More stories

  • in

    Dynamics of localised nitrogen supply and relevance for root growth of Vicia faba (‘Fuego’) and Hordeum vulgare (‘Marthe’) in soil

    1.
    Forde, B. & Lorenzo, H. The nutritional control of root development. Plant Soil 232, 51–68. https://doi.org/10.1023/A:1010329902165 (2001).
    CAS  Article  Google Scholar 
    2.
    Hodge, A. The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol. 162, 9–24. https://doi.org/10.1111/j.1469-8137.2004.01015.x (2004).
    Article  Google Scholar 

    3.
    Robinson, D. Tansley review no 73. The responses of plants to non-uniform supplies of nutrients. New Phytol. 127, 635–674 (1994).
    CAS  Article  Google Scholar 

    4.
    Yu, P., White, P. J., Hochholdinger, F. & Li, C. Phenotypic plasticity of the maize root system in response to heterogeneous nitrogen availability. Planta 240, 667–678. https://doi.org/10.1007/s00425-014-2150-y (2014).
    CAS  Article  PubMed  Google Scholar 

    5.
    Osmont, K. S., Sibout, R. & Hardtke, C. S. Hidden branches: developments in root system architecture. Annu. Rev. Plant Biol. 58, 93–113. https://doi.org/10.1146/annurev.arplant.58.032806.104006 (2007).
    CAS  Article  PubMed  Google Scholar 

    6.
    Ahmed, S. et al. Imaging the interaction of roots and phosphate fertiliser granules using 4D X-ray tomography. Plant Soil 401, 125–134. https://doi.org/10.1007/s11104-015-2425-5 (2016).
    CAS  Article  Google Scholar 

    7.
    Drew, M. & Saker, L. Nutrient supply and the growth of the seminal root system in barley III. Compensatory increases in growth of lateral roots, and in rates of phosphate uptake, in response to a localized supply of phosphate. J. Exp. Bot. 29, 435–451 (1978).
    CAS  Article  Google Scholar 

    8.
    Flavel, R. J., Guppy, C. N., Tighe, M. K., Watt, M. & Young, I. M. Quantifying the response of wheat (Triticum aestivum L.) root system architecture to phosphorus in an Oxisol. Plant Soil 385, 303–310. https://doi.org/10.1007/s11104-014-2191-9 (2014).
    CAS  Article  Google Scholar 

    9.
    Nacry, P., Bouguyon, E. & Gojon, A. Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant Soil 370, 1–29. https://doi.org/10.1007/s11104-013-1645-9 (2013).
    CAS  Article  Google Scholar 

    10.
    Bloom, A. J., Frensch, J. & Taylor, A. R. Influence of inorganic nitrogen and pH on the elongation of maize seminal roots. Ann. Bot. 97, 867–873. https://doi.org/10.1093/aob/mcj605 (2006).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    11.
    Bloom, A. J., Jackson, L. E. & Smart, D. R. Root-growth as a function of ammonium and nitrate in the root zone. Plant Cell Environ. 16, 199–206. https://doi.org/10.1111/j.1365-3040.1993.tb00861.x (1993).
    CAS  Article  Google Scholar 

    12.
    Caba, J. M., Centeno, M. L., Fernandez, B., Gresshoff, P. M. & Ligero, F. Inoculation and nitrate alter phytohormone levels in soybean roots: differences between a supernodulating mutant and the wild type. Planta 211, 98–104. https://doi.org/10.1007/s004250000265 (2000).
    CAS  Article  PubMed  Google Scholar 

    13.
    Gerendás, J. & Sattelmacher, B. Influence of nitrogen form and concentration on growth and ionic balance of tomato (Lycopersicon esculentum) and potato (Solanum tuberosum). In Plant nutrition—physiology and applications (ed. van Beusichem, M. L.) 33–37 (Springer, Berlin, 1990).
    Google Scholar 

    14.
    Granato, T. C. & Raper, C. D. Jr. Proliferation of maize (Zea mays L.) roots in response to localized supply of nitrate. J. Exp. Bot. 40, 263–275. https://doi.org/10.1093/jxb/40.2.263 (1989).
    CAS  Article  PubMed  Google Scholar 

    15.
    Maizlish, N., Fritton, D. & Kendall, W. Root morphology and early development of maize at varying levels of nitrogen 1. Agron. J. 72, 25–31 (1980).
    CAS  Article  Google Scholar 

    16.
    Ogawa, S., Valencia, M. O., Ishitani, M. & Selvaraj, M. G. Root system architecture variation in response to different NH4+ concentrations and its association with nitrogen-deficient tolerance traits in rice. Acta Physiol. Plant. 36, 2361–2372. https://doi.org/10.1007/s11738-014-1609-6 (2014).
    CAS  Article  Google Scholar 

    17.
    Sattelmacher, B. & Thoms, K. Root growth and 14C-translocation into the roots of maize (Zea mays L.) as influenced by local nitrate supply. J. Plant Nutr. Soil Sci. 152, 7–10 (1989).
    CAS  Google Scholar 

    18.
    Schortemeyer, M., Feil, B. & Stamp, P. Root morphology and nitrogen uptake of maize simultaneously supplied with ammonium and nitrate in a split-root system. Ann. Bot. 72, 107–115. https://doi.org/10.1006/anbo.1993.1087 (1993).
    CAS  Article  Google Scholar 

    19.
    Thoms, K. & Sattelmacher, B. Influence of nitrate placement on morphology and physiology of maize (Zea mays) root systems. In Plant nutrition—physiology and applications (ed van Beusichem, M. L.) 29–32 (Springer, Berlin, 1990).
    Google Scholar 

    20.
    Tian, Q., Chen, F., Liu, J., Zhang, F. & Mi, G. Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots. J. Plant Physiol. 165, 942–951. https://doi.org/10.1016/j.jplph.2007.02.011 (2008).
    CAS  Article  PubMed  Google Scholar 

    21.
    Gruber, B. D., Giehl, R. F., Friedel, S. & von Wiren, N. Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol. 163, 161–179. https://doi.org/10.1104/pp.113.218453 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    22.
    Lima, J. E., Kojima, S., Takahashi, H. & von Wiren, N. Ammonium triggers lateral root branching in Arabidopsis in an AMMONIUM TRANSPORTER1;3-dependent manner. Plant Cell 22, 3621–3633. https://doi.org/10.1105/tpc.110.076216 (2010).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    23.
    Remans, T. et al. The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proc. Natl. Acad. Sci. U. S. A. 103, 19206–19211. https://doi.org/10.1073/pnas.0605275103 (2006).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    24.
    Zhang, H. & Forde, B. G. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279, 407–409. https://doi.org/10.1126/science.279.5349.407 (1998).
    ADS  CAS  Article  PubMed  Google Scholar 

    25.
    Zhang, H., Jennings, A., Barlow, P. W. & Forde, B. G. Dual pathways for regulation of root branching by nitrate. Proc. Natl. Acad. Sci. U.S.A. 96, 6529–6534. https://doi.org/10.1073/pnas.96.11.6529 (1999).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    26.
    Drew, M. Comparison of the effects of a localised supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley. New Phytol. 75, 479–490 (1975).
    CAS  Article  Google Scholar 

    27.
    Drew, M. & Saker, L. Nutrient Supply and the Growth of the Seminal Root System in Barley II. Localized, compensatory increases in lateral root growth and rates of nitrate uptake when nitrate supply is restricted to only part of the root system. J. Exp. Bot. 26, 79–90 (1975).
    CAS  Article  Google Scholar 

    28.
    Drew, M., Saker, L. & Ashley, T. Nutrient supply and the growth of the seminal root system in barley I. The effect of nitrate concentration on the growth of axes and laterals. J. Exp. Bot. 24, 1189–1202 (1973).
    CAS  Article  Google Scholar 

    29.
    Beeckman, F., Motte, H. & Beeckman, T. Nitrification in agricultural soils: impact, actors and mitigation. Curr. Opin. Biotechnol. 50, 166–173. https://doi.org/10.1016/j.copbio.2018.01.014 (2018).
    CAS  Article  PubMed  Google Scholar 

    30.
    Heil, J., Vereecken, H. & Bruggemann, N. A review of chemical reactions of nitrification intermediates and their role in nitrogen cycling and nitrogen trace gas formation in soil. Eur. J. Soil Sci. 67, 23–39. https://doi.org/10.1111/ejss.12306 (2016).
    CAS  Article  Google Scholar 

    31.
    Blume, H.-P. et al. Scheffer/Schachtschabel Soil Science (Springer, Berlin, 2015).
    Google Scholar 

    32.
    Nieder, R., Benbi, D. K. & Scherer, H. W. Fixation and defixation of ammonium in soils: a review. Biol. Fertil. Soils 47, 1–14. https://doi.org/10.1007/s00374-010-0506-4 (2011).
    CAS  Article  Google Scholar 

    33.
    Nommik, H. & Vahtras, K. Retention and fixation of ammonium and ammonia in soils. In Nitrogen in Agricultural Soils 22, (ed. Stevenson, F. J.) 123–171 (Wiley, Madison, Wisconsin, USA, 1982).
    Google Scholar 

    34.
    Morris, E. C. et al. Shaping 3D root system architecture. Curr. Biol. 27, R919–R930. https://doi.org/10.1016/j.cub.2017.06.043 (2017).
    CAS  Article  PubMed  Google Scholar 

    35.
    Anghinoni, I. & Barber, S. A. Corn root-growth and nitrogen uptake as affected by ammonium placement. Agron. J. 80, 799–802. https://doi.org/10.2134/agronj1988.00021962008000050021x (1988).
    Article  Google Scholar 

    36.
    Anghinoni, I., Magalhaes, J. R. & Barber, S. A. Enzyme-activity, nitrogen uptake and corn growth as affected by ammonium concentration in soil solution. J. Plant Nutr. 11, 131–144. https://doi.org/10.1080/01904168809363791 (1988).
    CAS  Article  Google Scholar 

    37.
    Pan, W. L., Madsen, I. J., Bolton, R. P., Graves, L. & Sistrunk, T. Ammonia/ammonium toxicity root symptoms induced by inorganic and organic fertilizers and placement. Agron. J. 108, 2485–2492. https://doi.org/10.2134/agronj2016.02.0122 (2016).
    CAS  Article  Google Scholar 

    38.
    Xu, L. et al. Nitrogen transformation and plant growth in response to different urea-application methods and the addition of DMPP. J. Plant Nutr. Soil Sci. 177, 271–277. https://doi.org/10.1002/jpln.201100390 (2014).
    CAS  Article  Google Scholar 

    39.
    Zhang, J. C. & Barber, S. A. Corn root distribution between ammonium fertilized and unfertilized soil. Commun. Soil Sci. Plant Anal. 24, 411–419. https://doi.org/10.1080/00103629309368811 (1993).
    Article  Google Scholar 

    40.
    Maestre, F. T. & Reynolds, J. F. Small-scale spatial heterogeneity in the vertical distribution of soil nutrients has limited effects on the growth and development of Prosopis glandulosa seedlings. Plant Ecol. 183, 65–75. https://doi.org/10.1007/s11258-005-9007-1 (2006).
    Article  Google Scholar 

    41.
    Rabbi, S. M., Guppy, C., Flavel, R., Tighe, M. & Young, I. Root plasticity not evident in N-enriched soil volumes for wheat (Triticum aestivum L.) and Barley (Hordeum vulgare L.) varieties. Commun. Soil Sci. Plant Anal. 48, 2002–2012 (2017).
    CAS  Article  Google Scholar 

    42.
    Van Vuuren, M., Robinson, D. & Griffiths, B. Nutrient inflow and root proliferation during the exploitation of a temporally and spatially discrete source of nitrogen in soil. Plant Soil 178, 185–192 (1996).
    Article  Google Scholar 

    43.
    Hodge, A., Robinson, D., Griffiths, B. S. & Fitter, A. H. Why plants bother: root proliferation results in increased nitrogen capture from an organic patch when two grasses compete. Plant Cell Environ. 22, 811–820. https://doi.org/10.1046/j.1365-3040.1999.00454.x (1999).
    Article  Google Scholar 

    44.
    Hodge, A., Stewart, J., Robinson, D., Griffiths, B. S. & Fitter, A. H. Root proliferation, soil fauna and plant nitrogen capture from nutrient-rich patches in soil. New Phytol. 139, 479–494. https://doi.org/10.1046/j.1469-8137.1998.00216.x (1998).
    Article  Google Scholar 

    45.
    Hodge, A., Stewart, J., Robinson, D., Griffiths, B. S. & Fitter, A. H. Plant, soil fauna and microbial responses to N-rich organic patches of contrasting temporal availability. Soil Biol. Biochem. 31, 1517–1530. https://doi.org/10.1016/S0038-0717(99)00070-X (1999).
    CAS  Article  Google Scholar 

    46.
    Li, H. B. et al. Root morphological responses to localized nutrient supply differ among crop species with contrasting root traits. Plant Soil 376, 151–163. https://doi.org/10.1007/s11104-013-1965-9 (2014).
    CAS  Article  Google Scholar 

    47.
    Abalos, D., Sanz-Cobena, A., Misselbrook, T. & Vallejo, A. Effectiveness of urease inhibition on the abatement of ammonia, nitrous oxide and nitric oxide emissions in a non-irrigated Mediterranean barley field. Chemosphere 89, 310–318. https://doi.org/10.1016/j.chemosphere.2012.04.043 (2012).
    ADS  CAS  Article  PubMed  Google Scholar 

    48.
    Slangen, J. H. G. & Kerkhoff, P. Nitrification inhibitors in agriculture and horticulture—a literature-review. Fertil. Res. 5, 1–76. https://doi.org/10.1007/Bf01049492 (1984).
    CAS  Article  Google Scholar 

