More stories

  • in

    Fine-scale tundra vegetation patterns are strongly related to winter thermal conditions

    1.
    Natali, S. M. et al. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Change 9, 852–857 (2019).
    CAS  Google Scholar 
    2.
    Myers-Smith, I. H. et al. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ. Res. Lett. 6, 15 (2011).
    Google Scholar 

    3.
    Elmendorf, S. C. et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Change 2, 453–457 (2012).
    Google Scholar 

    4.
    Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).
    CAS  Google Scholar 

    5.
    Niittynen, P., Heikkinen, R. K. & Luoto, M. Snow cover is a neglected driver of Arctic biodiversity loss. Nat. Clim. Change 8, 997–1001 (2018).
    Google Scholar 

    6.
    Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017 (Arctic Monitoring and Assessment Programme (AMAP), 2017).

    7.
    Box, J. E. et al. Key indicators of Arctic climate change: 1971–2017. Environ. Res. Lett. 14, 045010 (2019).
    CAS  Google Scholar 

    8.
    Bintanja, R. & Andry, O. Towards a rain-dominated Arctic. Nat. Clim. Change 7, 263–267 (2017).
    Google Scholar 

    9.
    Post, E. et al. Ecological dynamics across the Arctic associated with recent climate change. Science 325, 1355–1358 (2009).
    CAS  Google Scholar 

    10.
    Blok, D. et al. The response of Arctic vegetation to the summer climate: relation between shrub cover, NDVI, surface albedo and temperature. Environ. Res. Lett. 6, 9 (2011).
    Google Scholar 

    11.
    Cooper, E. J. Warmer shorter winters disrupt Arctic terrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 45, 271–295 (2014).
    Google Scholar 

    12.
    Sanders-DeMott, R. & Templer, P. H. What about winter? Integrating the missing season into climate change experiments in seasonally snow covered ecosystems. Methods Ecol. Evol. 8, 1183–1191 (2017).
    Google Scholar 

    13.
    Bokhorst, S., Bjerke, J. W., Tommervik, H., Preece, C. & Phoenix, G. K. Ecosystem response to climatic change: the importance of the cold season. Ambio 41, 246–255 (2012).
    Google Scholar 

    14.
    Williams, C. M., Henry, H. A. L. & Sinclair, B. J. Cold truths: how winter drives responses of terrestrial organisms to climate change. Biol. Rev. 90, 214–235 (2015).
    Google Scholar 

    15.
    Wipf, S., Stoeckli, V. & Bebi, P. Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing. Climatic Change 94, 105–121 (2009).
    Google Scholar 

    16.
    Bokhorst, S. F., Bjerke, J. W., Tommervik, H., Callaghan, T. V. & Phoenix, G. K. Winter warming events damage sub-Arctic vegetation: consistent evidence from an experimental manipulation and a natural event. J. Ecol. 97, 1408–1415 (2009).
    Google Scholar 

    17.
    Rapacz, M. et al. Overwintering of herbaceous plants in a changing climate: still more questions than answers. Plant Sci. 225, 34–44 (2014).
    CAS  Google Scholar 

    18.
    Loffler, J. & Pape, R. Thermal niche predictors of alpine plant species. Ecology 101, e02891 (2020).
    Google Scholar 

    19.
    Choler, P. Winter soil temperature dependence of alpine plant distribution: implications for anticipating vegetation changes under a warming climate. Perspect. Plant Ecol. Evol. Syst. 30, 6–15 (2018).
    Google Scholar 

    20.
    Billings, W. D. & Mooney, H. A. Ecology of Arctic and alpine plants. Biol. Rev. Camb. Phil. Soc. 43, 481–529 (1968).
    Google Scholar 

    21.
    Cornelissen, J. H. C. & Makoto, K. Winter climate change, plant traits and nutrient and carbon cycling in cold biomes. Ecol. Res. 29, 517–527 (2014).
    CAS  Google Scholar 

    22.
    Groffman, P. M. et al. Colder soils in a warmer world: a snow manipulation study in a northern hardwood forest ecosystem. Biogeochemistry 56, 135–150 (2001).
    CAS  Google Scholar 

    23.
    Deems, J. S., Fassnacht, S. R. & Elder, K. J. Interannual consistency in fractal snow depth patterns at two Colorado mountain sites. J. Hydrometeorol. 9, 977–988 (2008).
    Google Scholar 

    24.
    Wahren, C. H. A., Walker, M. D. & Bret-Harte, M. S. Vegetation responses in Alaskan Arctic tundra after 8 years of a summer warming and winter snow manipulation experiment. Glob. Change Biol. 11, 537–552 (2005).
    Google Scholar 

    25.
    Darrouzet-Nardi, A. et al. Limited effects of early snowmelt on plants, decomposers, and soil nutrients in Arctic tundra soils. Ecol. Evol. 9, 1820–1844 (2019).
    Google Scholar 

    26.
    Nobrega, S. & Grogan, P. Deeper snow enhances winter respiration from both plant-associated and bulk soil carbon pools in birch hummock tundra. Ecosystems 10, 419–431 (2007).
    CAS  Google Scholar 

    27.
    Niittynen, P. & Luoto, M. The importance of snow in species distribution models of Arctic vegetation. Ecography 41, 1024–1037 (2018).
    Google Scholar 

    28.
    Blankinship, J. C., Meadows, M. W., Lucas, R. G. & Hart, S. C. Snowmelt timing alters shallow but not deep soil moisture in the Sierra Nevada. Water Resour. Res. 50, 1448–1456 (2014).
    Google Scholar 

    29.
    Kranner, I., Beckett, R., Hochman, A. & Nash, T. H. Desiccation-tolerance in lichens: a review. Bryologist 111, 576–593 (2008).
    Google Scholar 

    30.
    Cornelissen, J. H. C., Lang, S. I., Soudzilovskaia, N. A. & During, H. J. Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry. Ann. Bot. 99, 987–1001 (2007).
    CAS  Google Scholar 

    31.
    Sonesson, M. & Callaghan, T. V. Strategies of survival in plants of the Fennoscandian tundra. Arctic 44, 95–105 (1991).
    Google Scholar 

    32.
    Bjerke, J. W. et al. Contrasting sensitivity to extreme winter warming events of dominant sub-Arctic heathland bryophyte and lichen species. J. Ecol. 99, 1481–1488 (2011).
    Google Scholar 

    33.
    Pannewitz, S., Schlensog, M., Green, T. G. A., Sancho, L. G. & Schroeter, B. Are lichens active under snow in continental Antarctica? Oecologia 135, 30–38 (2003).
    Google Scholar 

    34.
    Natali, S. M., Schuur, E. A. G. & Rubin, R. L. Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost. J. Ecol. 100, 488–498 (2012).
    Google Scholar 

    35.
    Weijers, S., Buchwal, A., Blok, D., Loffler, J. & Elberling, B. High Arctic summer warming tracked by increased Cassiope tetragona growth in the world’s northernmost polar desert. Glob. Change Biol. 23, 5006–5020 (2017).
    Google Scholar 

    36.
    Morris, W. F. et al. Longevity can buffer plant and animal populations against changing climatic variability. Ecology 89, 19–25 (2008).
    Google Scholar 

    37.
    Strimbeck, G. R., Schaberg, P. G., Fossdal, C. G., Schroder, W. P. & Kjellsen, T. D. Extreme low temperature tolerance in woody plants. Front. Plant Sci. 6, 15 (2015).
    Google Scholar 

    38.
    Gonzalez, V. T. et al. High resistance to climatic variability in a dominant tundra shrub species. PeerJ 7, e6967 (2019).
    Google Scholar 

    39.
    Thomas, H. J. D. et al. Traditional plant functional groups explain variation in economic but not size-related traits across the tundra biome. Glob. Ecol. Biogeogr. 28, 78–95 (2019).
    CAS  Google Scholar 

    40.
    Shipley, B., Lechowicz, M. J., Wright, I. & Reich, P. B. Fundamental trade-offs generating the worldwide leaf economics spectrum. Ecology 87, 535–541 (2006).
    Google Scholar 

    41.
    Good, M., Morgan, J. W., Venn, S. & Green, P. Timing of snowmelt affects species composition via plant strategy filtering. Basic Appl. Ecol. 35, 54–62 (2019).
    Google Scholar 

    42.
    Cornelissen, J. H. C. et al. Global change and Arctic ecosystems: is lichen decline a function of increases in vascular plant biomass? J. Ecol. 89, 984–994 (2001).
    Google Scholar 

    43.
    Zhu, L. K., Ives, A. R., Zhang, C., Guo, Y. Y. & Radeloff, V. C. Climate change causes functionally colder winters for snow cover-dependent organisms. Nat. Clim. Change 9, 886–893 (2019).
    Google Scholar 

    44.
    Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).
    Google Scholar 

    45.
    Medlyn, B. E. et al. Using ecosystem experiments to improve vegetation models. Nat. Clim. Change 5, 528–534 (2015).
    Google Scholar 

    46.
    Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5, 887–891 (2015).
    Google Scholar 

    47.
    Potter, K. A., Woods, H. A. & Pincebourde, S. Microclimatic challenges in global change biology. Glob. Change Biol. 19, 2932–2939 (2013).
    Google Scholar 

    48.
    Alsos, I. G. et al. Frequent long-distance plant colonization in the changing Arctic. Science 316, 1606–1609 (2007).
    CAS  Google Scholar 

    49.
    Kemppinen, J., Niittynen, P., Aalto, J., le Roux, P. C. & Luoto, M. Water as a resource, stress and disturbance shaping tundra vegetation. Oikos 128, 811–822 (2019).
    Google Scholar 

    50.
    Robinson, S. A. et al. Rapid change in east Antarctic terrestrial vegetation in response to regional drying. Nat. Clim. Change 8, 879–884 (2018).
    CAS  Google Scholar 

    51.
    Chamberlain, S. A. & Szocs, E. taxize: taxonomic search and retrieval in R. F1000Res 2, 191 (2013).
    Google Scholar 

    52.
    McCune, B. & Keon, D. Equations for potential annual direct incident radiation and heat load. J. Veg. Sci. 13, 603–606 (2002).
    Google Scholar 

    53.
    R Core Team R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2019); https://www.r-project.org/

    54.
    Minchin, P. R. An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69, 89–107 (1987).
    Google Scholar 

    55.
    Oksanen, J. et al. vegan: community ecology package. R package version 2.3-3 (2016).

    56.
    Franklin, J. Mapping Species Distributions: Spatial Inference and Prediction (Cambridge Univ. Press, 2009).

    57.
    Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).
    CAS  Google Scholar 

    58.
    Thuiller, W., Georges, D., Engler, R. & Breiner, F. biomod2: ensemble platform for species distribution modeling. R package version 3.3-7 (2016).

