More stories

  • in

    Two hundred and fifty-four metagenome-assembled bacterial genomes from the bank vole gut microbiota

    1.
    Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Hird, S. M. Evolutionary biology needs wild microbiomes. Front. Microbiol. 8, 1–10 (2017).
    Article  Google Scholar 

    3.
    Clemente, J. C., Ursell, L. K., Parfrey, L. W. & Knight, R. The impact of the gut microbiota on human health: An integrative view. Cell 148, 1258–1270 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Marchesi, J. R. et al. The gut microbiota and host health: A new clinical frontier. Gut 65, 330–339 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    5.
    Lee, W. J. & Hase, K. Gut microbiota-generated metabolites in animal health and disease. Nat. Chem. Biol. 10, 416–424 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Visconti, A. et al. Interplay between the human gut microbiome and host metabolism. Nat. Commun. 10, 4505 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    7.
    Belkaid, Y. & Hand, T. W. Role of microbiota in immunity and inflammation. Cell 157, 121–141 (2018).
    Article  CAS  Google Scholar 

    8.
    Pickard, J. M., Zeng, M. Y., Caruso, R. & Núñez, G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev. 279, 70–89 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Pickard, J. M. & Núñez, G. Pathogen Colonization Resistance in the Gut and Its Manipulation for Improved Health. Am. J. Pathol. 189, 1300–1310 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    10.
    Nguyen, T. L. A., Vieira-Silva, S., Liston, A. & Raes, J. How informative is the mouse for human gut microbiota research? Dis. Model. Mech. 8, 1–16 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Rosshart, S. P. et al. Wild Mouse Gut Microbiota Promotes Host Fitness and Improves Disease Resistance. Cell 171, 1015–1028 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Blanga-Kanfi, S. et al. Rodent phylogeny revised: analysis of six nuclear genes from all major rodent clades. BMC Evol. Biol. 9, 71 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    13.
    Kreisinger, J., Bastien, G., Hauffe, H. C., Marchesi, J. & Perkins, S. E. Interactions between multiple helminths and the gut microbiota in wild rodents. Philos. T. Roy. Soc. B 370, 20140295 (2015).
    Article  Google Scholar 

    14.
    Maurice, C. F. et al. Marked seasonal variation in the wild mouse gut microbiota. ISME J. 9, 2423–2434 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Weldon, L. et al. The gut microbiota of wild mice. PLoS ONE 10, 1–15 (2015).
    Article  CAS  Google Scholar 

    16.
    Lavrinienko, A., et al. Environmental radiation alters the gut microbiome of the bank vole Myodes glareolus. ISME J 12 (2018).

    17.
    Lavrinienko, A., Tukalenko, E., Mappes, T. & Watts, P. C. Skin and gut microbiomes of a wild mammal respond to different environmental cues. Microbiome 6, 209 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Lavrinienko, A. et al. Applying the Anna Karenina principle for wild animal gut microbiota: temporal stability of the bank vole gut microbiota in a disturbed environment. J. Anim. Ecol. In press, https://doi.org/10.1111/1365-2656.13342 (2020).

    19.
    Xiao, L. et al. A catalog of the mouse gut metagenome. Nat. Biotech. 33, 1103–1108 (2015).
    CAS  Article  Google Scholar 

    20.
    Pan, H. et al. A gene catalogue of the Sprague-Dawley rat gut metagenome. GigaScience 7, 1–8 (2018).
    CAS  Google Scholar 

    21.
    Hutterer, R., et al. Myodes glareolus. The IUCN Red List of Threatened Species e.T4973A115070929 (2016); erratum (2017).

    22.
    Lonn, E. et al. Balancing selection maintains polymorphisms at neurogenetic loci in field experiments. Proc. Natl. Acad. Sci. USA 114, 3690–3695 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Van Cann, J., Koskela, E., Mappes, T., Sims, A. & Watts, P. C. Intergenerational fitness effects of the early life environment in a wild rodent. J. Anim. Ecol. 88, 1355–1365 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    24.
    Kohl, K. D., Sadowska, E. T., Rudolf, A. M., Dearing, M. D. & Koteja, P. Experimental evolution on a wild mammal species results in modifications of gut microbial communities. Front. Microbiol. 7, 1–10 (2016).
    Google Scholar 

    25.
    Ormerod, K. L. et al. Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals. Microbiome 4, 1–17 (2016).
    Article  Google Scholar 

    26.
    Lagkouvardos, I. et al. Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family. Microbiome 7, 1–15 (2019).
    Article  Google Scholar 

    27.
    Tonteri, E. J. et al. Tick-borne encephalitis virus in wild rodents in winter, Finland, 2008–2009. Emerg. Infect. Dis. 17, 72–75 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    28.
    Vaheri, A. et al. Hantavirus infections in Europe and their impact on public health. Rev. Med. Virol. 23, 35–49 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    29.
    Han, B. A., Schmidt, J. P., Bowden, S. E. & Drake, J. M. Rodent reservoirs of future zoonotic diseases. Proc Natl. Acad. Sci. USA 112, 7039–7044 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Van Duijvendijk, G., Sprong, H. & Takken, W. Multi-trophic interactions driving the transmission cycle of Borrelia afzelii between Ixodes ricinus and rodents: A review. Parasite. Vector. 8, 13–15 (2015).
    Article  Google Scholar 

    31.
    Lavrinienko, A. et al. Two hundred and fifty-four metagenome-assembled bacterial genomes from the bank vole gut microbiota. NCBI Sequence Read Archive https://identifiers.org/insdc.sra:SRP254056 (2020).

    32.
    Didion, J. P., Martin, M. & Collins, F. S. Atropos: Specific, sensitive, and speedy trimming of sequencing reads. PeerJ 5, e3720 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    33.
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Tully, B. J., Graham, E. D. & Heidelberg, J. F. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data 5, 1–8 (2018).
    Article  CAS  Google Scholar 

    35.
    Li, D. et al. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Li, W. et al. Ultrafast clustering algorithms for metagenomic sequence analysis. Brief. Bioinform. 13, 656–668 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    37.
    Sommer, D. D. et al. Minimus: A fast, lightweight genome assembler. BMC Bioinform. 8, 1–11 (2007).
    Article  CAS  Google Scholar 

    38.
    Graham, E. D., Heidelberg, J. F. & Tully, B. J. Binsanity: Unsupervised clustering of environmental microbial assemblies using coverage and affinity propagation. PeerJ 5, e3035 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    39.
    Parks, D. H. et al. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3, e1319 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Delmont, T. O. & Eren, A. M. Identifying contamination with advanced visualization and analysis practices: Metagenomic approaches for eukaryotic genome assemblies. PeerJ 4, e1839 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    42.
    Campbell, J. H. et al. UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota. Proc. Natl. Acad. Sci. USA. 110, 5540–5545 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Chen, L.-X. et al. Accurate and complete genomes from metagenomes. Genome Res. 30, 315–333 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    44.
    Hyatt, D. et al. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).
    Article  CAS  Google Scholar 

    45.
    Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Pruitt, K. D., Tatusova, T. & Maglott, D. R. NCBI Reference Sequence (RefSeq): A curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 33, 501–504 (2005).
    Article  CAS  Google Scholar 

    47.
    Potter, S. C. et al. HMMER web server: 2018 update. Nucleic Acids Res. 46, W200–W204 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Edgar, R. C. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 5, 1–19 (2004).
    Article  CAS  Google Scholar 

    50.
    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    51.
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 5, e9490 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    52.
    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Lavrinienko, A. et al. Two hundred and fifty-four metagenome-assembled bacterial genomes from the bank vole gut microbiota. figshare https://doi.org/10.6084/m9.figshare.c.4910601 (2020).

    54.
    Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    55.
    Eisenhofer, R. et al. Contamination in low microbial biomass microbiome studies: issues and recommendations. Trends Ecol. Evol. 27, 105–117 (2019).
    CAS  Google Scholar  More

  • in

    Crop climate suitability mapping on the cloud: a geovisualization application for sustainable agriculture

    1.
    Campbell, B. M. et al. Reducing risks to food security from climate change. Glob. Food Secur. 11, 34–43 (2016).
    Article  Google Scholar 
    2.
    Nair, P. K. R. Grand challenges in agroecology and land use systems. Front. Environ. Sci. 2, 1 (2014).
    Google Scholar 

    3.
    Connolly-Boutin, L. & Smit, B. Climate change, food security, and livelihoods in sub-Saharan Africa. Reg. Environ. Change 16, 385–399 (2016).
    Article  Google Scholar 

    4.
    Maxwell, D. The political economy of urban food security in Sub-Saharan Africa. World Dev. 27, 1939–1953 (1999).
    Article  Google Scholar 

    5.
    IPCC. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (eds. Shukla, P. R. et al.) (2019).

    6.
    Altieri, M. A., Nicholls, C. I., Henao, A. & Lana, M. A. Agroecology and the design of climate change-resilient farming systems. Agron. Sust. Dev. 35, 869–890 (2015).
    Article  Google Scholar 

    7.
    Tadross, M. et al. Growing-season rainfall and scenarios of future change in southeast Africa: Implications for cultivating maize. Clim. Res. 40, 147–161 (2009).
    Article  Google Scholar 

    8.
    Challinor, A., Wheeler, T., Garforth, C., Craufurd, P. & Kassam, A. Assessing the vulnerability of food crop systems in Africa to climate change. Clim. Change 83, 381–399 (2007).
    ADS  Article  Google Scholar 

    9.
    Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    10.
    Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 114, 9326–9331 (2017).
    CAS  PubMed  Article  Google Scholar 

    11.
    Asseng, S. et al. Rising temperatures reduce global wheat production. Nat. Clim. Change 5, 143–147 (2015).
    ADS  Article  Google Scholar 

    12.
    Hammond, S. T. et al. Food spoilage, storage, and transport: Implications for a sustainable future. Bioscience 65, 758–768 (2015).
    Article  Google Scholar 

    13.
    Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
    PubMed  Article  Google Scholar 

    14.
    Newton, A. C., Johnson, S. N. & Gregory, P. J. Implications of climate change for diseases, crop yields and food security. Euphytica 179, 3–18 (2011).
    Article  Google Scholar 

    15.
    Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    16.
    Lee, J. G. & Kang, M. Geospatial big data: Challenges and opportunities. Big Data Res. 2, 74–81 (2015).
    Article  Google Scholar 

    17.
    Serra-Diaz, J. M. & Franklin, J. What’s hot in conservation biogeography in a changing climate? Going beyond species range dynamics. Divers. Distrib. 25, 492–498 (2019).
    Article  Google Scholar 

    18.
    Snyder, K. A., Miththapala, S., Sommer, R. & Braslow, J. The yield gap: Closing the gap by widening the approach. Exp. Agric. 53, 445–459 (2017).
    Article  Google Scholar 

    19.
    Wheeler, T. & von Braun, J. Climate change impacts on global food security. Science 341, 508–513 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    20.
    Fernández, M., Hamilton, H. & Kueppers, L. M. Characterizing uncertainty in species distribution models derived from interpolated weather station data. Ecosphere 4, 1–17 (2013).
    Article  Google Scholar 

    21.
    Grabowski, P. et al. Assessing adoption potential in a risky environment: The case of perennial pigeonpea. Agric. Syst. 171, 89–99 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    22.
    Habib-Mintz, N. Biofuel investment in Tanzania: Omissions in implementation. Energy Policy 38, 3985–3997 (2010).
    Article  Google Scholar 

    23.
    Shiferaw, B. A., Okello, J. & Reddy, R. V. Adoption and adaptation of natural resource management innovations in smallholder agriculture: Reflections on key lessons and best practices. Environ. Dev. Sustain. 11, 601–619 (2009).
    Article  Google Scholar 

    24.
    Kwesiga, F., Akinnifesi, F. K., Mafongoya, P. L., McDermott, M. H. & Agumya, A. Agroforestry research and development in southern Africa during the 1990s: Review and challenges ahead. Agrofor. Syst. 59, 173–186 (2003).
    Article  Google Scholar 

    25.
    Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186 (2000).
    Article  Google Scholar 

    26.
    Fischer, G. et al. Global agro-ecological zones (GAEZ v3. 0)-model documentation. In International Institute for Applied Systems Analysis/Food and Agriculture Organization of the United Nations (2012).

    27.
    Heal, G. & Millner, A. Reflections: Uncertainty and decision making in climate change economics. Rev. Environ. Econ. Policy 8, 120–137 (2014).
    Article  Google Scholar 

    28.
    Harth, A., Knoblock, C. A., Stadtmüller, S., Studer, R. & Szekely, P. On-the-fly integration of static and dynamic linked data. In Proceedings of the Fourth International Workshop on Consuming Linked Data (2013).

    29.
    Ginige, A., Javadi, B., Calheiros, R. N. & Hendriks, S. L. A smart computing framework centered on user and societal empowerment to achieve the sustainable development goals. In International Conference on Innovations and Interdisciplinary Solutions for Underserved Areas (eds. Bassioni, G., Kebe, C. M. F., Gueye, A. & Ndiaye, A.) 158–172 (Springer, Cham, 2019).

    30.
    Ramirez-Cabral, N. Y. Z., Kumar, L. & Taylor, S. Crop niche modeling projects major shifts in common bean growing areas. Agric. For. Meteorol. 218, 102–113 (2016).
    ADS  Article  Google Scholar 

    31.
    Mejias, P., & Piraux, M. AquaCrop, the crop water productivity model. In Food and Agriculture Organization of the United Nations (2017).

    32.
    Hijmans, R. J., Guarino, L., Cruz, M. & Rojas, E. Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genet. Resour. Newsl. 127, 15–19 (2001).
    Google Scholar 

    33.
    Jones, J. W. et al. The DSSAT cropping system model. Eur. J. Agron. 18, 235–265 (2003).
    Article  Google Scholar 

    34.
    McCown, R. L., Hammer, G. L., Hargreaves, J. N. G., Holzworth, D. P. & Freebairn, D. M. APSIM: A novel software system for model development, model testing, and simulation in agricultural systems research. Agric. Syst. 50, 255–271 (1996).
    Article  Google Scholar 

    35.
    Dragićević, S. The potential of Web-based GIS. J. Geogr. Syst. 6, 79–81 (2004).
    Article  Google Scholar 

    36.
    Kraak, M. J. The role of the map in a Web-GIS environment. J. Geogr. Syst. 6, 83–93 (2004).
    Article  Google Scholar 

    37.
    Moore, R. Introducing Google Earth Engine. The Official google.org blog https://blog.google.org/2010/12/introducing-google-earth-engine_57.html (2010).