    49.
    Zaman, M., Zaman, S., Nguyen, M. L., Smith, T. J. & Nawaz, S. The effect of urease and nitrification inhibitors on ammonia and nitrous oxide emissions from simulated urine patches in pastoral system: a two-year study. Sci. Tot. Environ. 465, 97–106. https://doi.org/10.1016/j.scitotenv.2013.01.014 (2013).
    CAS  Article  Google Scholar 

    50.
    Metzner, R. et al. Direct comparison of MRI and X-ray CT technologies for 3D imaging of root systems in soil: potential and challenges for root trait quantification. Plant Methods 11, 17. https://doi.org/10.1186/s13007-015-0060-z (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    51.
    Beuters, P., Scherer, H. W., Spott, O. & Vetterlein, D. Impact of potassium on plant uptake of non-exchangeable NH4+-N. Plant Soil 387, 37–47. https://doi.org/10.1007/s11104-014-2275-6 (2014).
    CAS  Article  Google Scholar 

    52.
    Vetterlein, D., Kuhn, T., Kaiser, K. & Jahn, R. Illite transformation and potassium release upon changes in composition of the rhizophere soil solution. Plant Soil 371, 267–279. https://doi.org/10.1007/s11104-013-1680-6 (2013).
    CAS  Article  Google Scholar 

    53.
    VDLUFA, M. Band 1. Die Untersuchung von Böden (VDLUFA-Verlag, Darmstad, 1991) ((in German)).
    Google Scholar 

    54.
    Koebernick, N. et al. In situ visualization and quantification of three-dimensional root system architecture and growth using X-ray computed tomography. Vadose Zone J. https://doi.org/10.2136/vzj2014.03.0024 (2014).
    Article  Google Scholar 

    55.
    Blaser, S. R. G. A., Schlüter, S. & Vetterlein, D. How much is too much?-Influence of X-ray dose on root growth of faba bean (Vicia faba) and barley (Hordeum vulgare). PLoS ONE 13, e0193669. https://doi.org/10.1371/journal.pone.0193669 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    56.
    Schlüter, S., Blaser, S. R. G. A., Weber, M., Schmidt, V. & Vetterlein, D. Quantification of root growth patterns from the soil perspective via root distance models. Front. Plant Sci. 9, 1084. https://doi.org/10.3389/fpls.2018.01084 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    57.
    Flavel, R. J. et al. Non-destructive quantification of cereal roots in soil using high-resolution X-ray tomography. J. Exp. Bot. 63, 2503–2511. https://doi.org/10.1093/jxb/err421 (2012).
    CAS  Article  PubMed  Google Scholar 

    58.
    Doube, M. et al. BoneJ: free and extensible bone image analysis in ImageJ. Bone 47, 1076–1079. https://doi.org/10.1016/j.bone.2010.08.023 (2010).
    Article  PubMed  PubMed Central  Google Scholar 

    59.
    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682. https://doi.org/10.1038/nmeth.2019 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    60.
    Kirschke, T., Spott, O. & Vetterlein, D. Impact of urease and nitrification inhibitor on NH4+ and NO3− dynamic in soil after urea spring application under field conditions evaluated by soil extraction and soil solution sampling. J. Plant Nutr. Soil Sci. 182, 441–450. https://doi.org/10.1002/jpln.201800513 (2019).
    CAS  Article  Google Scholar 

    61.
    61Bergmann, W. Farbatlas Ernährungsstörungen bei Kulturpflanzen: visuelle und analytische Diagnose. (1986).

    62.
    Bennett, W. F., Pesek, J. & Hanway, J. J. Effect of nitrate and ammonium on growth of corn in nutrient solution sand culture. Agron. J. 56, 342–345 (1964).
    CAS  Article  Google Scholar 

    63.
    Magalhaes, J. R. & Wilcox, G. E. Tomato growth and nutrient-uptake patterns as influenced by nitrogen form and light-intensity. J. Plant Nutr. 6, 941–956. https://doi.org/10.1080/01904168309363157 (1983).
    CAS  Article  Google Scholar 

    64.
    Ganmore-Neumann, R. & Kafkafi, U. root temperature and percentage NO3−/NH4+ effect on tomato plant development I. Morphology and growth 1. Agron. J. 72, 758–761 (1980).
    CAS  Article  Google Scholar 

    65.
    Einsmann, J. C., Jones, R. H., Pu, M. & Mitchell, R. J. Nutrient foraging traits in 10 co-occurring plant species of contrasting life forms. J. Ecol. 87, 609–619. https://doi.org/10.1046/j.1365-2745.1999.00376.x (1999).
    Article  Google Scholar 

    66.
    Gao, W., Blaser, S. R. G. A., Schluter, S., Shen, J. B. & Vetterlein, D. Effect of localised phosphorus application on root growth and soil nutrient dynamics in situ—comparison of maize (Zea mays) and faba bean (Vicia faba) at the seedling stage. Plant Soil 441, 469–483. https://doi.org/10.1007/s11104-019-04138-2 (2019).
    CAS  Article  Google Scholar 

    67.
    Britto, D. T. & Kronzucker, H. J. NH4+ toxicity in higher plants: a critical review. J. Plant Physiol. 159, 567–584. https://doi.org/10.1078/0176-1617-0774 (2002).
    CAS  Article  Google Scholar 

    68.
    Adjel, F., Bouzerzour, H. & Benmahammed, A. Salt stress effects on seed germination and seedling growth of barley (Hordeum vulgare L.) Genotypes. J. Agric. Sustain. 3, 223–237 (2013).
    Google Scholar 

    69.
    Ahmed, A. K., Tawfik, K. & Abd El-Gawad, Z. Tolerance of seven faba bean varieties to drought and salt stresses. Res. J. Agric. Biol. Sci. 4, 175–186 (2008).
    Google Scholar 

    70.
    Link, W. et al. Genotypic variation for drought tolerance in Vicia faba. Plant Breed. 118, 477–483. https://doi.org/10.1046/j.1439-0523.1999.00412.x (1999).
    Article  Google Scholar 

    71.
    Varshney, R. K. et al. Genome wide association analyses for drought tolerance related traits in barley (Hordeum vulgare L.). Field Crops Res. 126, 171–180. https://doi.org/10.1016/j.fcr.2011.10.008 (2012).
    Article  Google Scholar 

    72.
    Wilcox, G. E., Magalhaes, J. R. & Silva, F. L. I. M. Ammonium and nitrate concentrations as factors in tomato growth and nutrient-uptake. J. Plant Nutr. 8, 989–998. https://doi.org/10.1080/01904168509363401 (1985).
    Article  Google Scholar 

    73.
    Elamin, O. M. & Wilcox, G. E. Nitrogen form ratio influence on muskmelon growth, composition, and manganese toxicity. J. Am. Soc. Hortic. Sci. 111, 320–322 (1986).
    Google Scholar 

    74.
    Handa, S., Warren, H. L., Huber, D. M. & Tsai, C. Y. Nitrogen nutrition and seedling development of normal and opaque-2 maize genotypes. Can. J. Plant Sci. 64, 885–894. https://doi.org/10.4141/cjps84-121 (1984).
    CAS  Article  Google Scholar  More

  • in

    Comparison of gut microbiota in exclusively breast-fed and formula-fed babies: a study of 91 term infants

    We found that in breast-fed group, α diversity remained unchanged before 3 months of age, but increased significantly in 6 months of age. Previously studies have reported that faecal bacterial diversity increases with age, indicating a more complex microbial community over time8,9. Studies have shown that infants who are exclusively breast-fed have lower microbial diversity, compared with formula-fed babies whose gut microbiota is more diverse and similar to older children10,11,12. The difference of gut microbial diversity between breast-fed and formula-fed babies is also reported in animal research in tiger cubs13. We also found that among different groups, α diversity was lower in breast-fed group than formula-fed groups in 40 days of age. In adults, low gut microbial diversity has been linked to diseases in recent studies. In infants, breast milk may be the major determinant of a lower gut microbial diversity, because specific bacteria are selected for degrading particular oligosaccharides in breast milk. The predomination of infant-type Bifidobacteria during breastfeeding results in a low bacterial diversity, but it is beneficial for babies’ health. For example, the infant-type Bifidobacteria has a large impact on the maturation of the immune system, which may help reduce the incidence of infections in children. However, some diseases have been associated with a reduced microbial diversity in early life, such as eczema and asthma, which have been linked to low microbial diversity in 1 week–4 months of age. But the low microbial diversity is not coupled to Bifidobacterium abundance in these studies, and no reports have shown negative impacts of breastfeeding on development of asthma or allergies. The causality of lower diversity to diseases remains to be identified. What’s more, research has suggested that an immature gut microbial community can be “repaired” by introduction of adult-like microbes increasing greatly during introduction of solid foods in 6 months of age, which is within the development window of opportunity. Findings in adults cannot be inferred to infants regarding the association of gut microbial diversity with diseases, since the microbial ecosystem and the immune system of infants are quite different from adults4.
    Bifidobacterium represented the most predominant genus and Enterobacteriaceae the second in all groups at all time-points in our study. Previous study also indicates that all infants have significant levels of Enterobacteriaceae and Bifidobacteriaceae at family level in 2 months of age. The abundance of a single genus usually constitutes the most in family level evaluation. Roger et al. have indicated that Bifidobacterium accounts for 40–60% on average of the total faecal microbiota of a 2-week old new born10. In our study, in 40 days of age, Bifidobacterium accounted for 46.2% in breast-fed group, and 32.2–33.0% in formula-fed groups, which was precisely classified according to feeding types. Bifidobacterium is present in the first few months and decreases as age goes on to almost zero by 18 months old14. Enterobacteriaceae also decreases with time7,8. This is consistent with the European study of 531 infants, which indicates the decrease trend in Bifidobacteriaceae and Enterobacteriaceae species from 6 weeks of age until 4 weeks after solid foods introduction, regardless of differences in feeding patterns15. We found that in breast-fed group, Bifidobacterium decreased from 46.2% in 40 days to 41.4% in 3 months and 29.9% in 6 months of age. In formula-fed groups, after solid foods introduction, Bifidobacterium decreased from 32.2% in 3 months to 31.7% in 6 months of age in formula A group, but increased from 33.0 to 39.0% in formula B group, indicating that different formulas may have different effects on microbiota. In our study, solid foods were introduced from 4 to 6 months of age, so they affected only the last time point in 6 m. We found that in 40 days of age, Bifidobacterium and Bacteroides were significantly higher, while Streptococcus and Enterococcus copy numbers were significantly lower in breast-fed group than they were in formula A-fed group. Lachnospiraceae was lower in breast-fed group than that in formula B-fed group. Veillonella and Clostridioides were lower in breast-fed group than that in formula A and B-fed groups. In 3 months of age there were less Lachnospiraceae and Clostridioides in breast-fed group than formula-fed groups. Other differences of microbiota were shown in Figs. 5 and 6.
    After birth, the most important determinant of infant gut microbial colonization is breastfeeding. Studies have shown that breastfeeding is associated with higher levels of Bifidobacterium1,2,16, which is consistent with our study. The genus Bifidobacterium possesses multiple benefits, such as modulation of the immune system, production of vitamins, remission of atopic dermatitis symptoms in infants and decrease in rotavirus infections and lactose intolerance in children and adults10,17. Bifidobacteria is reported to be associated with diminished risk of allergic diseases18 and excessive weight gain19. Higher level of Bifidobacteria also indicates better immune responses to vaccines20.
    Bacteroides is among several beneficial bacteria in the earlier neonatal phase, which has important and specific functions in the development of mucosal immune system6. The early activation of mucosal immune system may provide human body lifelong protection from health disorders6. Bacteroides is also linked with increased diversity and faster maturation of gut2. Koenig has studied 1 baby for 2.5 years after its birth and found that Bacteroides genus is absent before the introduction of solid foods21. However, Yassour M. et al. have reported that many infants present a significant Bacteroides species in the first 6 months, before the introduction of solid foods, in a longitudinal study of 39 children in their first 3 years of life14. We also found that there was Bacteroides in the first 6 months of life in all groups. Bacteroides was significantly higher in breast-fed infants, ranking third in 40 days (0.095) in breast-fed group, but decreased as time went on to 0.059 in 3 m and 0.039 in 6 m.
    Besides Bacteroides, other health promoting bacteria like Clostridia has been reported to be vital to provide mucosal barrier homeostasis during the neonatal period, which is necessary in the immature intestine6. Formula-fed infants tend to have a more diverse microbial community with increased Clostridia species9,12, which is in accordance with our finding. We also found Veillonella was lower in breast-fed infants than formula-fed ones. Although there is an analysis indicating that Veillonella has been associated with a lower incidence of asthma, it has not taken feeding patterns into consideration22. So more data are needed to clarify the specific roles of certain bacteria with regard to feeding types.
    Studies have shown that breast milk keeps the gut in a condition with a lower abundance of Veillonellaceae, Enterococcaceae, Streptococcaceae9,11,23 and Lachnospiraceae7, which is consistent with our results. Some researchers have indicated that higher level of Streptococcus sp. is seen in patients suffered from type 1 diabetes2. There may be other negative effects of these bacteria, but we still know little about them.
    The subsequent big change in diet is the introduction of solid foods in 4–6 months of age, which is largely associated with changes in infant gut microbiota. A case study has found an increase in Bacteroidetes at phylum level after solid foods are introduced21. They have indicated that Bacteroidetes is specialized in the decomposition of complex plant polysaccharides21, and it is also associated with faster maturation of the intestinal microbial community2. In our study, after solid foods introduction, percentage of Bacteroides at genus level increased in formula A-fed group, from 0.023 to 0.028, but kept almost the same from 0.009 to 0.008 in formula B-fed group. While in breast-fed group, a decreased percentage of Bacteroides was found from 0.059 in 3 m to 0.039 in 6 m. The trends are different according to different feeding patterns. Pannaraj et al. believe that daily breastfeeding as a part of milk intake continues to affect the infant gut microbial composition, even after solid foods introduction8. But in our study, differences in gut microbiota between breast-fed group and formula-fed groups were not seen any more after solid foods were introduced. As for studies of gut microbiota, the taxonomic level of bacteria adopted in research may affect the results. We focused on microbiota mainly at genus level, resulting in certain discrepancies with some other articles at phylum or species level.
    There were significant differences of microbiota between formula A-fed and formula B-fed groups in our study. We found that Pediococcus was less in formula A-fed group than that in formula B-fed group in 40 days. Many research articles have not taken the differences of formulas into consideration, especially retrospective studies. Even breast-fed group is mixed with formulas in some reports. So there must be some inaccuracies of their findings.
    Except for feeding patterns, several factors are associated with the microbiota over the first year of life, which is a key period for the gut colonization, such as the mode of delivery, antibiotic exposure, geographical location, household siblings, and furry pets2,9. During the first days of life, the gut microbiota in infants born by vaginal delivery (VD) is similar to that in maternal vagina and intestinal tract, whereas in infants born by caesarean section delivery (CS) the gut microbiota shares characteristics with that of maternal skin. We noticed that the genera of Bacteroides and Parabacteroides were negatively correlated with CS. This was consistent with findings in many other studies, in which the difference of Bacteroides remains in 4 and 12 months of age7,9, and we also found the negative correlation of Bacteroides with CS existed not only in 40 days but also in 6 months of age. The increased morbidity reported extensively in infants born by CS is likely led by altered early gut colonization partially24. Accumulating data have indicated that antibiotic-mediated gut microbiota turbulence during the vital developmental window in early life period may lead to increased risk for chronic non-infectious diseases in later life24. There is a high detection rate of gut Enterococcus in antibiotic-treated infants in their early postnatal period among 26 infants born in a mean gestational age of 39 weeks25. We also found that the relative abundance of Enterococcus was positively correlated with antibiotics usage. The overgrowth of Enterococcus may be caused by antibiotic selection25.
    In conclusion, by a larger cohort study than before, differences in gut microbiota among infants who were fed exclusively by breast milk or a single kind of formulas were obtained from this study, contributing further to our understanding of early gut microbial colonization, with more solid data than previous studies with mixed feeding patterns. Faecal diversity was lower in breast-fed infants than formula-fed ones in early life period, but increased significantly after solid foods introduction. A low diversity of the gut microbiota in early life appeared to characterize a healthy gut, if caused by breastfeeding, which was different from theories in adults. There were differences in bacterial composition in infants according to different feeding types, and even different formulas had different effects on microbiota, which we could not ignore in future research. This study presented initial data facilitating further research that will help us understand the importance of breastfeeding to gut microbiota in early life period. More

