More stories

  • in

    Coupled changes in soil organic carbon fractions and microbial community composition in urban and suburban forests

    1.
    Hui, D., Deng, Q., Tian, H. & Luo, Y. Climate Change and Carbon Sequestration in Forest Ecosystems 555–594 (Springer, New York, 2017).
    Google Scholar 
    2.
    Lal, R. & Augustin, B. Carbon Sequestration in Urban Ecosystems (Springer, Dordrecht, 2012).
    Google Scholar 

    3.
    Zhang, J. & Sta, P. Effects of urbanization on forest vegetation, soil and landscape. Acta Ecol. Sin. 19, 654–658 (1999).
    Google Scholar 

    4.
    George, K., Ziska, L. H., Bunce, J. A. & Quebedeaux, B. Elevated atmospheric CO2 concentration and temperature across an urban–rural transect. Atmos. Environ. 41, 7654–7665. https://doi.org/10.1016/j.atmosenv.2007.08.018 (2007).
    ADS  CAS  Article  Google Scholar 

    5.
    Pouyat, R. V. et al. Soil Carbon in Urban Forest Ecosystems (CRC Press, Cambridge, 2003).
    Google Scholar 

    6.
    Zhang, W. et al. Methane uptake in forest soils along an urban-to-rural gradient in Pearl River Delta, South China. Sci. Rep. 4, 5120. https://doi.org/10.1038/srep05120 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    7.
    Zhou, D. et al. Spatiotemporal trends of urban heat island effect along the urban development intensity gradient in China. Sci. Total Environ. 544, 617–626. https://doi.org/10.1016/j.scitotenv.2015.11.168 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    8.
    Norman, J., MacLean, H. L. & Kennedy, C. A. Comparing high and low residential density: Life-cycle analysis of energy use and greenhouse gas emissions. J. Urban Plan. Dev. 132, 10–21. https://doi.org/10.1061//ASCE/0733-9488/2006/132:1/10 (2006).
    Article  Google Scholar 

    9.
    Carreiro, M. M. & Tripler, C. E. Forest remnants along urban-rural gradients: Examining their potential for global change research. Ecosystems 8, 568–582. https://doi.org/10.1007/s10021-003-0172-6 (2005).
    Article  Google Scholar 

    10.
    Meng, L. et al. Responses of ecosystem carbon cycle to experimental warming: A meta-analysis. Ecology 94, 726. https://doi.org/10.1890/12-0279.1 (2013).
    Article  Google Scholar 

    11.
    Lukac, M. et al. Forest soil carbon cycle under elevated CO2—A case of increased throughput?. Forestry 82, 75–86. https://doi.org/10.1093/forestry/cpn041 (2009).
    Article  Google Scholar 

    12.
    Luo, Y. & Weng, E. Dynamic disequilibrium of the terrestrial carbon cycle under global change. Trends Ecol. Evol. 26, 96–104. https://doi.org/10.1016/j.tree.2010.11.003 (2011).
    Article  PubMed  Google Scholar 

    13.
    Deng, Q. et al. Effects of CO2 enrichment, high nitrogen deposition and high precipitation on a model forest ecosystem in southern China. Chin. J. Plant Ecol. 33, 1023–1033 (2009).
    Google Scholar 

    14.
    De Graaff, M., Van Groenigen, K., Six, J. & Hungate, B. K. C. Interactions between plant growth and soil nutrient cycling under elevated CO2: A meta-analysis. Glob. Change Biol. 12, 2077–2091. https://doi.org/10.1111/j.1365-2486.2006.01240.x (2010).
    Article  Google Scholar 

    15.
    Chen, X., Deng, Q., Lin, G., Lin, M. & Wei, H. Changing rainfall frequency affects soil organic carbon concentrations by altering non-labile soil organic carbon concentrations in a tropical monsoon forest. Sci. Total Environ. 644, 762–769. https://doi.org/10.1016/j.scitotenv.2018.07.035 (2018).
    ADS  CAS  Article  PubMed  Google Scholar 

    16.
    Stockmann, U. et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric. Ecosyst. Environ. 164, 80–99. https://doi.org/10.1016/j.agee.2012.10.001 (2013).
    CAS  Article  Google Scholar 

    17.
    von Lützow, M. et al. SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biol. Biochem. 39, 2183–2207. https://doi.org/10.1016/j.soilbio.2007.03.007 (2007).
    CAS  Article  Google Scholar 

    18.
    Garten, C. T. Comparison of forest soil carbon dynamics at five sites along a latitudinal gradient. Geoderma 167–168, 30–40. https://doi.org/10.1016/j.geoderma.2011.08.007 (2011).
    ADS  CAS  Article  Google Scholar 

    19.
    Mclauchlan, K. K. & Hobbie, S. E. Comparison of labile soil organic matter fractionation techniques. Soil Sci. Soc. Am. J. 68, S34–S34. https://doi.org/10.2136/sssaj2004.1616 (2004).
    Article  Google Scholar 

    20.
    von Lützow, M. et al. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions—A review. Eur. J. Soil Sci. 57, 426–445. https://doi.org/10.1111/j.1365-2389.2006.00809.x (2006).
    CAS  Article  Google Scholar 

    21.
    Schmidt, M. W. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56. https://doi.org/10.1038/nature10386 (2011).
    ADS  CAS  Article  PubMed  Google Scholar 

    22.
    Pan, G. et al. Soil carbon sequestration with bioactivity: A new emerging frontier for sustainable soil management. Adv. Earth Sci. 30, 940–951 (2015).
    CAS  Google Scholar 

    23.
    You, Y. et al. Relating microbial community structure to functioning in forest soil organic carbon transformation and turnover. Ecol. Evol. 4, 633–647. https://doi.org/10.1002/ece3.969 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    24.
    Shao, S. et al. Linkage of microbial residue dynamics with soil organic carbon accumulation during subtropical forest succession. Soil Biol. Biochem. 114, 114–120. https://doi.org/10.1016/j.soilbio.2017.07.007 (2017).
    CAS  Article  Google Scholar 

    25.
    Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter?. Glob. Change Biol. 19, 988–995. https://doi.org/10.1111/gcb.12113 (2013).
    ADS  Article  Google Scholar 

    26.
    Newbound, M., Bennett, L. T., Tibbits, J. & Kasel, S. Soil chemical properties, rather than landscape context, influence woodland fungal communities along an urban-rural gradient. Austral. Ecol. 37, 236–247. https://doi.org/10.1111/j.1442-9993.2011.02269.x (2012).
    Article  Google Scholar 

    27.
    Chai, L. et al. Urbanization altered regional soil organic matter quantity and quality: Insight from excitation emission matrix (EEM) and parallel factor analysis (PARAFAC). Chemosphere 220, 249–258. https://doi.org/10.1016/j.chemosphere.2018.12.132 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 

    28.
    Wang, Y. D., Wang, H. M., Xu, M. J., Ma, Z. Q. & Wang, Z. L. Soil organic carbon stocks and CO2 effluxes of native and exotic pine plantations in subtropical China. CATENA 128, 167–173. https://doi.org/10.1016/j.catena.2015.02.003 (2015).
    CAS  Article  Google Scholar 

    29.
    Zhou, G. et al. Old-growth forests can accumulate carbon in soils. Science 314, 1417. https://doi.org/10.1126/science.1130168 (2006).
    ADS  CAS  Article  PubMed  Google Scholar 

    30.
    Chen, H. et al. Changes in soil carbon sequestration in Pinus massoniana forests along an urban-to-rural gradient of southern China. Biogeosciences 10, 6609–6616. https://doi.org/10.5194/bg-10-6609-2013 (2013).
    ADS  CAS  Article  Google Scholar 

    31.
    Fang, Y. T., Gundersen, P., Mo, J. M. & Zhu, W. X. Input and output of dissolved organic and inorganic nitrogen in subtropical forests of South China under high air pollution. Biogeosciences 5, 339–352 (2008).
    ADS  CAS  Article  Google Scholar 

    32.
    Hou, E., Xiang, H., Li, J., Li, J. & Wen, D. Heavy metal contamination in soils of remnant natural and plantation forests in an urbanized region of the Pearl River Delta, China. Forests 5, 885–900. https://doi.org/10.3390/f5050885 (2014).
    Article  Google Scholar 

    33.
    Huang, L. The Characteristics of Remnant Lower Subtropical Evergreen Broad-Leaved Forests and Their Relationships with Environmental Factors in Urbanized Areas (South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 2012).
    Google Scholar 

    34.
    Song, P. et al. Effects of historical logging on soil microbial communities in a subtropical forest in southern China. Plant Soil 397, 115–126. https://doi.org/10.1007/s11104-015-2553-y (2015).
    CAS  Article  Google Scholar 

    35.
    Sun, F. F., da Wen, Z., Kuang, Y. W., Li, J. & Zhang, J. G. Concentrations of sulphur and heavy metals in needles and rooting soils of Masson pine (Pinus massoniana L.) trees growing along an urban-rural gradient in Guangzhou, China. Environ. Monit. Assess. 154, 263–274. https://doi.org/10.1007/s10661-008-0394-3 (2009).
    CAS  Article  PubMed  Google Scholar 

    36.
    Groffman, P. M., Pouyat, R. V., McDonnell, M. J., Pickett, S. T. & Zipperer, W. C. Carbon pools and trace gas fluxes in urban forest soils. In Soil Management and Greenhouse Effect: Advances in Soil Science (eds Kimble, J. M. et al.) 147–158 (CRC Press, Amsterdam, 1995).
    Google Scholar 

    37.
    Koerner, B. A. & Klopatek, J. M. Carbon fluxes and nitrogen availability along an urban–rural gradient in a desert landscape. Urban Ecosyst. 13, 1–21. https://doi.org/10.1007/s11252-009-0105-z (2009).
    Article  Google Scholar 

    38.
    Dungait, J. A. J., Hopkins, D. W., Gregory, A. S. & Whitmore, A. P. Soil organic matter turnover is governed by accessibility not recalcitrance. Glob. Change Biol. 18, 1781–1796. https://doi.org/10.1111/j.1365-2486.2012.02665.x (2012).
    ADS  Article  Google Scholar 

    39.
    Leifeld, J. & Kögel-Knabner, I. Soil organic matter fractions as early indicators for carbon stock changes under different land-use?. Geoderma 124, 143–155. https://doi.org/10.1016/j.geoderma.2004.04.009 (2005).
    ADS  CAS  Article  Google Scholar 

    40.
    Pouyat, R., Groffman, P., Yesilonis, I. & Hernandez, L. Soil carbon pools and fluxes in urban ecosystems. Environ. Pollut. 116, S107–S118. https://doi.org/10.1016/s0269-7491(01)00263-9 (2002).
    CAS  Article  PubMed  Google Scholar 

    41.
    Nadelhoffer, K. J. & Raich, J. W. Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology 73, 1139–1147. https://doi.org/10.2307/1940664 (1992).
    Article  Google Scholar 

    42.
    Luo, Z., Feng, W., Luo, Y., Baldock, J. & Wang, E. Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions. Glob. Change Biol. 23, 4430–4439. https://doi.org/10.1111/gcb.13767 (2017).
    ADS  Article  Google Scholar 

    43.
    Urbanová, M., Šnajdr, J. & Baldrian, P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol. Biochem. 84, 53–64. https://doi.org/10.1016/j.soilbio.2015.02.011 (2015).
    CAS  Article  Google Scholar 

    44.
    Bowden, R. D. et al. litter input controls on soil carbon in a temperate deciduous forest. Soil Sci. Soc. Am. J. 78, S66–S75. https://doi.org/10.2136/sssaj2013.09.0413nafsc (2014).
    Article  Google Scholar 

    45.
    Carreiro, M. M., Howe, K., Parkhurst, D. F. & Pouyat, R. V. Variation in quality and decomposability of red oak leaf litter along an urban-rural gradient. Biol. Fertil. Soils 30, 258–268. https://doi.org/10.1007/s003740050617 (1999).
    Article  Google Scholar 

    46.
    Xu, X. & Hirata, E. Decomposition patterns of leaf litter of seven common canopy species in a subtropical forest: N and P dynamics. Plant Soil 273, 279–289. https://doi.org/10.1007/s11104-004-8069-5 (2005).
    CAS  Article  Google Scholar 

    47.
    Wang, Q., Wang, S., Feng, Z. & Huang, Y. Active soil organic matter and its relationship with soil quality. Acta Ecol. Sin. 25, 513–519 (2005).
    CAS  Google Scholar 

    48.
    Hu, S., Coleman, D. C., Carroll, C. R., Hendrix, P. F. & Beare, M. H. Labile soil carbon pools in subtropical forest and agricultural ecosystems as influenced by management practices and vegetation types. Agric. Ecosyst. Environ. 65, 69–78. https://doi.org/10.1016/s0167-8809(97)00049-2 (1997).
    CAS  Article  Google Scholar 

