Coupled changes in soil organic carbon fractions and microbial community composition in urban and suburban forests
1.
Hui, D., Deng, Q., Tian, H. & Luo, Y. Climate Change and Carbon Sequestration in Forest Ecosystems 555–594 (Springer, New York, 2017).
Google Scholar
2.
Lal, R. & Augustin, B. Carbon Sequestration in Urban Ecosystems (Springer, Dordrecht, 2012).
Google Scholar
3.
Zhang, J. & Sta, P. Effects of urbanization on forest vegetation, soil and landscape. Acta Ecol. Sin. 19, 654–658 (1999).
Google Scholar
4.
George, K., Ziska, L. H., Bunce, J. A. & Quebedeaux, B. Elevated atmospheric CO2 concentration and temperature across an urban–rural transect. Atmos. Environ. 41, 7654–7665. https://doi.org/10.1016/j.atmosenv.2007.08.018 (2007).
ADS CAS Article Google Scholar
5.
Pouyat, R. V. et al. Soil Carbon in Urban Forest Ecosystems (CRC Press, Cambridge, 2003).
Google Scholar
6.
Zhang, W. et al. Methane uptake in forest soils along an urban-to-rural gradient in Pearl River Delta, South China. Sci. Rep. 4, 5120. https://doi.org/10.1038/srep05120 (2014).
CAS Article PubMed PubMed Central Google Scholar
7.
Zhou, D. et al. Spatiotemporal trends of urban heat island effect along the urban development intensity gradient in China. Sci. Total Environ. 544, 617–626. https://doi.org/10.1016/j.scitotenv.2015.11.168 (2016).
ADS CAS Article PubMed Google Scholar
8.
Norman, J., MacLean, H. L. & Kennedy, C. A. Comparing high and low residential density: Life-cycle analysis of energy use and greenhouse gas emissions. J. Urban Plan. Dev. 132, 10–21. https://doi.org/10.1061//ASCE/0733-9488/2006/132:1/10 (2006).
Article Google Scholar
9.
Carreiro, M. M. & Tripler, C. E. Forest remnants along urban-rural gradients: Examining their potential for global change research. Ecosystems 8, 568–582. https://doi.org/10.1007/s10021-003-0172-6 (2005).
Article Google Scholar
10.
Meng, L. et al. Responses of ecosystem carbon cycle to experimental warming: A meta-analysis. Ecology 94, 726. https://doi.org/10.1890/12-0279.1 (2013).
Article Google Scholar
11.
Lukac, M. et al. Forest soil carbon cycle under elevated CO2—A case of increased throughput?. Forestry 82, 75–86. https://doi.org/10.1093/forestry/cpn041 (2009).
Article Google Scholar
12.
Luo, Y. & Weng, E. Dynamic disequilibrium of the terrestrial carbon cycle under global change. Trends Ecol. Evol. 26, 96–104. https://doi.org/10.1016/j.tree.2010.11.003 (2011).
Article PubMed Google Scholar
13.
Deng, Q. et al. Effects of CO2 enrichment, high nitrogen deposition and high precipitation on a model forest ecosystem in southern China. Chin. J. Plant Ecol. 33, 1023–1033 (2009).
Google Scholar
14.
De Graaff, M., Van Groenigen, K., Six, J. & Hungate, B. K. C. Interactions between plant growth and soil nutrient cycling under elevated CO2: A meta-analysis. Glob. Change Biol. 12, 2077–2091. https://doi.org/10.1111/j.1365-2486.2006.01240.x (2010).
Article Google Scholar
15.
Chen, X., Deng, Q., Lin, G., Lin, M. & Wei, H. Changing rainfall frequency affects soil organic carbon concentrations by altering non-labile soil organic carbon concentrations in a tropical monsoon forest. Sci. Total Environ. 644, 762–769. https://doi.org/10.1016/j.scitotenv.2018.07.035 (2018).
ADS CAS Article PubMed Google Scholar
16.
Stockmann, U. et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric. Ecosyst. Environ. 164, 80–99. https://doi.org/10.1016/j.agee.2012.10.001 (2013).
CAS Article Google Scholar
17.
von Lützow, M. et al. SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biol. Biochem. 39, 2183–2207. https://doi.org/10.1016/j.soilbio.2007.03.007 (2007).
CAS Article Google Scholar
18.
Garten, C. T. Comparison of forest soil carbon dynamics at five sites along a latitudinal gradient. Geoderma 167–168, 30–40. https://doi.org/10.1016/j.geoderma.2011.08.007 (2011).
