More stories

  • in

    Design principles of gene evolution for niche adaptation through changes in protein–protein interaction networks

    Data collection
    We hypothesized that the evolution of underground species affected protein networks in a unique manner in which various types of protein domains served as building blocks of protein evolution. To study the evolution of protein networks, we collected genomic, proteomic, and protein domain classification data, namely, fully sequenced genomes with coding sequences and annotated proteomes, together with protein ortholog assignments, from 32 species living in three broad ecological niches, namely subterranean, fossorial, and aboveground (Table 1, and listed in Materials and Methods). We first sought overall statistics regarding the number of proteins and the number of corresponding orthologous protein families. Overall PPI statistics were calculated, including those predicting PPIs in organisms for which experimentally verified PPI data are missing. We used the KEGG orthologs (KO) group of orthologous proteins in KEGG (Kyoto Encyclopaedia of Genes and Genomes)17 to reproduce gain and loss of protein domains in orthologous proteins. We collected 1,350,898 proteins from the studied organisms that belong to 624,787 KO groups (10,314 are unique ortholog groups). The matching number of interactors and networks for every organism were exhaustively calculated for all these proteins (Fig. 1). We found that 361,615 of the 1,350,898 proteins are distributed among 5,879,879 (predicted and real) PPIs. The mean number of interactors per protein within each habitat, namely, aboveground (A), fossorial (F), and subterranean (S) were 32.07, 32.48, and 32.67, respectively (see details in the supplementary results and in Tables S1–S3). This shows that the number of interactors per protein is similar for organisms from different ecologies.
    Table 1 All organisms included in the PASTORAL database, with a complete number of proteins in the corresponding proteome.
    Full size table

    Figure 1

    The study overview. Fully sequenced genomes with coding sequences and annotated proteomes were collected from 32 species living in three broad ecological niches: subterranean, fossorial, and aboveground. For collected proteins (1,350,898), protein domains, protein disordered regions, and KEGG orthologous annotation (624,787) were predicted using the Pfam search tool53 along with HMMER60 , IUPred2A44, and the KEGG database17, respectively. Next, 5,879,879 PPIs were evaluated using our previously developed ChiPPI tool15. Briefly, ChiPPI uses a domain-domain co-occurrence table. When a certain domain is missing, ChiPPI evaluates the corresponding missing interactors in the PPI network15, based on real PPI data (363,816) as obtained from BioGrid (release 3.4.163)16. Finally, PPI data are organized in PASTORAL, a dedicated database.

    Full size image

    Additional analysis of PPI features for orthologous proteins (516 KOs) common to all organisms were similar across ecologies. These features included the number of interactors, the number of PPIs, and global/individual clustering coefficients (supplementary results, Figures S1, S2, Table S4). Thus, we studied PPI properties of genes encoding products related to stresses that differ across the ecologies considered, such as hypoxia. Our findings confirm our hypothesis that the design principles of the evolution of underground species involve various types of protein domains serving as building blocks of protein evolution.
    Analysis of the PPIs of stress-response proteins cluster organisms according to habitat
    To examine how organisms might have adapted to the various stresses in each habitat, we analyzed mutations and changes in the PPIs encoded by stress response genes. Heat-shock, hypoxia, and circadian stresses differ considerably between aboveground and underground environments, and are likely to drive evolutionary selection of proteins that provide optimal function in each niche1,9. We assumed that organisms subject to a shared ecological experience would face similar environmental stresses. PPI networks of stress-related proteins would thus be expected to differ substantially according to ecology.
    To test our hypothesis, we performed clustering analysis of all the organisms included in our study, based on mutations and PPI network features, and compared the results for each classification. Such analysis included all orthologous stress-response, hypoxia, heat-shock, and circadian stress proteins (Table 1). In total, 85,173 PPIs related to stress-response proteins were found to be distributed among 1,103 proteins. These comprised of 730 heat shock proteins in 71,940 PPIs, 254 hypoxia-related proteins in 10,256 PPIs, and 119 circadian proteins in 2,977 PPIs (Table 1, Tables S1–S7). All orthologous stress-response genes (KO groups) were obtained by querying the KEGG database with the terms “heat-shock”, “hypoxia”, and “circadian” terms. The results are listed in Table 2, while the corresponding lists of proteins are found in Tables S5, S6 and S7, respectively.
    Table 2 KEGG Orthologs: Heat-shock (upper), hypoxia-related (middle) and circadian (bottom) proteins.
    Full size table

    Next, we performed clustering analysis based on sequence mutations and PPI features for the full set of heat-shock, hypoxia, and circadian stress proteins (Table 2). Remarkably, proteins related to hypoxia, heat-shock, and circadian stresses in the 32 organisms studied did not all cluster according to shared ecology based on sequence mutations (Fig. 2A) but significantly did so on the basis of “PPI network clustering coefficient” (Fig. 2B–D; p value (AU)  More

  • in

    Achieving similar root microbiota composition in neighbouring plants through airborne signalling

    1.
    Heil M, Ton J. Long-distance signalling in plant defence. Trends Plant Sci. 2008;13:264–72.
    CAS  PubMed  Article  Google Scholar 
    2.
    Kim J, Felton GW. Priming of antiherbivore defensive responses in plants. Insect Sci. 2013;20:273–85.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Ameye M, Audenaert K, De Zutter N, Steppe K, Van Meulebroek L, Vanhaecke L, et al. Priming of wheat with the green leaf volatile Z-3-hexenyl acetate enhances defense against Fusarium graminearum but boosts deoxynivalenol production. Plant Physiol. 2015;167:1671–84.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Cofer TM, Engelberth M, Engelberth J. Green leaf volatiles protect maize (Zea mays) seedlings against damage from cold stress. Plant Cell Environ. 2018;41:1673–82.
    CAS  PubMed  Article  Google Scholar 

    5.
    Šimpraga M, Takabayashi J, Holopainen JK. Language of plants: where is the word? J Integr Plant Biol. 2016;58:343–9.
    PubMed  Article  CAS  Google Scholar 

    6.
    Sharifi R, Lee SM, Ryu CM. Microbe-induced plant volatiles. N. Phytol. 2018;220:684–91.
    Article  Google Scholar 

    7.
    Mauck KE, De Moraes CM, Mescher MC. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proc Natl Acad Sci USA. 2010;107:3600–5.
    CAS  PubMed  Article  Google Scholar 

    8.
    Jiménez‐Martínez ES, Bosque‐Pérez NA, Berger PH, Zemetra RS, Ding H, Eigenbrode SD. Volatile cues influence the response of Rhopalosiphum padi (Homoptera: Aphididae) to Barley yellow dwarf virus–infected transgenic and untransformed wheat. Environ Entomol. 2004;33:1207–16.
    Article  Google Scholar 

    9.
    Eigenbrode SD, Ding H, Shiel P, Berger PH. Volatiles from potato plants infected with potato leafroll virus attract and arrest the virus vector, Myzus persicae (Homoptera: Aphididae). Proc R Soc B. 2002;269:455–60.
    CAS  PubMed  Article  Google Scholar 

    10.
    Attaran E, Rostás M, Zeier J. Pseudomonas syringae elicits emission of the terpenoid (E, E)‐4,8,12‐trimethyl‐1,3,7,11‐tridecatetraene in Arabidopsis leaves via jasmonate signaling and expression of the terpene synthase TPS4. Mol Plant Microbe. 2008;21:1482–97.
    CAS  Article  Google Scholar 

    11.
    Cellini A, Buriani G, Rocchi L, Rondelli E, Savioli S, Rodriguez Estrada MT, et al. Biological relevance of volatile organic compounds emitted during the pathogenic interactions between apple plants and Erwinia amylovora. Mol Plant Pathol. 2018;19:158–68.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Cellini A, Biondi E, Buriani G, Farneti B, Rodriguez-Estrada MT, Braschi I, et al. Characterization of volatile organic compounds emitted by kiwifruit plants infected with Pseudomonas syringae pv. actinidiae and their effects on host defences. Trees. 2016;30:795–806.
    CAS  Article  Google Scholar 

    13.
    Castelyn HD, Appelgryn JJ, Mafa MS, Pretorius ZA, Visser B. Volatiles emitted by leaf rust infected wheat induce a defence response in exposed uninfected wheat seedlings. Australas Plant Pathol. 2015;44:245–54.
    CAS  Article  Google Scholar 

    14.
    Quintana‐Rodriguez E, Morales‐Vargas AT, Molina‐Torres J, Ádame‐Alvarez RM, Acosta‐Gallegos JA, Heil M, et al. Plant volatiles cause direct, induced and associational resistance in common bean to the fungal pathogen Colletotrichum lindemuthianum. J Ecol. 2015;103:250–60.
    Article  CAS  Google Scholar 

    15.
    Yi H-S, Heil M, Alvarez R, Ryu C-M. Airborne induction and priming of plant defenses against a bacterial pathogen. Plant Physiol. 2009;151:2152–61.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Schausberger P, Peneder S, Jürschik S, Hoffmann D. Mycorrhiza changes plant volatiles to attract spider mite enemies. Funct Ecol. 2012;26:441–9.
    Article  Google Scholar 

    17.
    Ballhorn DJ, Kautz S, Schadler M. Induced plant defense via volatile production is dependent on rhizobial symbiosis. Oecologia. 2013;172:833–46.
    PubMed  Article  PubMed Central  Google Scholar 

    18.
    Babikova Z, Gilbert L, Bruce T, Dewhirst SY, Pickett JA, Johnson D, et al. Arbuscular mycorrhizal fungi and aphids interact by changing host plant quality and volatile emission. Funct Ecol. 2014;28:375–85.
    Article  Google Scholar 

    19.
    Planchamp C, Glauser G, Mauch‐Mani B. Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants. Front Plant Sci. 2014;5:719.
    PubMed  PubMed Central  Google Scholar 

    20.
    Pangesti N, Weldegergis BT, Langendorf B, van Loon JJ, Dicke M, Pineda A. Rhizobacterial colonization of roots modulates plant volatile emission and enhances the attraction of a parasitoid wasp to host‐infested plants. Oecologia. 2015;178:1169–80.
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    Kloepper JW, Beauchamp CJ. A review of issues related to measuring of plant roots by bacteria. Can J Microbiol. 1992;38:1219–32.
    Article  Google Scholar 

    22.
    Sangiorgio D, Cellini A, Donati I, Pastore C, Onofrietti C, Spinelli F. Facing climate change: application of microbial biostimulants to mitigate stress in horticultural crops. Agronomy. 2020;10:794.
    Article  Google Scholar 

    23.
    Glick BR. The enhancement of plant growth by free-living bacteria. Can J Microbiol. 1995;41:109–17.
    CAS  Article  Google Scholar 

    24.
    Carvalhais LC, Dennis PG, Badri DV, Kidd BN, Vivanco JM, Schenk PM. Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes. Mol Plant-Microbe Interact. 2015;28:1049–58.
    CAS  PubMed  Article  Google Scholar 

    25.
    Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, et al. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science. 2015;349:860–4.
    CAS  PubMed  Article  Google Scholar 

    26.
    Bloemberg GV, Lugtenberg BJJ. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol. 2001;4:343–50.
    CAS  PubMed  Article  Google Scholar 

    27.
    Carvalhais LC, Dennis PG, Fedoseyenko D, Hajirezaei MR, Borriss R, von Wirén N. Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, andiron deficiency. J Plant Nutr Soil Sci. 2011;174:e68555.
    Article  CAS  Google Scholar 

    28.
    Hu L, Robert CA, Cadot S, Zhang X, Ye M, Li B, et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat Commun. 2018;9:2738.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    29.
    Sasse J, Martinoia E, Northen T. Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci. 2018;23:25–41.
    CAS  PubMed  Article  Google Scholar 

    30.
    Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol. 2013;64:807–38.
    CAS  Article  Google Scholar 

    31.
    Chaparro J, Badri D, Vivanco J. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 2014;8:790–803.
    CAS  PubMed  Article  Google Scholar 

    32.
    Canarini A, Kaiser C, Merchant A, Richter A, Wanek W. Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Front Plant Sci. 2019;10:157.
    PubMed  PubMed Central  Article  Google Scholar 

    33.
    Gabriele B, Martina K, Daria R, Henry M, Rita G, Kornelia S. Plant microbial diversity is suggested as the key to future biocontrol and health trends. FEMS Microbiol Ecol. 2017;93:5.
    Google Scholar 

    34.
    Kallenbach M, Oh Y, Eilers EJ, Veit D, Baldwin IT, Schuman MC. A robust, simple, high-throughput technique for time-resolved plant volatile analysis in field experiments. Plant J. 2014;78:1060–72.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Ryu CM, Farag MA, Hu C-H, Reddy MS, Wei H-X, Paré PW, et al. Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA. 2003;100:4927–32.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Knudsen JT, Eriksson R, Gershenzon J, Stahl B. Diversity and distribution of floral scent. Bot Rev. 2006;72:1–120.
    Article  Google Scholar 

    37.
    Huang M, Sanchez-Moreiras A, Abel C, Sohrabi R, Lee S, Gershenzon J, et al. The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-beta-caryophyllene, is a defense against a bacterial pathogen. New Phytol. 2012;193:997–1008.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Sabulal B, Dan M, Anil JJ, Kurup R, Pradeep NS, Valsamma RK, et al. Caryophyllene‐rich rhizome oil of Zingiber nimmonii from South India: chemical characterization and antimicrobial activity. Phytochemistry. 2006;67:2469–73.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Wardle K, Dalsou V, Roberts AV, Short KC. Characterization of the effect of farnesol on roots of barley. Plant Physiol. 1986;125:401–7.
    CAS  Article  Google Scholar 

    40.
    Baldwin IT, Halitschke R, Paschold A, Von Dahl CC, Preston CA. Volatile signaling in plant–plant interactions: “talking trees” in the genomics era. Science. 2006;311:812–5.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    41.
    Riedlmeier M, Ghirardo A, Wenig M, Knappe C, Koch K, Georgii E, et al. Monoterpenes support systemic acquired resistance within and between plants. Plant Cell. 2017;29:1440–59.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Wenig M, Ghirardo A, Sales JH, Pabst ES, Breitenbach HH, Antritter F, et al. Systemic acquired resistance networks amplify airborne defense cues. Nat Commun. 2019;10:3813.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    43.
    Turner TR, James EK, Poole PS. The plant microbiome. Genome Biol. 2013;14:209.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    44.
    Schulz K, Gerards S, Hundscheid M, Melenhorst J, de Boer W, Garbeva P. Calling from distance: attraction of soil bacteria by plant root volatiles. ISME J. 2018;12. https://doi.org/10.1038/s41396-017-0035-3.

