1.
Hutchinson, G. E. Cold Spring Harbor symposium on quantitative biology. Concluding Remarks 22, 415–427 (1957).
Google Scholar
2.
MacArthur, R. H. In Challenging Biological Problems: Directions Toward Their Solution (ed. Behnke, J. A.) pp. 253–259 (Oxford University Press, 1972).
3.
Chase, J. M. & Leibold, M. A. Ecological Niches: Linking Classical and Contemporary Approaches (University of Chicago Press, 2003).
4.
Holt, R. D. Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proc. Natl Acad. Sci. USA 106, 19659–19665 (2009).
ADS CAS PubMed Article PubMed Central Google Scholar
5.
Winemiller, K. O., Fitzgerald, D. B., Bower, L. M. & Pianka, E. R. Functional traits, convergent evolution, and periodic tables of niches. Ecol. Lett. 18, 737–751 (2015).
PubMed PubMed Central Article Google Scholar
6.
Pianka, E. R., Vitt, L. J., Pelegrin, N., Fitzgerald, D. B. & Winemiller, K. O. Toward a periodic table of niches, or exploring the lizard niche hypervolume. Am. Naturalist 190, 601–616 (2017).
Article Google Scholar
7.
Blonder, B., Lamanna, C., Violle, C. & Enquist, B. J. The n-dimensional hypervolume. Glob. Ecol. Biogeogr. 23, 595–609 (2014).
Article Google Scholar
8.
Hoogenboom, M. O. & Connolly, S. R. Defining fundamental niche dimensions of corals: synergistic effects of colony size, light, and flow. Ecology 90, 767–780 (2009).
PubMed Article PubMed Central Google Scholar
9.
Porter, W. P. & Kearney, M. Size, shape, and the thermal niche of endotherms. Proc. Natl Acad. Sci. USA 106, 19666–19672 (2009).
ADS CAS PubMed Article PubMed Central Google Scholar
10.
Kraft, N. J. B., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl Acad. Sci. USA 112, 797–802 (2015).
ADS CAS PubMed Article Google Scholar
11.
Benjamin, B. Hypervolume concepts in niche-and trait-based ecology. Ecography 41, 1441–1455 (2018).
Article Google Scholar
12.
González, A. L., Dézerald, O., Marquet, P. A., Romero, G. Q. & Srivastava, D. S. The multidimensional stoichiometric niche. Front. Ecol. Evol. 5, 110 (2017).
Article Google Scholar
13.
Stevenson, B. G. The Hutchinsonian niche: multivariate statistical analysis of dung beetle niches. Coleopter. Bull. 36, 246–249 (1982).
14.
Inward, D. J. G., Davies, R. G., Pergande, C., Denham, A. J. & Vogler, A. P. Local and regional ecological morphology of dung beetle assemblages across four biogeographic regions. J. Biogeogr. 38, 1668–1682 (2011).
Article Google Scholar
15.
Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).
ADS PubMed Article CAS Google Scholar
16.
Green, J. L., Bohannan, B. J. M. & Whitaker, R. J. Microbial biogeography: from taxonomy to traits. science 320, 1039–1043 (2008).
ADS CAS PubMed Article Google Scholar
17.
Noah, F., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364 (2007).
Article Google Scholar
18.
Claire Horner-Devine, M. & Bohannan, B. J. M. Phylogenetic clustering and overdispersion in bacterial communities. Ecology 87, S100–S108 (2006).
PubMed Article Google Scholar
19.
Lennon, J. T., Aanderud, Z. T., Lehmkuhl, B. K. & Schoolmaster Jr, D. R. Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology 93, 1867–1879 (2012).
PubMed Article Google Scholar
20.
Fisher, C. K., Thierry, M. & Walczak, A. M. Variable habitat conditions drive species covariation in the human microbiota. PLoS Comput. Biol. 13, e1005435 (2017).
21.
Prosser, J. I. et al. The role of ecological theory in microbial ecology. Nat. Rev. Microbiol. 5, 384–392 (2007).
CAS PubMed Article Google Scholar
22.
Elhanan, B., Martin, K., Feldman, M. W. & Ruppin, E. Large-scale reconstruction and phylogenetic analysis of metabolic environments. Proc. Natl Acad. Sci. USA 105, 14482–14487 (2008).
ADS Article Google Scholar
23.
Humphries, M. M. & McCann, K. S. Metabolic ecology. J. Anim. Ecol. 83, 7–19 (2014).
PubMed Article Google Scholar
24.
Chase, J. M. In The theory of ecology (eds Scheiner, S. M. and Willig, M. R.) pp. 93–107 (2011).
25.
D’Andrea, R. & Ostling, A. Challenges in linking trait patterns to niche differentiation. Oikos 125, 1369–1385 (2016).
Article Google Scholar
26.
Barter, E. & Gross, T. Manifold cities: Social variables of urban areas in the uk. Proc. R. Soc. A 475, 20180615 (2019).