ADS CAS Article Google Scholar
19.
Mclauchlan, K. K. & Hobbie, S. E. Comparison of labile soil organic matter fractionation techniques. Soil Sci. Soc. Am. J. 68, S34–S34. https://doi.org/10.2136/sssaj2004.1616 (2004).
Article Google Scholar
20.
von Lützow, M. et al. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions—A review. Eur. J. Soil Sci. 57, 426–445. https://doi.org/10.1111/j.1365-2389.2006.00809.x (2006).
CAS Article Google Scholar
21.
Schmidt, M. W. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56. https://doi.org/10.1038/nature10386 (2011).
ADS CAS Article PubMed Google Scholar
22.
Pan, G. et al. Soil carbon sequestration with bioactivity: A new emerging frontier for sustainable soil management. Adv. Earth Sci. 30, 940–951 (2015).
CAS Google Scholar
23.
You, Y. et al. Relating microbial community structure to functioning in forest soil organic carbon transformation and turnover. Ecol. Evol. 4, 633–647. https://doi.org/10.1002/ece3.969 (2014).
Article PubMed PubMed Central Google Scholar
24.
Shao, S. et al. Linkage of microbial residue dynamics with soil organic carbon accumulation during subtropical forest succession. Soil Biol. Biochem. 114, 114–120. https://doi.org/10.1016/j.soilbio.2017.07.007 (2017).
CAS Article Google Scholar
25.
Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter?. Glob. Change Biol. 19, 988–995. https://doi.org/10.1111/gcb.12113 (2013).
ADS Article Google Scholar
26.
Newbound, M., Bennett, L. T., Tibbits, J. & Kasel, S. Soil chemical properties, rather than landscape context, influence woodland fungal communities along an urban-rural gradient. Austral. Ecol. 37, 236–247. https://doi.org/10.1111/j.1442-9993.2011.02269.x (2012).
Article Google Scholar
27.
Chai, L. et al. Urbanization altered regional soil organic matter quantity and quality: Insight from excitation emission matrix (EEM) and parallel factor analysis (PARAFAC). Chemosphere 220, 249–258. https://doi.org/10.1016/j.chemosphere.2018.12.132 (2019).
ADS CAS Article PubMed Google Scholar
28.
Wang, Y. D., Wang, H. M., Xu, M. J., Ma, Z. Q. & Wang, Z. L. Soil organic carbon stocks and CO2 effluxes of native and exotic pine plantations in subtropical China. CATENA 128, 167–173. https://doi.org/10.1016/j.catena.2015.02.003 (2015).
CAS Article Google Scholar
29.
Zhou, G. et al. Old-growth forests can accumulate carbon in soils. Science 314, 1417. https://doi.org/10.1126/science.1130168 (2006).
ADS CAS Article PubMed Google Scholar
30.
Chen, H. et al. Changes in soil carbon sequestration in Pinus massoniana forests along an urban-to-rural gradient of southern China. Biogeosciences 10, 6609–6616. https://doi.org/10.5194/bg-10-6609-2013 (2013).
ADS CAS Article Google Scholar
31.
Fang, Y. T., Gundersen, P., Mo, J. M. & Zhu, W. X. Input and output of dissolved organic and inorganic nitrogen in subtropical forests of South China under high air pollution. Biogeosciences 5, 339–352 (2008).
ADS CAS Article Google Scholar
32.
Hou, E., Xiang, H., Li, J., Li, J. & Wen, D. Heavy metal contamination in soils of remnant natural and plantation forests in an urbanized region of the Pearl River Delta, China. Forests 5, 885–900. https://doi.org/10.3390/f5050885 (2014).
Article Google Scholar
33.
Huang, L. The Characteristics of Remnant Lower Subtropical Evergreen Broad-Leaved Forests and Their Relationships with Environmental Factors in Urbanized Areas (South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 2012).
Google Scholar
34.
Song, P. et al. Effects of historical logging on soil microbial communities in a subtropical forest in southern China. Plant Soil 397, 115–126. https://doi.org/10.1007/s11104-015-2553-y (2015).
CAS Article Google Scholar
35.
Sun, F. F., da Wen, Z., Kuang, Y. W., Li, J. & Zhang, J. G. Concentrations of sulphur and heavy metals in needles and rooting soils of Masson pine (Pinus massoniana L.) trees growing along an urban-rural gradient in Guangzhou, China. Environ. Monit. Assess. 154, 263–274. https://doi.org/10.1007/s10661-008-0394-3 (2009).