    45.
    Erb M. Volatiles as inducers and suppressors of plant defense and immunity-origins, specificity, perception and signaling. Curr Opin Plant Biol. 2018;44:117–21.
    CAS  PubMed  Article  Google Scholar 

    46.
    Mithöfer A, Boland W. Do you speak chemistry? EMBO Rep. 2016;17:626–9.
    PubMed  PubMed Central  Article  CAS  Google Scholar  More

  • in

    Connectivity and population structure of albacore tuna across southeast Atlantic and southwest Indian Oceans inferred from multidisciplinary methodology

    1.
    Collette, B. & Nauen, C. Scombrids of the world—An annotated and illustrated catalogue of tunas, mackerels, bonitos and related species known to date. FAO Sp. Cat 2, 137 (1983).
    Google Scholar 
    2.
    ISSF. ISSF Tuna Stock Status Update, 2015: Status of the world fisheries for tuna. ISSF Technical Report 2015-03A. (International Seafood Sustainability Foundation, Washington, D.C., 2015).

    3.
    FAO. The State of World Fisheries and Aquaculture 2012. (2012).

    4.
    ISSF. Status of the world fisheries for tuna. ISSF Technical Report. 2019-07. International Seafood Sustainability Foundation, Washington, D.C., USA. https://iss-foundation.org/knowledge-tools/technical-and-meeting-reports/ (2019).

    5.
    ICCAT. ICCAT Report of the 2016 ICCAT North and South Atlantic Albacore stock assessment meeting. N & S Atlantic ALB stock assessment meeting–Madeira 2016. (2016).

    6.
    IOTC. Albacore executive summary. Status summary for species of tuna and tuna-like species under the IOTC mandate, as well as other species impacted by IOTC fisheries. (2016).

    7.
    IOTC. Albacore executive summary. Status summary species tuna and tuna species under iotc mandate well other species impacted by iotc fisheries. (2018).

    8.
    Nikolic, N. et al. Review of albacore tuna, Thunnus alalunga, biology, fisheries and management. Rev. Fish. Biol. Fisheries. 27, 775–810 (2016).
    Article  Google Scholar 

    9.
    Arrizabalaga, H., Lopez-Rodas, V., Costas, E. & González-Garcás, A. Use of genetic data to assess the uncertainty in stock assessments due to the assumed stock structure: The case of albacore (Thunnus alalunga) from the Atlantic Ocean. Fish. Bull. 105(1), 140–146 (2007).
    Google Scholar 

    10.
    Chow, S. & Kishino, H. Phylogenetic relationships between tuna species of the genus Thunnus (Scombridae: Teleostei): Inconsistent implications from morphology, nuclear and mitochondrial genomes. J. Mol. Evol. 41, 741–748 (1995).
    ADS  CAS  PubMed  Article  Google Scholar 

    11.
    Takagi, M., Okamura, T., Chow, S. & Taniguchi, N. Preliminary study of albacore (Thunnus alalunga) stock differentiation inferred from microsatellite DNA analysis. Fish. Bull. 99, 697–701 (2001).
    Google Scholar 

    12.
    Viñas, J., Bremer, J. A. & Pla, C. Inter-oceanic genetic differentiation among albacore (Thunnus alalunga) populations. Mar. Biol. 145, 225–232 (2004).
    Article  CAS  Google Scholar 

    13.
    Arrizabalaga, H. et al. Population structure of albacore, Thunnus alalunga, inferred from blood groups and tag recapture analyses. Mar. Ecol. Prog. Ser. 282, 245–252 (2004).
    ADS  Article  Google Scholar 

    14.
    Wu, G. C. C., Chiang, H. C., Chen, K. S., Hsu, C. C. & Yang, H. Y. Population structure of albacore (Thunnus alalunga) in the Northwestern Pacific Ocean inferred from mitochondrial DNA. Fish. Res. 95, 125–131 (2009).
    Article  Google Scholar 

    15.
    Davies, C. A., Gosling, E. M., Was, A., Brophy, D. & Tysklind, N. Microsatellite analysis of albacore tuna (Thunnus alalunga): Population genetic structure. Mar. Biol. 158, 2727–2740 (2011).
    Article  Google Scholar 

    16.
    Nikolic, N. & Bourjea, J. Differentiation of albacore stock: Review by oceanic regions. Collect. Vol. Sci. Pap. ICCAT 70(3), 1340–1354 (2014).
    Google Scholar 

    17.
    Pawson, M. G. & Jennings, S. A critique of methods for stock identification in marine capture fisheries. Fish. Res. 25, 203–217 (1996).
    Article  Google Scholar 

    18.
    Waldman, J. R. The importance of comparative studies in stock analysis. Fish. Res. 43, 237–246 (1999).
    Article  Google Scholar 

    19.
    Nielsen, E. E., Hemmer-Hansen, J., Larsen, P. F. & Bekkevold, D. Population genomics of marine fishes: Identifying adaptive variation in space and time. Mol. Ecol. 18, 3128–3150 (2009).
    PubMed  Article  Google Scholar 

    20.
    Waples, R. S. & Naish, K. A. Genetic and evolutionary considerations in fishery management: Research needs for the future. Future Fish. Sci. N. Am. 31, 427–451 (2009).
    Google Scholar 

    21.
    Montes, I. et al. Transcriptome analysis deciphers evolutionary mechanisms underlying genetic differentiation between coastal and offshore anchovy populations in the Bay of Biscay. Mar. Biol. 163, 205 (2016).
    Article  CAS  Google Scholar 

    22.
    Morita, S. On the relationship between the albacore stocks of the South Atlantic and Indian Oceans. Collect Vol. Sci. Pap. ICCAT 7, 232–237 (1977).
    Google Scholar 

    23.
    Gonzalez, E. G., Beerli, P. & Zardoya, R. Genetic structuring and migration patterns of Atlantic bigeye tuna, Thunnus obesus (Lowe, 1839). BMC Evol. Biol. 8, 252 (2008).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    24.
    Chow, S. & Ushiama, H. Global population structure of albacore (Thunnus alalunga) inferred by RFLP analysis of the mitochondrial ATPase gene. Mar. Biol. 123, 39–45 (1995).
    CAS  Article  Google Scholar 

    25.
    Graves, J. E. & Dizon, A. E. Mitochondrial DNA sequence similarity of Atlantic and Pacific albacore tuna (Thunnus alalunga). Can. J. Fish. Aquat. Sci. 46, 870–873 (1989).
    Article  Google Scholar 

    26.
    Viñas, J., Santiago, J. & Pla, C. Genetic characterization and Atlantic-Mediterranean stock structure of Albacore, Thunnus alalunga. Collect Vol. Sci. Pap. ICCAT. 49, 188–190 (1999).
    Google Scholar 

    27.
    Pujolar, J. M., Roldán, M. I. & Pla, C. Genetic analysis of tuna populations, Thunnus thynnus thynnus and T. alalunga. Mar. Biol. 3, 613–621 (2003).
    Article  Google Scholar 

    28.
    Nakadate, M. et al. Genetic isolation between Atlantic and Mediterranean albacore populations inferred from mitochondrial and nuclear DNA markers. J. Fish Biol. 66, 1545–1557 (2005).
    CAS  Article  Google Scholar 

    29.
    Abdul-Muneer, P. M. Application of microsatellite markers in conservation genetics and fisheries management: Recent advances in population structure analysis and conservation strategies. Genet. Res. Int. 2014, 691759 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    30.
    Albaina, A. et al. Single nucleotide polymorphism discovery in albacore and Atlantic bluefin tuna provides insights into worldwide population structure. Anim. Genet. 44, 678–692 (2013).
    CAS  PubMed  Article  Google Scholar 

    31.
    Laconcha, U. & Iriondo, M. New nuclear SNP markers unravel the genetic structure and effective population size of Albacore tuna (Thunnus alalunga). PLoS ONE 10, e0128247 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    32.
    Heincke, D. F. Naturgeschichte des herring. Abhandlungen Doutsch Seefisch Verein 2, 128–233 (1898).
    Google Scholar 

    33.
    Foote, C. J., Wood, C. C. & Withler, R. E. Biochemical genetic comparison of sockeye salmon and kokane, the anadromus and nonanadromus forms of Oncorhynchus nerka. Can. J. Fish. Aquat. Sci. 46, 149–158 (1989).
    Article  Google Scholar 

    34.
    Robinson, B. W. & Wilson, D. S. Genetic variation and phenotypic plasticity in a tropically polymorphic population of pumpkinseed sunfish (Lepomis gibbosus). Evol. Ecol. 10, 631–652 (1996).
    Article  Google Scholar 

    35.
    Cabral, H. N. et al. Genetic and morphologica variation of Synaptura lusitanica Capello, 1868, along the Portuguese coast. J. Sea Res. 50, 167–175 (2003).
    ADS  Article  Google Scholar 

    36.
    Dhurmeea, Z. et al. Reproductive biology of Albacore tuna (Thunnus alalunga) in the Western Indian Ocean. PLoS ONE 11, 0168605–0168610 (2016).
    Article  CAS  Google Scholar 

    37.
    Gonzalez, E. G. & Zardoya, R. Relative role of life-history traits and historical factors in shaping genetic population structure of sardines (Sardina pilchardus). BMC Evol. Biol. 7, 197 (2007).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    38.
    Young, E. F. et al. Oceanography and life history predict contrasting genetic population structure in two Antarctic fish species. Evol. Appl. 8, 486–509 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    39.
    Santos, A. M. P. et al. Sardine (Sardina pilchardus) larval dispersal in the Iberian Upwelling System, using coupled biophysical techniques. Prog. Oceanogr. 162, 83–97 (2018).
    ADS  Article  Google Scholar 

    40.
    Kaplan, D. M., Cuif, M. & Fauvelot, C. Uncertainty in empirical estimates of marine larval connectivity. ICES J. Mar. Sci 74(6), 1723–1734 (2016).
    Article  Google Scholar 

    41.
    Cowen, R. K., Paris, C. B. & Srinivasan, A. Scaling of connectivity in marine populations. Science 311, 522–527 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    42.
    Nickols, K. J., White, J. W., Largier, J. L. & Gaylord, B. Marine population connectivity: Reconciling large-scale dispersal and high self-retention. Am. Nat. 185, 196–211 (2015).
    PubMed  Article  Google Scholar 

    43.
    Nikolic, N. et al. GERMON project final report (GEnetic stRucture and Migration Of albacore tuna). IFREMER Re. 2015, 219 (2015).
    Google Scholar 

    44.
    Dhurmeea, Z. et al. Reproductive biology of albacore tuna (Thunnus. in alalunga) in the Western Indian Ocean. PLoS ONE 11(12), e0168605 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    45.
    Ueyanagi, S. Observations on the distribution of tuna larva in the Indo-Pacific Ocean with emphasis on the delineation of spawning areas of albacore, Thunnus alalunga. Bull. Far. Seas Fish. Res. Lab. 2, 177–219 (1969).
    Google Scholar 

    46.
    Bard, F. X. Le Thon Germon (Thunnus alalunga, Bonnaterre 1788) de l’Océan Atlantique. De la dynamique des populations à la stratégie démographique. Thèse de Doctorat d’Etat. Université Pierre et Marie Curie. (XI, 1981).

    47.
    Wu, C. L. & Kuo, C. L. Maturity and fecundity of albacore, Thunnus alalunga (Bonnaterre), from the Indian Ocean. J. Fish Soc. Taiwan 20(2), 135–151 (1993).
    Google Scholar 

    48.
    Lilliefors, H. W. On the Kolmogorov–Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc. 62, 399–402 (1967).
    Article  Google Scholar 

    49.
    Levene, H. Robust tests for equality of variances. In Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling (eds Olkin, I. et al.) 278–292 (Stanford University Press, Stanford, 1960).
    Google Scholar 

    50.
    Manly, B. Randomization bootstrap and Monte Carlo methods in biology (Chapman & Hall/CRC, Boca Raton, 2007).
    Google Scholar 

    51.
    Fay, M. P. & Shaw, P. A. Exact and Asymptotic Weighted Logrank Tests for Interval Censored Data: The Interval R Package. J. Stat. Softw. 36, 1–34 (2010).
    Article  Google Scholar 

    52.
    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, London, 2011).
    Google Scholar 

    53.
    Ogle, D. H. Introductory Fisheries Analyses with R (Chapman & Hall/CRC, Boca raton, 2016).
    Google Scholar 

    54.
    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn. (Springer, Berlin, 2002).
    Google Scholar 

    55.
    Ricker, W. E. Linear regression in fisheries research. J. Fish. Res. Board Can. 30, 409–434 (1973).
    Article  Google Scholar 

    56.
    Ricker, W. E. Methods for assessment of fish production in fresh waters. IBP Handbook N°3 (Blackwell Scientific Publications, Oxford and Edinburgh, 1968).
    Google Scholar 

    57.
    Rossiter, D. G. Technical note: Curve fitting with the R Environment for Statistical Computing. In Enschede (NL): 17, International Institute for Geo-information Science & Earth Observations (2009).

    58.
    Nikolic, N. et al. Discovery of genome-wide microsatellite markers in Scombridae: A pilot study on albacore tuna. PLoS ONE 10, e0141830 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    59.
    Rousset, F. Genepop’007: A complete reimplementation of the Genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).
    PubMed  Article  Google Scholar 

    60.
    Rousset, F. & Raymond, M. Testing heterozygote excess and deficiency. Genetics 140, 1413–1419 (1995).
    CAS  PubMed  PubMed Central  Google Scholar 

    61.
    Storey, J. D. A Direct Approach to False Discovery Rates. J. R. Stat. Soc. Ser. B Stat. Methodol. 64, 479–498 (2002).
    MathSciNet  MATH  Article  Google Scholar 

    62.
    Storey, J. D. The positive false discovery rate: A Bayesian interpretation and the q-value. Ann. Stat. 31, 2013–2035 (2003).
    MathSciNet  MATH  Article  Google Scholar 

    63.
    Storey, J. D. & Tibshirani, R. Statistical significance for genome wide studies. Proc. Natl. Acad. Sci. USA. 100, 9440–9445 (2003).
    ADS  MathSciNet  CAS  PubMed  MATH  Article  Google Scholar 

    64.
    Storey, J. D., Taylor, J. E. & Siegmund, D. Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: A unified approach. J. R. Stat. Soc. Ser. B Stat. Methodol. 66, 187–205 (2004).
    MathSciNet  MATH  Article  Google Scholar 

    65.
    Storey, J., Bass, A., Dabney, A. & Robinson, D. qvalue: Q-value Estimation for False Discovery Rate Control. https://github.com/jdstorey/qvalue (2019).

