1.
AMAP. Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017 (AMAP, 2017).
2.
Notz, D. & Stroeve, J. Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science 354, 747–750 (2016).
CAS Article Google Scholar
3.
Haine, T. W. N. et al. Arctic freshwater export: status, mechanisms, and prospects. Glob. Planet. Change 125, 13–35 (2015).
Article Google Scholar
4.
Aagaard, K. & Carmack, E. C. The role of sea ice and other fresh water in the Arctic circulation. J. Geophys. Res. 94, 14485–14498 (1989).
Article Google Scholar
5.
Aagaard, K., Coachman, L. K. & Carmack, E. On the halocline of the Arctic Ocean. Deep Sea Res. Pt A 28, 529–545 (1981).
Article Google Scholar
6.
Polyakov, I. V. et al. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science 356, 285–291 (2017).
CAS Article Google Scholar
7.
Aagaard, K. & Coachman, L. K. Toward an ice-free Arctic ocean. Eos Trans. Amer. Geophys. Union 56, 484–486 (1975).
Article Google Scholar
8.
Kwok, R. Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled variability (1958–2018). Environ. Res. Lett. 13, 105005 (2018).
Article Google Scholar
9.
Post, E. et al. Ecological consequences of sea-ice decline. Science 341, 519–524 (2013).
CAS Article Google Scholar
10.
Post, E. et al. Ecological dynamics across the Arctic associated with recent climate change. Science 325, 1355–1358 (2009).
CAS Article Google Scholar
11.
Gregory, A. C. et al. Marine viral macro- and micro-diversity from pole to pole. Cell 177, 1109–1123 (2019).
CAS Article Google Scholar
12.
Arrigo, K. R., van Dijken, G. & Pabi, S. Impact of a shrinking Arctic ice cover on marine primary production. Geophys. Res. Lett. 35, L19603 (2008).
Article Google Scholar
13.
Kahru, M., Lee, Z.-P., Mitchell, B. G. & Nevison, C. D. Effects of sea ice cover on satellite-detected primary production in the Arctic ocean. Biol. Lett. 12, 20160223 (2016).
Article Google Scholar
14.
Bélanger, S., Babin, M. & Tremblay, J.-É. Increasing cloudiness in Arctic damps the increase in phytoplankton primary production due to sea ice receding. Biogeosciences 10, 4087–4101 (2013).
Article Google Scholar
15.
Kahru, M., Brotas, V., Manzano-Sarabio, M. & Mitchell, B. G. Are phytoplankton blooms occurring earlier in the Arctic? Glob. Change Biol. 17, 1733–1739 (2010).
Article Google Scholar
16.
Ardyna, M. et al. Recent Arctic Ocean sea-ice loss triggers novel fall phytoplankton blooms. Geophys. Res. Lett. 41, 6207–6212 (2014).
Article Google Scholar
17.
Arrigo, K. R. & van Dijken, G. L. Continued increases in Arctic Ocean primary production. Prog. Oceanogr. 136, 60–70 (2015).
Article Google Scholar
18.
Lewis, K. M., van Dijken, G. & Arrigo, K. R. Changes in phytoplankton concentration, not sea ice, now drive increased Arctic Ocean primary production. Science 369, 198–202 (2020).
CAS Article Google Scholar
19.
Olson, M. B. & Strom, S. L. Phytoplankton growth, microzooplankton herbivory and community structure in the southeast Bering Sea: insight into the formation and temporal persistence of an Emiliania huxleyi bloom. Deep Sea Res. Pt. 2 49, 5969–5990 (2002).
CAS Article Google Scholar
20.
Sherr, E. B., Sherr, B. F. & Ross, C. Microzooplankton grazing impact in the Bering Sea during spring sea ice conditions. Deep Sea Res. Pt. 2 94, 57–67 (2013).
CAS Article Google Scholar
21.
Forest, A. et al. Biogenic carbon flows through the planktonic food web of the Amundsen Gulf (Arctic Ocean): a synthesis of field measurements and inverse modeling analyses. Prog. Oceanogr. 91, 410–436 (2011).
Article Google Scholar
22.
Franzè, G. & Lavrentyev, P. J. Microbial food web structure and dynamics across a natural temperature gradient in a productive polar shelf system. Mar. Ecol. Prog. Ser. 569, 89–102 (2017).
Article CAS Google Scholar
23.
Menden-Deuer, S., Lawrence, C. & Franzè, G. Herbivorous protist growth and grazing rates at in situ and artificially elevated temperatures during an Arctic phytoplankton spring bloom. PeerJ 6, e5264 (2018).
Article CAS Google Scholar
24.
Carmack, E. C. & Wassmann, P. Food webs and physical-biological coupling on pan-Arctic shelves: unifying concepts and comprehensive perspectives. Prog. Oceanogr. 71, 446–477 (2006).
Article Google Scholar
25.
Harrison, W. G. & Cota, G. F. Primary production in polar waters: relation to nutrient availability. Polar Res. 10, 87–104 (1991).
Article Google Scholar
26.
Sakshaug, E. in The Organic Carbon Cycle in the Arctic Ocean (eds Stein, R. & MacDonald, R. W.) 57–81 (Springer, 2004).
27.