  • in

    Contribution to the reproductive ecology of Notoscopelus resplendens (Richardson, 1845) (Myctophidae) in the Central-Eastern Atlantic

    1.
    Benoit-Bird, K. J. & Au, W. W. L. Energy: Converting from acoustic to biological resource units. J. Acoust. Soc. Am. 111, 2070 (2002).
    ADS  PubMed  Article  Google Scholar 
    2.
    Simard, Y. & Mackas, D. L. Mesoscale aggregations of euphausiid sound scattering layers on the continental shelf of Vancouver Island. Can. J. Fish. Aquat. Sci. 46, 1238–1249 (1989).
    Article  Google Scholar 

    3.
    Ariza, A., Garijo, J. C., Landeira, J. M., Bordes, F. & Hernández-León, S. Migrant biomass and respiratory carbon flux by zooplankton and micronekton in the subtropical northeast Atlantic Ocean (Canary Islands). Prog. Oceanogr. https://doi.org/10.1016/j.pocean.2015.03.003 (2015).
    Article  Google Scholar 

    4.
    Ariza, A. et al. Vertical distribution, composition and migratory patterns of acoustic scattering layers in the Canary Islands. J. Mar. Syst. https://doi.org/10.1016/j.jmarsys.2016.01.004 (2016).
    Article  Google Scholar 

    5.
    Hays, G. C. A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. Hydrobiologia 503, 163–170 (2003).
    Article  Google Scholar 

    6.
    Yatsu, A., Sassa, C., Moku, M. & Kinoshita, T. Night-time vertical distribution and abundance of small epipelagic and mesopelagic fishes in the upper 100 m layer of the Kuroshio–Oyashio Transition Zone in Spring. Fish. Sci. 71, 1280–1286 (2005).
    CAS  Article  Google Scholar 

    7.
    Olson, R. J. et al. Bioenergetics, Trophic Ecology, and Niche Separation of Tunas. (Advances in Marine Biology, 2016).

    8.
    Hudson, J. M., Steinberg, D. K., Sutton, T. T., Graves, J. E. & Latour, R. J. Myctophid feeding ecology and carbon transport along the northern Mid-Atlantic Ridge. Deep Res. Part I Oceanogr. Res. Pap. https://doi.org/10.1016/j.dsr.2014.07.002 (2014).
    Article  Google Scholar 

    9.
    Guidi, L. et al. A new look at ocean carbon remineralization for estimating deepwater sequestration. Global Biogeochem. Cy. 29, 1044–1059 (2015).
    ADS  CAS  Article  Google Scholar 

    10.
    van Noord, J. E. Diet of five species of the family Myctophidae caught off the Mariana Islands. Ichthyol. Res. 60, 89–92 (2013).
    Article  Google Scholar 

    11.
    Lam, V. & Pauly, D. Mapping the global biomass of mesopelagic fishes. Sea Around Us Proj. Newsl. 30, 4 (2005).
    Google Scholar 

    12.
    Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5, 3271 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    13.
    Hulley, P. A. Results of the research cruises of FRV” Walther Herwig” to South America. LVIII. Family Myctophidae (Osteichthyes, Myctophiformes). Arch. für Fischereiwiss. 31, 1–300 (1981).
    Google Scholar 

    14.
    Hulley, P. A. Myctophidae. In Check-List of the FISHES of the Eastern Tropical Atlantic (CLOFETA) (eds Quero, J. C., Hureau, J. C., Karrer, C., Post, A. & Saldanha, L.) 398–467 (1990).

    15.
    Lubimova, T. G., Shust, K. V. & Popkov, V. V. Specific features in the ecology of Southern Ocean mesopelagic fish of the family Myctophidae. In Biological Resources of the Arctic and Antarctic (Collected Papers) 337 (1987).

    16.
    Catul, V., Gauns, M. & Karuppasamy, P. K. A review on mesopelagic fishes belonging to family Myctophidae. Rev. Fish Biol. Fish. 21, 339–354 (2011).
    Article  Google Scholar 

    17.
    Cherel, Y., Fontaine, C., Richard, P. & Labat, J. P. Isotopic niches and trophic levels of myctophid fishes and their predators in the Southern Ocean. Limnol. Oceanogr. 55, 324–332 (2010).
    ADS  CAS  Article  Google Scholar 

    18.
    Pérez-Rodríguez, A. An Integrative Study to the Functioning of the Flemish Cap Demersal Community (University of Vigo, Vigo, 2012).
    Google Scholar 

    19.
    Battaglia, P. et al. Feeding habits of the Atlantic bluefin tuna, Thunnus thynnus (L. 1758), in the central Mediterranean Sea (Strait of Messina). Helgol. Mar. Res. 67, 97–107 (2013).
    ADS  Article  Google Scholar 

    20.
    Rosas-Luis, R., Villanueva, R. & Sánchez, P. Trophic habits of the Ommastrephid squid Illex coindetii and Todarodes sagittatus in the northwestern Mediterranean Sea. Fish. Res. 152, 21–28 (2014).
    Article  Google Scholar 

    21.
    Hedd, A., Montevecchi, W. A., Davoren, G. K. & Fifield, D. A. Diets and distributions of Leach’s storm-petrel (Oceanodroma leucorhoa) before and after an ecosystem shift in the Northwest Atlantic. Can. J. Zool. 87, 787–801 (2009).
    CAS  Article  Google Scholar 

    22.
    Ohizumi, H., Kuramochi, T., Kubodera, T., Yoshioka, M. & Miyazaki, N. Feeding habits of Dall’s porpoises (Phocoenoides dalli) in the subarctic North Pacific and the Bering Sea basin and the impact of predation on mesopelagic micronekton. Deep Sea Res. Part I Oceanogr. Res. Pap. 50, 593–610 (2003).
    ADS  Article  Google Scholar 

    23.
    Lisovenko, L. A. & Prut’ko, V. G. Reproductive biology of Diaphus suborbitalis (Myctophidae) in the equatorial part of the Indian Ocean. 2. Fecundity and reproductive potential. J. Ichthyol. 27, 1–12 (1987).
    Google Scholar 

    24.
    Shotton, R. Lanternfishes: A potential fishery in the Northern Arabian Sea. Review of the state of world fishery resources: Marine fisheries. FAO Fisheries Circular, (920). (1997).

    25
    Olivar, M. P. et al. Vertical distribution, diversity and assemblages of mesopelagic fishes in the western Mediterranean. Deep Res. Part I Oceanogr. Res. Pap. 62, 53–69 (2012).
    ADS  Article  Google Scholar 

    26.
    Battaglia, P. et al. Diet of the spothead lanternfish Diaphus metopoclampus (Cocco, 1829) (Pisces: Myctophidae) in the central Mediterranean Sea. Ital. J. Zool. 81, 530–543 (2014).
    CAS  Article  Google Scholar 

    27.
    Lisovenko, L. A. & Prutko, V. G. Reproductive biology of Diaphus suborbitalis (Myctophidae) in the equatorial part of the Indian Ocean. 1. Nature of oogenesis and type of spawning. J. Ichthyol. 26, 619–629 (1986).
    Google Scholar 

    28.
    Dalpadado, P. Reproductive biology of the lanternfish Benthosema pterotum from the Indian Ocean. Mar. Biol. 98, 307–316 (1988).
    Article  Google Scholar 

    29.
    Hussain, S. M. The reproductive biology of the lantern fish Benthosema fibulatum from the northern Arabian Sea. Fish. Res. 13, 381–393 (1992).
    Article  Google Scholar 

    30.
    Gartner, J. V. Patterns of reproduction in the dominant lanternfish species (Pisces: Myctophidae) of the eastern Gulf of Mexico, with a review of reproduction among tropical-subtropical Myctophidae. Bull. Mar. Sci. 52, 721–750 (1993).
    Google Scholar 

    31.
    Gjosaeter, J. Life history and ecology of the myctophid fish Notoscopelus elongatus Kroeyeri from the northeast Atlantic. Ser. Havundersokelser Fisk. Skr. 17, 133–142 (1981).
    Google Scholar 

    32.
    Kawaguchi, K., Mauchline, J. & Mauchline, J. Biology of myctophid fishes (Family Myctophidae) in the rockall trough, Northeastern Atlantic Ocean Biology of Myctophid Fishes (Family Myctophidae) in the Rockall Trough, Northeastern Atlantic Ocean. Biol. Oceanogr. 1, 337–373 (1982).
    Google Scholar 

    33
    Hussain, S. M. & Ali-Khan, J. Fecundity of Benthosema fibulatum and Benhosema pterotum from the northern Arabian sea. Deep Sea Res. Part A Oceanogr. Res. Pap. 34, 1293–1299 (1987).
    ADS  Article  Google Scholar 

    34.
    Young, J. W., Blaber, S. J. M. & Rose, R. Reproductive biology of three species of midwater fishes associated with the continental slope of eastern Tasmania, Australia. Mar. Biol. 95, 323–332 (1987).
    Article  Google Scholar 

    35.
    Prosch, R. M. Reproductive biology and spawning of the myctophid Lampanyctodes hectoris and the sternoptychid Maurolicus muelleri in the Southern Benguela ecosystem. S. Afr. J. Mar. Sci. 10, 241–252 (1991).
    Article  Google Scholar 

    36.
    Clarke, T. A. Fecundity and other aspects of reproductive effort in mesopelagic fishes from the North Central and Equatorial Pacific. Biol. Oceanogr. 3, 147–165 (1984).
    Google Scholar 

    37.
    Flynn, A. J. & Paxton, J. R. Spawning aggregation of the lanternfish Diaphus danae (family Myctophidae) in the north-western Coral Sea and associations with tuna aggregations. Mar. Freshw. Res. 63, 1255–1271 (2012).
    Article  Google Scholar 

    38.
    García-Seoane, E., Bernal, A. & Saborido-Rey, F. Reproductive ecology of the glacier lanternfish Benthosema glaciale. Hydrobiologia 727, 137–149 (2014).
    Article  Google Scholar 

    39.
    Sassa, C., Ohshimo, S., Tanaka, H. & Tsukamoto, Y. Reproductive biology of Benthosema pterotum (Teleostei: Myctophidae) in the shelf region of the East China Sea. J. Mar. Biol. Assoc. UK 94, 423–433 (2014).
    Article  Google Scholar 

    40.
    Sassa, C., Tanaka, H. & Ohshimo, S. Comparative reproductive biology of three dominant myctophids of the genus Diaphus on the slope region of the East China Sea. Deep. Res. Part I Oceanogr. Res. Pap. 115, 145–158 (2016).
    ADS  Article  Google Scholar 

    41.
    Eschmeyer, W. N., Fricke, R. & R, van der L. Catalog of Fishes, electronic version (3 January 2017). San Francisco, CA (California Academy of Sciences). (2018).

    42
    Collins, M. A. et al. Latitudinal and bathymetric patterns in the distribution and abundance of mesopelagic fish in the Scotia Sea. Deep. Res. Part II Top. Stud. Oceanogr. 59–60, 189–198 (2012).
    ADS  Article  Google Scholar 

    43.
    Albikovskaya, L. K. Some aspects of the biology and distribution of glacier lanternfish (Benthosema glaciale) over the slopes of Flemish Cap and eastern Grand Bank. NAFO Sci. Counc. Stud. 12, 37–42 (1988).
    Google Scholar 

    44.
    Nafpaktitis, B. G. Review of the lanternfish genus Notoscopelus (family myctophidae) in the north Atlantic and the Mediterranean. Bulletin of Marine Science vol. 25 (1975).

