1.
Forde, B. & Lorenzo, H. The nutritional control of root development. Plant Soil 232, 51–68. https://doi.org/10.1023/A:1010329902165 (2001).
CAS Article Google Scholar
2.
Hodge, A. The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol. 162, 9–24. https://doi.org/10.1111/j.1469-8137.2004.01015.x (2004).
Article Google Scholar
3.
Robinson, D. Tansley review no 73. The responses of plants to non-uniform supplies of nutrients. New Phytol. 127, 635–674 (1994).
CAS Article Google Scholar
4.
Yu, P., White, P. J., Hochholdinger, F. & Li, C. Phenotypic plasticity of the maize root system in response to heterogeneous nitrogen availability. Planta 240, 667–678. https://doi.org/10.1007/s00425-014-2150-y (2014).
CAS Article PubMed Google Scholar
5.
Osmont, K. S., Sibout, R. & Hardtke, C. S. Hidden branches: developments in root system architecture. Annu. Rev. Plant Biol. 58, 93–113. https://doi.org/10.1146/annurev.arplant.58.032806.104006 (2007).
CAS Article PubMed Google Scholar
6.
Ahmed, S. et al. Imaging the interaction of roots and phosphate fertiliser granules using 4D X-ray tomography. Plant Soil 401, 125–134. https://doi.org/10.1007/s11104-015-2425-5 (2016).
CAS Article Google Scholar
7.
Drew, M. & Saker, L. Nutrient supply and the growth of the seminal root system in barley III. Compensatory increases in growth of lateral roots, and in rates of phosphate uptake, in response to a localized supply of phosphate. J. Exp. Bot. 29, 435–451 (1978).
CAS Article Google Scholar
8.
Flavel, R. J., Guppy, C. N., Tighe, M. K., Watt, M. & Young, I. M. Quantifying the response of wheat (Triticum aestivum L.) root system architecture to phosphorus in an Oxisol. Plant Soil 385, 303–310. https://doi.org/10.1007/s11104-014-2191-9 (2014).
CAS Article Google Scholar
9.
Nacry, P., Bouguyon, E. & Gojon, A. Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant Soil 370, 1–29. https://doi.org/10.1007/s11104-013-1645-9 (2013).
CAS Article Google Scholar
10.
Bloom, A. J., Frensch, J. & Taylor, A. R. Influence of inorganic nitrogen and pH on the elongation of maize seminal roots. Ann. Bot. 97, 867–873. https://doi.org/10.1093/aob/mcj605 (2006).
CAS Article PubMed PubMed Central Google Scholar
11.
Bloom, A. J., Jackson, L. E. & Smart, D. R. Root-growth as a function of ammonium and nitrate in the root zone. Plant Cell Environ. 16, 199–206. https://doi.org/10.1111/j.1365-3040.1993.tb00861.x (1993).
CAS Article Google Scholar
12.
Caba, J. M., Centeno, M. L., Fernandez, B., Gresshoff, P. M. & Ligero, F. Inoculation and nitrate alter phytohormone levels in soybean roots: differences between a supernodulating mutant and the wild type. Planta 211, 98–104. https://doi.org/10.1007/s004250000265 (2000).
CAS Article PubMed Google Scholar
13.
Gerendás, J. & Sattelmacher, B. Influence of nitrogen form and concentration on growth and ionic balance of tomato (Lycopersicon esculentum) and potato (Solanum tuberosum). In Plant nutrition—physiology and applications (ed. van Beusichem, M. L.) 33–37 (Springer, Berlin, 1990).
Google Scholar
14.
Granato, T. C. & Raper, C. D. Jr. Proliferation of maize (Zea mays L.) roots in response to localized supply of nitrate. J. Exp. Bot. 40, 263–275. https://doi.org/10.1093/jxb/40.2.263 (1989).
CAS Article PubMed Google Scholar
15.
Maizlish, N., Fritton, D. & Kendall, W. Root morphology and early development of maize at varying levels of nitrogen 1. Agron. J. 72, 25–31 (1980).
CAS Article Google Scholar
16.