Michel, C., Nielsen, T. G., Nozais, C. & Gosselin, M. Significance of sedimentation and grazing by ice micro- and meiofauna for carbon cycling in annual sea ice (northern Baffin Bay). Aquat. Microb. Ecol. 30, 57–68 (2002).
Article Google Scholar
28.
Krause, J. W. et al. Biogenic silica production and diatom dynamics in the Svalbard region during spring. Biogeosciences 15, 6503–6517 (2018).
CAS Article Google Scholar
29.
Ardyna, M., Gosselin, M., Michel, C., Poulin, M. & Tremblay, J.-É. Environmental forcing of phytoplankton community structure and function in the Canadian High Arctic: contrasting oligotrophic and eutrophic regions. Mar. Ecol. Prog. Ser. 442, 37–57 (2011).
CAS Article Google Scholar
30.
Taylor, R. L. et al. Colimitation by light, nitrate, and iron in the Beaufort Sea in late summer. J. Geophys. Res. 118, 3260–3277 (2013).
Article Google Scholar
31.
Tremblay, J.-É. et al. Global and regional drivers of nutrient supply, primary production and CO2 drawdown in the changing Arctic Ocean. Prog. Oceanogr. 139, 171–196 (2015).
Article Google Scholar
32.
Tremblay, J.-É. & Gagnon, J. in Influence of Climate Change on the Changing Arctic and Sub-Arctic Conditions (eds J. C. J. Nihoul & A. G. Kostianoy) 73–93 (Springer, 2009).
33.
Michel, C. et al. Arctic Ocean outflow shelves in the changing Arctic: a review and perspectives. Prog. Oceanogr. 139, 66–88 (2015).
Article Google Scholar
34.
Bourgault, D. et al. Turbulent nitrate fluxes in the Amundsen Gulf during ice-covered conditions. Geophys. Res. Lett. 38, L15602 (2011).
Article CAS Google Scholar
35.
Randelhoff, A., Fer, I., Sundfjord, A., Tremblay, J.-É. & Reigstad, M. Vertical fluxes of nitrate in the seasonal nitracline of the Atlantic sector of the Arctic Ocean. J. Geophys. Res. Oceans 121, 5282–5295 (2016).
CAS Article Google Scholar
36.
Toole, J. M. et al. Influences of the ocean surface mixed layer and thermohaline stratification on Arctic Sea ice in the central Canada Basin. J. Geophys. Res. Oceans 115, C10018 (2010).
Article Google Scholar
37.
Lind, S., Ingvaldsen, R. B. & Furevik, T. Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. Nat. Clim. Change 8, 634–639 (2018).
Article Google Scholar
38.
Mioduszewski, J., Vavrus, S. & Wang, M. Diminishing Arctic sea ice promotes stronger surface winds. J. Climate 31, 8101–8119 (2018).
Article Google Scholar
39.
Bendif, E. M. et al. Repeated species radiations in the recent evolution of the key marine phytoplankton lineage Gephyrocapsa. Nat. Commun. 10, 4234 (2019).
Article CAS Google Scholar
40.
Oziel, L. et al. Faster Atlantic currents drive poleward expansion of temperate marine species in the Arctic Ocean. Nat. Commun. 11, 1705 (2020).
CAS Article Google Scholar
41.
Neukermans, G., Oziel, L. & Babin, M. Increased intrusion of warming Atlantic water leads to rapid expansion of temperate phytoplankton in the Arctic. Glob. Change Biol. 24, 2545–2553 (2018).
Article Google Scholar
42.
Oziel, L. et al. Role for Atlantic inflows and sea ice loss on shifting phytoplankton blooms in the Barents Sea. J. Geophys. Res. 122, 5121–5139 (2017).
Article Google Scholar
43.
Paulsen, M. L. et al. Synechococcus in the Atlantic gateway to the Arctic Ocean. Front. Mar. Sci. 3, 191 (2016).
Article Google Scholar
44.
Winter, A., Henderiks, J., Beaufort, L., Rickaby, R. E. M. & Brown, C. W. Poleward expansion of the coccolithophore Emiliania huxleyi. J. Plankton Res. 36, 316–325 (2014).
CAS Article Google Scholar
45.
Wassmann, P. et al. The contiguous domains of Arctic Ocean advection: trails of life and death. Prog. Oceanogr. 139, 42–65 (2015).
Article Google Scholar
46.
Kortsch, S., Primicerio, R., Fossheim, M., Dolgov, A. V. & Aschan, M. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists. Proc. Royal Soc. B 282, 20151546 (2015).
Article Google Scholar
47.
Frainer, A. et al. Climate-driven changes in functional biogeography of Arctic marine fish communities. Proc. Natl Acad. Sci. USA 114, 12202–12207 (2017).
CAS Article Google Scholar
48.
Fossheim, M. et al. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Clim. Change 5, 673–677 (2015).
Article Google Scholar
49.
Beaugrand, G. et al. Prediction of unprecedented biological shifts in the global ocean. Nat. Clim. Change 9, 237–243 (2019).
Article Google Scholar
50.
Carmack, E. C. et al. Freshwater and its role in the Arctic marine system: sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans. J. Geophys. Res. Biogeosci. 121, 675–717 (2016).
CAS Article Google Scholar
51.
Marchese, C. et al. Changes in phytoplankton bloom phenology over the North Water (NOW) polynya: a response to changing environmental conditions. Polar Biol. 40, 1721–1737 (2017).