    49.
    Blair, G. J., Lefroy, R. & Lisle, L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Aust. J. Agric. Res. 46, 393–406. https://doi.org/10.1071/AR9951459 (1995).
    Article  Google Scholar 

    50.
    Chen, X. et al. Effects of precipitation on soil organic carbon fractions in three subtropical forests in southern China. J. Plant Ecol. 9(1), 10–19. https://doi.org/10.1093/jpe/rtv027 (2015).
    Article  Google Scholar 

    51.
    Culman, S. W. et al. Permanganate oxidizable carbon reflects a processed soil fraction that is sensitive to management. Soil Sci. Soc. Am. J. 76, 494. https://doi.org/10.2136/sssaj2011.0286 (2012).
    ADS  CAS  Article  Google Scholar 

    52.
    Chen, S., Wang, X. & Lu, F. Research on forest microbial community function variations in urban and suburban forests. Chin. J. Soil Sci. 1, 614–620. https://doi.org/10.1001/archophthalmol.2012.1393 (2012).
    Article  Google Scholar 

    53.
    Zhao, Z. & Guo, H. Effects of urbanization on the quantity changes of microbes in urban-to-rural gradient forest soil. J. Anhui Agric. Sci. 38, 5188–5190 (2010).
    Google Scholar 

    54.
    Hackl, E., Pfeffer, M., Donat, C., Bachmann, G. & Zechmeister-Boltenstern, S. Composition of the microbial communities in the mineral soil under different types of natural forest. Soil Biol. Biochem. 37, 661–671. https://doi.org/10.1016/j.soilbio.2004.08.023 (2005).
    CAS  Article  Google Scholar 

    55.
    Brant, J. B., Myrold, D. D. & Sulzman, E. W. Root controls on soil microbial community structure in forest soils. Oecologia 148, 650–659. https://doi.org/10.1007/s00442-006-0402-7 (2006).
    ADS  Article  PubMed  Google Scholar 

    56.
    Wang, H. et al. Stable soil organic carbon is positively linked to microbial-derived compounds in four plantations of subtropical China. Biogeosci. Discuss. 10, 18093–18119. https://doi.org/10.5194/bgd-10-18093-2013 (2013).
    ADS  Article  Google Scholar 

    57.
    Six, J., Frey, S. D., Thiet, R. K. & Batten, K. M. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J. 70, 555–569. https://doi.org/10.2136/sssaj2004.0347 (2006).
    ADS  CAS  Article  Google Scholar 

    58.
    Ziegler, S. E., Billings, S. A., Lane, C. S., Li, J. & Fogel, M. L. Warming alters routing of labile and slower-turnover carbon through distinct microbial groups in boreal forest organic soils. Soil Biol. Biochem. 60, 23–32. https://doi.org/10.1016/j.soilbio.2013.01.001 (2013).
    CAS  Article  Google Scholar 

    59.
    Baum, C., Fienemann, M., Glatzel, S. & Gleixner, G. Overstory-specific effects of litter fall on the microbial carbon turnover in a mature deciduous forest. For. Ecol. Manage. 258, 109–114. https://doi.org/10.1016/j.foreco.2009.03.047 (2009).
    Article  Google Scholar 

    60.
    Creamer, C. A. et al. Microbial community structure mediates response of soil C decomposition to litter addition and warming. Soil Biol. Biochem. 80, 175–188. https://doi.org/10.1016/j.soilbio.2014.10.008 (2015).
    CAS  Article  Google Scholar 

    61.
    Kramer, C. & Gleixner, G. Variable use of plant- and soil-derived carbon by microorganisms in agricultural soils. Soil Biol. Biochem. 38, 3267–3278. https://doi.org/10.1016/j.soilbio.2006.04.006 (2006).
    CAS  Article  Google Scholar 

    62.
    Brabcová, V., Štursová, M. & Baldrian, P. Nutrient content affects the turnover of fungal biomass in forest topsoil and the composition of associated microbial communities. Soil Biol. Biochem. 118, 187–198. https://doi.org/10.1016/j.soilbio.2017.12.012 (2018).
    CAS  Article  Google Scholar 

    63.
    Kaur, A., Chaudhary, A., Kaur, A., Choudhary, R. & Kaushik, R. Phospholipid fatty acid—A bioindicator of environment monitoring and assessment in soil ecosystem. Curr. Sci. 89, 1103–1112 (2005).
    CAS  Google Scholar 

    64.
    Hanson, C. A., Allison, S. D., Bradford, M. A., Wallenstein, M. D. & Treseder, K. K. Fungal taxa target different carbon sources in forest soil. Ecosystems 11, 1157–1167. https://doi.org/10.1007/s10021-008-9186-4 (2008).
    CAS  Article  Google Scholar 

    65.
    Liu, M., Hu, F. & Chen, X. A review on mechanisms of soil organic carbon stabilization. Acta Ecol. Sin. 27, 2642–2650 (2007).
    CAS  Article  Google Scholar 

    66.
    Fang, Y. et al. Nitrogen deposition and forest nitrogen cycling along an urban-rural transect in southern China. Glob. Change Biol. 17, 872–885. https://doi.org/10.1111/j.1365-2486.2010.02283.x (2011).
    ADS  Article  Google Scholar 

    67.
    Huang, L., Zhu, W., Ren, H., Chen, H. & Wang, J. Impact of atmospheric nitrogen deposition on soil properties and herb-layer diversity in remnant forests along an urban–rural gradient in Guangzhou, southern China. Plant Ecol. 213, 1187–1202. https://doi.org/10.1007/s11258-012-0080-y (2012).
    Article  Google Scholar 

    68.
    He, J. et al. Stoichiometric characteristics of soil C, N and P in subtropical forests along an urban-to-suburb gradient. Chin. J. Ecol. 35, 591–596 (2016).
    Google Scholar 

    69.
    Wu, J. et al. Prolonged acid rain facilitates soil organic carbon accumulation in a mature forest in Southern China. Sci. Total Environ. 544, 94–102. https://doi.org/10.1016/j.scitotenv.2015.11.025 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    70.
    Duan, H., Liu, J., Deng, Q., Chen, X. & Zhang, D. Effects of elevated CO2 and N deposition on plant biomass accumulation and allocation in subtropical forest ecosystems: A mesocosm study. Chin. J. Plant Ecol. 33, 570–579. https://doi.org/10.1080/01443610410001685646 (2009).
    CAS  Article  Google Scholar 

    71.
    Chen, X., Liu, J., Deng, Q., Yan, J. & Zhang, D. Effects of elevated CO2 and nitrogen addition on soil organic carbon fractions in a subtropical forest. Plant Soil 357, 25–34. https://doi.org/10.1007/s11104-012-1145-3 (2012).
    CAS  Article  Google Scholar 

    72.
    Bird, J. A., Herman, D. J. & Firestone, M. K. Rhizosphere priming of soil organic matter by bacterial groups in a grassland soil. Soil Biol. Biochem. 43, 718–725. https://doi.org/10.1016/j.soilbio.2010.08.010 (2011).
    CAS  Article  Google Scholar 

    73.
    Hopkins, F. M. et al. Increased belowground carbon inputs and warming promote loss of soil organic carbon through complementary microbial responses. Soil Biol. Biochem. 76, 57–69. https://doi.org/10.1016/j.soilbio.2014.04.028 (2014).
    CAS  Article  Google Scholar 

    74.
    Curlevski, N. J. A., Drigo, B., Cairney, J. W. G. & Anderson, I. C. Influence of elevated atmospheric CO2 and water availability on soil fungal communities under Eucalyptus saligna. Soil Biol. Biochem. 70, 263–271. https://doi.org/10.1016/j.soilbio.2013.12.010 (2014).
    CAS  Article  Google Scholar 

    75.
    Crow, S. E. et al. Sources of plant-derived carbon and stability of organic matter in soil: Implications for global change. Glob. Change Biol. 15, 2003–2019. https://doi.org/10.1111/j.1365-2486.2009.01850.x (2009).
    ADS  Article  Google Scholar 

    76.
    Fontaine, S., Mariotti, A. & Abbadie, L. The priming effect of organic matter: A question of microbial competition?. Soil Biol. Biochem. 35, 837–843. https://doi.org/10.1016/s0038-0717(03)00123-8 (2003).
    CAS  Article  Google Scholar 

    77.
    Zhou, D., Zhao, S., Liu, S. & Zhang, L. Spatiotemporal trends of terrestrial vegetation activity along the urban development intensity gradient in China’s 32 major cities. Sci. Total Environ. 488–489, 136–145. https://doi.org/10.1016/j.scitotenv.2014.04.080 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    78.
    Liu, L. et al. Interactive effects of nitrogen and phosphorus on soil microbial communities in a tropical forest. PLoS ONE 8, e61188. https://doi.org/10.1371/journal.pone.0061188 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    79.
    Saetre, P. & Bååth, E. Spatial variation and patterns of soil microbial community structure in a mixed spruce–birch stand. Soil Biol. Biochem. 32, 909–917. https://doi.org/10.1016/s0038-0717(99)00215-1 (2000).
    CAS  Article  Google Scholar 

    80.
    Bossio, D. A., Scow, K. M., Gunapala, N. & Graham, K. J. Determinants of soil microbial communities: Effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microb. Ecol. 36, 1–12. https://doi.org/10.1007/s002489900087 (1998).
    CAS  Article  PubMed  Google Scholar 

    81.
    Wei, H., Chen, X., He, J., Zhang, J. & Shen, W. Exogenous nitrogen addition reduced the temperature sensitivity of microbial respiration without altering the microbial community composition. Front. Microbiol. 8, 2382. https://doi.org/10.3389/fmicb.2017.02382 (2017).
    Article  PubMed  PubMed Central  Google Scholar  More

  • in

    Temporal tracking of quantum-dot apatite across in vitro mycorrhizal networks shows how host demand can influence fungal nutrient transfer strategies

    1.
    Wipf D, Krajinski F, van Tuinen D, Recorbet G, Courty P. Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. N Phytol. 2019;223:1–11.
    Article  CAS  Google Scholar 
    2.
    Miller RM, Jastrow JD, Reinhardt DR. External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia. 1995;103:17–23.
    CAS  PubMed  Article  Google Scholar 

    3.
    Leake J, Johnson D, Donnelly D, Muckle G, Boddy L, Read DJ. Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot. 2004;82:1016–45.
    Article  Google Scholar 

    4.
    Bago B, Pfeffer PE, Shachar-Hill Y. Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol. 2000;124:949–58.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    5.
    Drigo B, Pijl AS, Duyts H, Kielak AM, Gamper HA, Houtekamer MJ, et al. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc Natl Acad Sci. 2010;107:10938–42.
    CAS  PubMed  Article  Google Scholar 

    6.
    Giri B, Saxena B. Response of arbuscular mycorrhizal fungi to global climate change and their role in terrestrial ecosystem C and N cycling. In: Varma A, Prasad R, Tuteja N editors. Mycorrhiza—function, diversity, state of the art. Cham: Springer International Publishing; 2017. p. 305–27.

    7.
    Field KJ, Pressel S, Duckett JG, Rimington WR, Bidartondo MI. Symbiotic options for the conquest of land. Trends Ecol Evol. 2015;30:477–86.
    PubMed  Article  Google Scholar 

    8.
    Martin FM, Uroz S, Barker DG. Ancestral alliances: plant mutualistic symbioses with fungi and bacteria. Science. 2017;356:eaad4501.
    PubMed  Article  CAS  Google Scholar 

    9.
    Brundrett MC. Coevolution of roots and mycorrhizas of land plants. N Phytol. 2002;154:275–304.
    Article  Google Scholar 

    10.
    Werner GDA, Cornelissen JHC, Cornwell WK, Soudzilovskaia NA, Kattge J, West SA, et al. Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown. Proc Natl Acad Sci. 2018;115:5229–34.
    CAS  PubMed  Article  Google Scholar 

    11.
    Gange AC, Stagg PG, Ward LK. Arbuscular mycorrhizal fungi affect phytophagous insect specialism. Ecol Lett. 2002;5:11–5.
    Article  Google Scholar 

    12.
    Koricheva J, Gange AC, Jones T. Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecology. 2009;90:2088–97.
    PubMed  Article  Google Scholar 

    13.
    Hart MM, Reader RJ, Klironomos JN. Plant coexistence mediated by arbuscular mycorrhizal fungi. Trends Ecol Evol. 2003;18:418–23.
    Article  Google Scholar 

    14.
    Hiiesalu I, Pärtel M, Davison J, Gerhold P, Metsis M, Moora M, et al. Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass. N Phytol. 2014;203:233–44.
    CAS  Article  Google Scholar 

    15.
    Gerz M, Bueno CG, Zobel M, Moora M. Plant community mycorrhization in temperate forests and grasslands: relations with edaphic properties and plant diversity. J Veg Sci. 2016;27:89–99.
    Article  Google Scholar 

    16.
    He X, Critchley C, Bledsoe C. Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). CRC Crit Rev Plant Sci. 2003;22:531–67.
    Article  Google Scholar 

