More stories

  • in

    Two-way microscale interactions between immigrant bacteria and plant leaf microbiota as revealed by live imaging

    1.
    Lindow SE, Brandl MT. Microbiology of the phyllosphere. Appl Environ Microbiol. 2003;69:1875–83.
    CAS  PubMed  PubMed Central  Google Scholar 
    2.
    Lindow SE, Leveau JH. Phyllosphere microbiology. Curr Opin Biotechnol. 2002;13:238–43.
    CAS  PubMed  Google Scholar 

    3.
    Vorholt JA. Microbial life in the phyllosphere. Nat Rev Microbiol. 2012;10:828.
    CAS  PubMed  Google Scholar 

    4.
    Vacher C, Hampe A, Porté AJ, Sauer U, Compant S, Morris CE. The phyllosphere: microbial jungle at the plant–climate interface. Annu Rev Ecol Evol Syst. 2016;47:1–24.
    Google Scholar 

    5.
    Bringel F, Couée I. Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Front Microbiol. 2015;6:486.
    PubMed  PubMed Central  Google Scholar 

    6.
    Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N. The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol. 2010;12:2885–93.
    PubMed  PubMed Central  Google Scholar 

    7.
    Rastogi G, Sbodio A, Tech JJ, Suslow TV, Coaker GL, Leveau JH. Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce. ISME J. 2012;6:1812.
    CAS  PubMed  PubMed Central  Google Scholar 

    8.
    Beattie GA, Lindow SE. Bacterial colonization of leaves: a spectrum of strategies. Phytopathology. 1999;89:353–359.
    CAS  PubMed  Google Scholar 

    9.
    Agler MT, Ruhe J, Kroll S, Morhenn C, Kim S-T, Weigel D, et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 2016;14:e1002352.
    PubMed  PubMed Central  Google Scholar 

    10.
    Laforest-Lapointe I, Messier C, Kembel SW. Tree phyllosphere bacterial communities: exploring the magnitude of intra-and inter-individual variation among host species. PeerJ. 2016;4:e2367.
    PubMed  PubMed Central  Google Scholar 

    11.
    Monier J-M, Lindow S. Frequency, size, and localization of bacterial aggregates on bean leaf surfaces. Appl Environ Microbiol. 2004;70:346–55.
    CAS  PubMed  PubMed Central  Google Scholar 

    12.
    Tecon R, Leveau JH. The mechanics of bacterial cluster formation on plant leaf surfaces as revealed by bioreporter technology. Environ Microbiol. 2012;14:1325–32.
    CAS  PubMed  Google Scholar 

    13.
    Remus-Emsermann MN, Lücker S, Müller DB, Potthoff E, Daims H, Vorholt JA. Spatial distribution analyses of natural phyllosphere-colonizing bacteria on A rabidopsis thaliana revealed by fluorescence in situ hybridization. Environ Microbiol. 2014;16:2329–40.
    CAS  PubMed  Google Scholar 

    14.
    Morris CE, Monier J, Jacques M. Methods for observing microbial biofilms directly on leaf surfaces and recovering them for isolation of culturable microorganisms. Appl Environ Microbiol. 1997;63:1570–6.
    CAS  PubMed  PubMed Central  Google Scholar 

    15.
    Esser DS, Leveau JH, Meyer KM, Wiegand K. Spatial scales of interactions among bacteria and between bacteria and the leaf surface. FEMS Microbiol Ecol. 2015;91:fiu034.
    PubMed  Google Scholar 

    16.
    Remus-Emsermann MN, Schlechter RO. Phyllosphere microbiology: at the interface between microbial individuals and the plant host. N. Phytologist. 2018;218:1327–33.
    Google Scholar 

    17.
    Monier J-M, Lindow S. Spatial organization of dual-species bacterial aggregates on leaf surfaces. Appl Environ Microbiol. 2005;71:5484–93.
    CAS  PubMed  PubMed Central  Google Scholar 

    18.
    Peredo EL, Simmons SL. Leaf-FISH: microscale imaging of bacterial taxa on phyllosphere. Front Microbiol. 2018;8:2669.
    PubMed  PubMed Central  Google Scholar 

    19.
    Remus-Emsermann MN, Tecon R, Kowalchuk GA, Leveau JH. Variation in local carrying capacity and the individual fate of bacterial colonizers in the phyllosphere. ISME J. 2012;6:756.
    CAS  PubMed  PubMed Central  Google Scholar 