    38.
    Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).
    ADS  Article  Google Scholar 

    39.
    Agapiou, A. Remote sensing heritage in a petabyte-scale: Satellite data and heritage Earth Engine© applications. Int. J. Digit. Earth. 10, 82–102 (2017).
    Article  Google Scholar 

    40.
    HarvestChoice-International Food Policy Research Institute (IFPRI). Agro-Ecological Zones for Africa South of the Sahara V3. Harvard Dataverse https://doi.org/10.7910/DVN/M7XIUB (2015).

    41.
    Kane, D. A., Roge, P. & Snapp, S. S. A systematic review of perennial staple crops literature using topic modeling and bibliometric analysis. PLoS ONE 11, e0155788 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    42.
    Thornton, P. K. & Herrero, M. Adapting to climate change in the mixed crop and livestock farming systems in sub-Saharan Africa. Nat. Clim. Change. 5, 830–836 (2015).
    ADS  Article  Google Scholar 

    43.
    Mayes, S. et al. The potential for underutilized crops to improve security of food production. J. Exp. Bot. 63, 1075–1079 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    44.
    Peter, B. G., Mungai, L. M., Messina, J. P. & Snapp, S. S. Nature-based agricultural solutions: Scaling perennial grains across Africa. Environ. Res. 159, 283–290 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Hannah, L. et al. Global climate change adaptation priorities for biodiversity and food security. PLoS ONE 8, e72590 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Snapp, S. S., Blackie, M. J., Gilbert, R. A., Bezner-Kerr, R. & Kanyama-Phiri, G. Y. Biodiversity can support a greener revolution in Africa. Proc. Natl. Acad. Sci. USA 107, 20840–20845 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    47.
    Sanchez, P. A. Soil fertility and hunger in Africa. Science 295, 2019–2020 (2002).
    CAS  PubMed  Article  Google Scholar 

    48.
    Foyer, C. H. et al. Neglecting legumes has compromised human health and sustainable food production. Nat. Plants 2, 16112 (2016).
    PubMed  Article  Google Scholar 

    49.
    Kole, C. et al. Application of genomics-assisted breeding for generation of climate resilient crops: Progress and prospects. Front. Plant Sci. 6, 563 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    50.
    Sinha, P. et al. 2016 Identification and validation of selected universal stress protein domain containing drought-responsive genes in Pigeonpea (Cajanus cajan L.). Front. Plant Sci. 6, 1065 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    51.
    Choudhary, A. K., Sultana, R., Pratap, A., Nadarajan, N. & Jha, U. C. Breeding for abiotic stresses in pigeonpea. J. Food Legum. 24, 165–174 (2011).
    Google Scholar 

    52.
    Ehlers, J. D. & Hall, A. E. Cowpea (Vigna unguiculata L. walp.). Field Crops Res. 53, 187–204 (1997).
    Article  Google Scholar 

    53.
    De Ron, A. M. et al. 2019 Common bean genetics, breeding, and genomics for adaptation to changing to new agri-environmental conditions. In Genomic Designing of Climate-Smart Pulse Crops (ed. Kole, C.) 1–106 (Springer, Cham, 2019).
    Google Scholar 

    54.
    Smýkal, P. et al. Legume crops phylogeny and genetic diversity for science and breeding. Crit. Rev. Plant Sci. 34, 43–104 (2015).
    Article  Google Scholar 

    55.
    Snapp, S. S., Cox, C. M. & Peter, B. G. Multipurpose legumes for smallholders in sub-Saharan Africa: Identification of promising ‘scale out’ options. Glob. Food Secur. 23, 22–32 (2019).
    Article  Google Scholar 

    56.
    Ramírez-Villegas, J. & Thornton, P. K. Climate change impacts on African crop production. In CCAFS Working Paper No. 119. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) (2015).

    57.
    Robertson, C. C. Black, white, and red all over: Beans, women, and agricultural imperialism in twentieth-century Kenya. Agric. Hist. 71, 259–299 (1997).
    Google Scholar 

    58.
    Rusinamhodzi, L., Corbeels, M., Nyamangara, J. & Giller, K. E. Maize–grain legume intercropping is an attractive option for ecological intensification that reduces climatic risk for smallholder farmers in central Mozambique. Field Crops Res. 136, 12–22 (2012).
    Article  Google Scholar 

    59.
    Bezner-Kerr, R., Snapp, S., Chirwa, M., Shumba, L. & Msachi, R. Participatory research on legume diversification with Malawian smallholder farmers for improved human nutrition and soil fertility. Exp. Agric. 43, 437–453 (2007).
    Article  Google Scholar 

    60.
    Jones, A. D., Shrinivas, A. & Bezner-Kerr, R. Farm production diversity is associated with greater household dietary diversity in Malawi: Findings from nationally representative data. Food Policy 46, 1–12 (2014).
    Article  Google Scholar 

    61.
    Ojiewo, C. et al. The role of vegetables and legumes in assuring food, nutrition, and income security for vulnerable groups in Sub-Saharan Africa. World Med. Health Policy 7, 187–210 (2015).
    Article  Google Scholar 

    62.
    Wood, S., Sebastian, K., Nachtergaele, F., Nielsen, D. & Dai, A. Spatial aspects of the design and targeting of agricultural development strategies. In Environment and Production Technology Division, International Food Policy Research Institute, Washington, DC, EPTD Discussion Paper No. 44 (1999).

    63.
    Chivenge, P., Mabhaudhi, T., Modi, A. T. & Mafongoya, P. The potential role of neglected and underutilised crop species as future crops under water scarce conditions in Sub-Saharan Africa. International Journal of Environmental Research and Public Health 12, 5685–5711 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    64.
    Dakora, F. D. Biogeographic distribution, nodulation and nutritional attributes of underutilized indigenous African legumes. In II International Symposium on Underutilized Plant Species: Crops for the Future-Beyond Food Security, 53–64 International Society for Horticultural Science, ISHS Acta Horticulturae 979 (2011).

    65.
    Traub, J. et al. Screening for heat tolerance in Phaseolus spp. using multiple methods. Crop Sci. 58, 2459–2469 (2018).
    CAS  Article  Google Scholar 

    66.
    Knight, A. T. et al. Knowing but not doing: Selecting priority conservation areas and the research–implementation gap. Conserv. Biol. 22, 610–617 (2008).
    PubMed  Article  Google Scholar 

    67.
    Funk, C. et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2, 1–21 (2015).
    Article  Google Scholar 

    68.
    Vizy, E. K., Cook, K. H., Chimphamba, J. & McCusker, B. Projected changes in Malawi’s growing season. Clim. Dyn. 45, 1673–1698 (2015).
    Article  Google Scholar 

    69.
    Jayanthi, H. et al. Modeling rain-fed maize vulnerability to droughts using the standardized precipitation index from satellite estimated rainfall—Southern Malawi case study. Int. J. Disast. Risk Res. 4, 71–81 (2013).
    Google Scholar 

    70.
    FAO. ECOCROP, Crop Environmental Requirements Database. Food and Agriculture Organization of the United Nations (1991).

    71.
    Peter, B. G., Messina, J. P. & Lin, Z. Web-based GIS for spatiotemporal crop climate niche mapping https://doi.org/10.7910/DVN/UFC6B5,HarvardDataverse,V2 (2019).
    Article  Google Scholar 

    72.
    Beebe, S. et al. Genetic improvement of common beans and the challenges of climate change. In Crop Adaptation to Climate Change (eds. Yadav, S. S., Redden, R. J., Hatfield, J. L., Lotze-Campen, H. & Hall, A. E.) Ch. 16, 356–369 (Wiley-Blackwell, 2011).

    73.
    de Jong, R. & de Bruin, S. Linear trends in seasonal vegetation time series and the modifiable temporal unit problem. Biogeosciences 9, 71–77 (2012).
    ADS  Article  Google Scholar 

    74.
    Swist, T. & Magee, L. Academic publishing and its digital binds: Beyond the paywall towards ethical executions of code. Cult.s Unbound J. Curr. Cult. Res. 9, 240–259 (2018).
    Article  Google Scholar 

    75.
    Hedding, D. W. Comments on “Factors affecting global flow of scientific knowledge in environmental sciences” by Sonne et al. (2020). Sci. Total Environ. 705, 135933 (2020).
    ADS  CAS  PubMed  Article  Google Scholar 

    76.
    Rippke, U. et al. Timescales of transformational climate change adaptation in sub-Saharan African agriculture. Nat. Clim. Change 6, 605–609 (2016).
    ADS  Article  Google Scholar 

    77.
    Sinclair, T. R., Marrou, H., Soltani, A., Vadez, V. & Chandolu, K. C. Soybean production potential in Africa. Glob. Food Secur. 3, 31–40 (2014).
    Article  Google Scholar 

    78.
    Hajjarpoor, A. et al. Characterization of the main chickpea cropping systems in India using a yield gap analysis approach. Field Crops Res. 223, 93–104 (2018).
    Article  Google Scholar 

    79.
    Ortega, D. L., Waldman, K. B., Richardson, R. B., Clay, D. C. & Snapp, S. Sustainable intensification and farmer preferences for crop system attributes: Evidence from Malawi’s central and southern regions. World Dev. 87, 139–151 (2016).
    Article  Google Scholar 

    80.
    Simtowe, F., Asfaw, S. & Abate, T. Determinants of agricultural technology adoption under partial population awareness: The case of pigeonpea in Malawi. Agric. Food Econ. 4, 7 (2016).
    Article  Google Scholar 

    81.
    Norris, K. Agriculture and biodiversity conservation: Opportunity knocks. Conservation Letters 1, 2–11 (2008).
    Article  Google Scholar 

    82.
    Donchyts, G. et al. Earth’s surface water change over the past 30 years. Nat. Clim. Change 6, 810–813 (2016).
    ADS  Article  Google Scholar 

    83.
    Pekel, J., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    84.
    Allen, R. G. et al. EEFlux: A Landsat-based evapotranspiration mapping tool on the Google Earth Engine. In 2015 ASABE/IA Irrigation Symposium: Emerging Technologies for Sustainable Irrigation-A Tribute to the Career of Terry Howell, Sr. Conference Proceedings, 1–11. American Society of Agricultural and Biological Engineers (2015).

    85.
    Wan, Z., Hook, S. & Hulley, G. MOD11A2 MODIS/Terra land surface temperature/emissivity 8-day L3 global 1km SIN grid V006. NASA EOSDIS Land Process. DAAC https://doi.org/10.5067/MODIS/MOD11A2.006 (2015).
    Article  Google Scholar 

    86.
    Didan, K. MOD13Q1 MODIS/Terra vegetation indices 16-day L3 global 250m SIN grid V006. NASA EOSDIS Land Process.. DAAC https://doi.org/10.5067/MODIS/MOD13Q1.006 (2015).
    Article  Google Scholar 

    87.
    Friedl, M. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+aqua land cover type yearly L3 global 500m SIN grid V006. NASA EOSDIS Land Process. DAAC https://doi.org/10.5067/MODIS/MCD12Q1.006 (2019).
    Article  Google Scholar 

    88.
    Friedl, M. A. et al. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010).
    ADS  Article  Google Scholar 

    89.
    Teluguntla, P. G. et al. Global cropland area database (GCAD) derived from remote sensing in support of food security in the twenty-first century: Current achievements and future possibilities. In Remote Sensing Handbook, Land Resources: Monitoring, Modelling, and Mapping Vol 2, Ch. 7 (CRC Press, 2015).

    90.
    Arino, O., Ramos, J. R., Kalogirou, V., Defourny, P. & Achard, F. GlobCover 2009. In ESA Living Planet Symposium 1–3. European Space Agency (2010).

    91.
    Hengl, T. & MacMillan, R. A. Predictive Soil Mapping with R, https://www.soilmapper.org (OpenGeoHub foundation, Wageningen, The Netherlands, 2019).

    92.
    Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, RG2004 (2007).
    ADS  Article  Google Scholar 

    93.
    Rossel, R. A. V. & Bouma, J. Soil sensing: A new paradigm for agriculture. Agric. Syst. 148, 71–74 (2016).
    Article  Google Scholar 

    94.
    Herrick, J. E. et al. The global Land-Potential Knowledge System (LandPKS): Supporting evidence-based, site-specific land use and management through cloud computing, mobile applications, and crowdsourcing. J. Soil Water Conserv. 68, 5A-12A (2013).
    Article  Google Scholar 

    95.
    Pironon, S. et al. Potential adaptive strategies for 29 sub-Saharan crops under future climate change. Nat. Clim. Change. 9, 758–763 (2019).
    ADS  Article  Google Scholar 

    96.
    ESRI. ArcGIS Desktop: Release 10.8. (Environmental Systems Research Institute, CAs, 2020). More

  • in

    A symbiotic nutrient exchange within the cyanosphere microbiome of the biocrust cyanobacterium, Microcoleus vaginatus

    1.
    Garcia-Pichel F. Desert environments: biological soil crusts. encycl environ microbiol vol 6. New York, NY, USA: Set. Wiley-Interscience; 2003. p. 1019–23.
    Google Scholar 
    2.
    Belnap J, Büdel B, Lange OL. Biological soil crusts: characteristics and distribution. biological soil crust: structure, function, and management. Berlin: Springer-Verlag; 2001. p. 3–30.
    Google Scholar 

    3.
    Prăvălie R. Drylands extent and environmental issues. A global approach. Earth Sci Rev. 2016;161:259–78.
    Article  CAS  Google Scholar 

    4.
    Garcia-Pichel F, Pringault O. Cyanobacteria track water in desert soils. Nature. 2001;413:380–1.
    CAS  PubMed  Article  Google Scholar 

    5.
    Pringault O, Garcia-Pichel F. Hydrotaxis of cyanobacteria in desert crusts. Microb Ecol. 2004;47:366–73.
    CAS  PubMed  Article  Google Scholar 

    6.
    Soule T, Anderson IJ, Johnson SL, Bates ST, Garcia-Pichel F. Archaeal populations in biological soil crusts from arid lands in North America. Soil Biol Biochem. 2009;41:2069–74.
    CAS  Article  Google Scholar 