    17.
    Smith, Sally E., and David J. Read. Mycorrhizal symbiosis. 3rd edn. (Academic press, London, 2008).

    18.
    Luginbuehl LH, Menard GN, Kurup S, Van Erp H, Radhakrishnan GV, Breakspear A, et al. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science. 2017;356:1175–8.
    CAS  PubMed  Article  Google Scholar 

    19.
    Liu A, Hamel C, Hamilton RI, Ma BL, Smith DL. Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza. 2000;9:331–6.
    CAS  Article  Google Scholar 

    20.
    Azcón R, Ambrosano E, Charest C. Nutrient acquisition in mycorrhizal lettuce plants under different phosphorus and nitrogen concentration. Plant Sci. 2003;165:1137–45.
    Article  CAS  Google Scholar 

    21.
    Ramírez-Viga TK, Aguilar R, Castillo-Argüero S, Chiappa-Carrara X, Guadarrama P, Ramos-Zapata J. Wetland plant species improve performance when inoculated with arbuscular mycorrhizal fungi: a meta-analysis of experimental pot studies. Mycorrhiza. 2018;28:477–93.
    PubMed  Article  Google Scholar 

    22.
    Weremijewicz J, Janos DP. Common mycorrhizal networks amplify size inequality in Andropogon gerardii monocultures. N Phytol. 2013;198:203–13.
    CAS  Article  Google Scholar 

    23.
    Bücking H, Shachar-Hill Y. Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability. N Phytol. 2005;165:899–912.
    Article  CAS  Google Scholar 

    24.
    Fellbaum CR, Gachomo EW, Beesetty Y, Choudhari S, Strahan GD, Pfeffer PE, et al. Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci. 2012;109:2666–71.
    CAS  PubMed  Article  Google Scholar 

    25.
    Fellbaum CR, Mensah JA, Cloos AJ, Strahan GE, Pfeffer PE, Kiers ET, et al. Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. N Phytol. 2014;203:646–56.
    CAS  Article  Google Scholar 

    26.
    Konvalinková T, Püschel D, Janoušková M, Gryndler M, Jansa J. Duration and intensity of shade differentially affects mycorrhizal growth- and phosphorus uptake responses of Medicago truncatula. Front Plant Sci. 2015;6:1–11.
    Article  Google Scholar 

    27.
    Zheng C, Ji B, Zhang J, Zhang F, Bever JD. Shading decreases plant carbon preferential allocation towards the most beneficial mycorrhizal mutualist. N Phytol. 2015;205:361–8.
    CAS  Article  Google Scholar 

    28.
    Varga S, Kytöviita M. Mycorrhizal benefit differs among the sexes in a gynodioecious species. Ecology. 2010;91:2583–93.
    PubMed  Article  Google Scholar 

    29.
    Merrild MP, Ambus P, Rosendahl S, Jakobsen I. Common arbuscular mycorrhizal networks amplify competition for phosphorus between seedlings and established plants. N Phytol. 2013;200:229–40.
    CAS  Article  Google Scholar 

    30.
    Walder F, Brulé D, Koegel S, Wiemken A, Boller T, Courty PE. Plant phosphorus acquisition in a common mycorrhizal network: regulation of phosphate transporter genes of the Pht1 family in sorghum and flax. N Phytol. 2015;205:1632–45.
    CAS  Article  Google Scholar 

    31.
    Weremijewicz J, Sternberg L, da SLO, Janos DP. Common mycorrhizal networks amplify competition by preferential mineral nutrient allocation to large host plants. N Phytol. 2016;212:461–71.
    CAS  Article  Google Scholar 

    32.
    Werner GDA, Kiers ET. Partner selection in the mycorrhizal mutualism. N Phytol. 2015;205:1437–42.
    Article  Google Scholar 

    33.
    Bachelot B, Lee CT. Dynamic preferential allocation to arbuscular mycorrhizal fungi explains fungal succession and coexistence. Ecology. 2018;99:372–84.
    PubMed  Article  Google Scholar 

    34.
    Wyatt GAK, Kiers ET, Gardner A, West SA. A biological market analysis of the plant-mycorrhizal symbiosis. Evolution. 2014;68:2603–18.
    PubMed  Article  Google Scholar 

    35.
    Noë R, Kiers ET. Mycorrhizal markets, firms, and co-ops. Trends Ecol Evol. 2018;33:777–89.
    PubMed  Article  Google Scholar 

    36.
    Bender SF, Wagg C, van der Heijden MGA. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol Evol. 2016;31:440–52.
    PubMed  Article  Google Scholar 

    37.
    Konvalinková T, Jansa J. Lights off for arbuscular mycorrhiza: on its symbiotic functioning under light deprivation. Front Plant Sci. 2016;7:1–11.
    Article  Google Scholar 

    38.
    Whiteside MD, Werner GDAA, Caldas VEA, van’t Padje A, Dupin SE, Elbers B, et al. Mycorrhizal fungi respond to resource inequality by moving phosphorus from rich to poor patches across networks. Curr Biol. 2019;29:2043–50.e8.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Bailey RE, Nie S. Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J Am Chem Soc. 2003;125:7100–6.
    CAS  PubMed  Article  Google Scholar 

    40.
    Jang E, Jun S, Pu L. High quality CdSeS nanocrystals synthesized by facile single injection process and their electroluminescence. Chem Commun. 2003;24:2964–5.

    41.
    Declerck S, Fortin JA, Strullu DG (eds). In vitro culture of mycorrhizas. Berlin, Heidelberg: Springer; 2005.

    42.
    Engelmoer DJP, Behm JE, Kiers ET. Intense competition between arbuscular mycorrhizal mutualists in an in vitro root microbiome negatively affects total fungal abundance. Mol Ecol. 2014;23:1584–93.
    CAS  PubMed  Article  Google Scholar 

    43.
    Ness RLL, Vlek PLG. Mechanism of calcium and phosphate release from hydroxy-apatite by mycorrhizal hyphae. Soil Sci Soc Am J. 2000;64:949–55.
    CAS  Article  Google Scholar 

    44.
    Tang I-M, Krishnamra N, Charoenphandhu N, Hoonsawat R, Pon-On W. Biomagnetic of apatite-coated cobalt ferrite: a core–shell particle for protein adsorption and pH-controlled release. Nanoscale Res Lett. 2010;6:19.
    PubMed  PubMed Central  Google Scholar 

    45.
    Kawashita M, Taninai K, Li Z, Ishikawa K, Yoshida Y. Preparation of low-crystalline apatite nanoparticles and their coating onto quartz substrates. J Mater Sci Mater Med. 2012;23:1355–62.
    CAS  PubMed  Article  Google Scholar 

    46.
    Sun S, Chan LS, Li Y-L. Flower-like apatite recording microbial processes through deep geological time and its implication to the search for mineral records of life on Mars. Am Miner. 2014;99:2116–25.
    Article  Google Scholar 

    47.
    Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science. 2011;333:880–2.
    CAS  PubMed  Article  Google Scholar 

    48.
    R core team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2018. https://www.r-project.org/.

    49.
    Walker C. A simple blue staining technique for arbuscular mycorrhizal and other root-inhabiting fung. Inoculum. 2005;56:68–9.
    Google Scholar 

    50.
    Rossow MJ, Sasaki JM, Digman MA, Gratton E. Raster image correlation spectroscopy in live cells. Nat Protoc. 2010;5:1761–74.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Whiteside MD, Digman MA, Gratton E, Treseder KK. Organic nitrogen uptake by arbuscular mycorrhizal fungi in a boreal forest. Soil Biol Biochem. 2012;55:7–13.
    CAS  Article  Google Scholar 

    52.
    Bates D, Mächler M, Bolker B, Walker S. “Fitting Linear Mixed-Effects Models Using lme4.” Journal of Statistical Software. 2015. 67;1:1–48.

    53.
    Kuznetsova A, Brockhoff PB, Christensen RHB (2017). “lmerTest Package: Tests in Linear Mixed Effects Models.” Journal of Statistical Software. 2017. 82;13:1–26.

    54.
    Fox J, Weisberg S. An R companion to applied regression. 2nd edn (Sage Publications, Inc, Thousand Oaks CA, 2016).

    55.
    Javot H, Pumplin N, Harrison MJ. Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ. 2007;30:310–22.
    CAS  PubMed  Article  Google Scholar 

    56.
    Konečný J, Hršelová H, Bukovská P, Hujslová M, Jansa J. Correlative evidence for co-regulation of phosphorus and carbon exchanges with symbiotic fungus in the arbuscular mycorrhizal Medicago truncatula. PLoS ONE. 2019;14:1–24.
    Article  CAS  Google Scholar 

    57.
    Keymer A, Pimprikar P, Wewer V, Huber C, Brands M, Bucerius SL, et al. Lipid transfer from plants to arbuscular mycorrhiza fungi. Elife. 2017;6:1–33.
    Article  Google Scholar 

    58.
    Burleigh SH, Cavagnaro T, Jakobsen I. Functional diversity of arbuscular mycorrhizas extends to the expression of plant genes involved in P nutrition. J Exp Bot. 2002;53:1593–601.
    CAS  PubMed  Article  Google Scholar 

    59.
    Smith SE. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol. 2003;133:16–20.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Grønlund M, Albrechtsen M, Johansen IE, Hammer EC, Nielsen TH, Jakobsen I. The interplay between P uptake pathways in mycorrhizal peas: a combined physiological and gene-silencing approach. Physiol Plant. 2013;149:234–48.
    PubMed  Article  CAS  Google Scholar 

    61.
    Smith SE, Smith FA, Jakobsen I. Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. N Phytol. 2004;162:511–24.
    Article  Google Scholar 

    62.
    Watts-Williams SJ, Jakobsen I, Cavagnaro TR, Grønlund M. Local and distal effects of arbuscular mycorrhizal colonization on direct pathway Pi uptake and root growth in Medicago truncatula. J Exp Bot. 2015;66:4061–73.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Pel R, Dupin S, Schat H, Ellers J, Kiers ET, van Straalen NM. Growth benefits provided by different arbuscular mycorrhizal fungi to Plantago lanceolata depend on the form of available phosphorus. Eur J Soil Biol. 2018;88:89–96.
    CAS  Article  Google Scholar 

    64.
    Reynolds HL, Vogelsang KM, Hartley AE, Bever JD, Schultz PA. Variable responses of old-field perennials to arbuscular mycorrhizal fungi and phosphorus source. Oecologia. 2006;147:348–58.
    PubMed  Article  Google Scholar 

    65.
    Lu R, Drubin DG, Sun Y. Clathrin-mediated endocytosis in budding yeast at a glance. J Cell Sci. 2016;129:1531–6.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Fischer-Parton S, Parton RM, Hickey PC, Dijksterhuis J, Atkinson HA, Read ND. Confocal microscopy of FM4-64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae. J Microsc. 2000;198:246–59.
    CAS  PubMed  Article  Google Scholar 

    67.
    Read ND, Kalkman ER. Does endocytosis occur in fungal hyphae? Fungal Genet Biol. 2003;39:199–203.
    CAS  PubMed  Article  Google Scholar 

    68.
    Epp E, Nazarova E, Regan H, Douglas LM, Konopka JB, Vogel J, et al. Clathrin- and arp2/3-independent endocytosis in the fungal pathogen Candida albicans. MBio. 2013;4:e00476–13.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    69.
    Colin Y, Nicolitch O, Turpault MP, Uroz S. Mineral types and tree species determine the functional and taxonomic structures of forest soil bacterial communities. Appl Environ Microbiol. 2017;83:1–23.
    Article  Google Scholar 

    70.
    Fontaine L, Thiffault N, Paré D, Fortin J-A, Piché Y. Phosphate-solubilizing bacteria isolated from ectomycorrhizal mycelium of Picea glauca are highly efficient at fluorapatite weathering. Botany. 2016;94:1183–93.
    CAS  Article  Google Scholar 

    71.
    Alloush GA, Clark RB. Maize response to phosphate rock and arbuscular mycorrhizal fungi in acidic soil. Commun Soil Sci Plant Anal. 2001;32:231–54.
    CAS  Article  Google Scholar 

    72.
    Powell CL, Daniel J. Mycorrhizal fungi stimulate uptake of soluble and insoluble phosphate fertilizer from a phosphate‐deficient soil. N Phytol. 1978;80:351–8.
    CAS  Article  Google Scholar 

    73.
    Jakobsen I, Hammer EC. Nutrient dynamics in arbuscular mycorrhizal networks. In: Horton TR, editor. Mycorrhizal networks. Dordrecht: Springer Netherlands; 2015. p. 91–131.