    20.
    Remus-Emsermann MN, Kowalchuk GA, Leveau JH. Single-cell versus population-level reproductive success of bacterial immigrants to pre-colonized leaf surfaces. Environ Microbiol Rep. 2013;5:387–92.
    PubMed  Google Scholar 

    21.
    Monier J-M, Lindow S. Aggregates of resident bacteria facilitate survival of immigrant bacteria on leaf surfaces. Microb Ecol. 2005;49:343–52.
    PubMed  Google Scholar 

    22.
    Poza-Carrion C, Suslow T, Lindow S. Resident bacteria on leaves enhance survival of immigrant cells of Salmonella enterica. Phytopathology. 2013;103:341–51.
    PubMed  Google Scholar 

    23.
    Grinberg M, Orevi T, Kashtan N. Bacterial surface colonization, preferential attachment and fitness under periodic stress. PLoS Comput Biol. 2019;15:e1006815.
    PubMed  PubMed Central  Google Scholar 

    24.
    Beattie GA, Lindow SE. Comparison of the behavior of epiphytic fitness mutants of Pseudomonas syringae under controlled and field conditions. Appl Environ Microbiol. 1994;60:3799–808.
    CAS  PubMed  PubMed Central  Google Scholar 

    25.
    Loper JE, Lindow SE. Lack of evidence for the in situ fluorescent pigment production by Pseudomonas syringae pv. syringae on bean leaf surfaces. J Phytopathol. 1987;77:1449–54.
    Google Scholar 

    26.
    Wilson M, Hirano S, Lindow S. Location and survival of leaf-associated bacteria in relation to pathogenicity and potential for growth within the leaf. Appl Environ Microbiol. 1999;65:1435–43.
    CAS  PubMed  PubMed Central  Google Scholar 

    27.
    Stockwell V, Johnson K, Sugar D, Loper J. Control of fire blight by Pseudomonas fluorescens A506 and Pantoea vagans C9-1 applied as single strains and mixed inocula. Phytopathology. 2010;100:1330–9.
    CAS  PubMed  Google Scholar 

    28.
    Wilson M, Lindow S. Interactions between the biological control agent Pseudomonas fluorescens A506 and Erwinia amylovora in pear blossoms. Phytopathology. 1993;83:117–23.
    Google Scholar 

    29.
    Choi K-H, Schweizer HP. mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. Nat Protoc. 2006;1:153.
    CAS  PubMed  Google Scholar 

    30.
    Morris CE, Monier J-M, Jacques M-A. A technique to quantify the population size and composition of the biofilm component in communities of bacteria in the phyllosphere. Appl Environ Microbiol. 1998;64:4789–95.
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Wang Q, Niemi J, Tan CM, You L, West M. Image segmentation and dynamic lineage analysis in single-cell fluorescence microscopy. Cytometry A. 2010;77:101–10.
    PubMed  PubMed Central  Google Scholar 

    32.
    Daims H, Lücker S, Wagner M. Daime, a novel image analysis program for microbial ecology and biofilm research. Environ Microbiol. 2006;8:200–13.
    CAS  PubMed  Google Scholar 

    33.
    Daims H, Wagner M. In situ techniques and digital image analysis methods for quantifying spatial localization patterns of nitrifiers and other microorganisms in biofilm and flocs. Methods Enzymol. 2011;496:185–215.

    34.
    Reed M, Howard C. Stereological estimation of covariance using linear dipole probes. J Microsc. 1999;195:96–103.
    CAS  PubMed  Google Scholar 

    35.
    Van Der Wal A, Tecon R, Kreft J-U, Mooij WM, Leveau JH. Explaining bacterial dispersion on leaf surfaces with an individual-based model (PHYLLOSIM). PloS ONE. 2013;8:e75633.
    PubMed  PubMed Central  Google Scholar 

    36.
    Schmidt H, Nunan N, Höck A, Eickhorst T, Kaiser C, Woebken D, et al. Recognizing patterns: spatial analysis of observed microbial colonization on root surfaces. Front Environ Sci. 2018;6:61.
    Google Scholar 

    37.
    Gantner S, Schmid M, Dürr C, Schuhegger R, Steidle A, Hutzler P, et al. In situ quantitation of the spatial scale of calling distances and population density-independent N-acylhomoserine lactone-mediated communication by rhizobacteria colonized on plant roots. FEMS Microbiol Ecol. 2006;56:188–94.
    CAS  PubMed  Google Scholar 

