Nat. Commun. 9, 5336 (2018).
    CAS  Article  Google Scholar 

    51.
    Bechtold, W. A. & Patterson, P. L. The Enhanced Forest Inventory and Analysis Program—National Sampling Design and Estimation Procedures General Technical Report SRS-80 (USDA, 2005).

    52.
    Bechtold, W. & Scott, C. T. in The Enhanced Forest Inventory and Analysis Program—National Sampling Design and Estimation Procedures General Technical Report SRS-80 (eds Bechtold, W. A. & Patterson, P. L.) 37–52 (USDA, 2005).

    53.
    Woudenberg, S. W. et al. The Forest Inventory and Analysis Database: Database Description and Users Manual Version 4.0 for Phase 2 General Technical Report RMRS-GTR-245 (USDA, 2010).

    54.
    Jacobi, W. R., Kearns, H. S. J. & Johnson, D. W. Persistence of pinyon pine snags and logs in southwestern Colorado. West. J. Appl. For. 20, 247–252 (2005).
    Article  Google Scholar 

    55.
    Shaw, J. D. et al. Arizona’s Forest Resources, 2001–2014 Resource Bulletin RMRS-RB-25 (USDA, 2018).

    56.
    Shaw, J. D., Steed, B. E. & DeBlander, L. T. Forest inventory and analysis (FIA) annual inventory answers the question: what is happening to pinyon-juniper woodlands? J. For. 103, 280–285 (2005).
    Google Scholar 

    57.
    Breshears, D. D. et al. Regional vegetation die-off in response to global-change-type drought. Proc. Natl Acad. Sci. USA 102, 15144–15148 (2005).
    CAS  Article  Google Scholar 

    58.
    Williams, A. P. et al. Forest responses to increasing aridity and warmth in the southwestern United States. Proc. Natl Acad. Sci. USA 107, 21289–21294 (2010).
    CAS  Article  Google Scholar 

    59.
    Anderegg, W. R. et al. Tree mortality from drought, insects, and their interactions in a changing climate. New Phytol. 208, 674–683 (2015).
    Article  Google Scholar 

    60.
    Jackson, T. J. & Schmugge, T. J. Vegetation effects on the microwave emission of soils. Remote Sens. Environ. 36, 203–212 (1991).
    Article  Google Scholar 

    61.
    Tian, F. et al. Remote sensing of vegetation dynamics in drylands: evaluating vegetation optical depth (VOD) using AVHRR NDVI and in situ green biomass data over West African Sahel. Remote Sens. Environ. 177, 265–276 (2016).
    Article  Google Scholar 

    62.
    Liu, Y. Y. et al. Recent reversal in loss of global terrestrial biomass. Nat. Clim. Change 5, 470–474 (2015).
    Article  Google Scholar 

    63.
    Momen, M. et al. Interacting effects of leaf water potential and biomass on vegetation optical depth. J. Geophys. Res. Biogeosci. 122, 3031–3046 (2017).
    Article  Google Scholar 

    64.
    Konings, A. G. & Gentine, P. Global variations in ecosystem-scale isohydricity. Glob. Change Biol. 23, 891–905 (2017).
    Article  Google Scholar 

    65.
    Van de Griend, A. A. & Wigneron, J.-P. The b-factor as a function of frequency and canopy type at H-polarization. IEEE Trans. Geosci. Remote Sens. 42, 786–794 (2004).
    Article  Google Scholar 

    66.
    Konings, A. G., Rao, K. & Steele-Dunne, S. C. Macro to micro: microwave remote sensing of plant water content for physiology and ecology. New Phytol. https://doi.org/10.1111/nph.15808 (2019).

    67.
    Du, J. et al. A global satellite environmental data record derived from AMSR-E and AMSR2 microwave earth observations. Earth Syst. Sci. Data Discuss. https://doi.org/10.5194/essd-2017-27 (2017).

    68.
    Du, J., Kimball, J. S., Jones, L. A. & Member, S. Passive microwave remote sensing of soil moisture based on dynamic vegetation scattering properties for AMSR-E. IEEE Trans. Geosci. Remote Sens. 54, 597–608 (2015).
    Article  Google Scholar 

    69.
    Du, J. et al. A global satellite environmental data record derived from AMSR-E and AMSR2 microwave Earth observations. Earth Syst. Sci. Data 9, 791–808 (2017).
    Article  Google Scholar 

    70.
    Jones, L. A. et al. Satellite microwave remote sensing of daily land surface air temperature minima and maxima from AMSR-E. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 3, 111–123 (2010).
    Article  Google Scholar 

    71.
    Olson, D. M. et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).
    Article  Google Scholar 

    72.
    Zar, J. H. in Biostatistical Analysis 1st edn, 185–205 (Prentice-Hall International, 1984).

    73.
    Fox, J. et al. Package ‘car’ (R Foundation for Staistical Computing, 2012).

    74.
    Fox, J., Friendly, M. & Weisberg, S. Hypothesis tests for multivariate linear models using the car package. R J. 5, 39–52 (2013).
    Article  Google Scholar 

    75.
    Dormann, C. F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628 (2007).
    Article  Google Scholar 

    76.
    Pinheiro, J. et al. nlme: linear and nonlinear mixed effects models. R package v.3.1-117 (R Foundation for Statistical Computing, 2014).

    77.
    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2012). More

  • in

    Mapping the bacterial metabolic niche space

    1.
    Hutchinson, G. E. Cold Spring Harbor symposium on quantitative biology. Concluding Remarks 22, 415–427 (1957).
    Google Scholar 
    2.
    MacArthur, R. H. In Challenging Biological Problems: Directions Toward Their Solution (ed. Behnke, J. A.) pp. 253–259 (Oxford University Press, 1972).

    3.
    Chase, J. M. & Leibold, M. A. Ecological Niches: Linking Classical and Contemporary Approaches (University of Chicago Press, 2003).

    4.
    Holt, R. D. Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proc. Natl Acad. Sci. USA 106, 19659–19665 (2009).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Winemiller, K. O., Fitzgerald, D. B., Bower, L. M. & Pianka, E. R. Functional traits, convergent evolution, and periodic tables of niches. Ecol. Lett. 18, 737–751 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    6.
    Pianka, E. R., Vitt, L. J., Pelegrin, N., Fitzgerald, D. B. & Winemiller, K. O. Toward a periodic table of niches, or exploring the lizard niche hypervolume. Am. Naturalist 190, 601–616 (2017).
    Article  Google Scholar 

    7.
    Blonder, B., Lamanna, C., Violle, C. & Enquist, B. J. The n-dimensional hypervolume. Glob. Ecol. Biogeogr. 23, 595–609 (2014).
    Article  Google Scholar 

    8.
    Hoogenboom, M. O. & Connolly, S. R. Defining fundamental niche dimensions of corals: synergistic effects of colony size, light, and flow. Ecology 90, 767–780 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    9.
    Porter, W. P. & Kearney, M. Size, shape, and the thermal niche of endotherms. Proc. Natl Acad. Sci. USA 106, 19666–19672 (2009).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Kraft, N. J. B., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl Acad. Sci. USA 112, 797–802 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    11.
    Benjamin, B. Hypervolume concepts in niche-and trait-based ecology. Ecography 41, 1441–1455 (2018).
    Article  Google Scholar 

    12.
    González, A. L., Dézerald, O., Marquet, P. A., Romero, G. Q. & Srivastava, D. S. The multidimensional stoichiometric niche. Front. Ecol. Evol. 5, 110 (2017).
    Article  Google Scholar 

    13.
    Stevenson, B. G. The Hutchinsonian niche: multivariate statistical analysis of dung beetle niches. Coleopter. Bull. 36, 246–249 (1982).

    14.
    Inward, D. J. G., Davies, R. G., Pergande, C., Denham, A. J. & Vogler, A. P. Local and regional ecological morphology of dung beetle assemblages across four biogeographic regions. J. Biogeogr. 38, 1668–1682 (2011).
    Article  Google Scholar 

    15.
    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).
    ADS  PubMed  Article  CAS  Google Scholar 

    16.
    Green, J. L., Bohannan, B. J. M. & Whitaker, R. J. Microbial biogeography: from taxonomy to traits. science 320, 1039–1043 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    17.
    Noah, F., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364 (2007).
    Article  Google Scholar 

    18.
    Claire Horner-Devine, M. & Bohannan, B. J. M. Phylogenetic clustering and overdispersion in bacterial communities. Ecology 87, S100–S108 (2006).
    PubMed  Article  Google Scholar 

    19.
    Lennon, J. T., Aanderud, Z. T., Lehmkuhl, B. K. & Schoolmaster Jr, D. R. Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology 93, 1867–1879 (2012).
    PubMed  Article  Google Scholar 

    20.
    Fisher, C. K., Thierry, M. & Walczak, A. M. Variable habitat conditions drive species covariation in the human microbiota. PLoS Comput. Biol. 13, e1005435 (2017).