Ogawa, S., Valencia, M. O., Ishitani, M. & Selvaraj, M. G. Root system architecture variation in response to different NH4+ concentrations and its association with nitrogen-deficient tolerance traits in rice. Acta Physiol. Plant. 36, 2361–2372. https://doi.org/10.1007/s11738-014-1609-6 (2014).
CAS Article Google Scholar
17.
Sattelmacher, B. & Thoms, K. Root growth and 14C-translocation into the roots of maize (Zea mays L.) as influenced by local nitrate supply. J. Plant Nutr. Soil Sci. 152, 7–10 (1989).
CAS Google Scholar
18.
Schortemeyer, M., Feil, B. & Stamp, P. Root morphology and nitrogen uptake of maize simultaneously supplied with ammonium and nitrate in a split-root system. Ann. Bot. 72, 107–115. https://doi.org/10.1006/anbo.1993.1087 (1993).
CAS Article Google Scholar
19.
Thoms, K. & Sattelmacher, B. Influence of nitrate placement on morphology and physiology of maize (Zea mays) root systems. In Plant nutrition—physiology and applications (ed van Beusichem, M. L.) 29–32 (Springer, Berlin, 1990).
Google Scholar
20.
Tian, Q., Chen, F., Liu, J., Zhang, F. & Mi, G. Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots. J. Plant Physiol. 165, 942–951. https://doi.org/10.1016/j.jplph.2007.02.011 (2008).
CAS Article PubMed Google Scholar
21.
Gruber, B. D., Giehl, R. F., Friedel, S. & von Wiren, N. Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol. 163, 161–179. https://doi.org/10.1104/pp.113.218453 (2013).
CAS Article PubMed PubMed Central Google Scholar
22.
Lima, J. E., Kojima, S., Takahashi, H. & von Wiren, N. Ammonium triggers lateral root branching in Arabidopsis in an AMMONIUM TRANSPORTER1;3-dependent manner. Plant Cell 22, 3621–3633. https://doi.org/10.1105/tpc.110.076216 (2010).
CAS Article PubMed PubMed Central Google Scholar
23.
Remans, T. et al. The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proc. Natl. Acad. Sci. U. S. A. 103, 19206–19211. https://doi.org/10.1073/pnas.0605275103 (2006).
ADS CAS Article PubMed PubMed Central Google Scholar
24.
Zhang, H. & Forde, B. G. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279, 407–409. https://doi.org/10.1126/science.279.5349.407 (1998).
ADS CAS Article PubMed Google Scholar
25.
Zhang, H., Jennings, A., Barlow, P. W. & Forde, B. G. Dual pathways for regulation of root branching by nitrate. Proc. Natl. Acad. Sci. U.S.A. 96, 6529–6534. https://doi.org/10.1073/pnas.96.11.6529 (1999).
ADS CAS Article PubMed PubMed Central Google Scholar
26.
Drew, M. Comparison of the effects of a localised supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley. New Phytol. 75, 479–490 (1975).
CAS Article Google Scholar
27.
Drew, M. & Saker, L. Nutrient Supply and the Growth of the Seminal Root System in Barley II. Localized, compensatory increases in lateral root growth and rates of nitrate uptake when nitrate supply is restricted to only part of the root system. J. Exp. Bot. 26, 79–90 (1975).
CAS Article Google Scholar
28.
Drew, M., Saker, L. & Ashley, T. Nutrient supply and the growth of the seminal root system in barley I. The effect of nitrate concentration on the growth of axes and laterals. J. Exp. Bot. 24, 1189–1202 (1973).
CAS Article Google Scholar
29.
Beeckman, F., Motte, H. & Beeckman, T. Nitrification in agricultural soils: impact, actors and mitigation. Curr. Opin. Biotechnol. 50, 166–173. https://doi.org/10.1016/j.copbio.2018.01.014 (2018).
CAS Article PubMed Google Scholar
30.
Heil, J., Vereecken, H. & Bruggemann, N. A review of chemical reactions of nitrification intermediates and their role in nitrogen cycling and nitrogen trace gas formation in soil. Eur. J. Soil Sci. 67, 23–39. https://doi.org/10.1111/ejss.12306 (2016).
CAS Article Google Scholar
31.