    74.
    Marler MJ, Zabinski CA, Callaway RM. Mycorrhizae indirectly enhance competitive effects of an invasive forb on a native bunchgrass. Ecology. 1999;80:1180–6.
    Article  Google Scholar 

    75.
    Carey EV, Marler MJ, Callaway RM. Mycorrhizae transfer carbon from a native grass to an invasive weed: evidence from stable isotopes and physiology. Plant Ecol. 2004;172:133–41.
    Article  Google Scholar 

    76.
    van der Heijden MGA. Arbuscular mycorrhizal fungi as support systems for seedling establishment in grassland. Ecol Lett. 2004;7:293–303.
    Article  Google Scholar 

    77.
    van der Heijden MGA, Horton TR. Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J Ecol. 2009;97:1139–50.
    Article  Google Scholar 

    78.
    Digman MA, Brown CM, Sengupta P, Wiseman PW, Horwitz AR, Gratton E. Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophys J. 2005;89:1317–27.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    79.
    Nieves DJ, Li Y, Fernig DG, Levy R. Photothermal raster image correlation spectroscopy of gold nanoparticles in solution and on live cells. R Soc Open Sci. 2015;2:140454.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    80.
    Johnson NC, Graham JH, Smith FA. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. N Phytol. 1997;135:575–85.
    Article  Google Scholar 

    81.
    Johnson NC, Wilson JA, Bowker MA, Wilson JA, Miller RM. Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proc Natl Acad Sci. 2010;107:2093–8.
    CAS  PubMed  Article  Google Scholar 

    82.
    Argüello A, O’Brien MJ, van der Heijden MGA, Wiemken A, Schmid B, Niklaus PA. Options of partners improve carbon for phosphorus trade in the arbuscular mycorrhizal mutualism. Ecol Lett. 2016;19:648–56.
    PubMed  Article  Google Scholar 

    83.
    Noë R, Hammerstein P. Biological markets: supply and demand determine the effect of partner choice in cooperation, mutualism and mating. Behav Ecol Sociobiol. 1994;35:1–11.
    Article  Google Scholar 

    84.
    Werner GDA, Strassmann JE, Ivens ABF, Engelmoer DJP, Verbruggen E, Queller DC, et al. Evolution of microbial markets. Proc Natl Acad Sci. 2014;111:1237–44.
    CAS  PubMed  Article  Google Scholar 

    85.
    Musat N, Musat F, Weber PK, Pett-Ridge J. Tracking microbial interactions with NanoSIMS. Curr Opin Biotechnol. 2016;41:114–21.
    CAS  PubMed  Article  Google Scholar 

    86.
    Bücking H, Mensah JA, Fellbaum CR. Common mycorrhizal networks and their effect on the bargaining power of the fungal partner in the arbuscular mycorrhizal symbiosis. Commun Integr Biol. 2016;9:1–4.
    Article  CAS  Google Scholar 

    87.
    Roger A, Colard A, Angelard C, Sanders IR. Relatedness among arbuscular mycorrhizal fungi drives plant growth and intraspecific fungal coexistence. ISME J. 2013;7:2137–46.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    88.
    Wagg C, Jansa J, Schmid B, van der Heijden MGA. Belowground biodiversity effects of plant symbionts support aboveground productivity. Ecol Lett. 2011;14:1001–9.
    PubMed  Article  Google Scholar 

    89.
    Douglas AE. Conflict, cheats and the persistence of symbioses. N Phytol. 2008;177:849–58.
    Article  Google Scholar  More

  • in

    Fine-scale tundra vegetation patterns are strongly related to winter thermal conditions

    1.
    Natali, S. M. et al. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Change 9, 852–857 (2019).
    CAS  Google Scholar 
    2.
    Myers-Smith, I. H. et al. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ. Res. Lett. 6, 15 (2011).
    Google Scholar 

    3.
    Elmendorf, S. C. et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Change 2, 453–457 (2012).
    Google Scholar 

    4.
    Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).
    CAS  Google Scholar 

    5.
    Niittynen, P., Heikkinen, R. K. & Luoto, M. Snow cover is a neglected driver of Arctic biodiversity loss. Nat. Clim. Change 8, 997–1001 (2018).
    Google Scholar 

    6.
    Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017 (Arctic Monitoring and Assessment Programme (AMAP), 2017).

    7.
    Box, J. E. et al. Key indicators of Arctic climate change: 1971–2017. Environ. Res. Lett. 14, 045010 (2019).
    CAS  Google Scholar 

    8.
    Bintanja, R. & Andry, O. Towards a rain-dominated Arctic. Nat. Clim. Change 7, 263–267 (2017).
    Google Scholar 

    9.
    Post, E. et al. Ecological dynamics across the Arctic associated with recent climate change. Science 325, 1355–1358 (2009).
    CAS  Google Scholar 

    10.
    Blok, D. et al. The response of Arctic vegetation to the summer climate: relation between shrub cover, NDVI, surface albedo and temperature. Environ. Res. Lett. 6, 9 (2011).
    Google Scholar 

    11.
    Cooper, E. J. Warmer shorter winters disrupt Arctic terrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 45, 271–295 (2014).
    Google Scholar 

    12.
    Sanders-DeMott, R. & Templer, P. H. What about winter? Integrating the missing season into climate change experiments in seasonally snow covered ecosystems. Methods Ecol. Evol. 8, 1183–1191 (2017).
    Google Scholar 

    13.
    Bokhorst, S., Bjerke, J. W., Tommervik, H., Preece, C. & Phoenix, G. K. Ecosystem response to climatic change: the importance of the cold season. Ambio 41, 246–255 (2012).
    Google Scholar 

    14.
    Williams, C. M., Henry, H. A. L. & Sinclair, B. J. Cold truths: how winter drives responses of terrestrial organisms to climate change. Biol. Rev. 90, 214–235 (2015).
    Google Scholar 

    15.
    Wipf, S., Stoeckli, V. & Bebi, P. Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing. Climatic Change 94, 105–121 (2009).
    Google Scholar 

    16.
    Bokhorst, S. F., Bjerke, J. W., Tommervik, H., Callaghan, T. V. & Phoenix, G. K. Winter warming events damage sub-Arctic vegetation: consistent evidence from an experimental manipulation and a natural event. J. Ecol. 97, 1408–1415 (2009).
    Google Scholar 

    17.
    Rapacz, M. et al. Overwintering of herbaceous plants in a changing climate: still more questions than answers. Plant Sci. 225, 34–44 (2014).
    CAS  Google Scholar 

    18.
    Loffler, J. & Pape, R. Thermal niche predictors of alpine plant species. Ecology 101, e02891 (2020).
    Google Scholar 

    19.
    Choler, P. Winter soil temperature dependence of alpine plant distribution: implications for anticipating vegetation changes under a warming climate. Perspect. Plant Ecol. Evol. Syst. 30, 6–15 (2018).
    Google Scholar 

    20.
    Billings, W. D. & Mooney, H. A. Ecology of Arctic and alpine plants. Biol. Rev. Camb. Phil. Soc. 43, 481–529 (1968).
    Google Scholar 

    21.
    Cornelissen, J. H. C. & Makoto, K. Winter climate change, plant traits and nutrient and carbon cycling in cold biomes. Ecol. Res. 29, 517–527 (2014).
    CAS  Google Scholar 

    22.
    Groffman, P. M. et al. Colder soils in a warmer world: a snow manipulation study in a northern hardwood forest ecosystem. Biogeochemistry 56, 135–150 (2001).
    CAS  Google Scholar 

    23.
    Deems, J. S., Fassnacht, S. R. & Elder, K. J. Interannual consistency in fractal snow depth patterns at two Colorado mountain sites. J. Hydrometeorol. 9, 977–988 (2008).
    Google Scholar 

    24.
    Wahren, C. H. A., Walker, M. D. & Bret-Harte, M. S. Vegetation responses in Alaskan Arctic tundra after 8 years of a summer warming and winter snow manipulation experiment. Glob. Change Biol. 11, 537–552 (2005).
    Google Scholar 

    25.
    Darrouzet-Nardi, A. et al. Limited effects of early snowmelt on plants, decomposers, and soil nutrients in Arctic tundra soils. Ecol. Evol. 9, 1820–1844 (2019).
    Google Scholar 

    26.
    Nobrega, S. & Grogan, P. Deeper snow enhances winter respiration from both plant-associated and bulk soil carbon pools in birch hummock tundra. Ecosystems 10, 419–431 (2007).
    CAS  Google Scholar 

    27.
    Niittynen, P. & Luoto, M. The importance of snow in species distribution models of Arctic vegetation. Ecography 41, 1024–1037 (2018).
    Google Scholar 

    28.
    Blankinship, J. C., Meadows, M. W., Lucas, R. G. & Hart, S. C. Snowmelt timing alters shallow but not deep soil moisture in the Sierra Nevada. Water Resour. Res. 50, 1448–1456 (2014).
    Google Scholar 

    29.
    Kranner, I., Beckett, R., Hochman, A. & Nash, T. H. Desiccation-tolerance in lichens: a review. Bryologist 111, 576–593 (2008).
    Google Scholar 

    30.
    Cornelissen, J. H. C., Lang, S. I., Soudzilovskaia, N. A. & During, H. J. Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry. Ann. Bot. 99, 987–1001 (2007).
    CAS  Google Scholar 

    31.
    Sonesson, M. & Callaghan, T. V. Strategies of survival in plants of the Fennoscandian tundra. Arctic 44, 95–105 (1991).
    Google Scholar 

    32.
    Bjerke, J. W. et al. Contrasting sensitivity to extreme winter warming events of dominant sub-Arctic heathland bryophyte and lichen species. J. Ecol. 99, 1481–1488 (2011).
    Google Scholar 

    33.
    Pannewitz, S., Schlensog, M., Green, T. G. A., Sancho, L. G. & Schroeter, B. Are lichens active under snow in continental Antarctica? Oecologia 135, 30–38 (2003).
    Google Scholar 

    34.
    Natali, S. M., Schuur, E. A. G. & Rubin, R. L. Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost. J. Ecol. 100, 488–498 (2012).
    Google Scholar 

    35.
    Weijers, S., Buchwal, A., Blok, D., Loffler, J. & Elberling, B. High Arctic summer warming tracked by increased Cassiope tetragona growth in the world’s northernmost polar desert. Glob. Change Biol. 23, 5006–5020 (2017).
    Google Scholar 

    36.
    Morris, W. F. et al. Longevity can buffer plant and animal populations against changing climatic variability. Ecology 89, 19–25 (2008).
    Google Scholar 

    37.
    Strimbeck, G. R., Schaberg, P. G., Fossdal, C. G., Schroder, W. P. & Kjellsen, T. D. Extreme low temperature tolerance in woody plants. Front. Plant Sci. 6, 15 (2015).
    Google Scholar 

    38.
    Gonzalez, V. T. et al. High resistance to climatic variability in a dominant tundra shrub species. PeerJ 7, e6967 (2019).
    Google Scholar 

    39.
    Thomas, H. J. D. et al. Traditional plant functional groups explain variation in economic but not size-related traits across the tundra biome. Glob. Ecol. Biogeogr. 28, 78–95 (2019).
    CAS  Google Scholar 

    40.
    Shipley, B., Lechowicz, M. J., Wright, I. & Reich, P. B. Fundamental trade-offs generating the worldwide leaf economics spectrum. Ecology 87, 535–541 (2006).
    Google Scholar 

    41.
    Good, M., Morgan, J. W., Venn, S. & Green, P. Timing of snowmelt affects species composition via plant strategy filtering. Basic Appl. Ecol. 35, 54–62 (2019).
    Google Scholar 

    42.
    Cornelissen, J. H. C. et al. Global change and Arctic ecosystems: is lichen decline a function of increases in vascular plant biomass? J. Ecol. 89, 984–994 (2001).
    Google Scholar 

    43.
    Zhu, L. K., Ives, A. R., Zhang, C., Guo, Y. Y. & Radeloff, V. C. Climate change causes functionally colder winters for snow cover-dependent organisms. Nat. Clim. Change 9, 886–893 (2019).
    Google Scholar 

    44.
    Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).
    Google Scholar 

    45.
    Medlyn, B. E. et al. Using ecosystem experiments to improve vegetation models. Nat. Clim. Change 5, 528–534 (2015).
    Google Scholar 

    46.
    Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5, 887–891 (2015).
    Google Scholar 

    47.
    Potter, K. A., Woods, H. A. & Pincebourde, S. Microclimatic challenges in global change biology. Glob. Change Biol. 19, 2932–2939 (2013).
    Google Scholar 

    48.
    Alsos, I. G. et al. Frequent long-distance plant colonization in the changing Arctic. Science 316, 1606–1609 (2007).
    CAS  Google Scholar 

    49.
    Kemppinen, J., Niittynen, P., Aalto, J., le Roux, P. C. & Luoto, M. Water as a resource, stress and disturbance shaping tundra vegetation. Oikos 128, 811–822 (2019).
    Google Scholar 

    50.
    Robinson, S. A. et al. Rapid change in east Antarctic terrestrial vegetation in response to regional drying. Nat. Clim. Change 8, 879–884 (2018).
    CAS  Google Scholar 

    51.
    Chamberlain, S. A. & Szocs, E. taxize: taxonomic search and retrieval in R. F1000Res 2, 191 (2013).
    Google Scholar 

    52.
    McCune, B. & Keon, D. Equations for potential annual direct incident radiation and heat load. J. Veg. Sci. 13, 603–606 (2002).
    Google Scholar 

    53.
    R Core Team R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2019); https://www.r-project.org/

    54.
    Minchin, P. R. An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69, 89–107 (1987).
    Google Scholar 

    55.
    Oksanen, J. et al. vegan: community ecology package. R package version 2.3-3 (2016).

    56.
    Franklin, J. Mapping Species Distributions: Spatial Inference and Prediction (Cambridge Univ. Press, 2009).

    57.
    Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).
    CAS  Google Scholar 

    58.
    Thuiller, W., Georges, D., Engler, R. & Breiner, F. biomod2: ensemble platform for species distribution modeling. R package version 3.3-7 (2016).