Article Google Scholar
52.
Mayot, N. et al. Springtime export of Arctic sea ice influences phytoplankton production in the Greenland Sea. J. Geophys. Res. Oceans 125, e2019JC015799 (2020).
Article Google Scholar
53.
Carmack, E. C. The alpha/beta ocean distinction: a perspective on freshwater fluxes, convection, nutrients and productivity in high-latitude seas. Deep Sea Res. Pt. 2 54, 2578–2598 (2007).
Article Google Scholar
54.
Blais, M. et al. Contrasting interannual changes in phytoplankton productivity and community structure in the coastal Canadian Arctic Ocean. Limnol. Oceanogr. 62, 2480–2497 (2017).
Article Google Scholar
55.
Meire, L. et al. High export of dissolved silica from the Greenland Ice Sheet. Geophys. Res. Lett. 43, 9173–9182 (2016).
CAS Article Google Scholar
56.
Hawkings, J. R. et al. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nat. Commun. 5, 3929 (2014).
CAS Article Google Scholar
57.
Hawkings, J. et al. The Greenland Ice Sheet as a hot spot of phosphorus weathering and export in the Arctic. Glob. Biogeochem. Cycle 30, 191–210 (2016).
CAS Article Google Scholar
58.
Arrigo, K. R. et al. Melting glaciers stimulate large summer phytoplankton blooms in southwest Greenland waters. Geophys. Res. Lett. 44, 6278–6285 (2017).
Article Google Scholar
59.
Meire, L. et al. Marine-terminating glaciers sustain high productivity in Greenland fjords. Glob. Change Biol. 23, 5344–5357 (2017).
Article Google Scholar
60.
Boone, W. et al. Coastal freshening prevents fjord bottom water renewal in northeast Greenland: a mooring study from 2003 to 2015. Geophys. Res. Lett. 45, 2726–2733 (2018).
Article Google Scholar
61.
Le Fouest, V. et al. Modeling plankton ecosystem functioning and nitrogen fluxes in the oligotrophic waters of the Beaufort Sea, Arctic Ocean: a focus on light-driven processes. Biogeosciences 10, 4785–4800 (2013).
Article Google Scholar
62.
Le Fouest, V., Manizza, M., Tremblay, B. & Babin, M. Modelling the impact of riverine DON removal by marine bacterioplankton on primary production in the Arctic Ocean. Biogeosciences 12, 3385–3402 (2015).
Article CAS Google Scholar
63.
Tremblay, J.-É. et al. Impact of river discharge, upwelling and vertical mixing on the nutrient loading and productivity of the Canadian Beaufort Shelf. Biogeosciences 11, 4853–4868 (2014).
Article Google Scholar
64.
Ardyna, M. et al. Shelf-basin gradients shape ecological phytoplankton niches and community composition in the coastal Arctic Ocean (Beaufort Sea). Limnol. Oceanogr. 62, 2113–2132 (2017).
Article Google Scholar
65.
Fichot, C. G. et al. Pan-Arctic distributions of continental runoff in the Arctic Ocean. Sci. Rep. 3, 1053 (2013).
Article CAS Google Scholar
66.
Matsuoka, A. et al. Pan-Arctic optical characteristics of colored dissolved organic matter: tracing dissolved organic carbon in changing Arctic waters using satellite ocean color data. Remote Sens. Environ. 200, 89–101 (2017).
Article Google Scholar
67.
Arrigo, K. R. et al. Phytoplankton blooms beneath the sea ice in the Chukchi Sea. Deep Sea Res. Pt. 2 105, 1–16 (2014).
Article Google Scholar
68.
Arrigo, K. R. et al. Massive phytoplankton blooms under Arctic sea ice. Science 336, 1408 (2012).
CAS Article Google Scholar
69.
Kelly, R. et al. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. Proc. Natl Acad. Sci. USA 110, 13055–13060 (2013).
CAS Article Google Scholar
70.
French, N. H. F. et al. Fire in Arctic tundra of Alaska: past fire activity, future fire potential, and significance for land management and ecology. Int. J. Wildland Fire 24, 1045–1061 (2015).
Article Google Scholar
71.
Masrur, A., Petrov, A. N. & DeGroote, J. Circumpolar spatio-temporal patterns and contributing climatic factors of wildfire activity in the Arctic tundra from 2001–2015. Environ. Res. Lett. 13, 014019 (2018).
Article Google Scholar
72.
Evangeliou, N. et al. Open fires in Greenland in summer 2017: transport, deposition and radiative effects of BC, OC and BrC emissions. Atmos. Chem. Phys. 19, 1393–1411 (2019).
CAS Article Google Scholar
73.
Lutsch, E. et al. Unprecedented atmospheric ammonia concentrations detected in the high Arctic from the 2017 Canadian wildfires. J. Geophys. Res. Atmos. 124, 8178–8202 (2019).
CAS Article Google Scholar
74.
Skiles, S. M., Flanner, M., Cook, J. M., Dumont, M. & Painter, T. H. Radiative forcing by light-absorbing particles in snow. Nat. Clim. Change 8, 964–971 (2018).
Article Google Scholar
75.