    7.
    Nunes da Rocha U, Cadillo-Quiroz H, Karaoz U, Rajeev L, Klitgord N, Dunn S, et al. Isolation of a significant fraction of non-phototroph diversity from a desert biological soil crust. Front Microbiol. 2015;6:1–14.
    Article  Google Scholar 

    8.
    Hu C, Zhang D, Huang Z, Liu Y. The vertical microdistribution of cyanobacteria and green algae within desert crusts and the development of the algal crusts. Plant Soil. 2003;257:97–111.
    CAS  Article  Google Scholar 

    9.
    Bates ST, Nash TH, Garcia-Pichel F. Patterns of diversity for fungal assemblages of biological soil crusts from the southwestern United States. Mycologia. 2012;104:353–61.
    CAS  PubMed  Article  Google Scholar 

    10.
    Ullmann I, Büdel B. Ecological determinants of species composition of biological soil crusts on a landscape scale. In: Belnap J, Lange OL, editors. Biological soil crusts: structure, function, and management, 1st ed. Berlin: Springer-Verlag; 2001. p. 203–13.
    Google Scholar 

    11.
    Lange OL, Belnap J, Reichenberger H, Meyer A. Photosynthesis of green algal soil crust lichens from arid lands in southern Utah, USA: role of water content on light and temperature responses of CO2 exchange. Flora. 1997;192:1–15.
    Article  Google Scholar 

    12.
    Garcia-Pichel F, López-Cortés A, Nübel U. Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. Appl Environ Microbiol. 2001;67:1902–10.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Couradeau E, Karaoz U, Lim HC, Nunes Da Rocha U, Northen T, Brodie E, et al. Bacteria increase arid-land soil surface temperature through the production of sunscreens. Nat Commun. 2016;7:1–7.
    Article  CAS  Google Scholar 

    14.
    Yeager C, Kornosky J, Housman DC, Grote EE, Belnap J, Kuske CR. Diazotrophic community structure and function in two successional stages of biological soil crusts from the Colorado Plateau and Chihuahuan Desert. Appl Environ Microbiol. 2004;70:973–83.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Yeager CM, Kornosky JL, Morgan RE, Cain EC, Garcia-Pichel F, Housman DC, et al. Three distinct clades of cultured heterocystous cyanobacteria constitute the dominant N2-fixing members of biological soil crusts of the Colorado Plateau, USA. FEMS Microbiol Ecol. 2007;60:85–97.
    CAS  PubMed  Article  Google Scholar 

    16.
    Yeager CM, Kuske CR, Carney TD, Johnson SL, Ticknor LO, Belnap J. Response of biological soil crust diazotrophs to season, altered summer precipitation, and year-round increased temperature in an arid grassland of the Colorado Plateau, USA. Front Microbiol. 2012;3:1–14.
    Article  Google Scholar 

    17.
    Garcia-Pichel F. Cyanobacteria. In: Schaechter M, editor. Encyclopedia of microbiology. 3rd ed. 2009. New York: Elsevier Inc.; 2009. p. 107–24.

    18.
    Fernandes VMC, Machado de Lima NM, Roush D, Rudgers J, Collins SL, Garcia-Pichel F. Exposure to predicted precipitation patterns decreases population size and alters community structure of cyanobacteria in biological soil crusts from the Chihuahuan Desert. Environ Microbiol. 2018;20:259–69.
    PubMed  Article  Google Scholar 

    19.
    Garcia-Pichel F, Wojciechowski MF. The evolution of a capacity to build supra-cellular ropes enabled filamentous cyanobacteria to colonize highly erodible substrates. PLoS ONE. 2009;4:4–9.
    Article  CAS  Google Scholar 

    20.
    Belnap J, Gardner J. Soil microstructure in soils of the Colorado Plateau: the role of the cyanobacterium Microcoleus vaginatus. West N Am Nat. 1993;53:40–7.
    Google Scholar 

    21.
    Starkenburg SR, Reitenga KG, Freitas T, Johnson S, Chain PSG, Garcia-Piche F, et al. Genome of the cyanobacterium Microcoleus vaginatus FGP-2, a photosynthetic ecosystem engineer of arid land soil biocrusts worldwide. J Bacteriol. 2011;193:4569–70.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Rajeev L, Nunes U, Klitgord N, Luning EG, Fortney J, Axen SD, et al. Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. ISME J. 2013;7:2178–91.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Hooper DU, Johnson L. Nitrogen limitation in dryland ecosystems: responses to geographical and temporal variation in precipitation. Biogeochemistry. 1999;46:247–93.
    CAS  Google Scholar 

    24.
    James JJ, Tiller RL, Richards JH. Multiple resources limit plant growth and function in a saline-alkaline desert community. J Ecol. 2005;93:113–26.
    CAS  Article  Google Scholar 

    25.
    Neff JC, Reynolds RL, Belnap J, Lamothe P. Multi-decadal impacts of grazing on soil physical and biogeochemical properties in southeast Utah. Ecol Appl. 2005;15:87–95.
    Article  Google Scholar 

    26.
    Schlesinger WH, Raikks JA, Hartley AE, Cross AF. On the spatial pattern of soil nutrients in desert ecosystems. Ecology. 1996;77:364–74.
    Article  Google Scholar 

    27.
    Beraldi-Campesi H, Hartnett HE, Anbar A, Gordon GW, Garcia-Pichel F. Effect of biological soil crusts on soil elemental concentrations: Implications for biogeochemistry and as traceable biosignatures of ancient life on land. Geobiology. 2009;7:348–59.
    CAS  PubMed  Article  Google Scholar 

    28.
    Johnson SL, Budinoff CR, Belnap J, Garcia-pichel F. Relevance of ammonium oxidation within biological soil crust communities. Environ Microbiol. 2005;7:1–12.
    CAS  PubMed  Article  Google Scholar 

    29.
    Pepe-Ranney C, Koechli C, Potrafka R, Andam C, Eggleston E, Garcia-Pichel F, et al. Non-cyanobacterial diazotrophs mediate dinitrogen fixation in biological soil crusts during early crust formation. ISME J. 2016;10:287–98.
    CAS  PubMed  Article  Google Scholar 

    30.
    Couradeau E, Giraldo-Silva A, De Martini F, Garcia-Pichel F. Spatial segregation of the biological soil crust microbiome around its foundational cyanobacterium, Microcoleus vaginatus, and the formation of a nitrogen-fixing cyanosphere. Microbiome. 2019;7:111–22.
    Article  Google Scholar 

    31.
    Baran R, Brodie EL, Mayberry-lewis J, Hummel E, Nunes U, Rocha D, et al. Exometabolite niche partitioning among sympatric soil bacteria. Nat Commun. 2015;6:1–9.
    Article  CAS  Google Scholar 

    32.
    Baran R, Ivanova N, Jose N, Garcia-Pichel F, Kyrpides N, Gugger M, et al. Functional genomics of novel secondary metabolites from diverse cyanobacteria using untargeted metabolomics. Mar Drugs. 2013;11:3617–31.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Velasco Ayuso S, Giraldo-Silva A, Nelson C, Barger NN, Garcia-pichel F. Microbial nursery production of high quality biological soil crust biomass for restoration of degraded dryland soils. Appl Environ Microbiol. 2017;83:1–16.
    Article  Google Scholar 

    34.
    Giraldo-Silva A, Nelson C, Barger N, Garcia-Pichel F. Nursing biocrusts: isolation, cultivation and fitness test of indigenous cyanobacteria. Restor Ecol. 2019;27:793–803.
    Article  Google Scholar 

    35.
    Büdel B, Darienko T, Deutschewitz K, Dojani S, Friedl T, Mohr KI, et al. Southern african biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb Ecol. 2009;57:229–47.
    PubMed  Article  Google Scholar 

    36.
    Ferreira D, Garcia-Pichel F. Mutational studies of putative biosynthetic genes for the cyanobacterial sunscreen scytonemin in Nostoc punctiforme ATCC 29133. Front Microbiol. 2016;7:1–10.
    Article  Google Scholar 

    37.
    Garcia-Pichel F, Loza V, Marusenko Y, Mateo P, Potrafka RM. Temperature drives the continental-scale distribution of key microbes in topsoil communities. Science. 2013;340:1574–77.
    CAS  PubMed  Article  Google Scholar 

    38.
    Caporaso JG, Lauber CL, Walters WA, Berg-lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Gilbert JA, Meyer F, Jansson J, Gordon J, Pace N, Tiedje J, et al. The Earth Microbiome Project: meeting report of the ‘1 EMP meeting on sample selection and acquisition’ at Argonne National Laboratory October 6 2010. Stand Genom Sci. 2010;3:249–53.

    40.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA. 2011;108:4516–22.
    CAS  PubMed  Article  Google Scholar 

    43.
    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:1–10.
    Google Scholar 

    45.
    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–72.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:242–5.
    Article  CAS  Google Scholar 

    48.
    Clarke KR, Gorley RN. PRIMER v6: user manual/tutorial. Prim Plymouth UK. 2006;7:192.
    Google Scholar 

    49.
    Nübel U, Garcia-Pichel F, Muyzer G. PCR primers to amplify 16S rRNA genes from cyanobacteria PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol. 1997;63:3327–32.
    PubMed  PubMed Central  Article  Google Scholar 

    50.
    Ando S, Goto M, Meunchang S, Thongra-ar P, Fujiwara T, Hayashi H, et al. Detection of nifH Sequences in Sugarcane (Saccharum officinarum L.) and Pineapple (Ananas comosus [L.] Merr.). Soil Sci Plant Nutr. 2005;51:303–8.
    CAS  Article  Google Scholar 

    51.
    Van Dorst J, Siciliano SD, Winsley T, Snape I, Ferrari BC. Bacterial targets as potential indicators of diesel fuel toxicity in subantarctic soils. Appl Environ Microbiol. 2014;80:4021–33.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    52.
    R Development Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2015. http://www.R-project.org/.
    Google Scholar 

    53.
    Mirza BS, Rodrigues JLM. Development of a direct isolation procedure for free-living diazotrophs under controlled hypoxic conditions. Appl Environ Microbiol. 2012;78:5542–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Döbereiner J, Marriel IE, Nery M. Ecological distribution of Spirillum lipoferum Beijerinck. Can J Microbiol. 1976;22:1464–73.
    PubMed  Article  Google Scholar 

    55.
    Dobereiner J, Urquiaga S, Boddey RM. Alternatives for nitrogen nutrition of crops in tropical agriculture. Fertil Res. 1995;42:339–46.
    CAS  Article  Google Scholar 

    56.
    Wilson PW, Knight SG. Experiments in Bacterial Physiology, 3rded. Minneapolis, Minnesota: Burgess; 1952 p. 62.

    57.
    Stanier RY, Kunisawa R, Mandel M. Purification and properties of unicellular blue-green algae (Order Chroococcales). Bacteriological Reviews. 1971;35:171–205.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Dowd SE, Callaway TR, Wolcott RD, Sun Y, McKeehan T, Hagevoort RG, et al. Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol. 2008;8:1–8.
    Article  CAS  Google Scholar 

    59.
    Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, et al. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 2007;4:283–90.
    Article  CAS  Google Scholar 

    60.
    Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9.
    PubMed  PubMed Central  Article  Google Scholar 

    61.
    Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput Biol. 2000;7:203–14.
    CAS  Article  Google Scholar 

    62.
    Ofek M, Hadar Y, Minz D. Ecology of root colonizing Massilia (Oxalobacteraceae). PLoS ONE. 2012;7:1–12.
    Article  CAS  Google Scholar 

    63.
    De Souza RSC, Okura VK, Armanhi JSL, Jorrín B, Lozano N, Da Silva MJ, et al. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci Rep. 2016;6:1–15.
    Article  CAS  Google Scholar 

    64.
    Jones D, Keddie RM. The Genus Arthrobacter. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E, editors. The prokaryotes: volume 3: archaea. bacteria: firmicutes, actinomycetes. New York, NY: Springer New York; 2006. p. 945–60.
    Google Scholar 

    65.
    Baldani JI, Rouws L, Cruz LM, Olivares FL, Schmid M, Hartmann A. The family oxalobacteraceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The prokaryotes: alphaproteobacteria and betaproteobacteria. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 919–74.
    Google Scholar 

    66.
    Mayilraj S, Stackebrandt E. The family paenibacillaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The prokaryotes: firmicutes and tenericutes. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 267–80.
    Google Scholar 

    67.
    Slepecky RA, Hemphill HE. The Genus Bacillus–Nonmedical. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E, editors. The prokaryotes: volume 4: bacteria: firmicutes, cyanobacteria. New York, NY: Springer US; 2006. p. 530–62.
    Google Scholar 

    68.
    Carareto Alves LM, de Souza JAM, Varani A, de M, Lemos EG, de M. The family rhizobiaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The prokaryotes: alphaproteobacteria and betaproteobacteria. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 419–37.
    Google Scholar 

    69.
    Normand P, Daffonchio D, Gtari M. The family geodermatophilaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The prokaryotes: actinobacteria. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 361–79.
    Google Scholar 

    70.
    Kämpfer P, Glaeser SP, Parkes L, van Keulen G, Dyson P. The family streptomycetaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The prokaryotes: actinobacteria. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 889–1010.
    Google Scholar 

    71.
    Octavia S, Lan R. The family enterobacteriaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The prokaryotes: gammaproteobacteria. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 225–86.
    Google Scholar 

    72.
    Poly F, Monrozier LJ, Bally R. Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol. 2001;152:95–103.
    CAS  PubMed  Article  Google Scholar 

    73.
    Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Schulz-Bohm K, Gerards S, Hundscheid M, Melenhorst J, de Boer W, Garbeva P. Calling from distance: attraction of soil bacteria by plant root volatiles. ISME J. 2018;12:1252–62.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Zhalnina K, Louie KB, Hao Z, Mansoori N, Da Rocha UN, Shi S, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol. 2018;3:470–80.
    CAS  PubMed  Article  Google Scholar 

    76.
    Garcia-Pichel F. A model for internal self-shading in planktonic organisms and its implications for the usefulness of ultraviolet sunscreens. Limnol Oceanogr. 1994;39:1704–17.
    Article  Google Scholar 

    77.
    Garcia-Pichel F, Belnap J. Small-scale environments and distribution of biological soil crusts. biological soil crusts: structure, function, and management. Berlin Heidelberg: Springer; 2001. p. 193–201.
    Google Scholar 

    78.
    Paerl HW, Bebout BM. Direct measurement of O2-depleted microzones in marine oscillatoria: relation to N2 fixation. Science. 1988;241:442–5.
    CAS  PubMed  Article  Google Scholar 

    79.
    Barger NN, Webber B, Garcia-Pichel F, Zaady E, Belnap J. Patterns and controls on nitrogen cycling of biological soil crusts. In: Weber B, Caldwell MM, Jayne B, Bettina W, Büdel B, Belnap J, et al. editors. Biological soil crusts: an organizing principle in drylands, 2nd ed. Switzerland: Springer; 2016. p. 257–85.

