More stories

  • in

    Under-ice observations by trawls and multi-frequency acoustics in the Central Arctic Ocean reveals abundance and composition of pelagic fauna

    Stroeve, J. & Notz, D. Changing state of Arctic sea ice across all seasons. Environ. Res. Lett. 13, 103001 (2018).Article 
    ADS 

    Google Scholar 
    Polyakov, I. V. et al. Borealization of the Arctic Ocean in response to anomalous advection from sub-Arctic seas. Front. Mar. Sci. 7, 983–992 (2020).Article 

    Google Scholar 
    Lannuzel, D. et al. The future of Arctic sea-ice biogeochemistry and ice-associated ecosystems. Nat. Clim. Change. 10, 983–992 (2020).Article 
    ADS 

    Google Scholar 
    Macias-Fauria, M. & Post, E. Effects of sea ice on Arctic biota: An emerging crisis discipline. Biol. Lett. 14, 20170702 (2018).Article 

    Google Scholar 
    Kohlbach, D. et al. The importance of ice algae-produced carbon in the central Arctic Ocean ecosystem: Food web relationships revealed by lipid and stable isotope analyses. Limnol. Oceanogr. 61, 2027–2044 (2016).Article 
    ADS 

    Google Scholar 
    Søreide, J. E. et al. Sympagic-pelagic-benthic coupling in Arctic and Atlantic waters around Svalbard revealed by stable isotopic and fatty acid tracers. Mar. Biol. Res. 9, 831–850 (2013).Article 

    Google Scholar 
    Slagstad, D., Wassmann, P. F. J. & Ellingsen, I. Physical constrains and productivity in the future Arctic Ocean. Front. Mar. Sci. 2015, 2 (2015).
    Google Scholar 
    FISCAO. Final Report of the Fifth Meeting of Scientific Experts on Fish Stocks in the Central Arctic Ocean. https://apps-afsc.fisheries.noaa.gov/documents/Arctic_fish_stocks_fifth_meeting/508_Documents/508_Final_report_of_the_505th_FiSCAO_meeting.pdf (2018).David, C. et al. Under-ice distribution of polar cod Boreogadus saida in the central Arctic Ocean and their association with sea-ice habitat properties. Polar Biol. 39, 981–994 (2016).Article 

    Google Scholar 
    Gradinger, R. Vertical fine structure of the biomass and composition of algal communities in Arctic pack ice. Mar. Biol. 133, 745–754 (1999).Article 

    Google Scholar 
    Kosobokova, K. N., Hopcroft, R. R. & Hirche, H.-J. Patterns of zooplankton diversity through the depths of the Arctic’s central basins. Mar Biodivers. 41, 29–50 (2011).Article 

    Google Scholar 
    Mumm, N. et al. Breaking the ice: Large-scale distribution of mesozooplankton after a decade of Arctic and transpolar cruises. Polar Biol. 20, 189–197 (1998).Article 

    Google Scholar 
    Snoeijs-Leijonmalm, P. et al. Unexpected fish and squid in the central Arctic deep scattering layer. Sci. Adv. 8, 7536 (2022).Article 

    Google Scholar 
    David, C., Lange, B., Rabe, B. & Flores, H. Community structure of under-ice fauna in the Eurasian central Arctic Ocean in relation to environmental properties of sea-ice habitats. Mar. Ecol. Prog. Ser. 522, 15–32 (2015).Article 
    ADS 

    Google Scholar 
    Gosselin, M., Levasseur, M., Wheeler, P. A., Horner, R. A. & Booth, B. C. New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep-Sea Res. Part II(44), 1623–1644 (1997).Article 
    ADS 

    Google Scholar 
    Ardyna, M. & Arrigo, K. R. Phytoplankton dynamics in a changing Arctic Ocean. Nat. Clim. Change. 10, 892–903 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Hays, G. C. In Migrations and Dispersal of Marine Organisms. (eds Jones, M. B. et al.) 163–170 (Springer).Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5, 3271 (2014).Article 
    ADS 

    Google Scholar 
    Geoffroy, M. et al. Mesopelagic sound scattering layers of the high arctic: Seasonal variations in biomass, species assemblage, and trophic relationships. Front. Mar. Sci. 2019, 6 (2019).
    Google Scholar 
    Gjøsæter, H., Wiebe, P. H., Knutsen, T. & Ingvaldsen, R. B. Evidence of Diel vertical migration of mesopelagic sound-scattering organisms in the Arctic. Front. Mar. Sci. 2017, 4 (2017).
    Google Scholar 
    Knutsen, T., Wiebe, P. H., Gjøsæter, H., Ingvaldsen, R. B. & Lien, G. High latitude epipelagic and mesopelagic scattering layers—a reference for future arctic ecosystem change. Front. Mar. Sci. 2017, 4 (2017).
    Google Scholar 
    Priou, P. et al. Dense mesopelagic sound scattering layer and vertical segregation of pelagic organisms at the Arctic-Atlantic gateway during the midnight sun. Prog. Oceanogr. 196, 102611 (2021).Article 

    Google Scholar 
    Snoeijs-Leijonmalm, P. et al. A deep scattering layer under the North Pole pack ice. Prog. Oceanogr. 194, 102560 (2021).Article 

    Google Scholar 
    St-John, M. A. et al. A dark hole in our understanding of marine ecosystems and their services: Perspectives from the mesopelagic community. Front. Mar. Sci. 2016, 3 (2016).
    Google Scholar 
    Fransson, A. et al. Joint cruise 2-2 2021: Cruise report. The Nansen Legacy Report Series, 30/2022. https://doi.org/10.7557/nlrs.6413 (2022).Rudels, B. et al. Observations of water masses and circulation with focus on the Eurasian Basin of the Arctic Ocean from the 1990s to the late 2000s. Ocean Sci. 9, 147–169 (2013).Article 
    ADS 

    Google Scholar 
    Krumpen, T. et al. Arctic warming interrupts the Transpolar Drift and affects long-range transport of sea ice and ice-rafted matter. Sci. Rep. 9, 5459 (2019).Article 
    ADS 

    Google Scholar 
    Aagaard, K. A synthesis of the Arctic Ocean circulation. Rapp. P.-V. Rcun. Cons. int. Explor. Mer. 188, 11–22 (1989).
    Google Scholar 
    Perez-Hernandez, M. D. et al. The Atlantic Water boundary current north of Svalbard in late summer. J. Geophys. Res. 122, 2269–2290 (2017).Article 
    ADS 

    Google Scholar 
    Våge, K. et al. The Atlantic Water boundary current in the Nansen Basin: Transport and mechanisms of lateral exchange. J. Geophys. Res. 121, 6946–6960 (2016).Article 
    ADS 

    Google Scholar 
    Crews, L., Sundfjord, A., Albretsen, J. & Hattermann, T. Mesoscale Eddy Activity and Transport in the Atlantic Water Inflow Region North of Svalbard. J. Geophys. Res. 123, 201–215 (2018).Article 
    ADS 

    Google Scholar 
    Kolås, E. H., Koenig, Z., Fer, I., Nilsen, F. & Marnela, M. Structure and Transport of Atlantic Water North of Svalbard From Observations in Summer and Fall 2018. J. Geophys. Res. 125, 6174 (2020).Article 

    Google Scholar 
    Basedow, S. L. et al. Seasonal variation in transport of zooplankton into the arctic basin through the atlantic gateway. Fram Strait. Front. Mar. Sci. 2018, 5 (2018).
    Google Scholar 
    Vernet, M., Carstensen, J., Reigstad, M. & Svensen, C. Editorial: Carbon bridge to the Arctic. Front. Mar. Sci. 2020, 7 (2020).
    Google Scholar 
    Wassmann, P. et al. The contiguous domains of Arctic Ocean advection: Trails of life and death. Prog. Oceanogr. 139, 42–65 (2015).Article 
    ADS 

    Google Scholar 
    Wassmann, P., Slagstad, D. & Ellingsen, I. Advection of mesozooplankton into the northern svalbard shelf region. Front. Mar. Sci. 2019, 6 (2019).
    Google Scholar 
    Auel, H. Egg size and reproductive adaptations among Arctic deep-sea copepods (Calanoida, Paraeuchaeta). Helgol. Mar. Res. 58, 147–153 (2004).Article 
    ADS 

    Google Scholar 
    Gluchowska, M. et al. Zooplankton in Svalbard fjords on the Atlantic-Arctic boundary. Polar Biol. 39, 1785–1802 (2016).Article 

    Google Scholar 
    Wang, Y.-G., Tseng, L.-C., Lin, M. & Hwang, J.-S. Vertical and geographic distribution of copepod communities at late summer in the Amerasian Basin. Arctic Ocean. Plos One. 14, e0219319 (2019).Article 
    CAS 

    Google Scholar 
    Gislason, A. & Silva, T. Abundance, composition, and development of zooplankton in the Subarctic Iceland Sea in 2006, 2007, and 2008. ICES J. Mar. Sci. 69, 1263–1276 (2012).Article 

    Google Scholar 
    Zhukova, N. G., Nesterova, V. N., Prokopchuk, I. P. & Rudneva, G. B. Winter distribution of euphausiids (Euphausiacea) in the Barents Sea (2000–2005). Deep-Sea Res. Part II(56), 1959–1967 (2009).Article 
    ADS 

    Google Scholar 
    Dalpadado, P. & Skjoldal, H. R. Abundance, maturity and growth of the krill species Thysanoessa inermis and T. longicaudata in the Barents Sea. Mar. Ecol. Prog. Ser. 144, 175–183 (1996).Article 
    ADS 

    Google Scholar 
    Koszteyn, J., Timofeev, S., Węsławski, J. M. & Malinga, B. Size structure of Themisto abyssorum Boeck and Themisto libellula (Mandt) populations in European Arctic seas. Polar Biol. 15, 85–92 (1995).Article 

    Google Scholar 
    Dalpadado, P., Borkner, N., Bogstad, B. & Mehl, S. Distribution of Themisto (Amphipoda) spp. in the Barents Sea and predator-prey interactions. ICES J. Mar. Sci. 58, 876–895 (2001).Article 

    Google Scholar 
    Macnaughton, M. O., Thormar, J. & Berge, J. Sympagic amphipods in the Arctic pack ice: Redescriptions of Eusirus holmii Hansen, 1887 and Pleusymtes karstensi (Barnard, 1959). Polar Biol. 30, 1013–1025 (2007).Article 

    Google Scholar 
    Kraft, A., Graeve, M., Janssen, D., Greenacre, M. & Falk-Petersen, S. Arctic pelagic amphipods: Lipid dynamics and life strategy. J. Plankton Res. 37, 790–807 (2015).Article 
    CAS 

    Google Scholar 
    Kreibich, T., Hagen, W. & Saborowski, R. Food utilization of two pelagic crustaceans in the Greenland Sea: Meganyctiphanes norvegica (Euphausiacea) and Hymenodora glacialis (Decapoda, Caridea). Mar. Ecol. Prog. Ser. 413, 105–115 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Geoffroy, M. et al. Increased occurrence of the jellyfish Periphylla periphylla in the European high Arctic. Polar Biol. 41, 2615–2619 (2018).Article 

    Google Scholar 
    Grigor, J. J., Søreide, J. E. & Varpe, Ø. Seasonal ecology and life-history strategy of the high-latitude predatory zooplankter Parasagitta elegans. Mar. Ecol. Prog. Ser. 499, 77–88 (2014).Article 
    ADS 

    Google Scholar 
    Maclennan, D. N., Fernandes, P. G. & Dalen, J. A consistent approach to definitions and symbols in fisheries acoustics. ICES J. Mar. Sci. 59, 365–369 (2002).Article 

    Google Scholar 
    Gjøsæter, H. & Ushakov, N. G. Acoustic estimates of the Barents Sea Arctic cod Stock (Boreogadus saida). Forage Fishes in Marine Ecosystems. Alaska Sea Grant Collage Program, University of Alaska Fairbanks 97:01, 485–504 (1997).Raskoff, K. A., Hopcroft, R. R., Kosobokova, K. N., Purcell, J. E. & Youngbluth, M. Jellies under ice: ROV observations from the Arctic 2005 hidden ocean expedition. Deep-Sea Res. Part II(57), 111–126 (2010).Article 
    ADS 

    Google Scholar 
    Bluhm, B. A. et al. The Pan-Arctic continental slope: Sharp gradients of physical processes affect pelagic and benthic ecosystems. Front. Mar. Sci. 2020, 7 (2020).
    Google Scholar 
    Hop, H. et al. Pelagic ecosystem characteristics across the atlantic water boundary current from Rijpfjorden, Svalbard, to the Arctic Ocean During Summer (2010–2014). Front. Mar. Sci. 2019, 6 (2019).
    Google Scholar 
    Mumm, N. Composition and distribution of mesozooplankton in the Nansen Basin, Arctic Ocean, during summer. Polar Biol. 13, 451–461 (1993).Article 

    Google Scholar 
    Ona, E. & Nielsen, J. Acoustic detection of the Greenland shark (Somniosus microcephalus) using multifrequency split beam echosounder in Svalbard waters. Prog. Oceanogr. 206, 102842 (2022).Article 

    Google Scholar 
    Gjøsæter, H., Ingvaldsen, R. & Christiansen, J. S. Acoustic scattering layers reveal a faunal connection across the Fram Strait. Prog. Oceanogr. 185, 102348 (2020).Article 

    Google Scholar 
    Ingvaldsen, R. B., Gjosaeter, H., Ona, E. & Michalsen, K. Atlantic cod (Gadus morhua) feeding over deep water in the high Arctic. Polar Biol. 40, 2105–2111 (2017).Article 

    Google Scholar 
    Chawarski, J., Klevjer, T. A., Coté, D. & Geoffroy, M. Evidence of temperature control on mesopelagic fish and zooplankton communities at high latitudes. Front. Mar. Sci. 2022, 9 (2022).
    Google Scholar 
    Chernova, N. V. Catching of Greenland halibut Reinhardtius hippoglossoides (Pleuronectidae) on the shelf edge of the Laptev and East Siberian Seas. J. Ichthyol. 57, 219–227 (2017).Article 

    Google Scholar 
    Benzik, A. N., Budanova, L. K. & Orlov, A. M. Hard life in cold waters: Size distribution and gonads show that Greenland halibut temporarily inhabit the Siberian Arctic. Water Biol. Secur. 1, 100037 (2022).Article 

    Google Scholar 
    Olsen, L. M. et al. A red tide in the pack ice of the Arctic Ocean. Sci. Rep. 9, 9536 (2019).Article 
    ADS 