    59.
    Pedersen, E. J., Miller, D. L., Simpson, G. L. & Ross, N. Hierarchical generalized additive models in ecology: an introduction with mgcv. PeerJ 7, e6876 (2019).
    Google Scholar 

    60.
    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011).
    Google Scholar 

    61.
    Ridgeway, G. gbm: generalized boosted regression models. R package version 2.1.1 (2015).

    62.
    Thuiller, W., Lafourcade, B., Engler, R. & Araujo, M. B. BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).
    Google Scholar  More

  • in

    Publisher Correction: Science diplomacy for plant health

    European and Mediterranean Plant Protection Organization (EPPO)-Euphresco, Paris, France
    Baldissera Giovani & Nico Horn

    Austrian Agency for Health and Food Safety (AGES), Institute for Sustainable Plant Production, Vienna, Austria
    Sylvia Blümel

    Food Department, Ministry of Agriculture and Forestry of Finland, Helsinki, Finland
    Ralf Lopian

    Better Border Biosecurity (B3), Plant and Food Research, Christchurch, New Zealand
    David Teulon

    North American Plant Protection Organization (NAPPO), Raleigh, NC, USA
    Stephanie Bloem

    Comite Regional de Sanidad Vegetal del Cono Sur (COSAVE), Dirección de Protección Vegetal, del Servicio Nacional y Sanidad Vegetal y Semillas, Asuncion, Paraguay
    Cristina Galeano Martínez

    Comunidad Andina (CAN), Secretaría General de la Comunidad Andina, Lima, Peru
    Camilo Beltrán Montoya

    Organismo Internacional Regional de Sanidad Agropecuaria (OIRSA), San Salvador, El Salvador
    Carlos Ramon Urias Morales

    Asia and Pacific Plant Protection Commission (APPPC), Bangkok, Thailand
    Sridhar Dharmapuri

    Pacific Plant Protection Organization (PPPO), Pacific Community Land Resources Division, Suva, Fiji
    Visoni Timote

    Near East Plant Protection Organization (NEPPO), Rabat, Morocco
    Mekki Chouibani

    African-Union Interafrican Phytosanitary Council (IAPSC), Yaoundé, Cameroon
    Jean Gérard Mezui M’Ella

    Ministry of Primary Industries (MPI), Wellington, New Zealand
    Veronica Herrera & Aurélie Castinel

    Department of Agriculture, Water and the Environment (DAWE), Canberra, Australian Capital Territory, Australia
    Con Goletsos, Carina Moeller & Ian Naumann

    European Food Safety Authority (EFSA), Parma, Italy
    Giuseppe Stancanelli, Stef Bronzwaer & Sara Tramontini

    Canadian Food Inspection Agency (CFIA), Ottawa, Ontario, Canada
    Philip MacDonald & Loren Matheson

    French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Plant Health Laboratory, Angers, France
    Géraldine Anthoine

    Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
    Kris De Jonghe

    Netherlands Food and Consumer Product Safety Authority (NVWA), Wageningen, the Netherlands
    Martijn Schenk

    Julius Kühn Institute (JKI), Braunschweig, Germany
    Silke Steinmöller

    National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
    Elena Rodriguez

    National Institute for Agriculture and Veterinary Research (INIAV), Oeiras, Portugal
    Maria Leonor Cruz

    Plant Biosecurity Research Initiative (PBRI), Hort Innovation, Melbourne, Victoria, Australia
    Jo Luck

    Plant Health Australia (PHA), Deakin, Canberra, Australian Capital Territory, Australia
    Greg Fraser

    International Plant Protection Convention (IPPC), Food and Agriculture Organization of the United Nations, Rome, Italy
    Sarah Brunel, Mirko Montuori, Craig Fedchock & Jingyuan Xia

    Department for Environment, Food & Rural Affairs (DEFRA), London, UK
    Elspeth Steel & Helen Grace Pennington

    Centre for Agriculture and Bioscience International (CABI), Nairobi, Kenya
    Roger Day

    French National Institute for Agricultural Research (INRA), INRA-Montpellier-CBGP, Montferrier-sur-Lez, France
    Jean Pierre Rossi More

  • in

    Use and non-use value of nature and the social cost of carbon

    1.
    Pascual, U. et al. Valuing nature’s contributions to people: the IPBES approach. Curr. Opin. Environ. Sustain. 26, 7–16 (2017).
    Article  Google Scholar 
    2.
    De Groot, R. S., Alkemade, R., Braat, L., Hein, L. & Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 7, 260–272 (2010).
    Article  Google Scholar 

    3.
    Turner, R. K. et al. Valuing nature: lessons learned and future research directions. Ecol. Econ. 46, 493–510 (2003).
    Article  Google Scholar 

    4.
    Agarwala, M., Atkinson, G., Baldock, C. & Gardiner, B. Natural capital accounting and climate change. Nat. Clim. Change 4, 520–522 (2014).
    Article  Google Scholar 

    5.
    Jones-Walters, L. & Mulder, I. Valuing nature: the economics of biodiversity. J. Nat. Conserv. 17, 245–247 (2009).
    Article  Google Scholar 

    6.
    Gomes, V. H. F., Vieira, I. C. G., Salomão, R. P. & ter Steege, H. Amazonian tree species threatened by deforestation and climate change. Nat. Clim. Change 9, 547–553 (2019).
    Article  Google Scholar 

    7.
    Rogers, L. A. et al. Shifting habitats expose fishing communities to risk under climate change. Nat. Clim. Change 9, 512–516 (2019).
    Article  Google Scholar 

    8.
    Roberts, C. P., Allen, C. R., Angeler, D. G. & Twidwell, D. Shifting avian spatial regimes in a changing climate. Nat. Clim. Change 9, 562–566 (2019).
    Article  Google Scholar 

    9.
    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
    Article  CAS  Google Scholar 

    10.
    Settele, J. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds. Field, C. B. et al.) 271–360 (IPCC, Cambridge Univ. Press, 2015).

    11.
    Warszawski, L. et al. A multi-model analysis of risk of ecosystem shifts under climate change. Environ. Res. Lett. 8, 044018 (2013).
    Article  Google Scholar 

    12.
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).
    CAS  Article  Google Scholar 

    13.
    Global Assessment Report on Biodiversity and Ecosystem Services (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 2019).

    14.
    Millennium Ecosystem Assessment Ecosystems and Human Well-being: Synthesis (Island Press, 2005).

    15.
    Drupp, M. A. Limits to substitution between ecosystem services and manufactured goods and implications for social discounting. Environ. Resour. Econ. 69, 135–158 (2018).
    Article  Google Scholar 

    16.
    Hoel, M. & Sterner, T. Discounting and relative prices. Clim. Change 84, 265–280 (2007).
    Article  Google Scholar 

    17.
    Sterner, T. & Persson, U. M. An even sterner review: introducing relative prices into the discounting debate. Rev. Environ. Econ. Policy 2, 61–76 (2008).
    Article  Google Scholar 

    18.
    Drupp, M. A. & Hänsel, M. C. Relative prices and climate policy: how the scarcity of non-market goods drives policy evaluation. Am. Econ. J. Econ. Policy https://www.aeaweb.org/articles?id=10.1257/pol.20180760 (2020).

    19.
    Tol, R. S. The damage costs of climate change: a note on tangibles and intangibles, applied to DICE. Energy Policy 22, 436–438 (1994).
    Article  Google Scholar 

    20.
    Kopp, R. E., Golub, A., Keohane, N. O. & Onda, C. The influence of the specification of climate change damages on the social cost of carbon. Economics-Kiel 6, 1–40 (2012).
    Google Scholar 

    21.
    Moore, F. C. & Diaz, D. B. Temperature impacts on economic growth warrant stringent mitigation policy. Nat. Clim. Change 5, 127–131 (2015).
    Article  Google Scholar 

    22.
    Tol, R. S. Estimates of the damage costs of climate change. Part 1: benchmark estimates. Environ. Resour. Econ. 21, 47–73 (2002).
    Article  Google Scholar 

    23.
    Diaz, D. & Moore, F. Quantifying the economic risks of climate change. Nat. Clim. Change 7, 774–782 (2017).
    Article  Google Scholar 

    24.
    Nordhaus, W. D. & Tobin, J. in Economic Research: Retrospect and Prospect Vol. 5 1–80 (NBER, 1972).

    25.
    Nordhaus, W. & Sztorc, P. DICE 2013R: Introduction and User’s Manual (retrieved November, 2019); https://go.nature.com/3kmwMc5

    26.
    Barbier, E. B. The concept of natural capital. Oxf. Rev. Econ. Policy 35, 14–36 (2019).
    Article  Google Scholar 

    27.
    Arrow, K. J., Dasgupta, P., Goulder, L. H., Mumford, K. J. & Oleson, K. Sustainability and the measurement of wealth. Environ. Dev. Econ. 17, 317–353 (2012).
    Article  Google Scholar 

    28.
    Lange, G.-M., Wodon, Q. & Carey, K. The Changing Wealth of Nations 2018: Building a Sustainable Future (The World Bank, 2018).

    29.
    Hackett, S. B. & Moxnes, E. Natural capital in integrated assessment models of climate change. Ecol. Econ. 116, 354–361 (2015).
    Article  Google Scholar 

    30.
    Dietz, S. & Stern, N. Endogenous growth, convexity of damage and climate risk: how Nordhaus’ framework supports deep cuts in carbon emissions. Econ. J. 125, 574–620 (2015).
    Article  Google Scholar 

    31.
    Glotter, M. J., Pierrehumbert, R. T., Elliott, J. W., Matteson, N. J. & Moyer, E. J. A simple carbon cycle representation for economic and policy analyses. Clim. Change 126, 319–335 (2014).
    CAS  Article  Google Scholar 

    32.
    Arrow, K. et al. Report of the NOAA panel on contingent valuation. Fed. Regist. 58, 4601–4614 (1993).
    Google Scholar 

    33.
    Bateman, I. & Willis, K. (eds) Valuing Environmental Preferences: Theory and Practice of the Contingent Valuation Method in the US, EU, and Developing Countries (Oxford Univ. Press, 2001).

    34.
    Champ, P. A., Boyle, K. J., Brown, T. C. & Peterson, L. G. (eds) A Primer on Nonmarket Valuation Vol. 3 (Springer, 2003).

    35.
    Technical Support Document: – Social Cost of Carbon for Regulatory Impact Analysis – Under Executive Order 12866 (Interagency Working Group on Social Cost of Carbon, United States Government, 2010).

    36.
    Beckage, B. et al. Linking models of human behaviour and climate alters projected climate change. Nat. Clim. Change 8, 79–84 (2018).
    Article  Google Scholar 

    37.
    Breiman, L. Manual On Setting Up, Using, And Understanding Random Forests V3.1 https://www.stat.berkeley.edu/ breiman/Using_random_forests_V3.1.pdf (2002).

    38.
    Lemoine, D. & Traeger, C. P. Economics of tipping the climate dominoes. Nat. Clim. Change 6, 514–519 (2016).
    Article  Google Scholar 

    39.
    Cai, Y. & Lontzek, T. S. The social cost of carbon with economic and climate risks. J. Polit. Econ. 127, 2684–2734 (2019).
    Article  Google Scholar 

    40.
    Traeger, C. P. A 4-stated DICE: quantitatively addressing uncertainty effects in climate change. Environ. Resour. Econ. 59, 1–37 (2014).
    Article  Google Scholar 

    41.
    Crost, B. & Traeger, C. Optimal climate policy: uncertainty versus Monte Carlo. Econ. Lett. 120, 552–558 (2013).
    Article  Google Scholar 

    42.
    Statistical Office of the European Union Environmental Protection Expenditure Accounts: Handbook (Eurostat, 2017).