    59.
    Pedersen, E. J., Miller, D. L., Simpson, G. L. & Ross, N. Hierarchical generalized additive models in ecology: an introduction with mgcv. PeerJ 7, e6876 (2019).
    Google Scholar 

    60.
    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011).
    Google Scholar 

    61.
    Ridgeway, G. gbm: generalized boosted regression models. R package version 2.1.1 (2015).

    62.
    Thuiller, W., Lafourcade, B., Engler, R. & Araujo, M. B. BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).
    Google Scholar  More

  • in

    Publisher Correction: Science diplomacy for plant health

    European and Mediterranean Plant Protection Organization (EPPO)-Euphresco, Paris, France
    Baldissera Giovani & Nico Horn

    Austrian Agency for Health and Food Safety (AGES), Institute for Sustainable Plant Production, Vienna, Austria
    Sylvia Blümel

    Food Department, Ministry of Agriculture and Forestry of Finland, Helsinki, Finland
    Ralf Lopian

    Better Border Biosecurity (B3), Plant and Food Research, Christchurch, New Zealand
    David Teulon

    North American Plant Protection Organization (NAPPO), Raleigh, NC, USA
    Stephanie Bloem

    Comite Regional de Sanidad Vegetal del Cono Sur (COSAVE), Dirección de Protección Vegetal, del Servicio Nacional y Sanidad Vegetal y Semillas, Asuncion, Paraguay
    Cristina Galeano Martínez

    Comunidad Andina (CAN), Secretaría General de la Comunidad Andina, Lima, Peru
    Camilo Beltrán Montoya

    Organismo Internacional Regional de Sanidad Agropecuaria (OIRSA), San Salvador, El Salvador
    Carlos Ramon Urias Morales

    Asia and Pacific Plant Protection Commission (APPPC), Bangkok, Thailand
    Sridhar Dharmapuri

    Pacific Plant Protection Organization (PPPO), Pacific Community Land Resources Division, Suva, Fiji
    Visoni Timote

    Near East Plant Protection Organization (NEPPO), Rabat, Morocco
    Mekki Chouibani

    African-Union Interafrican Phytosanitary Council (IAPSC), Yaoundé, Cameroon
    Jean Gérard Mezui M’Ella

    Ministry of Primary Industries (MPI), Wellington, New Zealand
    Veronica Herrera & Aurélie Castinel

    Department of Agriculture, Water and the Environment (DAWE), Canberra, Australian Capital Territory, Australia
    Con Goletsos, Carina Moeller & Ian Naumann

    European Food Safety Authority (EFSA), Parma, Italy
    Giuseppe Stancanelli, Stef Bronzwaer & Sara Tramontini

    Canadian Food Inspection Agency (CFIA), Ottawa, Ontario, Canada
    Philip MacDonald & Loren Matheson

    French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Plant Health Laboratory, Angers, France
    Géraldine Anthoine

    Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
    Kris De Jonghe

    Netherlands Food and Consumer Product Safety Authority (NVWA), Wageningen, the Netherlands
    Martijn Schenk

    Julius Kühn Institute (JKI), Braunschweig, Germany
    Silke Steinmöller

    National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
    Elena Rodriguez

    National Institute for Agriculture and Veterinary Research (INIAV), Oeiras, Portugal
    Maria Leonor Cruz

    Plant Biosecurity Research Initiative (PBRI), Hort Innovation, Melbourne, Victoria, Australia
    Jo Luck

    Plant Health Australia (PHA), Deakin, Canberra, Australian Capital Territory, Australia
    Greg Fraser

    International Plant Protection Convention (IPPC), Food and Agriculture Organization of the United Nations, Rome, Italy
    Sarah Brunel, Mirko Montuori, Craig Fedchock & Jingyuan Xia

    Department for Environment, Food & Rural Affairs (DEFRA), London, UK
    Elspeth Steel & Helen Grace Pennington

    Centre for Agriculture and Bioscience International (CABI), Nairobi, Kenya
    Roger Day

    French National Institute for Agricultural Research (INRA), INRA-Montpellier-CBGP, Montferrier-sur-Lez, France
    Jean Pierre Rossi More

  • in

    Use and non-use value of nature and the social cost of carbon

    1.
    Pascual, U. et al. Valuing nature’s contributions to people: the IPBES approach. Curr. Opin. Environ. Sustain. 26, 7–16 (2017).
    Article  Google Scholar 
    2.
    De Groot, R. S., Alkemade, R., Braat, L., Hein, L. & Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 7, 260–272 (2010).
    Article  Google Scholar 

    3.
    Turner, R. K. et al. Valuing nature: lessons learned and future research directions. Ecol. Econ. 46, 493–510 (2003).
    Article  Google Scholar 

    4.
    Agarwala, M., Atkinson, G., Baldock, C. & Gardiner, B. Natural capital accounting and climate change. Nat. Clim. Change 4, 520–522 (2014).
    Article  Google Scholar 

    5.
    Jones-Walters, L. & Mulder, I. Valuing nature: the economics of biodiversity. J. Nat. Conserv. 17, 245–247 (2009).
    Article  Google Scholar 

    6.
    Gomes, V. H. F., Vieira, I. C. G., Salomão, R. P. & ter Steege, H. Amazonian tree species threatened by deforestation and climate change. Nat. Clim. Change 9, 547–553 (2019).
    Article  Google Scholar 

    7.
    Rogers, L. A. et al. Shifting habitats expose fishing communities to risk under climate change. Nat. Clim. Change 9, 512–516 (2019).
    Article  Google Scholar 

    8.
    Roberts, C. P., Allen, C. R., Angeler, D. G. & Twidwell, D. Shifting avian spatial regimes in a changing climate. Nat. Clim. Change 9, 562–566 (2019).
    Article  Google Scholar 

    9.
    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
    Article  CAS  Google Scholar 

    10.
    Settele, J. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds. Field, C. B. et al.) 271–360 (IPCC, Cambridge Univ. Press, 2015).

    11.
    Warszawski, L. et al. A multi-model analysis of risk of ecosystem shifts under climate change. Environ. Res. Lett. 8, 044018 (2013).
    Article  Google Scholar 

    12.
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).
    CAS  Article  Google Scholar 

    13.
    Global Assessment Report on Biodiversity and Ecosystem Services (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 2019).

    14.
    Millennium Ecosystem Assessment Ecosystems and Human Well-being: Synthesis (Island Press, 2005).

    15.
    Drupp, M. A. Limits to substitution between ecosystem services and manufactured goods and implications for social discounting. Environ. Resour. Econ. 69, 135–158 (2018).
    Article  Google Scholar 

    16.
    Hoel, M. & Sterner, T. Discounting and relative prices. Clim. Change 84, 265–280 (2007).
    Article  Google Scholar 

    17.
    Sterner, T. & Persson, U. M. An even sterner review: introducing relative prices into the discounting debate. Rev. Environ. Econ. Policy 2, 61–76 (2008).
    Article  Google Scholar 

    18.
    Drupp, M. A. & Hänsel, M. C. Relative prices and climate policy: how the scarcity of non-market goods drives policy evaluation. Am. Econ. J. Econ. Policy https://www.aeaweb.org/articles?id=10.1257/pol.20180760 (2020).

    19.
    Tol, R. S. The damage costs of climate change: a note on tangibles and intangibles, applied to DICE. Energy Policy 22, 436–438 (1994).
    Article  Google Scholar 

    20.
    Kopp, R. E., Golub, A., Keohane, N. O. & Onda, C. The influence of the specification of climate change damages on the social cost of carbon. Economics-Kiel 6, 1–40 (2012).
    Google Scholar 

    21.
    Moore, F. C. & Diaz, D. B. Temperature impacts on economic growth warrant stringent mitigation policy. Nat. Clim. Change 5, 127–131 (2015).
    Article  Google Scholar 

    22.
    Tol, R. S. Estimates of the damage costs of climate change. Part 1: benchmark estimates. Environ. Resour. Econ. 21, 47–73 (2002).
    Article  Google Scholar 

    23.
    Diaz, D. & Moore, F. Quantifying the economic risks of climate change. Nat. Clim. Change 7, 774–782 (2017).
    Article  Google Scholar 

    24.
    Nordhaus, W. D. & Tobin, J. in Economic Research: Retrospect and Prospect Vol. 5 1–80 (NBER, 1972).

    25.
    Nordhaus, W. & Sztorc, P. DICE 2013R: Introduction and User’s Manual (retrieved November, 2019); https://go.nature.com/3kmwMc5

    26.
    Barbier, E. B. The concept of natural capital. Oxf. Rev. Econ. Policy 35, 14–36 (2019).
    Article  Google Scholar 

    27.
    Arrow, K. J., Dasgupta, P., Goulder, L. H., Mumford, K. J. & Oleson, K. Sustainability and the measurement of wealth. Environ. Dev. Econ. 17, 317–353 (2012).
    Article  Google Scholar 

    28.
    Lange, G.-M., Wodon, Q. & Carey, K. The Changing Wealth of Nations 2018: Building a Sustainable Future (The World Bank, 2018).