    21.
    Prosser, J. I. et al. The role of ecological theory in microbial ecology. Nat. Rev. Microbiol. 5, 384–392 (2007).
    CAS  PubMed  Article  Google Scholar 

    22.
    Elhanan, B., Martin, K., Feldman, M. W. & Ruppin, E. Large-scale reconstruction and phylogenetic analysis of metabolic environments. Proc. Natl Acad. Sci. USA 105, 14482–14487 (2008).
    ADS  Article  Google Scholar 

    23.
    Humphries, M. M. & McCann, K. S. Metabolic ecology. J. Anim. Ecol. 83, 7–19 (2014).
    PubMed  Article  Google Scholar 

    24.
    Chase, J. M. In The theory of ecology (eds Scheiner, S. M. and Willig, M. R.) pp. 93–107 (2011).

    25.
    D’Andrea, R. & Ostling, A. Challenges in linking trait patterns to niche differentiation. Oikos 125, 1369–1385 (2016).
    Article  Google Scholar 

    26.
    Barter, E. & Gross, T. Manifold cities: Social variables of urban areas in the uk. Proc. R. Soc. A 475, 20180615 (2019).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Coifman, R. R. et al. Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. Proc. Natl Acad. Sci. USA 102, 7426–7431 (2005).
    ADS  CAS  PubMed  MATH  Article  PubMed Central  Google Scholar 

    28.
    Coifman, R. R. & Lafon, S. Diffusion maps. Appl. Comput. Harmonic Anal. 21, 5–30 (2006).
    MathSciNet  MATH  Article  Google Scholar 

    29.
    Kac, M. Can one hear the shape of a drum? Am. Math. Monthly 73, 1–23 (1966).
    MathSciNet  MATH  Article  Google Scholar 

    30.
    Boaz, N., Stephane, L., Ioannis, K. & Coifman, R. R. Diffusion maps, spectral clustering and eigenfunctions of fokker-planck operators. In Advances in Neural Information Processing Systems 955–962 (2006).

    31.
    Jones, P. W., Mauro, M. & Schul, R. Manifold parametrizations by eigenfunctions of the laplacian and heat kernels. Proc. Natl Acad. Sci. USA 105, 1803–1808 (2008).
    ADS  MathSciNet  CAS  PubMed  MATH  Article  PubMed Central  Google Scholar 

    32.
    Daniel, M., Sergej, A., Melanie, T. & Patil, K. R. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res. 46, 7542–7553 (2018).
    Article  CAS  Google Scholar 

    33.
    Pruitt, K. D., Tatiana, T. & Maglott, D. R. Ncbi reference sequences (refseq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 35, D61–D65 (2006).
    PubMed  PubMed Central  Article  Google Scholar 

    34.
    Mendes-Soares, H., Michael, M., Soares, L. M. & Chia, N. Mminte: an application for predicting metabolic interactions among the microbial species in a community. BMC Bioinforma. 17, 343 (2016).
    Article  Google Scholar 

    35.
    Boaz, N., Stephane, L., Ronald, C. & Kevrekidis, I. G. In Principal Manifolds For Data Visualization and Dimension Reduction pp. 238–260 (Springer, 2008).

    36.
    Moon, K. R. et al. Visualizing structure and transitions in high-dimensional biological data. Nat. Biotechnol. 37, 1482–1492 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Marion, E. et al. The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants. Proc. Natl Acad. Sci. USA 105, 17199–17204 (2008).
    Article  Google Scholar 

    38.
    Watzer, B. & Forchhammer, K. Cyanophycin synthesis optimizes nitrogen utilization in the unicellular cyanobacterium synechocystis sp. strain pcc 6803. Appl. Environ. Microbiol. 84, e01298–18 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Sonia, F., Lunn, J. E., Franck, B. & Ferrer, J.-L. The structure of a cyanobacterial sucrose-phosphatase reveals the sugar tongs that release free sucrose in the cell. Plant Cell 17, 2049–2058 (2005).
    Article  CAS  Google Scholar 

    40.
    Amy, N., Thilo, G. & Bassler, K. E. Mesoscopic structures and the laplacian spectra of random geometric graphs. J. Complex Netw. 3, 543–551 (2015).
    MathSciNet  Article  Google Scholar 

    41.
    Komagata, K., Iino, T., Yamada, Y. The Family Acetobacteraceae. In The Prokaryotes (eds Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E., Thompson, F.) pp. 3–78 (Springer, Berlin, Heidelberg, 2014).

    42.
    Meadows, J. A. & Wargo, M. J. Carnitine in bacterial physiology and metabolism. Microbiology 161, 1161 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Kämpfer, P., Svenja, M. & Müller, H. E. Characterization of buttiauxella and kluyvera species by analysis of whole cell fatty acid patterns. Syst. Appl. Microbiol. 20, 566–571 (1997).
    Article  Google Scholar 

    44.
    Parsons, J. B. & Rock, C. O. Bacterial lipids: metabolism and membrane homeostasis. Prog. Lipid Res. 52, 249–276 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Foster, D. B. et al. Phosphatidylethanolamine recognition promotes enteropathogenic E. coli and enterohemorrhagic E. coli host cell attachment. Microb. Pathogenesis 27, 289–301 (1999).
    Article  CAS  Google Scholar 

    46.
    Mayer, C. & Boos, W. Hexose/pentose and hexitol/pentitol metabolism. EcoSal Plus 1 (2005).

    47.
    Reimer, L. C. et al. Bac dive in 2019: bacterial phenotypic data for high-throughput biodiversity analysis. Nucleic Acids Res. 47, D631–D636 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Devinder, K., Brennan, P. J. & Crick, D. C. Decaprenyl diphosphate synthesis in mycobacterium tuberculosis. J. Bacteriol. 186, 7564–7570 (2004).
    Article  CAS  Google Scholar 

    49.
    Newton, G. L., Nancy, B. & Fahey, R. C. Biosynthesis and functions of mycothiol, the unique protective thiol of Actinobacteria. Microbiol. Mol. Biol. Rev. 72, 471–494 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Yaozhu, W., Xiaofei, Z., Sixue, Z. & Tan, X. Structural and functional insights into corrinoid iron-sulfur protein from human pathogen Clostridium difficile. J. Inorg. Biochem. 170, 26–33 (2017).
    Article  CAS  Google Scholar 

    51.
    Charles, D., Plants-Paris, K., Dayna, B. & DuPont, H. L. Clostridium difficile modulates the gut microbiota by inducing the production of indole, an interkingdom signaling and antimicrobial molecule. mSystems 4, e00346–18 (2019).
    Google Scholar 

    52.
    Luo, H. & Moran, M. A. How do divergent ecological strategies emerge among marine bacterioplankton lineages? Trends Microbiol. 23, 577–584 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Kanehisa, M. & Goto, S. Kegg: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Neshich, I. A. P., Eduardo, K. & Arruda, P. Genome-wide analysis of lysine catabolism in bacteria reveals new connections with osmotic stress resistance. ISME J. 7, 2400–2410 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Chang, H.-H. et al. Complete genome sequence of ?candidatus sulcia muelleri? ml, an obligate nutritional symbiont of maize leafhopper (dalbulus maidis). Genome Announc. 3, e01483–14 (2015).
    PubMed  PubMed Central  Google Scholar 

    56.
    López-Madrigal, S., Amparo, L., Andres, M. & Gil, R. The link between independent acquisition of intracellular gamma-endosymbionts and concerted evolution in tremblaya princeps. Front. Microbiol. 6, 642 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    57.
    Dale, C. & Moran, N. A. Molecular interactions between bacterial symbionts and their hosts. Cell 126, 453–465 (2006).
    CAS  PubMed  Article  Google Scholar 

    58.
    Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16s rrna marker gene sequences. Nat. Biotechnol. 31, 814 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Stilianos, L. et al. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2, 936 (2018).
    Article  Google Scholar 

    60.
    Douglas, G. M. et al. Picrust2: an improved and extensible approach for metagenome inference. BioRxiv https://www.biorxiv.org/content/10.1101/672295v2 (2019).

    61.
    Cooley, S. M., Timothy, H., Deeds, E. J. & Ray, J. C. J. A novel metric reveals previously unrecognized distortion in dimensionality reduction of scRNA-seq data. BioRxiv https://www.biorxiv.org/content/10.1101/689851v3 (2019).

    62.
    Thompson, L. R. et al. A communal catalogue reveals earth’s multiscale microbial diversity. Nature 551, 457 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    64.
    Franzosa, E. A. et al. Species-level functional profiling of metagenomes and metatranscriptomes. Nat. Methods 15, 962–968 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    King, Z. A. et al. Bigg models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res. 44, D515–D522 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    66.
    Lee, M. D. GtoTree: a user-friendly workflow for phylogenomics. Bioinformatics 1, 3 (2019).
    Google Scholar 

    67.
    Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).
    CAS  PubMed  Article  Google Scholar 

    68.
    Eddy, S. R. Accelerated profile hmm searches. PLoS Comput. Biol. 7, e1002195 (2011).
    ADS  MathSciNet  CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Edgar, R. C. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimal: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    71.
    Price, M. N., Dehal, P. S. & Arkin, A. P. Fasttree 2–approximately maximum-likelihood trees for large alignments. PloS ONE 5, e9490 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    72.
    Letunic, I. & Bork, P. Interactive tree of life (iTol) v4: recent updates and new developments. Nucleic Acids Res. 47, 256–259 (2019).

    73.
    Aravind, S. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
    Article  CAS  Google Scholar 

    74.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2019).