    Google Scholar 
    Assmy, P. et al. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice. Sci. Rep. 7, 40850 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Leu, E., Søreide, J. E., Hessen, D. O., Falk-Petersen, S. & Berge, J. Consequences of changing sea-ice cover for primary and secondary producers in the European Arctic shelf seas: Timing, quantity, and quality. Prog. Oceanogr. 90, 18–32 (2011).Article 
    ADS 

    Google Scholar 
    Drivdal, M. et al. Connections to the deep: Deep vertical migrations, an important part of the life cycle of Apherusa glacialis, an arctic ice-associated amphipod. Front. Mar. Sci. 2021, 8 (2021).
    Google Scholar 
    Scoulding, B., Chu, D., Ona, E. & Fernandes, P. G. Target strengths of two abundant mesopelagic fish species. J. Acoust. Soc. Am. 137, 989–1000 (2015).Article 
    ADS 

    Google Scholar 
    Popova, E. E., Yool, A., Aksenov, Y. & Coward, A. C. Role of advection in Arctic Ocean lower trophic dynamics: A modeling perspective. J. Geophys. Res. 118, 1571–1586 (2013).Article 
    ADS 

    Google Scholar 
    Saunders, R. A., Ingvarsdóttir, A., Rasmussen, J., Hay, S. J. & Brierley, A. S. Regional variation in distribution pattern, population structure and growth rates of Meganyctiphanes norvegica and Thysanoessa longicaudata in the Irminger Sea, North Atlantic. Prog. Oceanogr. 72, 313–342 (2007).Article 
    ADS 

    Google Scholar 
    Tarling, G. A. et al. Can a key boreal Calanus copepod species now complete its life-cycle in the Arctic? Evidence and implications for Arctic food-webs. Ambio 51, 333–344 (2022).Article 

    Google Scholar 
    Purcell, J. E., Juhl, A. R., Manko, M. K. & Aumack, C. F. Overwintering of gelatinous zooplankton in the coastal Arctic Ocean. Mar. Ecol. Prog. Ser. 591, 281–286 (2018).Article 
    ADS 

    Google Scholar 
    Purcell, J. E., Hopcroft, R. R., Kosobokova, K. N. & Whitledge, T. E. Distribution, abundance, and predation effects of epipelagic ctenophores and jellyfish in the western Arctic Ocean. Deep-Sea Res. Part II(57), 127–135 (2010).Article 
    ADS 

    Google Scholar 
    Solvang, H. K. et al. Distribution of rorquals and Atlantic cod in relation to their prey in the Norwegian high Arctic. Polar Biol. 44, 761–782 (2021).Article 

    Google Scholar 
    Ingvaldsen, R. B. et al. Physical manifestations and ecological implications of Arctic Atlantification. Nat. Rev. Earth Environ. 2, 874–889 (2021).Article 
    ADS 

    Google Scholar 
    Flores, H. et al. Macrofauna under sea ice and in the open surface layer of the Lazarev Sea, Southern Ocean. Deep-Sea Res. Part II(58), 1948–1961 (2011).Article 
    ADS 

    Google Scholar 
    Godø, O. R., Valdemarsen, J. W. & Engås, A. Comparison of efficiency of standard and experimental juvenile gadoid sampling trawls. ICES Mar. Sci. Symp. 196, 196–201 (1993).
    Google Scholar 
    Klevjer, T. et al. Micronekton biomass distribution, improved estimates across four north Atlantic basins. Deep-Sea Res. Part II. 180, 104691 (2020).Article 

    Google Scholar 
    Krafft, B. A. et al. Distribution and demography of Antarctic krill in the Southeast Atlantic sector of the Southern Ocean during the austral summer 2008. Polar Biol. 33, 957–968 (2010).Article 

    Google Scholar 
    Foote, K. G. Maintaining precision calibrations with optimal copper spheres. J. Acoust. Soc. Am. 73, 1054–1063 (1983).Article 
    ADS 

    Google Scholar 
    Korneliussen, R. J. et al. Acoustic identification of marine species using a feature library. Methods Oceanogr. 17, 187–205 (2016).Article 

    Google Scholar 
    Lavergne, T. et al. Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records. Cryosphere. 13, 49–78 (2019).Article 
    ADS 

    Google Scholar 
    Firing, E., Ramada, J. & Caldwell, P. Processing ADCP Data with the CODAS Software System Version 3.1. Joint Institute for Marine and Atmospheric Research University of Hawaii. http://currents.soest.hawaii.edu/docs/adcp_doc/index.html (1995).Padman, L. & Erofeeva, S. A barotropic inverse tidal model for the Arctic Ocean. Geophys. Res. Lett. 31, 256 (2004).Article 

    Google Scholar  More

  • in

    Early human impact on lake cyanobacteria revealed by a Holocene record of sedimentary ancient DNA

    Taranu, Z. E. et al. Acceleration of cyanobacterial dominance in north temperate-subarctic lakes during the Anthropocene. Ecol. Lett. 18, 375–384 (2015).Article 

    Google Scholar 
    Huisman, J. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471–483 (2018).Article 
    CAS 

    Google Scholar 
    Monchamp, M. E. et al. Homogenization of lake cyanobacterial communities over a century of climate change and eutrophication. Nat. Ecol. Evol. 2, 317–324 (2018).Article 

    Google Scholar 
    Chorus, I. & Bartram, J. Toxic Cyanobacteria in Water. A Guide to Their Public Health Consequences, Monitoring, and Management. In: World Health Organization (eds. Chorus I. & Bertram J.) (CRC Press, 1999).Rabalais, N. N. et al. Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7, 585–619 (2010).Article 
    CAS 

    Google Scholar 
    Carmichael, W. W. Health effects of toxin-producing cyanobacteria: “The CyanoHABs”. Hum. Ecol. Risk Assess. Int. J. 7, 1393–1407 (2001).Article 

    Google Scholar 
    Whitton, B. A. Ecology of Cyanobacteria II: Their Diversity in Space and Time (Springer, 2012).Smol, J. P., Birks, H. J. B. & Last, W. M. Tracking Environmental Change Using Lake Sediments. Volume 4: Zoological Indicators, Developments in Paleoenvironmental Research. (Springer, 2002).Domaizon, I., Winegardner, A., Capo, E., Gauthier, J. & Gregory-Eaves, I. DNA-based methods in paleolimnology: new opportunities for investigating long-term dynamics of lacustrine biodiversity. J. Paleolimnol. 52, 1–21 (2017).Article 

    Google Scholar 
    Livingstone, D. & Jaworski, G. H. M. The viability of akinetes of blue-green algae recovered from the sediments of rostherne mere. Br. Phycol. J. 15, 357–364 (1980).Article 

    Google Scholar 
    van Geel, B., Mur, L. R., Ralska-Jasiewiczowa, M. & Goslar, T. Fossil akinetes of Aphanizomenon and Anabaena as indicators for medieval phosphate-eutrophication of Lake Gosciaz (Central Poland). Rev. Palaeobot. Palynol. 83, 97–105 (1994).Article 

    Google Scholar 
    Hillbrand, M., van Geel, B., Hasenfratz, A., Hadorn, P. & Haas, J. N. Non-pollen palynomorphs show human- and livestock-induced eutrophication of Lake Nussbaumersee (Thurgau, Switzerland) since Neolithic times (3840 bc). Holocene 24, 559–568 (2014).Article 

    Google Scholar 
    Gosling, W. D. et al. Human occupation and ecosystem change on Upolu (Samoa) during the Holocene. J. Biogeogr. 47, 600–614 (2020).Article 

    Google Scholar 
    Hertzberg, S., Liaaen-Jensen, S. & Siegelman, H. W. The carotenoids of blue-green algae. Phytochemistry 10, 3121–3127 (1971).Article 
    CAS 

    Google Scholar 
    Leavitt, P. R. & Findlay, D. L. Comparison of fossil pigments with 20 years of phytoplankton data from eutrophic Lake 227, Experimental Lakes Area, Ontario. Can. J. Fish. Aquat. Sci. 51, 2286–2299 (1994).Article 
    CAS 

    Google Scholar 
    Kaiser, J., Ön, B., Arz, H. & Akçer-Ön, S. Sedimentary lipid biomarkers in the magnesium-rich and highly alkaline Lake Salda (south-western Anatolia). J. Limnol. 75, 581–596 (2016).
    Google Scholar 
    Bauersachs, T., Talbot, H. M., Sidgwick, F., Sivonen, K. & Schwark, L. Lipid biomarker signatures as tracers for harmful cyanobacterial blooms in the Baltic Sea. PLoS ONE 12, e0186360 (2017).Article 

    Google Scholar 
    Domaizon, I. et al. DNA from lake sediments reveals the long-term dynamics and diversity of Synechococcus assemblages. Biogeosci. Discuss. 10, 2515–2564 (2013).
    Google Scholar 
    Britton, G., Liaaen-Jensen, S. & Pfander, H. in Carotenoids (eds. Britton, G., Liaaen-Jensen, S., Pfander, H.). Vol. 4, 1–6 (Birkhäuser Press, 2008).Capo, E. et al. Lake sedimentary dna research on past terrestrial and aquatic biodiversity: overview and recommendations. Quaternary 4, 6 (2021).Article 

    Google Scholar 
    Monchamp, M. E., Walser, J. C., Pomati, F. & Spaak, P. Sedimentary DNA reveals cyanobacterial community diversity over 200 years in two perialpine lakes. Appl. Environ. Microbiol. 82, 6472–6482 (2016).Article 
    CAS 

    Google Scholar 
    Nwosu, E. C. et al. Evaluating sedimentary DNA for tracing changes in cyanobacteria dynamics from sediments spanning the last 350 years of Lake Tiefer See, NE Germany. J. Paleolimnol. 66, 279–296 (2021).Article 

    Google Scholar 
    Zhang, J. et al. Pre-industrial cyanobacterial dominance in Lake Moon (NE China) revealed by sedimentary ancient DNA. Quat. Sci. Rev. 261, 106966 (2021).Article 

    Google Scholar 
    Brauer, A., Schwab, M. J., Brademann, B., Pinkerneil, S. & Theuerkauf, M. Tiefer See–a key site for lake sediment research in NE Germany. DEUQUA Spec. Publ. 2, 89–93 (2019).Article 

    Google Scholar 
    Dräger, N. et al. Varve microfacies and varve preservation record of climate change and human impact for the last 6000 years at Lake Tiefer See (NE Germany). Holocene 27, 450–464 (2017).Article 

    Google Scholar 
    Dräger, N. et al. Hypolimnetic oxygen conditions influence varve preservation and δ13C of sediment organic matter in Lake Tiefer See, NE Germany. J. Paleolimnol. 62, 181–194 (2019).Article 

    Google Scholar 
    Theuerkauf, M., Dräger, N., Kienel, U., Kuparinen, A. & Brauer, A. Effects of changes in land management practices on pollen productivity of open vegetation during the last century derived from varved lake sediments. Holocene 25, 733–744 (2015).Article 

    Google Scholar 
    Heinrich, I. et al. Interdisciplinary geo-ecological research across time scales in the Northeast German Lowland Observatory (TERENO-NE). Vadose Zone J. 17, 1–25 (2018).Article 

    Google Scholar 
    Roeser, P. et al. Advances in understanding calcite varve formation: new insights from a dual lake monitoring approach in the southern Baltic lowlands. Boreas 50, 419–440 (2021).Article 

    Google Scholar 
    Nwosu, E. C. et al. From water into sediment—tracing freshwater Cyanobacteria via DNA analyses. Microorganisms 9, 1778 (2021).Article 
    CAS 

    Google Scholar 
    Schmidt, J. -P. Ein Fremdling im Nordischen Kreis Jungbronzezeitliche Funde aus dem Flachen See bei Sophienhof, Lkr. Mecklenburgische Seenplatte. In: D. Brandherm/B. Nessel (Hrsg.), Phasenübergänge und Umbrüche im bronzezeitlichen Europa. Beiträge zur Sitzung der Arbeitsgemeinschaft Bronzezeit auf der 80. Jahrestagung des Nordwestdeutschen Verbandes für Altertumskunde. Vol. 297, 271–281. (Universitätsforschungen zur Prähistorischen Archäologie, 2017).Raese, H. & Schmidt, J. -P. Zur Besiedlung Mecklenburg-Vorpommernswährend des Spätneolithikums und der frühenBronzezeit (2500–1500 v. Chr.). In: Siedlungsarchäologie des Endneolithikums und der frühen Bronzezeit. 11. Mitteldeutscher Archäologentag (eds. Meller, H., Friedderich, S., Küßner, M., Stäuble, H. & Risch, R.) 621–634 (2019).Kienel, U., Dulski, P., Ott, F., Lorenz, S. & Brauer, A. Recently induced anoxia leading to the preservation of seasonal laminae in two NE-German lakes. J. Paleolimnol. 50, 535–544 (2013).Article 

    Google Scholar 
    Callieri, C. & Stockner, J. Picocyanobacteria success in oligotrophic lakes: fact or fiction? J. Limnol. 59, 72–76 (2000).Article 

    Google Scholar 
    Sollai, M. et al. The Holocene sedimentary record of cyanobacterial glycolipids in the Baltic Sea: an evaluation of their application as tracers of past nitrogen fixation. Biogeosciences 14, 5789–5804 (2017).Article 

    Google Scholar 
    Mur, L. R., Skulberg, O. M. & Utkilen, H. In: Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring, and Management. (eds. Chorus, I. and Bartram, J.) 15–40 (St Edmundsbury Press, 1999).Schmidt, J.-P. Ein bronzenes Hallstattschwert der Periode VI aus dem Flachen See bei Sophienhof, Lkr. Mecklenburgische Seenplatte. Arch.äologische Ber. aus Mecklenbg.-Vorpommern 26, 26–34 (2019).
    Google Scholar 
    Schmidt, J.-P. “Aller guten Dinge sind drei!”–Ein weiteres bronzezeitliches Schwert aus dem Flachen See bei Lütgendorf, Lkr. Mecklenburgische Seenplatte. Arch.äologische Ber. aus Mecklenbg.-Vorpommern 27, 49–55 (2020).
    Google Scholar 
    Küster, M., Stöckmann, M., Fülling, A. & Weber, R. Kulturlandschaftselemente, Kolluvien und Flugsande als Archive der spätholozänen Landschaftsentwicklung im Bereich des Messtischblattes Thurow (Müritz-Nationalpark, Mecklenburg). In: Neue Beiträge zum Naturraum und zur Landschaftsgeschichte im Teilgebiet. (Geozon Science Media, 2015).Feeser, I., Dörfler, W., Kneisel, J., Hinz, M. & Dreibrodt, S. Human impact and population dynamics in the Neolithic and Bronze Age: Multi-proxy evidence from north-western Central Europe. Holocene 29, 1596–1606 (2019).Article 