CAS Article PubMed Google Scholar
36.
Groffman, P. M., Pouyat, R. V., McDonnell, M. J., Pickett, S. T. & Zipperer, W. C. Carbon pools and trace gas fluxes in urban forest soils. In Soil Management and Greenhouse Effect: Advances in Soil Science (eds Kimble, J. M. et al.) 147–158 (CRC Press, Amsterdam, 1995).
Google Scholar
37.
Koerner, B. A. & Klopatek, J. M. Carbon fluxes and nitrogen availability along an urban–rural gradient in a desert landscape. Urban Ecosyst. 13, 1–21. https://doi.org/10.1007/s11252-009-0105-z (2009).
Article Google Scholar
38.
Dungait, J. A. J., Hopkins, D. W., Gregory, A. S. & Whitmore, A. P. Soil organic matter turnover is governed by accessibility not recalcitrance. Glob. Change Biol. 18, 1781–1796. https://doi.org/10.1111/j.1365-2486.2012.02665.x (2012).
ADS Article Google Scholar
39.
Leifeld, J. & Kögel-Knabner, I. Soil organic matter fractions as early indicators for carbon stock changes under different land-use?. Geoderma 124, 143–155. https://doi.org/10.1016/j.geoderma.2004.04.009 (2005).
ADS CAS Article Google Scholar
40.
Pouyat, R., Groffman, P., Yesilonis, I. & Hernandez, L. Soil carbon pools and fluxes in urban ecosystems. Environ. Pollut. 116, S107–S118. https://doi.org/10.1016/s0269-7491(01)00263-9 (2002).
CAS Article PubMed Google Scholar
41.
Nadelhoffer, K. J. & Raich, J. W. Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology 73, 1139–1147. https://doi.org/10.2307/1940664 (1992).
Article Google Scholar
42.
Luo, Z., Feng, W., Luo, Y., Baldock, J. & Wang, E. Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions. Glob. Change Biol. 23, 4430–4439. https://doi.org/10.1111/gcb.13767 (2017).
ADS Article Google Scholar
43.
Urbanová, M., Šnajdr, J. & Baldrian, P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol. Biochem. 84, 53–64. https://doi.org/10.1016/j.soilbio.2015.02.011 (2015).
CAS Article Google Scholar
44.
Bowden, R. D. et al. litter input controls on soil carbon in a temperate deciduous forest. Soil Sci. Soc. Am. J. 78, S66–S75. https://doi.org/10.2136/sssaj2013.09.0413nafsc (2014).
Article Google Scholar
45.
Carreiro, M. M., Howe, K., Parkhurst, D. F. & Pouyat, R. V. Variation in quality and decomposability of red oak leaf litter along an urban-rural gradient. Biol. Fertil. Soils 30, 258–268. https://doi.org/10.1007/s003740050617 (1999).
Article Google Scholar
46.
Xu, X. & Hirata, E. Decomposition patterns of leaf litter of seven common canopy species in a subtropical forest: N and P dynamics. Plant Soil 273, 279–289. https://doi.org/10.1007/s11104-004-8069-5 (2005).
CAS Article Google Scholar
47.
Wang, Q., Wang, S., Feng, Z. & Huang, Y. Active soil organic matter and its relationship with soil quality. Acta Ecol. Sin. 25, 513–519 (2005).
CAS Google Scholar
48.
Hu, S., Coleman, D. C., Carroll, C. R., Hendrix, P. F. & Beare, M. H. Labile soil carbon pools in subtropical forest and agricultural ecosystems as influenced by management practices and vegetation types. Agric. Ecosyst. Environ. 65, 69–78. https://doi.org/10.1016/s0167-8809(97)00049-2 (1997).
CAS Article Google Scholar
49.
Blair, G. J., Lefroy, R. & Lisle, L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Aust. J. Agric. Res. 46, 393–406. https://doi.org/10.1071/AR9951459 (1995).
Article Google Scholar
50.
Chen, X. et al. Effects of precipitation on soil organic carbon fractions in three subtropical forests in southern China. J. Plant Ecol. 9(1), 10–19. https://doi.org/10.1093/jpe/rtv027 (2015).
Article Google Scholar
51.
Culman, S. W. et al. Permanganate oxidizable carbon reflects a processed soil fraction that is sensitive to management. Soil Sci. Soc. Am. J. 76, 494. https://doi.org/10.2136/sssaj2011.0286 (2012).