    80.
    Sancho L, Belnap J, Colesie C, Raggio J. Carbon budgets of biological soil crusts at micro-, meso-, and global scales. In: Belnap J, Weber B, Burkhard B, editors. Biological soil crusts: an organizing principle in drylands. Switzerland: Springer; 2016. p. 287–304.

    81.
    Weber B, Wu D, Tamm A, Ruckteschler N, Rodríguez-Caballero E, Steinkamp J, et al. Biological soil crusts accelerate the nitrogen cycle through large NO and HONO emissions in drylands. Proc Natl Acad Sci USA. 2015;112:15384–9.
    CAS  PubMed  Article  Google Scholar 

    82.
    Garcia-Pichel F, Belnap J, Neuer S, Schanz F. Estimates of global cyanobacterial biomass and its distribution. Arch Hydrobiol Suppl Algol Stud. 2003;109:213–27.
    Google Scholar 

    83.
    Belnap J, Eldridge D. Disturbance and recovery of biological soil crusts. In: Belnap J, Lange O, editors. Biological soil crusts: structure, function and management. Berlin: Springer; 2001. p. 363–83.
    Google Scholar 

    84.
    Zaady E, Eldridge DJ, Bowker MA. Effect of local-scale disturbance on biocrusts. In: Weber B, Büdel B, Belnap J, editors. Biological soil crusts: an organizing principle in drylands. Cham: Springer International Publishing; 2016. p. 429–50.
    Google Scholar 

    85.
    Williams WJ, Eldridge DJ, Alchin BM. Grazing and drought reduce cyanobacterial soil crusts in an Australian Acacia woodland. J Arid Environ. 2008;72:1064–75.
    Article  Google Scholar  More

  • in

    Phytoliths in selected broad-leaved trees in China

    1.
    Pearsall, D. M. et al. Distinguishing rice (Oryza Sativa Poaceae) from wild Oryza species through phytolith analysis—results of preliminary research. Econ. Bot. 49, 183–196. https://doi.org/10.1007/Bf02862923 (1995).
    Article  Google Scholar 
    2.
    Ball, T. et al. Phytoliths as a tool for investigations of agricultural origins and dispersals around the world. J. Archaeol. Sci. 68, 32–65 (2016).
    Article  Google Scholar 

    3.
    Lu, H. et al. Culinary archaeology: millet noodles in Late Neolithic China. Nature 437, 967–968. https://doi.org/10.1038/437967a (2005).
    ADS  CAS  Article  PubMed  Google Scholar 

    4.
    Wang, Y. J. & Lu, H. Y. The Study of Phytolith and Its Application (China Ocean Press, Beijing, 1993).
    Google Scholar 

    5.
    Piperno, D. R. Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists (AltaMira Press, Lanham, 2006).
    Google Scholar 

    6.
    Pearsall, D. M. Paleoethnobotany: A Handbook of Procedures (Academic Press, London, 1989).
    Google Scholar 

    7.
    Piperno, D. R. Phytolyth Analysis: An Archaeological and Geological Perspective (Academic Press, London, 1988).
    Google Scholar 

    8.
    Prebble, M., Schallenberg, M., Carter, J. & Shulmeister, J. An analysis of phytolith assemblages for the quantitative reconstruction of late Quaternary environments of the Lower Taieri Plain, otago, South Island, New Zealand I. Modern assemblages and transfer functions. J. Paleolimnol. 27, 393–413. https://doi.org/10.1023/A:1020318803497 (2002).
    ADS  Article  Google Scholar 

    9.
    Lu, H. Y. et al. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China I: phytolith-based transfer functions. Quatern. Sci. Rev. 25, 945–959. https://doi.org/10.1016/j.quascirev.2005.07.014 (2006).
    ADS  Article  Google Scholar 

    10.
    Bremond, L. et al. Phytolith indices as proxies of grass subfamilies on East African tropical mountains. Global Planet Change 61, 209–224. https://doi.org/10.1016/j.gloplacha.2007.08.016 (2008).
    ADS  Article  Google Scholar 

    11.
    Iriarte, J. & Paz, E. A. Phytolith analysis of selected native plants and modern soils from southeastern Uruguay and its implications for paleoenvironmental and archeological reconstruction. Quatern. Int. 193, 99–123. https://doi.org/10.1016/j.quaint.2007.10.008 (2009).
    Article  Google Scholar 

    12.
    Mercader, J., Bennett, T., Esselmont, C., Simpson, S. & Walde, D. Phytoliths in woody plants from the Miombo woodlands of Mozambique. Ann. Bot. 104, 91–113. https://doi.org/10.1093/aob/mcp097 (2009).
    Article  PubMed  PubMed Central  Google Scholar 

    13.
    Mercader, J. et al. Poaceae phytoliths from the Niassa Rift, Mozambique. J. Archaeol. Sci. 37, 1953–1967. https://doi.org/10.1016/j.jas.2010.03.001 (2010).
    Article  Google Scholar 

    14.
    Patterer, N. I., Passeggi, E. & Zucol, A. F. Phytolith analysis of soils from the southwestern Entre Rios Province (Argentina) as a tool to understand their pedological processes. Rev. Mex. Cienc. Geol. 28, 132–146 (2011).
    Google Scholar 

    15.
    Pearce, M. & Ball, T. A study of phytoliths produced by selected native plant taxa commonly used by Great Basin Native Americans. Veg. Hist. Archaeobot. https://doi.org/10.1007/s00334-019-00738-1 (2019).
    Article  Google Scholar 

    16.
    Carter, J. A. Phytoliths from loess in Southland, New Zealand. N. Z. J. Bot. 38, 325–332 (2000).
    Article  Google Scholar 

    17.
    Ball, T. B., Ehlers, R. & Standing, M. D. Review of typologic and morphometric analysis of phytoliths produced by wheat and barley. Breed. Sci. 59, 505–512. https://doi.org/10.1270/jsbbs.59.505 (2009).
    Article  Google Scholar 

    18.
    18Lu, H., Wu, N. & Liu, K. In The state of the art of phytoliths in plants and soils (eds A. Pinilla, J. Juan-Tresseras, & J. Machado) Ch. 159, 15 (Monogra as del Centro de Ciencias Medambioentales, 1997).

    19.
    Lu, H. et al. Phytoliths analysis for the discrimination of Foxtail millet (Setaria italica) and common millet (Panicum miliaceum). PLoS ONE 4, e4448. https://doi.org/10.1371/journal.pone.0004448 (2009).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    20.
    Ge, Y. et al. Phytolith analysis for the identification of barnyard millet (Echinochloa sp.) and its implications. Archaeol. Anthrop. Sci. 10, 61–73. https://doi.org/10.1007/s12520-016-0341-0 (2018).
    Article  Google Scholar 

    21.
    Piperno, D. R. A comparison and differentiation of phytoliths from maize and wild grasses: use of morphological criteria. Am. Antiq. 49, 361–383. https://doi.org/10.2307/280024 (1984).
    Article  Google Scholar 

    22.
    Ge, Y., Lu, H., Zhang, J., Wang, C. & Gao, X. Phytoliths in inflorescence bracts: preliminary results of an investigation on common Panicoideae plants in China. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.01736 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    23.
    Huan, X. et al. Bulliform phytolith research in wild and domesticated rice paddy soil in South China. PLoS ONE 10, e0141255 (2015).
    Article  Google Scholar 

    24.
    Prebble, M. & Shulmeister, J. An analysis of phytolith assemblages for the quantitative reconstruction of late Quaternary environments of the Lower Taieri Plain, Otago, South Island, New Zealand II. Paleoenvironmental reconstruction. J. Paleolimnol. 27, 415–427. https://doi.org/10.1023/a:1020314719427 (2002).
    ADS  Article  Google Scholar 

    25.
    Lu, H. Y., Wu, N. Q., Liu, K. B., Jiang, H. & Liu, T. S. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China II: palaeoenvironmental reconstruction in the Loess Plateau. Quatern. Sci. Rev. 26, 759–772. https://doi.org/10.1016/j.quascirev.2006.10.006 (2007).
    ADS  Article  Google Scholar 

    26.
    Carter, J. A. & Lian, O. B. Palaeoenvironmental reconstruction from last interglacial using phytolith analysis, southeastern North Island New Zealand. J. Quatern. Sci. 15, 733–743. https://doi.org/10.1002/1099-1417(200010)15:7%3c733::Aid-Jqs532%3e3.0.Co;2-J (2000).
    ADS  Article  Google Scholar 

    27.
    Novello, A. et al. Phytoliths indicate significant arboreal cover at Sahelanthropus type locality TM266 in northern Chad and a decrease in later sites. J. Hum. Evol. 106, 66–83. https://doi.org/10.1016/j.jhevol.2017.01.009 (2017).
    Article  PubMed  Google Scholar 

    28.
    He, K. et al. Middle-Holocene sea-level fluctuations interrupted the developing Hemudu culture in the lower Yangtze River, China. Quatern. Sci. Rev. 188, 90–103. https://doi.org/10.1016/j.quascirev.2018.03.034 (2018).
    ADS  Article  Google Scholar 

    29.
    Deng, Z. et al. The first discovery of Neolithic rice remains in eastern Taiwan: phytolith evidence from the Chaolaiqiao site. Archaeol. Anthrop. Sci. 10, 1477–1484. https://doi.org/10.1007/s12520-017-0471-z (2018).
    Article  Google Scholar 

    30.
    Piperno, D. R. The origins of plant cultivation and domestication in the New World tropics. Curr. Anthropol. 52, S453–S470 (2011).
    Article  Google Scholar 

    31.
    Yang, X. et al. Barnyard grasses were processed with rice around 10000 years ago. Sci. Rep. Uk 5, 16251. https://doi.org/10.1038/srep16251 (2015).
    ADS  CAS  Article  Google Scholar 

    32.
    Lu, H. et al. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proc. Natl. Acad. Sci. U.S.A. 106, 7367–7372. https://doi.org/10.1073/pnas.0900158106 (2009).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    33.
    Stromberg, C. Phytoliths in Paleoecology (Springer, Berlin, 2018).
    Google Scholar 

    34.
    Stromberg, C. A. E., Dunn, R. E., Madden, R. H., Kohn, M. J. & Carlini, A. A. Decoupling the spread of grasslands from the evolution of grazer-type herbivores in South America. Nat. Commun. 4, 1–8. https://doi.org/10.1038/Ncomms2508 (2013).
    Article  Google Scholar 

    35.
    Nurse, A. M., Reavie, E. D., Ladwig, J. L. & Yost, C. L. Pollen and phytolith paleoecology in the St. Louis River Estuary, Minnesota, USA, with special consideration of Zizania palustris L. Rev. Palaeobot. Palyno 246, 216–231. https://doi.org/10.1016/j.revpalbo.2017.07.003 (2017).
    Article  Google Scholar 

    36.
    Liu, H., Gu, Y., Lun, Z., Qin, Y. & Cheng, S. Phytolith-inferred transfer function for paleohydrological reconstruction of Dajiuhu peatland, central China. Holocene 28, 1623–1630. https://doi.org/10.1177/0959683618782590 (2018).
    ADS  Article  Google Scholar 

    37.
    Li, D. et al. Holocene climate reconstruction based on herbaceous phytolith indices from an AMS 14 C-dated peat profile in the Changbai Mountains, northeast China. Quatern. Int. 447, 144–157 (2017).
    Article  Google Scholar 

    38.
    Zuo, X. et al. Dating rice remains through phytolith carbon-14 study reveals domestication at the beginning of the Holocene. Proc. Natl. Acad. Sci. 114, 6486–6491. https://doi.org/10.1073/pnas.1704304114 (2017).
    CAS  Article  PubMed  Google Scholar 

    39.
    Luo, W. et al. Evidence for crop structure from phytoliths at the Dongzhao site on the Central Plains of China from Xinzhai to Erligang periods. J. Archaeol. Sci. Rep. 17, 852–859. https://doi.org/10.1016/j.jasrep.2017.12.018 (2018).
    Article  Google Scholar 

    40.
    Deng, Z., Hung, H.-C., Fan, X., Huang, Y. & Lu, H. The ancient dispersal of millets in southern China: New archaeological evidence. Holocene 28, 34–43 (2017).
    ADS  Article  Google Scholar 

    41.
    Piperno, D. R., Holst, I., Moreno, J. E. & Winter, K. Experimenting with domestication: understanding macro- and micro-phenotypes and developmental plasticity in teosinte in its ancestral pleistocene and early holocene environments. J. Archaeol. Sci. 108, 104970. https://doi.org/10.1016/j.jas.2019.05.006 (2019).
    Article  Google Scholar 

    42.
    Piperno, D. R., Ranere, A. J., Holst, I., Iriarte, J. & Dickau, R. Starch grain and phytolith evidence for early ninth millennium BP maize from the Central Balsas River Valley, Mexico. Proc. Natl. Acad. Sci. U.S.A. 106, 5019–5024. https://doi.org/10.1073/pnas.0812525106 (2009).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    43.
    Wang, J. et al. Revealing a 5,000-y-old beer recipe in China. Proc. Natl. Acad. Sci. 113, 6444–6448. https://doi.org/10.1073/pnas.1601465113 (2016).
    CAS  Article  PubMed  Google Scholar 

    44.
    Hilbert, L. et al. Evidence for mid-Holocene rice domestication in the Americas. Nat. Ecol. Evol. 1, 1693–1698. https://doi.org/10.1038/s41559-017-0322-4 (2017).
    Article  PubMed  Google Scholar 

    45.
    Kondo, R., Childs, C. & Atkinson, I. Opal Phytoliths of New Zealand Vol. 85 (Manaaki Whenua Press, Lincoln, 1994).
    Google Scholar 