    45.
    Hulley, P. A. & Paxton, J. R. Myctophiformes—Myctophidae/Neoscopelidae. In FAO Species Identification Guide for Fisheries Purposes: The Living Marine Resources of the Eastern Central Atlantic (eds Carpenter, K.E. & De Angelis, N.) 1922–1923, Rome (2016).

    46.
    Sarmiento-Lezcano, A. N., Triay-Portella, R., Castro, J. J., Rubio-Rodríguez, U. & Pajuelo, J. G. Age-based life-history parameters of the mesopelagic fish Notoscopelus resplendens (Richardson, 1845) in the Central Eastern Atlantic. Fish. Res. https://doi.org/10.1016/j.fishres.2018.03.016 (2018).
    Article  Google Scholar 

    47.
    Sutton, T. T. et al. A global biogeographic classification of the mesopelagic zone. Deep Sea Res. Part I Oceanogr. Res. Pap. https://doi.org/10.1016/j.dsr.2017.05.006 (2017).
    Article  Google Scholar 

    48.
    Moser, H. G. & Ahlstrom, E. H. Myctophidae: lanternfishes. In The Early Stages of Fishes in the California Current Region. Cal. Coop. Ocean. Fish. (CalCOFI). (ed. Moser, H. G.) 387–475 (1996).

    49.
    Bordes, F. et al. Catálogo de especies meso y batipelágicas. Peces, moluscos y crustáceos. Colectadas con arrastre en las Islas Canarias, durante las campañas realizadas a bordo de B/E ‘La Bocaina’. Instituto Canarios de Ciencias Marinas (ICCM), Agencia Canaria de Investig. in 326 (2009).

    50.
    Bordes Caballero, F. et al. Epi- and mesopelagic fishes, acoustic data, and SST images collected off Lanzarote, Fuerteventura and Gran Canaria, Canary Islands, during cruise ‘La Bocaina 04–97’. In Informes Técnicos del Instituto Canario de Ciencias Marinas. 1–45 (1999).

    51.
    Wienerroither, R. M. Species composition of mesopelagic fishes in the area of the Canary Islands, Eastern Central Atlantic. Informes Técnicos del Instituto Canario de Ciencias Marinas. (2003).

    52.
    Fulton, T. W. The Sovereignty of the Sea: An Historical Account of the Claims of England to the Dominion of the British Seas and of the Evolution of the Territorial Waters, with Special Reference to the Rights of Fishing and the Naval Salute (W. Blackwood, Edinburgh, 1911).
    Google Scholar 

    53.
    Brown-Peterson, N. J., Wyanski, D. M., Saborido-Rey, F., Macewicz, B. J. & Lowerre-Barbieri, S. K. A standardized terminology for describing reproductive development in fishes. Mar. Coast. Fish. 3, 52–70 (2011).
    Article  Google Scholar 

    54.
    Brown-Peterson, N. J., Overstreet, R. M., Lotz, J. M., Franks, J. S. & Burns, K. M. Reproductive biology of cobia, Rachycentron canadum, from coastal waters of the southern United States. Fish. Bull. 99, 15–28 (2001).
    Google Scholar 

    55.
    Luna, L. G. Manual of Histologic Staining Methods of the Armed Forces Institute of Pathology 3rd edn. (McGraw-Hill Book Company, New York, 1968).
    Google Scholar 

    56.
    De Vlaming, V. Oocyte Developmental Pattern and Hormonal Involvement Among Teleosts. (1983).

    57.
    Murua, H. et al. Procedures to estimate fecundity of wild collected marine fish in relation to fish reproductive strategy. J. Northwest Atl. Fish. Sci. 33, 33–54 (2003).
    Article  Google Scholar 

    58.
    Kiesbu, O. S. Oogenesis in cod, Gadus morhua L., studied by light and electron microscopy. J. Fish Biol. 34, 735–745 (1989).
    Article  Google Scholar 

    59.
    Hunter, J. R., Lo, N. C. H. & Leong, J. H. Batch Fecundity in multiple spawning fishes. NOAA Tech. Rep. NMFS 36, 67–77 (1985).
    Google Scholar 

    60.
    R Core Team. R: A Language and Environment for Statistical Computing. (2018).

    61.
    Sassa, C. & Hirota, Y. Seasonal occurrence of mesopelagic fish larvae on the onshore side of the Kuroshio off southern Japan. Deep. Res. Part I 81, 49–61 (2013).
    Article  Google Scholar 

    62.
    QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation. (2020). https://www.qgis.org/es/site/.

    63.
    Wienerroither, R., Uibleina, F., Bordes, F. & Moreno, T. Composition, distribution, and diversity of pelagic fishes around the Canary Islands, Eastern Central Atlantic. Mar. Biol. Res. 5, 328–344 (2009).
    Article  Google Scholar 

    64.
    Olivar, M. P. et al. Variation in the diel vertical distributions of larvae and transforming stages of oceanic fishes across the tropical and equatorial Atlantic. Prog. Oceanogr. 160, 83–100 (2018).
    ADS  Article  Google Scholar 

    65.
    Clarke, T. A. Sex ratios and sexual differences in size among mesopelagic fishes from the central Pacific Ocean. Mar. Biol. 73, 203–209 (1983).
    Article  Google Scholar 

    66.
    Herring, P. J. The Biology of the Deep Ocean (Oxford University Press, Oxford, 2002).
    Google Scholar 

    67.
    Dalpadado, P. Aspects of the Biology of Benthosema pterotum (Myctophidae) from the Indian Ocean (University of Bergen, Bergen, 1983).
    Google Scholar 

    68.
    Filin, A. A. Growth, size and age composition of the Notoscopelus kroeyerii (Myctophidae). J. Ichthyol. 37, 27–32 (1997).
    Google Scholar 

    69.
    Greely, T. M., Gartner, J. V. J. & Torres, J. J. Age and growth of Electrona antarctica (Pisces: Myctophidae), the dominant mesopelagic fish in the Southern Ocean. Mar. Biol. 133, 145–158 (1999).
    Article  Google Scholar 

    70.
    Hulley, P. A. Myctophidae. In Fishes of the North-eastern Atlantic and the Mediterranean (eds Whitehead, P.J.P. et al.) 429–483 (1986).

    71.
    Kawaguchi, K. & Shimizu, H. Taxonomy and distribution of the lanternfishes, genus Diaphus (Pisces, Myctophidae) in the western Pacific, eastern Indian Oceans and the southeast Asian Seas. Bull. Ocean Res. Inst. Univ. Tokyo 10, 1–145 (1978).
    Google Scholar 

    72.
    Herring, P. J. Sex with the lights on? A review of bioluminescent sexual dimorphism in the sea. J. Mar. Biol. Assoc. UK 87, 829–842 (2007).
    CAS  Article  Google Scholar 

    73.
    Barnes, A. T. & Case, J. F. The luminescence of lanternfish (Myctophidae): Spontaneous activity and responses to mechanical, electrical, and chemical stimulation. J. Exp. Mar. Biol. Ecol. 15, 203–221 (1974).
    Article  Google Scholar 

    74.
    Clarke, T. A. Some aspects of the ecology of lanternfishes (Myctophidae) in the Pacific Ocean near Hawaii. Fish. Bull. 71, 401–434 (1973).
    Google Scholar 

    75.
    Karnella, C. The Ecology of Lanterfishes (Myctophidae) in the Bermuda ‘Ocean Acre’ (George Washington University, Washington, 1983).
    Google Scholar 

    76.
    Sabatés, A. & Masò, M. Effect of a shelf slope front on the spatial distribution of mesopelagic fish larvae in the western Mediterranean. Deep. Res. I(37), 1085–1098 (1990).
    ADS  Article  Google Scholar 

    77.
    Alekseyeva, Y. I. & Alekseyev, F. Y. Some aspects of reproductive biology of the lanternfishes, Myctophum punctatum and Notoscopelus resplendens (Myctophidae), from the eastern tropical Atlantic. J. Ichthyol. 23, 56–63 (1983).
    Google Scholar 

    78.
    Davison, P. C., Checkley, D. M., Koslow, J. A. & Barlow, J. Carbon export mediated by mesopelagic fishes in the northeast Pacific Ocean. Prog. Oceanogr. https://doi.org/10.1016/j.pocean.2013.05.013 (2013).
    Article  Google Scholar  More

  • in

    Realizing niches

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript. More

  • in

    Design principles of gene evolution for niche adaptation through changes in protein–protein interaction networks

    Data collection
    We hypothesized that the evolution of underground species affected protein networks in a unique manner in which various types of protein domains served as building blocks of protein evolution. To study the evolution of protein networks, we collected genomic, proteomic, and protein domain classification data, namely, fully sequenced genomes with coding sequences and annotated proteomes, together with protein ortholog assignments, from 32 species living in three broad ecological niches, namely subterranean, fossorial, and aboveground (Table 1, and listed in Materials and Methods). We first sought overall statistics regarding the number of proteins and the number of corresponding orthologous protein families. Overall PPI statistics were calculated, including those predicting PPIs in organisms for which experimentally verified PPI data are missing. We used the KEGG orthologs (KO) group of orthologous proteins in KEGG (Kyoto Encyclopaedia of Genes and Genomes)17 to reproduce gain and loss of protein domains in orthologous proteins. We collected 1,350,898 proteins from the studied organisms that belong to 624,787 KO groups (10,314 are unique ortholog groups). The matching number of interactors and networks for every organism were exhaustively calculated for all these proteins (Fig. 1). We found that 361,615 of the 1,350,898 proteins are distributed among 5,879,879 (predicted and real) PPIs. The mean number of interactors per protein within each habitat, namely, aboveground (A), fossorial (F), and subterranean (S) were 32.07, 32.48, and 32.67, respectively (see details in the supplementary results and in Tables S1–S3). This shows that the number of interactors per protein is similar for organisms from different ecologies.
    Table 1 All organisms included in the PASTORAL database, with a complete number of proteins in the corresponding proteome.
    Full size table

    Figure 1

    The study overview. Fully sequenced genomes with coding sequences and annotated proteomes were collected from 32 species living in three broad ecological niches: subterranean, fossorial, and aboveground. For collected proteins (1,350,898), protein domains, protein disordered regions, and KEGG orthologous annotation (624,787) were predicted using the Pfam search tool53 along with HMMER60 , IUPred2A44, and the KEGG database17, respectively. Next, 5,879,879 PPIs were evaluated using our previously developed ChiPPI tool15. Briefly, ChiPPI uses a domain-domain co-occurrence table. When a certain domain is missing, ChiPPI evaluates the corresponding missing interactors in the PPI network15, based on real PPI data (363,816) as obtained from BioGrid (release 3.4.163)16. Finally, PPI data are organized in PASTORAL, a dedicated database.

    Full size image

    Additional analysis of PPI features for orthologous proteins (516 KOs) common to all organisms were similar across ecologies. These features included the number of interactors, the number of PPIs, and global/individual clustering coefficients (supplementary results, Figures S1, S2, Table S4). Thus, we studied PPI properties of genes encoding products related to stresses that differ across the ecologies considered, such as hypoxia. Our findings confirm our hypothesis that the design principles of the evolution of underground species involve various types of protein domains serving as building blocks of protein evolution.
    Analysis of the PPIs of stress-response proteins cluster organisms according to habitat
    To examine how organisms might have adapted to the various stresses in each habitat, we analyzed mutations and changes in the PPIs encoded by stress response genes. Heat-shock, hypoxia, and circadian stresses differ considerably between aboveground and underground environments, and are likely to drive evolutionary selection of proteins that provide optimal function in each niche1,9. We assumed that organisms subject to a shared ecological experience would face similar environmental stresses. PPI networks of stress-related proteins would thus be expected to differ substantially according to ecology.
    To test our hypothesis, we performed clustering analysis of all the organisms included in our study, based on mutations and PPI network features, and compared the results for each classification. Such analysis included all orthologous stress-response, hypoxia, heat-shock, and circadian stress proteins (Table 1). In total, 85,173 PPIs related to stress-response proteins were found to be distributed among 1,103 proteins. These comprised of 730 heat shock proteins in 71,940 PPIs, 254 hypoxia-related proteins in 10,256 PPIs, and 119 circadian proteins in 2,977 PPIs (Table 1, Tables S1–S7). All orthologous stress-response genes (KO groups) were obtained by querying the KEGG database with the terms “heat-shock”, “hypoxia”, and “circadian” terms. The results are listed in Table 2, while the corresponding lists of proteins are found in Tables S5, S6 and S7, respectively.
    Table 2 KEGG Orthologs: Heat-shock (upper), hypoxia-related (middle) and circadian (bottom) proteins.
    Full size table

    Next, we performed clustering analysis based on sequence mutations and PPI features for the full set of heat-shock, hypoxia, and circadian stress proteins (Table 2). Remarkably, proteins related to hypoxia, heat-shock, and circadian stresses in the 32 organisms studied did not all cluster according to shared ecology based on sequence mutations (Fig. 2A) but significantly did so on the basis of “PPI network clustering coefficient” (Fig. 2B–D; p value (AU)  More

  • in

    Achieving similar root microbiota composition in neighbouring plants through airborne signalling

    1.
    Heil M, Ton J. Long-distance signalling in plant defence. Trends Plant Sci. 2008;13:264–72.
    CAS  PubMed  Article  Google Scholar 
    2.
    Kim J, Felton GW. Priming of antiherbivore defensive responses in plants. Insect Sci. 2013;20:273–85.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Ameye M, Audenaert K, De Zutter N, Steppe K, Van Meulebroek L, Vanhaecke L, et al. Priming of wheat with the green leaf volatile Z-3-hexenyl acetate enhances defense against Fusarium graminearum but boosts deoxynivalenol production. Plant Physiol. 2015;167:1671–84.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Cofer TM, Engelberth M, Engelberth J. Green leaf volatiles protect maize (Zea mays) seedlings against damage from cold stress. Plant Cell Environ. 2018;41:1673–82.
    CAS  PubMed  Article  Google Scholar 