ADS CAS Article Google Scholar
52.
Chen, S., Wang, X. & Lu, F. Research on forest microbial community function variations in urban and suburban forests. Chin. J. Soil Sci. 1, 614–620. https://doi.org/10.1001/archophthalmol.2012.1393 (2012).
Article Google Scholar
53.
Zhao, Z. & Guo, H. Effects of urbanization on the quantity changes of microbes in urban-to-rural gradient forest soil. J. Anhui Agric. Sci. 38, 5188–5190 (2010).
Google Scholar
54.
Hackl, E., Pfeffer, M., Donat, C., Bachmann, G. & Zechmeister-Boltenstern, S. Composition of the microbial communities in the mineral soil under different types of natural forest. Soil Biol. Biochem. 37, 661–671. https://doi.org/10.1016/j.soilbio.2004.08.023 (2005).
CAS Article Google Scholar
55.
Brant, J. B., Myrold, D. D. & Sulzman, E. W. Root controls on soil microbial community structure in forest soils. Oecologia 148, 650–659. https://doi.org/10.1007/s00442-006-0402-7 (2006).
ADS Article PubMed Google Scholar
56.
Wang, H. et al. Stable soil organic carbon is positively linked to microbial-derived compounds in four plantations of subtropical China. Biogeosci. Discuss. 10, 18093–18119. https://doi.org/10.5194/bgd-10-18093-2013 (2013).
ADS Article Google Scholar
57.
Six, J., Frey, S. D., Thiet, R. K. & Batten, K. M. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J. 70, 555–569. https://doi.org/10.2136/sssaj2004.0347 (2006).
ADS CAS Article Google Scholar
58.
Ziegler, S. E., Billings, S. A., Lane, C. S., Li, J. & Fogel, M. L. Warming alters routing of labile and slower-turnover carbon through distinct microbial groups in boreal forest organic soils. Soil Biol. Biochem. 60, 23–32. https://doi.org/10.1016/j.soilbio.2013.01.001 (2013).
CAS Article Google Scholar
59.
Baum, C., Fienemann, M., Glatzel, S. & Gleixner, G. Overstory-specific effects of litter fall on the microbial carbon turnover in a mature deciduous forest. For. Ecol. Manage. 258, 109–114. https://doi.org/10.1016/j.foreco.2009.03.047 (2009).
Article Google Scholar
60.
Creamer, C. A. et al. Microbial community structure mediates response of soil C decomposition to litter addition and warming. Soil Biol. Biochem. 80, 175–188. https://doi.org/10.1016/j.soilbio.2014.10.008 (2015).
CAS Article Google Scholar
61.
Kramer, C. & Gleixner, G. Variable use of plant- and soil-derived carbon by microorganisms in agricultural soils. Soil Biol. Biochem. 38, 3267–3278. https://doi.org/10.1016/j.soilbio.2006.04.006 (2006).
CAS Article Google Scholar
62.
Brabcová, V., Štursová, M. & Baldrian, P. Nutrient content affects the turnover of fungal biomass in forest topsoil and the composition of associated microbial communities. Soil Biol. Biochem. 118, 187–198. https://doi.org/10.1016/j.soilbio.2017.12.012 (2018).
CAS Article Google Scholar
63.
Kaur, A., Chaudhary, A., Kaur, A., Choudhary, R. & Kaushik, R. Phospholipid fatty acid—A bioindicator of environment monitoring and assessment in soil ecosystem. Curr. Sci. 89, 1103–1112 (2005).
CAS Google Scholar
64.
Hanson, C. A., Allison, S. D., Bradford, M. A., Wallenstein, M. D. & Treseder, K. K. Fungal taxa target different carbon sources in forest soil. Ecosystems 11, 1157–1167. https://doi.org/10.1007/s10021-008-9186-4 (2008).
CAS Article Google Scholar
65.
Liu, M., Hu, F. & Chen, X. A review on mechanisms of soil organic carbon stabilization. Acta Ecol. Sin. 27, 2642–2650 (2007).
CAS Article Google Scholar
66.
Fang, Y. et al. Nitrogen deposition and forest nitrogen cycling along an urban-rural transect in southern China. Glob. Change Biol. 17, 872–885. https://doi.org/10.1111/j.1365-2486.2010.02283.x (2011).
ADS Article Google Scholar
67.