    29.
    Hackett, S. B. & Moxnes, E. Natural capital in integrated assessment models of climate change. Ecol. Econ. 116, 354–361 (2015).
    Article  Google Scholar 

    30.
    Dietz, S. & Stern, N. Endogenous growth, convexity of damage and climate risk: how Nordhaus’ framework supports deep cuts in carbon emissions. Econ. J. 125, 574–620 (2015).
    Article  Google Scholar 

    31.
    Glotter, M. J., Pierrehumbert, R. T., Elliott, J. W., Matteson, N. J. & Moyer, E. J. A simple carbon cycle representation for economic and policy analyses. Clim. Change 126, 319–335 (2014).
    CAS  Article  Google Scholar 

    32.
    Arrow, K. et al. Report of the NOAA panel on contingent valuation. Fed. Regist. 58, 4601–4614 (1993).
    Google Scholar 

    33.
    Bateman, I. & Willis, K. (eds) Valuing Environmental Preferences: Theory and Practice of the Contingent Valuation Method in the US, EU, and Developing Countries (Oxford Univ. Press, 2001).

    34.
    Champ, P. A., Boyle, K. J., Brown, T. C. & Peterson, L. G. (eds) A Primer on Nonmarket Valuation Vol. 3 (Springer, 2003).

    35.
    Technical Support Document: – Social Cost of Carbon for Regulatory Impact Analysis – Under Executive Order 12866 (Interagency Working Group on Social Cost of Carbon, United States Government, 2010).

    36.
    Beckage, B. et al. Linking models of human behaviour and climate alters projected climate change. Nat. Clim. Change 8, 79–84 (2018).
    Article  Google Scholar 

    37.
    Breiman, L. Manual On Setting Up, Using, And Understanding Random Forests V3.1 https://www.stat.berkeley.edu/ breiman/Using_random_forests_V3.1.pdf (2002).

    38.
    Lemoine, D. & Traeger, C. P. Economics of tipping the climate dominoes. Nat. Clim. Change 6, 514–519 (2016).
    Article  Google Scholar 

    39.
    Cai, Y. & Lontzek, T. S. The social cost of carbon with economic and climate risks. J. Polit. Econ. 127, 2684–2734 (2019).
    Article  Google Scholar 

    40.
    Traeger, C. P. A 4-stated DICE: quantitatively addressing uncertainty effects in climate change. Environ. Resour. Econ. 59, 1–37 (2014).
    Article  Google Scholar 

    41.
    Crost, B. & Traeger, C. Optimal climate policy: uncertainty versus Monte Carlo. Econ. Lett. 120, 552–558 (2013).
    Article  Google Scholar 

    42.
    Statistical Office of the European Union Environmental Protection Expenditure Accounts: Handbook (Eurostat, 2017).

    43.
    Diaz, D. B. Estimating global damages from sea level rise with the Coastal Impact and Adaptation Model (CIAM). Clim. Change 137, 143–156 (2016).
    Article  Google Scholar 

    44.
    De Bruin, K. C., Dellink, R. B. & Tol, R. S. AD-DICE: an implementation of adaptation in the DICE model. Clim. Change 95, 63–81 (2009).
    Article  Google Scholar 

    45.
    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).
    CAS  Article  Google Scholar 

    46.
    Chaplin-Kramer et al. Global modeling of nature’s contributions to people. Science 366, 255–258 (2019).
    CAS  Article  Google Scholar 

    47.
    Moore, F. C. et al. Mimi-PAGE, an open-source implementation of the PAGE09 integrated assessment model. Sci. Data 5, 180187 (2018).
    Article  Google Scholar 

    48.
    Anthoff, D., Plevin, R., Kingdon, C. & Rennels, L. Mimi: An Integrated Assessment Modeling Framework (2020); https://www.mimiframework.org/

    49.
    Solow, R. M. Is the end of the world at hand? Challenge 16, 39–50 (1973).
    Article  Google Scholar 

    50.
    Stiglitz, J. E. in Scarcity and Growth Reconsidered (ed. Smith, V. K.) 36–66 (The Johns Hopkins Univ. Press, 1979).

    51.
    Brandt, N., Schreyer, P. & Zipperer, V. Productivity measurement with natural capital. Rev. Income Wealth 63, S7–S21 (2017).
    Article  Google Scholar 

    52.
    Costanza et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).
    Article  Google Scholar 

    53.
    Howard, P. H. & Sterner, T. Few and not so far between: a meta-analysis of climate damage estimates. Environ. Resour. Econ. 68, 197–225 (2017).
    Article  Google Scholar 

    54.
    Hsiang et al. Estimating economic damage from climate change in the United States. Science 356, 1362–1369 (2017).
    CAS  Article  Google Scholar 

    55.
    Yamaguchi, R. & Managi, S. Backward-and forward-looking shadow prices in inclusive wealth accounting: an example of renewable energy capital. Ecol. Econ. 156, 337–349 (2019).
    Article  Google Scholar  More

  • in

    Riverscape genetics in brook lamprey: genetic diversity is less influenced by river fragmentation than by gene flow with the anadromous ecotype

    Alonso H, Matias R, Granadeiro JP, Catry P (2009) Moult strategies of Cory’s Shearwaters Calonectris diomedea borealis the influence of colony location sex and individual breeding status. J Ornithol 150:329–337
    Article  Google Scholar 

    Barson NJ, Cable J, Van Oosterhout C (2009) Population genetic analysis of microsatellite variation of guppies (Poecilia reticulata) in Trinidad and Tobago: evidence for a dynamic source-sink metapopulation structure, founder events and population bottlenecks. J Evol Biol 22:485–497
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Bartoń K (2018) MuMIn: Multi-Model Inference. R package version 1.42.1. https://CRAN.R-project.org/package=MuMIn

    Bates DM, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48
    Article  Google Scholar 

    Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 4.05, logiciel sous Windows pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000 Université de Montpellier II, Montpellier, France

    Bernard H (1909) Bulletin de la Société des Sciences Naturelle et d’Archeologie de l’Ain, vol 57 Imprimerie du Journal, Bourg-en-Bresse
    Google Scholar 

    Bernatchez L, Wilson CC (1998) Comparative phylogeography of Nearctic and Palearctic fishes. Mol Ecol 7:431–452
    Article  Google Scholar 

    Blanchet S, Rey O, Etienne R, Lek S, Loot G (2010) Species-specific responses to landscape fragmentation: implications for management strategies. Evol Appl 3:291–304
    PubMed  PubMed Central  Article  Google Scholar 

    Bracken FSA, Hoelzel AR, Hume JB, Lucas MC (2015) Contrasting population genetic structure among freshwater-resident and anadromous lampreys: the role of demographic history, differential dispersal, and anthropogenic barriers to movement. Mol Ecol 24:1188–1204
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Brauer CJ, Hammer MP, Beheregaray LB (2016) Riverscape genomics of a threatened fish across a hydroclimatically heterogeneous river basin. Mol Ecol 25:5093–5113
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Carlson SM, Cunningham CJ, Westley PAH (2014) Evolutionary rescue in a changing world. Trends Ecol Evol 29(9):521–530
    PubMed  Article  PubMed Central  Google Scholar 

    Ceballos G, Ehrlich PR, Dirzo R (2017) Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc Natl Acad Sci USA 30:6089–6096
    Article  CAS  Google Scholar 

    Ceballos G, Ehrlich PR, Raven PH (2020) Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction Proc Natl Acad Sci USA 117:13596–13602
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Coleman RA, Gauffre B, Pavlova A, Beheregaray LB, Kearns, Lyon J et al. (2018) Artificial barriers prevent genetic recovery of small isolated populations of a low-mobility freshwater fish. Heredity 120:515–532
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Couvet D (2002) Deleterious effects of restricted gene flow in fragmented populations. Conserv Biol 16:369–376
    Article  Google Scholar 

    Cyr F, Angers B (2011) Historical process lead to false genetic signal of current connectivity among populations. Genetica 139:1417–1428
    PubMed  Article  PubMed Central  Google Scholar 

    Dawson HA, Quintella BR, Almeida PR, Treble AJ, Jolley JC (2015) The ecology of larval and metamorphosing lampreys. In: Docker MF (ed.), Lampreys: biology, conservation and control. Springer, Netherlands, pp. 75–137

    Dehais C, Eudeline R, Berrebi P, Argillier C (2010) Microgeographic genetic isolation in chub (Cyprinidae: Squalius cephalus) population of the Durance River: estimating fragmentation by dams. Ecol Freshw Fish 19:267–278
    Article  Google Scholar 

    DiBattista JD (2008) Patterns of genetic variation in anthropogenically impacted populations. Conserv Genet 9:141–156
    Article  Google Scholar 

    Docker MF (2009) A review of the evolution of non-parasitism in lampreys and an update of the paired species concept. In: Brown LR, Chase SD, Mesa MG, Beamish RJ, Moyle PB (eds) Biology, management and conservation of lampreys in North America. Am Fish Soc Symp 72, Bethesda, MD, pp. 71–114

    Dodson JJ, Aubin-Horth N, Thériault V, Páez DJ (2013) The evolutionary ecology of alternative migratory tactics in salmonid fishes. Biol Rev Camb Philos Soc 88:602–625
    PubMed  Article  PubMed Central  Google Scholar 

    Dynesius M, Nilsson C (1994) Fragmentation and flow regulation of river systems in the northern third of the world. Science 266:753–762
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Earl DA, vonHoldt BM (2011) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361
    Article  Google Scholar 

    Edmands S (2007) Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Mol Ecol 16:463–475
    PubMed  Article  PubMed Central  Google Scholar 

    Eneqvist P (1937) The brook lamprey as an ecological modification of the river lamprey. On the river and brook lampreys of Sweden. Ark Zool 29:1–22
    Google Scholar 