    75.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).
    MathSciNet  MATH  Google Scholar 

    76.
    Altschul, S. F., Warren, G., Webb, M., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    77.
    Wright, E. S. Using DECIPHER v2.0 to analyze big biological sequence data in R. R. J. 8, 352–359 (2016).

    78.
    Ward Jr, J. H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963).
    MathSciNet  Article  Google Scholar  More

  • in

    Climate change disturbs wildlife microbiomes

    1.
    Baquero, F. & Nombela, C. Clin. Microbiol. Infec. 18(Suppl. 4), 2–4 (2012).
    2.
    Roughgarden, J., Gilbert, S. F., Rosenberg, E., Zilber-Rosenberg, I. & Lloyd, E. A. Biol. Theory 13, 44–65 (2018).
    Article  Google Scholar 

    3.
    Greenspan, S. E. et al. Nat. Clim. Change https://doi.org/10.1038/s41558-020-0899-5 (2020).

    4.
    Caporaso, J. G. et al. Proc. Natl Acad. Sci. USA 108, 4516–4522 (2011).
    CAS  Article  Google Scholar 

    5.
    Cho, I. & Blaser, M. J. Nat. Rev. Genet. 13, 260–270 (2012).
    CAS  Article  Google Scholar 

    6.
    Walke, J. B. et al. ISME J. 8, 2207–2217 (2014).
    CAS  Article  Google Scholar 

    7.
    Antwis, R. E. et al. PLoS ONE 9, e85563 (2014).
    Article  Google Scholar 

    8.
    Heiman, M. L. & Greenway, F. L. Mol. Metab. 5, 317–320 (2016).
    CAS  Article  Google Scholar 

    9.
    Romero, G. Q. et al. Nat. Commun. 11, 3215 (2020).
    CAS  Article  Google Scholar 

    10.
    Sabagh, L. T. et al. Copeia 2012, 683–689 (2012).
    Article  Google Scholar  More

  • in

    Winter in a warming Arctic

    1.
    Cooper, E. J. Annu. Rev. Ecol. Evol. S. 45, 271–295 (2014).
    Article  Google Scholar 
    2.
    Rapacz, M. et al. Plant Sci. 225, 34–44 (2014).
    CAS  Article  Google Scholar 

    3.
    Bokhorst, S., Bjerke, J. W., Tømmervik, H., Preece, C. & Phoenix, G. K. Ambio 41, 246–255 (2012).
    Article  Google Scholar 

    4.
    Niitynen, P. et al. Nat. Clim. Change https://doi.org/10.1038/s41558-020-00916-4 (2020).

    5.
    Blok, D. et al. Environ. Res. Lett. 6, 035502 (2011).
    Article  Google Scholar 

    6.
    Elmendorf, S. C. et al. Nat. Clim. Change 2, 453–457 (2012).
    Article  Google Scholar 

    7.
    Myers-Smith, I. H. et al. Nat. Clim. Change 5, 887–891 (2015).
    Article  Google Scholar 

    8.
    Snow, Water, Ice and Permafrost in the Arctic (SWIPA) (Arctic Monitoring and Assessment Programme (AMAP), 2017).

    9.
    Zhu, L. K., Ives, A. R., Zhang, C., Guo, Y. Y. & Radeloff, V. C. Nat. Clim. Change 9, 886–893 (2019).
    Article  Google Scholar  More

  • in

    A framework for in situ molecular characterization of coral holobionts using nanopore sequencing

    1.
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377. https://doi.org/10.1038/nature21707 (2017).
    ADS  CAS  Article  PubMed  Google Scholar 
    2.
    LaJeunesse, T. C. et al. Systematic revision of symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580. https://doi.org/10.1016/j.cub.2018.07.008 (2018).
    CAS  Article  PubMed  Google Scholar 

    3.
    Bourne, D. G., Morrow, K. M. & Webster, N. S. Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annu. Rev. Microbiol. 70, 317–340. https://doi.org/10.1146/annurev-micro-102215-095440 (2016).
    CAS  Article  PubMed  Google Scholar 

    4.
    Peixoto, R. S., Rosado, P. M., Leite, D. C. D., Rosado, A. S. & Bourne, D. G. Beneficial microorganisms for corals (BMC): proposed mechanisms for coral health and resilience. Front. Microbiol. https://doi.org/10.3389/Fmicb.2017.00341 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    5.
    Reshef, L., Koren, O., Loya, Y., Zilber-Rosenberg, I. & Rosenberg, E. The coral probiotic hypothesis. Environ. Microbiol. 8, 2068–2073. https://doi.org/10.1111/j.1462-2920.2006.01148.x (2006).
    CAS  Article  PubMed  Google Scholar 

    6.
    Lesser, M. P. et al. Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar. Ecol. Prog. Ser. 346, 143–152. https://doi.org/10.3354/meps07008 (2007).
    ADS  CAS  Article  Google Scholar 

    7.
    Ben-Haim, Y. et al. Vibrio coralliilyticus sp. nov., a temperature-dependent pathogen of the coral Pocillopora damicornis. Int. J. System. Evol. Microbiol. 53, 309–315. https://doi.org/10.1099/ijs.0.02402-0 (2003).
    CAS  Article  Google Scholar 

    8.
    Johnston, E. C. et al. A genomic glance through the fog of plasticity and diversification in Pocillopora. Sci. Rep. https://doi.org/10.1038/S41598-017-06085-3 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    9.
    Shearer, T. L., Van Oppen, M. J., Romano, S. L. & Worheide, G. Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Mol. Ecol. 11, 2475–2487 (2002).
    CAS  Article  Google Scholar 

    10.
    Hellberg, M. E. No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation. BMC Evol. Biol. 6, 24. https://doi.org/10.1186/1471-2148-6-24 (2006).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    11.
    Wares, J. P. Mitochondrial cytochrome b sequence data are not an improvement for species identification in scleractinian corals. PeerJ 2, e564. https://doi.org/10.7717/peerj.564 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    12.
    Arrigoni, R. et al. A new sequence data set of SSU rRNA gene for Scleractinia and its phylogenetic and ecological applications. Mol. Ecol. Resour. 17, 1054–1071. https://doi.org/10.1111/1755-0998.12640 (2017).
    CAS  Article  PubMed  Google Scholar 

    13.
    Suzuki, G. & Nomura, K. Species boundaries of Astreopora corals (Scleractinia, Acroporidae) inferred by mitochondrial and nuclear molecular markers. Zool. Sci. 30, 626–632. https://doi.org/10.2108/zsj.30.626 (2013).
    CAS  Article  PubMed  Google Scholar 

    14.
    Gelin, P., Postaire, B., Fauvelot, C. & Magalon, H. Reevaluating species number, distribution and endemism of the coral genus Pocillopora Lamarck, 1816 using species delimitation methods and microsatellites. Mol. Phylogenet. Evol. 109, 430–446. https://doi.org/10.1016/j.ympev.2017.01.018 (2017).
    CAS  Article  PubMed  Google Scholar 

    15.
    LaJeunesse, T. C. Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the its region: In search of a “species” level marker. J. Phycol. 37, 866–880. https://doi.org/10.1046/j.1529-8817.2001.01031.x (2001).
    CAS  Article  Google Scholar 

    16.
    Hume, B. C. C. et al. An improved primer set and amplification protocol with increased specificity and sensitivity targeting the Symbiodinium ITS2 region. PeerJ 6, e4816. https://doi.org/10.7717/peerj.4816 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    17.
    Hume, B. C. C. et al. SymPortal: A novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. Mol. Ecol. Resour. 19, 1063–1080. https://doi.org/10.1111/1755-0998.13004 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    18.
    Arif, C. et al. Assessing Symbiodinium diversity in scleractinian corals via next-generation sequencing-based genotyping of the ITS2 rDNA region. Mol. Ecol. 23, 4418–4433. https://doi.org/10.1111/mec.12869 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    19.
    Smith, E. G., Ketchum, R. N. & Burt, J. A. Host specificity of Symbiodinium variants revealed by an ITS2 metahaplotype approach. Isme J. 11, 1500–1503. https://doi.org/10.1038/ismej.2016.206 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    20.
    Ziegler, M. et al. Biogeography and molecular diversity of coral symbionts in the genus Symbiodinium around the Arabian Peninsula. J. Biogeogr. 44, 674–686. https://doi.org/10.1111/jbi.12913 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    21.
    Mouchka, M. E., Hewson, I. & Harvell, C. D. Coral-associated bacterial assemblages: current knowledge and the potential for climate-driven impacts. Integr. Comp. Biol. 50, 662–674. https://doi.org/10.1093/icb/icq061 (2010).
    Article  PubMed  Google Scholar 

    22.
    Hernandez-Agreda, A., Leggat, W., Bongaerts, P. & Ainsworth, T. D. The microbial signature provides insight into the mechanistic basis of coral success across reef habitats. mBio https://doi.org/10.1128/mBio.00560-16 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    23.
    Neave, M. J., Apprill, A., Ferrier-Pages, C. & Voolstra, C. R. Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas. Appl. Microbiol. Biotechnol. 100, 8315–8324. https://doi.org/10.1007/s00253-016-7777-0 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    24.
    Hernandez-Agreda, A., Gates, R. D. & Ainsworth, T. D. Defining the Core Microbiome in Corals’ Microbial Soup. Trends Microbiol. 25, 125–140. https://doi.org/10.1016/j.tim.2016.11.003 (2017).
    CAS  Article  PubMed  Google Scholar 