    5.
    Šimpraga M, Takabayashi J, Holopainen JK. Language of plants: where is the word? J Integr Plant Biol. 2016;58:343–9.
    PubMed  Article  CAS  Google Scholar 

    6.
    Sharifi R, Lee SM, Ryu CM. Microbe-induced plant volatiles. N. Phytol. 2018;220:684–91.
    Article  Google Scholar 

    7.
    Mauck KE, De Moraes CM, Mescher MC. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proc Natl Acad Sci USA. 2010;107:3600–5.
    CAS  PubMed  Article  Google Scholar 

    8.
    Jiménez‐Martínez ES, Bosque‐Pérez NA, Berger PH, Zemetra RS, Ding H, Eigenbrode SD. Volatile cues influence the response of Rhopalosiphum padi (Homoptera: Aphididae) to Barley yellow dwarf virus–infected transgenic and untransformed wheat. Environ Entomol. 2004;33:1207–16.
    Article  Google Scholar 

    9.
    Eigenbrode SD, Ding H, Shiel P, Berger PH. Volatiles from potato plants infected with potato leafroll virus attract and arrest the virus vector, Myzus persicae (Homoptera: Aphididae). Proc R Soc B. 2002;269:455–60.
    CAS  PubMed  Article  Google Scholar 

    10.
    Attaran E, Rostás M, Zeier J. Pseudomonas syringae elicits emission of the terpenoid (E, E)‐4,8,12‐trimethyl‐1,3,7,11‐tridecatetraene in Arabidopsis leaves via jasmonate signaling and expression of the terpene synthase TPS4. Mol Plant Microbe. 2008;21:1482–97.
    CAS  Article  Google Scholar 

    11.
    Cellini A, Buriani G, Rocchi L, Rondelli E, Savioli S, Rodriguez Estrada MT, et al. Biological relevance of volatile organic compounds emitted during the pathogenic interactions between apple plants and Erwinia amylovora. Mol Plant Pathol. 2018;19:158–68.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Cellini A, Biondi E, Buriani G, Farneti B, Rodriguez-Estrada MT, Braschi I, et al. Characterization of volatile organic compounds emitted by kiwifruit plants infected with Pseudomonas syringae pv. actinidiae and their effects on host defences. Trees. 2016;30:795–806.
    CAS  Article  Google Scholar 

    13.
    Castelyn HD, Appelgryn JJ, Mafa MS, Pretorius ZA, Visser B. Volatiles emitted by leaf rust infected wheat induce a defence response in exposed uninfected wheat seedlings. Australas Plant Pathol. 2015;44:245–54.
    CAS  Article  Google Scholar 

    14.
    Quintana‐Rodriguez E, Morales‐Vargas AT, Molina‐Torres J, Ádame‐Alvarez RM, Acosta‐Gallegos JA, Heil M, et al. Plant volatiles cause direct, induced and associational resistance in common bean to the fungal pathogen Colletotrichum lindemuthianum. J Ecol. 2015;103:250–60.
    Article  CAS  Google Scholar 

    15.
    Yi H-S, Heil M, Alvarez R, Ryu C-M. Airborne induction and priming of plant defenses against a bacterial pathogen. Plant Physiol. 2009;151:2152–61.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Schausberger P, Peneder S, Jürschik S, Hoffmann D. Mycorrhiza changes plant volatiles to attract spider mite enemies. Funct Ecol. 2012;26:441–9.
    Article  Google Scholar 

    17.
    Ballhorn DJ, Kautz S, Schadler M. Induced plant defense via volatile production is dependent on rhizobial symbiosis. Oecologia. 2013;172:833–46.
    PubMed  Article  PubMed Central  Google Scholar 

    18.
    Babikova Z, Gilbert L, Bruce T, Dewhirst SY, Pickett JA, Johnson D, et al. Arbuscular mycorrhizal fungi and aphids interact by changing host plant quality and volatile emission. Funct Ecol. 2014;28:375–85.
    Article  Google Scholar 

    19.
    Planchamp C, Glauser G, Mauch‐Mani B. Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants. Front Plant Sci. 2014;5:719.
    PubMed  PubMed Central  Google Scholar 

    20.
    Pangesti N, Weldegergis BT, Langendorf B, van Loon JJ, Dicke M, Pineda A. Rhizobacterial colonization of roots modulates plant volatile emission and enhances the attraction of a parasitoid wasp to host‐infested plants. Oecologia. 2015;178:1169–80.
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    Kloepper JW, Beauchamp CJ. A review of issues related to measuring of plant roots by bacteria. Can J Microbiol. 1992;38:1219–32.
    Article  Google Scholar 

    22.
    Sangiorgio D, Cellini A, Donati I, Pastore C, Onofrietti C, Spinelli F. Facing climate change: application of microbial biostimulants to mitigate stress in horticultural crops. Agronomy. 2020;10:794.
    Article  Google Scholar 

    23.
    Glick BR. The enhancement of plant growth by free-living bacteria. Can J Microbiol. 1995;41:109–17.
    CAS  Article  Google Scholar 

    24.
    Carvalhais LC, Dennis PG, Badri DV, Kidd BN, Vivanco JM, Schenk PM. Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes. Mol Plant-Microbe Interact. 2015;28:1049–58.
    CAS  PubMed  Article  Google Scholar 

    25.
    Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, et al. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science. 2015;349:860–4.
    CAS  PubMed  Article  Google Scholar 

    26.
    Bloemberg GV, Lugtenberg BJJ. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol. 2001;4:343–50.
    CAS  PubMed  Article  Google Scholar 

    27.
    Carvalhais LC, Dennis PG, Fedoseyenko D, Hajirezaei MR, Borriss R, von Wirén N. Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, andiron deficiency. J Plant Nutr Soil Sci. 2011;174:e68555.
    Article  CAS  Google Scholar 

    28.
    Hu L, Robert CA, Cadot S, Zhang X, Ye M, Li B, et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat Commun. 2018;9:2738.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    29.
    Sasse J, Martinoia E, Northen T. Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci. 2018;23:25–41.
    CAS  PubMed  Article  Google Scholar 

    30.
    Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol. 2013;64:807–38.
    CAS  Article  Google Scholar 

    31.
    Chaparro J, Badri D, Vivanco J. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 2014;8:790–803.
    CAS  PubMed  Article  Google Scholar 

    32.
    Canarini A, Kaiser C, Merchant A, Richter A, Wanek W. Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Front Plant Sci. 2019;10:157.
    PubMed  PubMed Central  Article  Google Scholar 

    33.
    Gabriele B, Martina K, Daria R, Henry M, Rita G, Kornelia S. Plant microbial diversity is suggested as the key to future biocontrol and health trends. FEMS Microbiol Ecol. 2017;93:5.
    Google Scholar 

    34.
    Kallenbach M, Oh Y, Eilers EJ, Veit D, Baldwin IT, Schuman MC. A robust, simple, high-throughput technique for time-resolved plant volatile analysis in field experiments. Plant J. 2014;78:1060–72.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Ryu CM, Farag MA, Hu C-H, Reddy MS, Wei H-X, Paré PW, et al. Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA. 2003;100:4927–32.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Knudsen JT, Eriksson R, Gershenzon J, Stahl B. Diversity and distribution of floral scent. Bot Rev. 2006;72:1–120.
    Article  Google Scholar 

    37.
    Huang M, Sanchez-Moreiras A, Abel C, Sohrabi R, Lee S, Gershenzon J, et al. The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-beta-caryophyllene, is a defense against a bacterial pathogen. New Phytol. 2012;193:997–1008.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Sabulal B, Dan M, Anil JJ, Kurup R, Pradeep NS, Valsamma RK, et al. Caryophyllene‐rich rhizome oil of Zingiber nimmonii from South India: chemical characterization and antimicrobial activity. Phytochemistry. 2006;67:2469–73.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Wardle K, Dalsou V, Roberts AV, Short KC. Characterization of the effect of farnesol on roots of barley. Plant Physiol. 1986;125:401–7.
    CAS  Article  Google Scholar 

    40.
    Baldwin IT, Halitschke R, Paschold A, Von Dahl CC, Preston CA. Volatile signaling in plant–plant interactions: “talking trees” in the genomics era. Science. 2006;311:812–5.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    41.
    Riedlmeier M, Ghirardo A, Wenig M, Knappe C, Koch K, Georgii E, et al. Monoterpenes support systemic acquired resistance within and between plants. Plant Cell. 2017;29:1440–59.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Wenig M, Ghirardo A, Sales JH, Pabst ES, Breitenbach HH, Antritter F, et al. Systemic acquired resistance networks amplify airborne defense cues. Nat Commun. 2019;10:3813.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    43.
    Turner TR, James EK, Poole PS. The plant microbiome. Genome Biol. 2013;14:209.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    44.
    Schulz K, Gerards S, Hundscheid M, Melenhorst J, de Boer W, Garbeva P. Calling from distance: attraction of soil bacteria by plant root volatiles. ISME J. 2018;12. https://doi.org/10.1038/s41396-017-0035-3.

    45.
    Erb M. Volatiles as inducers and suppressors of plant defense and immunity-origins, specificity, perception and signaling. Curr Opin Plant Biol. 2018;44:117–21.
    CAS  PubMed  Article  Google Scholar 

    46.
    Mithöfer A, Boland W. Do you speak chemistry? EMBO Rep. 2016;17:626–9.
    PubMed  PubMed Central  Article  CAS  Google Scholar  More

  • in

    Connectivity and population structure of albacore tuna across southeast Atlantic and southwest Indian Oceans inferred from multidisciplinary methodology

    1.
    Collette, B. & Nauen, C. Scombrids of the world—An annotated and illustrated catalogue of tunas, mackerels, bonitos and related species known to date. FAO Sp. Cat 2, 137 (1983).
    Google Scholar 
    2.
    ISSF. ISSF Tuna Stock Status Update, 2015: Status of the world fisheries for tuna. ISSF Technical Report 2015-03A. (International Seafood Sustainability Foundation, Washington, D.C., 2015).

    3.
    FAO. The State of World Fisheries and Aquaculture 2012. (2012).

    4.
    ISSF. Status of the world fisheries for tuna. ISSF Technical Report. 2019-07. International Seafood Sustainability Foundation, Washington, D.C., USA. https://iss-foundation.org/knowledge-tools/technical-and-meeting-reports/ (2019).

    5.
    ICCAT. ICCAT Report of the 2016 ICCAT North and South Atlantic Albacore stock assessment meeting. N & S Atlantic ALB stock assessment meeting–Madeira 2016. (2016).

    6.
    IOTC. Albacore executive summary. Status summary for species of tuna and tuna-like species under the IOTC mandate, as well as other species impacted by IOTC fisheries. (2016).

    7.
    IOTC. Albacore executive summary. Status summary species tuna and tuna species under iotc mandate well other species impacted by iotc fisheries. (2018).

    8.
    Nikolic, N. et al. Review of albacore tuna, Thunnus alalunga, biology, fisheries and management. Rev. Fish. Biol. Fisheries. 27, 775–810 (2016).
    Article  Google Scholar 

    9.
    Arrizabalaga, H., Lopez-Rodas, V., Costas, E. & González-Garcás, A. Use of genetic data to assess the uncertainty in stock assessments due to the assumed stock structure: The case of albacore (Thunnus alalunga) from the Atlantic Ocean. Fish. Bull. 105(1), 140–146 (2007).
    Google Scholar 

    10.
    Chow, S. & Kishino, H. Phylogenetic relationships between tuna species of the genus Thunnus (Scombridae: Teleostei): Inconsistent implications from morphology, nuclear and mitochondrial genomes. J. Mol. Evol. 41, 741–748 (1995).
    ADS  CAS  PubMed  Article  Google Scholar 

    11.
    Takagi, M., Okamura, T., Chow, S. & Taniguchi, N. Preliminary study of albacore (Thunnus alalunga) stock differentiation inferred from microsatellite DNA analysis. Fish. Bull. 99, 697–701 (2001).
    Google Scholar 

    12.
    Viñas, J., Bremer, J. A. & Pla, C. Inter-oceanic genetic differentiation among albacore (Thunnus alalunga) populations. Mar. Biol. 145, 225–232 (2004).
    Article  CAS  Google Scholar 

    13.
    Arrizabalaga, H. et al. Population structure of albacore, Thunnus alalunga, inferred from blood groups and tag recapture analyses. Mar. Ecol. Prog. Ser. 282, 245–252 (2004).
    ADS  Article  Google Scholar 

    14.
    Wu, G. C. C., Chiang, H. C., Chen, K. S., Hsu, C. C. & Yang, H. Y. Population structure of albacore (Thunnus alalunga) in the Northwestern Pacific Ocean inferred from mitochondrial DNA. Fish. Res. 95, 125–131 (2009).
    Article  Google Scholar 

    15.
    Davies, C. A., Gosling, E. M., Was, A., Brophy, D. & Tysklind, N. Microsatellite analysis of albacore tuna (Thunnus alalunga): Population genetic structure. Mar. Biol. 158, 2727–2740 (2011).
    Article  Google Scholar 

    16.
    Nikolic, N. & Bourjea, J. Differentiation of albacore stock: Review by oceanic regions. Collect. Vol. Sci. Pap. ICCAT 70(3), 1340–1354 (2014).
    Google Scholar 

    17.
    Pawson, M. G. & Jennings, S. A critique of methods for stock identification in marine capture fisheries. Fish. Res. 25, 203–217 (1996).
    Article  Google Scholar 

    18.
    Waldman, J. R. The importance of comparative studies in stock analysis. Fish. Res. 43, 237–246 (1999).
    Article  Google Scholar 

    19.
    Nielsen, E. E., Hemmer-Hansen, J., Larsen, P. F. & Bekkevold, D. Population genomics of marine fishes: Identifying adaptive variation in space and time. Mol. Ecol. 18, 3128–3150 (2009).
    PubMed  Article  Google Scholar 