    Espanhol R, Almeida PR, Alves MJ (2007) Evolutionary history of lamprey paired species Lampetra fluviatilis (L.) and Lampetra planeri (Bloch) as inferred from mitochondrial DNA variation. Mol Ecol 16:1909–1924
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Estoup A (1996) Rapid one-tube DNA extraction for reliable PCR detection of fish polymorphic markers and transgenes. Mol Mar Biol Biotechnol 5:295–298
    CAS  Google Scholar 

    Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol, Evolution, Syst 34:487–515
    Article  Google Scholar 

    Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587
    CAS  PubMed  PubMed Central  Google Scholar 

    Faubet P, Waples RS, Gaggiotti OE (2007) Evaluating the performance of a multilocus Bayesian method for the estimation of migration rates. Mol Ecol 16:1149–1166
    PubMed  Article  PubMed Central  Google Scholar 

    Faulks LK, Gilligan DM, Beheregaray LB (2010) Islands of water in a sea of dry land: hydrological regime predicts genetic diversity and dispersal in a widespread fish from Australia’s arid zone, the golden perch (Macquaria ambigua). Mol Ecol 19:4723–4737
    PubMed  Article  PubMed Central  Google Scholar 

    Fox J, Weisberg S (2011) An {R} companion to applied regression, 2nd edn. Sage, Thousand Oaks, CA
    Google Scholar 

    Foulds WL, Lucas MC (2013) Extreme inefficiency of two conventional, technical fishways used by European river lamprey (Lampetra fluviatilis). Ecol Eng 58:423–433
    Article  Google Scholar 

    Frankham R (1998) Inbreeding and extinction: island populations. Conserv Biol 12:665–675
    Article  Google Scholar 

    Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140
    Article  Google Scholar 

    Frankham R (2015) Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Mol Ecol 24:2610–2618
    PubMed  Article  PubMed Central  Google Scholar 

    Frankham R (2016) Genetic rescue benefits persist to at least the F3 generation, based on a meta-analysis. Biol Conserv 195:33–36
    Article  Google Scholar 

    Frankham R, Bradshaw CJA, Brook BW (2014) Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol Conserv 170:56–63
    Article  Google Scholar 

    Gaigher A, Launey S, Lasne E, Besnard AL, Evanno G (2013) Characterization of thirteen microsatellite markers in river and brook lampreys (Lampetra fluviatilis and L. planeri). Conserv Genet Resour 5:141–143
    Google Scholar 

    Gensoul J (1907) Monographie des poisons d’eau douce de Saone et Loire. Extrait du Bulletin de la société d’histoire naturelle d’Autun. 20è Bulletin

    Germis G, Arago MA, Ampen N, Moulin C, Deleys, N (2018) Plan de Gestion des poissons migrateurs 2018–2023. available at http://www.bretagne.developpement-durable.gouv.fr/IMG/pdf/plagepomi_2018.pdf

    Glémin S (2003) How are deleterious mutations purged? Drift versus nonrandom mating. Evolution 57:2678–2687
    PubMed  Article  PubMed Central  Google Scholar 

    Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486
    Article  Google Scholar 

    Gouskov A, Reyes M, Wirthner‐Bitterlin L, Vorburger C (2015) Fish population genetic structure shaped by hydroelectric power plants in the upper Rhine catchment. Evol Appl 9:394–408
    Article  Google Scholar 

    Guirec A Guillerme N, Sauvader C, Diouach O, Chapon PM, Beaulaton L (2018) Synthèse sur la répartition des lamproies et des aloses amphihalines enFrance. Rapport final. 2018.032 available at https://www.documentation.eauetbiodiversite.fr/notice/000000000168991aeaf427a64ba5487a

    Hänfling B, Weetman D (2006) Concordant genetic estimators of migration reveal anthropogenically enhanced source–sink population structure in the River Sculpin, Cottus gobio. Genetics 173:1487–1501
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Hardisty MW, Potter IC (1971) The biology of lampreys. Academic Press, London‐New York
    Google Scholar 

    Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638
    CAS  PubMed  Article  Google Scholar 

    Hess JE, Campbell NR, Close DA, Docker MF, Narum SR (2013) Population genomics of Pacific lamprey: adaptive variation in a highly dispersive species. Mol Ecol 22:2898–2916
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276
    Article  Google Scholar 

    Higgins K, Lynch M (2001) Metapopulation extinction caused by mutation accumulation. Proc Natl Acad Sci USA 98:2928–2933
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Hohenlohe PA, Bassham S, Etter PD, Stiffler N, Johnson EA, Cresko WA (2010) Population genomics of parallel adaptation in threespine stickleback using sequenced RAD Tags. PLoS Genet 6:e1000862
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Hohenlohe PA, Catchen J, Cresko WA (2012) Population genomic analysis of model and nonmodel organisms using sequenced RAD tags. Methods Mol Biol 888:235–260
    PubMed  Article  Google Scholar 

    Jonsson B, Jonsson N (1993) Partial migration: niche shift versus sexual maturation in fishes. Rev Fish Biol Fish 3:348–365
    Article  Google Scholar 

    Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026
    PubMed  PubMed Central  Article  Google Scholar 

    Kawecki TJ, Holt RD (2002) Evolutionary consequences of asymmetric dispersal rates. Am Nat 160:333–347
    PubMed  Article  PubMed Central  Google Scholar 

    Keith P, Persat H, Feuteun É. AllardiI J (2011) Les Poissons d’eau douce de France. Muséum national d’Histoire naturelle, Paris; Biotope, Mèze, 552 p. (Inventaires & biodiversité)

    Kelly K, Lai K (2012) Package ‘MBESS.’ R Package version 3.3.3. http://www3.nd.edu/~kkelley/site/MBESS.html

    Kemp PS, Russon IJ, Vowles AS, Lucas MC (2011) The influence of discharge and temperature on the ability of upstream migrant adult river lamprey (Lampetra fluviatilis) to pass experimental overshot and undershot weirs. River Res Appl 27:488–498
    Article  Google Scholar 

    Landguth EL, Cushman SA, Schwarte MK, McKelvey KS, Murphy M, Luikart G (2010) Quantifying the lag time to detect barriers in landscape genetics. Mol Ecol 19:4179–4191
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Leclerc E, Mailhot Y, Mingelbier M, Bernatchez L (2008) The landscape genetics of yellow perch (Perca flavescens) in a large fluvial ecosystem. Mol Ecol 17:1702–1717
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17:183–189
    Article  Google Scholar 

    Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425
    Article  Google Scholar 

    Lucas MC, Bubb DH, Jang MH, Ha K, Masters JEG (2009) Availability of and access to critical habitats in regulated rivers: effects of low-head barriers on threatened lampreys. Freshw Biol 54:621–634
    Article  Google Scholar 

    Lynch M (1991) The genetic interpretation of inbreeding depression and outbreeding depression. Evolution 45:622–629
    PubMed  Article  PubMed Central  Google Scholar 

    Lynch M, Conery J, Burger R (1995) Mutation accumulation and the extinction of small populations. Am Nat 146:489–518
    Article  Google Scholar 

    Maitland P, Renaud C, Quintella BA, Close D, Docker M (2015) Conservation of native lampreys. In: Docker M (ed.) Lampreys: Biology, Conservation and Control. Fish & Fisheries Series, vol 37. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9306-3_8

    Malmqvist B (1980) The spawning migration of the brook lamprey, Lampetra planeri Bloch, in a South Swedish stream. J Fish Biol 16:105–114
    Article  Google Scholar 

    Mateus CS, Almeida PR, Quintella BR, Alves MJ (2011) MtDNA markers reveal the existence of allopatric evolutionary lineages in the threatened lampreys Lampetra fluviatilis (L.) and Lampetra planeri (Bloch) in the Iberian glacial refugium. Conserv Genet 12:1061–1074
    Article  Google Scholar 

    Mateus CS, Almeida PR, Mesquita N, Quintella BR, Alves MJ (2016) European Lampreys: New Insights on Postglacial Colonization, Gene Flow and Speciation. PLoS ONE 11:e0148107
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    McPhee MV, Whited DC, Kuzishchin KV, Stanford JA (2014) The effects of riverine physical complexity on anadromy and genetic diversity in steelheador rainbow trout Oncorhynchus mykiss around the Pacific Rim. J Fish Biol 85:132–150
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Meirmans PG (2012) The trouble with isolation by distance. Mol Ecol 21:2839–2846
    PubMed  Article  PubMed Central  Google Scholar 

    Morita K, Yamamoto S (2002) Effects of habitat fragmentation by damming on the persistence of stream‐dwelling charr populations. Conserv Biol 16:1318–1323
    Article  Google Scholar 

    Morrissey MB, de Kerckhove DT (2009) The maintenance of genetic variation due to asymmetric gene flow in dendritic metapopulations. Am Nat. 174:875–889
    PubMed  Article  PubMed Central  Google Scholar 

    Moser ML, Almeida PR, Kemp PS, Sorensen PW (2015) Lamprey spawning migration. In: Docker MF (ed) Lampreys: biology, conservation and control. Springer, Netherlands, pp. 215–252

    Mulligan M, van Soesbergen A, Sáenz L (2020) GOODD, a global dataset of more than 38,000 georeferenced dams. Sci Data 7:31
    PubMed  PubMed Central  Article  Google Scholar 

    Nilsson C, Reidy CA, Dynesius M, Revenga C (2005) Fragmentation and flow regulation of the world’s large river systems. Science (New York, NY) 308:405–408
    CAS  Article  Google Scholar 

    Nimon K, Lewis M, Kane R, Haynes RM (2008) An R package to compute commonality coefficients in the multiple regression case: an introduction to the package and a practical example. Behav Res Methods 40:457–466
    PubMed  Article  PubMed Central  Google Scholar 

    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D et al. (2019) vegan: community ecology package. R package version 2.5-6