    38.
    Schillinger C, Petrich A, Lux R, Riep B, Kikhney J, Friedmann A, et al. Co-localized or randomly distributed? Pair cross correlation of in vivo grown subgingival biofilm bacteria quantified by digital image analysis. PLoS ONE. 2012;7:e37583.
    CAS  PubMed  PubMed Central  Google Scholar 

    39.
    Mercier J, Lindow S. Role of leaf surface sugars in colonization of plants by bacterial epiphytes. Appl Environ Microbiol. 2000;66:369–74.
    CAS  PubMed  PubMed Central  Google Scholar 

    40.
    Zhao K, Tseng BS, Beckerman B, Jin F, Gibiansky ML, Harrison JJ, et al. Psl trails guide exploration and microcolony formation in early P. aeruginosa biofilms. Nature. 2013;497:388.
    CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Hödl I, Hödl J, Wörman A, Singer G, Besemer K, Battin TJ. Voronoi tessellation captures very early clustering of single primary cells as induced by interactions in nascent biofilms. PloS ONE. 2011;6:e26368.
    PubMed  PubMed Central  Google Scholar 

    42.
    Mittelviefhaus M, Müller DB, Zambelli T, Vorholt JA. A modular atomic force microscopy approach reveals a large range of hydrophobic adhesion forces among bacterial members of the leaf microbiota. ISME J. 2019;13:1878–82.
    CAS  PubMed  PubMed Central  Google Scholar 

    43.
    Laganenka L, Colin R, Sourjik V. Chemotaxis towards autoinducer 2 mediates autoaggregation in Escherichia coli. Nat Commun. 2016;7:12984.
    CAS  PubMed  PubMed Central  Google Scholar 

    44.
    Laganenka L, Sourjik V. Autoinducer 2-dependent Escherichia coli biofilm formation is enhanced in a dual-species coculture. Appl Environ Microbiol. 2018;84:e02638–17.
    PubMed  PubMed Central  Google Scholar 

    45.
    Dulla G, Lindow SE. Quorum size of Pseudomonas syringae is small and dictated by water availability on the leaf surface. Proc Natl Acad Sci. 2008;105:3082–7.
    CAS  PubMed  Google Scholar 

    46.
    Bertsche U, Mayer C, Götz F, Gust AA. Peptidoglycan perception—sensing bacteria by their common envelope structure. Int J Med Microbiol. 2015;305:217–23.
    CAS  PubMed  Google Scholar 

    47.
    Monier J-M, Lindow S. Differential survival of solitary and aggregated bacterial cells promotes aggregate formation on leaf surfaces. Proc Natl Acad Sci. 2003;100:15977–82.
    CAS  PubMed  Google Scholar 

    48.
    Grinberg M, Orevi T, Steinberg S, Kashtan N. Bacterial survival in microscopic surface wetness. eLife. 2019;8:e48508.
    CAS  PubMed  PubMed Central  Google Scholar 

    49.
    Shank EA, Kolter R. New developments in microbial interspecies signaling. Curr Opin Microbiol. 2009;12:205–14.
    CAS  PubMed  PubMed Central  Google Scholar  More

  • in

    Modern arsenotrophic microbial mats provide an analogue for life in the anoxic Archean

    1.
    Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).
    CAS  Article  Google Scholar 
    2.
    Canfield, D. E. The early history of atmospheric oxygen: homage to Robert M. Garrels. Ann. Rev. Earth Planet. Sci. 33, 1–36 (2005).
    CAS  Article  Google Scholar 

    3.
    Poulton, S. & Canfield, D. E. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7, 107–112 (2011).
    CAS  Article  Google Scholar 

    4.
    Siever, R. The silica cycle in the Precambrian. Geochim. Cosmochim. Acta 56, 3265–3272 (1992).
    CAS  Article  Google Scholar 

    5.
    Large, R. R. et al. Trace element content of sedimentary pyrite as a new proxy for deep-time ocean–atmosphere evolution. Earth Planet. Sci. Lett. 389, 209–220 (2014).
    CAS  Article  Google Scholar 

    6.
    Walter, M. R., Buick, R. & Dunlop, J. S. R. Stromatolites: 3,400–3,500 m year-old from the North Pole area, Western Australia. Nature 284, 443–445 (1980).
    Article  Google Scholar 

    7.
    Nisbet, E. G. & Fowler, C. M. R. Archean metabolic evolution of microbial mats. Proc. R. Soc. Lond. B 266, 2375–2382 (1991).
    Article  Google Scholar 

    8.
    Tice, M. M. & Lowe, D. R. Hydrogen-based carbon fixation in the earliest known photosynthetic organisms. Geology 34, 37 (2006).
    CAS  Article  Google Scholar 