Light, B., Eicken, H., Maykut, G. A. & Grenfell, T. C. The effect of included participates on the spectral albedo of sea ice. J. Geophys. Res. Oceans 103, 27739–27752 (1998).
Article Google Scholar
76.
Holland, M. M., Bailey, D. A., Briegleb, B. P., Light, B. & Hunke, E. Improved sea ice shortwave radiation physics in CCSM4: the impact of melt ponds and aerosols on Arctic sea ice. J. Climate 25, 1413–1430 (2011).
Article Google Scholar
77.
Marks, A. A., Lamare, M. L. & King, M. D. Optical properties of sea ice doped with black carbon – an experimental and radiative-transfer modelling comparison. Cryosphere 11, 2867–2881 (2017).
Article Google Scholar
78.
Dentener, F. et al. Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Glob. Biogeochem. Cycle 20, GB4003 (2006).
Article CAS Google Scholar
79.
Mahowald, N. et al. Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts. Glob. Biogeochem. Cycle 22, GB4026 (2008).
Article CAS Google Scholar
80.
Torres-Valdés, S., Tsubouchi, T., Davey, E., Yashayaev, I. & Bacon, S. Relevance of dissolved organic nutrients for the Arctic Ocean nutrient budget. Geophys. Res. Lett. 43, 6418–6426 (2016).
Article CAS Google Scholar
81.
AMAP Assessment 2018: Arctic Ocean Acidification (AMAP, 2018).
82.
Yamamoto-Kawai, M., McLaughlin, F. A., Carmack, E. C., Nishino, S. & Shimada, K. Aragonite undersaturation in the Arctic Ocean: effects of ocean acidification and sea ice melt. Science 326, 1098–1100 (2009).
CAS Article Google Scholar
83.
Qi, D. et al. Increase in acidifying water in the western Arctic Ocean. Nat. Clim. Change 7, 195–199 (2017).
CAS Article Google Scholar
84.
Terhaar, J., Kwiatkowski, L. & Bopp, L. Emergent constraint on Arctic Ocean acidification in the twenty-first century. Nature 582, 379–383 (2020).
CAS Article Google Scholar
85.
Hoppe, C. J. M. et al. Resistance of Arctic phytoplankton to ocean acidification and enhanced irradiance. Polar Biol. 41, 399–413 (2018).
CAS Article Google Scholar
86.
Hoppe, C. J. M., Schuback, N., Semeniuk, D. M., Maldonado, M. T. & Rost, B. Functional redundancy facilitates resilience of subarctic phytoplankton assemblages toward ocean acidification and high irradiance. Front. Mar. Sci. 4, 229 (2017).
Article Google Scholar
87.
Hoppe, C. J. M., Wolf, K. K. E., Schuback, N., Tortell, P. D. & Rost, B. Compensation of ocean acidification effects in Arctic phytoplankton assemblages. Nat. Clim. Change 8, 529–533 (2018).
CAS Article Google Scholar
88.
Hussherr, R. et al. Impact of ocean acidification on Arctic phytoplankton blooms and dimethyl sulfide concentration under simulated ice-free and under-ice conditions. Biogeosciences 14, 2407–2427 (2017).
CAS Article Google Scholar
89.
White, E., Hoppe, C. J. M. & Rost, B. The Arctic picoeukaryote Micromonas pusilla benefits from ocean acidification under constant and dynamic light. Biogeosciences 17, 635–647 (2020).
CAS Article Google Scholar
90.
Yoshimura, T. et al. Impacts of elevated CO2 on particulate and dissolved organic matter production: microcosm experiments using iron-deficient plankton communities in open subarctic waters. J. Oceanogr. 69, 601–618 (2013).
CAS Article Google Scholar
91.
Thoisen, C., Riisgaard, K., Lundholm, N., Nielsen, T. G. & Hansen, P. J. Effect of acidification on an Arctic phytoplankton community from Disko Bay, West Greenland. Mar. Ecol. Prog. Ser. 520, 21–34 (2015).
CAS Article Google Scholar
92.
Coello-Camba, A., Agustí, S., Holding, J., Arrieta, J. M. & Duarte, C. M. Interactive effect of temperature and CO2 increase in Arctic phytoplankton. Front. Mar. Sci. 1, 49 (2014).
Article Google Scholar
93.
Perovich, D. K. & Polashenski, C. Albedo evolution of seasonal Arctic sea ice. Geophys. Res. Lett. 39, L08501 (2012).
Article Google Scholar
94.
Perovich, D. K. The Optical Properties of Sea Ice (Office of Naval Research, 1996).
95.
Hill, V. J., Cota, G. & Stockwell, D. Spring and summer phytoplankton communities in the Chukchi and Eastern Beaufort Seas. Deep Sea Res. Pt 2 52, 3369–3385 (2005).
Article Google Scholar
96.
Perrette, M., Yool, A., Quartly, G. D. & Popova, E. E. Near-ubiquity of ice-edge blooms in the Arctic. Biogeosciences 7, 515–524 (2011).
Article Google Scholar
97.
Janout, M. A. et al. Sea-ice retreat controls timing of summer plankton blooms in the Eastern Arctic Ocean. Geophys. Res. Lett. 12, 12493–12501 (2016).
Article Google Scholar
98.
Sakshaug, E. Biomass and productivity distributions and their variability in the Barents Sea. ICES J. Mar. Sci. 54, 341–350 (1997).