    66.
    Engels, W. R. Exact tests for Hardy-Weinberg proportions. Genetics 183, 1431–1441 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    67.
    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).
    CAS  PubMed  Google Scholar 

    68.
    Excoffier, L., Laval, G. & Schneider, S. Arlequin ver. 3.1: An integrated software package for population genetics data analysis. Evol. Bioinform. Online 1, 47–50 (2005).
    CAS  Article  Google Scholar 

    69.
    Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N. & Bonhomme, F. GENETIX, logiciel sous WindowsTM pour la génétique des populations. Laboratoire Génome, Populations, Interactions CNRS UMR 5000. (Université de, 1996).

    70.
    Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).
    CAS  PubMed  Article  Google Scholar 

    71.
    Jombart, T. & Ahmed, I. adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27(21), 3070–3071 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    72.
    Thioulouse, J., Chessel, D., Dolédec, S. & Olivier, J. M. ADE-4: A multivariate analysis and graphical display software. Stat. Comput. 7, 75–83 (1997).
    Article  Google Scholar 

    73.
    Pritchard, J. K., Stephens, P. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    74.
    Li, Y.-L. & Liu, J.-X. StructureSelector: A web-based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 18, 176–177 (2018).
    PubMed  Article  Google Scholar 

    75.
    Evanno, G. & Regnaut Sand Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).
    CAS  PubMed  Article  Google Scholar 

    76.
    Puechmaille, S. J. The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Mol. Ecol. Resour. 16, 608–627 (2016).
    PubMed  Article  Google Scholar 

    77.
    Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. CLUMPAK: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 5, 1179–1191 (2015).
    Article  CAS  Google Scholar 

    78.
    Takezaki, N., Nei, M. & Tamura, K. POPTREEW: Web version of POPTREE for constructing population trees from allele frequency data and computing some other quantities. Mol. Biol. Evol. 6, 1622–1624 (2014).
    Article  CAS  Google Scholar 

    79.
    Parks, D. H. et al. GenGIS 2: Geospatial analysis of traditional and genetic biodiversity, with new gradient algorithms and an extensible plugin framework. PLoS ONE 8, 69885 (2013).
    ADS  Article  CAS  Google Scholar 

    80.
    Takezaki, N., Nei, M. & Tamura, K. PopTree2: Software for constructing population trees from allele frequency data and computing other population statistics with Windows interface. Mol. Biol. Evol. 27, 747–752 (2010).
    CAS  PubMed  Article  Google Scholar 

    81.
    Peakall, R. & Smouse, P. GenAlEx 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).
    Article  Google Scholar 

    82.
    Mossman, C. A. & Waser, P. M. Genetic detection of sex-biased dispersal. Mol. Ecol. 8, 1063–1067 (1999).
    CAS  PubMed  Article  Google Scholar 

    83.
    R development Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, 2013). https://www.R-project.org.

    84.
    Gastwirth, J. L. et al. lawstat: Tools for Biostatistics. (Public Policy, and Law, 2017).

    85.
    Dray, S. & Dufour, A. B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22(4), 1–20 (2007).
    Article  Google Scholar 

    86.
    Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall/CRC, Boca Raton, 2006).
    Google Scholar 

    87.
    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73(1), 3–36 (2011).
    MathSciNet  MATH  Article  Google Scholar 

    88.
    Fournier, D. A. et al. AD Model Builder: Using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim. Methods Softw. 27, 233–249 (2012).
    MathSciNet  MATH  Article  Google Scholar 

    89.
    Skaug, H., Fournier, D., Nielsen, A., Magnusson, A. & Bolker, B. Generalized Linear Mixed Models using AD Model Builder. (2013).

    90.
    Chen, K.-Y. et al. assignPOP: An r package for population assignment using genetic, non-genetic, or integrated data in a machine-learning framework. Methods Ecol. Evol. 9, 439–446 (2018).
    Article  Google Scholar 

    91.
    Gibbs, R. & Colette, B. Comparative anatomy and systemics of the tunas, genus Thunnus. USA. Fish Wildl. Serv. Fish. Bull. 66, 65–130 (1967).
    Google Scholar 

    92.
    Cosgrove, R., Arregui, I., Arrizabalaga, H., Goni, N. & Sheridan, M. New insights to behaviour of North Atlantic albacore tuna (Thunnus alalunga) observed with pop-up satellite archival tags. Fish. Res. 150, 89–99 (2014).
    Article  Google Scholar 

    93.
    Schaefer, K. M. Reproductive biology of tunas. Fish Physiol. 19, 225–270 (2001).
    Article  Google Scholar 

    94.
    Ramon, D. & Bailey, K. Spawning seasonality of albacore, Thunnus alalunga, in the South Pacific Ocean. Fish. Bull. Natl. Oceanic Atmos. Admin. 94(4), 725–733 (1996).
    Google Scholar 

    95.
    Description and results. Ferry. Mercator global eddy permitting ocean reanalysis glorys1v1. Tech. Rep. Mercator Ocean Q. Newsl. 36, 15–28 (2010).
    Google Scholar 

    96.
    Gaspar, P. et al. Oceanic dispersal of juvenile leatherback turtles: Going beyond passive drift modeling. Mar. Ecol. Prog. Ser. 457, 265–284 (2012).
    ADS  Article  Google Scholar 

    97.
    Lalire, M. & Gaspar, P. Modeling the active dispersal of juvenile leatherback turtles in the North Atlantic Ocean. Mov. Ecol. 7, 7 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    98.
    Lehodey, P., Senina, L., Dragon, A. C. & Arrizabalaga, H. Spatially explicit estimates of stock size, structure and biomass of North Atlantic albacore tuna (Thunnus alalunga). Earth Syst. Sci. Data 6, 317–329 (2014).
    ADS  Article  Google Scholar 

    99.
    Ryman, N. & Palm, S. POWSIM: A computer program for assessing statistical power when testing for genetic differentiation. Mol. Ecol. Notes 6, 600–602 (2006).
    Article  Google Scholar 

    100.
    Saji, N. H., Goswami, B. N., Vinayachandran, P. N. & Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 401, 360 (1999).
    ADS  CAS  PubMed  Google Scholar 

    101.
    Li, J. et al. Impacts of the IOD-associated temperature and salinity anomalies on the intermittent equatorial undercurrent anomalies. Clim. Dyn. 51, 1391–1409 (2018).
    Article  Google Scholar 

    102.
    Schouten, M. W., de Ruijter, W. P., van Leeuwen, P. J. & Ridderinkhof, H. Eddies and variability in the Mozambique Channel. Deep Sea Res. Part II Top. Stud. Oceanogr. 50, 1987–2003 (2003).
    ADS  Article  Google Scholar 

    103.
    de Ruijter, W. P. M. et al. Eddies and dipoles around South Madagascar: Formation, pathways and large-scale impact. Deep Sea Res. Part I 51, 383–400 (2004).
    Article  Google Scholar 

    104.
    de Ruijter, W. P. M., Ridderinkhof, H., Lutjeharms, J. R. E., Schouten, M. W. & Veth, C. Observations of the flow in the Mozambique Channel: Observations in the Mozambique channel. Geophys. Res. Lett. 29, 140-1-140–3 (2002).
    Article  Google Scholar 

    105.
    Longhurst, A. R. Ecological Geography of the Sea (Academic Press, London, 2007).
    Google Scholar 

    106.
    New, A. et al. Physical and biochemical aspects of the flow across the Mascarene Plateau in the Indian Ocean. Philos. Trans. R Soc. Math. Phys. Eng. Sci. 363, 151–168 (2005).
    ADS  CAS  Google Scholar 

    107.
    Penney, A. J., Yeh, S. Y., Kuo, C. L. & Leslie, R. W. Relationships between albacore (Thunnus alalunga) stocks in the southern Atlantic and Indian Oceans. In Int Com Conserv AH Tuna Tuna Symp, Ponta Delgada, Azores (ed. Beckett, J. S.) 10–18 (1998).

    108.
    Postel, E. Sur deux lots de germon (Germo alalunga) capturés dans le Golfe de Guinée par les palangriers japonais. Cahiers ORSTOM Série Océanographique 2, 55–60 (1964).
    Google Scholar 

    109.
    Liorzou, B. Les nouveaux engins de pêche pour la capture du germon: Description, statistiques, impact sur le stock nord-Atlantique. Collect. Vol. Sci. Pap. 30(1), 203–217 (1989).
    Google Scholar 

    110.
    Koto, T. Studies on the albacore-XIV. Distribution and movement of the albacore in the Indian and the Atlantic Oceans based on the catch statistics of Japanese tuna long-line fishery. Bull. Far. Seas Fish. Res. Lab. 1, 115–129 (1969).
    Google Scholar 

    111.
    Conand, F. & Richards, W. J. Distribution of tuna larvae between Madagascar and the Equator, Indian Ocean. Biol. Oceanogr. 4, 321–336 (1982).
    Google Scholar 

    112.
    Shiohama, T. Overall fishing intensity and length composition of albacore caught by long line fishery. In The Indian Ocean, 1952–1982. IPTP, Vol. 22, 91–109 (1985).

    113.
    Fonteneau, A. A summarized presentation of the report of the 2nd. In IOTC WP of the Albacore Meeting held in Bangkok (2008).

    114.
    IOTC. Proposition: Résumé exécutive: GERMON. in IOTC, IOTC-2013-SC16-ES01 (2013).

    115.
    Nishikawa, Y., Honma, M., Ueyanagi, S. & Kikawa, S. Average distribution of larvae of oceanic species of scombroid fishes, 1956–1981. Far. Seas Fish. Res. Lab. 12, 1–99 (1985).
    Google Scholar 

    116.
    Nishida, T. & Tanaka, M. General reviews of Indian Ocean Albacore (Thunnus alalunga). IOTC-2004- WPTMT-03. (2004).

    117.
    Stéquert, B. & Marsac, F. La pêche de surface des thonidés tropicaux dans l’océan Indien. (1986).

    118.
    Fonteneau, A. & Marcille, J. Ressources, pêche et biologie des thonidés tropicaux de l’Atlantique centre-est. FAO Dot. Tech. Pêches 292. (1988).

    119.
    Hoyle, S., Sharma, R. & Herrera, M. Stock assessment of albacore tuna in the Indian Ocean for 2014 using stock synthesis. Indian Ocean Tuna Commission working party on temperate Tunas, Busan, Rep. of Korea, 28–31 July 2014, IOTC–2014–WPTmT05–24_Rev1. (2014).

    120.
    Montes, I. et al. Worldwide genetic structure of albacore (Thunnus alalunga) revealed by microsatellite DNA markers. Mar. Ecol. Prog. Ser. 471, 183–191 (2012).
    ADS  CAS  Article  Google Scholar 

    121.
    Carlsson, J. et al. Microsatellite and mitochondrial DNA analyses of Atlantic bluefin tuna (Thunnus thynnus thynnus) population structure in the Mediterranean Sea. Mol. Ecol. 13, 3345–3356 (2004).
    CAS  PubMed  Article  Google Scholar 

    122.
    Carlsson, J., McDowell, J. R., Carlsson, J. E. & Graves, J. E. Genetic identity of YOY bluefin tuna from the eastern and western Atlantic spawning areas. J. Hered. 98, 23–28 (2007).
    CAS  PubMed  Article  Google Scholar 

    123.
    Riccioni, G., Landi, M., Ferrara, G. & Milano, I. Spatio-temporal population structuring and genetic diversity retention in depleted Atlantic bluefin tuna of the Mediterranean Sea. Proc. Natl. Acad. Sci. USA 107, 2102–2107 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    124.
    Yeh, S. Y., Treng, T. D., Hui, C. F. & Penney, A. J. Mitochondrial DNA sequence analysis on Albacore, Thunnus alalunga, meat samples collected from the waters off western South Africa and the Eastern Indian Ocean. ICCAT Col. Vol. Sci. Pap. 46, 152–159 (1997).
    Google Scholar 

    125.
    Durand, J. D., Collet, A., Chow, S., Guinand, B. & Borsa, P. Nuclear and mitochondrial DNA markers indicated unidirectional gene flow of Indo-Pacific to Atlantic bigeye tuna (Thunnus obesus) populations, and their admixture off southern Africa. Mar. Biol. 147, 313–322 (2005).
    CAS  Article  Google Scholar 

    126.
    Poulsen, N. A., Nielsen, E. E., Schierup, M. H., Loeschcke, V. & Gronkjaer, P. Long-term stability and effective population size in North Sea and Baltic Sea cod (Gadus morhua). Mol. Ecol. 15, 321–331 (2006).
    CAS  PubMed  Article  Google Scholar 

    127.
    Chow, S., Okamoto, H., Miyabe, N., Hiramatsu, K. & Barut, N. Genetic divergence between Atlantic and Indo-Pacific stocks of bigeye tuna (Thunnus obesus) and admixture around South Africa. Mol. Ecol. 9, 221–227 (2000).
    CAS  PubMed  Article  Google Scholar 

    128.
    Graham, M. H., Dayton, P. K. & Erlandson, J. M. Ice ages and ecological transitions on temperate coasts. Trends Ecol. Evol. 18, 33–40 (2003).
    Article  Google Scholar 

    129.
    Siddall, M. et al. Sea-level fluctuations during the last glacial cycle. Nature 423, 853–858 (2003).
    ADS  CAS  PubMed  Article  Google Scholar 

    130.
    Rohfritsch, A. & Borsa, P. Genetic structure of Indian scad mackerel Decapterus russelli: Pleistocene vicariance and secondary contact in the Central Indo-West Pacific Seas. Heredity 95, 315–326 (2005).
    CAS  PubMed  Article  Google Scholar 

    131.
    Janko, K. et al. Did glacial advances during the Pleistocene influence differently the demographic histories of benthic and pelagic Antarctic shelf fishes?—Inferences from intraspecific mitochondrial and nuclear DNA sequence diversity. BMC Evol. Biol. 7, 220 (2007).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    132.
    Ravago-Gotanco, R. G. & Juinio-Meñez, M. A. Phylogeography of the mottled spinefoot Siganus fuscescens: Pleistocene divergence and limited genetic connectivity across the Philippine archipelago. Mol. Ecol. 19, 4520–4534 (2010).
    CAS  PubMed  Article  Google Scholar 

    133.
    Pedrosa-Gerasmio, I. R., Agmata, A. B. & Santos, M. D. Genetic diversity, population genetic structure, and demographic history of Auxis thazard (Perciformes), Selar crumenophthalmus (Perciformes), Rastrelliger kanagurta (Perciformes) and Sardinella lemuru (Clupeiformes) in Sulu-Celebes Sea inferred by mitochondrial DNA sequences. Fish. Res. 162, 64–74 (2015).
    Article  Google Scholar 

    134.
    Barth, J. M. I., Damerau, M., Matschiner, M., Jentoft, S. & Hanel, R. Genomic differentiation and demographic histories of Atlantic and Indo-Pacific yellowfin tuna (Thunnus albacares) populations. Genome Biol. Evol. 9(4), 1084–1098 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    135.
    West, W. MSc thesis. Genetic stock structure and estimation of abundance of swordfish (Xiphias gladius) in South Africa. https://open.uct.ac.za/handle/11427/20432. (2016).