    Google Scholar 
    Alsleben, A. In How’s Life? Living Conditions in the 2nd and 1st Millennia BCE. Scales of Transformation in Prehistoric and Archaic Societies (eds. Dal Corso, M. et al.) 85–102 (Sidestone Press, 2019).Kneisel, J., Bork, H.-R. & Czebreszuk, J. In Defensive Structures from Central Europe to the Aegean in the 3rd and 2nd Millennia bc (eds. Czebreszuk, J., Kadrow, S. & Müller, J.) 155–170 (Habelt, 2008).Haas, J. N. & Wahlmüller, N. Floren-, Vegetations- und Milieuveränderungen im Zuge der bronzezeitlichen Besiedlung von Bruszczewo (Polen) und der landwirtschaftlichen Nutzung der umliegenden Gebiete. In: Ausgrabungen und Forschungen in einer prähistorischen Siedlungskammer Großpolens. (eds. Müller, J., Czebreszuk, J. & Kneisel, J.) Studien zur Archäologie in Ostmitteleuropa Vol. 6.1, 50–81 (Bonn, 2010).Theuerkauf, M. et al. Holocene lake-level evolution of Lake Tiefer See, NE Germany, caused by climate and land cover changes. Boreas 51, 299–316 (2021).Article 

    Google Scholar 
    Büntgen, U. et al. 2500 years of European climate variability and human susceptibility. Science 331, 578–582 (2011).Article 

    Google Scholar 
    Büntgen, U. et al. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nat. Geosci. 9, 231–236 (2016).Article 

    Google Scholar 
    Kienel, U. et al. Effects of spring warming and mixing duration on diatom deposition in deep Tiefer See, NE Germany. J. Paleolimnol. 57, 37–49 (2017).Article 

    Google Scholar 
    Monchamp, M. E., Spaak, P. & Pomati, F. High dispersal levels and lake warming are emergent drivers of cyanobacterial community assembly in peri-Alpine lakes. Sci. Rep. 9, 7366 (2019).Article 

    Google Scholar 
    Erratt, K. et al. Paleolimnological evidence reveals climate-related preeminence of cyanobacteria in a temperate meromictic lake. Can. J. Fish. Aquat. Sci. 79, 558–565 (2021).Article 

    Google Scholar 
    Schmidt, J.-P. ders., Kein Ende in Sicht? Neue Untersuchungen auf dem Feuerstellenplatz von Naschendorf, Lkr. Nordwestmecklenburg. Arch.äologische Ber. aus Mecklenbg.-Vorpommern 19, 26–46 (2012).
    Google Scholar 
    Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 1198–1201 (2013).Article 
    CAS 

    Google Scholar 
    Wanner, H. et al. Holocene climate variability and change; a data-based review. J. Geol. Soc. Lond. 172, 254–263 (2015).Article 

    Google Scholar 
    Rigosi, A., Carey, C. C., Ibelings, B. W. & Brookes, J. D. The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnol. Oceanogr. 59, 99–114 (2014).Article 

    Google Scholar 
    Dittmann, E., Fewer, D. P. & Neilan, B. A. Cyanobacterial toxins: Biosynthetic routes and evolutionary roots. FEMS Microbiol. Rev. 37, 23–43 (2013).Article 
    CAS 

    Google Scholar 
    Dolman, A. M. et al. Cyanobacteria and cyanotoxins: the influence of nitrogen versus phosphorus. PLoS ONE 7, e38757 (2012).Article 
    CAS 

    Google Scholar 
    Kurmayer, R., Christiansen, G., Fastner, J. & Börner, T. Abundance of active and inactive microcystin genotypes in populations of the toxic cyanobacterium Planktothrix spp. Environ. Microbiol. 6, 831–841 (2004).Article 
    CAS 

    Google Scholar 
    Liu, A., Zhu, T., Lu, X. & Song, L. Hydrocarbon profiles and phylogenetic analyses of diversified cyanobacterial species. Appl. Energy 11, 383–393 (2013).Article 

    Google Scholar 
    Coates, R. C. et al. Characterization of cyanobacterial hydrocarbon composition and distribution of biosynthetic pathways. PLoS ONE 9, e85140 (2014).Article 

    Google Scholar 
    Marciniak, S. et al. Ancient human genomics: the methodology behind reconstructing evolutionary pathways. J. Hum. Evol. 79, 21–34 (2015).Article 

    Google Scholar 
    Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. MapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. in. Bioinformatics 29, 1682–1684 (2013).Article 

    Google Scholar 
    Borry, M., Hübner, A., Rohrlach, A. B. & Warinner, C. PyDamage: automated ancient damage identification and estimation for contigs in ancient DNA de novo assembly. PeerJ 9, e11845 (2021).Article 

    Google Scholar 
    Murchie, T. J. et al. Optimizing extraction and targeted capture of ancient environmental DNA for reconstructing past environments using the PalaeoChip Arctic-1.0 bait-set. Quat. Res. (U. S.) 99, 305–328 (2021).Article 
    CAS 

    Google Scholar 
    Armbrecht, L., Hallegraeff, G., Bolch, C. J. S., Woodward, C. & Cooper, A. Hybridisation capture allows DNA damage analysis of ancient marine eukaryotes. Sci. Rep. 11, 3220 (2021).Article 
    CAS 

    Google Scholar 
    Wulf, S. et al. Holocene tephrostratigraphy of varved sediment records from Lakes Tiefer See (NE Germany) and Czechowskie (N Poland). Quat. Sci. Rev. 132, 1–14 (2016).Article 

    Google Scholar 
    Sugita, S. Theory of quantitative reconstruction of vegetation I: Pollen from large sites REVEALS regional vegetation composition. Holocene 17, 2 (2007).Article 

    Google Scholar 
    Epp, L. S., Zimmermann, H. H. & Stoof-Leichsenring, K. R. In: Ancient DNA. Methods in Molecular Biology (eds. Shapiro B., Barlow A., Heintzman P., Hofreiter M., Paijmans J., Soares A.) Vol. 1963, 31–44 (Humana Press, 2019).Janse, I., Meima, M., Kardinaal, W. E. A. & Zwart, G. High-resolution differentiation of Cyanobacteria by using rRNA-internal transcribed spacer denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 69, 6634–6643 (2003).Article 
    CAS 

    Google Scholar 
    Nwosu, E. C. et al. Species-level spatio-temporal dynamics of cyanobacteria in a hard-water temperate lake in the Southern Baltics. Front. Microbiol. 12, https://doi.org/10.3389/fmicb.2021.761259 (2021).Savichtcheva, O. et al. Quantitative PCR enumeration of total/toxic Planktothrix rubescens and total cyanobacteria in preserved DNA isolated from lake sediments. Appl. Environ. Microbiol. 77, 8744–8753 (2011).Article 
    CAS 

    Google Scholar 
    Coolen, M. J. L. et al. Ancient DNA derived from alkenone-biosynthesizing haptophytes and other algae in Holocene sediments from the Black Sea. Paleoceanography 21, PA1005 (2006).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina 7 amplicon data. Nat. Methods 13, 581–583 (2016).Article 
    CAS 

    Google Scholar 
    Kieser, S., Brown, J., Zdobnov, E. M., Trajkovski, M. & McCue, L. A. ATLAS: a Snakemake workflow for assembly, annotation, and genomic binning of metagenome sequence data. BMC Bioinformat. 21, 257 (2020).Article 

    Google Scholar 
    Yilmaz, P. et al. The SILVA and ‘all-species Living Tree Project (LTP)’ taxonomic frameworks. Nucleic Acids Res. 42, 643–648 (2014).Article 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).Article 
    CAS 

    Google Scholar 
    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformat. 11, 119–119 (2010).Article 

    Google Scholar 
    Huerta-Cepas, J. et al. EggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).Article 
    CAS 

    Google Scholar 
    Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msab293 (2021).Shen, W. & Ren, H. TaxonKit: a practical and efficient NCBI taxonomy toolkit. J. Genet. Genomics. 48, 844–850 (2021).Article 

    Google Scholar 
    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 29, 471–482 (2001).
    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. R Package Version 2.5-2. Cran R (2019).Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).CAS 

    Google Scholar 
    Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280 (2001).Article 

    Google Scholar  More

  • in

    Water masses shape pico-nano eukaryotic communities of the Weddell Sea

    Guillou, L. et al. Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ. Microbiol. 10, 3349–3365 (2008).Article 
    CAS 

    Google Scholar 
    Massana, R. Eukaryotic picoplankton in surface oceans. Annu. Rev. Microbiol. 65, 91–110 (2011).Article 
    CAS 

    Google Scholar 
    Rocke, E., Pachiadaki, M. G., Cobban, A., Kujawinski, E. B. & Edgcomb, V. P. Protist community grazing on prokaryotic prey in deep ocean water masses. PLoS ONE 10, e0124505 (2015).Article 

    Google Scholar 
    de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).Article 

    Google Scholar 
    Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097 (2019).Article 
    CAS 

    Google Scholar 
    Cordier, T. et al. Patterns of eukaryotic diversity from the surface to the deep-ocean sediment. Sci. Adv. 8, https://doi.org/10.1126/sciadv.abj9309 (2022).Giner, C. R. et al. Marked changes in diversity and relative activity of picoeukaryotes with depth in the world ocean. ISME J. 14, 437–449 (2020).Article 

    Google Scholar 
    Obiol, A. et al. A metagenomic assessment of microbial eukaryotic diversity in the global ocean. Mol. Ecol. Resour. 20, 718–731 (2020).Article 
    CAS 

    Google Scholar 
    Pernice, M. C. et al. Large variability of bathypelagic microbial eukaryotic communities across the world’s oceans. ISME J. 10, 945–958 (2016).Article 

    Google Scholar 
    Santoferrara, L. et al. Perspectives from ten years of protist studies by high‐throughput metabarcoding. J. Eukaryot. Microbiol. 67, 612–622 (2020).Article 

    Google Scholar 
    Schoenle, A. et al. High and specific diversity of protists in the deep-sea basins dominated by diplonemids, kinetoplastids, ciliates and foraminiferans. Commun. Biol. 4, 1–10 (2021).Article 

    Google Scholar 
    Sommeria-Klein, G. et al. Global drivers of eukaryotic plankton biogeography in the sunlit ocean. Science 374, 594–599 (2021).Article 
    CAS 

    Google Scholar 
    Tremblay, J. É. et al. Global and regional drivers of nutrient supply, primary production and CO2 drawdown in the changing Arctic Ocean. Prog. Oceanogr. 139, 171–196 (2015).Article 

    Google Scholar 
    Zoccarato, L., Pallavicini, A., Cerino, F., Umani, S. F. & Celussi, M. Water mass dynamics shape Ross Sea protist communities in mesopelagic and bathypelagic layers. Prog. Oceanogr. 149, 16–26 (2016).Article 

    Google Scholar 
    Biggs, T. E. G., Huisman, J. & Brussaard, C. P. D. Viral lysis modifies seasonal phytoplankton dynamics and carbon flow in the Southern Ocean. ISME J. 15, 3615–3622 (2021).Article 
    CAS 

    Google Scholar 
    Clarke, L. J., Bestley, S., Bissett, A. & Deagle, B. E. A globally distributed Syndiniales parasite dominates the Southern Ocean micro-eukaryote community near the sea-ice edge. ISME J. 13, 734–737 (2019).Article 
    CAS 

    Google Scholar 
    Gast, R. J., Fay, S. A. & Sanders, R. W. Mixotrophic activity and diversity of Antarctic marine protists in austral summer. Front. Mar. Sci. 5, 13 (2018).Article 

    Google Scholar 
    Grattepanche, J. D., Jeffrey, W. H., Gast, R. J. & Sanders, R. W. Diversity of microbial eukaryotes along the West Antarctic Peninsula in austral spring. Front. Microbiol. 13, 844856 (2022).Article 

    Google Scholar 
    Hamilton, M. et al. Spatiotemporal variations in Antarctic protistan communities highlight phytoplankton diversity and seasonal dominance by a novel cryptophyte lineage. mBio 12, e0297321 (2021).Article 

    Google Scholar 
    Lin, Y. et al. Decline in plankton diversity and carbon flux with reduced sea ice extent along the Western Antarctic Peninsula. Nat. Commun. 12, 4948 (2021).Article 
    CAS 

    Google Scholar 
    Martin, K. et al. The biogeographic differentiation of algal microbiomes in the upper ocean from pole to pole. Nat. Commun. 12, 5483 (2021).Article 
    CAS 

    Google Scholar 
    Vernet, M. et al. The Weddell Gyre, Southern Ocean: present knowledge and future challenges. Rev. Geophysics 57, 623–708 (2019).Article 

    Google Scholar 
    Callahan, J. E. The structure and circulation of deep water in the Antarctic. Deep‐Sea Res. 19, 563–575 (1972).
    Google Scholar 
    Janout, M. A. et al. FRIS revisited in 2018: on the circulation and water masses at the Filchner and Ronne ice shelves in the southern Weddell Sea. J. Geophys. Res.: Oceans 126, e2021JC017269 (2021).Article 

    Google Scholar 
    Orsi, A. H., Smethie, W. M. & Bullister, J. L. On the total input of Antarctic waters to the deep ocean: a preliminary estimate from chlorofluorocarbon measurements. J. Geophys. Res. 107, 3122 (2002).Article 

    Google Scholar 
    Hoppema, M., Fahrbach, E. & Schröder, M. On the total carbon dioxide and oxygen signature of the circumpolar deep water in the Weddell Gyre. Oceanol. Acta 20, 783–798 (1997).CAS 

    Google Scholar 
    Karstensen, J. & Tomczak, M. Age determination of mixed water masses using CFC and oxygen data. J. Geophys. Res. 103, 18599–18609 (1998).Article 
    CAS 

    Google Scholar 
    De Cáceres, M. & Legendre, P. Associations between species and groups of sites: indices and statistical inference. Ecology 90, 3566–3574 (2009).Article 

    Google Scholar 
    De Cáceres, M., Legendre, P. & Moretti, M. Improving indicator species analysis by combining groups of sites. Oikos 119, 1674–1684 (2010).Article 