    46.
    Geis, J. W. Biogenic silica in selected species of deciduous angiosperms. Soil Sci. 116, 113. https://doi.org/10.1097/00010694-197308000-00008 (1973).
    ADS  Article  Google Scholar 

    47.
    Kondo, R. & Peason, T. Opal phytoliths in tree leaves: 2. Opal phytoliths in dicotyledonous angiosperm tree leaves (in Japanese). Res. Bull. Obihiro Univ. Ser. I(12), 217–229 (1981).
    Google Scholar 

    48.
    Kealhofer, L. & Piperno, D. R. Opal phytoliths in Southeast Asian Flora (Smithsonian Institution Press, Washington, 1998).
    Google Scholar 

    49.
    Morris, L. R., Baker, F. A., Morris, C. & Ryel, R. J. Phytolith types and type-frequencies in native and introduced species of the sagebrush steppe and pinyon-juniper woodlands of the Great Basin, USA. Rev. Palaeobot. Palyno 157, 339–357. https://doi.org/10.1016/j.revpalbo.2009.06.007 (2009).
    Article  Google Scholar 

    50.
    Lisztes-Szabó, Z., Braun, M., Csík, A. & Pető, Á. Phytoliths of six woody species important in the Carpathians: characteristic phytoliths in Norway spruce needles. Veg. Hist. Archaeobot. https://doi.org/10.1007/s00334-019-00720-x (2019).
    Article  Google Scholar 

    51.
    Carnelli, A. L., Theurillat, J. P. & Madella, A. Phytolith types and type-frequencies in subalpine-alpine plant species of the European Alps. Rev. Palaeobot. Palyno 129, 39–65. https://doi.org/10.1016/j.revpalbo.2003.11.002 (2004).
    Article  Google Scholar 

    52.
    Runge, F. The opal phytolith inventory of soils in central Africa—quantities, shapes, classification, and spectra. Rev. Palaeobot. Palyno 107, 23–53. https://doi.org/10.1016/S0034-6667(99)00018-4 (1999).
    Article  Google Scholar 

    53.
    Mercader, J., Bennett, T., Esselmont, C., Simpson, S. & Walde, D. Soil phytoliths from miombo woodlands in Mozambique. Quatern. Res. 75, 138–150. https://doi.org/10.1016/j.yqres.2010.09.008 (2011).
    ADS  Article  Google Scholar 

    54.
    Kondo, R. Phytoliths Images by Scanning Electron Microscope—An Introduction to Phytoliths (in Japanese) (Hokkaido University Press, Hokkaido, 2010).
    Google Scholar 

    55.
    Ge, Y., Jie, D. M., Sun, Y. L. & Liu, H. M. Phytoliths in woody plants from the northern slope of the Changbai Mountain (Northeast China), and their implication. Plant Syst. Evol. 292, 55–62. https://doi.org/10.1007/s00606-010-0406-y (2011).
    CAS  Article  Google Scholar 

    56.
    Gao, G. et al. Phytolith characteristics and preservation in trees from coniferous and broad-leaved mixed forest in an eastern mountainous area of Northeast China. Rev. Palaeobot. Palyno 255, 43–56 (2018).
    Article  Google Scholar 

    57.
    Bremond, L., Alexandre, A., Hely, C. & Guiot, J. A phytolith index as a proxy of tree cover density in tropical areas: calibration with Leaf Area Index along a forest-savanna transect in southeastern Cameroon. Global Planet Change 45, 277–293. https://doi.org/10.1016/j.gloplacha.2004.09.002 (2005).
    ADS  Article  Google Scholar 

    58.
    Esteban, I. et al. Phytoliths in plants from the south coast of the Greater Cape Floristic Region (South Africa). Rev. Palaeobot. Palyno https://doi.org/10.1016/j.revpalbo.2017.05.001 (2017).
    Article  Google Scholar 

    59.
    Scurfield, G., Anderson, C. A. & Segnit, E. R. Silica in woody stems. Aust. J. Bot. 22, 211–229. https://doi.org/10.1071/Bt9740211 (1974).
    CAS  Article  Google Scholar 

    60.
    Collura, L. V. & Neumann, K. Wood and bark phytoliths of West African woody plants. Quatern. Int. https://doi.org/10.1016/j.quaint.2015.12.070 (2016).
    Article  Google Scholar 

    61.
    Lu, H. Y. & Liu, K. B. Phytoliths of common grasses in the coastal environments of southeastern USA. Estuar. Coast Shelf Sci. 58, 587–600. https://doi.org/10.1016/S0272-7714(03)00137-9 (2003).
    ADS  Article  Google Scholar 

    62.
    Neumann, K. et al. International Code for Phytolith Nomenclature (ICPN) 2.0. Ann. Bot. Lond. 124, 189–199. https://doi.org/10.1093/aob/mcz064 (2019).
    Article  Google Scholar 

    63.
    Juggins, S. C2 Version 1.5 User Guide. Software for Ecological and Palaeoecological Data Analysis and Visualisation (Newcastle University, Newcastle, 2007).
    Google Scholar 

    64.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2018).
    Google Scholar 

    65.
    Biswas, O., Mukherjee, B., Mukherjee, M. & Bera, S. Phytolith spectra in some selected fern-allies of eastern Himalaya. J. Bot. Soc. Bengal 1, 35–39 (2015).
    Google Scholar 

    66.
    Piperno, D. R., Holst, I., Wessel-Beaver, L. & Andres, T. C. Evidence for the control of phytolith formation in Cucurbita fruits by the hard rind (Hr) genetic locus: archaeological and ecological implications. Proc. Natl. Acad. Sci. U.S.A. 99, 10923–10928. https://doi.org/10.1073/pnas.152275499 (2002).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar  More

  • in

    Unsustainable charcoal, COVID spreads on plane and antibody cocktails

    NEWS ROUND-UP
    23 September 2020

    The latest science news, in brief.

    Most charcoal sold in Europe is used for barbecues — but its provenance is not always clear.Credit: Getty

    Unsustainable charcoal
    Nearly half of charcoal bought in Europe contains wood from tropical and subtropical forests, with little of it certified as sustainable, raising fears that some is illegally logged.
    “This is just an overview but it’s absolutely enough to cause alarm,” says study leader Volker Haag, a wood anatomist at the Thünen Institute of Wood Research in Hamburg, Germany (V. Haag et al. IAWA J. https://doi.org/d9n8; 2020).
    Haag’s team used a microscopy technique that digitally reconstructs sections of charcoal from irregular lumps to create images from which the wood can be identified. They analysed 4,500 samples from 150 charcoal bags bought in 11 countries. Some 46% included wood from subtropical and tropical forests, which have high rates of deforestation. Of these, only one-quarter of bags bore the logos of sustainable-certification organizations. In addition, only one-quarter of the bags specified the species or origin of the wood — and only half of these were correct. A wrongly labelled product is a strong indicator of illegality, says co-author Johannes Zahnen, a forest-policy specialist at WWF Germany in Berlin.

    Source: V. Haag et al. IAWA J. https://doi.org/10.1163/22941932-bja10017 (2020).

    Genomes show coronavirus spread on flight
    Genetic evidence strongly suggests that at least one member of a married couple flying from the United States to Hong Kong infected two flight attendants during the trip.
    Researchers led by Leo Poon at the University of Hong Kong and Deborah Watson-Jones at the London School of Hygiene & Tropical Medicine studied four people on the early-March flight (E. M. Choi et al. Emerg. Infect. Dis. https://doi.org/d9jn; 2020). Two were a husband and wife travelling in business class. The others were crew members: one in business class and one whose cabin assignment is unknown. The passengers had travelled in Canada and the United States before the flight and tested positive for the new coronavirus soon after arriving in Hong Kong. The flight attendants tested positive shortly thereafter.
    The team found that the viral genomes of all four were identical and that their virus was a close genetic relative of some North American SARS‑CoV-2 samples — but not of the SARS‑CoV-2 prevalent in Hong Kong. This suggests that one or both of the passengers transmitted the virus to the crew members during the flight, the authors say. The authors add that no previous reports of in-flight spread have been supported by genetic evidence.

    Blood plasma donated by people who have recovered from COVID-19 contains antibodies that could help to treat the disease.Credit: Ben Stansall/AFP via Getty

    A guide to making ‘cocktails’ to treat COVID-19
    A new method pinpoints every mutation that a crucial SARS‑CoV-2 protein could use to evade an attacking antibody. The results could inform the development of antibody treatments for COVID-19.
    The immune system produces molecules called antibodies to fend off invaders. Antibodies that bind to an important region of the SARS-CoV-2 spike protein can inactivate the viral particles, making such antibodies attractive as therapies. But over time, viruses can accumulate mutations — and some can interfere with antibody binding and allow viral particles to ‘escape’ immune forces.
    James Crowe at the Vanderbilt University Medical Center in Nashville, Tennessee, Jesse Bloom at the Fred Hutchinson Cancer Center in Seattle, Washington, and their colleagues created the most detailed map so far of the spike-protein mutations that could prevent binding by ten human antibodies (A. J. Greaney et al. Preprint at bioRxiv https://doi.org/d8zm; 2020). The team then used that information to design three antibody cocktails, each consisting of two antibodies.
    In laboratory tests of the cocktails against SARS-CoV-2, the virus did not develop mutations that could escape antibody binding. The findings have not yet been peer reviewed.

    Nature 585, 487 (2020)
    doi: 10.1038/d41586-020-02696-5

    Latest on:

    Microscopy

    SARS-CoV-2

    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday. More

  • in

    Successful breeding predicts divorce in plovers

    1.
    Halimubieke, N. et al. Mate fidelity in a polygamous shorebird, the snowy plover (Charadrius nivosus). Ecol. Evol. 9, 10734–10745. https://doi.org/10.1002/ece3.5591 (2019).
    Article  PubMed  PubMed Central  Google Scholar 
    2.
    Reynolds, J. D. Animal breeding systems. Trends Ecol. Evol. 11, 68–72. https://doi.org/10.1016/0169-5347(96)81045-7 (1996).
    CAS  Article  PubMed  Google Scholar 

    3.
    Neff, B. D. & Pitcher, T. E. Genetic quality and sexual selection: An integrated framework for good genes and compatible genes. Mol. Ecol. 14, 19–38. https://doi.org/10.1111/j.1365-294X.2004.02395.x (2005).
    CAS  Article  PubMed  Google Scholar 

    4.
    Székely, T., Thomas, G. H. & Cuthill, I. C. Sexual conflict, ecology, and breeding systems in shorebirds. Bioscience 56, 801–808. https://doi.org/10.1641/0006-3568(2006)56[801:SCEABS]2.0.CO;2 (2006).
    Article  Google Scholar 

    5.
    Culina, A., Radersma, R. & Sheldon, B. C. Trading up: The fitness consequences of divorce in monogamous birds. Biol. Rev. Camb. Philos. Soc. 90, 1015–1034. https://doi.org/10.1111/brv.12143 (2014).
    Article  PubMed  Google Scholar 

    6.
    Székely, T., Weissing, F. J. & Komdeur, J. Adult sex ratio variation: Implications for breeding system evolution. J. Evol. Biol. 27, 1500–1512. https://doi.org/10.1111/jeb.12415 (2014).
    Article  PubMed  Google Scholar 

    7.
    Culina, A., Lachish, S., Pradel, R., Choquet, R. & Sheldon, B. C. A multievent approach to estimating pair fidelity and heterogeneity in state transitions. Ecol. Evol. 3, 4326–4338. https://doi.org/10.1002/ece3.729 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    8.
    Møller, A. P. The evolution of monogamy: Mating relationships, parental care and sexual selection. In Monogamy Mating Strategies and Partnerships in Birds, Humans and Other Mammals (eds Reichard, U. H. & Boesch, C.) 29–41 (Cambridge University Press, Cambridge, 2003).
    Google Scholar 

    9.
    Lukas, D. & Clutton-Brock, T. H. The evolution of social monogamy in mammals. Science 314, 526–530. https://doi.org/10.1126/science.1238677 (2013).
    CAS  Article  ADS  Google Scholar 

    10.
    Black, J. M. Partnerships in birds (Oxford University Press, Oxford, 1996).
    Google Scholar 

    11.
    Black, J. M. Fitness consequences of long-term pair bonds in barnacle geese: Monogamy in the extreme. Behav. Ecol. 12, 640–645. https://doi.org/10.1093/beheco/12.5.640 (2001).
    Article  Google Scholar 

    12.
    Reichard, U. H. & Boesch, C. Monogamy: Mating Strategies and Partnerships in Birds, Humans and Other Mammals (Cambridge University Press, Cambridge, 2003).
    Google Scholar 

    13.
    Sánchez-Macouzet, O., Rodríguez, C. & Drummond, H. Better stay together: Pair bond duration increases individual fitness independent of age-related variation. Proc. R. Soc. B Biol. Sci. 281, 20132843. https://doi.org/10.1098/rspb.2013.2843 (2014).
    Article  Google Scholar 

    14.
    Botero, C. A. & Rubenstein, D. R. Fluctuating environments, sexual selection and the evolution of flexible mate choice in birds. PLoS ONE 7, e32311. https://doi.org/10.1371/journal.pone.0032311 (2012).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    15.
    Blomqvist, D., Wallander, J. & Andersson, M. Successive clutches and parental roles in waders: The importance of timing in multiple clutch systems. Biol. J. Linn. Soc. 74, 549–555. https://doi.org/10.1111/j.1095-8312.2001.tb01412.x (2001).
    Article  Google Scholar 

    16.
    Eberhart-Phillips, L. J. Plover breeding systems: Diversity and evolutionary origins. In The Population Ecology and Conservation of Charadrius Plovers (eds Colwell, M. A. & Haig, S. M.) 65–88 (CRC Press, Boca Raton, 2019).
    Google Scholar 

    17.
    Green, G. H., Greenwood, J. J. D. & Lloyd, C. S. The influence of snow conditions on the date of breeding of wading birds in north-east Greenland. J. Zool. 183, 311–328. https://doi.org/10.1111/j.1469-7998.1977.tb04190.x (1977).
    Article  Google Scholar 

    18.
    Saalfeld, S. T. & Lanctot, R. B. Conservative and opportunistic settlement strategies in Arctic-breeding shorebirds. Auk 132, 212–234. https://doi.org/10.1642/AUK-13-193.1 (2015).
    Article  Google Scholar 