Blume, H.-P. et al. Scheffer/Schachtschabel Soil Science (Springer, Berlin, 2015).
Google Scholar
32.
Nieder, R., Benbi, D. K. & Scherer, H. W. Fixation and defixation of ammonium in soils: a review. Biol. Fertil. Soils 47, 1–14. https://doi.org/10.1007/s00374-010-0506-4 (2011).
CAS Article Google Scholar
33.
Nommik, H. & Vahtras, K. Retention and fixation of ammonium and ammonia in soils. In Nitrogen in Agricultural Soils 22, (ed. Stevenson, F. J.) 123–171 (Wiley, Madison, Wisconsin, USA, 1982).
Google Scholar
34.
Morris, E. C. et al. Shaping 3D root system architecture. Curr. Biol. 27, R919–R930. https://doi.org/10.1016/j.cub.2017.06.043 (2017).
CAS Article PubMed Google Scholar
35.
Anghinoni, I. & Barber, S. A. Corn root-growth and nitrogen uptake as affected by ammonium placement. Agron. J. 80, 799–802. https://doi.org/10.2134/agronj1988.00021962008000050021x (1988).
Article Google Scholar
36.
Anghinoni, I., Magalhaes, J. R. & Barber, S. A. Enzyme-activity, nitrogen uptake and corn growth as affected by ammonium concentration in soil solution. J. Plant Nutr. 11, 131–144. https://doi.org/10.1080/01904168809363791 (1988).
CAS Article Google Scholar
37.
Pan, W. L., Madsen, I. J., Bolton, R. P., Graves, L. & Sistrunk, T. Ammonia/ammonium toxicity root symptoms induced by inorganic and organic fertilizers and placement. Agron. J. 108, 2485–2492. https://doi.org/10.2134/agronj2016.02.0122 (2016).
CAS Article Google Scholar
38.
Xu, L. et al. Nitrogen transformation and plant growth in response to different urea-application methods and the addition of DMPP. J. Plant Nutr. Soil Sci. 177, 271–277. https://doi.org/10.1002/jpln.201100390 (2014).
CAS Article Google Scholar
39.
Zhang, J. C. & Barber, S. A. Corn root distribution between ammonium fertilized and unfertilized soil. Commun. Soil Sci. Plant Anal. 24, 411–419. https://doi.org/10.1080/00103629309368811 (1993).
Article Google Scholar
40.
Maestre, F. T. & Reynolds, J. F. Small-scale spatial heterogeneity in the vertical distribution of soil nutrients has limited effects on the growth and development of Prosopis glandulosa seedlings. Plant Ecol. 183, 65–75. https://doi.org/10.1007/s11258-005-9007-1 (2006).
Article Google Scholar
41.
Rabbi, S. M., Guppy, C., Flavel, R., Tighe, M. & Young, I. Root plasticity not evident in N-enriched soil volumes for wheat (Triticum aestivum L.) and Barley (Hordeum vulgare L.) varieties. Commun. Soil Sci. Plant Anal. 48, 2002–2012 (2017).
CAS Article Google Scholar
42.
Van Vuuren, M., Robinson, D. & Griffiths, B. Nutrient inflow and root proliferation during the exploitation of a temporally and spatially discrete source of nitrogen in soil. Plant Soil 178, 185–192 (1996).
Article Google Scholar
43.
Hodge, A., Robinson, D., Griffiths, B. S. & Fitter, A. H. Why plants bother: root proliferation results in increased nitrogen capture from an organic patch when two grasses compete. Plant Cell Environ. 22, 811–820. https://doi.org/10.1046/j.1365-3040.1999.00454.x (1999).
Article Google Scholar
44.
Hodge, A., Stewart, J., Robinson, D., Griffiths, B. S. & Fitter, A. H. Root proliferation, soil fauna and plant nitrogen capture from nutrient-rich patches in soil. New Phytol. 139, 479–494. https://doi.org/10.1046/j.1469-8137.1998.00216.x (1998).
Article Google Scholar
45.
Hodge, A., Stewart, J., Robinson, D., Griffiths, B. S. & Fitter, A. H. Plant, soil fauna and microbial responses to N-rich organic patches of contrasting temporal availability. Soil Biol. Biochem. 31, 1517–1530. https://doi.org/10.1016/S0038-0717(99)00070-X (1999).