Article Google Scholar
99.
Subba Rao, D. V. & Platt, T. Primary production of arctic waters. Polar Biol. 3, 191–201 (1984).
Article Google Scholar
100.
Pabi, S., van Dijken, G. L. & Arrigo, K. R. Primary production in the Arctic Ocean, 1998–2006. J. Geophys. Res. 113, C08005 (2008).
Article CAS Google Scholar
101.
Arrigo, K. R. & van Dijken, G. L. Secular trends in Arctic Ocean net primary production. J. Geophys. Res. 116, C09011 (2011).
Google Scholar
102.
Fortier, M., Fortier, L., Michel, C. & Legendre, L. Climatic and biological forcing of the vertical flux of biogenic particles under seasonal Arctic sea ice. Mar. Ecol. Prog. Ser. 225, 1–16 (2002).
Article Google Scholar
103.
Mundy, C. J. et al. Role of environmental factors on phytoplankton bloom initiation under landfast sea ice in Resolute Passage, Canada. Mar. Ecol. Prog. Ser. 497, 39–49 (2014).
Article Google Scholar
104.
Duerksen, S. W. et al. Large, omega-3 rich, pelagic diatoms under Arctic Sea ice: sources and Implications for food webs. PLoS ONE 9, e114070 (2014).
Article CAS Google Scholar
105.
Galindo, V. et al. Contrasted sensitivity of DMSP production to high light exposure in two Arctic under-ice blooms. J. Exp. Mar. Biol. Ecol. 475, 38–48 (2016).
CAS Article Google Scholar
106.
Galindo, V. et al. Under-ice microbial dimethylsulfoniopropionate metabolism during the melt period in the Canadian Arctic Archipelago. Mar. Ecol. Prog. Ser. 524, 39–53 (2015).
CAS Article Google Scholar
107.
Galindo, V. et al. Biological and physical processes influencing sea ice, under-ice algae, and dimethylsulfoniopropionate during spring in the Canadian Arctic Archipelago. J. Geophys. Res. Oceans 119, 3746–3766 (2014).
CAS Article Google Scholar
108.
Ardyna, M. et al. Ecological drivers controlling spring phytoplankton blooms in the Arctic Ocean. Elem. Sci. Anth. 8, 30 (2020).
Article Google Scholar
109.
Assmy, P. et al. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice. Sci. Rep. 7, 40850 (2017).
CAS Article Google Scholar
110.
Mayot, N. et al. Assessing phytoplankton activities in the seasonal ice zone of the Greenland Sea over an annual cycle. J. Geophys. Res. Oceans 123, 8004–8025 (2018).
Article Google Scholar
111.
Strass, V. H. & Nöthig, E.-M. Seasonal shifts in ice edge phytoplankton blooms in the Barents Sea related to the water column stability. Polar Biol. 16, 409–422 (1996).
Article Google Scholar
112.
Pavlov, A. K. et al. Altered inherent optical properties and estimates of the underwater light field during an Arctic under-ice bloom of Phaeocystis pouchetii. J. Geophys. Res. Oceans 122, 4939–4961 (2017).
Article Google Scholar
113.
Lalande, C. et al. Variability in under-ice export fluxes of biogenic matter in the Arctic Ocean. Glob. Biogeochem. Cycle 28, 571–583 (2014).
CAS Article Google Scholar
114.
Yager, P. L. et al. Dynamic bacterial and viral response to an algal bloom at subzero temperatures. Limnol. Oceanogr. 46, 790–801 (2001).
CAS Article Google Scholar
115.
Hill, V. J., Light, B., Steele, M. & Zimmerman, R. C. Light availability and phytoplankton growth beneath Arctic sea ice: integrating observations and modeling. J. Geophys. Res. Oceans 123, 3651–3667 (2018).
Article Google Scholar
116.
Lewis, K. M. et al. Photoacclimation of Arctic Ocean phytoplankton to shifting light and nutrient limitation. Limnol. Oceanogr. 64, 284–301 (2019).
CAS Article Google Scholar
117.
Grebmeier, J. M. Shifting patterns of life in the Pacific Arctic and sub-Arctic seas. Annu. Rev. Mar. Sci. 4, 63–78 (2012).
Article Google Scholar
118.
Grebmeier, J. M., Moore, S. E., Overland, J. E., Frey, K. E. & Gradinger, R. Biological response to recent Pacific Arctic sea ice retreats. Eos Trans. Amer. Geophys. Union 91, 161–162 (2010).
Article Google Scholar
119.
Tamelander, T., Kivimäe, C., Bellerby, R. G. J., Renaud, P. E. & Kristiansen, S. Base-line variations in stable isotope values in an Arctic marine ecosystem: effects of carbon and nitrogen uptake by phytoplankton. Hydrobiologia 630, 63–73 (2009).
CAS Article Google Scholar
120.
Degen, R. et al. Patterns and drivers of megabenthic secondary production on the Barents Sea shelf. Mar. Ecol. Prog. Ser. 546, 1–16 (2016).
Article Google Scholar
121.
Wassmann, P. & Reigstad, M. Future Arctic Ocean seasonal ice zones and implications for pelagic-benthic coupling. Oceanography 24, 220–231 (2011).
Article Google Scholar
122.