    20.
    Waples, R. S. & Naish, K. A. Genetic and evolutionary considerations in fishery management: Research needs for the future. Future Fish. Sci. N. Am. 31, 427–451 (2009).
    Google Scholar 

    21.
    Montes, I. et al. Transcriptome analysis deciphers evolutionary mechanisms underlying genetic differentiation between coastal and offshore anchovy populations in the Bay of Biscay. Mar. Biol. 163, 205 (2016).
    Article  CAS  Google Scholar 

    22.
    Morita, S. On the relationship between the albacore stocks of the South Atlantic and Indian Oceans. Collect Vol. Sci. Pap. ICCAT 7, 232–237 (1977).
    Google Scholar 

    23.
    Gonzalez, E. G., Beerli, P. & Zardoya, R. Genetic structuring and migration patterns of Atlantic bigeye tuna, Thunnus obesus (Lowe, 1839). BMC Evol. Biol. 8, 252 (2008).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    24.
    Chow, S. & Ushiama, H. Global population structure of albacore (Thunnus alalunga) inferred by RFLP analysis of the mitochondrial ATPase gene. Mar. Biol. 123, 39–45 (1995).
    CAS  Article  Google Scholar 

    25.
    Graves, J. E. & Dizon, A. E. Mitochondrial DNA sequence similarity of Atlantic and Pacific albacore tuna (Thunnus alalunga). Can. J. Fish. Aquat. Sci. 46, 870–873 (1989).
    Article  Google Scholar 

    26.
    Viñas, J., Santiago, J. & Pla, C. Genetic characterization and Atlantic-Mediterranean stock structure of Albacore, Thunnus alalunga. Collect Vol. Sci. Pap. ICCAT. 49, 188–190 (1999).
    Google Scholar 

    27.
    Pujolar, J. M., Roldán, M. I. & Pla, C. Genetic analysis of tuna populations, Thunnus thynnus thynnus and T. alalunga. Mar. Biol. 3, 613–621 (2003).
    Article  Google Scholar 

    28.
    Nakadate, M. et al. Genetic isolation between Atlantic and Mediterranean albacore populations inferred from mitochondrial and nuclear DNA markers. J. Fish Biol. 66, 1545–1557 (2005).
    CAS  Article  Google Scholar 

    29.
    Abdul-Muneer, P. M. Application of microsatellite markers in conservation genetics and fisheries management: Recent advances in population structure analysis and conservation strategies. Genet. Res. Int. 2014, 691759 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    30.
    Albaina, A. et al. Single nucleotide polymorphism discovery in albacore and Atlantic bluefin tuna provides insights into worldwide population structure. Anim. Genet. 44, 678–692 (2013).
    CAS  PubMed  Article  Google Scholar 

    31.
    Laconcha, U. & Iriondo, M. New nuclear SNP markers unravel the genetic structure and effective population size of Albacore tuna (Thunnus alalunga). PLoS ONE 10, e0128247 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    32.
    Heincke, D. F. Naturgeschichte des herring. Abhandlungen Doutsch Seefisch Verein 2, 128–233 (1898).
    Google Scholar 

    33.
    Foote, C. J., Wood, C. C. & Withler, R. E. Biochemical genetic comparison of sockeye salmon and kokane, the anadromus and nonanadromus forms of Oncorhynchus nerka. Can. J. Fish. Aquat. Sci. 46, 149–158 (1989).
    Article  Google Scholar 

    34.
    Robinson, B. W. & Wilson, D. S. Genetic variation and phenotypic plasticity in a tropically polymorphic population of pumpkinseed sunfish (Lepomis gibbosus). Evol. Ecol. 10, 631–652 (1996).
    Article  Google Scholar 

    35.
    Cabral, H. N. et al. Genetic and morphologica variation of Synaptura lusitanica Capello, 1868, along the Portuguese coast. J. Sea Res. 50, 167–175 (2003).
    ADS  Article  Google Scholar 

    36.
    Dhurmeea, Z. et al. Reproductive biology of Albacore tuna (Thunnus alalunga) in the Western Indian Ocean. PLoS ONE 11, 0168605–0168610 (2016).
    Article  CAS  Google Scholar 

    37.
    Gonzalez, E. G. & Zardoya, R. Relative role of life-history traits and historical factors in shaping genetic population structure of sardines (Sardina pilchardus). BMC Evol. Biol. 7, 197 (2007).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    38.
    Young, E. F. et al. Oceanography and life history predict contrasting genetic population structure in two Antarctic fish species. Evol. Appl. 8, 486–509 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    39.
    Santos, A. M. P. et al. Sardine (Sardina pilchardus) larval dispersal in the Iberian Upwelling System, using coupled biophysical techniques. Prog. Oceanogr. 162, 83–97 (2018).
    ADS  Article  Google Scholar 

    40.
    Kaplan, D. M., Cuif, M. & Fauvelot, C. Uncertainty in empirical estimates of marine larval connectivity. ICES J. Mar. Sci 74(6), 1723–1734 (2016).
    Article  Google Scholar 

    41.
    Cowen, R. K., Paris, C. B. & Srinivasan, A. Scaling of connectivity in marine populations. Science 311, 522–527 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    42.
    Nickols, K. J., White, J. W., Largier, J. L. & Gaylord, B. Marine population connectivity: Reconciling large-scale dispersal and high self-retention. Am. Nat. 185, 196–211 (2015).
    PubMed  Article  Google Scholar 

    43.
    Nikolic, N. et al. GERMON project final report (GEnetic stRucture and Migration Of albacore tuna). IFREMER Re. 2015, 219 (2015).
    Google Scholar 

    44.
    Dhurmeea, Z. et al. Reproductive biology of albacore tuna (Thunnus. in alalunga) in the Western Indian Ocean. PLoS ONE 11(12), e0168605 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    45.
    Ueyanagi, S. Observations on the distribution of tuna larva in the Indo-Pacific Ocean with emphasis on the delineation of spawning areas of albacore, Thunnus alalunga. Bull. Far. Seas Fish. Res. Lab. 2, 177–219 (1969).
    Google Scholar 

    46.
    Bard, F. X. Le Thon Germon (Thunnus alalunga, Bonnaterre 1788) de l’Océan Atlantique. De la dynamique des populations à la stratégie démographique. Thèse de Doctorat d’Etat. Université Pierre et Marie Curie. (XI, 1981).

    47.
    Wu, C. L. & Kuo, C. L. Maturity and fecundity of albacore, Thunnus alalunga (Bonnaterre), from the Indian Ocean. J. Fish Soc. Taiwan 20(2), 135–151 (1993).
    Google Scholar 

    48.
    Lilliefors, H. W. On the Kolmogorov–Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc. 62, 399–402 (1967).
    Article  Google Scholar 

    49.
    Levene, H. Robust tests for equality of variances. In Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling (eds Olkin, I. et al.) 278–292 (Stanford University Press, Stanford, 1960).
    Google Scholar 

    50.
    Manly, B. Randomization bootstrap and Monte Carlo methods in biology (Chapman & Hall/CRC, Boca Raton, 2007).
    Google Scholar 

    51.
    Fay, M. P. & Shaw, P. A. Exact and Asymptotic Weighted Logrank Tests for Interval Censored Data: The Interval R Package. J. Stat. Softw. 36, 1–34 (2010).
    Article  Google Scholar 

    52.
    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, London, 2011).
    Google Scholar 

    53.
    Ogle, D. H. Introductory Fisheries Analyses with R (Chapman & Hall/CRC, Boca raton, 2016).
    Google Scholar 

    54.
    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn. (Springer, Berlin, 2002).
    Google Scholar 

    55.
    Ricker, W. E. Linear regression in fisheries research. J. Fish. Res. Board Can. 30, 409–434 (1973).
    Article  Google Scholar 

    56.
    Ricker, W. E. Methods for assessment of fish production in fresh waters. IBP Handbook N°3 (Blackwell Scientific Publications, Oxford and Edinburgh, 1968).
    Google Scholar 

    57.
    Rossiter, D. G. Technical note: Curve fitting with the R Environment for Statistical Computing. In Enschede (NL): 17, International Institute for Geo-information Science & Earth Observations (2009).

    58.
    Nikolic, N. et al. Discovery of genome-wide microsatellite markers in Scombridae: A pilot study on albacore tuna. PLoS ONE 10, e0141830 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    59.
    Rousset, F. Genepop’007: A complete reimplementation of the Genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).
    PubMed  Article  Google Scholar 

    60.
    Rousset, F. & Raymond, M. Testing heterozygote excess and deficiency. Genetics 140, 1413–1419 (1995).
    CAS  PubMed  PubMed Central  Google Scholar 

    61.
    Storey, J. D. A Direct Approach to False Discovery Rates. J. R. Stat. Soc. Ser. B Stat. Methodol. 64, 479–498 (2002).
    MathSciNet  MATH  Article  Google Scholar 

    62.
    Storey, J. D. The positive false discovery rate: A Bayesian interpretation and the q-value. Ann. Stat. 31, 2013–2035 (2003).
    MathSciNet  MATH  Article  Google Scholar 

    63.
    Storey, J. D. & Tibshirani, R. Statistical significance for genome wide studies. Proc. Natl. Acad. Sci. USA. 100, 9440–9445 (2003).
    ADS  MathSciNet  CAS  PubMed  MATH  Article  Google Scholar 

    64.
    Storey, J. D., Taylor, J. E. & Siegmund, D. Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: A unified approach. J. R. Stat. Soc. Ser. B Stat. Methodol. 66, 187–205 (2004).
    MathSciNet  MATH  Article  Google Scholar 

    65.
    Storey, J., Bass, A., Dabney, A. & Robinson, D. qvalue: Q-value Estimation for False Discovery Rate Control. https://github.com/jdstorey/qvalue (2019).

    66.
    Engels, W. R. Exact tests for Hardy-Weinberg proportions. Genetics 183, 1431–1441 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    67.
    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).
    CAS  PubMed  Google Scholar 

    68.
    Excoffier, L., Laval, G. & Schneider, S. Arlequin ver. 3.1: An integrated software package for population genetics data analysis. Evol. Bioinform. Online 1, 47–50 (2005).
    CAS  Article  Google Scholar 

    69.
    Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N. & Bonhomme, F. GENETIX, logiciel sous WindowsTM pour la génétique des populations. Laboratoire Génome, Populations, Interactions CNRS UMR 5000. (Université de, 1996).

    70.
    Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).
    CAS  PubMed  Article  Google Scholar 

    71.
    Jombart, T. & Ahmed, I. adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27(21), 3070–3071 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    72.
    Thioulouse, J., Chessel, D., Dolédec, S. & Olivier, J. M. ADE-4: A multivariate analysis and graphical display software. Stat. Comput. 7, 75–83 (1997).
    Article  Google Scholar 

    73.
    Pritchard, J. K., Stephens, P. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    74.
    Li, Y.-L. & Liu, J.-X. StructureSelector: A web-based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 18, 176–177 (2018).
    PubMed  Article  Google Scholar 

    75.
    Evanno, G. & Regnaut Sand Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).
    CAS  PubMed  Article  Google Scholar 

    76.
    Puechmaille, S. J. The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Mol. Ecol. Resour. 16, 608–627 (2016).
    PubMed  Article  Google Scholar 

    77.
    Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. CLUMPAK: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 5, 1179–1191 (2015).
    Article  CAS  Google Scholar 

    78.
    Takezaki, N., Nei, M. & Tamura, K. POPTREEW: Web version of POPTREE for constructing population trees from allele frequency data and computing some other quantities. Mol. Biol. Evol. 6, 1622–1624 (2014).
    Article  CAS  Google Scholar 

    79.
    Parks, D. H. et al. GenGIS 2: Geospatial analysis of traditional and genetic biodiversity, with new gradient algorithms and an extensible plugin framework. PLoS ONE 8, 69885 (2013).
    ADS  Article  CAS  Google Scholar 

    80.
    Takezaki, N., Nei, M. & Tamura, K. PopTree2: Software for constructing population trees from allele frequency data and computing other population statistics with Windows interface. Mol. Biol. Evol. 27, 747–752 (2010).
    CAS  PubMed  Article  Google Scholar 

    81.
    Peakall, R. & Smouse, P. GenAlEx 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).
    Article  Google Scholar 

    82.
    Mossman, C. A. & Waser, P. M. Genetic detection of sex-biased dispersal. Mol. Ecol. 8, 1063–1067 (1999).
    CAS  PubMed  Article  Google Scholar 

    83.
    R development Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, 2013). https://www.R-project.org.

    84.
    Gastwirth, J. L. et al. lawstat: Tools for Biostatistics. (Public Policy, and Law, 2017).

    85.
    Dray, S. & Dufour, A. B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22(4), 1–20 (2007).
    Article  Google Scholar 

    86.
    Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall/CRC, Boca Raton, 2006).
    Google Scholar 

    87.
    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73(1), 3–36 (2011).
    MathSciNet  MATH  Article  Google Scholar 

    88.
    Fournier, D. A. et al. AD Model Builder: Using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim. Methods Softw. 27, 233–249 (2012).
    MathSciNet  MATH  Article  Google Scholar 

    89.
    Skaug, H., Fournier, D., Nielsen, A., Magnusson, A. & Bolker, B. Generalized Linear Mixed Models using AD Model Builder. (2013).