    Palumbi SR (2001) Humans as the world’s greatest evolutionary force. Science 293:1786–1790
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Pavlova A, Beheregaray LB, Coleman R, Gilligan D, Harrisson KA, Ingram BA et al. (2017) Severe consequences of habitat fragmentation on genetic diversity of an endangered Australian freshwater fish: a call for assisted gene flow. Evol Appl 10:531–550
    PubMed  PubMed Central  Article  Google Scholar 

    Paz-Vinas I, Loot G, Stevens VM, Blanchet S (2015) Evolutionary processes driving spatial patterns of intraspecific genetic diversity in river ecosystems. Mol Ecol 24:4586–4604
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Paz-Vinas I, Quéméré E, Chikhi L, Loot G, Blanchet S (2013) The demographic history of populations experiencing asymmetric gene flow: combining simulated and empirical data. Mol Ecol 22:3279–3291
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Pereira AM, Robalo JI, Freyhof J, Maia C, Fonseca JP, Valente A et al. (2010) Phylogeographical analysis reveals multiple conservation units in brook lampreys Lampetra planeri of Portuguese streams. J Fish Biol 77:361–371
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Perrier C, Bourret V, Kent MP, Bernatchez L (2013) Parallel and nonparallel genome-wide divergence among replicate population pairs of freshwater and anadromous Atlantic salmon. Mol Ecol 22:5577–5593
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Pollux BJA, Luteijn A, Van Groenendael JM, Ouborg NJ (2008) Gene flow and genetic structure of the aquatic macrophyte Sparganium emersum in a linear unidirectional river. Freshw Biol 54:64–76
    Article  Google Scholar 

    Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959
    CAS  PubMed  PubMed Central  Google Scholar 

    Prunier JG, Colyn M, Legendre X, Nimon KF, Flamand MC (2015) Multicollinearity in spatial genetics: separating the wheat from the chaff using commonality analyses. Mol Ecol 24:263–283
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Quéméré E, Baglinière JL, Roussel JM, Evanno G, McGinnity P, Launey S (2016) Seascape and its effect on migratory life‐history strategy influences gene flow among coastal brown trout (Salmo trutta) populations in the English Channel. J Biogeogr 43:498–509
    Article  Google Scholar 

    R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Raeymaekers JAM, Maes GE, Geldof S, Hontis I, Nackaerts K, Volckaert FAM (2008) Modeling genetic connectivity in sticklebacks as a guideline for river restoration. Evol Appl 1:475–488
    PubMed  PubMed Central  Article  Google Scholar 

    Ralls K, Ballou JD, Dudash MR, Eldridge MDB, Fenster CB, Lacy RC et al. (2018) Call for a paradigm shift in the genetic management of fragmented populations. Conserv Lett 11:e12412
    Article  Google Scholar 

    Renaud CB (1997) Conservation status of Northern Hemisphere lampreys (Petromyzontidae). J Appl Ichthyol 13:143–148
    Article  Google Scholar 

    Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223
    PubMed  Article  PubMed Central  Google Scholar 

    Rosenberg NA (2003) DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes

    Rougemont Q, Gagnaire PA, Perrier C, Genthon C, Besnard AL, Launey S, Evanno G (2017) Inferring the demographic history underlying parallel genomic divergence among pairs of parasitic and nonparasitic lamprey ecotypes. Mol Ecol 26:142–162
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Rougemont Q, Gaigher A, Lasne E, Côte J, Coke M, Besnard AL et al. (2015) Low reproductive isolation and highly variable levels of gene flow reveal limited progress towards speciation between European river and brook lampreys. J Evol Biol 28:2248–2263
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Rougemont Q, Roux C, Neuenschwander S, Goudet J, Launey S, Evanno G (2016) Reconstructing the demographic history of divergence between European river and brook lampreys using approximate Bayesian computations. PeerJ 4e1910

    Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228
    CAS  PubMed  PubMed Central  Google Scholar 

    Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106
    PubMed  PubMed Central  Article  Google Scholar 

    Russon IJ, Kemp PS, Lucas MC (2011) Gauging weirs impede the upstream migration of adult river lamprey Lampetra fluviatilis: lamprey ability to pass gauging weirs. Fish Manag Ecol 18:201–210
    Article  Google Scholar 

    Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494
    CAS  Article  Google Scholar 

    Smith TB, Kinnison MT, Strauss SY, Fuller TL, Carroll SP (2014) Prescriptive evolution to conserve and manage biodiversity. Ann Rev Ecol Evol Syst 45:1–22
    Article  Google Scholar 

    Spice EK, Goodman DH, Reid SB, Docker MF (2012) Neither philopatric nor panmictic: microsatellite and mtDNA evidence suggests lack of natal homing but limits to dispersal in Pacific lamprey. Mol Ecol 21:2916–2930
    PubMed  Article  PubMed Central  Google Scholar 

    Spice EK, Whitesel TA, Silver GS, Docker MF (2019) Contemporary and historical river connectivity influence population structure in western brooklamprey in the Columbia River Basin. Conserv Genet

    Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. Proc Natl Acad Sci USA 101:15261–15264
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7:453–464
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Taverny C, Elie P (2010) Les lamproies en Europe de l‟Ouest – Ecophases, espèces et habitats. Quae, Versailles, France

    Tonteri A, Veselov AJ, Titov S, Lumme J, Primmer CR (2007) The effect of migratory behaviour on genetic diversity and population divergence: a comparison of anadromous and freshwater Atlantic salmon Salmo salar. J Fish Biol 70:381–398
    CAS  Article  Google Scholar 

    Torterotot JB, Perrier C, Bergeron NE, Bernatchez L (2014) Influence of forest road culverts and waterfalls on the fine‐scale distribution of brook trout genetic diversity in a boreal watershed. Trans Am Fish Soc 143:1577–1591
    CAS  Article  Google Scholar 

    Tummers JS, Kerr JR, O’Brien P, Kemp P, Lucas MC (2018) Enhancing the upstream passage of river lamprey at a microhydropower installation using horizontally-mounted studded tiles. Ecol Eng 125:87–97
    Article  Google Scholar 

    UICN Comité français MNHN SFI & AFB (2019) La Liste rouge des espèces menacées en France—Chapitre Poissons d’eau douce de France métropolitaine. Paris, France

    Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of earth’s ecosystems. Science 277:494–499
    CAS  Article  Google Scholar 

    Wang J, Hill WG, Charlesworth D, Charlesworth B (1999) Dynamics of inbreeding depression due to deleterious mutations in small populations: Mutation parameters and inbreeding rate. Genet Res 74(2):165–178. https://doi.org/10.1017/S0016672399003900
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    Warnes GR, Bolker B, Bonebakker L, Gentleman R, Huber W, Liaw A, Lumley T, Maechler M, Magnusson A, Moeller S, Schwartz M, Venables B (2015) gplots: Various R Programming Tools for Plotting Data. R package version 3.0.4. https://CRAN.R-project.org/package=gplots

    Weir B, Cockerham C (1984) Estimating F-statistics for the analysis of population-structure. Evolution 38:1358–1370
    CAS  PubMed  PubMed Central  Google Scholar 

    Whiteley AR, Coombs JA, Hudy M, Robinson Z, Colton AR, Nislow KH, Letcher BH (2013) Fragmentation and patch size shape genetic structure of brook trout populations. Can J Fish Aquat Sci 70:678–688
    Article  Google Scholar 

    Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191
    PubMed  PubMed Central  Google Scholar 

    Yamamoto S, Morita K, Koizumi I, Maekawa K (2004) Genetic differentiation of white-spotted charr (Salvelinus leucomaenis) populations after habitat fragmentation: spatial–temporal changes in gene frequencies. Conserv Genet 5:529–538
    CAS  Article  Google Scholar 

    Yamazaki Y, Yamano A, Oura K (2011) Recent microscale disturbance of gene flow in threatened fluvial lamprey, Lethenteron sp. N, living in a paddywater system. Conserv Genet 12:1373
    Article  Google Scholar 

    Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Chasing bats at dawn

    WHERE I WORK
    28 September 2020

    Conservation scientist Ricardo Rocha seeks to discover how deforestation affects communities of bats that feast on disease-bearing insects.

    Patricia Maia Noronha

    Patricia Maia Noronha is a freelance writer in Lisbon, Portugal.

    Search for this author in:

    Ricardo Rocha is a tropical-conservation scientist at the University of Porto, Portugal, and at the Regional Agency for the Development of Research, Technology and Innovation in Madeira. Credit: Joan de la Malla

    I became fascinated by bats in 2011, after I started working with them in Central Amazonia. But this photo was taken near Ranomafana National Park in eastern Madagascar, during an expedition organized by the University of Helsinki. My colleague, Adrià López-Baucells, and I led the bat research. I am in the white T-shirt.
    We had spent the night in a village capturing bats using mist nets, a type of net with pockets. We were about to head to the forest to retrieve ultrasonic recorders that collect bioacoustic data. That is why we have headlamps — at night in the forest, you soon realize that a high-quality headlamp is your most precious piece of equipment.
    Among the more than 1,400 bat species worldwide, we can find frugivores, carnivores, insectivores, some that feed on fish, and others that have large tongues to feed on nectar. Bats are enormously important for conservation. In the Amazon, for instance, they are the main seed dispersers of secondary-forest trees, in effect planting forest habitats for the huge diversity of species found there.
    Roughly 1% of Madagascar’s forests are converted to crops every year. Our team aimed to uncover how this affects bat communities. We learnt that multiple Madagascan bat species hunt insects that swarm over rice paddies. We also discovered that they eat insects classified as agricultural pests and human-disease vectors, such as Anopheles mosquitoes, which spread malaria. The balance is fragile, because many bat species are not able to survive without the forest, where they roost.
    I am now researching bat ecology in the Portuguese archipelago of Madeira, where I am from. I want to know whether bats here are also helping humans by suppressing agricultural insect pests and disease vectors — a subject that has gained new relevance during the coronavirus pandemic.