    25.
    Roder, C., Bayer, T., Aranda, M., Kruse, M. & Voolstra, C. R. Microbiome structure of the fungid coral Ctenactis echinata aligns with environmental differences. Mol. Ecol. 24, 3501–3511. https://doi.org/10.1111/mec.13251 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    26.
    Pogoreutz, C. et al. Dominance of Endozoicomonas bacteria throughout coral bleaching and mortality suggests structural inflexibility of the Pocillopora verrucosa microbiome. Ecol. Evol. 8, 2240–2252. https://doi.org/10.1002/ece3.3830 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    27.
    Neave, M. J. et al. Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales. Isme J. 11, 186–200. https://doi.org/10.1038/ismej.2016.95 (2017).
    Article  PubMed  Google Scholar 

    28.
    Menegon, M. et al. On site DNA barcoding by nanopore sequencing. PLoS ONE 12, e0184741. https://doi.org/10.1371/journal.pone.0184741 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    29.
    Parker, J., Helmstetter, A. J., Devey, D., Wilkinson, T. & Papadopulos, A. S. T. Field-based species identification of closely-related plants using real-time nanopore sequencing. Sci. Rep. 7, 8345. https://doi.org/10.1038/s41598-017-08461-5 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    30.
    Pomerantz, A. et al. Real-time DNA barcoding in a rainforest using nanopore sequencing: opportunities for rapid biodiversity assessments and local capacity building. Gigascience https://doi.org/10.1093/gigascience/giy033 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    31.
    Santos, A., van Aerle, R., Barrientos, L. & Martinez-Urtaza, J. Computational methods for 16S metabarcoding studies using Nanopore sequencing data. Comput. Struct. Biotechnol. J. 18, 296–305. https://doi.org/10.1016/j.csbj.2020.01.005 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    32.
    Berntson, E. A., Bayer, F. M., McArthur, A. G. & France, S. C. Phylogenetic relationships within the Octocorallia (Cnidaria:Anthozoa) based on nuclear 18S rRNA sequences. Mar. Biol. 138, 235–246. https://doi.org/10.1007/s002270000457 (2001).
    CAS  Article  Google Scholar 

    33.
    Pootakham, W. et al. High resolution profiling of coral-associated bacterial communities using full-length 16S rRNA sequence data from PacBio SMRT sequencing system. Sci. Rep. 7, 2774. https://doi.org/10.1038/s41598-017-03139-4 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    34.
    Hume, B. et al. Corals from the Persian/Arabian Gulf as models for thermotolerant reef-builders: prevalence of clade C3 Symbiodinium, host fluorescence and ex situ temperature tolerance. Mar. Pollut. Bull. 72, 313–322. https://doi.org/10.1016/j.marpolbul.2012.11.032 (2013).
    CAS  Article  PubMed  Google Scholar 

    35.
    Hume, B. C. et al. Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world’s hottest sea, the Persian/Arabian Gulf. Sci. Rep. 5, 8562. https://doi.org/10.1038/srep08562 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    36.
    Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100. https://doi.org/10.1093/bioinformatics/bty191 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    37.
    Noonan, S. H. C., Fabricius, K. E. & Humphrey, C. Symbiodinium community composition in scleractinian corals is not affected by life-long exposure to elevated carbon dioxide. PLoS ONE https://doi.org/10.1371/journal.pone.0063985 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    38.
    Bayer, T. et al. Bacteria of the genus Endozoicomonas dominate the microbiome of the Mediterranean gorgonian coral Eunicella cavolini. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps10197 (2013).
    Article  Google Scholar 

    39.
    Glasl, B., Herndl, G. J. & Frade, P. R. The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance. Isme J. 10, 2280–2292. https://doi.org/10.1038/ismej.2016.9 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    40.
    Morrow, K. M. et al. Natural volcanic CO2 seeps reveal future trajectories for host-microbial associations in corals and sponges. Isme J. 9, 894–908. https://doi.org/10.1038/ismej.2014.188 (2015).
    CAS  Article  PubMed  Google Scholar 

    41.
    Morrow, K. M., Bromhall, K., Motti, C. A., Munn, C. B. & Bourne, D. G. Allelochemicals produced by brown macroalgae of the lobophora genus are active against coral larvae and associated bacteria, supporting pathogenic shifts to vibrio dominance. Appl. Environ. Microb. https://doi.org/10.1128/AEM.02391-16 (2017).
    Article  Google Scholar 

    42.
    Neave, M. J., Michell, C. T., Apprill, A. & Voolstra, C. R. Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts. Sci. Rep. 7, 40579. https://doi.org/10.1038/srep40579 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    43.
    Cardenas, A. et al. Excess labile carbon promotes the expression of virulence factors in coral reef bacterioplankton. Isme J. 12, 59–76. https://doi.org/10.1038/ismej.2017.142 (2018).
    CAS  Article  PubMed  Google Scholar 

    44.
    Pollock, F. J. et al. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat. Commun. https://doi.org/10.1038/S41467-018-07275-X (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    45.
    Cardenas, A., Rodriguez, L. M., Pizarro, V., Cadavid, L. F. & Arevalo-Ferro, C. Shifts in bacterial communities of two caribbean reef-building coral species affected by white plague disease. Isme J. 6, 502–512. https://doi.org/10.1038/ismej.2011.123 (2012).
    CAS  Article  PubMed  Google Scholar 

    46.
    Gajigan, A. P., Diaz, L. A. & Conaco, C. Resilience of the prokaryotic microbial community of Acropora digitifera to elevated temperature. Microbiologyopen https://doi.org/10.1002/mbo3.478 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    47.
    Shnit-Orland, M., Sivan, A. & Kushmaro, A. Shewanella corallii sp. nov., a marine bacterium isolated from a Red Sea coral. Int. J. System. Evol. Microbiol. 60, 2293–2297. https://doi.org/10.1099/ijs.0.015768-0 (2010).
    CAS  Article  Google Scholar 

    48.
    Ziegler, M. et al. Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea. Mar. Pollut. Bull. 105, 629–640. https://doi.org/10.1016/j.marpolbul.2015.12.045 (2016).
    CAS  Article  PubMed  Google Scholar 

    49.
    Paramasivam, N. et al. Bacterial Consortium of Millepora dichotoma exhibiting unusual multifocal lesion event in the gulf of Eilat Red Sea. Microb Ecol 65, 50–59. https://doi.org/10.1007/s00248-012-0097-8 (2013).
    Article  PubMed  Google Scholar 

    50.
    Paramasivam, N., Ben-Dov, E., Arotsker, L. & Kushmaro, A. Eilatimonas milleporae gen. nov., sp. nov., a marine bacterium isolated from the hydrocoral Millepora dichotoma. Int. J. Syst. Evol. Microbiol. 63, 1880–1884. https://doi.org/10.1099/ijs.0.043976-0 (2013).
    CAS  Article  PubMed  Google Scholar 

    51.
    Spring, S., Lunsdorf, H., Fuchs, B. M. & Tindall, B. J. The photosynthetic apparatus and its regulation in the aerobic Gammaproteobacterium Congregibacter litoralis gen. nov., sp nov. PLoS ONE https://doi.org/10.1371/journal.pone.0004866 (2009).
    Article  PubMed  PubMed Central  Google Scholar 

    52.
    Roder, C. et al. Bacterial profiling of White Plague Disease in a comparative coral species framework. Isme J. 8, 31–39. https://doi.org/10.1038/ismej.2013.127 (2014).
    CAS  Article  PubMed  Google Scholar 

    53.
    Sekar, R., Mills, D. K., Remily, E. R., Voss, J. D. & Richardson, L. L. Microbial communities in the surface mucopolysaccharide layer and the black band microbial mat of black band-diseased Siderastrea siderea. Appl. Environ. Microbiol. 72, 5963–5973. https://doi.org/10.1128/AEM.00843-06 (2006).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    54.
    Blackall, L. L., Wilson, B. & van Oppen, M. J. Coral-the world’s most diverse symbiotic ecosystem. Mol. Ecol. 24, 5330–5347. https://doi.org/10.1111/mec.13400 (2015).
    Article  PubMed  Google Scholar 

    55.
    LaJeunesse, T. C. “Species” radiations of symbiotic Dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition (vol 22, pg 570, 2005). Mol. Biol. Evol. 22, 1158–1158. https://doi.org/10.1093/molbev/msi042 (2005).
    CAS  Article  Google Scholar 

    56.
    Hume, B. C. et al. Ancestral genetic diversity associated with the rapid spread of stress-tolerant coral symbionts in response to Holocene climate change. Proc. Natl. Acad. Sci. USA 113, 4416–4421. https://doi.org/10.1073/pnas.1601910113 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    57.
    Thornhill, D. J., Lewis, A. M., Wham, D. C. & LaJeunesse, T. C. Host-specialist lineages dominate the adaptive radiation of reef coral endosymbionts. Evolution 68, 352–367. https://doi.org/10.1111/evo.12270 (2014).
    CAS  Article  PubMed  Google Scholar  More

  • in

    Revealing soil legacy phosphorus to promote sustainable agriculture in Brazil

    1.
    Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818. https://doi.org/10.1126/science.1185383 (2010).
    ADS  CAS  Article  PubMed  Google Scholar 
    2.
    OECD/FAO. Agricultural Outlook 2018–2027, OECD Publishing, Paris/Food and Agriculture Organization of the United Nations, Rome. https://doi.org/10.1787/agr_outlook-2018-en (2018).