    19.
    Székely, T., Cuthill, I. C. & Kis, J. Brood desertion in Kentish plover sex differences in remating opportunities. Behav. Ecol. 10, 185–190. https://doi.org/10.1093/beheco/10.2.185 (1999).
    Article  Google Scholar 

    20.
    Yasué, M. & Dearden, P. Replacement nesting and double-brooding in Malaysian plovers Charadrius peronii: Effects of season and food availability. Ardea 96, 59–72. https://doi.org/10.5253/078.096.0107 (2008).
    Article  Google Scholar 

    21.
    Gilburn, A. S. & Day, T. H. Evolution of female choice in seaweed flies: Fisherian and good genes mechanisms operate in different populations. Proc. R. Soc. B Biol. Sci. 255, 159–165. https://doi.org/10.1098/rspb.1994.0023 (1994).
    Article  ADS  Google Scholar 

    22.
    Candolin, U., Salesto, T. & Evers, M. Changed environmental conditions weaken sexual selection in sticklebacks. J. Evol. Biol. 20, 233–239. https://doi.org/10.1111/j.1420-9101.2006.01207.x (2007).
    CAS  Article  PubMed  Google Scholar 

    23.
    Welch, A. M. Genetic benefits of a female mating preference in gray tree frogs are context-dependent. Evolution 57, 883–893. https://doi.org/10.1111/j.0014-3820.2003.tb00299.x (2003).
    Article  PubMed  Google Scholar 

    24.
    Lode, T., Holveck, M. J., Lesbarreres, D. & Pagano, A. Sex-biased predation by polecats influences the mating system of frogs. Proc. R. Soc. B Biol. Sci. 271, 399–401. https://doi.org/10.1098/rsbl.2004.0195 (2004).
    Article  Google Scholar 

    25.
    Liker, A., Freckleton, R. P. & Székely, T. Divorce and infidelity are associated with skewed adult sex ratios in birds. Curr. Biol. 24, 880–884. https://doi.org/10.1016/j.cub.2014.02.059 (2014).
    CAS  Article  PubMed  Google Scholar 

    26.
    Parra, J. E., Beltrán, M., Zefania, S., dos Remedios, N. & Székely, T. Experimental assessment of mating opportunities in three shorebird species. Anim. Behav. 90, 83–90. https://doi.org/10.1016/j.anbehav.2013.12.030 (2014).
    Article  Google Scholar 

    27.
    Jeschke, J. M. & Kokko, H. Mortality and other determinants of bird divorce rate. Behav. Ecol. Sociobiol. 63, 1–9. https://doi.org/10.1007/s00265-008-0646-9 (2008).
    Article  Google Scholar 

    28.
    Bried, J., Pontier, D. & Jouventin, P. Mate fidelity in monogamous birds: A re-examination of the Procellariiformes. Anim. Behav. 65, 235–246. https://doi.org/10.1006/anbe.2002.2045 (2003).
    Article  Google Scholar 

    29.
    Andersson, M. Sexual selection (Princeton University Press, Princeton, 1994).
    Google Scholar 

    30.
    Choudhury, S. Divorce in birds: A review of the hypotheses. Anim. Behav. 50, 413–429. https://doi.org/10.1006/anbe.1995.0256 (1995).
    Article  Google Scholar 

    31.
    Wheelwright, N. T. & Teplitsky, C. Divorce in Savannah sparrows: Causes, consequences and lack of inheritance. Am. Nat. 190, 557–569. https://doi.org/10.1086/693387 (2017).
    Article  PubMed  Google Scholar 

    32.
    Adkins-Regan, E. & Tomaszycki, M. Monogamy on the fast track. Biol. Lett. 3, 617–619. https://doi.org/10.1098/rsbl.2007.0388 (2007).
    Article  PubMed  PubMed Central  Google Scholar 

    33.
    Perfito, N., Zann, R. A., Bentley, G. E. & Hau, M. Opportunism at work: Habitat predictability affects reproductive readiness in free-living zebra finches. Funct. Ecol. 21, 291–301. https://doi.org/10.1111/j.1365-2435.2006.01237.x (2007).
    Article  Google Scholar 

    34.
    Ens, B. J., Choudhury, S. & Black, J. M. Mate fidelity and divorce in monogamous birds. In Partnerships in Birds: The Study of Monogamy (ed. Black, J. M.) 344–401 (Oxford University Press, Oxford, 1996).
    Google Scholar 

    35.
    Gabriel, P. O., Black, J. M. & Foster, S. Correlates and consequences of the pair bond in Steller’s Jays. Ethology 119, 178–187. https://doi.org/10.1111/eth.12051 (2013).
    Article  Google Scholar 

    36.
    Coulson, J. C. The influence of the pair-bond and age on the breeding biology of the kittiwake gull Rissa tridactyla. J. Anim. Ecol. 35, 269–279. https://doi.org/10.2307/2394 (1966).
    Article  Google Scholar 

    37.
    Kempenaers, B., Adriaensen, F. & Dhondt, A. A. Inbreeding and divorce in blue and great tits. Anim. Behav. 56, 737–740. https://doi.org/10.1006/anbe.1998.0800 (1998).
    CAS  Article  PubMed  Google Scholar 

    38.
    Pyle, P., Sydeman, W. J. & Hester, M. Effects of age, breeding experience, mate fidelity and site fidelity on breeding performance in declining populations of Cassin’s auklets. J. Anim. Ecol. 70, 1088–1097. https://doi.org/10.1046/j.0021-8790.2001.00567.x (2001).
    Article  Google Scholar 

    39.
    Flodin, L. A. & Blomqvist, D. Divorce and breeding dispersal in the dunlin Calidris alpina: Support for the better option hypothesis?. Behaviour 149, 67–80. https://doi.org/10.1163/156853912X626295 (2012).
    Article  Google Scholar 

    40.
    Arnqvist, G. & Nilsson, T. The evolution of polyandry: Multiple mating and female fitness in insects. Anim. Behav. 60, 145–164. https://doi.org/10.1006/anbe.2000.1446 (2000).
    CAS  Article  PubMed  Google Scholar 

    41.
    Greenwood, P. J. Mating systems, philopatry and dispersal in birds and mammals. Anim. Behav. 28, 1140–1162. https://doi.org/10.1016/S0003-3472(80)80103-5 (1980).
    Article  Google Scholar 

    42.
    Clobert, J., Danchin, E., Dhondt, A. & Nichols, J. D. Dispersal (Oxford University Press, Oxford, 2001).
    Google Scholar 

    43.
    Trochet, A. et al. Evolution of sex-biased dispersal. Q. Rev. Biol. 91, 297–320. https://doi.org/10.1086/688097 (2016).
    Article  PubMed  Google Scholar 

    44.
    D’Urban Jackson, J. et al. Polygamy slows down population divergence in shorebirds. Evolution 71, 1313–1326. https://doi.org/10.1111/evo.13212 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    45.
    Székely, T. Why study plovers? The significance of non-model organisms in avian ecology, behaviour and evolution. J. Ornithol. 160, 923–933. https://doi.org/10.1007/s10336-019-01669-4 (2019).
    Article  Google Scholar 

    46.
    Morse, D. H. & Kress, S. W. The effect of burrow loss on mate choice in the Leach’s Storm-Petrel. Auk 101, 158–160 (1984).
    Article  Google Scholar 

    47.
    Pietz, P. J. & Parmelee, D. F. Survival, site and mate fidelity in south polar skuas Catharacta maccormicki at Anvers Island, Antarctica. Ibis 136, 32–38. https://doi.org/10.1111/j.1474-919X.1994.tb08128.x (2014).
    Article  Google Scholar 

    48.
    Thibault, J.-C. Nest-site tenacity and mate fidelity in relation to breeding success in Cory’s Shearwater Calonectris diomedea. Bird Study 41, 25–28. https://doi.org/10.1080/00063659409477193 (1994).
    Article  Google Scholar 

    49.
    Dubois, F. & Cézilly, F. Breeding success and mate retention in birds: A meta-analysis. Behav. Ecol. Sociobiol. 52, 357–364. https://doi.org/10.1007/s00265-002-0521-z (2002).
    Article  Google Scholar 

    50.
    Kosztolányi, A., Székely, T., Cuthill, I. C., Yilmaz, K. T. & Berberoǧlu, S. Ecological constraints on breeding system evolution: The influence of habitat on brood desertion in Kentish plover. J. Anim. Ecol. 75, 257–265. https://doi.org/10.1111/j.1365-2656.2006.01049.x (2006).
    Article  PubMed  Google Scholar 

    51.
    del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. & de Juana, E. Handbook of the Birds of the World Alive (Lynx Edicions, 2018). (retrieved from https://www.hbw.com/ on 30 October 2019).

    52.
    Maher, K. H. et al. High fidelity: Extra-pair fertilisations in eight Charadrius plover species are not associated with parental relatedness or social mating system. J. Avian. Biol. 48, 910–920. https://doi.org/10.1111/jav.01263 (2017).
    Article  Google Scholar 

    53.
    Székely, T., Freckleton, R. P. & Reynolds, J. D. Sexual selection explains Rensch’s rule of size dimorphism in shorebirds. Proc. Natl. Acad. Sci. USA 101, 12224–12227. https://doi.org/10.1073/pnas.0404503101 (2004).
    Article  PubMed  ADS  Google Scholar 

    54.
    Székely, T., Lislevand, T. & Figuerola, J. Sexual size dimorphism in birds. In Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism (eds Fairbairn, D. J. et al.) (Oxford University Press, Oxford, 2007). https://doi.org/10.1093/acprof:oso/9780199208784.003.0004
    Google Scholar 

    55.
    Lessells, C. M. The mating system of Kentish plovers Charadrius alexandrinus. Ibis 126, 474–483. https://doi.org/10.1111/j.1474-919X.1984.tb02074.x (1984).
    Article  Google Scholar 

    56.
    Székely, T. & Lessells, C. M. Mate change by Kentish plovers Charadrius alexandrinus. Ornis. Scand. 24, 317–322 (1993).
    Article  Google Scholar 

    57.
    Amat, J. A., Fraga, R. M. & Arroyo, G. M. Brood desertion and polygamous breeding in the Kentish plover Charadrius alexandrinus. Ibis 141, 596–607. https://doi.org/10.1111/j.1474-919X.1999.tb07367.x (1999).
    Article  Google Scholar 

    58.
    Carmona-Isunza, M. C., Küpper, C., Serrano-Meneses, M. A. & Székely, T. Courtship behavior differs between monogamous and polygamous plovers. Behav. Ecol. Sociobiol. 69, 2035–2042. https://doi.org/10.1007/s00265-015-2014-x (2015).
    Article  Google Scholar 

    59.
    Warriner, J. S., Warriner, J. C., Page, G. W. & Stenzel, L. E. Mating system and reproductive success of a small population of polygamous snowy plover. Wilson Bull. 98, 15–37 (1986).
    Google Scholar 

    60.
    Eberhart-Phillips, L. J. et al. Demographic causes of adult sex ratio variation and their consequences for parental cooperation. Nat. Commun. 9, 1651. https://doi.org/10.1038/s41467-018-03833-5 (2018).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    61.
    Kappeler, P. M. & van Schaik, C. P. Evolution of primate social systems. Int. J. Primatol. 23, 707–740. https://doi.org/10.1023/A:1015520830318 (2002).
    Article  Google Scholar 

    62.
    Avise, J. C. et al. Genetic mating systems and reproductive natural histories of fishes: Lessons for ecology and evolution. Annu. Rev. Genet. 36, 19–45. https://doi.org/10.1146/annurev.genet.36.030602.090831 (2002).
    CAS  Article  PubMed  Google Scholar 

    63.
    Bowyer, R. T., McCullough, D. R., Rachlow, J. L., Ciuti, S. & Whiting, J. C. Evolution of ungulate mating systems: Integrating social and environmental factors. Ecol. Evol. 10, 5160–5178. https://doi.org/10.1002/ece3.62 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    64.
    Johnson, M. & Walters, J. R. Effects of mate and site fidelity on nest survival of western sandpipers (Calidris mauri). Auk 125, 76–86. https://doi.org/10.1525/auk.2008.125.1.76 (2008).
    Article  Google Scholar 

    65.
    Brandt, E. E., Kelley, J. P. & Elias, D. O. Temperature alters multimodal signaling and mating success in an ectotherm. Behav. Ecol. Sociobiol. 72, 191. https://doi.org/10.1007/s00265-018-2620-5 (2018).
    Article  Google Scholar 

    66.
    Conrad, T., Stöcker, C. & Ayasse, M. The effect of temperature on male mating signals and female choice in the red mason bee, Osmia bicornis (L.). Ecol. Evol. 7, 8966–8975. https://doi.org/10.1002/ece3.3331 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    67.
    Silva, K., Vieira, M. N., Almada, V. C. & Monteiro, N. M. The effect of temperature on mate preferences and female–female interactions in Syngnathus abaster. Anim. Behav. 74, 1525–1533. https://doi.org/10.1016/j.anbehav.2007.03.008 (2007).
    Article  Google Scholar 

    68.
    Twiss, S. D., Thomas, C., Poland, V., Graves, J. A. & Pomeroy, P. The impact of climatic variation on the opportunity for sexual selection. Biol. Lett. 3, 12–15. https://doi.org/10.1098/rsbl.2006.0559 (2007).
    Article  PubMed  Google Scholar 

    69.
    Olsson, M. et al. In hot pursuit: Fluctuating mating system and sexual selection in sand lizards. Evolution 65, 574–583. https://doi.org/10.1111/j.1558-5646.2010.01152.x (2011).
    Article  PubMed  Google Scholar 

    70.
    Suzaki, Y. et al. Temperature variations affect postcopulatory but not precopulatory sexual selection in the cigarette beetle. Anim. Behav. 144, 115–123. https://doi.org/10.1016/j.anbehav.2018.08.010 (2018).
    Article  Google Scholar 

    71.
    Eberhart-Phillips, L. J. et al. Sex-specific early survival drives adult sex ratio bias in snowy plovers and impacts mating system and population growth. Proc. Natl. Acad. Sci. USA 114, E5474–E5481. https://doi.org/10.1073/pnas.1620043114 (2017).
    CAS  Article  PubMed  Google Scholar 