    90.
    Chen, K.-Y. et al. assignPOP: An r package for population assignment using genetic, non-genetic, or integrated data in a machine-learning framework. Methods Ecol. Evol. 9, 439–446 (2018).
    Article  Google Scholar 

    91.
    Gibbs, R. & Colette, B. Comparative anatomy and systemics of the tunas, genus Thunnus. USA. Fish Wildl. Serv. Fish. Bull. 66, 65–130 (1967).
    Google Scholar 

    92.
    Cosgrove, R., Arregui, I., Arrizabalaga, H., Goni, N. & Sheridan, M. New insights to behaviour of North Atlantic albacore tuna (Thunnus alalunga) observed with pop-up satellite archival tags. Fish. Res. 150, 89–99 (2014).
    Article  Google Scholar 

    93.
    Schaefer, K. M. Reproductive biology of tunas. Fish Physiol. 19, 225–270 (2001).
    Article  Google Scholar 

    94.
    Ramon, D. & Bailey, K. Spawning seasonality of albacore, Thunnus alalunga, in the South Pacific Ocean. Fish. Bull. Natl. Oceanic Atmos. Admin. 94(4), 725–733 (1996).
    Google Scholar 

    95.
    Description and results. Ferry. Mercator global eddy permitting ocean reanalysis glorys1v1. Tech. Rep. Mercator Ocean Q. Newsl. 36, 15–28 (2010).
    Google Scholar 

    96.
    Gaspar, P. et al. Oceanic dispersal of juvenile leatherback turtles: Going beyond passive drift modeling. Mar. Ecol. Prog. Ser. 457, 265–284 (2012).
    ADS  Article  Google Scholar 

    97.
    Lalire, M. & Gaspar, P. Modeling the active dispersal of juvenile leatherback turtles in the North Atlantic Ocean. Mov. Ecol. 7, 7 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    98.
    Lehodey, P., Senina, L., Dragon, A. C. & Arrizabalaga, H. Spatially explicit estimates of stock size, structure and biomass of North Atlantic albacore tuna (Thunnus alalunga). Earth Syst. Sci. Data 6, 317–329 (2014).
    ADS  Article  Google Scholar 

    99.
    Ryman, N. & Palm, S. POWSIM: A computer program for assessing statistical power when testing for genetic differentiation. Mol. Ecol. Notes 6, 600–602 (2006).
    Article  Google Scholar 

    100.
    Saji, N. H., Goswami, B. N., Vinayachandran, P. N. & Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 401, 360 (1999).
    ADS  CAS  PubMed  Google Scholar 

    101.
    Li, J. et al. Impacts of the IOD-associated temperature and salinity anomalies on the intermittent equatorial undercurrent anomalies. Clim. Dyn. 51, 1391–1409 (2018).
    Article  Google Scholar 

    102.
    Schouten, M. W., de Ruijter, W. P., van Leeuwen, P. J. & Ridderinkhof, H. Eddies and variability in the Mozambique Channel. Deep Sea Res. Part II Top. Stud. Oceanogr. 50, 1987–2003 (2003).
    ADS  Article  Google Scholar 

    103.
    de Ruijter, W. P. M. et al. Eddies and dipoles around South Madagascar: Formation, pathways and large-scale impact. Deep Sea Res. Part I 51, 383–400 (2004).
    Article  Google Scholar 

    104.
    de Ruijter, W. P. M., Ridderinkhof, H., Lutjeharms, J. R. E., Schouten, M. W. & Veth, C. Observations of the flow in the Mozambique Channel: Observations in the Mozambique channel. Geophys. Res. Lett. 29, 140-1-140–3 (2002).
    Article  Google Scholar 

    105.
    Longhurst, A. R. Ecological Geography of the Sea (Academic Press, London, 2007).
    Google Scholar 

    106.
    New, A. et al. Physical and biochemical aspects of the flow across the Mascarene Plateau in the Indian Ocean. Philos. Trans. R Soc. Math. Phys. Eng. Sci. 363, 151–168 (2005).
    ADS  CAS  Google Scholar 

    107.
    Penney, A. J., Yeh, S. Y., Kuo, C. L. & Leslie, R. W. Relationships between albacore (Thunnus alalunga) stocks in the southern Atlantic and Indian Oceans. In Int Com Conserv AH Tuna Tuna Symp, Ponta Delgada, Azores (ed. Beckett, J. S.) 10–18 (1998).

    108.
    Postel, E. Sur deux lots de germon (Germo alalunga) capturés dans le Golfe de Guinée par les palangriers japonais. Cahiers ORSTOM Série Océanographique 2, 55–60 (1964).
    Google Scholar 

    109.
    Liorzou, B. Les nouveaux engins de pêche pour la capture du germon: Description, statistiques, impact sur le stock nord-Atlantique. Collect. Vol. Sci. Pap. 30(1), 203–217 (1989).
    Google Scholar 

    110.
    Koto, T. Studies on the albacore-XIV. Distribution and movement of the albacore in the Indian and the Atlantic Oceans based on the catch statistics of Japanese tuna long-line fishery. Bull. Far. Seas Fish. Res. Lab. 1, 115–129 (1969).
    Google Scholar 

    111.
    Conand, F. & Richards, W. J. Distribution of tuna larvae between Madagascar and the Equator, Indian Ocean. Biol. Oceanogr. 4, 321–336 (1982).
    Google Scholar 

    112.
    Shiohama, T. Overall fishing intensity and length composition of albacore caught by long line fishery. In The Indian Ocean, 1952–1982. IPTP, Vol. 22, 91–109 (1985).

    113.
    Fonteneau, A. A summarized presentation of the report of the 2nd. In IOTC WP of the Albacore Meeting held in Bangkok (2008).

    114.
    IOTC. Proposition: Résumé exécutive: GERMON. in IOTC, IOTC-2013-SC16-ES01 (2013).

    115.
    Nishikawa, Y., Honma, M., Ueyanagi, S. & Kikawa, S. Average distribution of larvae of oceanic species of scombroid fishes, 1956–1981. Far. Seas Fish. Res. Lab. 12, 1–99 (1985).
    Google Scholar 

    116.
    Nishida, T. & Tanaka, M. General reviews of Indian Ocean Albacore (Thunnus alalunga). IOTC-2004- WPTMT-03. (2004).

    117.
    Stéquert, B. & Marsac, F. La pêche de surface des thonidés tropicaux dans l’océan Indien. (1986).

    118.
    Fonteneau, A. & Marcille, J. Ressources, pêche et biologie des thonidés tropicaux de l’Atlantique centre-est. FAO Dot. Tech. Pêches 292. (1988).

    119.
    Hoyle, S., Sharma, R. & Herrera, M. Stock assessment of albacore tuna in the Indian Ocean for 2014 using stock synthesis. Indian Ocean Tuna Commission working party on temperate Tunas, Busan, Rep. of Korea, 28–31 July 2014, IOTC–2014–WPTmT05–24_Rev1. (2014).

    120.
    Montes, I. et al. Worldwide genetic structure of albacore (Thunnus alalunga) revealed by microsatellite DNA markers. Mar. Ecol. Prog. Ser. 471, 183–191 (2012).
    ADS  CAS  Article  Google Scholar 

    121.
    Carlsson, J. et al. Microsatellite and mitochondrial DNA analyses of Atlantic bluefin tuna (Thunnus thynnus thynnus) population structure in the Mediterranean Sea. Mol. Ecol. 13, 3345–3356 (2004).
    CAS  PubMed  Article  Google Scholar 

    122.
    Carlsson, J., McDowell, J. R., Carlsson, J. E. & Graves, J. E. Genetic identity of YOY bluefin tuna from the eastern and western Atlantic spawning areas. J. Hered. 98, 23–28 (2007).
    CAS  PubMed  Article  Google Scholar 

    123.
    Riccioni, G., Landi, M., Ferrara, G. & Milano, I. Spatio-temporal population structuring and genetic diversity retention in depleted Atlantic bluefin tuna of the Mediterranean Sea. Proc. Natl. Acad. Sci. USA 107, 2102–2107 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    124.
    Yeh, S. Y., Treng, T. D., Hui, C. F. & Penney, A. J. Mitochondrial DNA sequence analysis on Albacore, Thunnus alalunga, meat samples collected from the waters off western South Africa and the Eastern Indian Ocean. ICCAT Col. Vol. Sci. Pap. 46, 152–159 (1997).
    Google Scholar 

    125.
    Durand, J. D., Collet, A., Chow, S., Guinand, B. & Borsa, P. Nuclear and mitochondrial DNA markers indicated unidirectional gene flow of Indo-Pacific to Atlantic bigeye tuna (Thunnus obesus) populations, and their admixture off southern Africa. Mar. Biol. 147, 313–322 (2005).
    CAS  Article  Google Scholar 

    126.
    Poulsen, N. A., Nielsen, E. E., Schierup, M. H., Loeschcke, V. & Gronkjaer, P. Long-term stability and effective population size in North Sea and Baltic Sea cod (Gadus morhua). Mol. Ecol. 15, 321–331 (2006).
    CAS  PubMed  Article  Google Scholar 

    127.
    Chow, S., Okamoto, H., Miyabe, N., Hiramatsu, K. & Barut, N. Genetic divergence between Atlantic and Indo-Pacific stocks of bigeye tuna (Thunnus obesus) and admixture around South Africa. Mol. Ecol. 9, 221–227 (2000).
    CAS  PubMed  Article  Google Scholar 

    128.
    Graham, M. H., Dayton, P. K. & Erlandson, J. M. Ice ages and ecological transitions on temperate coasts. Trends Ecol. Evol. 18, 33–40 (2003).
    Article  Google Scholar 

    129.
    Siddall, M. et al. Sea-level fluctuations during the last glacial cycle. Nature 423, 853–858 (2003).
    ADS  CAS  PubMed  Article  Google Scholar 

    130.
    Rohfritsch, A. & Borsa, P. Genetic structure of Indian scad mackerel Decapterus russelli: Pleistocene vicariance and secondary contact in the Central Indo-West Pacific Seas. Heredity 95, 315–326 (2005).
    CAS  PubMed  Article  Google Scholar 

    131.
    Janko, K. et al. Did glacial advances during the Pleistocene influence differently the demographic histories of benthic and pelagic Antarctic shelf fishes?—Inferences from intraspecific mitochondrial and nuclear DNA sequence diversity. BMC Evol. Biol. 7, 220 (2007).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    132.
    Ravago-Gotanco, R. G. & Juinio-Meñez, M. A. Phylogeography of the mottled spinefoot Siganus fuscescens: Pleistocene divergence and limited genetic connectivity across the Philippine archipelago. Mol. Ecol. 19, 4520–4534 (2010).
    CAS  PubMed  Article  Google Scholar 

    133.
    Pedrosa-Gerasmio, I. R., Agmata, A. B. & Santos, M. D. Genetic diversity, population genetic structure, and demographic history of Auxis thazard (Perciformes), Selar crumenophthalmus (Perciformes), Rastrelliger kanagurta (Perciformes) and Sardinella lemuru (Clupeiformes) in Sulu-Celebes Sea inferred by mitochondrial DNA sequences. Fish. Res. 162, 64–74 (2015).
    Article  Google Scholar 

    134.
    Barth, J. M. I., Damerau, M., Matschiner, M., Jentoft, S. & Hanel, R. Genomic differentiation and demographic histories of Atlantic and Indo-Pacific yellowfin tuna (Thunnus albacares) populations. Genome Biol. Evol. 9(4), 1084–1098 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    135.
    West, W. MSc thesis. Genetic stock structure and estimation of abundance of swordfish (Xiphias gladius) in South Africa. https://open.uct.ac.za/handle/11427/20432. (2016).

    136.
    Silva, D. M. et al. Evaluation of IMTA-produced seaweeds (Gracilaria, Porphyra, and Ulva) as dietary ingredients in Nile tilapia, Oreochromis niloticus L., juveniles. Effects on growth performance and gut histology. J. Appl. Phycol. 27, 1671–1680 (2015).
    CAS  Article  Google Scholar 

    137.
    Bourjea, J. et al. Phylogeography of the green turtle, Chelonia mydas, in the Southwest Indian Ocean. Mol. Ecol. 16, 175–186 (2007).
    CAS  PubMed  Article  Google Scholar 

    138.
    Rudomiotkina, G. P. Distribution of larval tunas (Thunnidae, Perciformes) in the Central-Atlantic Ocean. Int. Council Explor. Sea (ICES), Pelagic Fish (S.) Committee, J. 15 (1973).

    139.
    Piccinetti, C. & Piccinetti-Manfrin, G. Relation entre œufs et larves de thonidés et hydrologie en Méditerranée. CNEXO 8, 9–12 (1979).
    Google Scholar 

    140.
    Mullins, R. B., McKeown, N. J., Sauer, W. H. H. & Shaw, P. W. Genomic analysis reveals multiple mismatches between biological and management units in yellowfin tuna (Thunnus albacares). ICES J. Mar. Sci. 75, 2145–2152 (2018).
    Article  Google Scholar 

    141.
    Fonteneau, A. An overview of Indian Ocean albacore: Fisheries, stocks and research. IOTC-2004-WPTMT-02. (2004).

    142.
    Clemens, H. B. The migration, age and growth of Pacific albacore (Thunnus germo), 1951–1958. (1961).

    143.
    Talbot, F. H. & Penrith, M. J. Tunnies and Marlins of South Africa. Nature 193, 558–559 (1962).
    ADS  Article  Google Scholar 

    144.
    Flittner, G. A. Review of the 1962 seasonal movement of albacore tuna off the Pacific coast of the United States. Commer. Fish. Rev. 25(4), 7–13 (1963).
    Google Scholar 

    145.
    Laurs, R. M. & Lynn, R. J. Seasonal migration of North Pacific albacore, Thunnus alalunga, into North America coastal waters: Distribution, relative abundance and association with transition zone waters. US Fish. Bull. 75, 795–822 (1977).
    Google Scholar 

    146.
    Johnsson, J. H. Sea temperatures and the availability of albacore (Thunnus germo) off the coasts of Oregon and Washington. Paper presented to the Pacific Tuna biology conference (1961).

    147.
    Santiago, J. Dinamica de la poblacion de atun blanco (Thunnus alalunga, Bonaterre 1788) del Atlantico Norte. Thèse de Doctorat, Euskal Erico (2004).