    3.
    FAO. The future of food and agriculture – Trends and challenges. Rome. (2017).

    4.
    Strassburg, B. B. N. et al. When enough should be enough: improving the use of current agricultural lands could meet production demands and spare natural habitats in Brazil. Glob. Environ. Chang. 28, 84–97 (2014).
    Article  Google Scholar 

    5.
    Bowman, M. S. et al. Persistence of cattle ranching in the Brazilian Amazon: a spatial analysis of the rationale for beef production. Land Use Policy 29, 558–568 (2012).
    Article  Google Scholar 

    6.
    Bustamante, M. M. C. et al. Estimating greenhouse gas emissions from cattle raising in Brazil. Clim. Chang. 115, 559–577 (2012).
    ADS  CAS  Article  Google Scholar 

    7.
    Oliveira, D. M. S. et al. Is the expansion of sugarcane over pasturelands a sustainable strategy for Brazil’s bioenergy industry?. Renew. Sust. Energy Rev. 102, 346–355 (2019).
    Article  Google Scholar 

    8.
    Roy, E. D. et al. Soil phosphorus sorption capacity after three decades of intensive fertilization in Mato Grosso, Brazil. Agric. Ecos. Environ. 249, 206–214 (2017).
    CAS  Article  Google Scholar 

    9.
    Jarvie, H. P. et al. The pivotal role of phosphorus in a resilient water–energy–food security nexus. J. Environ. Qual. 44, 1049–1062 (2015).
    CAS  Article  Google Scholar 

    10.
    ANDA – Associação Nacional para Difusão de Adubos. Indicadores – Fertilizantes entregues ao mercado. https://anda.org.br/index.php?mpg=03.00.00 (2017).

    11.
    U.S. Geological Survey. Mineral commodity summaries 2016. https://doi.org/10.3133/70140094 (2016).

    12.
    MacDonald, G. K., Bennett, E. M., Potter, P. A. & Ramankutty, N. Agronomic phosphorus imbalances across the world’s croplands. Proc. Nat. Acad. Sci. 108(7), 3086–3091. https://doi.org/10.1073/pnas.1010808108 (2011).
    ADS  Article  PubMed  Google Scholar 

    13.
    Lun, F. et al. Global and regional phosphorus budgets in agricultural systems and their implications for phosphorus-use efficiency. Earth Syst. Sci. Data 10, 1–18. https://doi.org/10.5194/essd-10-1-2018 (2018).
    ADS  Article  Google Scholar 

    14.
    Rodrigues, M., Pavinato, P. S., Withers, P. J. A., Teles, A. P. B. & Herrera, W. F. B. Legacy phosphorus and no tillage agriculture in tropical oxisols of the Brazilian savanna. Sci. Total Environ. 542, 1050–1061 (2016).
    ADS  CAS  Article  Google Scholar 

    15.
    Sattari, S. Z., Bouwman, A. F., Giller, K. E. & van Ittersum, M. K. Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc. Nat. Acad. Sci. 109, 6348–6353 (2012).
    ADS  CAS  Article  Google Scholar 

    16.
    Rowe, H. et al. Integrating legacy soil phosphorus into sustainable nutrient management practices on farms. Nutr. Cycl. Agroec. 104, 393–412 (2016).
    CAS  Article  Google Scholar 

    17.
    Shen, J. et al. Phosphorus dynamics: from soil to plant. Plant Phys. 156, 997–1005 (2011).
    CAS  Article  Google Scholar 

    18.
    IBGE – Instituto Brasileiro de Geografia e Estatística. Sistema IBGE de Recuperação Automática – SIDRA. Brasil. https://sidra.ibge.gov.br (2018).

    19.
    Projeto MapBiomas. Coleção 4.0 da Série Anual de Mapas de Cobertura e Uso de Solo do Brasil. https://mapbiomas.org (2019).

    20.
    Dias, L. C. P., Pimenta, F. M., Santos, A. B., Costa, M. H. & Ladle, R. J. Patterns of land use, extensification, and intensification of Brazilian agriculture. Glob. Chang. Biol. 22, 2887–2903 (2016).
    ADS  Article  Google Scholar 

    21.
    Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226. https://doi.org/10.1038/s41561-019-0530-4 (2020).
    ADS  CAS  Article  Google Scholar 

    22.
    Withers, P. J. A. et al. Transitions to sustainable management of phosphorus in Brazilian agriculture. Sci. Rep. 8, 2537. https://doi.org/10.1038/s41598-018-20887-z (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    23.
    FAO. World fertiliser trends and outlook to 2018. Rome. 53p. (2015).

    24.
    Kassam, A., Friedrich, T. & Derpsch, R. Global spread of conservation agriculture. Int. J. Environ. Studies. 76, 29–51. https://doi.org/10.1080/00207233.2018.1494927 (2018).
    CAS  Article  Google Scholar 

    25.
    Franchini, J. C. et al. Evolution of crop yields in different tillage and cropping systems over two decades in southern Brazil. Field Crops Res. 137, 178–185 (2012).
    Article  Google Scholar 

    26.
    Roy, E. D. et al. The phosphorus cost of agricultural intensification in the tropics. Nat. Plants 2, 16043. https://doi.org/10.1038/nplants.2016.43 (2016).
    CAS  Article  PubMed  Google Scholar 

    27.
    Schoumans, O. F., Bouraoui, F., Kabbe, C., Oenema, O. & van Dijk, K. C. Phosphorus management in Europe in a changing world. Ambio 44(Suppl. 2), S180–S192. https://doi.org/10.1007/s13280-014-0613-9 (2015).
    CAS  Article  PubMed  Google Scholar 

    28.
    Antoniadis, V., Hatzis, F., Bachtsevanidis, D. & Koutroubas, S. D. Phosphorus availability in low-P and acidic soils as affected by liming and P addition. Commun. Soil Sci. Plant Anal. 46, 1288–1298. https://doi.org/10.1080/00103624.2015.1033539 (2015).
    CAS  Article  Google Scholar 

    29.
    Bouwman, A. F., Beusen, A. H. W. & Billen, G. Human alteration of the global nitrogen and phosphorus soil balances for the period 1970–2050, Global Biogeoc. Cyc. 23, GB0A04. https://doi.org/10.1029/2009GB003576 (2009).

    30.
    Withers, P. J. A. et al. Stewardship to tackle global phosphorus inefficiency: the case of Europe. Ambio 44(2), 193–206 (2015).
    CAS  Article  Google Scholar 

    31.
    Soltangheisi, A. et al. Improving phosphorus sustainability of sugarcane production in Brazil. GCB Bioenergy 11, 1444–1455. https://doi.org/10.1111/gcbb.12650 (2019).
    CAS  Article  PubMed  Google Scholar 

    32.
    MacDonald, G. K. et al. Guiding phosphorus stewardship for multiple ecosystem services. Ecos. Health Sust. 2(12), e01251. https://doi.org/10.1002/ehs2.1251 (2016).
    Article  Google Scholar 

    33.
    Schipanski, M. E. et al. Realizing resilient food systems. Bioscience 66(7), 600–610. https://doi.org/10.1093/biosci/biw052 (2016).
    Article  Google Scholar 

    34.
    MAPA – Ministério da Agricultura, Pecuária e Abastecimento. Projeções do Agronegócio. Brasil 2015/16 a 2025/26. Projeções de Longo Prazo. 138p. (2016).

    35.
    Forest Act. Federal Law # 12,651. https://www.planalto.gov.br/ccivil_03/Ato2011-2014/2012/Lei/L12651compilado.htm (2012).

    36.
    Dias-Filho, M. B. Diagnóstico das Pastagens no Brasil. Embrapa Amazônia Oriental. Série Documentos 402. Belém-PA, 36p. (2014).

    37.
    Bouwman, A. F. et al. Lessons from temporal and spatial patterns in global use of N and P fertiliser on cropland. Sci. Rep. 7, 40366. https://doi.org/10.1038/srep40366 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    38.
    MacDonald, G. K., Bennett, E. M. & Carpenter, S. R. Embodied phosphorus and the global connections of United States agriculture. Environ. Res. Letters 7, 044024. https://doi.org/10.1088/1748-9326/7/4/044024 (2012).
    ADS  CAS  Article  Google Scholar 

    39.
    Novais, R.F., Smyth, T.J. & Nunes, F.N. Fósforo. In: Novais, R.F. et al. Fertilidade do solo. Viçosa, MG, Sociedade Brasileira de Ciência do Solo, p. 471–537 (2007).