    Google Scholar 
    Dufrene, M. & Legendre, P. Species assemblages and indicator species: the need for a flexible asymetrical approach. Ecol. Monogr. 67, 345–366 (1997).
    Google Scholar 
    Agogué, H., Lamy, D., Neal, P. R., Sogin, M. L. & Herndl, G. J. Water mass-specificity of bacterial communities in the North Atlantic revealed by massively parallel sequencing. Mol. Ecol. 20, 258–274 (2011).Article 

    Google Scholar 
    Celussi, M., Bergamasco, A., Cataletto, B., Umani, S. F. & Del Negro, P. Water masses bacterial community structure and microbial activities in the Ross Sea, Antarctica. Antarct. Sci. 22, 361–370 (2010).Article 

    Google Scholar 
    Galand, P. E., Potvin, M., Casamayor, E. O. & Lovejoy, C. Hydrography shapes bacterial biogeography of the deep Arctic Ocean. ISME J. 4, 564–576 (2010).Article 

    Google Scholar 
    Hamdan, L. J. Ocean currents shape the microbiome of Arctic marine sediments. ISME J. 7, 685–696 (2013).Article 
    CAS 

    Google Scholar 
    Wilkins, D., van Sebille, E., Rintoul, S. R., Lauro, F. M. & Cavicchioli, R. Advection shapes Southern Ocean microbial assemblages independent of distance and environment effects. Nat. Commun. 4, 2457 (2013).Article 

    Google Scholar 
    Flegontova, O. et al. Extreme diversity of diplonemid eukaryotes in the ocean. Curr. Biol. 26, 3060–3065 (2016).Article 
    CAS 

    Google Scholar 
    Barnes, M. A. et al. Environmental conditions influence eDNA persistence in aquatic systems. Environ. Sci. Technol. 48, 1819–1827 (2014).Article 
    CAS 

    Google Scholar 
    Jeong, H. J. et al. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. 45, 65–91 (2010).Article 
    CAS 

    Google Scholar 
    Stoecker, D. K., Hansen, P. J., Caron, D. A. & Mitra, A. Mixotrophy in the marine Plankton. Ann. Rev. Mar. Sci. 9, 311–335 (2016).Article 

    Google Scholar 
    Boeuf, D. et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. Proc. Natl Acad. Sci. USA 116, 11824–11832 (2019).Article 
    CAS 

    Google Scholar 
    Gutierrez-Rodriguez, A. et al. High contribution of Rhizaria (Radiolaria) to vertical export in the California Current Ecosystem revealed by DNA metabarcoding. ISME J. 13, 964–976 (2019).Article 
    CAS 

    Google Scholar 
    Lampitt, R. S., Salter, I. & Johns, D. Radiolaria: major exporters of organic carbon to the deep ocean. Glob. Biogeochem. Cycles 23, GB1010 (2009).Article 

    Google Scholar 
    Suzuki, N. & Not, F. In Marine Protists: Diversity and Dynamics 179–222 (Springer Japan, 2015).Decelle, J. et al. Diversity, ecology and biogeochemistry of cyst-forming Acantharia (Radiolaria) in the oceans. PLoS ONE 8, e53598 (2013).Article 
    CAS 

    Google Scholar 
    Tashyreva, D. et al. Diplonemids—a review on “new“ flagellates on the oceanic block. Protist 173, 125868 (2022).Article 
    CAS 

    Google Scholar 
    Flegontova, O. et al. Environmental determinants of the distribution of planktonic diplonemids and kinetoplastids in the oceans. Environ. Microbiol 22, 4014–4031 (2020).Article 
    CAS 

    Google Scholar 
    Xu, D. et al. Microbial eukaryote diversity and activity in the water column of the South China sea based on DNA and RNA high throughput sequencing. Front. Microbiol. 8, 1121 (2017).Article 

    Google Scholar 
    Bråte, J. et al. Radiolaria associated with large diversity of marine alveolates. Protist 163, 767–777 (2012).Article 

    Google Scholar 
    Strassert, J. F. H. et al. Single cell genomics of uncultured marine alveolates shows paraphyly of basal dinoflagellates. ISME J. 12, 304–308 (2017).Article 

    Google Scholar 
    Yabuki, A. & Tame, A. Phylogeny and reclassification of Hemistasia phaeocysticola (Scherffel) Elbrächter & Schnepf, 1996. J. Eukaryot. Microbiol. 62, 426–429 (2015).Article 

    Google Scholar 
    Larsen, J. & Patterson, J. Some flagellates (Protista) from tropical marine sediments. J. Nat. Hist. 24, 801–937 (1990).Article 

    Google Scholar 
    Prokopchuk, G. et al. Trophic flexibility of marine diplonemids – switching from osmotrophy to bacterivory. ISME J. 16, 1409–1419 (2022).Article 
    CAS 

    Google Scholar 
    Arístegui, J. & Gasol, J. Microbial oceanography of the dark ocean’s pelagic realm. Limnol. Oceanogr. 54, 1501–1529 (2009).Article 

    Google Scholar 
    Amaral-Zettler, L. A., McCliment, E. A., Ducklow, H. W. & Huse, S. M. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS ONE 4, e6372 (2009).Article 

    Google Scholar 
    Mahé, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm v2: highly-scalable and high-resolution amplicon clustering. PeerJ 3, e1420 (2015).Article 

    Google Scholar 
    Kolisko, M. et al. EukRef-excavates: seven curated SSU ribosomal RNA gene databases. Database 2020, baaa080 (2020).
    Google Scholar 
    Adl, S. M. et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 66, 4–119 (2019).Article 

    Google Scholar 
    Salazar, G. et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell 179, 1068–1083 (2019).Article 
    CAS 

    Google Scholar  More

  • in

    Artificial intelligence for automated detection of large mammals creates path to upscale drone surveys

    Chapman, A. It’s okay to call them drones. J. Unmanned Veh. Syst. 2, iii–v (2014).Article 

    Google Scholar 
    Chabot, D., Hodgson, A. J., Hodgson, J. C. & Anderson, K. ‘Drone’: Technically correct, popularly accepted, socially acceptable. Drone Syst. Appl. 10, 399–405 (2022).Article 

    Google Scholar 
    Chabot, D. & Bird, D. M. Wildlife research and management methods in the 21st century: Where do unmanned aircraft fit in?. J. Unmanned Veh. Syst. 3, 137–155 (2015).Article 

    Google Scholar 
    Christie, K. S., Gilbert, S. L., Brown, C. L., Hatfield, M. & Hanson, L. Unmanned aircraft systems in wildlife research: Current and future applications of a transformative technology. Front. Ecol. Environ. 14, 241–251 (2016).Article 

    Google Scholar 
    Whitehead, K. & Hugenholtz, C. H. Remote sensing of the environment with small unmanned aircraft systems (UASs), part 1: A review of progress and challenges. J. Unmanned Veh. Syst. 2, 69–85 (2014).Article 

    Google Scholar 
    Barnas, A. et al. Evaluating behavioral responses of nesting lesser snow geese to unmanned aircraft surveys. Ecol. Evol. 8, 1328–1338 (2018).Article 

    Google Scholar 
    Mulero-Pázmány, M. et al. Unmanned aircraft systems as a new source of disturbance for wildlife: A systematic review. PLoS ONE 12, e0178448 (2017).Article 

    Google Scholar 
    Linchant, J., Lisein, J., Semeki, J., Lejeune, P. & Vermeulen, C. Are unmanned aircraft systems (UAS s) the future of wildlife monitoring? A review of accomplishments and challenges. Mammal Rev. 45, 239–252 (2015).Article 

    Google Scholar 
    Whitehead, K. et al. Remote sensing of the environment with small unmanned aircraft systems (UASs), part 2: Scientific and commercial applications. J. Unmanned Veh. Syst. 2, 86–102 (2014).Article 

    Google Scholar 
    Barasona, J. A. et al. Unmanned aircraft systems for studying spatial abundance of ungulates: Relevance to spatial epidemiology. PLoS ONE 9, e115608 (2014).Article 
    ADS 

    Google Scholar 
    Chrétien, L. P., Théau, J. & Ménard, P. Wildlife multispecies remote sensing using visible and thermal infrared imagery acquired from an unmanned aerial vehicle (UAV). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 40, 241 (2015).Article 

    Google Scholar 
    Guo, X. et al. Application of UAV remote sensing for a population census of large wild herbivores—Taking the headwater region of the yellow river as an example. Remote Sens. 10, 1041 (2018).Article 
    ADS 

    Google Scholar 
    Hu, J., Wu, X. & Dai, M. Estimating the population size of migrating Tibetan antelopes Pantholops hodgsonii with unmanned aerial vehicles. Oryx 54, 101–109 (2020).Article 

    Google Scholar 
    Mulero-Pázmány, M., Stolper, R., Van Essen, L. D., Negro, J. J. & Sassen, T. Remotely piloted aircraft systems as a rhinoceros anti-poaching tool in Africa. PLoS ONE 9, e83873 (2014).Article 
    ADS 

    Google Scholar 
    Rey, N., Volpi, M., Joost, S. & Tuia, D. Detecting animals in African Savanna with UAVs and the crowds. Remote Sens. Environ. 200, 341–351 (2017).Article 
    ADS 

    Google Scholar 
    Schroeder, N. M., Panebianco, A., Gonzalez Musso, R. & Carmanchahi, P. An experimental approach to evaluate the potential of drones in terrestrial mammal research: A gregarious ungulate as a study model. R. Soc. Open Sci. 7, 191482 (2020).Article 
    ADS 

    Google Scholar 
    Su, X. et al. Using an unmanned aerial vehicle (UAV) to study wild yak in the highest desert in the world. Int. J. Remote Sens. 39, 5490–5503 (2018).Article 

    Google Scholar 
    Vermeulen, C., Lejeune, P., Lisein, J., Sawadogo, P. & Bouché, P. Unmanned aerial survey of elephants. PLoS ONE 8, e54700 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Mallory, M. L. et al. Financial costs of conducting science in the Arctic: Examples from seabird research. Arct. Sci. 4, 624–633 (2018).Article 

    Google Scholar 
    Sasse, D. B. Job-related mortality of wildlife workers in the United States, 1937–2000. Wildl. Soc. Bull. 31, 1015–1020 (2003).
    Google Scholar 
    Loarie, S. R., Joppa, L. N. & Pimm, S. L. Satellites miss environmental priorities. Trends Ecol. Evol. 22, 630–632 (2007).Article 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. IUCN Red List of Threatened Species https://www.iucnredlist.org/en (2021).Mech, L. D. & Barber, S. M. A critique of wildlife radio-tracking and its use in National Parks: a report to the National Park Service. (2002).Patterson, C., Koski, W., Pace, P., McLuckie, B. & Bird, D. M. Evaluation of an unmanned aircraft system for detecting surrogate caribou targets in Labrador. J. Unmanned Veh. Syst. 4, 53–69 (2015).Article 

    Google Scholar 
    Hodgson, J. C. et al. Drones count wildlife more accurately and precisely than humans. Methods Ecol. Evol. 9, 1160–1167 (2018).Article 

    Google Scholar 
    Seymour, A. C., Dale, J., Hammill, M., Halpin, P. N. & Johnston, D. W. Automated detection and enumeration of marine wildlife using unmanned aircraft systems (UAS) and thermal imagery. Sci. Rep. 7, 1–10 (2017).Article 

    Google Scholar 
    COSEWIC. COSEWIC assessment and status report on the caribou (Rangifer tarandus) eastern migratory population, Torngat mountain population in Canada. (COSEWIC, Committee on the Status of Endangered Wildlife in Canada, 2017).Albawi, S., Mohammed, T. A. & Al-Zawi, S. Understanding of a convolutional neural network. in 2017 international conference on engineering and technology (ICET) 1–6 (IEEE, 2017).Gu, J. et al. Recent advances in convolutional neural networks. Pattern Recognit. 77, 354–377 (2018).Article 
    ADS 

    Google Scholar 
    Teuwen, J. & Moriakov, N. Convolutional neural networks. in Handbook of medical image computing and computer assisted intervention 481–501 (Elsevier, 2020).Corcoran, E., Winsen, M., Sudholz, A. & Hamilton, G. Automated detection of wildlife using drones: Synthesis, opportunities and constraints. Methods Ecol. Evol. 12, 1103–1114 (2021).Article 

    Google Scholar 
    Corcoran, E., Denman, S., Hanger, J., Wilson, B. & Hamilton, G. Automated detection of koalas using low-level aerial surveillance and machine learning. Sci. Rep. 9, 3208 (2019).Article 
    ADS 

    Google Scholar 
    Gray, P. C. et al. Drones and convolutional neural networks facilitate automated and accurate cetacean species identification and photogrammetry. Methods Ecol. Evol. 10, 1490–1500 (2019).Article 

    Google Scholar 
    Gray, P. C. et al. A convolutional neural network for detecting sea turtles in drone imagery. Methods Ecol. Evol. 10, 345–355 (2019).Article 

    Google Scholar 
    Peng, J. et al. Wild animal survey using UAS imagery and deep learning: modified Faster R-CNN for kiang detection in Tibetan Plateau. ISPRS J. Photogramm. Remote Sens. 169, 364–376 (2020).Article 
    ADS 

    Google Scholar 
    Borowicz, A. et al. Multi-modal survey of Adélie penguin mega-colonies reveals the Danger Islands as a seabird hotspot. Sci. Rep. 8, 3926 (2018).Article 
    ADS 

    Google Scholar 
    Francis, R. J., Lyons, M. B., Kingsford, R. T. & Brandis, K. J. Counting mixed breeding aggregations of animal species using drones: Lessons from waterbirds on semi-automation. Remote Sens. 12, 1185 (2020).Article 
    ADS 

    Google Scholar 
    Santangeli, A. et al. Integrating drone-borne thermal imaging with artificial intelligence to locate bird nests on agricultural land. Sci. Rep. 10, 1–8 (2020).Article 

    Google Scholar 
    Bowley, C., Mattingly, M., Barnas, A., Ellis-Felege, S. & Desell, T. An analysis of altitude, citizen science and a convolutional neural network feedback loop on object detection in unmanned aerial systems. J. Comput. Sci. 34, 102–116 (2019).Article 

    Google Scholar 
    Bowley, C., Mattingly, M., Barnas, A., Ellis-Felege, S. & Desell, T. Detecting wildlife in unmanned aerial systems imagery using convolutional neural networks trained with an automated feedback loop. in International Conference on Computational Science 69–82 (Springer, 2018).Delplanque, A., Foucher, S., Lejeune, P., Linchant, J. & Théau, J. Multispecies detection and identification of African mammals in aerial imagery using convolutional neural networks. Remote Sens. Ecol. Conserv. 8, 166–179 (2021).Article 