Huang, L., Zhu, W., Ren, H., Chen, H. & Wang, J. Impact of atmospheric nitrogen deposition on soil properties and herb-layer diversity in remnant forests along an urban–rural gradient in Guangzhou, southern China. Plant Ecol. 213, 1187–1202. https://doi.org/10.1007/s11258-012-0080-y (2012).
Article Google Scholar
68.
He, J. et al. Stoichiometric characteristics of soil C, N and P in subtropical forests along an urban-to-suburb gradient. Chin. J. Ecol. 35, 591–596 (2016).
Google Scholar
69.
Wu, J. et al. Prolonged acid rain facilitates soil organic carbon accumulation in a mature forest in Southern China. Sci. Total Environ. 544, 94–102. https://doi.org/10.1016/j.scitotenv.2015.11.025 (2016).
ADS CAS Article PubMed Google Scholar
70.
Duan, H., Liu, J., Deng, Q., Chen, X. & Zhang, D. Effects of elevated CO2 and N deposition on plant biomass accumulation and allocation in subtropical forest ecosystems: A mesocosm study. Chin. J. Plant Ecol. 33, 570–579. https://doi.org/10.1080/01443610410001685646 (2009).
CAS Article Google Scholar
71.
Chen, X., Liu, J., Deng, Q., Yan, J. & Zhang, D. Effects of elevated CO2 and nitrogen addition on soil organic carbon fractions in a subtropical forest. Plant Soil 357, 25–34. https://doi.org/10.1007/s11104-012-1145-3 (2012).
CAS Article Google Scholar
72.
Bird, J. A., Herman, D. J. & Firestone, M. K. Rhizosphere priming of soil organic matter by bacterial groups in a grassland soil. Soil Biol. Biochem. 43, 718–725. https://doi.org/10.1016/j.soilbio.2010.08.010 (2011).
CAS Article Google Scholar
73.
Hopkins, F. M. et al. Increased belowground carbon inputs and warming promote loss of soil organic carbon through complementary microbial responses. Soil Biol. Biochem. 76, 57–69. https://doi.org/10.1016/j.soilbio.2014.04.028 (2014).
CAS Article Google Scholar
74.
Curlevski, N. J. A., Drigo, B., Cairney, J. W. G. & Anderson, I. C. Influence of elevated atmospheric CO2 and water availability on soil fungal communities under Eucalyptus saligna. Soil Biol. Biochem. 70, 263–271. https://doi.org/10.1016/j.soilbio.2013.12.010 (2014).
CAS Article Google Scholar
75.
Crow, S. E. et al. Sources of plant-derived carbon and stability of organic matter in soil: Implications for global change. Glob. Change Biol. 15, 2003–2019. https://doi.org/10.1111/j.1365-2486.2009.01850.x (2009).
ADS Article Google Scholar
76.
Fontaine, S., Mariotti, A. & Abbadie, L. The priming effect of organic matter: A question of microbial competition?. Soil Biol. Biochem. 35, 837–843. https://doi.org/10.1016/s0038-0717(03)00123-8 (2003).
CAS Article Google Scholar
77.
Zhou, D., Zhao, S., Liu, S. & Zhang, L. Spatiotemporal trends of terrestrial vegetation activity along the urban development intensity gradient in China’s 32 major cities. Sci. Total Environ. 488–489, 136–145. https://doi.org/10.1016/j.scitotenv.2014.04.080 (2014).
ADS CAS Article PubMed Google Scholar
78.
Liu, L. et al. Interactive effects of nitrogen and phosphorus on soil microbial communities in a tropical forest. PLoS ONE 8, e61188. https://doi.org/10.1371/journal.pone.0061188 (2013).
ADS CAS Article PubMed PubMed Central Google Scholar
79.
Saetre, P. & Bååth, E. Spatial variation and patterns of soil microbial community structure in a mixed spruce–birch stand. Soil Biol. Biochem. 32, 909–917. https://doi.org/10.1016/s0038-0717(99)00215-1 (2000).
CAS Article Google Scholar
80.
Bossio, D. A., Scow, K. M., Gunapala, N. & Graham, K. J. Determinants of soil microbial communities: Effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microb. Ecol. 36, 1–12. https://doi.org/10.1007/s002489900087 (1998).
CAS Article PubMed Google Scholar
81.
Wei, H., Chen, X., He, J., Zhang, J. & Shen, W. Exogenous nitrogen addition reduced the temperature sensitivity of microbial respiration without altering the microbial community composition. Front. Microbiol. 8, 2382. https://doi.org/10.3389/fmicb.2017.02382 (2017).
Article PubMed PubMed Central Google Scholar More