    40.
    Negassa, W. & Leinweber, P. How does the Hedley sequential phosphorus fractionation reflect impacts of land use and management on soil phosphorus: a review. J. Plant Nutr. Soil Sci. 172, 305–325 (2009).
    CAS  Article  Google Scholar 

    41.
    CONAB – Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira de grãos. Brasília. https://www.conab.gov.br/info-agro/safras/graos (2018).

    42.
    Dong, W. Y. et al. Responses of soil microbial communities and enzyme activities to nitrogen and phosphorus additions in Chinese fir plantations of subtropical China. Biogeosci. 12, 5537–5546. https://doi.org/10.5194/bg-12-5537-2015 (2015).
    ADS  Article  Google Scholar 

    43.
    Cherubin, M. R. et al. Sugarcane straw removal: Implications to soil fertility and fertiliser demand in Brazil. Bioeng. Res. 12, 888–900. https://doi.org/10.1007/s12155-019-10021-w (2019).
    CAS  Article  Google Scholar 

    44.
    Balemi, T. & Negisho, K. Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: a review. J. Soil Sci. Plant Nutr. 12(3), 547–562. https://doi.org/10.4067/S0718-95162012005000015 (2012).
    Article  Google Scholar 

    45.
    Khan, M. S., Zaidi, A. & Wani, P. A. Role of phosphate-solubilizing microorganisms in sustainable agriculture – a review. Agron. Sust. Develop. 27, 29–43. https://doi.org/10.1051/agro:2006011 (2007).
    Article  Google Scholar 

    46.
    Kalayu, G. Phosphate solubilizing microorganisms: promising approach as biofertilisers. Int. J. Agron. 2019, 4917256. https://doi.org/10.1155/2019/4917256 (2019).
    CAS  Article  Google Scholar 

    47.
    Simpson, R. J. et al. Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. Plant Soil 349, 89–120. https://doi.org/10.1007/s11104-011-0880-1 (2011).
    CAS  Article  Google Scholar 

    48.
    Almeida, D. S., Penn, C. J. & Rosolem, C. A. Assessment of phosphorus availability in soil cultivated with ruzigrass. Geoderma 312, 64–73 (2018).
    ADS  CAS  Article  Google Scholar 

    49.
    Bindraban, P. S., Dimkpa, C., Nagarajan, L., Roy, A. & Rabbinge, R. Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants. Biol. Fert. Soils 51, 897–911. https://doi.org/10.1007/s00374-015-1039-7 (2015).
    CAS  Article  Google Scholar 

    50.
    Johnston, A. M. & Bruulsema, T. W. 4R nutrient stewardship for improved nutrient use efficiency. Procedia Eng. 83, 365–370. https://doi.org/10.1016/j.proeng.2014.09.029 (2014).
    Article  Google Scholar 

    51.
    Shigaki, F., Sharpley, A. & Prochnow, L. I. Animal-based agriculture, phosphorus management and water quality in Brazil: options for the future. Sci. Agric. 63(2), 194–209. https://doi.org/10.1590/S0103-90162006000200013 (2006).
    CAS  Article  Google Scholar 

    52.
    Almagro, A., Oliveira, P. T. S., Nearing, M. A. & Hagemann, S. Projected climate change impacts in rainfall erosivity over Brazil. Sci. Rep. 7, 8130. https://doi.org/10.1038/s41598-017-08298-y (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    53.
    FAO – Food and agriculture organization. The world agricultural production. https://faostat.fao.org/site/339/default.aspx (2006).

    54.
    Nunes, S. P. O campo político da agricultura familiar e a idéia de “Projeto alternativo de desenvolvimento”. Master dissertation. Federal University of Paraná – UFPR. Curitiba. 152p. (2007).

    55.
    Alves, E., Teixeira Filho, A. & Tolloni, H. Demographic aspects of agricultural development: Brazil, 1950–74. In: Yeganiantz, L. (Ed.). Brazilian agriculture and agricultural research. Brasília: Embrapa, p. 9–60 (1984).

    56.
    IFA – International Fertiliser Association. Ifadata. https://ifadata.fertiliser.org/ucResult.aspx?temp=20160502093015 (2016).

    57.
    Marin, F. R., Pilau, F. G., Spolador, H. F. S., Otto, O. & Pedreira, C. G. S. Intensificação sustentável da agricultura brasileira, cenários para 2050. Rev. Pol. Agríc. XXV(3), 108–124 (2016).
    Google Scholar 

    58.
    Nicolella, A. C., Dragone, D. S. & Bacha, C. J. C. Determinantes da demanda de fertilizantes no Brasil no período de 1970 a 2002. Rev. Econ. Sociol. Rural 43(1), 81–100. https://doi.org/10.1590/S0103-20032005000100005 (2005).
    Article  Google Scholar 

    59.
    QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. https://qgis.osgeo.org (2018).

    60.
    CNA Brasil – Confederação Nacional da Agricultura. https://www.cnabrasil.org.br/noticias/assocon-divulga-crescimento-de-5-no-numero-de-bovinos-confinados-em-2017 (2017).

    61.
    Costa-Junior, C., Cerri, C. E., Pires, A. V. & Cerri, C. C. Net greenhouse gas emissions from manure management using anaerobic digestion technology in a beef cattle feedlot in Brazil. Sci. Total Environ. 505, 1018–1025 (2015).
    ADS  CAS  Article  Google Scholar 

    62.
    Prado, R. M., Caione, G. & Campos, C. N. S. Filter Cake and Vinasse as fertilisers contributing to conservation agriculture. Appl. Environ. Soil Sci. https://doi.org/10.1155/2013/581984 (2013).
    Article  Google Scholar 

    63.
    Francisco, E. A. B., Câmara, G. M. S. & Segatelli, C. R. Estado nutricional e produção do capim-pé-de-galinha e da soja cultivada em sucessão em sistema antecipado de adubação. Bragantia 66(2), 259–266 (2007).
    Article  Google Scholar 

    64.
    Pauletti, V. Nutrientes: teor e interpretação. Campinas: Fundação ABC/Fundação Cargill, 59p. (1998).

    65.
    Broch, D. L. & Ranno, S. K. Fertilidade do solo, Adubação e Nutrição da Cultura da Soja. In: Fundação MS, Tecnologia de Produção: Soja e Milho 2012/2013. Maracaju: Fundação MS, p. 2–38 (2012).

    66.
    Corrêa, J. C., Nicoloso, R. S., Menezes, J. F. S. & Benites, V. M. Critérios Técnicos para Recomendação de Biofertilizante de Origem Animal em Sistemas de Produção Agrícolas e Florestais. https://pt.engormix.com/suinocultura/artigos/biofertilizante-producao-agricolas-florestais-t37769.htm (2012).

    67.
    Rosseto, R., Dias, F. L. F., Vitti, A. C., Cantarella, H. & Landell, M. G. A. Manejo conservacionista e reciclagem de nutrientes em cana-de-açúcar tendo em vista a colheita mecânica. Inf. Agron. 124, 8–13 (2008).
    Google Scholar 

    68.
    Malavolta, E. Manual de Nutrição Mineral de Plantas (Agronômica Ceres, São Paulo, 2006).
    Google Scholar  More

  • in

    Urban resources limit pair coordination over offspring provisioning

    1.
    Royle, N. J., Smiseth, P. T. & Kölliker, M. The Evolution of Parental Care (Oxford University Press, Oxford, 2012).
    Google Scholar 
    2.
    Williams, G. C. Natural selection, the costs of reproduction, and a refinement of Lack’s principle. Am. Nat. 100, 687–690 (1966).
    Article  Google Scholar 

    3.
    Trivers, R. L. Sexual Selection and the Descent of Man 136–179 (Aldine Press, Chicago, 1972).
    Google Scholar 

    4.
    Lessells, C. M. The Evolution of Parental Care (Oxford Univeristy Press, Oxford, 2012).
    Google Scholar 

    5.
    Houston, A. I., Székely, T. & McNamara, J. M. Conflict between parents over care. Trends Ecol. Evol. 20, 33–38 (2005).
    Article  Google Scholar 

    6.
    Lessells, C. M. The evolutionary outcome of sexual conflict. Philos. Trans. R. Soc. B Biol. Sci. 361, 301–317 (2006).
    CAS  Article  Google Scholar 

    7.
    Houston, A. I. & Davies, N. B. The evolution of cooperation and life history in the dunnock, Prunella modularis. Behav. Ecol. Ecol. Conseq. Adapt. Behav. 20, 471–487 (1985).
    Google Scholar 

    8.
    McNamara, J. M., Gasson, C. E. & Houston, A. I. Incorporating rules for responding into evolutionary games. Nature 401, 368–371 (1999).
    ADS  CAS  PubMed  Google Scholar 

    9.
    McNamara, J. M., Houston, A. I., Barta, Z. & Osorno, J. L. Should young ever be better off with one parent than with two?. Behav. Ecol. 14, 301–310 (2003).
    Article  Google Scholar 

    10.
    Lessells, C. M. & McNamara, J. M. Sexual conflict over parental investment in repeated bouts: Negotiation reduces overall care. Proc. R. Soc. B Biol. Sci. 279, 1506–1514 (2012).
    CAS  Article  Google Scholar 

    11.
    Johnstone, R. A. & Hinde, C. A. Negotiation over offspring care – how should parents respond to each other’s efforts?. Behav. Ecol. 17, 818–827 (2006).
    Article  Google Scholar 