    Google Scholar 
    Eikelboom, J. A. J. et al. Improving the precision and accuracy of animal population estimates with aerial image object detection. Methods Ecol. Evol. 10, 1875–1887 (2019).Article 

    Google Scholar 
    Kellenberger, B., Marcos, D. & Tuia, D. Detecting mammals in UAV images: Best practices to address a substantially imbalanced dataset with deep learning. Remote Sens. Environ. 216, 139–153 (2018).Article 
    ADS 

    Google Scholar 
    Hooge, I. T. C., Niehorster, D. C., Nyström, M., Andersson, R. & Hessels, R. S. Is human classification by experienced untrained observers a gold standard in fixation detection?. Behav. Res. Methods 50, 1864–1881 (2018).Article 

    Google Scholar 
    Barnas, A. F., Darby, B. J., Vandeberg, G. S., Rockwell, R. F. & Ellis-Felege, S. N. A comparison of drone imagery and ground-based methods for estimating the extent of habitat destruction by lesser snow geese (Anser caerulescens caerulescens) in La Pérouse Bay. PLoS ONE 14, e0217049 (2019).Article 
    CAS 

    Google Scholar 
    Brook, R. K. & Kenkel, N. C. A multivariate approach to vegetation mapping of Manitoba’s Hudson Bay Lowlands. Int. J. Remote Sens. 23, 4761–4776 (2002).Article 

    Google Scholar 
    Shilts, W. W., Aylsworth, J. M., Kaszycki, C. A., Klassen, R. A. & Graf, W. L. Canadian shield. in Geomorphic Systems of North America vol. 2 119–161 (Geological Society of America Boulder, Colorado, 1987).Barnas, A. F., Felege, C. J., Rockwell, R. F. & Ellis-Felege, S. N. A pilot (less) study on the use of an unmanned aircraft system for studying polar bears (Ursus maritimus). Polar Biol. 41, 1055–1062 (2018).Article 

    Google Scholar 
    Ellis-Felege, S. N. et al. Nesting common eiders (Somateria mollissima) show little behavioral response to fixed-wing drone surveys. J. Unmanned Veh. Syst. 10, 1–4 (2021).
    Google Scholar 
    Barnas, A. F. et al. A standardized protocol for reporting methods when using drones for wildlife research. J. Unmanned Veh. Syst. 8, 89–98 (2020).Article 

    Google Scholar 
    Ren, S., He, K., Girshick, R. & Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28, 91–99 (2016).
    Google Scholar 
    Chen, T., Xu, B., Zhang, C. & Guestrin, C. Training Deep Nets with Sublinear Memory Cost. ArXiv160406174 Cs (2016).Pinckaers, H. & Litjens, G. Training convolutional neural networks with megapixel images. ArXiv180405712 Cs (2018).Abadi, M. et al. TensorFlow: Large-scale machine learning on heterogeneous systems. (2015).Janocha, K. & Czarnecki, W. M. On loss functions for deep neural networks in classification. ArXiv Prepr. ArXiv170205659. (2017).Murata, N., Yoshizawa, S. & Amari, S. Learning curves, model selection and complexity of neural networks. Adv. Neural Inf. Process. Syst. 5, 607–614 (1992).
    Google Scholar 
    Hänsch, R. & Hellwich, O. The truth about ground truth: Label noise in human-generated reference data. in IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium 5594–5597 (IEEE, 2019).Bowler, E., Fretwell, P. T., French, G. & Mackiewicz, M. Using deep learning to count albatrosses from space: Assessing results in light of ground truth uncertainty. Remote Sens. 12, 2026 (2020).Article 
    ADS 

    Google Scholar 
    Brack, I. V., Kindel, A. & Oliveira, L. F. B. Detection errors in wildlife abundance estimates from Unmanned Aerial Systems (UAS) surveys: Synthesis, solutions, and challenges. Methods Ecol. Evol. 9, 1864–1873 (2018).Article 

    Google Scholar 
    Jagielski, P. M. et al. The utility of drones for studying polar bear behaviour in the Canadian Arctic: Opportunities and recommendations. Drone Syst. Appl. 10, 97–110 (2022).Article 

    Google Scholar 
    Williams, P. J., Hooten, M. B., Womble, J. N. & Bower, M. R. Estimating occupancy and abundance using aerial images with imperfect detection. Methods Ecol. Evol. 8, 1679–1689 (2017).Article 

    Google Scholar 
    Link, W. A., Schofield, M. R., Barker, R. J. & Sauer, J. R. On the robustness of N-mixture models. Ecology 99, 1547–1551 (2018).Article 

    Google Scholar 
    Horvitz, D. G. & Thompson, D. J. A generalization of sampling without replacement from a finite universe. J. Am. Stat. Assoc. 47, 663–685 (1952).Article 
    MATH 

    Google Scholar 
    Corcoran, E., Denman, S. & Hamilton, G. New technologies in the mix: Assessing N-mixture models for abundance estimation using automated detection data from drone surveys. Ecol. Evol. 10, 8176–8185 (2020).Article 

    Google Scholar 
    Lunga, D., Arndt, J., Gerrand, J. & Stewart, R. ReSFlow: A remote sensing imagery data-flow for improved model generalization. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14, 10468–10483 (2021).Article 
    ADS 

    Google Scholar 
    Fromm, M., Schubert, M., Castilla, G., Linke, J. & McDermid, G. Automated detection of conifer seedlings in drone imagery using convolutional neural networks. Remote Sens. 11, 2585 (2019).Article 
    ADS 

    Google Scholar 
    Velumani, K. et al. Estimates of maize plant density from UAV RGB images using Faster-RCNN detection model: Impact of the spatial resolution. Plant Phenomics 2021, 9824843 (2021).Article 
    CAS 

    Google Scholar 
    Hodgson, A., Peel, D. & Kelly, N. Unmanned aerial vehicles for surveying marine fauna: Assessing detection probability. Ecol. Appl. 27, 1253–1267 (2017).Article 

    Google Scholar 
    Ferguson, M. C. et al. Performance of manned and unmanned aerial surveys to collect visual data and imagery for estimating arctic cetacean density and associated uncertainty. J. Unmanned Veh. Syst. 6, 128–154 (2018).Article 

    Google Scholar 
    Zmarz, A. et al. Application of UAV BVLOS remote sensing data for multi-faceted analysis of Antarctic ecosystem. Remote Sens. Environ. 217, 375–388 (2018).Article 
    ADS 

    Google Scholar 
    Lyons, M. B. et al. Monitoring large and complex wildlife aggregations with drones. Methods Ecol. Evol. 10, 1024–1035 (2019).Article 

    Google Scholar  More

  • in

    The performance of protected-area expansions in representing tropical Andean species: past trends and climate change prospects

    Possingham, H. P., Wilson, K. A., Andelman, S. J. & Vynne, C. H. Protected areas. Goals, limitations, and design. In Principles of Conservation Biology (eds Groom, M. J. et al.) 507–549 (Sinauer Associates Inc, 2006).
    Google Scholar 
    Marquet, P. A., Lessmann, J. & Shaw, M. R. Protected-area management and climate change. In Biodiversity and Climate Change: Transforming the Biosphere (eds Lovejoy, T. E. & Hannah, L.) 283–293 (Yale University Press, 2019).Chapter 

    Google Scholar 
    Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. PNAS https://doi.org/10.1073/pnas.1908221116 (2019).Article 

    Google Scholar 
    Potapov, P. et al. The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).Article 
    ADS 

    Google Scholar 
    Cazalis, V. et al. Effectiveness of protected areas in conserving tropical forest birds. Nat. Commun. 11, 4461 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Dudley, N., Mansourian, S., Stolton, S. & Suksuwan, S. Do protected areas contribute to poverty reduction?. Biodiversity 11, 5–7 (2010).Article 

    Google Scholar 
    Dudley, N. & Stolton, S. Arguments for Protected Areas (Earthscan, 2010).Book 

    Google Scholar 
    CBD. Strategic Plan for Biodiversity 2011–2020, Including Aichi Biodiversity Targets. http://www.cbd.int/sp/ and http://www.cbd.int/decision/cop/?id=12268 (2010).UNEP-WCMC & IUCN. Protected Planet: The World Database on Protected Areas (WDPA). www.protectedplanet.net. Accessed October 2022 (2022).Watson, J. E. M. et al. Persistent disparities between recent rates of habitat conversion and protection and implications for future global conservation targets. Conserv. Lett. 9, 413–421 (2016).Article 

    Google Scholar 
    Díaz, S. et al. Summary for Policymakers of the IPBES Global Assessment Report on Biodiversity and Ecosystem Services. (2019).Barnes, M. D., Glew, L., Wyborn, C. & Craigie, I. D. Prevent perverse outcomes from global protected area policy. Nat. Ecol. Evol. 2, 759–762 (2018).Article 

    Google Scholar 
    Visconti, P. et al. Protected area targets post-2020. Science 364, 239–241 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Kukkala, A. S. & Moilanen, A. Core concepts of spatial prioritisation in systematic conservation planning. Biol. Rev. 88, 443–464 (2013).Article 

    Google Scholar 
    Joppa, L. N. & Pfaff, A. High and Far: Biases in the location of protected areas. PLoS ONE 4, e8273 (2009).Article 
    ADS 

    Google Scholar 
    Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    CBD. CoP 7 Decision VII/30. Strategic Plan: Future Evaluation of progress. 12 https://www.cbd.int/doc/decisions/cop-07/cop-07-dec-30-en.pdf (2004).Venter, O. et al. Bias in protected-area location and its effects on long-term aspirations of biodiversity conventions. Conserv. Biol. 32, 127–134 (2017).Article 

    Google Scholar 
    Kuempel, C. D., Chauvenet, A. L. M. & Possingham, H. P. Equitable representation of ecoregions is slowly improving despite strategic planning shortfalls. Conserv. Lett. 9, 422–428 (2016).Article 

    Google Scholar 
    Barr, L. M., Watson, J. E. M., Possingham, H. P., Iwamura, T. & Fuller, R. A. Progress in improving the protection of species and habitats in Australia. Biol. Conserv. 200, 184–191 (2016).Article 

    Google Scholar 
    Hoffmann, S., Irl, S. D. H. & Beierkuhnlein, C. Predicted climate shifts within terrestrial protected areas worldwide. Nat. Commun. 10, 1–10 (2019).Article 

    Google Scholar 
    Hannah, L. Protected areas and climate change. Ann. N. Y. Acad. Sci. 1134, 201–212 (2008).Article 
    ADS 

    Google Scholar 
    Thomas, C. D. & Gillingham, P. K. The performance of protected areas for biodiversity under climate change. Biol. J. Lin. Soc. 115, 718–730 (2015).Article 

    Google Scholar 
    Ramirez-Villegas, J. et al. Using species distributions models for designing conservation strategies of Tropical Andean biodiversity under climate change. J. Nat. Conserv. 22, 391–404 (2014).Article 

    Google Scholar 
    Bax, V. & Francesconi, W. Conservation gaps and priorities in the Tropical Andes biodiversity hotspot: Implications for the expansion of protected areas. J. Environ. Manage. 232, 387–396 (2019).Article 

    Google Scholar 
    Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. PNAS 110, E2602–E2610 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Rodrigues, A. S. L. et al. Global gap analysis: Priority regions for expanding the global protected-area network. Bioscience 54, 1092–1100 (2004).Article 

    Google Scholar 
    Thuiller, W., Georges, D., Engler, R. & Breiner, F. biomod2: Ensemble Platform for Species Distribution Modeling. (2015).Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article 
    MATH 

    Google Scholar 
    Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).Article 
    MATH 

    Google Scholar 
    Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40, 887–893 (2017).Article 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. (2017).Gotelli, N. J. & Graves, G. R. Null Models in Ecology. (1996).Araújo, M. B. & Pearson, R. G. Equilibrium of species’ distributions with climate. Ecography 28, 693–695 (2005).Article 

    Google Scholar 
    Watson, J. E. M., Grantham, H. S., Wilson, K. A. & Possingham, H. P. Systematic conservation planning: Past, present and future. In Conservation Biogeography (eds Ladle, R. J. & Whittaker, R. J.) (Wiley, 2011).
    Google Scholar 
    Bevilacqua, M. Áreas protegidas y conservación de la diversidad biológica. Biodivers. Venezuela 2, 922–943 (2003).
    Google Scholar 
    Franco, P., Saavedra-Rodríguez, C. A. & Kattan, G. H. Bird species diversity captured by protected areas in the Andes of Colombia: A gap analysis. Oryx 41, 57–63 (2007).Article 

    Google Scholar 
    Barzetti, V. Parks and Progress: Protected Areas and Economic Development in Latin America and the Caribbean. (1993).Schulman, L. et al. Amazonian biodiversity and protected areas: Do they meet?. Biodivers. Conserv. 16, 3011–3051 (2007).Article 

    Google Scholar 
    Dourojeanni, M. J. Áreas naturales protegidas e investigación científica en el Perú. Rev. For. Perú 33, 91–101 (2018).
    Google Scholar 
    Rodriguez, L. & Young, K. Biological diversity of peru: Determining priority areas for conservation. Ambio 29, 329–337 (2000).Article 

    Google Scholar 
    Ministerio del Ambiente & SERNANP. Plan Director de las Áreas Naturales Protegidas (Estrategia Nacional) (2009).Cuesta-Camacho, F. et al. Identificación de Vacíos y Prioridades de Conservación Para la Biodiversidad Terrestre en el Ecuador Continental. http://protectedareas.info/upload/document/ecuador_terrestrial_gap_analysis.pdf (2006).Naveda, J. A. Evaluación del grado de representatividad ecológica y geográfica del sistema de parques nacionales de Venezuela al norte del Orinoco: Anteproyecto. Rev. Geog. Venez. 38, 193–208 (1997).
    Google Scholar 
    Araujo, N., Müller, R., Nowicki, C. & Ibisch, P. L. Prioridades de conservación de la biodiversidad de Bolivia (editorial FAN, 2010)Arango, N. et al. Vacíos de Conservación del Sistema de Parques Nacionales Naturales de Colombia desde una Perspectiva Ecorregional. https://wwflac.awsassets.panda.org/downloads/vacios_de_conservacion.pdf (2003).Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253 (2000).Article 
    CAS 

    Google Scholar 
    Sarkar, S., Sánchez-Cordero, V., Londoño, M. C. & Fuller, T. Systematic conservation assessment for the Mesoamerica, Chocó, and Tropical Andes biodiversity hotspots: A preliminary analysis. Biodivers. Conserv. 18, 1793–1828 (2009).Article 