    136.
    Silva, D. M. et al. Evaluation of IMTA-produced seaweeds (Gracilaria, Porphyra, and Ulva) as dietary ingredients in Nile tilapia, Oreochromis niloticus L., juveniles. Effects on growth performance and gut histology. J. Appl. Phycol. 27, 1671–1680 (2015).
    CAS  Article  Google Scholar 

    137.
    Bourjea, J. et al. Phylogeography of the green turtle, Chelonia mydas, in the Southwest Indian Ocean. Mol. Ecol. 16, 175–186 (2007).
    CAS  PubMed  Article  Google Scholar 

    138.
    Rudomiotkina, G. P. Distribution of larval tunas (Thunnidae, Perciformes) in the Central-Atlantic Ocean. Int. Council Explor. Sea (ICES), Pelagic Fish (S.) Committee, J. 15 (1973).

    139.
    Piccinetti, C. & Piccinetti-Manfrin, G. Relation entre œufs et larves de thonidés et hydrologie en Méditerranée. CNEXO 8, 9–12 (1979).
    Google Scholar 

    140.
    Mullins, R. B., McKeown, N. J., Sauer, W. H. H. & Shaw, P. W. Genomic analysis reveals multiple mismatches between biological and management units in yellowfin tuna (Thunnus albacares). ICES J. Mar. Sci. 75, 2145–2152 (2018).
    Article  Google Scholar 

    141.
    Fonteneau, A. An overview of Indian Ocean albacore: Fisheries, stocks and research. IOTC-2004-WPTMT-02. (2004).

    142.
    Clemens, H. B. The migration, age and growth of Pacific albacore (Thunnus germo), 1951–1958. (1961).

    143.
    Talbot, F. H. & Penrith, M. J. Tunnies and Marlins of South Africa. Nature 193, 558–559 (1962).
    ADS  Article  Google Scholar 

    144.
    Flittner, G. A. Review of the 1962 seasonal movement of albacore tuna off the Pacific coast of the United States. Commer. Fish. Rev. 25(4), 7–13 (1963).
    Google Scholar 

    145.
    Laurs, R. M. & Lynn, R. J. Seasonal migration of North Pacific albacore, Thunnus alalunga, into North America coastal waters: Distribution, relative abundance and association with transition zone waters. US Fish. Bull. 75, 795–822 (1977).
    Google Scholar 

    146.
    Johnsson, J. H. Sea temperatures and the availability of albacore (Thunnus germo) off the coasts of Oregon and Washington. Paper presented to the Pacific Tuna biology conference (1961).

    147.
    Santiago, J. Dinamica de la poblacion de atun blanco (Thunnus alalunga, Bonaterre 1788) del Atlantico Norte. Thèse de Doctorat, Euskal Erico (2004).

    148.
    Boyce, D., Tittensor, D. P. & Worm, B. Effects of temperature on global patterns of tuna and billfish richness. Mar. Ecol. Prog. Ser. 355, 267–276 (2008).
    ADS  Article  Google Scholar 

    149.
    Childers, J., Snyder, S. & Kohin, S. Migration and behavior of juvenile North Pacific albacore (Thunnus alalunga). Fish. Oceanogr. 20, 157–173 (2011).
    Article  Google Scholar 

    150.
    Hauser, L. & Carvalho, G. R. Paradigm shifts in marine fisheries genetics: Ugly hypotheses slain by beautiful facts. Fish Fish. 9, 333–362 (2008).
    Article  Google Scholar 

    151.
    Logan, C. A., Alter, S. E., Haupt, A. J., Tomalty, K. & Palumbi, S. R. An impediment to consumer choice: Overfished species are sold as Pacific red snapper. Biol. Conserv. 141, 1591–1599 (2008).
    Article  Google Scholar 

    152.
    Primmer, C. R., Koskinen, M. T. & Piironen, J. The one that did not get away: Individual assignment using microsatellite data detects a case of fishing competition fraud. Proc. Biol. Sci. 267, 1699–1704 (2000).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    153.
    Carvalho, G. R. & Hauser, L. Molecular genetics and the stock concept in fisheries. in Molecular Genetics in Fisheries (eds. Carvalho, G. R. & Pitcher, T. J.) 55–79 (1995).

    154.
    Waples, R. S., Punt, A. E. & Cope, J. M. Integrating genetic data into management of marine resources: How can we do it better?. Fish Fish. 9, 423–449 (2008).
    Article  Google Scholar 

    155.
    Chouvelon, T. et al. Chemical contaminants (trace metals, persistent organic pollutants) in albacore tuna from western Indian and south-eastern Atlantic Oceans: Trophic influence and potential as tracers of populations. Sci. Total Environ. 597, 481–495 (2017).
    ADS  Article  CAS  Google Scholar 

    156.
    Penrith, M. J. G. The systematics and biology of the South African Tunas. (Masters Dissertation, University of Cape Town, 1963).

    157.
    IOTC. Report of the Fifteenth Session of the IOTC Scientific Committee. (2012).

    158.
    Stequert, B. & Marsac, F. Tropical tuna—surface fisheries in the Indian Ocean. Fisheries Technical Paper FAO, 282 (1989).

    159.
    Pecoraro, C. et al. The population genomics of yellowfin tuna (Thunnus albacares) at global geographic scale challenges current stock delineation. Sci. Rep. 8, 13890 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar  More

  • in

    Nutritional benefit of fungal spores for honey bee workers

    1.
    Gallai, N., Salles, J.-M., Settele, J. & Vaissière, B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821 (2009).
    Article  Google Scholar 
    2.
    Klein, D. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 274, 303–313. https://doi.org/10.1098/rspb.2006.3721 (2007).
    Article  Google Scholar 

    3.
    Southwick, E. E. & Southwick, L. Estimating the economic value of honey bees (Hymenoptera: Apidae) as agricultural pollinators in the United States. J. Econ. Entomol. 85, 621–633 (1992).
    Article  Google Scholar 

    4.
    Brodschneider, R. & Crailsheim, K. Nutrition and health in honey bees. Apidologie 41, 278–294. https://doi.org/10.1051/apido/2010012 (2010).
    Article  Google Scholar 

    5.
    Smart, M., Pettis, J., Rice, N., Browning, Z. & Spivak, M. Linking measures of colony and individual honey bee health to survival among apiaries exposed to varying agricultural land use. PLoS ONE 11, e0152685. https://doi.org/10.1371/journal.pone.0152685 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    6.
    Di Pasquale, G. et al. Influence of pollen nutrition on honey bee health: do pollen quality and diversity matter?. PLoS ONE 8, e72016. https://doi.org/10.1371/journal.pone.0072016 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    7.
    Simone-Finstrom, M. et al. Migratory management and environmental conditions affect lifespan and oxidative stress in honey bees. Sci. Rep. 6, 32023 (2016).
    ADS  CAS  Article  Google Scholar 

    8.
    de Vere, N. et al. Using DNA metabarcoding to investigate honey bee foraging reveals limited flower use despite high floral availability. Sci. Rep. 7, 42838. https://doi.org/10.1038/srep42838 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    9.
    Ahn, K., Xie, X., Riddle, J., Pettis, J. & Huang, Z. Y. Effects of long distance transportation on honey bee physiology. Psyche A J. Entomol. 2012, 1–9 (2012).
    Article  Google Scholar 

    10.
    Vaudo, A. D., Tooker, J. F., Grozinger, C. M. & Patch, H. M. Bee nutrition and floral resource restoration. Curr. Opin. Insect. Sci. 10, 133–141 (2015).
    Article  Google Scholar 

    11.
    Shaw, D. E. The incidental collection of fungal spores by bees and the collection of spores in lieu of pollen. Bee World 71, 158–176 (1990).
    Article  Google Scholar 

    12.
    Shaw, D. E. Bees and fungi, with special reference to certain plant pathogens. Aust. Plant Pathol. 28, 269–282. https://doi.org/10.1071/ap99044 (1999).
    Article  Google Scholar 

    13.
    Parker, R. L. The collection of pollen by the honey bee. Memoir: Cornell University Agricultural experiment Station 98, 1–55 (1926).

    14.
    Doull, K. M. An analysis of bee behaviour as it relates to pollination in The Indispensable pollinators (ed Warren L.O.). Report 9th Pollination Conference 12-15 (Hot Springs, Arkansas 1970).

    15.
    Inouye, D. W., Gill, D. E., Dudash, M. R. & Fenster, C. B. A model and lexicon for pollen fate. Am. J. Bot. 81, 1517–1530 (1994).
    Article  Google Scholar 

    16.
    Westerkamp, C. P. Pollen in bee flower relations. Some considerations on melittophily. Botanica. Acta 109, 325–332 (1996).
    Article  Google Scholar 

    17.
    Thorp, R. W. The collection of pollen by bees. Plant Syst. Evol. 222, 211–223 (2000).
    Article  Google Scholar 

    18.
    Portman, Z. M. & Tepedino, V. J. Convergent evolution of pollen transport mode in two distantly related bee genera (Hymenoptera: Andrenidae and Melittidae). Apidologie 48, 461–472 (2017).
    Article  Google Scholar 

    19.
    Schmidt, J. O., Thoenes, S. C. & Levin, M. D. Survival of honey bees, Apis mellifera (Hymenoptera: Apidae), fed various pollen sources. Ann. Entomol. Soc. Am. 80, 176–183 (1987).
    Article  Google Scholar 

    20.
    Renzi, M. T. et al. Combined effect of pollen quality and thiamethoxam on hypopharyngeal gland development and protein content in Apis mellifera. Apidologie 47, 779–788 (2016).
    CAS  Article  Google Scholar 

    21.
    Hrassnigg, N. & Crailsheim, K. Adaptation of hypopharyngeal gland development to the brood status of honeybee (Apis mellifera L.) colonies. J Insect Physiol 44, 929–939 (1998).

    22.
    Heylen, K., Gobin, B., Arckens, L., Huybrechts, R. & Billen, J. The effects of four crop protection products on the morphology and ultrastructure of the hypopharyngeal gland of the European honeybee, Apis mellifera. Apidologie 42, 103–116 (2011).
    CAS  Article  Google Scholar 

    23.
    Hoover, S. E., Higo, H. A. & Winston, M. L. Worker honey bee ovary development: seasonal variation and the influence of larval and adult nutrition. J. Comput. Physiol. B 176, 55–63 (2006).
    Article  Google Scholar 

    24.
    Modro, A. F. H., Silva, I. C., Message, D. & Luz, C. F. P. Saprophytic fungus collection by africanized bees in Brazil. Neotrop. Entomol. 38, 434–436 (2009).
    Article  Google Scholar 

    25.
    Gasparoto, M. C. G. et al. Honeybees can spread Colletotrichum acutatum and C. gloeosporioides among citrus plants. Plant Pathol. 66, 777–782. https://doi.org/10.1111/ppa.12625 (2017).
    CAS  Article  Google Scholar 

    26.
    Brouwers, E. Measurement of hypopharyngeal gland activity in the honeybee. J. Apic. Res. 21, 193–198 (1982).
    Article  Google Scholar 

    27.
    Pernal, S. F. & Currie, R. W. Pollen quality of fresh and 1-year-old single pollen diets for worker honey bees (Apis mellifera L.). Apidologie 31, 387–409. https://doi.org/10.1051/apido:2000130 (2000).
    Article  Google Scholar 

    28.
    Bartnicki-Garcia, S. Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu. Rev. Microbiol. 22, 87–108 (1968).
    CAS  Article  Google Scholar 

    29.
    Page, R. E. Jr. & Peng, C.Y.-S. Aging and development in social insects with emphasis on the honey bee, Apis mellifera L. Exp. Gerontol. 36, 695–711 (2001).
    Article  Google Scholar 

    30.
    Schmidt, L. S., Schmidt, J. O., Rao, H., Wang, W. & Xu, L. Feeding preference and survival of young worker honey bees (Hymenoptera: Apidae) fed rape, sesame, and sunflower pollen. J. Econ. Entomol. 88, 1591–1595 (1995).
    Article  Google Scholar 

    31.
    Goulson, D., Nicholls, E., Botias, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957. https://doi.org/10.1126/science.1255957 (2015).
    CAS  Article  PubMed  Google Scholar 

    32.
    Kleinschmidt, G., Kondos, A., Harden, J. & Turner, J. Colony management for eucalypt honey flows. Aust. Beekeeper 75, 261–264 (1974).
    Google Scholar 

    33.
    Anke, S., Niemüller, D., Moll, S., Hänsch, R. & Ober, D. Polyphyletic origin of pyrrolizidine alkaloids within the Asteraceae. Evidence from differential tissue expression of homospermidine synthase. Plant Physiol. 136, 4037–4047 (2004).

    34.
    Boppré, M., Colegate, S. M. & Edgar, J. A. Pyrrolizidine alkaloids of Echium vulgare honey found in pure pollen. J. Agr. Food. Chem. 53, 594–600 (2005).
    Article  Google Scholar 

    35.
    Hartmann, T. & Ober, D. Biosynthesis and metabolism of pyrrolizidine alkaloids in plants and specialized insect herbivores in Topics in Current Chemistry: Biosynthesis—Aromatic Polyketides, Isoprenoids, Alkaloids (ed Vederas J.C. Leeper F.J.) 207–243 (Springer, Berlin 2000).