Fujiwara, A. et al. Changes in phytoplankton community structure during wind-induced fall bloom on the central Chukchi shelf. Polar Biol. 41, 1279–1295 (2018).
Article Google Scholar
123.
Uchimiya, M. et al. Coupled response of bacterial production to a wind-induced fall phytoplankton bloom and sediment resuspension in the Chukchi Sea Shelf, Western Arctic Ocean. Front. Mar. Sci. 3, 231 (2016).
Article Google Scholar
124.
Goñi, M. A. et al. Particulate organic matter distributions in surface waters of the Pacific Arctic shelf during the late summer and fall season. Mar. Chem. 211, 75–93 (2019).
Article CAS Google Scholar
125.
Juranek, L., Takahashi, T., Mathis, J. & Pickart, R. Significant biologically mediated CO2 uptake in the Pacific Arctic during the late open water season. J. Geophys. Res. Oceans 124, 821–843 (2019).
CAS Article Google Scholar
126.
Not, F. et al. Late summer community composition and abundance of photosynthetic picoeukaryotes in Norwegian and Barents Seas. Limnol. Oceanogr. 50, 1677–1686 (2005).
CAS Article Google Scholar
127.
Ardyna, M. et al. Parameterization of vertical chlorophyll a in the Arctic Ocean: impact of the subsurface chlorophyll maximum on regional, seasonal, and annual primary production estimates. Biogeosciences 10, 4383–4404 (2013).
Article CAS Google Scholar
128.
Wassmann, P., Peinert, R. & Smetacek, V. Patterns of production and sedimentation in the boreal and polar Northeast Atlantic. Polar Res. 10, 209–228 (1991).
Article Google Scholar
129.
Martin, J. et al. Prevalence, structure and properties of subsurface chlorophyll maxima in Canadian Arctic waters. Mar. Ecol. Prog. Ser. 412, 69–84 (2010).
CAS Article Google Scholar
130.
Coupel, P. et al. The impact of freshening on phytoplankton production in the Pacific Arctic Ocean. Prog. Oceanogr. 131, 113–125 (2015).
Article Google Scholar
131.
Huot, Y., Babin, M. & Bruyant, F. Photosynthetic parameters in the Beaufort Sea in relation to the phytoplankton community structure. Biogeosciences 10, 3445–3454 (2013).
Article Google Scholar
132.
Monier, A. et al. Oceanographic structure drives the assembly processes of microbial eukaryotic communities. ISME J. 9, 990–1002 (2014).
Article CAS Google Scholar
133.
McLaughlin, F. A. & Carmack, E. C. Deepening of the nutricline and chlorophyll maximum in the Canada Basin interior. Geophys. Res. Lett. 37, L24602 (2010).
Article Google Scholar
134.
Gran, H. H. Das Plankton des norwegischen Nordmeeres (Fiskeridirektoratets havforskningsinstitutt, 1902).
135.
Poulin, M. et al. The pan-Arctic biodiversity of marine pelagic and sea-ice unicellular eukaryotes: a first-attempt assessment. Mar. Biodiv. 41, 13–28 (2011).
Article Google Scholar
136.
Lovejoy, C., von Quillfeldt, C., Hopcroft, R. R., Poulin, M. & Thaler, M. in State of the Arctic Marine Biodiversity Report (eds T Barry. et al.) 62–83 (Conservation of Arctic Flora and Fauna International Secretariat, 2017).
137.
Tremblay, G. et al. Late summer phytoplankton distribution along a 3500 km transect in Canadian Arctic waters: strong numerical dominance by picoeukaryotes. Aquat. Microb. Ecol. 54, 55–70 (2009).
Article Google Scholar
138.
Berge, J. et al. Diel vertical migration of Arctic zooplankton during the polar night. Biol. Lett. 5, 69–72 (2009).
Article Google Scholar
139.
Lovejoy, C. et al. Distribution, phylogeny, and growth of cold-adapted picoprasinophytes in Arctic seas. J. Phycol. 43, 78–89 (2007).
CAS Article Google Scholar
140.
Stoecker, D. K. & Lavrentyev, P. J. Mixotrophic plankton in the polar seas: a pan-Arctic review. Front. Mar. Sci. 5, 292 (2018).
Article Google Scholar
141.
Balzano, S. et al. Diversity of cultured photosynthetic flagellates in the northeast Pacific and Arctic Oceans in summer. Biogeosciences 9, 4553–4571 (2012).
CAS Article Google Scholar
142.
Joli, N. et al. Need for focus on microbial species following ice melt and changing freshwater regimes in a Janus Arctic Gateway. Sci. Rep. 8, 9405 (2018).
Article CAS Google Scholar
143.
Okolodkov, Y. B. The global distributional patterns of toxic, bloom dinoflagellates recorded from the Eurasian Arctic. Harmful Algae 4, 351–369 (2005).
Article Google Scholar
144.
Brosnahan, M. L., Fischer, A. D., Lopez, C. B., Moore, S. K. & Anderson, D. M. Cyst-forming dinoflagellates in a warming climate. Harmful Algae 91, 101728 (2020).
Article Google Scholar
145.
Lefebvre, K. A. et al. Prevalence of algal toxins in Alaskan marine mammals foraging in a changing arctic and subarctic environment. Harmful Algae 55, 13–24 (2016).