    9.
    Van Kranendonk, M. J. Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: new evidence from the Warrawoona Group. Earth-Sci. Rev. 74, 197–240 (2006).
    Article  CAS  Google Scholar 

    10.
    Noffke, N., Eriksson, K. A., Hazen, R. M. & Simpson, E. L. A new window into Early Archean life: microbial mats in Earth’s oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa). Geology 34, 253 (2006).
    CAS  Article  Google Scholar 

    11.
    Noffke, N., Christian, D., Wacey, D. & Hazen, R. M. Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser Formation, Pilbara, Western Australia. Astrobiology 13, 1103–1124 (2013).
    CAS  Article  Google Scholar 

    12.
    Dupraz, C. et al. Processes of carbonate precipitation in modern microbial mats. Earth Sci. Rev. 96, 141–162 (2009).
    CAS  Article  Google Scholar 

    13.
    Sakurai, R., Ito, M., Ueno, Y., Kitajima, K. & Maruyama, S. Facies architecture and sequence-stratigraphic features of the Tumbiana Formation in the Pilbara Craton, northwestern Australia: implications for depositional environments of oxygenic stromatolites during the Late Archean. Precambrian Res. 138, 255–273 (2005).
    CAS  Article  Google Scholar 

    14.
    Allwood, A. C., Walter, M. R., Kamber, B. S., Marshall, C. P. & Burch, I. W. Stromatolite reef from the Early Archaean era of Australia. Nature 441, 714–718 (2006).
    CAS  Article  Google Scholar 

    15.
    Allwood, A. C., Rosing, M. T., Flannery, D., Hurowitz, J. & Heirwegh, C. M. Reassessing evidence of life in 3,700-million-year-old rocks of Greenland. Nature 563, 241–244 (2018).
    CAS  Article  Google Scholar 

    16.
    Nutman, A. P., Bennett, V. C., Friend, C. R. L., Van Kranendonk, M. J. & Chivas., A. R. Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537, 535–538 (2016).
    CAS  Article  Google Scholar 

    17.
    Lepot, K. et al. Extreme 13C-depletions and organic sulfur argue for S-fueled anaerobic methane oxidation in 2.72 Ga old stromatolites. Geochim. Cosmochim. Acta 244, 522–547 (2019).
    CAS  Article  Google Scholar 

    18.
    Baumgartner, R. et al. Nano-porous pyrite and organic matter in 3.5 billion-year-old stromatolites record primordial life. Geology 47, 1039–1043 (2019).
    CAS  Article  Google Scholar 

    19.
    Planavsky, N. J. et al. Evidence for oxygenic photosynthesis half a billion years before the great oxidation event. Nat. Geosci. 7, 283–286 (2014).
    CAS  Article  Google Scholar 

    20.
    Lalonde, S. V. & Konhauser, K. O. Benthic perspective on Earth’s oldest evidence for oxygenic photosynthesis. Proc. Natl Acad. Sci. USA 112, 995–1000 (2015).
    CAS  Article  Google Scholar 

    21.
    Bosak, T., Green, S. E. & Newman, D. K. A likely role for anoxygenic photosynthetic microbes in the formation of ancient stromatolites. Geobiology 5, 119–126 (2007).
    CAS  Article  Google Scholar 

    22.
    Fischer, W. W., Hemp, J. & Johnson, J. E. Evolution of oxygenic photosynthesis. Annu. Rev. Earth Planet. Sci. 44, 647–683 (2016).
    CAS  Article  Google Scholar 

    23.
    Kulp, T. R. et al. Arsenic(III) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake, California. Science 321, 967–970 (2008).
    CAS  Article  Google Scholar 

    24.
    Hoeft, S. E., Kulp, T. R., Han, S. Lanoil, B. & Oremland, R. S. Coupled arsenotrophy in a hot spring photosynthetic biofilm at Mono Lake, California. Appl. Environ. Microbiol. 76, 4633–4639 (2010).
    CAS  Article  Google Scholar 

    25.
    McCann, S. H. et al. Arsenite as an electron donor for anoxygenic photosynthesis: description of three strains of Ectothiorhodospira from Mono Lake, California and Big Soda Lake, Nevada. Life 7, 1, https://doi.org/10.3390/life7010001 (2017).
    CAS  Article  Google Scholar 