    43.
    Diaz, D. B. Estimating global damages from sea level rise with the Coastal Impact and Adaptation Model (CIAM). Clim. Change 137, 143–156 (2016).
    Article  Google Scholar 

    44.
    De Bruin, K. C., Dellink, R. B. & Tol, R. S. AD-DICE: an implementation of adaptation in the DICE model. Clim. Change 95, 63–81 (2009).
    Article  Google Scholar 

    45.
    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).
    CAS  Article  Google Scholar 

    46.
    Chaplin-Kramer et al. Global modeling of nature’s contributions to people. Science 366, 255–258 (2019).
    CAS  Article  Google Scholar 

    47.
    Moore, F. C. et al. Mimi-PAGE, an open-source implementation of the PAGE09 integrated assessment model. Sci. Data 5, 180187 (2018).
    Article  Google Scholar 

    48.
    Anthoff, D., Plevin, R., Kingdon, C. & Rennels, L. Mimi: An Integrated Assessment Modeling Framework (2020); https://www.mimiframework.org/

    49.
    Solow, R. M. Is the end of the world at hand? Challenge 16, 39–50 (1973).
    Article  Google Scholar 

    50.
    Stiglitz, J. E. in Scarcity and Growth Reconsidered (ed. Smith, V. K.) 36–66 (The Johns Hopkins Univ. Press, 1979).

    51.
    Brandt, N., Schreyer, P. & Zipperer, V. Productivity measurement with natural capital. Rev. Income Wealth 63, S7–S21 (2017).
    Article  Google Scholar 

    52.
    Costanza et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).
    Article  Google Scholar 

    53.
    Howard, P. H. & Sterner, T. Few and not so far between: a meta-analysis of climate damage estimates. Environ. Resour. Econ. 68, 197–225 (2017).
    Article  Google Scholar 

    54.
    Hsiang et al. Estimating economic damage from climate change in the United States. Science 356, 1362–1369 (2017).
    CAS  Article  Google Scholar 

    55.
    Yamaguchi, R. & Managi, S. Backward-and forward-looking shadow prices in inclusive wealth accounting: an example of renewable energy capital. Ecol. Econ. 156, 337–349 (2019).
    Article  Google Scholar  More

  • in

    Riverscape genetics in brook lamprey: genetic diversity is less influenced by river fragmentation than by gene flow with the anadromous ecotype

    Alonso H, Matias R, Granadeiro JP, Catry P (2009) Moult strategies of Cory’s Shearwaters Calonectris diomedea borealis the influence of colony location sex and individual breeding status. J Ornithol 150:329–337
    Article  Google Scholar 

    Barson NJ, Cable J, Van Oosterhout C (2009) Population genetic analysis of microsatellite variation of guppies (Poecilia reticulata) in Trinidad and Tobago: evidence for a dynamic source-sink metapopulation structure, founder events and population bottlenecks. J Evol Biol 22:485–497
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Bartoń K (2018) MuMIn: Multi-Model Inference. R package version 1.42.1. https://CRAN.R-project.org/package=MuMIn

    Bates DM, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48
    Article  Google Scholar 

    Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 4.05, logiciel sous Windows pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000 Université de Montpellier II, Montpellier, France

    Bernard H (1909) Bulletin de la Société des Sciences Naturelle et d’Archeologie de l’Ain, vol 57 Imprimerie du Journal, Bourg-en-Bresse
    Google Scholar 

    Bernatchez L, Wilson CC (1998) Comparative phylogeography of Nearctic and Palearctic fishes. Mol Ecol 7:431–452
    Article  Google Scholar 

    Blanchet S, Rey O, Etienne R, Lek S, Loot G (2010) Species-specific responses to landscape fragmentation: implications for management strategies. Evol Appl 3:291–304
    PubMed  PubMed Central  Article  Google Scholar 

    Bracken FSA, Hoelzel AR, Hume JB, Lucas MC (2015) Contrasting population genetic structure among freshwater-resident and anadromous lampreys: the role of demographic history, differential dispersal, and anthropogenic barriers to movement. Mol Ecol 24:1188–1204
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Brauer CJ, Hammer MP, Beheregaray LB (2016) Riverscape genomics of a threatened fish across a hydroclimatically heterogeneous river basin. Mol Ecol 25:5093–5113
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Carlson SM, Cunningham CJ, Westley PAH (2014) Evolutionary rescue in a changing world. Trends Ecol Evol 29(9):521–530
    PubMed  Article  PubMed Central  Google Scholar 

    Ceballos G, Ehrlich PR, Dirzo R (2017) Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc Natl Acad Sci USA 30:6089–6096
    Article  CAS  Google Scholar 

    Ceballos G, Ehrlich PR, Raven PH (2020) Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction Proc Natl Acad Sci USA 117:13596–13602
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Coleman RA, Gauffre B, Pavlova A, Beheregaray LB, Kearns, Lyon J et al. (2018) Artificial barriers prevent genetic recovery of small isolated populations of a low-mobility freshwater fish. Heredity 120:515–532
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Couvet D (2002) Deleterious effects of restricted gene flow in fragmented populations. Conserv Biol 16:369–376
    Article  Google Scholar 

    Cyr F, Angers B (2011) Historical process lead to false genetic signal of current connectivity among populations. Genetica 139:1417–1428
    PubMed  Article  PubMed Central  Google Scholar 

    Dawson HA, Quintella BR, Almeida PR, Treble AJ, Jolley JC (2015) The ecology of larval and metamorphosing lampreys. In: Docker MF (ed.), Lampreys: biology, conservation and control. Springer, Netherlands, pp. 75–137

    Dehais C, Eudeline R, Berrebi P, Argillier C (2010) Microgeographic genetic isolation in chub (Cyprinidae: Squalius cephalus) population of the Durance River: estimating fragmentation by dams. Ecol Freshw Fish 19:267–278
    Article  Google Scholar 

    DiBattista JD (2008) Patterns of genetic variation in anthropogenically impacted populations. Conserv Genet 9:141–156
    Article  Google Scholar 

    Docker MF (2009) A review of the evolution of non-parasitism in lampreys and an update of the paired species concept. In: Brown LR, Chase SD, Mesa MG, Beamish RJ, Moyle PB (eds) Biology, management and conservation of lampreys in North America. Am Fish Soc Symp 72, Bethesda, MD, pp. 71–114

    Dodson JJ, Aubin-Horth N, Thériault V, Páez DJ (2013) The evolutionary ecology of alternative migratory tactics in salmonid fishes. Biol Rev Camb Philos Soc 88:602–625
    PubMed  Article  PubMed Central  Google Scholar 

    Dynesius M, Nilsson C (1994) Fragmentation and flow regulation of river systems in the northern third of the world. Science 266:753–762
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Earl DA, vonHoldt BM (2011) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361
    Article  Google Scholar 

    Edmands S (2007) Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Mol Ecol 16:463–475
    PubMed  Article  PubMed Central  Google Scholar 

    Eneqvist P (1937) The brook lamprey as an ecological modification of the river lamprey. On the river and brook lampreys of Sweden. Ark Zool 29:1–22
    Google Scholar 

    Espanhol R, Almeida PR, Alves MJ (2007) Evolutionary history of lamprey paired species Lampetra fluviatilis (L.) and Lampetra planeri (Bloch) as inferred from mitochondrial DNA variation. Mol Ecol 16:1909–1924
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Estoup A (1996) Rapid one-tube DNA extraction for reliable PCR detection of fish polymorphic markers and transgenes. Mol Mar Biol Biotechnol 5:295–298
    CAS  Google Scholar 

    Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol, Evolution, Syst 34:487–515
    Article  Google Scholar 

    Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587
    CAS  PubMed  PubMed Central  Google Scholar 

    Faubet P, Waples RS, Gaggiotti OE (2007) Evaluating the performance of a multilocus Bayesian method for the estimation of migration rates. Mol Ecol 16:1149–1166
    PubMed  Article  PubMed Central  Google Scholar 

    Faulks LK, Gilligan DM, Beheregaray LB (2010) Islands of water in a sea of dry land: hydrological regime predicts genetic diversity and dispersal in a widespread fish from Australia’s arid zone, the golden perch (Macquaria ambigua). Mol Ecol 19:4723–4737
    PubMed  Article  PubMed Central  Google Scholar 

    Fox J, Weisberg S (2011) An {R} companion to applied regression, 2nd edn. Sage, Thousand Oaks, CA
    Google Scholar 

    Foulds WL, Lucas MC (2013) Extreme inefficiency of two conventional, technical fishways used by European river lamprey (Lampetra fluviatilis). Ecol Eng 58:423–433
    Article  Google Scholar 

    Frankham R (1998) Inbreeding and extinction: island populations. Conserv Biol 12:665–675
    Article  Google Scholar 

    Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140
    Article  Google Scholar 

    Frankham R (2015) Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Mol Ecol 24:2610–2618
    PubMed  Article  PubMed Central  Google Scholar 

    Frankham R (2016) Genetic rescue benefits persist to at least the F3 generation, based on a meta-analysis. Biol Conserv 195:33–36
    Article  Google Scholar 

    Frankham R, Bradshaw CJA, Brook BW (2014) Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol Conserv 170:56–63
    Article  Google Scholar 

    Gaigher A, Launey S, Lasne E, Besnard AL, Evanno G (2013) Characterization of thirteen microsatellite markers in river and brook lampreys (Lampetra fluviatilis and L. planeri). Conserv Genet Resour 5:141–143
    Google Scholar 

    Gensoul J (1907) Monographie des poisons d’eau douce de Saone et Loire. Extrait du Bulletin de la société d’histoire naturelle d’Autun. 20è Bulletin

    Germis G, Arago MA, Ampen N, Moulin C, Deleys, N (2018) Plan de Gestion des poissons migrateurs 2018–2023. available at http://www.bretagne.developpement-durable.gouv.fr/IMG/pdf/plagepomi_2018.pdf

    Glémin S (2003) How are deleterious mutations purged? Drift versus nonrandom mating. Evolution 57:2678–2687
    PubMed  Article  PubMed Central  Google Scholar 

    Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486
    Article  Google Scholar 

    Gouskov A, Reyes M, Wirthner‐Bitterlin L, Vorburger C (2015) Fish population genetic structure shaped by hydroelectric power plants in the upper Rhine catchment. Evol Appl 9:394–408
    Article  Google Scholar 

    Guirec A Guillerme N, Sauvader C, Diouach O, Chapon PM, Beaulaton L (2018) Synthèse sur la répartition des lamproies et des aloses amphihalines enFrance. Rapport final. 2018.032 available at https://www.documentation.eauetbiodiversite.fr/notice/000000000168991aeaf427a64ba5487a

    Hänfling B, Weetman D (2006) Concordant genetic estimators of migration reveal anthropogenically enhanced source–sink population structure in the River Sculpin, Cottus gobio. Genetics 173:1487–1501
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Hardisty MW, Potter IC (1971) The biology of lampreys. Academic Press, London‐New York
    Google Scholar 

    Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638
    CAS  PubMed  Article  Google Scholar 

    Hess JE, Campbell NR, Close DA, Docker MF, Narum SR (2013) Population genomics of Pacific lamprey: adaptive variation in a highly dispersive species. Mol Ecol 22:2898–2916
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276
    Article  Google Scholar 

    Higgins K, Lynch M (2001) Metapopulation extinction caused by mutation accumulation. Proc Natl Acad Sci USA 98:2928–2933
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Hohenlohe PA, Bassham S, Etter PD, Stiffler N, Johnson EA, Cresko WA (2010) Population genomics of parallel adaptation in threespine stickleback using sequenced RAD Tags. PLoS Genet 6:e1000862
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Hohenlohe PA, Catchen J, Cresko WA (2012) Population genomic analysis of model and nonmodel organisms using sequenced RAD tags. Methods Mol Biol 888:235–260
    PubMed  Article  Google Scholar 

    Jonsson B, Jonsson N (1993) Partial migration: niche shift versus sexual maturation in fishes. Rev Fish Biol Fish 3:348–365
    Article  Google Scholar 

    Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026
    PubMed  PubMed Central  Article  Google Scholar 

    Kawecki TJ, Holt RD (2002) Evolutionary consequences of asymmetric dispersal rates. Am Nat 160:333–347
    PubMed  Article  PubMed Central  Google Scholar 

    Keith P, Persat H, Feuteun É. AllardiI J (2011) Les Poissons d’eau douce de France. Muséum national d’Histoire naturelle, Paris; Biotope, Mèze, 552 p. (Inventaires & biodiversité)

    Kelly K, Lai K (2012) Package ‘MBESS.’ R Package version 3.3.3. http://www3.nd.edu/~kkelley/site/MBESS.html

    Kemp PS, Russon IJ, Vowles AS, Lucas MC (2011) The influence of discharge and temperature on the ability of upstream migrant adult river lamprey (Lampetra fluviatilis) to pass experimental overshot and undershot weirs. River Res Appl 27:488–498
    Article  Google Scholar 

    Landguth EL, Cushman SA, Schwarte MK, McKelvey KS, Murphy M, Luikart G (2010) Quantifying the lag time to detect barriers in landscape genetics. Mol Ecol 19:4179–4191
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Leclerc E, Mailhot Y, Mingelbier M, Bernatchez L (2008) The landscape genetics of yellow perch (Perca flavescens) in a large fluvial ecosystem. Mol Ecol 17:1702–1717
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17:183–189
    Article  Google Scholar 

    Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425
    Article  Google Scholar 

    Lucas MC, Bubb DH, Jang MH, Ha K, Masters JEG (2009) Availability of and access to critical habitats in regulated rivers: effects of low-head barriers on threatened lampreys. Freshw Biol 54:621–634
    Article  Google Scholar 

    Lynch M (1991) The genetic interpretation of inbreeding depression and outbreeding depression. Evolution 45:622–629
    PubMed  Article  PubMed Central  Google Scholar 

    Lynch M, Conery J, Burger R (1995) Mutation accumulation and the extinction of small populations. Am Nat 146:489–518
    Article  Google Scholar 

    Maitland P, Renaud C, Quintella BA, Close D, Docker M (2015) Conservation of native lampreys. In: Docker M (ed.) Lampreys: Biology, Conservation and Control. Fish & Fisheries Series, vol 37. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9306-3_8

    Malmqvist B (1980) The spawning migration of the brook lamprey, Lampetra planeri Bloch, in a South Swedish stream. J Fish Biol 16:105–114
    Article  Google Scholar 

    Mateus CS, Almeida PR, Quintella BR, Alves MJ (2011) MtDNA markers reveal the existence of allopatric evolutionary lineages in the threatened lampreys Lampetra fluviatilis (L.) and Lampetra planeri (Bloch) in the Iberian glacial refugium. Conserv Genet 12:1061–1074
    Article  Google Scholar 

    Mateus CS, Almeida PR, Mesquita N, Quintella BR, Alves MJ (2016) European Lampreys: New Insights on Postglacial Colonization, Gene Flow and Speciation. PLoS ONE 11:e0148107
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    McPhee MV, Whited DC, Kuzishchin KV, Stanford JA (2014) The effects of riverine physical complexity on anadromy and genetic diversity in steelheador rainbow trout Oncorhynchus mykiss around the Pacific Rim. J Fish Biol 85:132–150
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Meirmans PG (2012) The trouble with isolation by distance. Mol Ecol 21:2839–2846
    PubMed  Article  PubMed Central  Google Scholar 

    Morita K, Yamamoto S (2002) Effects of habitat fragmentation by damming on the persistence of stream‐dwelling charr populations. Conserv Biol 16:1318–1323
    Article  Google Scholar 

    Morrissey MB, de Kerckhove DT (2009) The maintenance of genetic variation due to asymmetric gene flow in dendritic metapopulations. Am Nat. 174:875–889
    PubMed  Article  PubMed Central  Google Scholar 

    Moser ML, Almeida PR, Kemp PS, Sorensen PW (2015) Lamprey spawning migration. In: Docker MF (ed) Lampreys: biology, conservation and control. Springer, Netherlands, pp. 215–252

    Mulligan M, van Soesbergen A, Sáenz L (2020) GOODD, a global dataset of more than 38,000 georeferenced dams. Sci Data 7:31
    PubMed  PubMed Central  Article  Google Scholar 

    Nilsson C, Reidy CA, Dynesius M, Revenga C (2005) Fragmentation and flow regulation of the world’s large river systems. Science (New York, NY) 308:405–408
    CAS  Article  Google Scholar 

    Nimon K, Lewis M, Kane R, Haynes RM (2008) An R package to compute commonality coefficients in the multiple regression case: an introduction to the package and a practical example. Behav Res Methods 40:457–466
    PubMed  Article  PubMed Central  Google Scholar 

    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D et al. (2019) vegan: community ecology package. R package version 2.5-6

    Palumbi SR (2001) Humans as the world’s greatest evolutionary force. Science 293:1786–1790
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Pavlova A, Beheregaray LB, Coleman R, Gilligan D, Harrisson KA, Ingram BA et al. (2017) Severe consequences of habitat fragmentation on genetic diversity of an endangered Australian freshwater fish: a call for assisted gene flow. Evol Appl 10:531–550
    PubMed  PubMed Central  Article  Google Scholar 

    Paz-Vinas I, Loot G, Stevens VM, Blanchet S (2015) Evolutionary processes driving spatial patterns of intraspecific genetic diversity in river ecosystems. Mol Ecol 24:4586–4604
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Paz-Vinas I, Quéméré E, Chikhi L, Loot G, Blanchet S (2013) The demographic history of populations experiencing asymmetric gene flow: combining simulated and empirical data. Mol Ecol 22:3279–3291
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Pereira AM, Robalo JI, Freyhof J, Maia C, Fonseca JP, Valente A et al. (2010) Phylogeographical analysis reveals multiple conservation units in brook lampreys Lampetra planeri of Portuguese streams. J Fish Biol 77:361–371
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Perrier C, Bourret V, Kent MP, Bernatchez L (2013) Parallel and nonparallel genome-wide divergence among replicate population pairs of freshwater and anadromous Atlantic salmon. Mol Ecol 22:5577–5593
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Pollux BJA, Luteijn A, Van Groenendael JM, Ouborg NJ (2008) Gene flow and genetic structure of the aquatic macrophyte Sparganium emersum in a linear unidirectional river. Freshw Biol 54:64–76
    Article  Google Scholar 

    Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959
    CAS  PubMed  PubMed Central  Google Scholar 

    Prunier JG, Colyn M, Legendre X, Nimon KF, Flamand MC (2015) Multicollinearity in spatial genetics: separating the wheat from the chaff using commonality analyses. Mol Ecol 24:263–283
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Quéméré E, Baglinière JL, Roussel JM, Evanno G, McGinnity P, Launey S (2016) Seascape and its effect on migratory life‐history strategy influences gene flow among coastal brown trout (Salmo trutta) populations in the English Channel. J Biogeogr 43:498–509
    Article  Google Scholar 

    R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Raeymaekers JAM, Maes GE, Geldof S, Hontis I, Nackaerts K, Volckaert FAM (2008) Modeling genetic connectivity in sticklebacks as a guideline for river restoration. Evol Appl 1:475–488
    PubMed  PubMed Central  Article  Google Scholar 

    Ralls K, Ballou JD, Dudash MR, Eldridge MDB, Fenster CB, Lacy RC et al. (2018) Call for a paradigm shift in the genetic management of fragmented populations. Conserv Lett 11:e12412
    Article  Google Scholar 

    Renaud CB (1997) Conservation status of Northern Hemisphere lampreys (Petromyzontidae). J Appl Ichthyol 13:143–148
    Article  Google Scholar 

    Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223
    PubMed  Article  PubMed Central  Google Scholar 

    Rosenberg NA (2003) DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes

    Rougemont Q, Gagnaire PA, Perrier C, Genthon C, Besnard AL, Launey S, Evanno G (2017) Inferring the demographic history underlying parallel genomic divergence among pairs of parasitic and nonparasitic lamprey ecotypes. Mol Ecol 26:142–162
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Rougemont Q, Gaigher A, Lasne E, Côte J, Coke M, Besnard AL et al. (2015) Low reproductive isolation and highly variable levels of gene flow reveal limited progress towards speciation between European river and brook lampreys. J Evol Biol 28:2248–2263
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Rougemont Q, Roux C, Neuenschwander S, Goudet J, Launey S, Evanno G (2016) Reconstructing the demographic history of divergence between European river and brook lampreys using approximate Bayesian computations. PeerJ 4e1910

    Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228
    CAS  PubMed  PubMed Central  Google Scholar 

    Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106
    PubMed  PubMed Central  Article  Google Scholar 

    Russon IJ, Kemp PS, Lucas MC (2011) Gauging weirs impede the upstream migration of adult river lamprey Lampetra fluviatilis: lamprey ability to pass gauging weirs. Fish Manag Ecol 18:201–210
    Article  Google Scholar 

    Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494
    CAS  Article  Google Scholar 

    Smith TB, Kinnison MT, Strauss SY, Fuller TL, Carroll SP (2014) Prescriptive evolution to conserve and manage biodiversity. Ann Rev Ecol Evol Syst 45:1–22
    Article  Google Scholar 

    Spice EK, Goodman DH, Reid SB, Docker MF (2012) Neither philopatric nor panmictic: microsatellite and mtDNA evidence suggests lack of natal homing but limits to dispersal in Pacific lamprey. Mol Ecol 21:2916–2930
    PubMed  Article  PubMed Central  Google Scholar 

    Spice EK, Whitesel TA, Silver GS, Docker MF (2019) Contemporary and historical river connectivity influence population structure in western brooklamprey in the Columbia River Basin. Conserv Genet

    Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. Proc Natl Acad Sci USA 101:15261–15264
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7:453–464
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Taverny C, Elie P (2010) Les lamproies en Europe de l‟Ouest – Ecophases, espèces et habitats. Quae, Versailles, France

    Tonteri A, Veselov AJ, Titov S, Lumme J, Primmer CR (2007) The effect of migratory behaviour on genetic diversity and population divergence: a comparison of anadromous and freshwater Atlantic salmon Salmo salar. J Fish Biol 70:381–398
    CAS  Article  Google Scholar 

    Torterotot JB, Perrier C, Bergeron NE, Bernatchez L (2014) Influence of forest road culverts and waterfalls on the fine‐scale distribution of brook trout genetic diversity in a boreal watershed. Trans Am Fish Soc 143:1577–1591
    CAS  Article  Google Scholar 

    Tummers JS, Kerr JR, O’Brien P, Kemp P, Lucas MC (2018) Enhancing the upstream passage of river lamprey at a microhydropower installation using horizontally-mounted studded tiles. Ecol Eng 125:87–97
    Article  Google Scholar 

    UICN Comité français MNHN SFI & AFB (2019) La Liste rouge des espèces menacées en France—Chapitre Poissons d’eau douce de France métropolitaine. Paris, France

    Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of earth’s ecosystems. Science 277:494–499
    CAS  Article  Google Scholar 

    Wang J, Hill WG, Charlesworth D, Charlesworth B (1999) Dynamics of inbreeding depression due to deleterious mutations in small populations: Mutation parameters and inbreeding rate. Genet Res 74(2):165–178. https://doi.org/10.1017/S0016672399003900
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    Warnes GR, Bolker B, Bonebakker L, Gentleman R, Huber W, Liaw A, Lumley T, Maechler M, Magnusson A, Moeller S, Schwartz M, Venables B (2015) gplots: Various R Programming Tools for Plotting Data. R package version 3.0.4. https://CRAN.R-project.org/package=gplots

    Weir B, Cockerham C (1984) Estimating F-statistics for the analysis of population-structure. Evolution 38:1358–1370
    CAS  PubMed  PubMed Central  Google Scholar 

    Whiteley AR, Coombs JA, Hudy M, Robinson Z, Colton AR, Nislow KH, Letcher BH (2013) Fragmentation and patch size shape genetic structure of brook trout populations. Can J Fish Aquat Sci 70:678–688
    Article  Google Scholar 

    Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191
    PubMed  PubMed Central  Google Scholar 

    Yamamoto S, Morita K, Koizumi I, Maekawa K (2004) Genetic differentiation of white-spotted charr (Salvelinus leucomaenis) populations after habitat fragmentation: spatial–temporal changes in gene frequencies. Conserv Genet 5:529–538
    CAS  Article  Google Scholar 

    Yamazaki Y, Yamano A, Oura K (2011) Recent microscale disturbance of gene flow in threatened fluvial lamprey, Lethenteron sp. N, living in a paddywater system. Conserv Genet 12:1373
    Article  Google Scholar 

    Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Genetic structure in Orkney island mice: isolation promotes morphological diversification

    Adams DC (2014) A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Syst Biol 63(5):685–697.
    PubMed  Article  PubMed Central  Google Scholar 

    Adams DC, Otarola-Castillo E (2013) geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods Ecol Evol 4:393–399.
    Article  Google Scholar 

    Berry RJ (1996) Small mammal differentiation on islands. Philos Trans R Soc Lond B 351(1341):753–764.
    CAS  Article  Google Scholar 

    Berry RJ, Tricker BJK (1969) Competition and extinction: the mice of Foula, with notes on those of Fair Isle and St Kilda. J Zool Lond 158:247–265.
    Article  Google Scholar 

    Bonhomme F, Orth A, Cucchi T, Rajabi-Maham H, Catalan J, Boursot P et al. (2011) Genetic differentiation of the house mouse around the Mediterranean basin: matrilineal footprints of early and late colonization. Proc R Soc Lond Biol Sci 278:1034–1043.
    Google Scholar 

    Britton-Davidian J, Caminade P, Davidian E, Pagès M (2017) Does chromosomal change restrict gene flow between house mouse populations (Mus musculus domesticus)? Evidence from microsatellite polymorphisms. Biol J Linn Soc 122(1):224–240.
    Article  Google Scholar 

    Cucchi T (2008) Uluburun shipwreck stowaway house mouse: molar shape analysis and indirect clues about the vessel’s last journey. J Archaeol Sci 35:2953–2959.
    Article  Google Scholar 

    Cucchi T, Barnett R, Martinkova N, Renaud S, Renvoisé E, Evin A et al. (2014) The changing pace of insular life: 5000 years of microevolution in the Orkney vole (Microtus arvalis orcadensis). Evolution 68(10):2804–2820.
    PubMed  PubMed Central  Article  Google Scholar 