    72.
    Liker, A., Freckleton, R. P. F. & Székely, T. The evolution of sex roles in birds is related to adult sex ratio. Nat. Commun. 4, 1587 (2013).
    Article  ADS  Google Scholar 

    73.
    Kosztolányi, A., Barta, Z., Küpper, C. & Székely, T. Persistence of an extreme male-biased adult sex ratio in a natural population of polyandrous bird. J. Evol. Biol. 24, 1842–1846. https://doi.org/10.1111/j.1420-9101.2011.02305.x (2011).
    Article  PubMed  Google Scholar 

    74.
    Handel, C. M. & Gill, R. E. Mate fidelity and breeding site tenacity in a monogamous sandpiper, the black turnstone. Anim. Behav. 60, 471–481. https://doi.org/10.1006/anbe.2000.1505 (2000).
    CAS  Article  PubMed  Google Scholar 

    75.
    Cruz-López, M. et al. The plight of a plover: Viability of an important snowy plover population with flexible brood care in Mexico. Biol. Conserv. 209, 440–448. https://doi.org/10.1016/j.biocon.2017.03.009 (2017).
    Article  Google Scholar 

    76.
    Székely, T., Webb, J. N., Houston, A. I. & McNamara, J. M. An evolutionary approach to offspring desertion in birds. In Current Ornithology (eds Nolan, V. & Ketterson, E. D.) 271–330 (Springer, Berlin, 1996).
    Google Scholar 

    77.
    McNamara, J. M., Forslund, P. & Lang, A. An ESS model for divorce strategies in birds. Philos. Trans. R. Soc. B 354, 223–236. https://doi.org/10.1098/rstb.1999.0374 (1999).
    Article  Google Scholar 

    78.
    Houston, A. I., Székely, T. & McNamara, J. M. The parental investment models of Maynard Smith: A retrospective and prospective view. Anim. Behav. 86, 667–674. https://doi.org/10.1016/j.anbehav.2013.08.001 (2013).
    Article  Google Scholar 

    79.
    Zann, R. A. Reproduction in a zebra finch colony in south-eastern Australia: The significance of monogamy, precocial breeding and multiple broods in a highly mobile species. Emu 94, 285–299. https://doi.org/10.1071/MU9940285 (1994).
    Article  Google Scholar 

    80.
    Fowler, G. S. Stages of age-related reproductive success in birds: Simultaneous effects of age, pair-bond duration and reproductive experience. Am. Zool. 35, 318–328. https://doi.org/10.1093/icb/35.4.318 (1995).
    Article  Google Scholar 

    81.
    Champion de Crespigny, F. E., Hurst, L. D. & Wedell, N. Do Wolbachia-associated incompatibilities promote polyandry?. Evolution 62, 107–122. https://doi.org/10.1111/j.1558-5646.2007.00274.x (2007).
    Article  PubMed  Google Scholar 

    82.
    Schwensow, N., Eberle, M. & Sommer, S. Compatibility counts: MHC-associated mate choice in a wild promiscuous primate. Proc. R. Soc. B Biol. Sci. 275, 555–564. https://doi.org/10.1098/rspb.2007.1433 (2008).
    Article  Google Scholar 

    83.
    Fraga, R. M. & Amat, J. A. Breeding biology of a Kentish plover (Charadrius alexandrinus) population in an inland saline lake. Ardeola 43, 69–85 (1996).
    Google Scholar 

    84.
    Ferreira-Rodríguez, N. & Pombal, M. A. Predation pressure on the hatching of the Kentish plover (Charadrius alexandrinus) in clutch protection projects: A case study in north Portugal. Wildl. Res. 45, 55–63. https://doi.org/10.1071/WR17122 (2018).
    Article  Google Scholar 

    85.
    Kubelka, V. et al. Global pattern of nest predation is disrupted by climate change in shorebirds. Science 362, 680–683. https://doi.org/10.1126/science.aat8695 (2018).
    CAS  Article  PubMed  ADS  Google Scholar 

    86.
    Greenwood, P. J. & Harvey, P. H. The natal and breeding dispersal of birds. Annu. Rev. Ecol. Evol. Syst. 13, 1–21. https://doi.org/10.1146/annurev.es.13.110182.000245 (1982).
    Article  Google Scholar 

    87.
    Sandercock, B. K., Lank, D. B., Lanctot, R. B., Kempenaers, B. & Cooke, F. Ecological correlates of mate fidelity in two Arctic-breeding sandpipers. Can. J. Zool. 78, 1948–1958. https://doi.org/10.1139/z00-146 (2000).
    Article  Google Scholar 

    88.
    Liu, Y. & Zhang, Z. Research progress in avian dispersal behavior. Front. Biol. 3, 375. https://doi.org/10.1007/s11515-008-0066-2 (2008).
    Article  Google Scholar 

    89.
    Végvári, Z. et al. Sex-biased breeding dispersal is predicted by social environment in birds. Ecol. Evol. 8, 6483–6491. https://doi.org/10.1002/ece3.4095 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    90.
    Pearson, W. J. & Colwell, M. A. Effects of nest success and mate fidelity on breeding dispersal in a population of snowy plovers Charadrius nivosus. Bird Conserv. Int. 24, 342–353. https://doi.org/10.1017/S0959270913000403 (2013).
    Article  Google Scholar 

    91.
    Lloyd, P. Adult survival, dispersal and mate fidelity in the white-fronted plover Charadrius marginatus. Ibis 150, 182–187. https://doi.org/10.1111/j.1474-919X.2007.00739.x (2008).
    Article  Google Scholar 

    92.
    McNamara, J. M. & Forslund, P. Divorce rates in birds: Predictions from an optimization model. Am. Nat. 147, 609–640 (1996).
    Article  Google Scholar 

    93.
    Székely, T., Kosztolányi, A. & Küpper, C. Practical guide for investigating breeding ecology of Kentish plover Charadrius alexandrinus. https://www.pennuti.net/wp-content/uploads/2010/08/KP_Field_Guide_v3.pdf (University of Bath, 2008).

    94.
    Chamberlain, S. et al. rnoaa: “NOAA” Weather data from R. R package version 0.7. 0. 2017. https://cran.r-project. org/web/packages/rnoaa/ (2017).

    95.
    Sparks, A. H., Hengl, T. & Nelson, A. GSODR: Global summary daily weather 800 data in R. J. Open Source Softw. https://doi.org/10.21105/joss.00177 (2017).
    Article  Google Scholar 

    96.
    Dunning, J. B. CRC Handbook of Avian Body Masses (CRC Press, Boca Raton, 2008).
    Google Scholar 

    97.
    Grolemund, G. & Wickham, H. Dates and times made easy with lubridate. J. Stat. Softw. 40, 25. https://doi.org/10.18637/jss.v040.i03 (2011).
    Article  Google Scholar 

    98.
    Searle, S. R., Speed, F. M. & Milliken, G. A. Population marginal means in the linear model: An alternative to least squares means. Am. Stat. 34, 216–221. https://doi.org/10.1080/00031305.1980.10483031 (1980).
    MathSciNet  Article  MATH  Google Scholar 

    99.
    Vincze, O. et al. Parental cooperation in a changing climate: Fluctuating environments predict shifts in care division. Global Ecol. Biogeogr. 26, 347–358. https://doi.org/10.1111/geb.12540 (2017).
    Article  Google Scholar 

    100.
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package. J. Stat. Softw. 33, 1–22. https://doi.org/10.18637/jss.v033.i02 (2010).
    Article  Google Scholar 

    101.
    R Core Team. R: A language and environment for statistical computing in R Foundation for Statistical Computing. https://www.R-project.org (2018). More

  • in

    Evaluation of plant growth promotion properties and induction of antioxidative defense mechanism by tea rhizobacteria of Darjeeling, India

    Isolation and identification of rhizobacteria from tea rhizosphere
    Soil microorganisms play a crucial role in plant health and development. Moreover, they contribute immensely to the agricultural production of different crops. In the district of Darjeeling, tea is cultivated as the major cash crop. Besides tea, a number of other crops such as rice, maize, wheat, mustard, millet, ginger, orange, large cardamom, and vegetable crops are cultivated19 (Source: https://darjeeling.gov.in/agriculture.html). Rice and maize are the most important food grain crops grown in this region. However, because of the acidic nature of the soil of this region, crop cultivation becomes increasingly difficult. Agrochemicals, including N fertilizers, make the situation even more complicated as they further assist soil acidification. In the slightly acidic soils of Darjeeling district (4.2  More

  • in

    A higher-order finite element reactive transport model for unstructured and fractured grids

    Flow and transport
    In this section the governing equations are provided in a general multiphase and multicomponent formulation in which all phases are treated equally (e.g., allowing for compressibility and density changes).
    The transport equations are written in terms of molar conservation of each component i out of (n_{c}) total number of components, including all reacting and non-reacting components (defined in more detail in the next subsection):

    $$begin{aligned} phi frac{partial c_i}{partial t} + nabla cdot vec {U}_i= & {} F^{{mathrm {well}}}_i + F^{{mathrm {react}}}_{i}, quad i = 1, ldots , n_c, end{aligned}$$
    (1)

    with (phi [cdot ]) the porosity, (c_i [{mathrm {mol}}/{{mathrm {m}}}^{3}]) the molar density of component i (total molar density in the case of multiphase mixtures), (F^{{mathrm {well}}}_i [{mathrm {mol}}/({{mathrm {s}}} {{mathrm {m}}}^{3})]) a source or sink of component i (e.g., a contaminant spill site or a way to prescribe inflow and outflow conditions), and (F^{mathrm {react}}_i [{mathrm {mol}}/({mathrm {s}} {{mathrm {m}}}^{3})]) the source or sink of component i due to geochemical reactions.
    The component flux (U_{i}) contains both the advective and dispersive contributions. In the most general case of (n_{mathrm {ph}}) number of phases that are labeled by (alpha = 1, ldots , n_{mathrm {ph}}), (U_{i}) is given by

    $$begin{aligned} vec {U}_i= & {} sum _{alpha =1}^{n_{mathrm {ph}}} left( c_{i,alpha } vec {u}_alpha + f(phi ,tau ) S_alpha vec {J}_{i,alpha }right) ,quad i = 1, ldots , n_c, end{aligned}$$
    (2)

    with (c_{i,alpha } [{mathrm {mol}}/{{mathrm {m}}}^{3}]) the molar density of component i in phase (alpha), (vec {u}_alpha [{{mathrm {m}}}/{mathrm {s}}]) the fiducial Darcy velocity

    $$begin{aligned} vec {u}_alpha= & {} – lambda _{alpha }{mathrm {K}} (nabla p_{alpha } – rho _alpha vec {g}), quad alpha = 1, ldots , {n_{mathrm {ph}}} end{aligned}$$
    (3)

    in which (p_{alpha } [{mathrm {Pa}}]) is the phase pressure, (vec {g}) is the gravitational vector, and (lambda _{alpha } [{{mathrm {m}}} {mathrm {s}}/{mathrm {kg}}]= lambda _alpha (S_alpha )) is the phase mobility, (rho _alpha [{mathrm {kg}}/{mathrm {m}}^{3}]) the phase mass density, (S_{alpha } [cdot ]) the phase saturation, and (mathrm {K} [{mathrm {m}}^{2}]) the full permeability tensor. The diffusive term (f(phi ,tau ) S_alpha vec {J}_{i,alpha }) is discussed in detail below.
    For a fully compressible multiphase system, the pressure (of a reference phase) evolves as41,42:

    $$begin{aligned}&phi C_{f} frac{partial p}{partial t} + sum _{i=1}^{n_c} {overline{nu }_i(nabla cdot vec {U}_i}-F^{mathrm {well}}_i – F^{mathrm {react}}_{i}) =0, end{aligned}$$
    (4)

    with (C_{f} [mathrm {Pa}^{{-1}}]) the total fluid compressibility of the multiphase mixture, and (overline{nu }_i [{mathrm {m}}^{3}/{mathrm {mol}}]) the total partial molar volume of each component. The algorithm to compute these parameters for multiphase mixtures is highly non-linear43.
    For the case of a single aqueous phase the expressions for compressibility and partial molar volumes are considerably simpler, and (n_{mathrm {ph}} =1), (alpha = w), (c_{i,alpha } = c_{i}), (lambda _{alpha } = lambda _{w} = 1/mu _{w}) with (mu _{w} [{mathrm {m}} {mathrm {s}}/{mathrm {kg}}]) the water viscosity, (S_{w}=1), and (p_{alpha }=p) (no capillary effects).
    Geochemical reactions
    When several species react through a number of different reactions, the concentrations of each of the species are not independent. For example, in the equilibrium reaction (hbox {H}_{2}hbox {O} rightleftharpoons hbox {H}^{+} + hbox {OH}^{-}), if one mole of (hbox {H}_{2}hbox {O}) reacts, the increase in (hbox {H}^{+}) and (hbox {OH}^{-}) concentrations equals the decrease in (hbox {H}_{2}hbox {O}) concentration. A mathematical consequence is that not all species concentrations need to be transported explicitly. One can split the total number of species into a subset of independent primary components and a set of secondary components that can be constructed from the primary ones44. The process has been described in the literature18 but is perhaps best illustrated by example.
    Consider a typical mixture in the context of geological carbon dioxide ((hbox {CO}_{2})) sequestration consisting of seven species dissolved in water: (hbox {CaCO}_{3}), (hbox {Ca}^{2+}), (hbox {CO}_{3}^{2-}), (hbox {H}^{+}), (hbox {OH}^{-}), (hbox {H}_2hbox {CO}_{3}), (hbox{HCO}^{-}_{3}) that interact through the following four equilibrium reactions:

    $$begin{aligned} hbox {CaCO}_3&rightleftharpoons hbox {Ca}^{2+} + hbox {CO}_{3}^{2-} , end{aligned}$$
    (5)

    $$begin{aligned} hbox {HCO}^{-}_{3}&rightleftharpoons hbox {CO}_{3}^{2-} + hbox {H}^{+} , end{aligned}$$
    (6)

    $$begin{aligned} hbox {H}_{2}hbox {CO}_{3}&rightleftharpoons hbox {CO}_{3}^{2-} + 2 hbox{H}^{+} , end{aligned}$$
    (7)

    $$begin{aligned} hbox {H}^{+} + hbox {OH}^{-}&rightleftharpoons hbox {H}_{2}hbox{O}. end{aligned}$$
    (8)