    Nature 586, 162 (2020)
    doi: 10.1038/d41586-020-02727-1

    Latest on:

    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Related Articles More

  • in

    Natural capital in climate models

    1.
    Bastien-Olvera, B. A. & Moore, F. C. Nat. Sustain. https://doi.org/10.1038/s41893-020-00615-0 (2020).
    2.
    Dasgupta, P. & Mäler, K.-G. Environ. Dev. Econ. 5, 69–93 (2000).
    Article  Google Scholar 

    3.
    Agarwala, M., Atkinson, G., Baldock, C. & Gardiner, B. Nat. Clim. Change 4, 520–522 (2014).
    Article  Google Scholar 

    4.
    Ziv, G., Baran, E., Nam, S., Rodríguez-Iturbe, I. & Levin, S. A. Proc. Natl Acad. Sci. USA 109, 5609–5614 (2012).
    CAS  Article  Google Scholar 

    5.
    Coyle, D. GDP: A Brief but Affectionate History-Revised and Expanded Edition (Princeton Univ. Press, 2014).

    6.
    UK Natural Capital Accounts: 2019 (ONS, accessed 2 September 2020); https://go.nature.com/3399sHW

    7.
    Schmelzer, M. The Hegemony of Growth: The OECD and the Making of the Economic Growth Paradigm (Cambridge Univ. Press, 2016).

    8.
    Hein, L. et al. Science 367, 514–515 (2020).
    CAS  Article  Google Scholar 

    9.
    The Economics of Biodiversity: The Dasgupta Review (HM Treasury, accessed 2 September 2020); https://go.nature.com/35x0V4D More

  • in

    Warming drives ecological community changes linked to host-associated microbiome dysbiosis

    1.
    Ockendon, N. et al. Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct effects. Glob. Change Biol. 20, 2221–2229 (2014).
    Article  Google Scholar 
    2.
    Cahill, A. E. et al. How does climate change cause extinction? Proc. R. Soc. B 280, 20121890 (2013).
    Article  Google Scholar 

    3.
    Penuelas, J., Filella, I. & Comas, P. Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Glob. Change Biol. 8, 531–544 (2002).
    Article  Google Scholar 

    4.
    Parmesan, C. et al. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399, 579–583 (1999).
    CAS  Article  Google Scholar 

    5.
    Freeman, B. G., Yaw, J. A. L., Sunday, J. M. & Hargreaves, A. L. Expanding, shifting and shrinking: the impact of global warming on species’ elevational distributions. Glob. Ecol. Biogeogr. 27, 1268–1276 (2018).
    Article  Google Scholar 

    6.
    Draper, A. M. & Weissburg, M. J. Impacts of global warming and elevated CO2 on sensory behavior in predator–prey interactions: a review and synthesis. Front. Ecol. Evol. 7, 72 (2019).
    Article  Google Scholar 

    7.
    Romero, G. Q. et al. Global predation pressure redistribution under future climate change. Nat. Clim. Change 8, 1087–1091 (2018).
    Article  Google Scholar 

    8.
    Hudson, P. J., Cattadori, I. M., Boag, B. & Dobson, A. P. Climate disruption and parasite–host dynamics: patterns and processes associated with warming and the frequency of extreme climatic events. J. Helminthol. 80, 175–182 (2006).
    CAS  Article  Google Scholar 

    9.
    Robinson, C. J., Bohannan, B. J. M. & Young, V. B. From structure to function: the ecology of host-associated microbial communities. Microbiol. Mol. Biol. Rev. 74, 453–476 (2010).
    CAS  Article  Google Scholar 

    10.
    Longo, A. V. & Zamudio, K. R. Temperature variation, bacterial diversity and fungal infection dynamics in the amphibian skin. Mol. Ecol. 26, 4787–4797 (2017).
    Article  Google Scholar 

    11.
    Longo, A. V., Savage, A. E., Hewson, I. & Zamudio, K. R. Seasonal and ontogenetic variation of skin microbial communities and relationships to natural disease dynamics in declining amphibians. R. Soc. Open Sci. 2, 140377 (2015).
    Article  CAS  Google Scholar 

    12.
    Kohl, K. D. & Yahn, J. Effects of environmental temperature on the gut microbial communities of tadpoles. Environ. Microbiol. 18, 1561–1565 (2016).
    Article  Google Scholar 

    13.
    Fontaine, S. S., Novarro, A. J. & Kohl, K. D. Environmental temperature alters the digestive performance and gut microbiota of a terrestrial amphibian. J. Exp. Biol. 221, 187559 (2018).
    Article  Google Scholar 

    14.
    Woodhams, D. C. et al. Interacting symbionts and immunity in the amphibian skin mucosome predict disease risk and probiotic effectiveness. PLoS ONE 9, e96375 (2014).
    Article  CAS  Google Scholar 

    15.
    Muletz-Wolz, C. R. et al. Inhibition of fungal pathogens across genotypes and temperatures by amphibian skin bacteria. Front. Microbiol. 8, 1551 (2017).
    Article  Google Scholar 

    16.
    Bestion, E. et al. Climate warming reduces gut microbiota diversity in a vertebrate ectotherm. Nat. Ecol. Evol. 1, 0161 (2017).
    Article  Google Scholar 

    17.
    Meyer, E. A., Cramp, R. L., Bernal, M. H. & Franklin, C. E. Changes in cutaneous microbial abundance with sloughing: possible implications for infection and disease in amphibians. Dis. Aquat. Organ. 101, 235–242 (2012).
    Article  Google Scholar 

    18.
    Flury, S. & Gessner, M. O. Experimentally simulated global warming and nitrogen enrichment effects on microbial litter decomposers in a marsh. Appl. Environ. Microbiol. 77, 803–809 (2011).
    CAS  Article  Google Scholar 

    19.
    Belden, L. K. & Harris, R. N. Infectious diseases in wildlife: the community ecology context. Front. Ecol. Environ. 5, 533–539 (2007).
    Article  Google Scholar 

    20.
    Bernabé, T. N. et al. Warming weakens facilitative interactions between decomposers and detritivores, and modifies freshwater ecosystem functioning. Glob. Change Biol. 24, 3170–3186 (2018).
    Article  Google Scholar 

    21.
    Hoekman, D. Turning up the heat: temperature influences the relative importance of top-down and bottom-up effects. Ecology 91, 2819–2825 (2010).
    Article  Google Scholar 

    22.
    Becker, C. G. et al. Low-load pathogen spillover predicts shifts in skin microbiome and survival of a terrestrial-breeding amphibian. Proc. R. Soc. B 286, 20191114 (2019).
    Article  Google Scholar 

    23.
    Jiménez, R. R. & Sommer, S. The amphibian microbiome: natural range of variation, pathogenic dysbiosis, and role in conservation. Biodivers. Conserv. 26, 763–786 (2017).
    Article  Google Scholar 

    24.
    Greenspan, S. E. et al. Arthropod–bacteria interactions influence assembly of aquatic host microbiome and pathogen defense. Proc. R. Soc. B 286, 20190924 (2019).
    CAS  Article  Google Scholar 

    25.
    Walker, W. A. in The Microbiota in Gastrointestinal Pathophysiology: Implications for Human Health, Prebiotics, Probiotics, and Dysbiosis (eds Floch, M. H. et al.) 227–232 (Academic Press, 2016).

    26.
    Zaneveld, J. R., McMinds, R. & Vega Thurber, R. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat. Microbiol. 2, 17121 (2017).
    CAS  Article  Google Scholar 

    27.
    Jin Song, S. et al. Engineering the microbiome for animal health and conservation. Exp. Biol. Med. 244, 494–504 (2019).
    CAS  Article  Google Scholar 

    28.
    Kriss, M., Hazleton, K. Z., Nusbacher, N. M., Martin, C. G. & Lozupone, C. A. Low diversity gut microbiota dysbiosis: drivers, functional implications and recovery. Curr. Opin. Microbiol. 44, 34–40 (2018).
    Article  Google Scholar 

    29.
    Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds. Stocker, T. F. et al.) 1029–1136 (IPCC, Cambridge Univ. Press, 2013).

    30.
    Sabagh, L. T., Ferreira, G. L., Branco, C. W. C., Rocha, C. F. D. & Dias, N. Y. N. Larval diet in bromeliad pools: a case study of tadpoles of two species in the genus Scinax (Hylidae). Copeia 2012, 683–689 (2012).
    Article  Google Scholar 

    31.
    Angilletta, M. J., Niewiarowski, P. H. & Navas, C. A. The evolution of thermal physiology in ectotherms. J. Therm. Biol. 27, 249–268 (2002).
    Article  Google Scholar 

    32.
    Becker, C. G., Longo, A. V., Haddad, C. F. B. & Zamudio, K. R. Land cover and forest connectivity alter the interactions among host, pathogen and skin microbiome. Proc. R. Soc. B 284, 20170582 (2017).
    Article  Google Scholar 

    33.
    Fukami, T. & Nakajima, M. Community assembly: alternative stable states or alternative transient states? Ecol. Lett. 14, 973–984 (2011).
    Article  Google Scholar 

    34.
    Wang, J. et al. Phylogenetic beta diversity in bacterial assemblages across ecosystems: deterministic versus stochastic processes. ISME J. 7, 1310–1321 (2013).
    CAS  Article  Google Scholar 

    35.
    Longo, A. V. & Zamudio, K. R. Environmental fluctuations and host skin bacteria shift survival advantage between frogs and their fungal pathogen. ISME J. 11, 349–361 (2017).
    Article  Google Scholar 

    36.
    Friedman, B. A. & Dugan, P. R. Identification of Zoogloea species and the relationship to zoogloeal matrix and floc formation. J. Bacteriol. 95, 1903–1909 (1968).
    CAS  Article  Google Scholar 

    37.
    Gao, N. et al. Both widespread PEP-CTERM proteins and exopolysaccharides are required for floc formation of Zoogloea resiniphila and other activated sludge bacteria. Environ. Microbiol. 20, 1677–1692 (2018).
    CAS  Article  Google Scholar 