CAS Article Google Scholar
146.
Lovejoy, C., Legendre, L., Martineau, M. J., Bacle, J. & von Quillfeldt, C. H. Distribution of phytoplankton and other protists in the North Water. Deep Sea Res. Pt 2 49, 5027–5047 (2002).
Article Google Scholar
147.
Booth, B. C. et al. Dynamics of Chaetoceros socialis blooms in the North Water. Deep Sea Res. Pt 2 49, 5003–5025 (2002).
CAS Article Google Scholar
148.
Schoemann, V., Becquevort, S., Stefels, J., Rousseau, V. & Lancelot, C. Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. J. Sea. Res. 53, 43–66 (2005).
CAS Article Google Scholar
149.
Smith, W. O. et al. Importance of Phaeocystis blooms in the high-latitude ocean carbon cycle. Nature 352, 514–516 (1991).
Article Google Scholar
150.
Simo-Matchim, A. G., Gosselin, M., Poulin, M., Ardyna, M. & Lessard, S. Summer and fall distribution of phytoplankton in relation to environmental variables in Labrador fjords, with special emphasis on Phaeocystis pouchetii. Mar. Ecol. Prog. Ser. 572, 19–42 (2017).
CAS Article Google Scholar
151.
Crawford, D. W., Cefarelli, A. O., Wrohan, I. A., Wyatt, S. N. & Varela, D. E. Spatial patterns in abundance, taxonomic composition and carbon biomass of nano- and microphytoplankton in Subarctic and Arctic Seas. Prog. Oceanogr. 162, 132–159 (2018).
Article Google Scholar
152.
Nöthig, E.-M. et al. Summertime plankton ecology in Fram Strait—a compilation of long- and short-term observations. Polar Res. 34, 23349 (2015).
Article CAS Google Scholar
153.
Hodal, H., Falk-Petersen, S., Hop, H., Kristiansen, S. & Reigstad, M. Spring bloom dynamics in Kongsfjorden, Svalbard: nutrients, phytoplankton, protozoans and primary production. Polar Biol. 35, 191–203 (2012).
Article Google Scholar
154.
Hátún, H. et al. The subpolar gyre regulates silicate concentrations in the North Atlantic. Sci. Rep. 7, 14576 (2017).
Article CAS Google Scholar
155.
Slagstad, D., Wassmann, P. F. J. & Ellingsen, I. Physical constrains and productivity in the future Arctic Ocean. Front. Mar. Sci. 2, 85 (2015).
Article Google Scholar
156.
Hegseth, E. N. et al. in The Ecosystem of Kongsfjorden, Svalbard (eds Hop, H. & Wiencke, C.) 173–227 (Springer International Publishing, 2019).
157.
Lacour, T. et al. Decoupling light harvesting, electron transport and carbon fixation during prolonged darkness supports rapid recovery upon re-illumination in the Arctic diatom Chaetoceros neogracilis. Polar Biol. http://doi.org/d6rs (2019).
158.
Kvernvik, A. C. et al. Fast reactivation of photosynthesis in arctic phytoplankton during the polar night. J. Phycol. 54, 461–470 (2018).
CAS Article Google Scholar
159.
McMinn, A. & Martin, A. Dark survival in a warming world. Proc. Biol. Sci. 280, 20122909 (2013).
CAS Google Scholar
160.
Joli, N., Monier, A., Logares, R. & Lovejoy, C. Seasonal patterns in Arctic prasinophytes and inferred ecology of Bathycoccus unveiled in an Arctic winter metagenome. ISME J. 11, 13727 (2017).
Article Google Scholar
161.
Vader, A., Marquardt, M., Meshram, A. R. & Gabrielsen, T. M. Key Arctic phototrophs are widespread in the polar night. Polar Biol. 38, 13–21 (2015).
Article Google Scholar
162.
McMinn, A. & Martin, A. Dark survival in a warming world. Proc. Biol. Sci. 280, 20122909 (2013).
CAS Google Scholar
163.
van de Poll, W., Abdullah, E., Visser, R., Fischer, P. & Buma, A. Taxon-specific dark survival of diatoms and flagellates affects Arctic phytoplankton composition during the polar night and early spring. Limnol. Oceanogr. 65, 903–914 (2019).
Article Google Scholar
164.
Boyd, P. W., Lennartz, S. T., Glover, D. M. & Doney, S. C. Biological ramifications of climate-change-mediated oceanic multi-stressors. Nat. Clim. Change 5, 71–79 (2014).
Article Google Scholar
165.
Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).
Article Google Scholar
166.
Vancoppenolle, M. et al. Future Arctic Ocean primary productivity from CMIP5 simulations: uncertain outcome, but consistent mechanisms. Glob. Biogeochem. Cycle 27, 605–619 (2013).
CAS Article Google Scholar
167.
Tedesco, L., Vichi, M. & Scoccimarro, E. Sea-ice algal phenology in a warmer Arctic. Sci. Adv. 5, eaav4830 (2019).
CAS Article Google Scholar
168.
Babin, M. et al. Estimation of primary production in the Arctic Ocean using ocean colour remote sensing and coupled physical-biological models: strengths, limitations and how they compare. Prog. Oceanogr. 139, 197–220 (2015).
Article Google Scholar
169.