    If we denote concentrations by square brackets, changes in concentrations (time-derivatives) by, e.g., ([hbox {CaCO}_{3}]^{prime }), and rates (R_{1}, ldots , R_{4}) for the four reactions (positive in the leftward direction), the evolution of all concentrations can be solved from

    $$begin{aligned} left[ hbox {CaCO}_{3} right] ^{prime }= & {} – R_1, end{aligned}$$
    (9)

    $$begin{aligned} left[ hbox {HCO}^{-}_{3} right] ^{prime }= & {} -R_2, end{aligned}$$
    (10)

    $$begin{aligned} left[ hbox {H}_2hbox {CO}_{3} right] ^{prime }= & {} – R_3, end{aligned}$$
    (11)

    $$begin{aligned} left[ hbox {OH}^{-} right] ^{prime }= & {} – R_4, end{aligned}$$
    (12)

    $$begin{aligned} left[ {mathrm {tot}} (hbox {H}) right] ^{prime }= & {} left( [hbox {H}^{+}]+ [hbox {HCO}^{-}_{3}]+2[hbox {H}_2hbox {CO}_{3}] – [hbox {OH}^{-}]right) ^{prime } =0, end{aligned}$$
    (13)

    $$begin{aligned} left[ {mathrm {tot}} (hbox {Ca}) right] ^{prime }= & {} left( [hbox {Ca}^{2+}]+[hbox {CaCO}_{3}] right) ^{prime } = 0, end{aligned}$$
    (14)

    $$begin{aligned} left[ {mathrm {tot}} (hbox {CO}_{3}) right] ^{prime }= & {} left( [hbox {CO}_{3}^{2-}]+ [hbox {CaCO}_{3}] + [hbox {HCO}^{-}_{3}] + [hbox {H}_2hbox {CO}_{3}] right) ^{prime } = 0. end{aligned}$$
    (15)

    The first four equations define the primary species (hbox {CaCO}_{3}) , (hbox {HCO}^{-}_{3}), (hbox {H}_2hbox {CO}_{3}), (hbox {OH}^{-}), while the last three equations involve the secondary species (hbox {H}^{+}), (hbox {Ca}^{2+}), (hbox {CO}_{3}^{2-}), as well as defining the (conservation of) total concentrations of those elements across all species. Following common notations18 and writing (Psi _{j=1, ldots , 3}) for the total concentrations, (C_{j=1, ldots , 3}) for the secondary species, and (C_{i=1, ldots , 4}) for the primary species, Eqs. (13)–(15) can be written succinctly in terms of the stoichiometry coefficients (nu _{ij}) as

    $$begin{aligned} Psi _{j} = C_{j} + sum _{i=1}^{4} nu _{ij} C_{i}, quad quad nu _{ij} = left( begin{array}{cccc} 0 &{} 1 &{} 2 &{} -1\ 1 &{} 0 &{} 0 &{} 0 \ 1 &{} 1 &{} 1 &{} 0 end{array} right) . end{aligned}$$
    (16)

    From the definitions Eqs. (13)–(15) it is clear that the total concentrations (or ‘total components’) are conserved in the reacting system and thus a natural choice as primary variables in the molar conservation Eq. (1) for species transport. More generally, all problems of interest involve water itself and we usually choose ({mathrm {tot}} (hbox {H})) and ({mathrm {tot}} (hbox {O})) as two of the total concentrations. We will refer to the number of total or primary components that need to be transported as (n_{p}) and note that those are, in a sense, ‘bookkeeping’ quantities, whereas we will continue to use (n_{c}) for the total number of actual molecular species in the mixture.
    The different symbols (c_{i}) versus (C_{i}) refer to different unit systems: Phreeqc typically expresses all concentrations per kilogram or liter of water, whereas Eq. (1) involves intrinsic molar densities (([{mathrm {mol}}/{mathrm {m}}^{3}])). In coupling the transport and geochemistry, a unit conversion is made between Osures and Phreeqc that involves the (temperature, pressure, and composition dependent) aqueous phase mass density as computed from the CPA EOS38 (equivalently, PhreeqcRM can be provided with ([{mathrm {mol}}/mathrm {l}]) concentrations together with a mass density).
    Just as in most other reactive transport codes, a (sequential non-iterative) operator splitting approach is adopted in which the flow-transport problem is solved first without considering reactions, followed by the equivalent of a batch reaction calculation for each grid-cell (or node in the case of higher-order methods). More implementation details are provided below.
    Diffusion of chemical species
    Molecular diffusion, as defined in irreversible thermodynamics, is driven fundamentally by gradients in chemical potentials. Under the assumptions of negligible temperature and pressure diffusion an expression is obtained in terms of gradients in compositions, which is the commonly used generalized Fick’s law. Thus, while total concentrations, as the conserved quantity, are a suitable choice for advective transport they are not natural variables for the diffusive flux45. The following equations are therefore for the (n_{c}) physical species.
    Diffusion of particles through a porous medium is affected by the geometry and connectivity of the pore network, and is different from diffusion in open space. The longer pathways in a porous medium are represented empirically in Eq. (2) by the factor (f(phi ,tau ) [cdot ]), which is a function of porosity and tortuosity (tau [cdot ]). The simplest option is (f(phi ,tau )=phi).
    Both molecular diffusion and mechanical dispersion are considered, e.g., (vec {J}_{i,alpha } = vec {J}_{alpha , i}^{mathrm {diff}} + vec {J}_{alpha , i}^{{mathrm {disp}}}). Mechanical dispersion is computed from

    $$begin{aligned} vec {J}_{alpha , i}^{{mathrm {disp}}} = – c_alpha sum _{k=1}^{n_c -1} vec {D}^{mathrm {disp}}_{alpha } nabla x_{alpha , k}, end{aligned}$$
    (17)

    with the coefficients given by the tensor

    $$begin{aligned}&vec {D}^{mathrm {disp}}_{alpha } = d_{t,alpha } | vec {u}_{alpha } | vec {I} + (d_{l,alpha } – d_{t,alpha }) frac{vec {u}_{alpha } vec {u}^{T}_{alpha }}{|vec {u}_{alpha }|}, end{aligned}$$
    (18)

    with (d_{l,alpha } [{mathrm {m}}]) and (d_{t,alpha } [{mathrm {m}}]) the longitudinal and transverse phase dispersivities, respectively, and (vec {I}) the identity matrix. There are only (n_{c}-1) independent equations because by definition (sum _{i} J_{i} = 0), such that (J_{n_{c}} = – sum _{i=1}^{n_{c}-1} J_{i}). The (n_{c}-1) equations for Fickian molecular diffusion are:

    $$begin{aligned} vec {J}_{alpha , i}^{mathrm {diff}} = – c_alpha sum _{k=1}^{n_c -1} D^{mathrm {Fick}}_{alpha , ik} nabla x_{alpha , k}, end{aligned}$$
    (19)

    with (x_{alpha , i} [cdot ]) the phase compositions (molar fractions) and (D^{mathrm {Fick}}_{alpha , ik} [{mathrm {m}}^{2}/{mathrm {s}}]) a full matrix of composition-dependent diffusion coefficients as derived from irreversible thermodynamics30,39,46.
    It can easily be shown47 that only considering diagonal (‘self’) diffusion coefficients violates molar balance, because the commonly used (J_{i} sim -D_{i} nabla x_{i}) cannot simultaneously satisfy (sum _{i} J_{i} = 0) and (sum _{i} x_{i} = 1). Specifically, for (n_{c}) species we have (sum _{i=1}^{n_c} x_{i } = 1), which means that (sum _{i=1}^{n_c}nabla x_{i} = 0). In other words, the compositional gradients are not all independent and one can be expressed in terms of the others. Choosing the last component, for instance, we have

    $$begin{aligned} nabla x_{n_{c}} = – sum _{i=1}^{n_c-1}nabla x_{i} . end{aligned}$$
    (20)

    The diffusive fluxes are also not all independent because, by definition (i.e., diffusion being the deviation of individual species fluxes from the average advective flux) (sum _{i=1}^{n_c} J_{i} = 0). Similar to Eq. (20), we choose to express the diffusive flux of the last component in terms of the other fluxes (J_{n_{c}} = – D_{c} nabla x_{c} = – sum _{i=1}^{n_c-1} J_{i} = – sum _{i=1}^{n_c-1} D_{i} nabla x_{i}). Inserting (nabla x_{n_{c}}) from Eq. (20) that requires

    $$begin{aligned} sum _{i=1}^{n_c – 1} (D_{n_c} – D_{i}) nabla x_{i} = 0. end{aligned}$$
    (21)

    For Eq. (21) to be true for any composition (x_{i}) requires all (D_{i}= D_{n_{c}}), i.e. all diagonal diffusion coefficients have to be the same. In other words, molar conservation is only guaranteed either for a single scalar diffusion coefficient for all components (which is not justified by experimental data) or requires a full matrix of multicomponent diffusion coefficients.
    In terms of implementation, for diffusion problems Phreeqc is instructed to output not only the (n_{p}) concentrations (Psi _{j}) but also the (n_{c}) concentrations (C_{i}) and (C_{j}) (this requires more memory, but not more computational effort). Eq. (19) is then updated for each ‘real’ species across each grid face in the domain, and the contributions to the molar densities of (n_{p}) total components follows from the stoichiometry (using Eq. (16)). An operator splitting step is used in the implementation: first the diffusive fluxes are computed as described, then, in updating Eq. (1) the divergence of the diffusive flux is essentially treated as a sink-source term of the total number of moles of (c_{i}) entering or leaving the grid cell through all its faces in a given time-step.
    Nernst–Planck electromigration
    Electrochemical migration refers to electrostatic forces coupling to charged particles that diffuse at different rates, which causes charge imbalance. Electric fields can force charged particles to diffuse when there are no compositional gradients or even diffuse from low to high concentrations, due to interaction with other species. Similar effects have been observed even in charge-neutral non-ideal mixtures such as hydrocarbon fluids48. Because the flux of one species can depend on the compositional gradients in all other species, this is another reason that a full matrix of diffusion coefficients is required.
    The following expression has been used to model both Fickian ((J^{{mathrm {Fick}}}_{i})) and electrochemical ((J^{mathrm {EK}}_{i})) diffusion in the absence of externally induced currents and advective fluxes49:

    $$begin{aligned} J_{i} = J^{{mathrm {Fick}}}_{i} + J^{mathrm {EK}}_{i} = – D_{i} nabla C_{i} + D_{i} C_{i} q_{i} frac{sum _{k} D_{k} q_{k} nabla C_{k} }{sum _{k} D_{k} q^2_{k} C_{k}} end{aligned}$$
    (22)

    with (q_{k}) the species charge, (C_{i}) concentrations, and summations over all dissolved species. Eq. (22) is a simplified form of the Nernst-Planck equation.
    To be consistent with the molar balance equation (1) and allowing for variable aqueous densities (compressibility), Eq. (22) is written in terms of aqueous phase molar density c and molar fractions (x_{i}=c_{i}/c), similar to Eq. (19), as

    $$begin{aligned} J_{i} = – c D_{i} nabla x_{i} + D_{i} x_{i} q_{i} frac{sum _{k} c D_{k} q_{k} nabla x_{k} }{sum _{k} D_{k} q^2_{k} x_{k}}, end{aligned}$$
    (23)

    which assumes that diffusion coefficients have already been corrected for porosity and tortuosity effects.
    As discussed in the previous section, this type of relation for diffusion in multicomponent mixtures is physically inconsistent. However it can be a reasonable approximation (when off-diagonal diffusion coefficients are small) and is implemented in this work as an option to allow comparisons to other reactive transport codes that rely on this formulation.
    Implementation
    The numerical implementation of the mathematical framework described in the previous sections relies heavily on operator splitting, which permits choosing the most suitable numerical method for each subproblem. First, diffusive fluxes (Eqs. (17)–(19)) are computed using compositions, molar densities, and advective fluxes from the previous time-step. Second, the flow problem Eqs. (3)–(4) is simultaneously solved for pressures and fluxes by the implicit MHFE method. Third, the transport equations (Eqs. (1)–(2)) are updated by the DG method, using the previously computed diffusive fluxes. Other than the interpretation of total components (Eq. (16)) and the implementation of the Nernst-Planck Eq. (23) for electromigration, the implementation is identical to prior (non-reactive) works20,32,33, and is thus not repeated here in further detail.
    After the transport equations have been updated for all components, PhreeqcRM is invoked to update the geochemistry. The geochemistry computations alter the compositions of reactive species, which is indicated by the (F^{mathrm {react}}_i) term in Eq. (1). As discussed above, PhreeqcRM is requested to output both the total component concentrations that are advected in Eq. (1) as well as all the physical species concentrations that are used to compute the diffusive fluxes (Eqs. (17)–(19)). The diffusive flux contributions of each species to the total component transport is derived using the stoichiometry as in Eq. (16).
    The full reactive transport step is followed by an EOS-based update of fluid properties (molar and mass densities, compressibility, viscosity), as well as rock properties (porosity, permeability, fracture apertures) when dissolution and precipitation reactions are considered. For multiphase problems this would also involve phase stability and phase split computations that are iteratively coupled to the PhreeqcRM geochemistry update.
    Explicit, implicit, and adaptive implicit Euler time-discretizations have been implemented, where the adaptive method uses an implicit update for grid cells that have a small Courant-Friedrichs-Lewy (CFL) time-step constraint50 and an explicit update elsewhere33. The advantage of implicit methods is that they are unconditionally stable and thus allow for larger time-steps. However, implicit methods are also known to exhibit excessive numerical dispersion. Moreover, (1) larger time-steps imply bigger changes in concentrations, which results in numerical convergence issues for PhreeqcRM, and (2) rock-fluid interactions and kinetic reactions are quite sensitive to time-step sizes. For these reasons, unless a fully coupled approach is used, an explicit transport update appears to provide the most accurate results (smaller time-steps also reduce the decoupling errors inherent to any operator splitting approach). The cost of using relatively small time-steps can be alleviated by (1) faster convergence of the non-linear geochemistry (similar to phase-split computations), and (2) the more trivial parallelization of an element-wise explicit transport and geochemistry update. The numerical examples, presented next, therefore all rely on the common implicit-pressure-explicit-composition (IMPEC) scheme. More