    38.
    Merritt, R. W., Dadd, R. H. & Walker, E. D. Feeding behavior, natural food, and nutritional relationships of larval mosquitos. Annu. Rev. Entomol. 37, 349–376 (1992).
    CAS  Article  Google Scholar 

    39.
    Moghadam, F. S. & Zimmer, M. Effects of warming and nutrient enrichment on how grazing pressure affects leaf litter–colonizing bacteria. J. Environ. Qual. 43, 851–858 (2014).
    Article  CAS  Google Scholar 

    40.
    Zander, A., Bersier, L. & Gray, S. M. Effects of temperature variability on community structure in a natural microbial food web. Glob. Change Biol. 23, 56–67 (2017).
    Article  Google Scholar 

    41.
    Aguirre, A. A. & Tabor, G. M. Global factors driving emerging infectious diseases: Impact on wildlife populations. Ann. NY Acad. Sci. 1149, 1–3 (2008).
    Article  Google Scholar 

    42.
    Greenspan, S. E. et al. Infection increases vulnerability to climate change via effects on host thermal tolerance. Sci. Rep. 7, 9349 (2017).
    Article  CAS  Google Scholar 

    43.
    Neely, W. J. et al. Synergistic effects of warming and disease linked to high mortality in cool-adapted terrestrial frogs. Biol. Conserv. 245, 108521 (2020).
    Article  Google Scholar 

    44.
    Raffel, T. R. et al. Disease and thermal acclimation in a more variable and unpredictable climate. Nat. Clim. Change 3, 146–151 (2013).
    Article  Google Scholar 

    45.
    Raffel, T. R., Halstead, N. T., Mcmahon, T. A., Davis, A. K. & Rohr, J. R. Temperature variability and moisture synergistically interact to exacerbate an epizootic disease. Proc. R. Soc. B 282, 20142039 (2015).
    Article  Google Scholar 

    46.
    Greenspan, S. E. et al. White blood cell profiles in amphibians help to explain disease susceptibility following temperature shifts. Dev. Comp. Immunol. 77, 280–286 (2017).
    CAS  Article  Google Scholar 

    47.
    Dézerald, O. et al. Food-web structure in relation to environmental gradients and predator–prey ratios in tank-bromeliad ecosystems. PLoS ONE 8, e71735 (2013).
    Article  CAS  Google Scholar 

    48.
    Kitching, R. L. Food Webs and Container Habitats: The Natural History and Ecology of Phytotelmata (Cambridge Univ. Press, 2000).

    49.
    Richardson, B. A. The bromeliad microcosm and the assessment of faunal diversity in a Neotropical forest. Biotropica 31, 321–336 (1999).
    Article  Google Scholar 

    50.
    Leroy, C. et al. What drives detrital decomposition in Neotropical tank bromeliads? Hydrobiologia 802, 85–95 (2017).
    Article  Google Scholar 

    51.
    Giongo, A. et al. Seasonal physiological parameters and phytotelmata bacterial diversity of two bromeliad species (Aechmea gamosepala and Vriesea platynema) from the Atlantic Forest of Southern Brazil. Diversity 11, 111 (2019).
    CAS  Article  Google Scholar 

    52.
    Frank, J. H. & Lounibos, L. P. Insects and allies associated with bromeliads: a review. Terr. Arthropod Rev. 1, 125–153 (2009).
    CAS  Article  Google Scholar 

    53.
    Ruano-Fajardo, G., Toledo, L. F. & Mott, T. Jumping into a trap: high prevalence of chytrid fungus in the preferred microhabitats of a bromeliad-specialist frog. Dis. Aquat. Organ. 121, 223–232 (2016).
    Article  Google Scholar 

    54.
    Gomez-Hoyos, D. A. et al. Phytotelmata selection by anurans and implications for their conservation at Las Tablas Protected Zone, Costa Rica. Alytes 35, 1–11 (2018).
    Google Scholar 

    55.
    Haddad, C. F. B. et al. Guia dos Anfíbios da Mata Atlântica: Diversidade e Biologia (Anolis Books, 2013).

    56.
    Gosner, K. L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16, 183–190 (1960).
    Google Scholar 

    57.
    Oksanen, J. et al. vegan: community ecology package. R package version 2.4-1 https://CRAN.R-project.org/package=vegan (2016).

    58.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

    59.
    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).
    CAS  Article  Google Scholar 

    60.
    Caporaso, J. G. et al. EMP 16S Illumina Amplicon Protocol (protocols.io, 2018).

    61.
    Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).
    CAS  Article  Google Scholar 

    62.
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 848–857 (2019).
    Article  CAS  Google Scholar 

    63.
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).
    CAS  Article  Google Scholar 

    64.
    Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2, e00191–16 (2017).
    Google Scholar 

    65.
    Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).
    CAS  Article  Google Scholar 

    66.
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).
    Article  CAS  Google Scholar 

    67.
    Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018).
    Article  Google Scholar 

    68.
    DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).
    CAS  Article  Google Scholar 

    69.
    McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012).
    CAS  Article  Google Scholar 

    70.
    Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013).
    CAS  Article  Google Scholar 

    71.
    Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).
    Article  Google Scholar 

    72.
    Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).
    CAS  Article  Google Scholar 

    73.
    Lozupone, C. A., Hamady, M., Kelley, S. T. & Knight, R. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl. Environ. Microbiol. 73, 1576–1585 (2007).
    CAS  Article  Google Scholar 

    74.
    Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. UniFrac: an effective distance metric for microbial community comparison. ISME J. 5, 169–172 (2011).
    Article  Google Scholar 

    75.
    Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in R for ecology. Methods Ecol. Evol. 7, 573–579 (2016).
    Article  Google Scholar 

    76.
    Deegan, J. On the occurrence of standardized regression coefficients greater than one. Educ. Psychol. Meas. 38, 873–888 (1978).
    Article  Google Scholar 

    77.
    JMP v.14.0.0 (SAS Institute, 2019).

    78.
    Warnes, G. et al. gplots: various R programming tools for plotting data. R package version 3.0.1.1 https://CRAN.R-project.org/package=gplots (2019). More

  • in

    Gram-positive bacteria control the rapid anabolism of protein-sized soil organic nitrogen compounds questioning the present paradigm

    1.
    Paustian, K. et al. Climate-smart soils. Nature 532, 49–57. https://doi.org/10.1038/nature17174 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 
    2.
    Knicker, H. Soil organic N-An under-rated player for C sequestration in soils?. Soil Biol. Biochem. 43, 1118–1129 (2011).
    CAS  Article  Google Scholar 

    3.
    Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).
    ADS  CAS  Article  Google Scholar 

    4.
    Lehmann, J. & Kleber, M. The contentious nature of soil organic matter. Nature 528, 60–68. https://doi.org/10.1038/nature16069 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    5.
    Cotrufo, M. F. et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nat. Geosci. 8, 776. https://doi.org/10.1038/ngeo2520 (2015).
    ADS  CAS  Article  Google Scholar 

    6.
    Liang, C., Schimel, J. P. & Jastrow, J. D. The importance of anabolism in microbial control over soil carbon storage. Nat. Microb. https://doi.org/10.1038/nmicrobiol.2017.105 (2017).
    Article  Google Scholar 

    7.
    Czaban, W., Rasmussen, J., Nicolaisen, M. & Fomsgaard, I. S. Dissipation kinetics of asparagine in soil measured by compound-specific analysis with metabolite tracking. Biol. Fertil. Soils 52, 911–916. https://doi.org/10.1007/s00374-016-1132-6 (2016).
    CAS  Article  Google Scholar 

    8.
    Farrell, M. et al. Rapid peptide metabolism: a major component of soil nitrogen cycling?. Global Biogeochem. Cycles 25, 107760 (2011).
    Article  Google Scholar 

    9.
    Apostel, C., Dippold, M. A., Bore, E. & Kuzyakov, Y. Sorption of Alanine changes microbial metabolism in addition to availability. Geoderma 292, 128–134. https://doi.org/10.1016/j.geoderma2017.01.016 (2017).
    ADS  CAS  Article  Google Scholar 

    10.
    Khan, K. S., Mack, R., Castillo, X., Kaiser, M. & Joergensen, R. G. Microbial biomass, fungal and bacterial residues, and their relationships to the soil organic matter C/N/P/S ratios. Geoderma 271, 115–123. https://doi.org/10.1016/j.geoderma.2016.02.019 (2016).
    ADS  CAS  Article  Google Scholar 

    11
    Miltner, A., Bombach, P., Schmidt-Brücken, B. & Kästner, M. SOM genesis: microbial biomass as a significant source. Biogeochemistry 111, 1–15 (2012).
    Article  Google Scholar 

    12.
    Lavallee, J. M., Soong, J. L. & Cotrufo, M. F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Glob. Change Biol. 26, 261–273. https://doi.org/10.1111/gcb.14859 (2020).
    ADS  Article  Google Scholar 

    13
    Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J. & Lugato, E. Soil carbon storage informed by particulate and mineral-associated organic matter. Nat. Geosci. 12, 989. https://doi.org/10.1038/s41561-019-0484-6 (2019).
    ADS  CAS  Article  Google Scholar 

    14.
    Nannipieri, P. & Eldor, P. The chemical and functional characterization of soil N and its biotic components. Soil Biol. Biochem. 41, 2357–2369 (2009).
    CAS  Article  Google Scholar 

    15.
    Schimel, J. P. & Bennett, J. Nitrogen mineralization: challenges of a changing paradigm. Ecology 85, 591–602 (2004).
    Article  Google Scholar 

    16.
    Jan, M. T., Roberts, P., Tonheim, S. K. & Jones, D. L. Protein breakdown represents a major bottleneck in nitrogen cycling in grassland soils. Soil Biol. Biochem. 41, 2272–2282. https://doi.org/10.1016/j.soilbio.2009.08.013 (2009).
    CAS  Article  Google Scholar 

    17.
    Jones, D. L. & Kielland, K. Amino acid, peptide and protein mineralization dynamics in a taiga forest soil. Soil Biol. Biochem. 55, 60–69 (2012).
    CAS  Article  Google Scholar 

    18.
    Mariano, E., Jones, D. L., Hill, P. W. & Trivelin, P. C. O. Mineralisation and sorption of dissolved organic nitrogen compounds in litter and soil from sugarcane fields. Soil Biol. Biochem. 103, 522–532. https://doi.org/10.1016/j.soilbio.2016.10.004 (2016).
    CAS  Article  Google Scholar 

    19.
    Enggrob, K. L., Larsen, T., Larsen, M., Elsgaard, L. & Rasmussen, J. The influence of hydrolysis and derivatization on the determination of amino acid content and isotopic ratios in dual labeled (13C, 15N) white clover. Rapid Commun Mass Spectrom https://doi.org/10.1002/rcm.8300 (2018).
    Article  Google Scholar 

    20.
    Rubaek, G. H. In Long-term field experiments—a unique research platform (eds Christensen, B. T. et al.) (Aarhus University, Denmark, 2008).
    Google Scholar 

    21.
    Christensen, B. T., Petersen, J. & Trentemoller, U. M. The Askov long-term experiments on animal manure and mineral fertilizers: The Lermarken site 1894–2004. Report No. 121 (2006).