    148.
    Boyce, D., Tittensor, D. P. & Worm, B. Effects of temperature on global patterns of tuna and billfish richness. Mar. Ecol. Prog. Ser. 355, 267–276 (2008).
    ADS  Article  Google Scholar 

    149.
    Childers, J., Snyder, S. & Kohin, S. Migration and behavior of juvenile North Pacific albacore (Thunnus alalunga). Fish. Oceanogr. 20, 157–173 (2011).
    Article  Google Scholar 

    150.
    Hauser, L. & Carvalho, G. R. Paradigm shifts in marine fisheries genetics: Ugly hypotheses slain by beautiful facts. Fish Fish. 9, 333–362 (2008).
    Article  Google Scholar 

    151.
    Logan, C. A., Alter, S. E., Haupt, A. J., Tomalty, K. & Palumbi, S. R. An impediment to consumer choice: Overfished species are sold as Pacific red snapper. Biol. Conserv. 141, 1591–1599 (2008).
    Article  Google Scholar 

    152.
    Primmer, C. R., Koskinen, M. T. & Piironen, J. The one that did not get away: Individual assignment using microsatellite data detects a case of fishing competition fraud. Proc. Biol. Sci. 267, 1699–1704 (2000).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    153.
    Carvalho, G. R. & Hauser, L. Molecular genetics and the stock concept in fisheries. in Molecular Genetics in Fisheries (eds. Carvalho, G. R. & Pitcher, T. J.) 55–79 (1995).

    154.
    Waples, R. S., Punt, A. E. & Cope, J. M. Integrating genetic data into management of marine resources: How can we do it better?. Fish Fish. 9, 423–449 (2008).
    Article  Google Scholar 

    155.
    Chouvelon, T. et al. Chemical contaminants (trace metals, persistent organic pollutants) in albacore tuna from western Indian and south-eastern Atlantic Oceans: Trophic influence and potential as tracers of populations. Sci. Total Environ. 597, 481–495 (2017).
    ADS  Article  CAS  Google Scholar 

    156.
    Penrith, M. J. G. The systematics and biology of the South African Tunas. (Masters Dissertation, University of Cape Town, 1963).

    157.
    IOTC. Report of the Fifteenth Session of the IOTC Scientific Committee. (2012).

    158.
    Stequert, B. & Marsac, F. Tropical tuna—surface fisheries in the Indian Ocean. Fisheries Technical Paper FAO, 282 (1989).

    159.
    Pecoraro, C. et al. The population genomics of yellowfin tuna (Thunnus albacares) at global geographic scale challenges current stock delineation. Sci. Rep. 8, 13890 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar  More

  • in

    Nutritional benefit of fungal spores for honey bee workers

    1.
    Gallai, N., Salles, J.-M., Settele, J. & Vaissière, B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821 (2009).
    Article  Google Scholar 
    2.
    Klein, D. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 274, 303–313. https://doi.org/10.1098/rspb.2006.3721 (2007).
    Article  Google Scholar 

    3.
    Southwick, E. E. & Southwick, L. Estimating the economic value of honey bees (Hymenoptera: Apidae) as agricultural pollinators in the United States. J. Econ. Entomol. 85, 621–633 (1992).
    Article  Google Scholar 

    4.
    Brodschneider, R. & Crailsheim, K. Nutrition and health in honey bees. Apidologie 41, 278–294. https://doi.org/10.1051/apido/2010012 (2010).
    Article  Google Scholar 

    5.
    Smart, M., Pettis, J., Rice, N., Browning, Z. & Spivak, M. Linking measures of colony and individual honey bee health to survival among apiaries exposed to varying agricultural land use. PLoS ONE 11, e0152685. https://doi.org/10.1371/journal.pone.0152685 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    6.
    Di Pasquale, G. et al. Influence of pollen nutrition on honey bee health: do pollen quality and diversity matter?. PLoS ONE 8, e72016. https://doi.org/10.1371/journal.pone.0072016 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    7.
    Simone-Finstrom, M. et al. Migratory management and environmental conditions affect lifespan and oxidative stress in honey bees. Sci. Rep. 6, 32023 (2016).
    ADS  CAS  Article  Google Scholar 

    8.
    de Vere, N. et al. Using DNA metabarcoding to investigate honey bee foraging reveals limited flower use despite high floral availability. Sci. Rep. 7, 42838. https://doi.org/10.1038/srep42838 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    9.
    Ahn, K., Xie, X., Riddle, J., Pettis, J. & Huang, Z. Y. Effects of long distance transportation on honey bee physiology. Psyche A J. Entomol. 2012, 1–9 (2012).
    Article  Google Scholar 

    10.
    Vaudo, A. D., Tooker, J. F., Grozinger, C. M. & Patch, H. M. Bee nutrition and floral resource restoration. Curr. Opin. Insect. Sci. 10, 133–141 (2015).
    Article  Google Scholar 

    11.
    Shaw, D. E. The incidental collection of fungal spores by bees and the collection of spores in lieu of pollen. Bee World 71, 158–176 (1990).
    Article  Google Scholar 

    12.
    Shaw, D. E. Bees and fungi, with special reference to certain plant pathogens. Aust. Plant Pathol. 28, 269–282. https://doi.org/10.1071/ap99044 (1999).
    Article  Google Scholar 

    13.
    Parker, R. L. The collection of pollen by the honey bee. Memoir: Cornell University Agricultural experiment Station 98, 1–55 (1926).

    14.
    Doull, K. M. An analysis of bee behaviour as it relates to pollination in The Indispensable pollinators (ed Warren L.O.). Report 9th Pollination Conference 12-15 (Hot Springs, Arkansas 1970).

    15.
    Inouye, D. W., Gill, D. E., Dudash, M. R. & Fenster, C. B. A model and lexicon for pollen fate. Am. J. Bot. 81, 1517–1530 (1994).
    Article  Google Scholar 

    16.
    Westerkamp, C. P. Pollen in bee flower relations. Some considerations on melittophily. Botanica. Acta 109, 325–332 (1996).
    Article  Google Scholar 

    17.
    Thorp, R. W. The collection of pollen by bees. Plant Syst. Evol. 222, 211–223 (2000).
    Article  Google Scholar 

    18.
    Portman, Z. M. & Tepedino, V. J. Convergent evolution of pollen transport mode in two distantly related bee genera (Hymenoptera: Andrenidae and Melittidae). Apidologie 48, 461–472 (2017).
    Article  Google Scholar 

    19.
    Schmidt, J. O., Thoenes, S. C. & Levin, M. D. Survival of honey bees, Apis mellifera (Hymenoptera: Apidae), fed various pollen sources. Ann. Entomol. Soc. Am. 80, 176–183 (1987).
    Article  Google Scholar 

    20.
    Renzi, M. T. et al. Combined effect of pollen quality and thiamethoxam on hypopharyngeal gland development and protein content in Apis mellifera. Apidologie 47, 779–788 (2016).
    CAS  Article  Google Scholar 

    21.
    Hrassnigg, N. & Crailsheim, K. Adaptation of hypopharyngeal gland development to the brood status of honeybee (Apis mellifera L.) colonies. J Insect Physiol 44, 929–939 (1998).

    22.
    Heylen, K., Gobin, B., Arckens, L., Huybrechts, R. & Billen, J. The effects of four crop protection products on the morphology and ultrastructure of the hypopharyngeal gland of the European honeybee, Apis mellifera. Apidologie 42, 103–116 (2011).
    CAS  Article  Google Scholar 

    23.
    Hoover, S. E., Higo, H. A. & Winston, M. L. Worker honey bee ovary development: seasonal variation and the influence of larval and adult nutrition. J. Comput. Physiol. B 176, 55–63 (2006).
    Article  Google Scholar 

    24.
    Modro, A. F. H., Silva, I. C., Message, D. & Luz, C. F. P. Saprophytic fungus collection by africanized bees in Brazil. Neotrop. Entomol. 38, 434–436 (2009).
    Article  Google Scholar 

    25.
    Gasparoto, M. C. G. et al. Honeybees can spread Colletotrichum acutatum and C. gloeosporioides among citrus plants. Plant Pathol. 66, 777–782. https://doi.org/10.1111/ppa.12625 (2017).
    CAS  Article  Google Scholar 

    26.
    Brouwers, E. Measurement of hypopharyngeal gland activity in the honeybee. J. Apic. Res. 21, 193–198 (1982).
    Article  Google Scholar 

    27.
    Pernal, S. F. & Currie, R. W. Pollen quality of fresh and 1-year-old single pollen diets for worker honey bees (Apis mellifera L.). Apidologie 31, 387–409. https://doi.org/10.1051/apido:2000130 (2000).
    Article  Google Scholar 

    28.
    Bartnicki-Garcia, S. Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu. Rev. Microbiol. 22, 87–108 (1968).
    CAS  Article  Google Scholar 

    29.
    Page, R. E. Jr. & Peng, C.Y.-S. Aging and development in social insects with emphasis on the honey bee, Apis mellifera L. Exp. Gerontol. 36, 695–711 (2001).
    Article  Google Scholar 

    30.
    Schmidt, L. S., Schmidt, J. O., Rao, H., Wang, W. & Xu, L. Feeding preference and survival of young worker honey bees (Hymenoptera: Apidae) fed rape, sesame, and sunflower pollen. J. Econ. Entomol. 88, 1591–1595 (1995).
    Article  Google Scholar 

    31.
    Goulson, D., Nicholls, E., Botias, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957. https://doi.org/10.1126/science.1255957 (2015).
    CAS  Article  PubMed  Google Scholar 

    32.
    Kleinschmidt, G., Kondos, A., Harden, J. & Turner, J. Colony management for eucalypt honey flows. Aust. Beekeeper 75, 261–264 (1974).
    Google Scholar 

    33.
    Anke, S., Niemüller, D., Moll, S., Hänsch, R. & Ober, D. Polyphyletic origin of pyrrolizidine alkaloids within the Asteraceae. Evidence from differential tissue expression of homospermidine synthase. Plant Physiol. 136, 4037–4047 (2004).

    34.
    Boppré, M., Colegate, S. M. & Edgar, J. A. Pyrrolizidine alkaloids of Echium vulgare honey found in pure pollen. J. Agr. Food. Chem. 53, 594–600 (2005).
    Article  Google Scholar 

    35.
    Hartmann, T. & Ober, D. Biosynthesis and metabolism of pyrrolizidine alkaloids in plants and specialized insect herbivores in Topics in Current Chemistry: Biosynthesis—Aromatic Polyketides, Isoprenoids, Alkaloids (ed Vederas J.C. Leeper F.J.) 207–243 (Springer, Berlin 2000).

    36.
    Praz, C. J., Müller, A. & Dorn, S. Specialized bees fail to develop on non-host pollen: do plants chemically protect their pollen. Ecology 89, 795–804 (2008).
    Article  Google Scholar 

    37.
    San-Blas, G., Guanipa, O., Moreno, B., Pekerar, S. & San-Blas, F. Cladosporium carrionii and Hormoconis resinae (C. resinae): cell wall and melanin studies. Curr. Microbiol. 32, 11–16 (1996).
    CAS  Article  Google Scholar 

    38.
    Szaniszlo, P., Cooper, B. & Voges, H. S. Chemical compositions of the hyphal walls of three chromomycosis agents. Sabouraudia: J Med Vet Mycol 10, 94–102 (1972).

    39.
    Soltanian, S., Stuyven, E., Cox, E., Sorgeloos, P. & Bossier, P. Beta-glucans as immunostimulant in vertebrates and invertebrates. Crit. Rev. Microbiol. 35, 109–138 (2009).
    CAS  Article  Google Scholar 

    40.
    Mazzei, M. et al. Effect of 1, 3–1, 6 β-glucan on natural and experimental deformed wing virus infection in newly emerged honeybees (Apis mellifera ligustica). PLoS ONE 11, e0166297 (2016).
    Article  Google Scholar 

    41.
    Stevanovic, J. et al. The effect of Agaricus brasiliensis extract supplementation on honey bee colonies. Anais da Academia Brasileira de Ciências 90, 219–229 (2018).
    CAS  Article  Google Scholar 

    42.
    Erdtman, G. Handbook of Palynology: Morphology, Taxonomy, Ecology (Munksgaard, Copenhagen, 1969).
    Google Scholar 

    43.
    Kearns, C. A. & Inouye, D. W. Techniques for pollination biologists. (University Press of Colorado, 1993).

    44.
    APSA. Australasian Pollen and Spore Atlas, (2007).

    45.
    Graystock, P. et al. Hygienic food to reduce pathogen risk to bumblebees. J. Invert. Pathol. 136, 68–73. https://doi.org/10.1016/j.jip.2016.03.007 (2016).
    CAS  Article  Google Scholar 

    46.
    Meeus, I. et al. Gamma irradiation of pollen and eradication of Israeli acute paralysis virus. J. Invert. Pathol. 121, 74–77. https://doi.org/10.1016/j.jip.2014.06.012 (2014).
    Article  Google Scholar 

    47.
    Bradstreet, R. B. Kjeldahl method for organic nitrogen. Anal. Chem. 26, 185–187 (1954).
    CAS  Article  Google Scholar 

    48.
    National Center for Biotechnology Information (NCBI)[Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; [1988]–[October 2019]. Available from: https://www.ncbi.nlm.nih.gov/

    49.
    Bensch, K. et al. Cladosporium species in indoor environments. Stud. Mycol. 89, 177–301 (2018).
    CAS  Article  Google Scholar 

    50.
    Scheuerell, S. J. & Mahaffee, W. F. Variability associated with suppression of gray mold (Botrytis cinerea) on geranium by foliar applications of nonaerated and aerated compost teas. Plant Dis. 90, 1201–1208 (2006).
    Article  Google Scholar 

    51.
    Preston, F. W. The volume of an egg. AOS 91, 132–138. https://doi.org/10.2307/4084667 (1974).
    Article  Google Scholar 

    52.
    R Core Team. R: A Language and Environment for Statistical Computing. v. 1.2.1335 (Vienna, Austria; 2019).

    53.
    Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge University Press, Cambridge, 2002).
    Google Scholar  More