    36.
    Praz, C. J., Müller, A. & Dorn, S. Specialized bees fail to develop on non-host pollen: do plants chemically protect their pollen. Ecology 89, 795–804 (2008).
    Article  Google Scholar 

    37.
    San-Blas, G., Guanipa, O., Moreno, B., Pekerar, S. & San-Blas, F. Cladosporium carrionii and Hormoconis resinae (C. resinae): cell wall and melanin studies. Curr. Microbiol. 32, 11–16 (1996).
    CAS  Article  Google Scholar 

    38.
    Szaniszlo, P., Cooper, B. & Voges, H. S. Chemical compositions of the hyphal walls of three chromomycosis agents. Sabouraudia: J Med Vet Mycol 10, 94–102 (1972).

    39.
    Soltanian, S., Stuyven, E., Cox, E., Sorgeloos, P. & Bossier, P. Beta-glucans as immunostimulant in vertebrates and invertebrates. Crit. Rev. Microbiol. 35, 109–138 (2009).
    CAS  Article  Google Scholar 

    40.
    Mazzei, M. et al. Effect of 1, 3–1, 6 β-glucan on natural and experimental deformed wing virus infection in newly emerged honeybees (Apis mellifera ligustica). PLoS ONE 11, e0166297 (2016).
    Article  Google Scholar 

    41.
    Stevanovic, J. et al. The effect of Agaricus brasiliensis extract supplementation on honey bee colonies. Anais da Academia Brasileira de Ciências 90, 219–229 (2018).
    CAS  Article  Google Scholar 

    42.
    Erdtman, G. Handbook of Palynology: Morphology, Taxonomy, Ecology (Munksgaard, Copenhagen, 1969).
    Google Scholar 

    43.
    Kearns, C. A. & Inouye, D. W. Techniques for pollination biologists. (University Press of Colorado, 1993).

    44.
    APSA. Australasian Pollen and Spore Atlas, (2007).

    45.
    Graystock, P. et al. Hygienic food to reduce pathogen risk to bumblebees. J. Invert. Pathol. 136, 68–73. https://doi.org/10.1016/j.jip.2016.03.007 (2016).
    CAS  Article  Google Scholar 

    46.
    Meeus, I. et al. Gamma irradiation of pollen and eradication of Israeli acute paralysis virus. J. Invert. Pathol. 121, 74–77. https://doi.org/10.1016/j.jip.2014.06.012 (2014).
    Article  Google Scholar 

    47.
    Bradstreet, R. B. Kjeldahl method for organic nitrogen. Anal. Chem. 26, 185–187 (1954).
    CAS  Article  Google Scholar 

    48.
    National Center for Biotechnology Information (NCBI)[Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; [1988]–[October 2019]. Available from: https://www.ncbi.nlm.nih.gov/

    49.
    Bensch, K. et al. Cladosporium species in indoor environments. Stud. Mycol. 89, 177–301 (2018).
    CAS  Article  Google Scholar 

    50.
    Scheuerell, S. J. & Mahaffee, W. F. Variability associated with suppression of gray mold (Botrytis cinerea) on geranium by foliar applications of nonaerated and aerated compost teas. Plant Dis. 90, 1201–1208 (2006).
    Article  Google Scholar 

    51.
    Preston, F. W. The volume of an egg. AOS 91, 132–138. https://doi.org/10.2307/4084667 (1974).
    Article  Google Scholar 

    52.
    R Core Team. R: A Language and Environment for Statistical Computing. v. 1.2.1335 (Vienna, Austria; 2019).

    53.
    Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge University Press, Cambridge, 2002).
    Google Scholar  More

  • in

    Parasite intensity drives fetal development and sex allocation in a wild ungulate

    1.
    Stien, A. et al. The impact of gastrointestinal nematodes on wild reindeer: experimental and cross-sectional studies. J. Anim. Ecol. 71, 937–945 (2002).
    Article  Google Scholar 
    2.
    Budischak, S. A., O’Neal, D., Jolles, A. E. & Ezenwa, V. O. Differential host responses to parasitism shape divergent fitness costs of infection. Funct. Ecol. 32, 324–333 (2018).
    Article  Google Scholar 

    3.
    Albon, S. D. et al. The role of parasites in the dynamics of a reindeer population. Proc. R. Soc. Lond. B 269, 1625–1632 (2002).
    CAS  Article  Google Scholar 

    4.
    Festa-Bianchet, M. Numbers of lungworm larvae in feces of bighorn sheep: yearly changes, influence of host sex, and effects on host survival. Can. J. Zool. 69, 547–554 (1991).
    Article  Google Scholar 

    5.
    Richner, H., Oppliger, A. & Christe, P. Effect of an ectoparasite on reproduction in great tits. J. Anim. Ecol. 62, 703–710 (1993).
    Article  Google Scholar 

    6.
    Fitze, P. S., Tschirren, B. & Richner, H. Life history and fitness consequences of ectoparasites. J. Anim. Ecol. 73, 216–226 (2004).
    Article  Google Scholar 

    7.
    Patterson, J. E. H., Neuhaus, P., Kutz, S. J. & Ruckstuhl, K. E. Parasite removal improves reproductive success of female North American red squirrels (Tamiasciurus hudsonicus). PLoS ONE 8, e55779 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Gilbert, S. F. Ecological developmental biology: developmental biology meets the real world. Dev. Biol. 233, 1–12 (2001).
    CAS  PubMed  Article  Google Scholar 

    9.
    Monaghan, P. Early growth conditions, phenotypic development and environmental change. Philos Trans. R. Soc. Lond. B Biol. Sci. 363, 1635–1645 (2008).
    PubMed  Article  Google Scholar 

    10.
    Bowers, E. K. et al. Neonatal body condition, immune responsiveness, and hematocrit predict longevity in a wild bird population. Ecology 95, 3027–3034 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    11.
    Gluckman, P. D., Hanson, M. A., Morton, S. M. B. & Pinal, C. S. Life-long echoes–a critical analysis of the developmental origins of adult disease model. Neonatology 87, 127–139 (2005).
    Article  Google Scholar 

    12.
    Gluckman, P. D., Hanson, M. A. & Beedle, A. S. Early life events and their consequences for later disease: A life history and evolutionary perspective. Am. J. Hum. Biol. 19, 1–19 (2007).
    PubMed  Article  Google Scholar 

    13.
    Lindström, J. Early development and fitness in birds and mammals. Trends Ecol. Evol. 14, 343–348 (1999).
    PubMed  Article  Google Scholar 

    14.
    Wu, G., Bazer, F. W., Wallace, J. M. & Spencer, T. E. Board-invited review: intrauterine growth retardation: implications for the animal sciences. J. Anim. Sci. 84, 2316–2337 (2006).
    CAS  PubMed  Article  Google Scholar 

    15.
    Greenwood, P. L. & Bell, A. W. Prenatal nutritional influences on growth and development of ruminants. Recent Adv. Animal Nutr. Aust. 14, 57 (2003).
    Google Scholar 

    16.
    Alexander, G. & Williams, D. Heat stress and development of the conceptus in domestic sheep. J. Agric. Sci. 76, 53–72 (1971).
    Article  Google Scholar 

    17.
    Holland, M. D. & Odde, K. G. Factors affecting calf birth weight: a review. Theriogenology 38, 769–798 (1992).
    CAS  PubMed  Article  Google Scholar 

    18.
    Reynolds, L. P., Ferrell, C. L., Nienaber, J. A. & Ford, S. P. Effects of chronic environmental heat stress on blood flow and nutrient uptake of the gravid bovine uterus and foetus. J. Agric. Sci. 104, 289–297 (1985).
    Article  Google Scholar 

    19.
    Johnson, J. S. et al. The impact of in utero heat stress and nutrient restriction on progeny body composition. J. Therm. Biol. 53, 143–150 (2015).
    PubMed  Article  Google Scholar 

    20.
    Lindström, J. & Kokko, H. Sexual reproduction and population dynamics: the role of polygyny and demographic sex differences. Proc. Biol. Sci. 265, 483–488 (1998).
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    de Figueiredo, P., Ficht, T. A., Rice-Ficht, A., Rossetti, C. A. & Adams, L. G. Pathogenesis and Immunobiology of Brucellosis: Review of Brucella-Host Interactions. Am. J. Pathol. 185, 1505–1517 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    22.
    Donahoe, S. L., Lindsay, S. A., Krockenberger, M., Phalen, D. & Šlapeta, J. A review of neosporosis and pathologic findings of Neospora caninum infection in wildlife. Int. J. Parasitol. Parasites Wildl. 4, 216–238 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Robbins, C. T. & Robbins, B. L. Fetal and Neonatal Growth Patterns and Maternal Reproductive Effort in Ungulates and Subungulates. Am. Nat. 114, 101–116 (1979).
    Article  Google Scholar 

    24.
    Martin, R. D. & MacLarnon, A. M. Gestation period, neonatal size and maternal investment in placental mammals.pdf. Nature 313, 220–223 (1985).
    ADS  Article  Google Scholar 

    25.
    O’Callaghan, D. & Boland, M. P. Nutritional effects on ovulation, embryo development and the establishment of pregnancy in ruminants. Anim. Sci. 68, 299–314 (1999).
    Article  Google Scholar 

    26.
    Blackwell, A. D. Helminth infection during pregnancy: insights from evolutionary ecology. Int. J. Womens Health 8, 651–661 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    27.
    Booksmythe, I., Mautz, B., Davis, J., Nakagawa, S. & Jennions, M. D. Facultative adjustment of the offspring sex ratio and male attractiveness: a systematic review and meta-analysis. Biol. Rev. Camb. Philos. Soc. 92, 108–134 (2017).
    PubMed  Article  Google Scholar 

    28.
    Trivers, R. L. & Willard, D. E. Natural selection of parental ability to vary the sex ratio of offspring. Science 179, 90–92 (1973).
    ADS  CAS  PubMed  Article  Google Scholar 

    29.
    Silk, J. B. Local Resource Competition and Facultative Adjustment of Sex Ratios in Relation to Competitive Abilities. Am. Nat. 121, 56–66 (1983).
    Article  Google Scholar 

    30.
    Ryan, C. P., Anderson, W. G., Gardiner, L. E. & Hare, J. F. Stress-induced sex ratios in ground squirrels: support for a mechanistic hypothesis. Behav. Ecol. 23, 160–167 (2012).
    Article  Google Scholar 

    31.
    Cameron, E. Z. Facultative adjustment of mammalian sex ratios in support of the Trivers-Willard hypothesis: evidence for a mechanism. Proc. Biol. Sci. 271, 1723–1728 (2004).
    PubMed  PubMed Central  Article  Google Scholar 

    32.
    Schwanz, L. E. & Robert, K. A. Proximate and ultimate explanations of mammalian sex allocation in a marsupial model. Behav. Ecol. Sociobiol. 68, 1085–1096 (2014).
    Article  Google Scholar 

    33.
    Silk, J. B. & Brown, G. R. Local resource competition and local resource enhancement shape primate birth sex ratios. Proc. Biol. Sci. 275, 1761–1765 (2008).
    PubMed  PubMed Central  Google Scholar 

    34.
    Ruckstuhl, K. E., Colijn, G. P., Amiot, V. & Vinish, E. Mother’s occupation and sex ratio at birth. BMC Public Health 10, 269 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    35.
    Flegr, J. & Kaňková, Š. The effects of toxoplasmosis on sex ratio at birth. Early Hum. Dev. 141, 104874 (2020).
    CAS  PubMed  Article  Google Scholar 

    36.
    Kanková, S. et al. Women infected with parasite Toxoplasma have more sons. Naturwissenschaften 94, 122–127 (2007).
    ADS  PubMed  Article  CAS  Google Scholar 

    37.
    Kanková, S. et al. Influence of latent toxoplasmosis on the secondary sex ratio in mice. Parasitology 134, 1709–1717 (2007).
    PubMed  Article  Google Scholar 

    38.
    Simmons, N. M., Bayer, M. B. & Sinkey, L. O. Demography of Dall’s Sheep in the Mackenzie Mountains Northwest Territories. J. Wildl. Manage 48, 156–162 (1984).
    Article  Google Scholar 

    39.
    Aleuy, O. A. et al. Diversity of gastrointestinal helminths in Dall’s sheep and the negative association of the abomasal nematode, Marshallagia marshalli, with fitness indicators. PLoS ONE 13, e0192825 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    40.
    Geist, V. Mountain Sheep: A Study in Behavior and Evolution (University of Chicago Press, Chicago, 1971).
    Google Scholar 

    41.
    Rachlow, J. L. & Bowyer, R. T. Interannual Variation in Timing and Synchrony of Parturition in Dall’s Sheep. J. Mammal. 72, 487–492 (1991).
    Article  Google Scholar 

    42.
    Goodrowe, K. L., Smak, B., Presley, N. & Nlonfort, S. L. Reproductive, behavioral, and endocrine characteristics of the Dall’s Sheep (Ovis dalli). Zoo Biol. 15, 45–54 (1996).
    Article  Google Scholar 

    43.
    Bunnell, F. L. & Nichols, L. Natural history of thinhorn sheep. In Mountain sheep of North America (ed. Valdez, R.) 23–77 (University of Arizona Press, Arizona, 1999).
    Google Scholar 

    44.
    Ernakovich, J. G. et al. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Glob. Chang. Biol. 20, 3256–3269 (2014).
    ADS  PubMed  Article  Google Scholar 

    45.
    Kutz, S. J. et al. Invasion, establishment, and range expansion of two parasitic nematodes in the Canadian Arctic. Glob. Chang. Biol. 19, 3254–3262 (2013).
    PubMed  Google Scholar 

    46.
    Kutz, S. J. et al. The Arctic as a model for anticipating, preventing, and mitigating climate change impacts on host–parasite interactions. Vet. Parasitol. 163, 217–228 (2009).
    PubMed  Article  Google Scholar 

    47.
    Altizer, S., Ostfeld, R. S., Johnson, P. T. J., Kutz, S. & Harvell, C. D. Climate change and infectious diseases: from evidence to a predictive framework. Science 341, 514–519 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    48.
    Parker, K. L., Barboza, P. S. & Gillingham, M. P. Nutrition integrates environmental responses of ungulates. Funct. Ecol. 23, 57–69 (2009).
    Article  Google Scholar 

    49.
    Pettorelli, N., Pelletier, F. & von Hardenberg, A. Early onset of vegetation growth vs. rapid green-up: impacts on juvenile mountain ungulates. Ecology 88(2), 381–390 (2007).
    PubMed  Article  Google Scholar 

    50.
    Sanchez, G. PLS Path Modeling with R. (Trowchez Editions, Berkeley, 2013). http://www.gastonsanchez.com/PLSPathModelingwithR.pdf.