Lacour, T., Larivière, J. & Babin, M. Growth, Chl a content, photosynthesis, and elemental composition in polar and temperate microalgae. Limnol. Oceanogr. 201, 43–58 (2016).
Google Scholar
170.
Lacour, T. et al. The role of sustained photoprotective non-photochemical quenching in low temperature and high light acclimation in the bloom-forming Arctic diatom Thalassiosira gravida. Front. Mar. Sci. 5, 354 (2018).
Article Google Scholar
171.
Graham, R. M. et al. Winter storms accelerate the demise of sea ice in the Atlantic sector of the Arctic Ocean. Sci. Rep. 9, 9222 (2019).
Article CAS Google Scholar
172.
Berge, J. et al. Unexpected levels of biological activity during the polar night offer new perspectives on a warming Arctic. Curr. Biol. 25, 2555–2561 (2015).
CAS Article Google Scholar
173.
Berge, J. et al. In the dark: a review of ecosystem processes during the Arctic polar night. Prog. Oceanogr. 139, 258–271 (2015).
Article Google Scholar
174.
Kipp, L. E., Charette, M. A., Moore, W. S., Henderson, P. B. & Rigor, I. G. Increased fluxes of shelf-derived materials to the central Arctic Ocean. Sci. Adv. 4, eaao1302 (2018).
Article CAS Google Scholar
175.
Abram, N. J. et al. Early onset of industrial-era warming across the oceans and continents. Nature 536, 411 (2016).
CAS Article Google Scholar
176.
Osman, M. B. et al. Industrial-era decline in subarctic Atlantic productivity. Nature 569, 551–555 (2019).
CAS Article Google Scholar
177.
Barton, A. D., Irwin, A. J., Finkel, Z. V. & Stock, C. A. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. Proc. Natl Acad. Sci. USA 113, 2964–2969 (2016).
CAS Article Google Scholar
178.
Rahmstorf, S. et al. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Clim. Change 5, 475–480 (2015).
Article Google Scholar
179.
Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556, 191–196 (2018).
CAS Article Google Scholar
180.
Thornalley, D. J. R. et al. Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature 556, 227–230 (2018).
CAS Article Google Scholar
181.
Moore, J. K. et al. Sustained climate warming drives declining marine biological productivity. Science 359, 1139–1143 (2018).
CAS Article Google Scholar
182.
Bakker, P. et al. Fate of the Atlantic Meridional Overturning Circulation: strong decline under continued warming and Greenland melting. Geophys. Res. Lett. 43, 12,252–12,260 (2016).
Article Google Scholar
183.
Takahashi, T. et al. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep Sea Res. Pt 2 56, 554–577 (2009).
CAS Article Google Scholar
184.
Stock, C. A. et al. Reconciling fisheries catch and ocean productivity. Proc. Natl Acad. Sci. USA 114, E1441–E1449 (2017).
CAS Article Google Scholar
185.
Cavalieri, D. J., Parkinson, C., Gloersen, P. & Zwally, H. J. Sea Ice Concentrations From Nimbus-7 SMMR and DMSP SSM/I Passive Microwave Data Version 1 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 1996); https://nsidc.org/data/NSIDC-0051/versions/1
186.
Tschudi, M., Meier, W. N., Stewart, J. S., Fowler, C. & Maslanik, J. EASE-Grid Sea Ice Age Version 4 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2019); https://doi.org/10.5067/UTAV7490FEPB
187.
Anderson, L. G. & Macdonald, R. W. Observing the Arctic Ocean carbon cycle in a changing environment. Polar Res. 34, 26891 (2015).
Article CAS Google Scholar
188.
Horner, R. & Schrader, G. C. Contributions of ice Algae, phytoplankton, and benthic microalgae to primary production in nearshore regions of the Beaufort Sea. Arctic 35, 485–503 (1982).
Article Google Scholar
189.
Mundy, C. J. et al. Contribution of under-ice primary production to an ice-edge upwelling phytoplankton bloom in the Canadian Beaufort Sea. Geophys. Res. Lett. 36, L17601 (2009).
Article Google Scholar
190.
Oziel, L. et al. Environmental factors influencing the seasonal dynamics of under-ice spring blooms in Baffin Bay. Elem. Sci. Anth. 7, 34 (2019).
Article Google Scholar
191.
Ferland, J., Gosselin, M. & Starr, M. Environmental control of summer primary production in the Hudson Bay system: the role of stratification. J. Mar. Syst. 88, 385–400 (2011).
Article Google Scholar
192.
Lalande, C., Nöthig, E. M. & Fortier, L. Algal export in the Arctic Ocean in times of global warming. Geophys. Res. Lett. 46, 5959–5967 (2019).
Article Google Scholar
193.
Lalande, C., Grebmeier, J. M., Hopcroft, R. R. & Danielson, S. L. Annual cycle of export fluxes of biogenic matter near Hanna Shoal in the northeast Chukchi Sea. Deep Sea Res. Pt 2 177, 104730 (2020).
CAS Article Google Scholar
194.
Silkin, V., Pautova, L., Giordano, M., Kravchishina, M. & Artemiev, V. Interannual variability of Emiliania huxleyi blooms in the Barents Sea: in situ data 2014–2018. Mar. Pollut. Bull. 158, 111392 (2020).
CAS Article Google Scholar More