    Google Scholar 
    Lessmann, J., Muñoz, J. & Bonaccorso, E. Maximizing species conservation in continental Ecuador: A case of systematic conservation planning for biodiverse regions. Ecol. Evol. 4, 2410–2422 (2014).Article 

    Google Scholar 
    Young, B. E. et al. Using spatial models to predict areas of endemism and gaps in the protection of Andean slope birds. Auk 126, 554–565 (2009).Article 

    Google Scholar 
    Fajardo, J., Lessmann, J., Bonaccorso, E., Devenish, C. & Muñoz, J. Combined use of systematic conservation planning, species distribution modelling, and connectivity analysis reveals severe conservation gaps in a megadiverse country (Peru). PLoS ONE 9, 1–23 (2014).Article 

    Google Scholar 
    Butchart, S. H. M. et al. Shortfalls and solutions for meeting national and global conservation area targets. Conserv. Lett. 8, 329–337 (2015).Article 

    Google Scholar 
    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 6187 (2014).Article 

    Google Scholar 
    Swenson, J. J. et al. Plant and animal endemism in the eastern Andean slope: Challenges to conservation. BMC Ecol. 12, 1 (2012).Article 

    Google Scholar 
    Lessmann, J., Fajardo, J., Bonaccorso, E. & Bruner, A. Cost-effective protection of biodiversity in the western Amazon. Biol. Conserv. 235, 250–259 (2019).Article 

    Google Scholar 
    Rodrigues, A. S. L. & Gaston, K. J. How large do reserve networks need to be?. Ecol. Lett. 4, 602–609 (2001).Article 

    Google Scholar 
    Reyes-Puig, C. Diversity, threat, and conservation of reptiles from continental Ecuador. Amphib. Reptile Conserv. 11, 8 (2017).
    Google Scholar 
    Shanee, S. et al. Protected area coverage of threatened vertebrates and ecoregions in Peru: Comparison of communal, private and state reserves. J. Environ. Manage. 202, 12–20 (2017).Article 

    Google Scholar 
    Kujala, H., Moilanen, A., Araújo, M. B. & Cabeza, M. Conservation planning with uncertain climate change projections. PLoS ONE 8, e53315 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Hannah, L. et al. 30% land conservation and climate action reduces tropical extinction risk by more than 50%. Ecography 43, 1–11 (2020).Article 

    Google Scholar 
    Velásquez-Tibatá, J., Salaman, P. & Graham, C. H. Effects of climate change on species distribution, community structure, and conservation of birds in protected areas in Colombia. Reg. Environ. Change 13, 235–248 (2013).Article 

    Google Scholar 
    del Avalos, V. R. & Hernández, J. Projected distribution shifts and protected area coverage of range-restricted Andean birds under climate change. Glob. Ecol. Conserv. 4, 459–469 (2015).Article 

    Google Scholar 
    Warren, R. et al. Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nat. Clim. Change 3, 678–682 (2013).Article 
    ADS 

    Google Scholar 
    Golden Kroner, R. et al. COVID-era policies and economic recovery plans: Are governments building back better for protected and conserved areas?. PARKS 27, 135–148 (2021).Article 

    Google Scholar 
    IPCC Summary for Policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) (Cambridge University Press, 2013).
    Google Scholar 
    Chevalier, M., Zarzo-Arias, A., Guélat, J., Mateo, R. G. & Guisan, A. Accounting for niche truncation to improve spatial and temporal predictions of species distributions. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2022.944116 (2022).Article 

    Google Scholar 
    Watson, J. E. M. et al. Bolder science needed now for protected areas. Conserv. Biol. 30, 243–248 (2016).Article 

    Google Scholar 
    CBD. Kunming-Montreal Global Biodiversity Framework, Draft Decision Submitted by the PRESIDENT. (2022). CBD/COP/15/L.25. https://www.cbd.int/doc/c/e6d3/cd1d/daf663719a03902a9b116c34/cop-15-l-25-en.pdfCBD. Report of the Expert Workshop on the Monitoring Framework for the Post-2020 Global Biodiversity Framework (CBD, 2022).
    Google Scholar 
    Chaplin-Kramer, R. et al. Mapping the planet’s critical natural assets. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01934-5 (2022).Article 

    Google Scholar 
    Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).Article 

    Google Scholar 
    Elbers, J. Las Áreas Protegidas de América Latina: Situación Actual y Perspectivas PARA el Futuro (2011).Miller, D. C. & Nakamura, K. S. Protected areas and the sustainable governance of forest resources. Curr. Opin. Environ. Sustain. 32, 96–103 (2018).Article 

    Google Scholar 
    Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186 (2000).Article 

    Google Scholar 
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    van Proosdij, A. S. J., Sosef, M. S. M., Wieringa, J. J. & Raes, N. Minimum required number of specimen records to develop accurate species distribution models. Ecography 39, 542–552 (2016).Article 

    Google Scholar 
    Breiner, F. T., Guisan, A., Bergamini, A. & Nobis, M. P. Overcoming limitations of modelling rare species by using ensembles of small models. Methods Ecol. Evol. 6, 1210–1218 (2015).Article 

    Google Scholar 
    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).Article 

    Google Scholar 
    Thornhill, A. H. et al. Spatial phylogenetics of the native California flora. BMC Biol 15, 96 (2017).Article 

    Google Scholar 
    Radosavljevic, A. & Anderson, R. P. Making better Maxent models of species distributions: Complexity, overfitting and evaluation. J. Biogeogr. 41, 629–643 (2014).Article 

    Google Scholar 
    Kershaw, F. et al. Informing conservation units: Barriers to dispersal for the yellow anaconda. Divers. Distrib. 19, 1164–1174 (2013).Article 

    Google Scholar 
    Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, e1001891 (2014).Article 

    Google Scholar 
    Gaston, K. J. The Structure and Dynamics of Geographic Ranges (Oxford University Press, 2003).
    Google Scholar 
    Yin, L., Fu, R., Shevliakova, E. & Dickinson, R. E. How well can CMIP5 simulate precipitation and its controlling processes over tropical South America?. Clim. Dyn. 41, 3127–3143 (2013).Article 

    Google Scholar  More

  • in

    The impact of industrial agglomeration on urban green land use efficiency in the Yangtze River Economic Belt

    Research areaThe YREB covers Shanghai, Jiangsu, Zhejiang, Anhui, Jiangxi, Hubei, Hunan, Chongqing, Sichuan, Guizhou, and Yunnan. It includes the Yangtze River Delta urban agglomerations (YRDUA), Yangtze River midstream urban agglomeration (YRMUA), and Chengdu-Chongqing urban agglomeration (CCUA). With a regional area of 2.05 million km2, the YREB runs through the eastern, central and western regions in China32. In 2019, the total GDP of YREB is 45.8 trillion yuan, accounting for 46.2% of the national GDP. The YREB plays a pivotal strategic support and leading role in the overall situation of stable economic growth in China33. At the same time, the contradiction between the shortage of land resources and economic growth in the YREB is very prominent. Therefore, this paper selects 107 cities in YREB as the research sample. The specific geographic locations are shown in Fig. 2. This article uses ARCGIS 10.2 version to draw the map. The URL link is http://demo.domain.com:6080/arcgis/services.Figure 2The geographic location of the YREB in China.Full size imageResearch methodsGlobal Malmquist–Luenberger indexUGLUE refers to the effective utilization degree of land elements under certain input of other elements. The green utilization of urban land mainly comes from three aspects: first, improve the utilization intensity of the existing actual input land, that is, increase the input intensity of other elements of the unit land area. Second, reduce the input of land in the production process to avoid excessive waste of land. Third, promote the optimal allocation of land elements among production units. Technical efficiency refers to the maximum degree that all factor inputs need to expand or shrink in equal proportion when all production units reach the production frontier. However, for production units with high technical efficiency, the factor allocation structure may not be reasonable. The land factors may still have the problem of under-input or over-input, resulting in the reduction of UGLUE.Pastor and Lovell34 proposed a global index, which uses all the inspection periods of each decision-making unit as a benchmark to construct the production frontier. According to the current benchmark construction period t, the production possibility set reference set is defined as follows:$$P_{C}^{t} (x^{t} ) = left{ {left. {(y^{t} ,b^{t} )} right|x^{t} {kern 1pt} can{kern 1pt} , produce{kern 1pt} , b^{t} ,y^{t} } right}$$
    (1)
    The global benchmark is defined as: (P_{G} = P_{C}^{1} , cup ,P_{C}^{2} , cup , cdots ,P_{C}^{t}), The subscripts C and G represent the current benchmark and the global benchmark respectively. The ML index of decision-making unit i is calculated based on the current reference benchmark:$$ML^{S} (x^{t} ,y^{t} ,b^{t} ,x^{t + 1} ,y^{t + 1} ,b^{t + 1} ) = frac{{1 + D_{C}^{S} (x^{t} ,y^{t} ,b^{t} )}}{{1 + D_{C}^{S} (x^{t + 1} ,y^{t + 1} ,b^{t + 1} )}}$$
    (2)
    Among them, the superscript S indicates two adjacent periods, t period and t + 1 period. The subscript C indicates the current benchmark, which is a simplified directional distance function. (ML^{s} > 1), indicates that the productivity increases. (ML^{s} < 1), indicates that the productivity decreases.According to Hofmann et al.35, the GMLI is defined as follows:$$GMLI^{t,t + 1} (x^{t} ,y^{t} ,b^{t} ,x^{t + 1} ,y^{t + 1} ,b^{t + 1} ) = frac{{1 + D_{G}^{T} (x^{t} ,y^{t} ,b^{t} )}}{{1 + D_{G}^{T} (x^{t + 1} ,y^{t + 1} ,b^{t + 1} )}}$$ (3) Among them, (D_{G}^{T} (x,y,b) = max left{ {alpha |(y - alpha y,b - alpha b) in P_{G} (x)} right}). (GMLI^{t,t + 1} > 1) indicates that the productivity has increased. (GMLI^{t,t + 1} < 1) indicates that the productivity decreases. The GMLI is further broken down as follows:$$begin{aligned} & GMLI^{t,t + 1} (x^{t} ,y^{t} ,b^{t} ,x^{t + 1} ,y^{t + 1} ,b^{t + 1} ) = frac{{1 + D_{G}^{T} (x^{t} ,y^{t} ,b^{t} )}}{{1 + D_{G}^{T} (x^{t + 1} ,y^{t + 1} ,b^{t + 1} )}} \ & quad = frac{{1 + D_{G}^{t} (x^{t} ,y^{t} ,b^{t} )}}{{1 + D_{G}^{t + 1} (x^{t + 1} ,y^{t + 1} ,b^{t + 1} )}} times left[ {frac{{(1 + D_{G}^{T} (x^{t} ,y^{t} ,b^{t} ))/(1 + D_{C}^{T} (x^{t} ,y^{t} ,b^{t} ))}}{{(1 + D_{G}^{T} (x^{t + 1} ,y^{t + 1} ,b^{t + 1} ))/(1 + D_{C}^{T} (x^{t + 1} ,y^{t + 1} ,b^{t + 1} ))}}} right] \ & quad = frac{{TE^{t + 1} }}{{TE^{t} }} times left( {frac{{BPG_{t + 1}^{t + 1} }}{{BPG_{t}^{t + 1} }}} right) = EC_{t}^{t + 1} times BPC_{t}^{t + 1} \ end{aligned}$$ (4) Among them, TE is the change of technological progress. EC is the change of technological efficiency. The change of technological progress reflects the change of the highest technical level. The improvement of the highest technical level often requires the introduction and innovation of advanced technology, which often requires a large amount of investment. The change of technical efficiency reflects the gap with the highest technical level. Narrowing the gap with the highest technical level often requires improvements in internal management and governance structures. (BPG_{t}^{t + 1}) is the “best practitioner gap” between the current period and overall technological frontier. (BPC_{t}^{t + 1}) measures the changes in the “best practitioner gap” between two periods (technological changes). (BPC_{t}^{t + 1} , > , 1 ,) indicates technological progress. (BPC_{t}^{t + 1} < 1) indicates technology regress.Econometric techniques of industrial agglomeration on UGLUEIn recent years, many scholars used the traditional SPM for empirical analysis, which is a basic measurement model suitable for panel data. Therefore, this article firstly uses the traditional SPM to analyze the impact of industrial agglomeration on UGLUE. The formula is:$$begin{aligned} ln UGLUE_{it} & = alpha_{0} + alpha_{1} ln RZI_{it} + alpha_{2} ln RZI_{it} *ln RZI_{it} + alpha_{3} ln RDI_{it} + alpha_{4} ln EC_{it} \ & quad + alpha_{5} ln GDP_{it} + alpha_{6} ln TEC_{it} + alpha_{7} ln ROAD_{it} + alpha_{8} ln GOV_{it} + varepsilon_{it} \ end{aligned}$$ (5) Among them, ε is the disturbance term. i represents the city, i in this paper involves 107 cities in YREB. t represents the time, and the range of t in this paper is from 2007 to 2016. UGLUE is the explained variable, which represents the UGLUE. RZI and RDI are explanatory variables, representing industrial specialization agglomeration and industrial diversification agglomeration. EC is the industrial structure. GDP is the level of economic development. TEC is the level of technology. ROAD is the level of infrastructure. GOV is the degree of government intervention. (alpha_{1}) to (alpha_{8}) is the coefficient of each variable.Formula (5) assumes that the UGLUE changes with the changes of various influencing factors in the current period. That is, there is no time lag effect. But in reality, land use often has a time lag effect. The previous level has a non-negligible impact on the current results. Therefore, this paper selects the dynamic panel model for empirical analysis. However, there is often a two-way causal relationship between industrial agglomeration and UGLUE, which may cause endogenous bias. For example, cities with higher UGLUE levels tend to have higher levels of economic development, which promotes industrial agglomeration in this city. Therefore, this paper adopts the method of system GMM for regression analysis of dynamic panel model. Compared with mixed OLS, system GMM can make full use of sample information, select appropriate lag terms as instrumental variables36. It can effectively solve the endogeneity problem between industrial agglomeration and UGLUE. Based on the above analysis, this paper introduces the first-order lag term of UGLUE on the basis of formula (5). The DPM is as follows:$$begin{aligned} ln UGLUE_{it} & = beta_{0} + tau ln UGLUE_{i(t - 1)} + beta_{1} ln RZI_{it} + beta_{2} ln RZI_{it} times ln RZI_{it} + beta_{3} ln RDI_{it} \ & quad + beta_{4} ln EC_{it} + beta_{5} ln GDP_{it} + beta_{6} ln TEC_{it} + beta_{7} ln ROAD_{it} + beta_{8} ln GOV_{it} + varepsilon_{{{text{it}}}} \ end{aligned}$$ (6) Among them, (tau) is the first-order lag coefficient of UGLUE, reflecting the time lag effect of UGLUE.Variable descriptionExplained variableThe GMLI is used to measure the UGLUE of 107 cities in YREB. According to existing research37, the following core evaluation index of UGLUE are selected (see Table 1). Regarding input indicators, we mainly choose land element input M, labor element input L, and capital element input K as input indicators. Regarding output indicators, we choose the added value of the secondary and tertiary industries in the municipal area as the expected output, and use the GDP deflator to convert it into a comparable value. At the same time, pollution indicators such as industrial wastewater emissions, industrial sulfur dioxide emissions, and industrial smoke (dust) emissions are selected as undesired output. Since the GMLI reflects the growth rate of UGLUE, this paper assumes that the GMLI in 2006 is 1, and then multiplies the calculated GMLI year by year to obtain the development level of UGLUE in each city from 2007 to 2016.Table 1 Input and output index.Full size tableExplanatory variablesIndustrial specialization index ZI is usually used to measure the specialization level of urban industries. The specialization index is represented by the share of the employment of the industry in the total employment of the city:$$ZI_{i} = Max_{j} (S_{ij} )$$ (7) Nextly, we use the relative specialization index to make a horizontal comparison of the specialization level between different cities:$$RZI_{i} = Max(S_{ij} /S_{j} )$$ (8) The most common measure of the level of industrial diversification is the Herfindahl–Hirschman Index (HHI). For city i, the HHI is the sum of the square sum of employment shares of all industries in the city. The diversification index is the reciprocal of the HHI:$$DZ_{i} = frac{1}{{sumlimits_{j} {S_{ij}^{2} } }}$$ (9) The expression of relative diversification index is as follows:$$RDI_{i} = {1 mathord{left/ {vphantom {1 {sumlimits_{j} {left| {S_{ij} - S_{j} } right|} }}} right. kern-0pt} {sumlimits_{j} {left| {S_{ij} - S_{j} } right|} }}$$ (10) Among them, Sij is the employment proportion of j industry in city i, and Sj is the proportion of the total employment of the national j industry. The greater value of RZI and RDI, the higher level of industrial specialization and diversification.Control variablesRegarding control variables, we choose the following variables as control variables.Industrial structure (EC): The continuous optimization of industrial structure promotes the improvement of UGLUE through three aspects: saving land, increasing land income and promoting the optimal allocation of land resources. This paper selects the added value of the tertiary industry as a percentage of GDP (take the logarithm) to express.Technological level (TEC): The higher the technological innovation level of a city is, the more it promotes the use of input elements and the transformation of innovation results, thereby improving the UGLUE. This paper selects the proportion of science and technology expenditure to fiscal expenditure (take the logarithm) to represent.Economic development level (GDP): The continuous economic development promote the rational allocation of various production factors and increase the level of urban land output, thereby improving the UGLUE. This paper selects GDP per capita (take the logarithm) to express.Road infrastructure level (ROAD): The continuous improvement of infrastructure reduces transportation costs and transaction costs, and promotes communication externalities between producers, consumers, and between producers and consumers. This paper selects the average road area per capita (take the logarithm) to express.Government behavior (GOV): Fiscal expenditure is an important means for the government to carry out macro-control. Appropriate fiscal expenditure makes up for market shortages, improves factor flow and resource allocation efficiency, and realizes positive economic externalities. This paper selects the proportion of fiscal expenditure to GDP (take the logarithm) to express. We can see the meaning of specific variables from Table 2.Table 2 The descriptive statistics of variables.Full size tableData sourceThe object of this thesis is the 107 cities in YREB from 2007 to 2016. The urban construction land area data comes from the "China Urban Construction Statistical Yearbook", and the rest of the index data all come from the "China City Statistical Yearbook". The URL link is https://www.cnki.net/. In order to maintain the integrity of the data, this article uses the average method to fill in the missing values. In addition, because Chaohu City began to be under the jurisdiction of Hefei City in 2011, Bijie City and Tongren City in Guizhou Province only became prefecture-level cities in 2011. The three cities and Pu'er City are taken from the sample to maintain the continuity of data. More