ADS PubMed Article PubMed Central Google Scholar
27.
Coifman, R. R. et al. Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. Proc. Natl Acad. Sci. USA 102, 7426–7431 (2005).
ADS CAS PubMed MATH Article PubMed Central Google Scholar
28.
Coifman, R. R. & Lafon, S. Diffusion maps. Appl. Comput. Harmonic Anal. 21, 5–30 (2006).
MathSciNet MATH Article Google Scholar
29.
Kac, M. Can one hear the shape of a drum? Am. Math. Monthly 73, 1–23 (1966).
MathSciNet MATH Article Google Scholar
30.
Boaz, N., Stephane, L., Ioannis, K. & Coifman, R. R. Diffusion maps, spectral clustering and eigenfunctions of fokker-planck operators. In Advances in Neural Information Processing Systems 955–962 (2006).
31.
Jones, P. W., Mauro, M. & Schul, R. Manifold parametrizations by eigenfunctions of the laplacian and heat kernels. Proc. Natl Acad. Sci. USA 105, 1803–1808 (2008).
ADS MathSciNet CAS PubMed MATH Article PubMed Central Google Scholar
32.
Daniel, M., Sergej, A., Melanie, T. & Patil, K. R. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res. 46, 7542–7553 (2018).
Article CAS Google Scholar
33.
Pruitt, K. D., Tatiana, T. & Maglott, D. R. Ncbi reference sequences (refseq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 35, D61–D65 (2006).
PubMed PubMed Central Article Google Scholar
34.
Mendes-Soares, H., Michael, M., Soares, L. M. & Chia, N. Mminte: an application for predicting metabolic interactions among the microbial species in a community. BMC Bioinforma. 17, 343 (2016).
Article Google Scholar
35.
Boaz, N., Stephane, L., Ronald, C. & Kevrekidis, I. G. In Principal Manifolds For Data Visualization and Dimension Reduction pp. 238–260 (Springer, 2008).
36.
Moon, K. R. et al. Visualizing structure and transitions in high-dimensional biological data. Nat. Biotechnol. 37, 1482–1492 (2019).
CAS PubMed PubMed Central Article Google Scholar
37.
Marion, E. et al. The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants. Proc. Natl Acad. Sci. USA 105, 17199–17204 (2008).
Article Google Scholar
38.
Watzer, B. & Forchhammer, K. Cyanophycin synthesis optimizes nitrogen utilization in the unicellular cyanobacterium synechocystis sp. strain pcc 6803. Appl. Environ. Microbiol. 84, e01298–18 (2018).
CAS PubMed PubMed Central Article Google Scholar
39.
Sonia, F., Lunn, J. E., Franck, B. & Ferrer, J.-L. The structure of a cyanobacterial sucrose-phosphatase reveals the sugar tongs that release free sucrose in the cell. Plant Cell 17, 2049–2058 (2005).
Article CAS Google Scholar
40.
Amy, N., Thilo, G. & Bassler, K. E. Mesoscopic structures and the laplacian spectra of random geometric graphs. J. Complex Netw. 3, 543–551 (2015).
MathSciNet Article Google Scholar
41.
Komagata, K., Iino, T., Yamada, Y. The Family Acetobacteraceae. In The Prokaryotes (eds Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E., Thompson, F.) pp. 3–78 (Springer, Berlin, Heidelberg, 2014).
42.
Meadows, J. A. & Wargo, M. J. Carnitine in bacterial physiology and metabolism. Microbiology 161, 1161 (2015).
CAS PubMed PubMed Central Article Google Scholar
43.
Kämpfer, P., Svenja, M. & Müller, H. E. Characterization of buttiauxella and kluyvera species by analysis of whole cell fatty acid patterns. Syst. Appl. Microbiol. 20, 566–571 (1997).
Article Google Scholar
44.
Parsons, J. B. & Rock, C. O. Bacterial lipids: metabolism and membrane homeostasis. Prog. Lipid Res. 52, 249–276 (2013).
CAS PubMed PubMed Central Article Google Scholar
45.
Foster, D. B. et al. Phosphatidylethanolamine recognition promotes enteropathogenic E. coli and enterohemorrhagic E. coli host cell attachment. Microb. Pathogenesis 27, 289–301 (1999).
Article CAS Google Scholar
46.
Mayer, C. & Boos, W. Hexose/pentose and hexitol/pentitol metabolism. EcoSal Plus 1 (2005).
47.
Reimer, L. C. et al. Bac dive in 2019: bacterial phenotypic data for high-throughput biodiversity analysis. Nucleic Acids Res. 47, D631–D636 (2019).
CAS PubMed Article PubMed Central Google Scholar
48.
Devinder, K., Brennan, P. J. & Crick, D. C. Decaprenyl diphosphate synthesis in mycobacterium tuberculosis. J. Bacteriol. 186, 7564–7570 (2004).
Article CAS Google Scholar
49.