CAS Article Google Scholar
46.
Li, H. B. et al. Root morphological responses to localized nutrient supply differ among crop species with contrasting root traits. Plant Soil 376, 151–163. https://doi.org/10.1007/s11104-013-1965-9 (2014).
CAS Article Google Scholar
47.
Abalos, D., Sanz-Cobena, A., Misselbrook, T. & Vallejo, A. Effectiveness of urease inhibition on the abatement of ammonia, nitrous oxide and nitric oxide emissions in a non-irrigated Mediterranean barley field. Chemosphere 89, 310–318. https://doi.org/10.1016/j.chemosphere.2012.04.043 (2012).
ADS CAS Article PubMed Google Scholar
48.
Slangen, J. H. G. & Kerkhoff, P. Nitrification inhibitors in agriculture and horticulture—a literature-review. Fertil. Res. 5, 1–76. https://doi.org/10.1007/Bf01049492 (1984).
CAS Article Google Scholar
49.
Zaman, M., Zaman, S., Nguyen, M. L., Smith, T. J. & Nawaz, S. The effect of urease and nitrification inhibitors on ammonia and nitrous oxide emissions from simulated urine patches in pastoral system: a two-year study. Sci. Tot. Environ. 465, 97–106. https://doi.org/10.1016/j.scitotenv.2013.01.014 (2013).
CAS Article Google Scholar
50.
Metzner, R. et al. Direct comparison of MRI and X-ray CT technologies for 3D imaging of root systems in soil: potential and challenges for root trait quantification. Plant Methods 11, 17. https://doi.org/10.1186/s13007-015-0060-z (2015).
Article PubMed PubMed Central Google Scholar
51.
Beuters, P., Scherer, H. W., Spott, O. & Vetterlein, D. Impact of potassium on plant uptake of non-exchangeable NH4+-N. Plant Soil 387, 37–47. https://doi.org/10.1007/s11104-014-2275-6 (2014).
CAS Article Google Scholar
52.
Vetterlein, D., Kuhn, T., Kaiser, K. & Jahn, R. Illite transformation and potassium release upon changes in composition of the rhizophere soil solution. Plant Soil 371, 267–279. https://doi.org/10.1007/s11104-013-1680-6 (2013).
CAS Article Google Scholar
53.
VDLUFA, M. Band 1. Die Untersuchung von Böden (VDLUFA-Verlag, Darmstad, 1991) ((in German)).
Google Scholar
54.
Koebernick, N. et al. In situ visualization and quantification of three-dimensional root system architecture and growth using X-ray computed tomography. Vadose Zone J. https://doi.org/10.2136/vzj2014.03.0024 (2014).
Article Google Scholar
55.
Blaser, S. R. G. A., Schlüter, S. & Vetterlein, D. How much is too much?-Influence of X-ray dose on root growth of faba bean (Vicia faba) and barley (Hordeum vulgare). PLoS ONE 13, e0193669. https://doi.org/10.1371/journal.pone.0193669 (2018).
CAS Article PubMed PubMed Central Google Scholar
56.
Schlüter, S., Blaser, S. R. G. A., Weber, M., Schmidt, V. & Vetterlein, D. Quantification of root growth patterns from the soil perspective via root distance models. Front. Plant Sci. 9, 1084. https://doi.org/10.3389/fpls.2018.01084 (2018).
Article PubMed PubMed Central Google Scholar
57.
Flavel, R. J. et al. Non-destructive quantification of cereal roots in soil using high-resolution X-ray tomography. J. Exp. Bot. 63, 2503–2511. https://doi.org/10.1093/jxb/err421 (2012).
CAS Article PubMed Google Scholar
58.
Doube, M. et al. BoneJ: free and extensible bone image analysis in ImageJ. Bone 47, 1076–1079. https://doi.org/10.1016/j.bone.2010.08.023 (2010).
Article PubMed PubMed Central Google Scholar
59.
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682. https://doi.org/10.1038/nmeth.2019 (2012).