    26.
    Oremland, R. S., Saltikov, C. W., Wolfe-Simon, F. & Stolz, J. F. Arsenic in the evolution of earth and extraterrestrial ecosystems. Geomicrobiol. J. 26, 522–536 (2009).
    CAS  Article  Google Scholar 

    27.
    Fru, E. C. et al. The rise of oxygen-driven arsenic cycling at ca. 2.48 Ga. Geology 47, 243–246 (2019).
    CAS  Article  Google Scholar 

    28.
    Sforna, M. C. et al. Evidence for arsenic metabolism and cycling by microorganisms 2.7 billion years ago. Nat. Geosci. 7, 811–815 (2014).
    CAS  Article  Google Scholar 

    29.
    Van Lis, R., Nitschke, W., Duval, S. & Schoepp-Cothenet, B. Arsenics as bioenergetic substrates. Biochim. Biophys. Acta 1827, 176–188 (2013).
    Article  CAS  Google Scholar 

    30.
    Oremland, R. S. & Stolz, J. F. Arsenic, microbes and contaminated aquifers. Trends Microbiol. 13, 45–49 (2005).
    CAS  Article  Google Scholar 

    31.
    Oremland, R. S. et al. A microbial arsenic cycle in a salt-saturated extreme environment. Science 308, 1305–1308 (2005).
    CAS  Article  Google Scholar 

    32.
    Zhu, X. et al. Secondary minerals of weathered orpiment–realgar- bearing tailings in Shimen carbonate-type realgar mine, Changde, Central China. Mineral. Petrol. 109, 1–15 (2013).
    Article  CAS  Google Scholar 

    33.
    Amend, J., Saltikov, C., Lu, G.-S. & Hernandez, J. Microbial arsenic metabolism and reaction energetics. Rev. Mineral. Geochem. 79, 391–433 (2014).
    Article  Google Scholar 

    34.
    Oremland, R. S., Saltikov, C. W., Stolz, J. F. & Hollibaugh, J. T. Autotrophic microbial arsenotrophy in arsenic-rich soda lakes. FEMS Microbiol. Lett. 364, fnx146, https://doi.org/10.1093/femsle/fnx146 (2017).
    CAS  Article  Google Scholar 

    35.
    Saunders, J. K., Fuchsman, C. A., McKay, C. & Rocap, G. Complete arsenic-based respiratory cycle in the marine microbial communities of pelagic oxygen-deficient zones. Proc. Natl Acad. Sci. USA 116, 9925–9930 (2019).
    CAS  Article  Google Scholar 

    36.
    Hu, S.-Y. et al. Life on the edge: microbial biomineralization in an arsenic- and lead-rich deep-sea hydrothermal vent. Chem. Geol. 533, 119438 (2020).
    Article  CAS  Google Scholar 

    37.
    Ilyaletdinov, A. N. & Abdrashitova, S. A. Autotrophic oxidation of arsenic by a culture of Pseudomonas arsenioxidans. Mikrobiologiya 50, 135–140 (1981).
    Google Scholar 

    38.
    Oremland, R. S. et al. Anaerobic oxidation of arsenite in Mono Lake water and by a facultative chemoautotroph, strain MLHE-1. Appl. Environ. Microbiol. 68, 4795–4802 (2002).
    CAS  Article  Google Scholar 

    39.
    Newman, D. K., Ahmann, D. & Morel, F. M. M. A brief review of microbial arsenate respiration. Geomicrobiol. J. 15, 255–268 (1998).
    CAS  Article  Google Scholar 

    40.
    Hartley, A. J., Chong, G., Houston, J. & Mather, A. E. 50 million years of climatic stability: evidence from the Atacama Desert, northern Chile. J. Geol. Soc. Lond. 162, 421–424 (2005).
    Article  Google Scholar 

    41.
    Farias, M. E. et al. Characterization of bacterial diversity associated with microbial mats, gypsum evaporites, and carbonate microbialites in thalassic wetlands: Tebenquiche and Brava, Salar de Atacama, Chile. Extremophiles 18, 311–329 (2014).
    CAS  Article  Google Scholar 

    42.
    Farias, M. E. et al. Prokaryotic diversity and biogeochemical characteristics of benthic microbial ecosystems at La Brava, a hypersaline lake at Salar de Atacama, Chile. PLoS ONE 2, e0186867 (2017).
    Article  CAS  Google Scholar 

    43.
    Sancho-Tomás, M. et al. Distribution, redox and (bio)geochemical implications of arsenic in living microbial mats of Laguna Brava, Salar de Atacama. Chem. Geol. 490, 13–21 (2018).
    Article  CAS  Google Scholar 

    44.
    Deruelle, B. Petrology of the plio-quaternary volcanism of the South-Central and Meridional Andes. J. Volcanol. Geotherm. Res. 14, 77–124 (1982).
    CAS  Article  Google Scholar 

    45.
    Green, O. Field staining techniques for determining calcite, dolomite and phosphate. In A Manual of Practical Laboratory and Field Techniques in Palaeobiology. 55–58 (Springer, Dordrecht, 2001).