    51.
    Tenenhaus, M., Vinzi, V. E., Chatelin, Y.-M. & Lauro, C. PLS path modeling. Comput. Stat. Data Anal. 48, 159–205 (2005).
    MathSciNet  MATH  Article  Google Scholar 

    52.
    Hair, J. F., Ringle, C. M. & Sarstedt, M. Partial least squares structural equation modeling: rigorous applications, better results and higher acceptance. Long Range Plann. 46, 1–12 (2013).
    Article  Google Scholar 

    53.
    Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118, 1883–1891 (2009).
    Article  Google Scholar 

    54.
    Labocha, M. K., Schutz, H. & Hayes, J. P. Which body condition index is best?. Oikos 123, 111–119 (2014).
    Article  Google Scholar 

    55.
    Sanchez, G., Trinchera, L. & Russolillo, G. plspm: Tools for partial least squares path modeling (PLS-PM). R package version 0.4. https://doi.org/10.1111/j.1600-0706.2013.00755.x (2017).
    Article  Google Scholar 

    56.
    Lê, S., Josse, J., Husson, F. Facto. & Mine, R. An R Package for multivariate analysis. J. Stat. Softw. https://doi.org/10.18637/jss.v025.i0 (2008).
    Article  Google Scholar 

    57.
    Clutton-Brock, T. H., Albon, S. D. & Guinness, F. E. Maternal dominance, breeding success and birth sex ratios in red deer. Nature 308, 358–360 (1984).
    ADS  Article  Google Scholar 

    58.
    De Roos, A. M., Galic, N. & Heesterbeek, H. How resource competition shapes individual life history for nonplastic growth: ungulates in seasonal food environments. Ecology 90, 945–960 (2009).
    PubMed  Article  Google Scholar 

    59.
    Festa-Bianchet, M. Individual Differences, Parasites, and the Costs of Reproduction for Bighorn Ewes (Ovis canadensis). J. Anim. Ecol. 58, 785–795 (1989).
    Article  Google Scholar 

    60.
    Festa-Bianchet, M., Jorgenson, J. T. & Wuhart, W. D. Early weaning in bighorn sheep, Ovis canadensis affects growth of males but not of females. Behav. Ecol. 5, 21–27 (1994).
    Article  Google Scholar 

    61.
    Singer, F. J., Williams, E., Miller, M. W. & Zeigenfuss, L. C. Population Growth, Fecundity, and Survivorship in Recovering Populations of Bighorn Sheep. Restor. Ecol. 8, 75–84 (2000).
    Article  Google Scholar 

    62.
    Simmons, N. M. Seasonal Ranges of Dall’s Sheep, Mackenzie Mountains Northwest Territories. Arctic 35, 512–518 (1982).
    Article  Google Scholar 

    63.
    Neilsen, C. & Neiland, K. Sheep Disease Report, Project Progress Report, Federal Aid in Wildlife Restoration. (1974).

    64.
    Kutz, S. J. et al. Chapter 2: parasites in ungulates of Arctic North America and Greenland—a view of contemporary diversity, ecology, and impact in a world under change. In Adv Parasit (ed. Rollinson, D.) 99–252 (Academic Press, Cambridge, 2012).
    Google Scholar 

    65.
    Moradpour, N., Borji, H., Razmi, G., Maleki, M. & Kazemi, H. The effect of Marshallagia marshalli on Serum Gastrin concentrations in experimentally infected lambs. J. Parasitol. 102, 436–439 (2016).
    CAS  PubMed  Article  Google Scholar 

    66.
    Moradpour, N., Borji, H., Razmi, G., Maleki, M. & Kazemi, H. Pathophysiology of Marshallagia marshalli in experimentally infected lambs. Parasitology 140, 1762–1767 (2013).
    PubMed  Article  Google Scholar 

    67.
    Simcock, D. C. et al. Hypergastrinaemia, abomasal bacterial population densities and pH in sheep infected with Ostertagia circumcincta. Int. J. Parasitol. 29, 1053–1063 (1999).
    CAS  PubMed  Article  Google Scholar 

    68.
    Jacobs, D., Fox, M., Gibbons, L. & Hermosilla, C. Principles of Veterinary Parasitology (Wiley, Hoboken, 2015).
    Google Scholar 

    69.
    Berger, T. Fertilization in ungulates. Anim. Reprod. Sci. 42, 351–360 (1996).
    MathSciNet  Article  Google Scholar 

    70.
    Hayward, A. D. Causes and consequences of intra- and inter-host heterogeneity in defence against nematodes. Parasite Immunol. https://doi.org/10.1111/pim.12054 (2013).
    Article  PubMed  Google Scholar 

    71.
    Hayward, A. D. et al. Natural selection on individual variation in tolerance of gastrointestinal nematode infection. PLoS Biol. 12, e1001917 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    72.
    Reimers, E. Growth rate and body size differences in Rangifer, a study of causes and effects. Rangifer 3, 3–15 (1983).
    Article  Google Scholar 

    73.
    Sontakke, S. D. Monitoring and controlling ovarian activities in wild ungulates. Theriogenology 109, 31–41 (2018).
    PubMed  Article  Google Scholar 

    74.
    Festa-Bianchet, M. Birthdate and survival in bighorn lambs (Ovis canadensis). J. Zool. 214, 653–661 (1988).
    Article  Google Scholar 

    75.
    Feder, C., Martin, J. G. A., Festa-Bianchet, M., Bérubé, C. & Jorgenson, J. Never too late? Consequences of late birthdate for mass and survival of bighorn lambs. Oecologia 156, 773–781 (2008).
    ADS  PubMed  Article  Google Scholar 

    76.
    Hewison, A. J. M. & Gaillard, J.-M. Successful sons or advantaged daughters? The Trivers-Willard model and sex-biased maternal investment in ungulates. Trends Ecol. Evol. 14, 229–234 (1999).
    CAS  PubMed  Article  Google Scholar 

    77.
    Leimar, O. Life-history analysis of the Trivers and Willard sex-ratio problem. Behav. Ecol. 7, 316–325 (1996).
    Article  Google Scholar 

    78.
    Sheldon, B. C. & West, S. A. Maternal dominance, maternal condition, and offspring sex ratio in ungulate mammals. Am. Nat. 163, 40–54 (2004).
    PubMed  Article  Google Scholar 

    79.
    Julliard, R. Sex-specific dispersal in spatially varying environments leads to habitat-dependent evolutionary stable offspring sex ratios. Behav. Ecol. 11, 421–428 (2000).
    Article  Google Scholar 

    80.
    Schindler, S. et al. Sex-specific demography and generalization of the Trivers-Willard theory.PDF. Nature 526, 249–252 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    81.
    Festa-Bianchet, M. Offspring sex ratio studies of mammals: Does publication depend upon the quality of the research or the direction of the results?. Écoscience 3, 42–44 (1996).
    Article  Google Scholar 

    82.
    Douhard, M. Offspring sex ratio in mammals and the Trivers-Willard hypothesis: In pursuit of unambiguous evidence. Bioessays 39(9), 1700043 (2017).
    Article  Google Scholar 

    83.
    Larson, M. A., Kimura, K., Michael Kubisch, H. & Michael Roberts, R. Sexual dimorphism among bovine embryos in their ability to make the transition to expanded blastocyst and in the expression of the signaling molecule IFN-τ. Proc. Natl. Acad. Sci. U. S. A. 98, 9677–9682 (2001).

    84.
    Cameron, E. Z., Lemons, P. R., Bateman, P. W. & Bennett, N. C. Experimental alteration of litter sex ratios in a mammal. Proc. Biol. Sci. 275, 323–327 (2008).
    PubMed  Google Scholar 

    85.
    Shea-Donohue, T., Qin, B. & Smith, A. Parasites, nutrition, immune responses and biology of metabolic tissues. Parasite Immunol. 39, e12422 (2017).
    Article  Google Scholar 

    86.
    Lafferty, K. D. The ecology of climate change and infectious diseases. Ecology 90, 888–900 (2009).
    PubMed  Article  Google Scholar 

    87.
    Kutz, S. J., Hoberg, E. P., Molnár, P. K., Dobson, A. & Verocai, G. G. A walk on the tundra: Host–parasite interactions in an extreme environment. Int. J. Parasitol. Parasites Wildl. 3, 198–208 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    88.
    Hoar, B. M., Ruckstuhl, K. & Kutz, S. Development and availability of the free-living stages of Ostertagia gruehneri, an abomasal parasite of barrenground caribou (Rangifer tarandus groenlandicus), on the Canadian tundra. Parasitology 139, 1093–1100 (2012).
    PubMed  Article  Google Scholar 

    89.
    Rose, H., Hoar, B., Kutz, S. J. & Morgan, E. R. Exploiting parallels between livestock and wildlife: Predicting the impact of climate change on gastrointestinal nematodes in ruminants. Int. J. Parasitol. Parasites Wildl. 3, 209–219 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    90.
    Morgan, E. R. et al. Assessing risks of disease transmission between wildlife and livestock: The Saiga antelope as a case study. Biol. Conserv. 131, 244–254 (2006).
    Article  Google Scholar  More

  • in

    COVID19: an announced pandemic

    1.
    Barrett, R., Kuzawa, C. W., McDade, T. & Armelagos, G. J. Emerging and re-emerging infectious diseases: the third epidemiologic transition. Annu. Rev. Anthropol. 27, 247–271 (1998).
    Article  Google Scholar 
    2.
    McMichael, A. J. Human culture, ecological change, and infectious disease: are we experiencing history’s fourth great transition? Ecosyst. Health 7, 107–115 (2001).
    Article  Google Scholar 

    3.
    Horby, P. W., Hoa, N. ., Pfeiffer, D. U. & Wertheim, H. F. L. Drivers of emerging zoonotic infectious diseases. Confronting Emerging Zoonoses (eds Yamada, A., Kahn, L., Kaplan, B., Monath, T., Woodall, J. & Conti, L.) (Springer Press, Tokyo, 2014).

    4.
    Wilcox, B. A. & Gubler, D. J. Disease ecology and the global emergence of zoonotic pathogens. Environ. Health Prev. Med. 10, 263–272 (2005).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    5.
    Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–994 (2008).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    6.
    Wilcox, B. A. & Colwell, R. R. Emerging and reemerging infectious diseases: biocomplexity as an interdisciplinary paradigm. Ecohealth 2, 244–257 (2005).
    PubMed Central  Article  PubMed  Google Scholar 

    7.
    Hooper, D. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).
    PubMed  Article  CAS  Google Scholar 

    8.
    Keesing, F., Holt, R. D. & Ostfeld, R. S. Effects of species diversity on disease risk. Ecol. Lett. 9, 485–498 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    9.
    Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    10.
    Woo, P. C. et al. Molecular diversity of coronaviruses in bats. Virology 351, 180–187 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    11.
    Wolfe, N. D., Daszak, P., Kilpatrick, A. M. & Burke, D. S. Bushmeat hunting, deforestation, and prediction of zoonotic disease emergence. Emerg. Infect. Dis. 11, 1822–1827 (2005).
    PubMed  PubMed Central  Article  Google Scholar 

    12.
    Lai, M. M. C. & Cavanagh, D. The molecular biology of coronaviruses. Adv. Virus Res. 48, 1–100 (1997).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    13.
    Ziebuhr, J. The Coronavirus replicase. Curr. Top. Microbiol. Immunol. 287, 57–94 (2005).
    PubMed  CAS  Google Scholar 

    14.
    Brian, D. A. & Baric, R. S. Coronavirus genome structure and replication. Curr. Top. Microbiol. Immunol. 287, 1–30 (2005).
    PubMed  CAS  Google Scholar 

    15.
    Li, W. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450–454 (2003).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    16.
    Walls, A. et al. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature 531, 114–117 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    17.
    Hoffmann, M., Hofmann-Winkler, H. & Poehlmann, S. Priming time: how cellular proteases arm coronavirus spike proteins, in Activation of viruses by host proteases. (eds Eva Boettger –Friebertsaeuser, Wolfgang Gartner, Hans Dieter Klenk) 71-–98 (Springer, Cham, 2018).

    18.
    Li, F., Li, W., Farzan, M. & Harrison, S. C. Interactions between Sars coronavirus and its receptors. Adv. Exp. Med. Biol. 581, 229–234 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    19.
    Hoffmann, M. et al. SARS-CoV-2 Cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 1–10 (2020).
    Article  CAS  Google Scholar 

    20.
    Hoffmann, M. et al. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. Preprint at BioRxiv https://doi.org/10.1101/2020.01.31.929042 (2020).

    21.
    Snijder, E. J., Decroly, E. & Ziebhur, J. The nonstructural proteins directing coronavirus RNA synthesis and processing. Adv. Virus Res. 96, 59–126 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    22.
    Gao, Y. et al. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 368, 779–782 (2020).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    23.
    Yin, W. et al. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Preprint at BioRxiv https://doi.org/10.1101/2020.04.08.032763 (2020).