Newton, G. L., Nancy, B. & Fahey, R. C. Biosynthesis and functions of mycothiol, the unique protective thiol of Actinobacteria. Microbiol. Mol. Biol. Rev. 72, 471–494 (2008).
CAS PubMed PubMed Central Article Google Scholar
50.
Yaozhu, W., Xiaofei, Z., Sixue, Z. & Tan, X. Structural and functional insights into corrinoid iron-sulfur protein from human pathogen Clostridium difficile. J. Inorg. Biochem. 170, 26–33 (2017).
Article CAS Google Scholar
51.
Charles, D., Plants-Paris, K., Dayna, B. & DuPont, H. L. Clostridium difficile modulates the gut microbiota by inducing the production of indole, an interkingdom signaling and antimicrobial molecule. mSystems 4, e00346–18 (2019).
Google Scholar
52.
Luo, H. & Moran, M. A. How do divergent ecological strategies emerge among marine bacterioplankton lineages? Trends Microbiol. 23, 577–584 (2015).
CAS PubMed Article PubMed Central Google Scholar
53.
Kanehisa, M. & Goto, S. Kegg: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
CAS PubMed PubMed Central Article Google Scholar
54.
Neshich, I. A. P., Eduardo, K. & Arruda, P. Genome-wide analysis of lysine catabolism in bacteria reveals new connections with osmotic stress resistance. ISME J. 7, 2400–2410 (2013).
CAS PubMed PubMed Central Article Google Scholar
55.
Chang, H.-H. et al. Complete genome sequence of ?candidatus sulcia muelleri? ml, an obligate nutritional symbiont of maize leafhopper (dalbulus maidis). Genome Announc. 3, e01483–14 (2015).
PubMed PubMed Central Google Scholar
56.
López-Madrigal, S., Amparo, L., Andres, M. & Gil, R. The link between independent acquisition of intracellular gamma-endosymbionts and concerted evolution in tremblaya princeps. Front. Microbiol. 6, 642 (2015).
PubMed PubMed Central Article Google Scholar
57.
Dale, C. & Moran, N. A. Molecular interactions between bacterial symbionts and their hosts. Cell 126, 453–465 (2006).
CAS PubMed Article Google Scholar
58.
Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16s rrna marker gene sequences. Nat. Biotechnol. 31, 814 (2013).
CAS PubMed PubMed Central Article Google Scholar
59.
Stilianos, L. et al. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2, 936 (2018).
Article Google Scholar
60.
Douglas, G. M. et al. Picrust2: an improved and extensible approach for metagenome inference. BioRxiv https://www.biorxiv.org/content/10.1101/672295v2 (2019).
61.
Cooley, S. M., Timothy, H., Deeds, E. J. & Ray, J. C. J. A novel metric reveals previously unrecognized distortion in dimensionality reduction of scRNA-seq data. BioRxiv https://www.biorxiv.org/content/10.1101/689851v3 (2019).
62.
Thompson, L. R. et al. A communal catalogue reveals earth’s multiscale microbial diversity. Nature 551, 457 (2017).
ADS CAS PubMed PubMed Central Article Google Scholar
63.
Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).
CAS PubMed PubMed Central Article Google Scholar
64.
Franzosa, E. A. et al. Species-level functional profiling of metagenomes and metatranscriptomes. Nat. Methods 15, 962–968 (2018).
CAS PubMed PubMed Central Article Google Scholar
65.
King, Z. A. et al. Bigg models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res. 44, D515–D522 (2015).
PubMed PubMed Central Article CAS Google Scholar
66.
Lee, M. D. GtoTree: a user-friendly workflow for phylogenomics. Bioinformatics 1, 3 (2019).
Google Scholar
67.
Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).
CAS PubMed Article Google Scholar
68.
Eddy, S. R. Accelerated profile hmm searches. PLoS Comput. Biol. 7, e1002195 (2011).
ADS MathSciNet CAS PubMed PubMed Central Article Google Scholar
69.
Edgar, R. C. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
CAS PubMed PubMed Central Article Google Scholar
70.
Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimal: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
PubMed PubMed Central Article CAS Google Scholar
71.
Price, M. N., Dehal, P. S. & Arkin, A. P. Fasttree 2–approximately maximum-likelihood trees for large alignments. PloS ONE 5, e9490 (2010).
ADS PubMed PubMed Central Article CAS Google Scholar
72.
Letunic, I. & Bork, P. Interactive tree of life (iTol) v4: recent updates and new developments. Nucleic Acids Res. 47, 256–259 (2019).
73.
Aravind, S. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
Article CAS Google Scholar
74.
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2019).
75.
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).
MathSciNet MATH Google Scholar
76.
Altschul, S. F., Warren, G., Webb, M., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
CAS PubMed Article PubMed Central Google Scholar
77.
Wright, E. S. Using DECIPHER v2.0 to analyze big biological sequence data in R. R. J. 8, 352–359 (2016).
78.
Ward Jr, J. H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963).
MathSciNet Article Google Scholar More