    12.
    Royle, N. J., Hartley, I. R. & Parker, G. A. Sexual conflict reduces offspring fitness in zebra finches. Nature 416, 733–736 (2002).
    ADS  CAS  Article  Google Scholar 

    13.
    Johnstone, R. A. et al. Reciprocity and conditional cooperation between great tit parents. Behav. Ecol. 25, 216–222 (2014).
    Article  Google Scholar 

    14.
    Savage, J. L., Browning, L. E., Manica, A., Russell, A. F. & Johnstone, R. A. Turn-taking in cooperative offspring care: By-product of individual provisioning behavior or active response rule?. Behav. Ecol. Sociobiol. 71, 162 (2017).
    Article  Google Scholar 

    15.
    Raihani, N. J., Nelson-Flower, M. J., Moyes, K., Browning, L. E. & Ridley, A. R. Synchronous provisioning increases brood survival in cooperatively breeding pied babblers. J. Anim. Ecol. 79, 44–52 (2010).
    Article  Google Scholar 

    16.
    Mariette, M. M. & Griffith, C. S. The adaptive significance of provisioning and foraging coordination between breeding partners. Am. Nat. 185, 270–280 (2015).
    Article  Google Scholar 

    17.
    Bebbington, K. & Hatchwell, B. J. Coordinated parental provisioning is related to feeding rate and reproductive success in a songbird. Behav. Ecol. 27, 652–659 (2016).
    Article  Google Scholar 

    18.
    Leniowski, K. & Węgrzyn, E. Synchronisation of parental behaviours reduces the risk of nest predation in a socially monogamous passerine bird. Sci. Rep. 8, 7385 (2018).
    ADS  CAS  Article  Google Scholar 

    19.
    Shen, S. F., Chen, H. C., Vehrencamp, S. L. & Yuan, H. W. Group provisioning limits sharing conflict among nestlings in joint-nesting Taiwan yuhinas. Biol. Lett. 6, 318–321 (2010).
    Article  Google Scholar 

    20.
    Savage, J. L. & Hinde, C. A. What can we quantify about carer behavior?. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00418 (2019).
    Article  Google Scholar 

    21.
    Baldan, D., Curk, T., Hinde, C. A. & Lessells, C. M. Alternation of nest visits varies with experimentally manipulated workload in brood-provisioning great tits. Anim. Behav. 156, 139–146. https://doi.org/10.1016/j.anbehav.2019.08.004 (2019).
    Article  Google Scholar 

    22.
    Griffioen, M., Müller, W. & Iserbyt, A. A fixed agreement—consequences of brood size manipulation on alternation in blue tits. PeerJ 7, e6826. https://doi.org/10.7717/peerj.6826 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    23.
    Iserbyt, A., Fresneau, N., Kortenhoff, T., Eens, M. & Muller, W. Decreasing parental task specialization promotes conditional cooperation. Sci. Rep. 7, 20 (2017).
    Article  Google Scholar 

    24.
    Baldan, D., Hinde, C. A. & Lessells, C. M. Turn-taking between provisioning parents: Partitioning alternation. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00448 (2019).
    Article  Google Scholar 

    25.
    Lejeune, L. et al. Environmental effects on parental care visitation patterns in blue tits Cyanistes caeruleus. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00356 (2019).
    Article  Google Scholar 

    26.
    Longcore, T. & Rich, C. Ecological light pollution. Front. Ecol. Environ. 2, 191–198. https://doi.org/10.1890/1540-9295(2004)002[0191:Elp]2.0.Co;2 (2004).
    Article  Google Scholar 

    27.
    Warren, P. S., Katti, M., Ermann, M. & Brazel, A. Urban bioacoustics: It’s not just noise. Anim. Behav. 71, 491–502. https://doi.org/10.1016/j.anbehav.2005.07.014 (2006).
    Article  Google Scholar 

    28.
    McCarthy, M. P., Best, M. J. & Betts, R. A. Climate change in cities due to global warming and urban effects. Geophys. Res. Lett. https://doi.org/10.1029/2010gl042845 (2010).
    Article  Google Scholar 

    29.
    Chamberlain, D. E. et al. Avian productivity in urban landscapes: A review and meta-analysis. Ibis 151, 1–18. https://doi.org/10.1111/j.1474-919X.2008.00899.x (2009).
    Article  Google Scholar 

    30.
    Pollock, C. J., Capilla-Lasheras, P., McGill, R. A. R., Helm, B. & Dominoni, D. M. Integrated behavioural and stable isotope data reveal altered diet linked to low breeding success in urban-dwelling blue tits (Cyanistes caeruleus). Sci. Rep. 7, 5014. https://doi.org/10.1038/s41598-017-04575-y (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    31.
    Seress, G. et al. Impact of urbanization on abundance and phenology of caterpillars and consequences for breeding in an insectivorous bird. Ecol. Appl. 28, 1143–1156. https://doi.org/10.1002/eap.1730 (2018).
    Article  PubMed  Google Scholar 

    32.
    Seress, G., Sándor, K., Evans, K. L. & Liker, A. Food availability limits avian reproduction in the city: An experimental study on great tits Parus major. J. Anim. Ecol. 00, 1–11. https://doi.org/10.1111/1365-2656.13211 (2020).
    Article  Google Scholar 

    33.
    Wilkin, T. A., King, L. E. & Sheldon, B. C. Habitat quality, nestling diet, and provisioning behaviour in great tits Parus major. J. Avian Biol. 40, 135–145. https://doi.org/10.1111/j.1600-048X.2009.04362.x (2009).
    Article  Google Scholar 

    34.
    Peach, W. J., Mallord, J. W., Ockendon, N., Orsman, C. J. & Haines, W. G. Depleted suburban house sparrow Passer domesticus population not limited by food availability. Urban Ecosyst. 21, 1053–1065. https://doi.org/10.1007/s11252-018-0784-4 (2018).
    Article  Google Scholar 

    35.
    Schoech, S. J. et al. Food supplementation: A tool to increase reproductive output? A case study in the threatened Florida Scrub-Jay. Biol. Cons. 141, 162–173. https://doi.org/10.1016/j.biocon.2007.09.009 (2008).
    Article  Google Scholar 

    36.
    Sol, D., Lapiedra, O. & González-Lagos, C. Behavioural adjustments for a life in the city. Anim. Behav. 85, 1101–1112. https://doi.org/10.1016/j.anbehav.2013.01.023 (2013).
    Article  Google Scholar 

    37.
    Isaksson, C. & Andersson, S. Carotenoid diet and nestling provisioning in urban and rural great tits Parus major. J. Avian Biol. 38, 564–572. https://doi.org/10.1111/j.2007.0908-8857.04030.x (2007).
    Article  Google Scholar 

    38.
    New, T. R. Insect Conservation and Urban Environments (Springer, Berlin, 2015).
    Google Scholar 

    39.
    Helden, A., Stamp, G. & Leather, S. Urban biodiversity: Comparison of insect assemblages on native and non-native trees. Urban Ecosyst. 15, 611–624. https://doi.org/10.1007/s11252-012-0231-x (2012).
    Article  Google Scholar 

    40.
    Tallamy, D. W. & Shropshire, K. J. Ranking lepidopteran use of native versus introduced plants. Conserv. Biol. 23, 941–947 (2009).
    Article  Google Scholar 

    41.
    Burghardt, K. T., Tallamy, D. W., Philips, C. & Shropshire, K. J. Non-native plants reduce abundance, richness, and host specialization in lepidopteran communities. Ecosphere 1, art11. https://doi.org/10.1890/es10-00032.1 (2010).
    Article  Google Scholar 

    42.
    Marciniak, B., Nadolski, J., Nowakowska, M., Loga, B. & Bańbura, J. Habitat and annual variation in arthropod abundance affects blue tit Cyanistes caeruleus reproduction. Acta Ornithol. 42, 53–62 (2007).
    Article  Google Scholar 

    43.
    Neil, K. & Wu, J. Effects of urbanization on plant flowering phenology: A review. Urban Ecosyst. 9, 243–257. https://doi.org/10.1007/s11252-006-9354-2 (2006).
    Article  Google Scholar 

    44.
    Lessells, C. M. & Stephens, D. W. Central place foraging: Single-prey loaders again. Anim. Behav. 31, 238–243 (1983).
    Article  Google Scholar 

    45.
    Orians, G. H. & Pearson, N. E. On the Theory of Central Place Foraging. Analysis of Ecological Systems 155–177 (Ohio State University Press, Columbus, 1979).
    Google Scholar 

    46.
    Arnold, K. E., Ramsay, S. L., Henderson, L. & Larcombe, S. D. Seasonal variation in diet quality: Antioxidants, invertebrates and blue tits Cyanistes caeruleus. Biol. J. Lin. Soc. 99, 708–717. https://doi.org/10.1111/j.1095-8312.2010.01377.x (2010).
    Article  Google Scholar 

    47.
    Ouyang, J. Q., Baldan, D., Munguia, C. & Davies, S. Genetic inheritance and environment determine endocrine plasticity to urban living. Proc. R. Soc. B Biol. Sci. 286, 20191215. https://doi.org/10.1098/rspb.2019.1215 (2019).
    CAS  Article  Google Scholar 