CAS Article PubMed PubMed Central Google Scholar
60.
Kirschke, T., Spott, O. & Vetterlein, D. Impact of urease and nitrification inhibitor on NH4+ and NO3− dynamic in soil after urea spring application under field conditions evaluated by soil extraction and soil solution sampling. J. Plant Nutr. Soil Sci. 182, 441–450. https://doi.org/10.1002/jpln.201800513 (2019).
CAS Article Google Scholar
61.
61Bergmann, W. Farbatlas Ernährungsstörungen bei Kulturpflanzen: visuelle und analytische Diagnose. (1986).
62.
Bennett, W. F., Pesek, J. & Hanway, J. J. Effect of nitrate and ammonium on growth of corn in nutrient solution sand culture. Agron. J. 56, 342–345 (1964).
CAS Article Google Scholar
63.
Magalhaes, J. R. & Wilcox, G. E. Tomato growth and nutrient-uptake patterns as influenced by nitrogen form and light-intensity. J. Plant Nutr. 6, 941–956. https://doi.org/10.1080/01904168309363157 (1983).
CAS Article Google Scholar
64.
Ganmore-Neumann, R. & Kafkafi, U. root temperature and percentage NO3−/NH4+ effect on tomato plant development I. Morphology and growth 1. Agron. J. 72, 758–761 (1980).
CAS Article Google Scholar
65.
Einsmann, J. C., Jones, R. H., Pu, M. & Mitchell, R. J. Nutrient foraging traits in 10 co-occurring plant species of contrasting life forms. J. Ecol. 87, 609–619. https://doi.org/10.1046/j.1365-2745.1999.00376.x (1999).
Article Google Scholar
66.
Gao, W., Blaser, S. R. G. A., Schluter, S., Shen, J. B. & Vetterlein, D. Effect of localised phosphorus application on root growth and soil nutrient dynamics in situ—comparison of maize (Zea mays) and faba bean (Vicia faba) at the seedling stage. Plant Soil 441, 469–483. https://doi.org/10.1007/s11104-019-04138-2 (2019).
CAS Article Google Scholar
67.
Britto, D. T. & Kronzucker, H. J. NH4+ toxicity in higher plants: a critical review. J. Plant Physiol. 159, 567–584. https://doi.org/10.1078/0176-1617-0774 (2002).
CAS Article Google Scholar
68.
Adjel, F., Bouzerzour, H. & Benmahammed, A. Salt stress effects on seed germination and seedling growth of barley (Hordeum vulgare L.) Genotypes. J. Agric. Sustain. 3, 223–237 (2013).
Google Scholar
69.
Ahmed, A. K., Tawfik, K. & Abd El-Gawad, Z. Tolerance of seven faba bean varieties to drought and salt stresses. Res. J. Agric. Biol. Sci. 4, 175–186 (2008).
Google Scholar
70.
Link, W. et al. Genotypic variation for drought tolerance in Vicia faba. Plant Breed. 118, 477–483. https://doi.org/10.1046/j.1439-0523.1999.00412.x (1999).
Article Google Scholar
71.
Varshney, R. K. et al. Genome wide association analyses for drought tolerance related traits in barley (Hordeum vulgare L.). Field Crops Res. 126, 171–180. https://doi.org/10.1016/j.fcr.2011.10.008 (2012).
Article Google Scholar
72.
Wilcox, G. E., Magalhaes, J. R. & Silva, F. L. I. M. Ammonium and nitrate concentrations as factors in tomato growth and nutrient-uptake. J. Plant Nutr. 8, 989–998. https://doi.org/10.1080/01904168509363401 (1985).
Article Google Scholar
73.
Elamin, O. M. & Wilcox, G. E. Nitrogen form ratio influence on muskmelon growth, composition, and manganese toxicity. J. Am. Soc. Hortic. Sci. 111, 320–322 (1986).
Google Scholar
74.
Handa, S., Warren, H. L., Huber, D. M. & Tsai, C. Y. Nitrogen nutrition and seedling development of normal and opaque-2 maize genotypes. Can. J. Plant Sci. 64, 885–894. https://doi.org/10.4141/cjps84-121 (1984).
CAS Article Google Scholar More