    24.
    Zhang, X. et al. Nucleocapsid protein of SARS.CoV activates Interleukin-6 expression through cellular transcription factor NF-kB. Virology 365, 324–335 (2007).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    25.
    Ge, X. Y. et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503, 535–538 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    26.
    Menachery, V. D. et al. SARS-like WIV1-CoV poised for human emergence. Proc. Natl Acad. Sci. USA 113, 3048–3053 (2016).
    PubMed  Article  CAS  Google Scholar 

    27.
    Yang, X.-L. et al. Isolation and characterization of a novel bat coronavirus closely related to the direct progenitor of severe acute respiratory syndrome coronavirus. J. Virol. 90, 3253–3256 (2016).
    PubMed Central  Article  CAS  PubMed  Google Scholar 

    28.
    Li, W. et al. Bats are natural reservoirs of SARS-like coronaviruses. Science 310, 676–679 (2005).
    PubMed  Article  CAS  Google Scholar 

    29.
    Lau, S. K. P. et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl Acad. Sci. USA 102, 14040–14045 (2005).
    PubMed  Article  CAS  Google Scholar 

    30.
    Tang, X. C. et al. Prevalence and genetic diversity of coronaviruses in bats from China. J. Virol. 80, 7481–7490 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    31.
    Cui, J., Li, F. & Shi, Z. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 181–192 (2019).
    PubMed  Article  CAS  Google Scholar 

    32.
    Zhou, H. et al. A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the Spike protein. Curr. Biol. 30, 2196–2203 (2020).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    33.
    Wang, N. et al. Serological evidence of bat SARS-related Coronavirus infection in humans, China. Virol. Sin. 33, 104–107 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    34.
    Joyjinda, Y. et al. First complete genome sequence of human coronavirus HKU1 from a non hill bat guano miner in Thailand. Microbiol. Resour. Announc. 8, 1–3 (2019).
    Article  Google Scholar 

    35.
    Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C. & Garry, R. F. The proximal origin of SARS-CoV-2. Nat. Med. 26, 450–452 (2020).
    PubMed  Article  CAS  Google Scholar 

    36.
    Guan, Y. et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302, 276–278 (2003).
    PubMed  Article  CAS  Google Scholar 

    37.
    Centers for Disease Control. Prevalence of IgG antibody to SARS-associated coronavirus in animal traders: Guangdong Province, China. MMWR 52, 986–987 (2003).
    Google Scholar 

    38.
    Normile, D. Viral DNA match spurs China’s civet roundup. Science 303, 292 (2004).
    PubMed  Article  CAS  Google Scholar 

    39.
    Watts, J. China culls wild animals to prevent new SARS threat. Lancet 363, 134 (2004).
    PubMed  PubMed Central  Article  Google Scholar 

    40.
    Xu, H. F. et al. An epidemiologic investigation on infection with severe acute respiratory syndrome coronavirus in wild animals traders in Guangzhou. Zhonghua Yu Fang Yi Xue Za Zhi 38, 81–83 (2004).
    PubMed  Google Scholar 

    41.
    Wu, D. et al. Civets are equally susceptible to experimental infection by two different severe acute respiratory syndrome coronavirus isolates. J. Virol. 79, 2620–26255 (2005).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    42.
    Kan, B. et al. Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms. J. Virol. 79, 11892–11900 (2005).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    43.
    Wang, L. F. et al. Review of bats and SARS. Emerg. Infect. Dis. 12, 1834–1840 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    44.
    Tommy, T. L. et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 583, 282–285 (2020).
    Article  CAS  Google Scholar 

    45.
    Liu, P. et al. Are pangolins the intermediate host of the 2019 novel coronavirus (SARS-CoV-2)? PLOS Pathog. 16, 1–13 (2020).
    Google Scholar 

    46.
    Damas, J. et al. Broad host range of SARS-CoV-2 predicted Comparative and structural analysis of ACE2 in vertebrates. Preprint at BioRxiv https://doi.org/10.1101/2020.04.16.045302 (2020).

    47.
    Lee, J. et al. No evidence of coronaviruses or other potentially zoonotic viruses in Sunda pangolins (Manis javanica) entering the wildlife trade via Malaysia. Preprint at BioRxiv https://doi.org/10.1101/2020.06.19.158717 (2020).

    48.
    Xiang, X. Sichuan villager capture 33 bats isolated from their homes and have eaten them. Morning Post (February, 2020).

    49.
    Xu, D. Huanan market has more than a dozen of wildlife animals. China Business Network (March, 2020).

    50.
    Zhang, L., Zhu, G., Jones, G. & Zhang, S. Conservation of bats in China: problems and recommendations. Oryx 43, 179–182 (2009).
    Article  Google Scholar 

    51.
    Yu, W. B., Tang, G. D., Zhang, L. & Corlett, R. T. Decoding the evolution and transmissions of the novel pneumonia coronavirus (SARS-CoV-2/HCoV-19) using whole genomic data. Zool. Res. 41, 247–257 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    52.
    Chen, W. et al. SARS-associated coronavirus transmitted from human to pig. Emerg. Infect. Dis. 11, 446–448 (2005).
    PubMed  PubMed Central  Article  Google Scholar 

    53.
    Ling, H. Beijing Xinfa wholesale market temporarily closed! Imported salmon case board detected with new coronavirus. Science and Technology Daily Beijing (2020).

    54.
    Josephine M. Coronavirus: China’s first confirmed COVID-19 case traced back to November 17th. South China Morning Post (2020).

    55.
    Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506 (2020).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    56.
    Cohen, J. Wuhan seafood market may not be source of novel virus spreading globally. Science 367, 234–235 (2020).
    PubMed  Article  CAS  Google Scholar 

    57.
    Deslandes, A. et al. SARS-CoV-2 was already spreading in France in late December 2019. Int. J. Antimicrob. Agents https://doi.org/10.1016/j.ijantimicag.2020.106006 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    58.
    Forster, P., Forster, L., Renfrew, C. & Forster, M. M. Phylogenetic network analysis of SARS-CoV-2 genomes. Proc. Natl Acad. Sci. USA 117, 9241–9243 (2020).
    PubMed  Article  CAS  Google Scholar 

    59.
    Korber, B. et al. Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2. Preprint at BioRxiv https://doi.org/10.1101/2020.04.29.069054 (2020).

    60.
    Bhattacharyya, C., et al. Global spread of SARS-CoV-2 subtype with spike protein mutation D614G is shaped by human genomic variations that regulate expression of TMPRSS2 and MX1 genes. Preprint at BioRxiv https://doi.org/10.1101/2020.05.04.075911 (2020).

    61.
    Zhang, L. et al. The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. Preprint at BioRxiv https://doi.org/10.1101/2020.06.12.148726 (2020).

    62.
    Balboni, A., Palladini, A., Bogliani, G. & Battilani, M. Detection of a virus related to betacoronaviruses in Italian greater horseshoe bats. Epidemiol. Infect. 139, 216–219 (2011).
    PubMed  Article  CAS  Google Scholar 

    63.
    Mousavizadeh, L. & Ghasemi, S. Genotype and phenotype of COVID-19: Their role in patghogenesis. J. Microbiol. Immunol. Infection, 1–5 https://doi.org/10.1016/j.jmil.2020.03.022 (2020).

    64.
    Ellinghaus D. et al. Genome-wide association study of severe COVID-19 with respiratory failure. N. Engl. J. Med., 1–13 https://doi.org/10.1056/NEJMoa2020283 (2020).

    65.
    Zeberg, H. & Paabo, S. The major genetic risk factor for severe COVID-19 is inherited from Neandertals. Preprint at BioRxiv https://doi.org/10.1101/2020.07.03.186296 (2020).

    66.
    Drexler, J. F. et al. Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. J. Virol. 84, 11336–11349 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    67.
    Pfefferle, S. et al. Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats. Ghana. Emerg. Infect. Dis. 15, 1377–1384 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    68.
    Quan, P. L. et al. Identification of a severe acute respiratory syndrome coronavirus-like virus in a leaf-nosed bat in Nigeria. mBio 1(4), e00208–e00210 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    69.
    Ren, W. et al. Full-length genome sequences of two SARS-like coronaviruses in horseshoe bats and genetic variation analysis. J. Gen. Virol. 87, 3355–3359 (2006).
    PubMed  Article  CAS  Google Scholar 

    70.
    Wu, Z. et al. ORF8-related genetic evidence for Chinese horseshoe bats as the source of human severe acute respiratory syndrome coronavirus. J. Infect. Dis. 213, 579–583 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    71.
    Lau, S. K. P. et al. Severe acute respiratory syndrome (SARS) coronavirus ORF8 protein is acquired from SARS-related coronavirus from greater horseshoe bats through recombination. J. Virol. 89, 10532–10547 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar  More

  • in

    Ethnopharmacological study of native medicinal plants and the impact of pastoralism on their loss in arid to semiarid ecosystems of southeastern Iran

    1.
    Asfaw, Z. & Tadesse, M. Prospects for sustainable use and development of wild food plants in Ethiopia. Econ. Bot. 55, 47–62 (2001).
    Article  Google Scholar 
    2.
    Della, A., Paraskeva-Hadjichambi, D. & Hadjichambis, A. C. An ethnobotanical survey of wild edible plants of Paphos and Larnaca countryside of Cyprus. J. Ethnobiol. Ethnomed. 2, 34 (2006).
    PubMed  PubMed Central  Article  Google Scholar 

    3.
    WHO. Health of Indigenous Peoples. Factsheets No 326 (World Health Organisation, Geneva, 2007).
    Google Scholar 

    4.
    Kawarty, A. M. A. M. A., Behçet, L. & Cakilcioğlu, U. An ethnobotanical survey of medicinal plants in Ballakayati (Erbil, North Iraq). Turk. J. Bot. 44, 345–357 (2020).
    Article  Google Scholar 

    5.
    Satıl, F. & Selvi, S. Ethnobotanical features of Ziziphora L. (Lamiaceae) Taxa in Turkey. Int. J. Nat. Life Sci. 4, 56–65 (2020).
    Google Scholar 

    6.
    Baytop, T. Therapy with Medicinal Plants in Turkey (Past and Present) (Nobel Medicine Publication, Istanbul, 1999).
    Google Scholar 

    7.
    Nikbakht, A., Kafi, M. & Haghighi, M. The abilities and potentials of medicinal plants production and herbal medicine in Iran. Acta Hortic. 790, 259–262. https://doi.org/10.17660/actahortic.2008.790.38 (2008).
    Article  Google Scholar 

    8.
    Zeder, M. A. & Hesse, B. The initial domestication of goats (Capra hircus) in the Zagros mountains 10,000 years ago. Science 287, 2254–2257 (2000).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Rÿser, R. C. Indigenous people and traditional knowledge. Berkshire Encyclopedia of Sustainability. https://www.academia.edu/841635/Indigenous_and_Traditional_Knowledge (2011).

    10.
    Gemedo-Dalle, T., Maass, B. L. & Isselstein, J. Plant biodiversity and ethnobotany of Borana pastoralists in Southern Oromia, Ethiopia. Econ. Bot. 59, 43–65 (2005).
    Article  Google Scholar 

    11.
    Little, P. D. Pastoral ecologies: Rethinking interdisciplinary paradigms and the political ecology of pastoralism in East Africa. In African Savannas: Global Narratives and Local Knowledge of Environmental Change (eds Bassett, T. J. & Crummey, D.) 161–177 (James Currey, Oxford, 2003).
    Google Scholar 

    12.
    Boardman, J., Poesen, J. & Evans, R. Socio-economic factors in soil erosion and conservation. Environ. Sci. Policy 6, 1–6 (2003).
    Article  Google Scholar 

    13.
    Gaikwad, J. et al. Combining ethnobotany and informatics to discover knowledge from data. In Ethnomedicinal Plants: Revitalizing of Traditional Knowledge of Herbs (eds Rai, M. et al.) 447–457 (Science Publishers, Enfield, 2011).
    Google Scholar 

    14.
    Brouwer, N. et al. An ethnopharmacological study of medicinal plants in New South Wales. Molecules 10, 1252–1262 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Lambert, J., Srivastava, J. P. & Vietmeyer, N. Medicinal plants. World Bank Technical Papers (1997).

    16.
    Walter, K. S. & Gillett, H. J. 1997 IUCN Red List of Threatened Plants (IUCN, World Conservation Union, Cambridge, 1998).
    Google Scholar 

    17.
    Ansari-Renani, H. R., Rischkowsky, B., Mueller, J. P., Momen, S. M. S. & Moradi, S. Nomadic pastoralism in southern Iran. Pastor. Res. Policy Pract. 3, 11 (2013).
    Article  Google Scholar 

    18.
    Tashakkori, A. & Teddlie, C. SAGE Handbook of Mixed Methods in Social & Behavioral Research (SAGE, Thousand Oaks, 2010).
    Google Scholar 

    19.
    Rechinger, K.H. (ed.) Flora Iranica (Graz, 1963–2012).

    20.
    Assadi, M. et al. (eds.). Flora of Iran: No 1-89 (Iran Research Institute of Forests and Rangelands, Tehran , 1989–2016).

    21.
    Napagoda, M. T., Sundarapperuma, T., Fonseka, D., Amarasiri, S. & Gunaratna, P. An ethnobotanical study of the medicinal plants used as anti-inflammatory remedies in Gampaha District, Western Province, Sri Lanka. Scientifica (Cairo) 2018, 9395052 (2018).
    Google Scholar 

    22.
    Bano, A. et al. Quantitative ethnomedicinal study of plants used in the skardu valley at high altitude of Karakoram-Himalayan range, Pakistan. J. Ethnobiol. Ethnomed. 10, 43 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Reyes-García, V., Huanca, T., Vadez, V., Leonard, W. & Wilkie, D. Cultural, practical, and economic value of wild plants: A quantitative study in the Bolivian Amazon. Econ. Bot. 60, 62–74 (2006).
    Article  Google Scholar 

    24.
    Tardío, J. & Pardo-de-Santayana, M. Cultural importance indices: A comparative analysis based on the useful wild plants of Southern Cantabria (Northern Spain). Econ. Bot. 62, 24–39 (2008).
    Article  Google Scholar 

    25.
    Parthasarathy, N. & Karthikeyan, R. Biodiversity and population density of woody species in a tropical evergreen forest in Courtallum reserve forest, Western Ghats, India. Trop. Ecol. 38, 297–306 (1997).
    Google Scholar 

    26.
    González-Hernández, M. P., Mouronte, V., Romero, R., Rigueiro-Rodríguez, A. & Mosquera-Losada, M. R. Plant diversity and botanical composition in an Atlantic heather-gorse dominated understory after horse grazing suspension: Comparison of a continuous and rotational management. Glob. Ecol. Conserv. 23, e01134 (2020).
    Article  Google Scholar 

    27.
    Davies, K. W., Bates, J. D. & Boyd, C. S. Response of planted sagebrush seedlings to cattle grazing applied to decrease fire probability. Rangel. Ecol. Manag. https://doi.org/10.1016/j.rama.2020.05.002 (2020).
    Article  Google Scholar 

    28.
    Hailu, H. Analysis of vegetation phytosociological characteristics and soil physico-chemical conditions in Harishin Rangelands of Eastern Ethiopia. Land 6, 4 (2017).
    Article  Google Scholar 

    29.
    Spellmeier, J., Périco, E., Haetinger, C., Freitas, E. M. & Morás, A. P. B. Effect of grazing on the plant community of a southern Brazilian swamp. Floresta e Ambiente 26, e20180339 (2019).
    Article  Google Scholar 

    30.
    Curtis, J. T. & McIntosh, R. P. An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 32, 476–496 (1951).
    Article  Google Scholar 