    Cucchi T, Kovács ZE, Berthon R, Orth A, Bonhomme F, Evin A et al. (2013) On the trail of Neolithic mice and men towards Transcaucasia: zooarchaeological clues from Nakhchivan (Azerbaijan). Biol J Linn Soc 108:917–928.
    Article  Google Scholar 

    Cucchi T, Papayianni K, Cersoy S, Aznar-Cormano L, Zazzo A, Debruyne R et al. (2020) Tracking the Near Eastern origins and European dispersal of the western house mouse. Sci Rep 10:8276.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Cucchi T, Vigne J-D, Auffray J-C (2005) First occurrence of the house mouse (Mus musculus domesticus Schwarz & Schwarz, 1943) in the Western Mediterranean: a zooarchaeological revision of subfossil occurrences. Biol J Linn Soc 84:429–445.
    Article  Google Scholar 

    Dolédec S, Chessel D (1994) Co-inertia analysis: an alternative method for studying species-environment relationships. Freshw Biol 31(3):277–294.
    Article  Google Scholar 

    Dray S, Dufour A-B (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20.
    Article  Google Scholar 

    Escoufier Y (1973) Le traitement des variables vectorielles. Biometrics 29(4):751–760.
    Article  Google Scholar 

    Excoffier L, Lischer HEL (2010) Arlequin suite ver 3. 5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567.
    PubMed  Article  PubMed Central  Google Scholar 

    Fairley JS, Smal CM (1987) Feral house mice in Ireland. Ir Naturalists’ J 22(7):284–290.
    Google Scholar 

    Gabriel SI, Mathias MDL, Searle JB (2013) Genetic structure of house mouse (Mus musculus Linnaeus 1758) populations in the Atlantic archipelago of the Azores: colonization and dispersal. Biol J Linn Soc 108(4):929–940.
    Article  Google Scholar 

    Gabriel SI, Mathias ML, Searle JB (2015) Of mice and the ‘Age of Discovery’: the complex history of colonization of the Azorean archipelago by the house mouse (Mus musculus) as revealed by mitochondrial DNA variation. J Evolut Biol 28(1):130–114.
    CAS  Article  Google Scholar 

    Ganem G (1998) Behavioural and physiological characteristics of standard and chromosomally divergent populations of house mice from the Orkney archipelago (Scotland). Acta Theriol 43(1):23–38.
    Article  Google Scholar 

    García-Rodríguez O, Andreou D, Herman JS, Mitsainas GP, Searle JB, Bonhomme F et al. (2018) Cyprus as an ancient hub for house mice and humans. J Biogeogr 45:2618–2630.
    Article  Google Scholar 

    Gilbert E, O’Reilly S, Merrigan M, McGettigan D, Vitart V, Joshi PK et al. (2019) The genetic landscape of Scotland and the Isles. Proc Natl Acad Sci USA 116(38):201904761.
    Article  CAS  Google Scholar 

    Gingerich PD, Smith BH, Rosenberg K (1982) Allometric scaling in the dentition of primates and prediction of body weight from tooth size in fossils. Am J Phys Anthropol 58:81–100.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Günduz İ, Auffray J-C, Britton-Davidian J, Catalan J, Ganem G, Ramalhinho MG et al. (2001) Molecular studies on the colonization of the Madeiran archipelago by house mice. Mol Ecol 10:2023–2029.
    PubMed  Article  PubMed Central  Google Scholar 

    Hardouin E, Chapuis J-L, Stevens MI, van Vuuren JB, Quillfeldt P, Scavetta RJ et al. (2010) House mouse colonization patterns on the sub-Antarctic Kerguelen Archipelago suggest singular primary invasions and resilience against re-invasion. BMC Evolut Biol 10:325.
    Article  Google Scholar 

    Hayden L, Lochovska L, Sémon M, Renaud S, Delignette-Muller M-L, Vicot M et al. (2020) Developmental variability channels mouse molar evolution. eLife 9:e50103.
    PubMed  PubMed Central  Article  Google Scholar 

    Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11(1):94.
    PubMed  PubMed Central  Article  Google Scholar 

    Jones EP, Eager HM, Gabriel SI, Jóhannesdóttir F, Searle JB (2013) Genetic tracking of mice and other bioproxies to infer human history. Trends Genet 29(5):298–308.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Jones EP, Jensen J-K, Magnussen E, Gregersen N, Hansen HS, Searle JB (2011a) A molecular characterization of the charismatic Faroe house mouse. Biol J Linn Soc 102:471–482.
    Article  Google Scholar 

    Jones EP, Jóhannesdóttir F, Gündüz İ, Richards MB, Searle JB (2011b) The expansion of the house mouse into north-western Europe. J Zool Lond 283(4):257–268.
    Article  Google Scholar 

    Jones EP, Skirnisson K, McGovern T, Gilbert M, Willerslev E, Searle JB (2012) Fellow travellers: a concordance of colonization patterns between mice and men in the North Atlantic region. BMC Evolut Biol 12(1):35.
    Article  Google Scholar 

    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Ledevin R, Chevret P, Ganem G, Britton-Davidian J, Hardouin EA, Chapuis J-L et al. (2016) Phylogeny and adaptation shape the teeth of insular mice. Proc R Soc Lond Biol Sci 283:20152820.
    Google Scholar 

    Leigh JW, Bryant D (2015) POPART: full-feature software for haplotype network construction. Methods Ecol Evol 6(9):1110–1116.
    Article  Google Scholar 

    Leslie S, Winney B, Hellenthal G, Davison D, Boumertit A, Day T et al. (2015) The fine-scale genetic structure of the British population. Nature 519(7543):309–314.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Lomolino MV (1985) Body size of mammals on islands: the island rule reexamined. Am Naturalist 125:310–316.
    Article  Google Scholar 

    Lomolino MV (2005) Body size evolution in insular vertebrates: generality of the island rule. J Biogeogr 32:1683–1699.
    Article  Google Scholar 

    Lomolino MV, Sax DF, Palombo MR, van der Geer AA (2012) Of mice and mammoths: evaluations of causal explanations for body size evolution in insular mammals. J Biogeogr 39:842–854.
    Article  Google Scholar 

    Losos JB, Ricklefs RE (2009) Adaptation and diversification on islands. Nature 457(7231):830–836.
    CAS  PubMed  Article  Google Scholar 

    Martínková N, Barnett R, Cucchi T, Struchen R, Pascal M, Pascal M et al. (2013) Divergent evolutionary processes associated with colonization of offshore islands. Mol Ecol 22:5205–5220.
    PubMed  PubMed Central  Article  Google Scholar 

    Millien V (2006) Morphological evolution is accelerated among island mammals. PLoS Biol 4(10):e321.
    PubMed  PubMed Central  Article  Google Scholar 

    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB et al. (2013) Vegan: Community Ecology Package. R Package Version. 2.0-10. CRAN.

    Peres-Neto PR, Jackson DA (2001) How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia 129(2):169–178.
    PubMed  Article  PubMed Central  Google Scholar 

    Pocock MJO, Searle JB, White PCL (2004) Adaptations of animals to commensal habitats: population dynamics of house mice Mus musculus domesticus on farms. J Anim Ecol 73:878–888.
    Article  Google Scholar 

    Polly PD (2004) On the simulation of the evolution of morphological shape: multivariate shape under selection and drift. Palaeontol Electron 7(2):7A:28.
    Google Scholar 

    Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959.
    CAS  PubMed  PubMed Central  Google Scholar 

    Renaud S, Chevret P, Michaux J (2007) Morphological vs. molecular evolution: ecology and phylogeny both shape the mandible of rodents. Zool Scr 36:525–535.
    Article  Google Scholar 

    Renaud S, Hardouin EA, Quéré J-P, Chevret P (2017) Morphometric variations at an ecological scale: seasonal and local variations in feral and commensal house mice. Mamm Biol 87:1–12.
    Article  Google Scholar 

    Renaud S, Ledevin R, Souquet L, Gomes Rodrigues H, Ginot S, Agret S et al. (2018) Evolving teeth within a stable masticatory apparatus in Orkney mice. Evolut Biol 45(4):405–424.
    Article  Google Scholar 

    Renaud S, Pantalacci S, Auffray J-C (2011) Differential evolvability along lines of least resistance of upper and lower molars in island house mice. PLoS One 6(5):e18951.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Romaniuk AA, Shepherd AN, Clarke DV, Sheridan AJ, Fraser S, Bartosiewicz L et al. (2016) Rodents: food or pests in Neolithic Orkney. R Soc Open Sci 3(10):160514.
    PubMed  PubMed Central  Article  Google Scholar 

    Ronquist F, Teslenko M, Pvd Mark, Ayres D, Darling A, Höhna S et al. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61(3):539–542.
    PubMed  PubMed Central  Article  Google Scholar 

    Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE et al. (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34:3299–3302.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Searle JB, Jones CS, Gündüz İ, Scascitelli M, Jones EP, Herman JS et al. (2009) Of mice and (Viking?) men: phylogeography of British and Irish house mice. Proc R Soc Lond Biol Sci 276:201–207.
    CAS  Google Scholar 

    Sendell-Price AT, Ruegg KC, Clegg SM (2020) Rapid morphological divergence following a human-mediated introduction: the role of drift and directional selection. Heredity 124:535–549.
    PubMed  PubMed Central  Article  Google Scholar 

    Solano E, Franchini P, Colangelo P, Capanna E, Castiglia R (2013) Multiple origins of the western European house mouse in the Aeolian Archipelago: clues from mtDNA and chromosomes. Biol Invasions 15(4):729–739.
    Article  Google Scholar 

    Souquet L, Chevret P, Ganem G, Auffray J-C, Ledevin R, Agret S et al. (2019) Back to the wild: does feralization affect the mandible of non-commensal house mice (Mus musculus domesticus)? Biol J Linn Soc 126:471–486.
    Article  Google Scholar 

    van der Geer AA, Lyras GA, Lomolino MV, Palombo MR, Sax DF (2013) Body size evolution of palaeo-insular mammals: temporal variations and interspecific interactions. J Biogeogr 40:1440–1450.
    Article  Google Scholar  More

  • in

    Lactobacillus spp. attenuate antibiotic-induced immune and microbiota dysregulation in honey bees

    LX3 enhances larval pathogen eradication by antibiotics
    Prophylactic administration of OTC to honey bees is a common practice in beekeeping for the prevention of AFB. To evaluate the efficacy of this long-standing apiculture management strategy, we monitored a 2-week treatment regimen with OTC under natural field conditions in honey bee hives experiencing low-grade chronic infection with P. larvae (Fig. 1a). Using a qPCR-based approach to enumerate pathogen load, P. larvae abundance was found to be significantly lower in honey bee larvae (primary target of AFB) at week 1 and week 2 of OTC treatment (Kruskal–Wallis with Dunn’s multiple comparisons, P = 0.0071 and P = 0.0005, respectively) compared to baseline levels at day 0 (Fig. 1b). In contrast, no observable differences in P. larvae abundance were found in adult honey bees (active vector of AFB) at any time point during this treatment (Kruskal–Wallis with Dunn’s multiple comparisons, P = 0.9999, P = 0.6367, respectively; Fig. 1c).
    Fig. 1: LX3 enhances larval pathogen eradication by antibiotics.

    Experimental hives were subjected to standard antibiotic treatment with oxytetracycline (OTC) for 2 weeks and then supplemented for 4 weeks with either pollen patties containing LX3 (LX3) or pollen patties containing vehicle (VEH). No treatment control (NTC) hives received no further treatment after OTC. a Schematic diagram outlining the experimental design. b, c Molecular-based quantification of P. larvae in honey bee larvae (whole body) and adults (dissected abdomen) collected just prior to the start of OTC exposure (A.0), and then after 1 (A.1) and 2 (A.2) weeks of exposure. Data are depicted as median ± 95% confidence intervals (Kruskal–Wallis with Dunn’s multiple comparisons) at different time points. Each data point represents either one individual (adults) or three pooled individuals (larvae) sampled equally from a total of n = 6 hives. d, e Molecular-based quantification of P. larvae in larvae (whole body) and adults (dissected whole abdomens) at the start of the supplementation period (S.0; corresponding to 3 days post A.2 time point), and then after 2 (S.2) and 4 (S.4) weeks. Data are depicted as mean ± standard deviation (two-way ANOVA with Sidak’s multiple comparisons) at different time points with each data point representing either one individual (adults) or three pooled individuals (larvae) sampled equally from n = 4 hives per treatment group. f, g Capped brood counts during OTC treatment (n = 6 hives) and subsequent supplementation period (n = 4 hives per treatment group). Data represents the median (line in box), IQR (box), and minimum/maximum (whiskers) of relative change in brood counts normalized by hive. Statistics shown for one-way and two-way ANOVA, respectively, with Sidak’s multiple comparisons for both. **P  More