    48.
    Newhouse, M. J., Marra, P. P. & Johnson, L. S. Reproductive success of house wrens in suburban and rural landscapes. Wilson J. Ornithol. 120, 99–104 (2008).
    Article  Google Scholar 

    49.
    Potti, J., Dávila, J. A., Tella, J. L., Frías, Ó & Villar, S. Gender and viability selection on morphology in fledgling pied flycatchers. Mol. Ecol. 11, 1317–1326. https://doi.org/10.1046/j.1365-294X.2002.01545.x (2002).
    CAS  Article  PubMed  Google Scholar 

    50.
    Balogh, A. L., Ryder, T. B. & Marra, P. P. Population demography of Gray Catbirds in the suburban matrix: Sources, sinks and domestic cats. J. Ornithol. 152, 717–726. https://doi.org/10.1007/s10336-011-0648-7 (2011).
    Article  Google Scholar 

    51.
    Stillfried, M. et al. Do cities represent sources, sinks or isolated islands for urban wild boar population structure?. J. Appl. Ecol. 54, 272–281. https://doi.org/10.1111/1365-2664.12756 (2017).
    Article  Google Scholar 

    52.
    Holmes, R. T. Foraging patterns of forest birds: Male–female differences. Wilson Bull. 98, 196–213 (1986).
    Google Scholar 

    53.
    Chaves, F. G., Vecchi, M. B. & Alves, M. A. S. Intersexual differences in the foraging behavior of Formicivora littoralis (Thamnophilidae), an endangered Neotropical bird. Stud. Neotrop. Fauna Environ. 52, 179–186. https://doi.org/10.1080/01650521.2017.1335275 (2017).
    Article  Google Scholar 

    54.
    Mänd, R., Rasmann, E. & Mägi, M. When a male changes his ways: Sex differences in feeding behavior in the pied flycatcher. Behav. Ecol. 24, 853–858. https://doi.org/10.1093/beheco/art025 (2013).
    Article  Google Scholar 

    55.
    Kölliker, M., Brinkhof, M. W. G., Heeb, P., Fitze, P. S. & Richner, H. The quantitative genetic basis of offspring solicitation and parental response in a passerine bird with biparental care. Proc. R. Soc. Lond. Ser. B Biol. Sci. 267, 2127–2132 (2000).
    Article  Google Scholar 

    56.
    Naef-Daenzer, B. Patch time allocation and patch sampling by foraging great and blue tits. Anim. Behav. 59, 989–999 (2000).
    CAS  Article  Google Scholar 

    57.
    Jarrett, C., Powell, L. L., McDevitt, H., Helm, B. & Welch, A. J. Bitter fruits of hard labour: Diet metabarcoding and telemetry reveal that urban songbirds travel further for lower-quality food. Oecologia 193, 377–388. https://doi.org/10.1007/s00442-020-04678-w (2020).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    58.
    Gering, J. C. & Blair, R. B. Predation on artificial bird nests along an urban gradient: Predatory risk or relaxation in urban environments?. Ecography 22, 532–541. https://doi.org/10.1111/j.1600-0587.1999.tb01283.x (1999).
    Article  Google Scholar 

    59.
    Fischer, J. D., Cleeton, S. H., Lyons, T. P. & Miller, J. R. Urbanization and the predation paradox: The role of trophic dynamics in structuring vertebrate communities. Bioscience 62, 809–818. https://doi.org/10.1525/bio.2012.62.9.6 (2012).
    Article  Google Scholar 

    60.
    Vincze, E. et al. Does urbanization affect predation of bird nests? A meta-analysis. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2017.00029 (2017).
    Article  Google Scholar 

    61.
    Griggio, M. & Hoi, H. An experiment on the function of the long-term pair bond period in the socially monogamous bearded reedling. Anim. Behav. 82, 1329–1335. https://doi.org/10.1016/j.anbehav.2011.09.016 (2011).
    Article  Google Scholar 

    62.
    Griffith, S. C. Cooperation and coordination in socially monogamous birds: Moving away from a focus on sexual conflict. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00455 (2019).
    Article  Google Scholar 

    63.
    Alberti, M. Eco-evolutionary dynamics in an urbanizing planet. Trends Ecol. Evol. 30, 114–126. https://doi.org/10.1016/j.tree.2014.11.007 (2015).
    Article  PubMed  Google Scholar 

    64.
    Liebl, A. L. & Martin, L. B. Exploratory behaviour and stressor hyper-responsiveness facilitate range expansion of an introduced songbird. Proc. Biol. Sci. 279, 4375–4381. https://doi.org/10.1098/rspb.2012.1606 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    65.
    Sepp, T., McGraw, K. J., Kaasik, A. & Giraudeau, M. A review of urban impacts on avian life-history evolution: Does city living lead to slower pace of life?. Glob. Change Biol. 24, 1452–1469. https://doi.org/10.1111/gcb.13969 (2018).
    ADS  Article  Google Scholar 

    66.
    Patricelli, G. L. & Blickley, J. L. Avian communication in urban noise: Causes and consequences of vocal adjustment. Auk 123, 639–649. https://doi.org/10.1093/auk/123.3.639 (2006).
    Article  Google Scholar 

    67.
    Grabarczyk, E. E. & Gill, S. A. Anthropogenic noise affects male house wren response to but not detection of territorial intruders. PLoS One 14, e0220576. https://doi.org/10.1371/journal.pone.0220576 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    68.
    Schroeder, J., Nakagawa, S., Cleasby, I. R. & Burke, T. Passerine birds breeding under chronic noise experience reduced fitness. PLoS One 7, e39200. https://doi.org/10.1371/journal.pone.0039200 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    69.
    Halfwerk, W. et al. Low-frequency songs lose their potency in noisy urban conditions. Proc. Natl. Acad. Sci. 108, 14549–14554. https://doi.org/10.1073/pnas.1109091108 (2011).
    ADS  Article  PubMed  Google Scholar 

    70.
    Mariette, M. M. Acoustic cooperation: Acoustic communication regulates conflict and cooperation within the family. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00445 (2019).
    Article  Google Scholar 

    71.
    Johnstone, R. A. & Savage, J. L. Conditional cooperation and turn-taking in parental care. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00335 (2019).
    Article  Google Scholar 

    72.
    Ihle, M., Pick, J. L., Winney, I. S., Nakagawa, S. & Burke, T. Measuring up to reality: Null models and analysis simulations to study parental coordination over provisioning offspring. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00142 (2019).
    Article  Google Scholar 

    73.
    Ihle, M. et al. Rearing success does not improve with apparent pair coordination in offspring provisioning. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00405 (2019).
    Article  Google Scholar 

    74.
    Seress, G., Lipovits, A., Bokony, V. & Czuni, L. Quantifying the urban gradient: A practical method for broad measurements. Landsc. Urban Plan. 131, 42–50. https://doi.org/10.1016/j.landurbplan.2014.07.010 (2014).
    Article  Google Scholar 

    75.
    75Johnson, L. S. in The Birds of North America (ed Editor A. F. Poole) (2014).

    76.
    Pearse, A. T., Cavitt, J. F. & Cully, J. F. effects of food supplementation on female nest attentiveness and incubation mate feeding in two sympatric wren species. Wilson Bull. 116, 23–30 (2004).
    Article  Google Scholar 

    77.
    Greenewalt, C. H. & Jones, F. M. Photographic studies of the feeding of nestling house wrens. Proc. Am. Philos. Soc. 99, 200–204 (1955).
    Google Scholar 

    78.
    Welbers, A. A. M. H. et al. Artificial light at night reduces daily energy expenditure in breeding great tits (Parus major). Front. Ecol. Evol. https://doi.org/10.3389/fevo.2017.00055 (2017).
    Article  Google Scholar 

    79.
    Baldan, D. & Griggio, M. Pair coordination is related to later brood desertion in a provisioning songbird. Anim. Behav. 156, 147–152. https://doi.org/10.1016/j.anbehav.2019.08.002 (2019).
    Article  Google Scholar 

    80.
    Pinheiro J, Bates D, DebRoy S, Sarkar D & Team, R. C. nlme: Linear and nonlinear mixed effects models. (2019).

    81.
    Rolinski, S., Horn, H., Petzoldt, T. & Paul, L. Identifying cardinal dates in phytoplankton time series to enable the analysis of long-term trends. Oecologia 153, 997–1008 (2007).
    ADS  Article  Google Scholar 

    82.
    Douma, J. C. & Weedon, J. T. Analysing continuous proportions in ecology and evolution: A practical introduction to beta and Dirichlet regression. Methods Ecol. Evol. 10, 1412–1430. https://doi.org/10.1111/2041-210x.13234 (2019).
    Article  Google Scholar 

    83.
    Martin, E. mclogit: Multinomial logit models, with or without random effects or overdispersion (2020).

    84.
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 48 (2015).
    Article  Google Scholar 

    85.
    Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Lawrence Erlbaum Associates, Hillsdale, 1988).
    Google Scholar 

    86.
    Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. https://doi.org/10.3389/fpsyg.2013.00863 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    87.
    Lenth, R. emmeans: Estimated marginal means, aka least-squares means. (2020). More