    31.
    Mishra, R. Ecology Workbook (IBH Publishing Company, Oxford, 1968).
    Google Scholar 

    32.
    Murphy, K. P. Machine Learning a Probabilistic Perspective (MIT Press, Cambridge, 2012).
    Google Scholar 

    33.
    Tang, C., Yi, Y., Yang, Z. & Sun, J. Risk analysis of emergent water pollution accidents based on a Bayesian network. J. Environ. Manag. 165, 199–205 (2016).
    Article  Google Scholar 

    34.
    Taylor, D., Hicks, T. & Champod, C. Using sensitivity analyses in Bayesian networks to highlight the impact of data paucity and direct future analyses: A contribution to the debate on measuring and reporting the precision of likelihood ratios. Sci. Justice 56, 402–410 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    35.
    Alimirzaei, F., Mohammadi Kalayeh, A., Shahraki, M. R. & Behmanesh, B. Local knowledge of medicinal plants from the point of view of nomads in the rangelands of Chehel-Kaman, North Khorasan province. J. Indig. Knowl. 4, 156–201 (2017).
    Google Scholar 

    36.
    Hosseini, M., Forouzeh, R. & Barani, H. Identification and investigation of ethnobotany of some medicinal plants in Razavi Khorasan Province. J. Med. Plants 18, 212–231 (2019).
    Google Scholar 

    37.
    Okoye, T. C., Uzor, P. F., Onyeto, C. A. & Okereke, E. K. Safe African medicinal plants for clinical studies. In Toxicological Survey of African Medicinal Plants (ed. Kuete, V.) 535–555 (Elsevier, Amsterdam, 2014).
    Google Scholar 

    38.
    Freidin, B. & Timmermans, S. Complementary and alternative medicine for children’s asthma: Satisfaction, care provider responsiveness, and networks of care. Qual. Health Res. 18, 43–55 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    39.
    Simbo, D. J. An ethnobotanical survey of medicinal plants in Babungo, Northwest Region, Cameroon. J. Ethnobiol. Ethnomed. 6, 8 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    40.
    Tangjitman, K., Wongsawad, C., Kamwong, K., Sukkho, T. & Trisonthi, C. Ethnomedicinal plants used for digestive system disorders by the Karen of northern Thailand. J. Ethnobiol. Ethnomed. 11, 27 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Chen, Y. et al. Phytochemical profiles and antioxidant activities in six species of ramie leaves. PLoS ONE 9, e108140–e108140 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    42.
    Bahmani, M., Baharvand-Ahmadi, B., Tajeddini, P., Rafieian-Kopaei, M. & Naghdi, N. Identification of medicinal plants for the treatment of kidney and urinary stones. J. Ren. Inj. Prev. 5, 129–133 (2016).
    PubMed  Article  Google Scholar 

    43.
    Ahmed, H. M. Ethnopharmacobotanical study on the medicinal plants used by herbalists in Sulaymaniyah Province, Kurdistan, Iraq. J. Ethnobiol. Ethnomed. 12, 8 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    44.
    Nimrouzi, M. & Zarshenas, M. M. Phytochemical and pharmacological aspects of Descurainia sophia Webb ex Prantl: Modern and traditional applications. Avicenna J. Phytomed. 6, 266–272 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    45.
    Miraj, S. & Kiani, S. Pharmacological activities of Carum carvi L. Der. Pharm. Lett. 8, 135–138 (2016).
    CAS  Google Scholar 

    46.
    de Lucena, R. F. P., de Lima Araújo, E. & de Albuquerque, U. P. Does the local availability of woody Caatinga plants (Northeastern Brazil) explain their use value. Econ. Bot. 61, 347–361 (2007).
    Article  Google Scholar 

    47.
    Thomas, E., Vandebroek, I. & Van Damme, P. valuation of forests and plant species in Indigenous Territory and National Park Isiboro-Sécure, Bolivia. Econ. Bot. 63, 229–241 (2009).
    Article  Google Scholar 

    48.
    Berlin, B. The common flora = the medicinal flora: Theoretical implications of a comparison of medical ethnobotanical and general floristic surveys in the Chiapas Highlands. In Symposium “Ethnobotany of southern Mexico” (Society of Economic Botany, 2003).

    49.
    Guèze, M. et al. Are ecologically important tree species the most useful? A case study from indigenous people in the Bolivian Amazon. Econ. Bot. 68, 1–15 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    50.
    Ouarghidi, A., Powell, B., Martin, G. J. & Abbad, A. Traditional sustainable harvesting knowledge and distribution of a vulnerable wild medicinal root (A. pyrethrum var. pyrethrum) in Ait M’hamed Valley, Morocco. Econ. Bot. 71, 83–95 (2017).
    Article  Google Scholar 

    51.
    Posthouwer, C., Verheijden, T. M. S. & van Andel, T. R. A rapid sustainability assessment of wild plant extraction on the Dutch Caribbean Island of St. Eustatius. Econ. Bot. 70, 320–331 (2016).
    Article  Google Scholar 

    52.
    Papageorgiou, D., Bebeli, P. J., Panitsa, M. & Schunko, C. Local knowledge about sustainable harvesting and availability of wild medicinal plant species in Lemnos Island, Greece. J. Ethnobiol. Ethnomed. 16, 36 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    53.
    Donaghy, D. J. & Fulkerson, W. J. The importance of water-soluble carbohydrate reserves on regrowth and root growth of Lolium perenne (L.). Grass Forage Sci. 52, 401–407 (1997).
    CAS  Article  Google Scholar 

    54.
    González-Tejero, M. R. et al. Medicinal plants in the Mediterranean area: Synthesis of the results of the project Rubia. J. Ethnopharmacol. 116, 341–357 (2008).
    PubMed  Article  Google Scholar 

    55.
    Tuttolomondo, T. et al. Ethnobotanical investigation on wild medicinal plants in the Monti Sicani Regional Park (Sicily, Italy). J. Ethnopharmacol. 153, 568–586 (2014).
    PubMed  Article  Google Scholar 

    56.
    Weber, K. T. & Horst, S. Desertification and livestock grazing: The roles of sedentarization, mobility and rest. Pastor. Res. Policy Pract. 1, 19 (2011).
    Article  Google Scholar 

    57.
    Miara, M. D., Bendif, H., Ait Hammou, M. & Teixidor-Toneu, I. Ethnobotanical survey of medicinal plants used by nomadic peoples in the Algerian steppe. J. Ethnopharmacol. 219, 248–256 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    58.
    Rana, D., Bhatt, A. & Lal, B. Ethnobotanical knowledge among the semi-pastoral Gujjar tribe in the high altitude (Adhwari’s) of Churah subdivision, district Chamba, Western Himalaya. J. Ethnobiol. Ethnomed. 15, 10 (2019).
    PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Two hundred and fifty-four metagenome-assembled bacterial genomes from the bank vole gut microbiota

    1.
    Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Hird, S. M. Evolutionary biology needs wild microbiomes. Front. Microbiol. 8, 1–10 (2017).
    Article  Google Scholar 

    3.
    Clemente, J. C., Ursell, L. K., Parfrey, L. W. & Knight, R. The impact of the gut microbiota on human health: An integrative view. Cell 148, 1258–1270 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Marchesi, J. R. et al. The gut microbiota and host health: A new clinical frontier. Gut 65, 330–339 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    5.
    Lee, W. J. & Hase, K. Gut microbiota-generated metabolites in animal health and disease. Nat. Chem. Biol. 10, 416–424 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Visconti, A. et al. Interplay between the human gut microbiome and host metabolism. Nat. Commun. 10, 4505 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    7.
    Belkaid, Y. & Hand, T. W. Role of microbiota in immunity and inflammation. Cell 157, 121–141 (2018).
    Article  CAS  Google Scholar 

    8.
    Pickard, J. M., Zeng, M. Y., Caruso, R. & Núñez, G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev. 279, 70–89 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Pickard, J. M. & Núñez, G. Pathogen Colonization Resistance in the Gut and Its Manipulation for Improved Health. Am. J. Pathol. 189, 1300–1310 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    10.
    Nguyen, T. L. A., Vieira-Silva, S., Liston, A. & Raes, J. How informative is the mouse for human gut microbiota research? Dis. Model. Mech. 8, 1–16 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Rosshart, S. P. et al. Wild Mouse Gut Microbiota Promotes Host Fitness and Improves Disease Resistance. Cell 171, 1015–1028 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Blanga-Kanfi, S. et al. Rodent phylogeny revised: analysis of six nuclear genes from all major rodent clades. BMC Evol. Biol. 9, 71 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    13.
    Kreisinger, J., Bastien, G., Hauffe, H. C., Marchesi, J. & Perkins, S. E. Interactions between multiple helminths and the gut microbiota in wild rodents. Philos. T. Roy. Soc. B 370, 20140295 (2015).
    Article  Google Scholar 

    14.
    Maurice, C. F. et al. Marked seasonal variation in the wild mouse gut microbiota. ISME J. 9, 2423–2434 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Weldon, L. et al. The gut microbiota of wild mice. PLoS ONE 10, 1–15 (2015).
    Article  CAS  Google Scholar 

    16.
    Lavrinienko, A., et al. Environmental radiation alters the gut microbiome of the bank vole Myodes glareolus. ISME J 12 (2018).

    17.
    Lavrinienko, A., Tukalenko, E., Mappes, T. & Watts, P. C. Skin and gut microbiomes of a wild mammal respond to different environmental cues. Microbiome 6, 209 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Lavrinienko, A. et al. Applying the Anna Karenina principle for wild animal gut microbiota: temporal stability of the bank vole gut microbiota in a disturbed environment. J. Anim. Ecol. In press, https://doi.org/10.1111/1365-2656.13342 (2020).

    19.
    Xiao, L. et al. A catalog of the mouse gut metagenome. Nat. Biotech. 33, 1103–1108 (2015).
    CAS  Article  Google Scholar 

    20.
    Pan, H. et al. A gene catalogue of the Sprague-Dawley rat gut metagenome. GigaScience 7, 1–8 (2018).
    CAS  Google Scholar 

    21.
    Hutterer, R., et al. Myodes glareolus. The IUCN Red List of Threatened Species e.T4973A115070929 (2016); erratum (2017).

    22.
    Lonn, E. et al. Balancing selection maintains polymorphisms at neurogenetic loci in field experiments. Proc. Natl. Acad. Sci. USA 114, 3690–3695 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Van Cann, J., Koskela, E., Mappes, T., Sims, A. & Watts, P. C. Intergenerational fitness effects of the early life environment in a wild rodent. J. Anim. Ecol. 88, 1355–1365 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    24.
    Kohl, K. D., Sadowska, E. T., Rudolf, A. M., Dearing, M. D. & Koteja, P. Experimental evolution on a wild mammal species results in modifications of gut microbial communities. Front. Microbiol. 7, 1–10 (2016).
    Google Scholar 

    25.
    Ormerod, K. L. et al. Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals. Microbiome 4, 1–17 (2016).
    Article  Google Scholar 

    26.
    Lagkouvardos, I. et al. Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family. Microbiome 7, 1–15 (2019).
    Article  Google Scholar 

    27.
    Tonteri, E. J. et al. Tick-borne encephalitis virus in wild rodents in winter, Finland, 2008–2009. Emerg. Infect. Dis. 17, 72–75 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    28.
    Vaheri, A. et al. Hantavirus infections in Europe and their impact on public health. Rev. Med. Virol. 23, 35–49 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    29.
    Han, B. A., Schmidt, J. P., Bowden, S. E. & Drake, J. M. Rodent reservoirs of future zoonotic diseases. Proc Natl. Acad. Sci. USA 112, 7039–7044 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Van Duijvendijk, G., Sprong, H. & Takken, W. Multi-trophic interactions driving the transmission cycle of Borrelia afzelii between Ixodes ricinus and rodents: A review. Parasite. Vector. 8, 13–15 (2015).
    Article  Google Scholar 

    31.
    Lavrinienko, A. et al. Two hundred and fifty-four metagenome-assembled bacterial genomes from the bank vole gut microbiota. NCBI Sequence Read Archive https://identifiers.org/insdc.sra:SRP254056 (2020).

    32.
    Didion, J. P., Martin, M. & Collins, F. S. Atropos: Specific, sensitive, and speedy trimming of sequencing reads. PeerJ 5, e3720 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    33.
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Tully, B. J., Graham, E. D. & Heidelberg, J. F. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data 5, 1–8 (2018).
    Article  CAS  Google Scholar 

    35.
    Li, D. et al. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Li, W. et al. Ultrafast clustering algorithms for metagenomic sequence analysis. Brief. Bioinform. 13, 656–668 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    37.
    Sommer, D. D. et al. Minimus: A fast, lightweight genome assembler. BMC Bioinform. 8, 1–11 (2007).
    Article  CAS  Google Scholar 

    38.
    Graham, E. D., Heidelberg, J. F. & Tully, B. J. Binsanity: Unsupervised clustering of environmental microbial assemblies using coverage and affinity propagation. PeerJ 5, e3035 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    39.
    Parks, D. H. et al. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3, e1319 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Delmont, T. O. & Eren, A. M. Identifying contamination with advanced visualization and analysis practices: Metagenomic approaches for eukaryotic genome assemblies. PeerJ 4, e1839 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    42.
    Campbell, J. H. et al. UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota. Proc. Natl. Acad. Sci. USA. 110, 5540–5545 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Chen, L.-X. et al. Accurate and complete genomes from metagenomes. Genome Res. 30, 315–333 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    44.
    Hyatt, D. et al. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).
    Article  CAS  Google Scholar 

    45.
    Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Pruitt, K. D., Tatusova, T. & Maglott, D. R. NCBI Reference Sequence (RefSeq): A curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 33, 501–504 (2005).
    Article  CAS  Google Scholar 

    47.
    Potter, S. C. et al. HMMER web server: 2018 update. Nucleic Acids Res. 46, W200–W204 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Edgar, R. C. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 5, 1–19 (2004).
    Article  CAS  Google Scholar 

    50.
    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    51.
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 5, e9490 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    52.
    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Lavrinienko, A. et al. Two hundred and fifty-four metagenome-assembled bacterial genomes from the bank vole gut microbiota. figshare https://doi.org/10.6084/m9.figshare.c.4910601 (2020).

    54.
    Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    55.
    Eisenhofer, R. et al. Contamination in low microbial biomass microbiome studies: issues and recommendations. Trends Ecol. Evol. 27, 105–117 (2019).
    CAS  Google Scholar  More