  • in

    Modeling marine cargo traffic to identify countries in Africa with greatest risk of invasion by Anopheles stephensi

    With human movement and globalization, invasive container breeding vectors responsible for dengue, Zika, chikungunya and now malaria, with An. stephensi, are being introduced and establishing populations in new locations. They are bringing with them the threat of increasing or novel cases of vector-borne diseases to new locations where health systems may not be prepared.Anopheles stephensi was first detected on the African continent in Djibouti in 2012 and has since been confirmed in Ethiopia, Somalia, and Sudan. Unlike most malaria vectors, An. stephensi is often found in artificial containers and in urban settings. This unique ecology combined with its initial detection in seaports in Djibouti, Somalia, and Sudan has led scientists to believe that the movement of this vector is likely facilitated through maritime trade.By modeling inter- and intra-continental maritime connectivity in Africa we identified countries with higher likelihood of An. stephensi introduction if facilitated through maritime movement and ranked them based on this data. Anopheles stephensi was not detected in Africa (Djibouti) until 2012. To determine whether historical maritime data would have identified the first sites of introduction, 2011 maritime data were analyzed to determine whether the sites with confirmed An. stephensi would rank highly in connectivity to An. stephensi endemic countries. Using 2011 data on maritime connectivity alone, Djibouti and Sudan were identified as the top two countries at risk of An. stephensi introduction if it is facilitated by marine cargo shipments. In 2021, these are two of the three African coastal nations where An. stephensi is confirmed to be established.When 2011 maritime data were combined with the HSI for An. stephensi establishment, the top five countries remain the same as with maritime data alone: Sudan, Djibouti, Egypt, Kenya and Tanzania, in that order. The maritime data show likelihood of introduction and HSI shows likelihood of establishment. When combined, the analyses show a likelihood of being able to establish and survive once introduced. Interestingly, the results of the combined analyses align with the detection data being reported in the Horn of Africa. The 2011 maritime data reinforces the validity of the model as it points to Sudan and Djibouti, where An. stephensi established in the following years. Similarly, the HSI data for Ethiopia has aligned closely with detections of the species to date15. Interestingly, around this time of initial detection in Djibouti, Djibouti City port underwent development and organizational change. The government of Djibouti took back administrative control of the port as early as 201230.Following this method, maritime trade data from 2020 could point to countries at risk of An. stephensi introduction from endemic countries as well as from the coastal African countries with newly introduced populations. Here we provide a prioritization list and heat map of countries for the early detection, rapid response, and targeted surveillance of An. stephensi in Africa based on this data and the HSI (Fig. 4). Further invasion of An. stephensi on the African continent has the potential to reverse progress made on malaria control in the last century. Anopheles stephensi thrives in urban settings and in containers, in contrast to the rural settings and natural habitats where most Anopheles spp. are found20. The situation in Djibouti may be a harbinger for what is to come if immediate surveillance and control strategies are not initiated18.Figure 4Prioritization Heat Map of African Countries. These 2020 heat maps rank African countries using (A) the Likelihood of An. stephensi through Maritime Trade Index (LASIMTI) data alone and (B) LASIMTI and HSI combined, based on maritime connectivity to countries where An. stephensi is endemic. Higher ranking countries which are at greater risk of An. stephensi introduction are darker in red color than those that are lower ranking (lighter red). Countries which are shaded grey are inland countries that do not have a coast and therefore no data on maritime movement into ports. Countries which are grey and checkered have established or endemic An. stephensi populations and are considered source locations for potential An. stephensi introduction in this analysis. Map was generated using MapChart (mapchart.net).Full size imageMaritime data from 2020, with Djibouti and Sudan considered as potential source populations for intracontinental introduction of An. stephensi, indicate the top five countries at risk for maritime introduction are Egypt, Kenya, Mauritius, Tanzania, and Morocco, suggesting that targeted larval surveillance in these countries near seaports may provide a better understanding of whether there are maritime introductions. When the data from 2020 data is combined with HSI for An. stephensi, the top five countries are instead Egypt, Kenya, Tanzania, Morocco, and Libya. Interestingly, historical reports of An. stephensi in Egypt exist; however, following further identification these specimens were determined to be An. ainshamsi31. With several suitable habitats both along the coast and inland of Egypt, revisiting surveillance efforts there would provide insight into how countries that are highly connected to An. stephensi locations through maritime traffic may experience introductions.Further field validation of this prioritization list is necessary, because it is possible that An. stephensi is being introduced through other transportation routes, such as dry ports or airports32, or may even be dispersed through wind facilitation33. However, countries highlighted here with high levels of connectivity to known An. stephensi locations should be considered seriously at risk and surveillance urgently established to determine whether An. stephensi introduction has already occurred or to enable early detection. Primary vector surveillance for both Ae. aegypti and An. stephensi are through larval surveys, and the two mosquitoes are commonly detected in the same breeding habitats. It could therefore be beneficial to coordinate with existing Aedes surveillance efforts to be able to simultaneously gather data on medically relevant Aedes vectors while seeking to determine whether An. stephensi is present. Similarly, in locations with known An. stephensi and not well established Aedes programs, coordinating surveillance efforts provides an opportunity to conduct malaria and arboviral surveillance by container breeding mosquitoes simultaneously.Efforts to map pinch points or key points of introduction based on the movement of goods and populations could provide high specificity for targeted surveillance and control efforts. For example, participatory mapping or population mobility data collection methods, such as those used to determine routes of human movement for malaria elimination, may simultaneously provide information on where targeted An. stephensi surveillance efforts should focus. Several methods have been proposed in the literature for modeling human movement and one in particular, PopCAB, which is often used for communicable diseases, combined quantitative and qualitative data with geospatial information to identify points of control34.Data on invasive mosquito species has shown that introduction events are rarely a one-time occurrence. Population genetics data on Aedes species indicate that reintroductions are very common and can facilitate the movement of genes between geographically distinct populations, raising the potential for introduction of insecticide resistance, thermotolerance, and other phenotypic and even behavioral traits which may be facilitated by gene flow and introgression35. Djibouti, Sudan, Somalia, and Ethiopia, countries with established invasive populations of An. stephensi, should continue to monitor invasive populations and points of introduction to control and limit further expansion and adaptation of An. stephensi. Work by Carter et al. has shown that An. stephensi populations in Ethiopia in the north and central regions can be differentiated genetically, potentially indicating that these populations are a result of more than one introduction into Ethiopia from South Asia, further emphasizing the potential role of anthropogenic movement on the introduction of the species17.One major limitation of this work is that Somalia is the third coastal nation where An. stephensi has been confirmed; however, marine traffic data were not available for Somalia so it could not be included in this analysis. The potential impact of Somalia on maritime trade is unknown and it should not be excluded as a potential source population. Additionally, this model does not account for the possibility of other countries with An. stephensi populations that have not been detected yet. As new data on An. stephensi expansion becomes available, more countries will be at higher risk. Other countries with An. stephensi populations, such as Iran, Myanmar, and Iraq, constitute lower relative percentages of trade with these countries so were not included in the analysis. However, genetic similarities were noted from An. stephensi in Pakistan, so this nation was included10.Due to the nature of maritime traffic, inland countries were also not included in this prioritization ranking. Countries which are inland but share borders with high-risk countries according to the LASTIMI index should also be considered with high priority. For example, the ranking from 2011 highlights Sudan and Djibouti, both which border Ethiopia, and efforts to examine key land transportation routes between bordering nations where humans and goods travel may provide additional insight into the expansion routes of this invasive species.In Ethiopia, An. stephensi was detected in 2016. It has largely been detected along major transportation routes although further data is needed to understand the association between movement and An. stephensi introductions and expansion since most sampling sites have also been located along transport routes. Importantly, Ethiopia relies heavily on the ports of Djibouti and Somalia for maritime imports and exports. Surveillance efforts have revealed that the species is also frequently associated with livestock shelters and An. stephensi are frequently found with livestock bloodmeals15. Interestingly, the original detection of An. stephensi was found in a livestock quarantine station in the port of Djibouti. Additionally, livestock constitutes one of the largest exports of maritime trade from this region. For countries with high maritime connectivity to An. stephensi locations, surveillance efforts near seaports, in particular those with livestock trade, may be targeted locations for countries without confirmed An. stephensi to begin larval surveillance.As Ae. aegypti and Culex coronator were detected in tires or Ae. albopictus through tire and bamboo (Dracaena sanderiana) trade, An. stephensi could be carried through maritime trade of a specific good36,37,38. Future examination of the movement of specific goods would be beneficial in interpreting potential An. stephensi invasion pathways. Additionally, the various types of vessels used to transport certain cargo such as container, bulk, and livestock ships could affect An. stephensi survivability during transit. Sugar and grain are often shipped in bulk or break bulk vessels which store cargo in large unpackaged containers. Container ships transport products stored in containers sized for land transportation via trucks and carry goods such as tires. Livestock vessels are often multilevel, open-air ships which require more hands working on deck and water management39.Using LSBCI index data from 2020, we developed a network to highlight how coastal African nations are connected through maritime trade (Fig. 4). The role of this network analysis is two-fold, (1) it demonstrates an understanding of intracontinental maritime connectivity; and (2) it highlights the top three countries connected via maritime trade through an interactive html model (Supplemental File). For example, if An. stephensi is detected and established in a specific coastal African nation such as Djibouti, selecting the Djibouti node reveals the top three locations at risk of introduction from that source country (Djibouti links to Sudan, Egypt and Kenya). This can be used as an actionable prioritization list for surveillance if An. stephensi is detected in any given country and highlights major maritime hubs in Africa which could be targeted for surveillance and control. For example, since the development of this model, An. stephensi has been detected in Nigeria. Through the use of this interactive model, Ghana, Cote d’Ivoire, and Benin have been identified as countries most connected to Nigeria through maritime trade and therefore surveillance prioritization activities could consider these locations.The network analysis reveals the significance of South African trade to the rest of the continent. Due to the distance, South Africa did not appear to be high in risk of An. stephensi introduction. However, this analysis does reveal that if An. stephensi were to enter nearby countries, it could very easily be introduced because of its high centrality. Western African countries such as Ghana, Togo, and Morocco are also heavily connected to other parts of Africa. Interestingly, Mauritius appears to be highly significant to this network of African maritime trade. Based on 2020 maritime data, Mauritius is ranked as the country with the third greatest likelihood of introduction of An. stephensi and has the second highest centrality rank value of 0.159. Considering these factors, Mauritius could serve as an important port of call connecting larger ports throughout Africa or other continents. With long standing regular larval surveillance efforts across the island for Aedes spp., this island nation is well suited to look for Anopheles larvae as part of Aedes surveillance efforts for early detection and rapid response to prevent the establishment of An. stephensi. If An. stephensi were to become established in countries with high centrality ranks, further expansion on the continent could be accelerated drastically. These ports could serve as important watchpoints and indicators of An. stephensi’s incursion into Africa. Anopheles stephensi is often found in shared habitats with Aedes spp. and a great opportunity exists to leverage Aedes arboviral surveillance efforts to initiate the search for An. stephensi, especially in countries that have high potential of introduction through maritime trade. More