    22.
    Dumont, M. G. & Murrell, J. C. Stable isotope probing—linking microbial identity to function. Nat. Rev. Microbiol. 3, 499–504. https://doi.org/10.1038/nrmicro1162 (2005).
    CAS  Article  PubMed  Google Scholar 

    23.
    Jones, D. L. & Hodge, A. Biodegradation kinetics and sorption reactions of three differently charged amino acids in soil and their effects on plant organic nitrogen availability. Soil Biol. Biochem. 31, 1331–1342 (1999).
    CAS  Article  Google Scholar 

    24.
    Gonod, L. V., Jones, D. L. & Chenu, C. Sorption regulates the fate of the amino acids lysine and leucine in soil aggregates. Eur. J. Soil Sci. 57, 320–329 (2006).
    CAS  Article  Google Scholar 

    25.
    Kogel-Knabner, I. & Rumpel, C. In Advances in Agronomy, vol 149 (ed. Sparks, D. L.) 1–48 (Elsevier, Amsterdam, 2018).
    Google Scholar 

    26.
    Kirchman, D. L., Newell, S. Y. & Hodson, R. E. Incorporation versus biosynthesis of leucine – implications for measuring rates of protein-synthesis and biomass production by bacteria in marine systems. Mar. Ecol. Prog. Ser. 32, 47–59. https://doi.org/10.3354/meps032047 (1986).
    ADS  CAS  Article  Google Scholar 

    27.
    Dippold, M. A. & Kuzyakov, Y. Biogeochemical transformations of amino acids in soil assessed by position-specific labelling. Plant Soil 373, 385–401. https://doi.org/10.1007/s11104-013-1764-3 (2013).
    CAS  Article  Google Scholar 

    28.
    Simelyte, E., Rimpilainen, M., Zhang, X. & Toivanen, P. Role of peptidoglycan subtypes in the pathogenesis of bacterial cell wall arthritis. Ann. Rheum. Dis. 62, 976–982. https://doi.org/10.1136/ard.62.10.976 (2003).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    29.
    Schneewind, O. & Missiakas, D. M. Protein secretion and surface display in Gram-positive bacteria. Philos. Trans. R. Soc. B Biol. Sci. 367, 1123–1139. https://doi.org/10.1098/rstb.2011.0210 (2012).
    CAS  Article  Google Scholar 

    30.
    Vollmer, W., Blanot, D. & de Pedro, M. A. Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 32, 149–167. https://doi.org/10.1111/j.1574-6976.2007.00094.x (2008).
    CAS  Article  PubMed  Google Scholar 

    31.
    Tamez-Hidalgo, P., Christensen, B. T., Lever, M. A., Elsgaard, L. & Lomstein, B. A. Endospores, prokaryotes, and microbial indicators in arable soils from three long-term experiments. Biol. Fertil. Soils 52, 101–112. https://doi.org/10.1007/s00374-015-1057-5 (2016).
    CAS  Article  Google Scholar 

    32.
    Hemkemeyer, M., Christensen, B. T., Martens, R. & Tebbe, C. C. Soil particle size fractions harbour distinct microbial communities and differ in potential for microbial mineralisation of organic pollutants. Soil Biol. Biochem. 90, 255–265. https://doi.org/10.1016/j.soilbio.2015.08.018 (2015).
    CAS  Article  Google Scholar 

    33.
    Suarez-Tapia, A., Thomsen, I. K., Rasmussen, J. & Christensen, B. T. Residual N effect of long-term applications of cattle slurry using winter wheat as test crop. Field Crops Res. 221, 257–264. https://doi.org/10.1016/j.fcr.2017.10.013 (2018).
    Article  Google Scholar 

    34.
    Castellano, M. J., Mueller, K. E., Olk, D. C., Sawyer, J. E. & Six, J. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Glob. Change Biol. 21, 3200–3209. https://doi.org/10.1111/gcb.12982 (2015).
    ADS  Article  Google Scholar 

    35.
    Jensen, J. L., Schjonning, P., Christensen, B. T. & Munkholm, L. J. Suboptimal fertilisation compromises soil physical properties of a hard-setting sandy loam. Soil Res. 55, 332–340. https://doi.org/10.1071/sr16218 (2017).
    Article  Google Scholar 

    36.
    Madigan, M. T., Bender, K. S., Buckley, D. H., Sattley, W. M. & Stahl, D. A. Brock Biology of Microorganisms 15th edn. (Pearson Education Limited, London, 2018).
    Google Scholar 

    37.
    Rousk, J. et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4, 1340–1351 (2010).
    Article  Google Scholar 

    38.
    Burns, R. G. In Soil Enzymes (ed. Burns, R. G.) (Academic Press, Cambridge, 1978).
    Google Scholar 

    39.
    Detmers, F. J. M., Kunji, E. R. S., Lanfermeijer, F. C., Poolman, B. & Konings, W. N. Kinetics and specificity of peptide uptake by the oligopeptide transport system of Lactococcus lactis. Biochemistry 37, 16671–16679. https://doi.org/10.1021/bi981712t (1998).
    CAS  Article  PubMed  Google Scholar 

    40.
    Scherrer, R., Beaman, T. C. & Gerhardt, P. Macromolecular sieving by dormant spore of bacillus-cereus. J. Bacteriol. 108, 868–870 (1971).
    CAS  Article  Google Scholar 

    41.
    Nannipieri, P., Trasar-Cepeda, C. & Dick, R. P. Soil enzyme activity: a brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biol. Fertil. Soils 54, 11–19. https://doi.org/10.1007/s00374-017-1245-6 (2018).
    CAS  Article  Google Scholar 

    42.
    Simpson, J., Warren, C. & Adams, P. Potential protease activity and organic nitrogen concentration are rapid tests and accurate indicators of N-availability in Tasmanian Eucalyptus nitens plantations. Soil Biol. Biochem. 115, 152–160. https://doi.org/10.1016/j.soilbio.2017.08.015 (2017).
    CAS  Article  Google Scholar 

    43.
    Lipson, D. & Nasholm, T. The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. Oecologia 128, 305–316 (2001).
    ADS  Article  Google Scholar 

    44.
    Mortensen, R. M. In Oversigt over Landsforsøgene 2016 (ed. Pedersen, J. B.) 255–257 (Aarhus, SEGES, 2016).
    Google Scholar 

    45.
    Rasmussen, J., Gjettermann, B., Eriksen, J., Jensen, E. S. & Hogh-Jensen, H. Fate of N-15 and C-14 from labelled plant material: Recovery in perennial ryegrass-clover mixtures and in pore water of the sward. Soil Biol. Biochem. 40, 3031–3039 (2008).
    CAS  Article  Google Scholar 

    46.
    Colas, D., Doumeng, C., Pontalier, P. Y. & Rigal, L. Green crop fractionation by twin-screw extrusion: Influence of the screw profile on alfalfa (Medicago sativa) dehydration and protein extraction. Chem. Eng. Process. 72, 1–9. https://doi.org/10.1016/j.cep.2013.05.017 (2013).
    CAS  Article  Google Scholar 

    47.
    Petersen, S. O. & Klug, M. J. Effects of sieving, storage, and incubation-temperature on the phospholipid fatty-acid profile of a soil microbial community. Appl. Environ. Microbiol. 60, 2421–2430 (1994).
    CAS  Article  Google Scholar 

    48.
    Petersen, S. O., Frohne, P. S. & Kennedy, A. C. Dynamics of a soil microbial community under spring wheat. Soil Sci. Soc. Am. J. 66, 826–833 (2002).
    ADS  CAS  Article  Google Scholar 

    49.
    Fierer, N., Schimel, J. P. & Holden, P. A. Variations in microbial community composition through two soil depth profiles. Soil Biol. Biochem. 35, 167–176. https://doi.org/10.1016/s0038-0717(02)00251-1 (2003).
    CAS  Article  Google Scholar 

    50.
    Stromberger, M. E., Keith, A. M. & Schmidt, O. Distinct microbial and faunal communities and translocated carbon in Lumbricus terrestris drilospheres. Soil Biol. Biochem. 46, 155–162. https://doi.org/10.1016/j.soilbio.2011.11.024 (2012).
    CAS  Article  Google Scholar 

    51.
    Frostegard, A., Baath, E. & Tunlid, A. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty-acid analysis. Soil Biol. Biochem. 25, 723–730. https://doi.org/10.1016/0038-0717(93)90113-p (1993).
    Article  Google Scholar  More