  • in

    Soil–vegetation moisture capacitor maintains dry season vegetation productivity over India

    Good, S. P., Noone, D. & Bowen, G. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science 349, 175–177 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Humphrey, V. et al. Soil moisture–atmosphere feedback dominates land carbon uptake variability. Nature 592, 65–69 (2021).Article 
    CAS 

    Google Scholar 
    Devaraju, N., Bala, G. & Nemani, R. Modelling the influence of land-use changes on biophysical and biochemical interactions at regional and global scales. Plant Cell Environ. 38, 1931–1946 (2015).Article 
    CAS 

    Google Scholar 
    Chu, C. et al. Does climate directly influence NPP globally?. Glob. Change Biol. 22, 12–24 (2016).Article 
    ADS 

    Google Scholar 
    Pan, S. et al. Impacts of climate variability and extremes on global net primary production in the first decade of the 21st century. J. Geogr. Sci. 25, 1027–1044 (2015).Article 

    Google Scholar 
    Musavi, T. et al. Stand age and species richness dampen interannual variation of ecosystem-level photosynthetic capacity. Nat. Ecol. Evol. 1, 48 (2017).Article 

    Google Scholar 
    Cheng, J. et al. Vegetation feedback causes delayed ecosystem response to East Asian Summer Monsoon Rainfall during the Holocene. Nat. Commun. 12, 1–9 (2021).ADS 

    Google Scholar 
    Yu, Y. et al. Observed positive vegetation-rainfall feedbacks in the Sahel dominated by a moisture recycling mechanism. Nat. Commun. 8, 1–9 (2017).Article 
    ADS 

    Google Scholar 
    Betts, R. A., Cox, P. M., Lee, S. E. & Woodward, F. I. Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature 387, 796–799 (1997).Article 
    ADS 
    CAS 

    Google Scholar 
    Forzieri, G. et al. Increased control of vegetation on global terrestrial energy fluxes. Nat. Clim. Chang. 10, 356–362 (2020).Article 
    ADS 

    Google Scholar 
    Ukkola, A. M. et al. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Clim. Chang. 6, 75–78 (2016).Article 
    ADS 

    Google Scholar 
    Steffen, W. et al. Trajectories of the earth system in the anthropocene. Proc. Natl. Acad. Sci. USA 115, 8252–8259 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Bruijnzeel, L. A. Hydrological functions of tropical forests: Not seeing the soil for the trees?. Agric. Ecosyst. Environ. 104, 185–228 (2004).Article 

    Google Scholar 
    Bierkens, M. F. P. & van den Hurk, B. J. J. M. Groundwater convergence as a possible mechanism for multi-year persistence in rainfall. Geophys. Res. Lett. 34, 2402 (2007).Article 
    ADS 

    Google Scholar 
    Idso, S. B. & Brazel, A. J. Rising atmospheric carbon dioxide concentrations may increase streamflow. Nature 312, 51–53 (1984).Article 
    ADS 
    CAS 

    Google Scholar 
    Betts, R. A. et al. Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448, 1037–1041 (2007).Article 
    ADS 
    CAS 

    Google Scholar 
    Swann, A. L. S., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl. Acad. Sci. USA. 113, 10019–10024 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Mankin, J. S., Seager, R., Smerdon, J. E., Cook, B. I. & Williams, A. P. Mid-latitude freshwater availability reduced by projected vegetation responses to climate change. Nat. Geosci. 12, 983–988 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Frank, D. C. et al. Water-use efficiency and transpiration across European forests during the Anthropocene. Nat. Clim. Chang. 5, 579–583 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhang, K. et al. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Sci. Rep. 5, 1–9 (2015).
    Google Scholar 
    Teuling, A. J., Seneviratne, S. I., Williams, C. & Troch, P. A. Observed timescales of evapotranspiration response to soil moisture. Geophys. Res. Lett. 33, 23 (2006).Article 

    Google Scholar 
    Teuling, A. J., Uijlenhoet, R., Hupert, F. & Troch, P. A. Impact of plant water uptake strategy on soil moisture and evapotranspiration dynamics during drydown. Geophys. Res. Lett. 33, 3401 (2006).Article 
    ADS 

    Google Scholar 
    Vivoni, E. R. et al. Observed relation between evapotranspiration and soil moisture in the North American monsoon region. Geophys. Res. Lett. 35, 22 (2008).Article 

    Google Scholar 
    Dirmeyer, P. A., Jin, Y., Csingh, C. & Yan, C. Evolving land-atmosphere interactions over North America from CMIP5 simulations. J. Clim. 26, 7313–7327 (2013).Article 
    ADS 

    Google Scholar 
    Dirmeyer, P. A. et al. Verification of land-atmosphere coupling in forecast models, reanalyses, and land surface models using flux site observations. J. Hydrometeorol. 19, 375–392 (2018).Article 
    ADS 

    Google Scholar 
    Friedlingstein, P. et al. Positive feedback between future climate change and the carbon cycle. Geophys. Res. Lett. 28, 1543–1546 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Arora, K. et al. Carbon-concentration and carbon-climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences 17, 4173–4222 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Song, X., Wang, D. Y., Li, F. & Zeng, X. D. Evaluating the performance of CMIP6 Earth system models in simulating global vegetation structure and distribution. Adv. Clim. Chang. Res. 12, 584–595 (2021).Article 

    Google Scholar 
    Levine, P. A., Randerson, J. T., Swenson, S. C. & Lawrence, D. M. Evaluating the strength of the land-atmosphere moisture feedback in Earth system models using satellite observations. Hydrol. Earth Syst. Sci. 20, 4837–4856 (2016).Article 
    ADS 

    Google Scholar 
    Wei, N. et al. Evolution of uncertainty in terrestrial carbon storage in earth system models from CMIP5 to CMIP6. J. Clim. 35, 5483–5499 (2022).Article 
    ADS 

    Google Scholar 
    Smith, N. G. et al. Toward a better integration of biological data from precipitation manipulation experiments into Earth system models. Rev. Geophys. 52, 412–434 (2014).Article 
    ADS 

    Google Scholar 
    Yuan, K., Zhu, Q., Riley, W. J., Li, F. & Wu, H. Understanding and reducing the uncertainties of land surface energy flux partitioning within CMIP6 land models. Agric. For. Meteorol. 319, 108920 (2022).Article 
    ADS 

    Google Scholar 
    Baker, J. C. A. et al. An assessment of land-atmosphere interactions over south america using satellites, reanalysis, and two global climate models. J. Hydrometeorol. 22, 905–922 (2021).Article 
    ADS 

    Google Scholar 
    Mooley, D. A. & Parthasarathy, B. Fluctuations in All-India summer monsoon rainfall during 1871?1978. Clim. Change 6, 287–301 (1984).Article 
    ADS 

    Google Scholar 
    Guhathakurta, P. & Rajeevan, M. Trends in the rainfall pattern over India. Int. J. Climatol. 28, 1453–1469 (2008).Article 

    Google Scholar 
    Sarkar, S. & Kafatos, M. Interannual variability of vegetation over the Indian sub-continent and its relation to the different meteorological parameters. Remote Sens. Environ. 90, 268–280 (2004).Article 
    ADS 

    Google Scholar 
    Roy, P. S. et al. New vegetation type map of India prepared using satellite remote sensing: Comparison with global vegetation maps and utilities. Int. J. Appl. Earth Obs. Geoinf. 39, 142–159 (2015).ADS 

    Google Scholar 
    Koster, R. D. et al. Regions of strong coupling between soil moisture and precipitation. Science 305, 1138–1140 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Paul, S. et al. Weakening of Indian summer monsoon rainfall due to changes in land use land cover. Sci. Rep. 6, 1–10 (2016).Article 

    Google Scholar 
    Pathak, A., Ghosh, S., Kumar, P. & Murtugudde, R. Role of oceanic and terrestrial atmospheric moisture sources in intraseasonal variability of indian summer monsoon rainfall. Sci. Rep. 7, 12729 (2017).Article 
    ADS 

    Google Scholar 
    Pradhan, R., Singh, N. & Singh, R. P. Onset of summer monsoon in Northeast India is preceded by enhanced transpiration. Sci. Rep. 9, 1–11 (2019).Article 

    Google Scholar 
    Bonan, G. B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Le Quéré, C. et al. Global carbon budget 2017. Earth Syst. Sci. Data 10, 405–448 (2018).Article 
    ADS 

    Google Scholar 
    Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).Article 

    Google Scholar 
    Green, J. K. et al. Regionally strong feedbacks between the atmosphere and terrestrial biosphere. Nat. Geosci. 10, 410–414 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Pathak, A. et al. Role of oceanic and land moisture sources and transport in the seasonal and interannual variability of summer monsoon in India. J. Clim. 30, 1839–1859 (2017).Article 
    ADS 

    Google Scholar 
    Myers, N., Mittermeler, R. A., Mittermeler, C. G., Da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).Article 
    ADS 
    CAS 

    Google Scholar 
    Venkateswarlu, B. & Prasad, J. V. N. Carrying capacity of Indian agriculture: issues related to rainfed agriculture. Curr. Sci. 102, 6 (2012).
    Google Scholar 
    Pai, D. S. et al. Development of a new high spatial resolution (0.25° × 0.25°) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam 65, 1–18 (2014).Article 

    Google Scholar 
    Rodríguez-Fernández, N. J. et al. Long term global surface soil moisture fields using an SMOS-trained neural network applied to AMSR-E data. Remote Sens. 8, 959 (2016).Article 
    ADS 

    Google Scholar 
    Martens, B. et al. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).Article 
    ADS 

    Google Scholar 
    Miralles, D. G. et al. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 15, 453–469 (2011).Article 
    ADS 

    Google Scholar 
    Doelling, D. R. et al. Geostationary enhanced temporal interpolation for CERES flux products. J. Atmos. Ocean. Technol. 30, 1072–1090 (2013).Article 
    ADS 

    Google Scholar 
    Doelling, D. R. et al. Advances in geostationary-derived longwave fluxes for the CERES synoptic (SYN1deg) product. J. Atmos. Ocean. Technol. 33, 503–521 (2016).Article 
    ADS 

    Google Scholar 
    Running, S. W., Mu, Q. & Zhao, M. MOD17A2H MODIS/Terra Gross Primary Productivity 8-Day L4 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC. (2015). https://doi.org/10.5067/MODIS/MOD17A2H.006. Accessed 22 May 2021.Pathak, A., Ghosh, S. & Kumar, P. Precipitation recycling in the Indian subcontinent during summer monsoon. J. Hydrometeorol. 15, 2050 (2014).Article 
    ADS 

    Google Scholar 
    Paul, S., Ghosh, S., Rajendran, K. & Murtugudde, R. Moisture supply from the western ghats forests to water deficit east coast of India. Geophys. Res. Lett. 45, 4337–4344 (2018).Article 
    ADS 

    Google Scholar 
    Sebastian, D. E. et al. Multi-scale association between vegetation growth and climate in India: A wavelet analysis approach. Remote Sens. 11, 2073 (2019).Article 

    Google Scholar 
    Tabari, H. & Hosseinzadeh Talaee, P. Sensitivity of evapotranspiration to climatic change in different climates. Glob. Planet. Change 115, 16–23 (2014).Article 
    ADS 

    Google Scholar 
    Roy, A., Das, S. K., Tripathi, A. K., Singh, N. U. & Barman, H. K. Biodiversity in North East India and their conservation. Progress. Agric. 15, 182 (2015).Article 

    Google Scholar 
    Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl. Acad. Sci. USA. 112, 436–441 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Verma, A., Chandel, V. & Ghosh, S. Climate drivers of the variations of vegetation productivity in India. Environ. Res. Lett. 17, 084023 (2022).Article 
    ADS 

    Google Scholar 
    Dimri, A. P. et al. Western disturbances: A review. Rev. Geophys. 53, 225–246 (2015).Article 
    ADS 

    Google Scholar 
    Joseph, J., Scheidegger, J. M., Jackson, C. R., Barik, B. & Ghosh, S. Is flood to drip irrigation a solution to groundwater depletion in the Indo-Gangetic plain?. Environ. Res. Lett. 17, 104002 (2022).Article 
    ADS 

    Google Scholar 
    Sahastrabuddhe, R., Ghosh, S., Saha, A. & Murtugudde, R. A minimalistic seasonal prediction model for Indian monsoon based on spatial patterns of rainfall anomalies. Clim. Dyn. 52, 3661–3681 (2019).Article 

    Google Scholar 
    Liang, X., Lettenmaier, D. P., Wood, E. F. & Burges, S. J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. 99, 14415 (1994).Article 
    ADS 

    Google Scholar 
    Friedl, M. A. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC. (2019). https://doi.org/10.5067/MODIS/MCD12Q1.006. Accessed 22 May 2021.Myneni, R., Knyazikhin, Y. & Park, T. MODIS/Terra Leaf Area Index/FPAR 8-Day L4 Global 500m SIN Grid V061. NASA EOSDIS Land Processes DAAC. (2021) https://doi.org/10.5067/MODIS/MOD15A2H.061. Accessed 22 May 2021.Schaaf, C. & Wang, Z. MCD43A3 MODIS/Terra+Aqua BRDF/Albedo Daily L3 Global – 500m V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MCD43A3.006. (2015). https://www.umb.edu/spectralmass/terra_aqua_modis/v006. Accessed 22 May 2021.Didan, K., Barreto Munoz, A., Solano, R. & Huete, A. MODIS Vegetation Index User’s Guide (MOD13 Series).Liu, S.-J., Zhang, J.-H., Tian, G.-H. & Cai, D.-X. Detection Fractional Vegetation Cover Changes Using MODIS Data. in 2008 Congress on Image and Signal Processing 707–710 (IEEE, 2008). https://doi.org/10.1109/CISP.2008.46. More