    46.
    Saona, L. A. et al. Analysis of co-regulated abundance of genes associated with arsenic and phosphate metabolism in Andean Microbial Ecosystems. https://doi.org/10.1101/870428 (2019).

    47.
    Stüeken, E. E. et al. Environmental niches and metabolic diversity in Neoarchean lakes. Geobiology 15, 767–783 (2017).
    Article  CAS  Google Scholar 

    48.
    Flannery, D. T. & Walter, M. R. Archean tufted microbial mats and the Great Oxidation Event: new insights into an ancient problem. Austral. J. Earth Sci. 59, 1–11 (2012).
    CAS  Article  Google Scholar 

    49.
    Coffey, J. M., Flannery, D. T., Walter, M. R. & George, S. C. Sedimentology, stratigraphy and geochemistry of a stromatolite biofacies in the 2.72 Ga Tumbiana Formation, Fortescue Group, Western Australia. Precam. Res. 236, 282–296 (2013).
    CAS  Article  Google Scholar 

    50.
    Awramik, S. M. & Buchheim, H. P. A giant, Late Archean lake system: the Mentheena Member (Tumbiana Formation; Fortescue Group), Western Australia. Precambrian Res. 174, 215–240 (2009).
    CAS  Article  Google Scholar 

    51.
    Van Kranendonk, M. J., Webb, G. E. & Kamber, B. S. Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archaean ocean. Geobiology 1, 91–108 (2003).
    Article  Google Scholar 

    52.
    Bolhar, R. & van Kranendonk, M. J. A non-marine depositional setting, for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates. Precambrian Res. 155, 229–250 (2007).
    CAS  Article  Google Scholar 

    53.
    Stüeken, E. E., Buick, R. & Schauer, A. Nitrogen isotope evidence for alkaline lakes on late Archean continents. Earth Planet. Sci. Lett. 411, 1–10 (2015).
    Article  CAS  Google Scholar 

    54.
    Hinrichs, K. Microbial fixation of methane carbon at 2.7 Ga; was an anaerobic mechanism possible? Geochem. Geophys. 3, 1–10 (2002).
    Article  Google Scholar 

    55.
    Lepot, K., Benzerara, K., Brown, G. E. Jr & Philippot, P. (2008) Microbially influenced formation of 2,724-million-year-old stromatolites. Nat. Geosci. 1, 118–121 (2008).
    CAS  Article  Google Scholar 

    56.
    Lepot, K. et al. Organic matter heterogeneities in 2.72 Ga stromatolites: Alteration versus preservation by sulfur incorporation. Geochim. Cosmochim. Acta 73, 6579–6599 (2009).
    CAS  Article  Google Scholar 

    57.
    Stüeken, E. E., Catling, D. C. & Buick, R. Archean sulphur cycling by life on land. Nat. Geosci. 5, 722–725 (2012).
    Article  CAS  Google Scholar 

    58.
    Marin-Carbonne, J. et al. Sulfur isotope’s signal of nanopyrites enclosed in 2.7 Ga stromatolitic organic remains reveal microbial sulfate reduction. Geobiolology 16, 121–138 (2017).
    Article  CAS  Google Scholar 

    59.
    Buick, R. The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate-deficient Archaean lakes. Science 255, 74–77 (1992).
    CAS  Article  Google Scholar 

    60.
    Pavlov, A. A., Brown, L. L. & Kasting, J. F. UV shielding of NH3 and O2 by organic hazes in the Archean atmosphere. J. Geophys. Res. 106, 267–288 (2001).
    Google Scholar 

    61.
    Claire, M. W. et al. The evolution of solar flux from 0.1 nm to 160 μm: quantitative estimates for planetary studies. Astrophys. J. 757, 95. (12pp). (2012).
    Article  Google Scholar 

    62.
    Cockell, C. S. & Raven, J. A. Ozone and life on the Archean Earth. Philos. Trans. R. Soc. A 365, 1889–1901 (2007).
    CAS  Article  Google Scholar 

    63.
    Catling, D. C. & Zahnle, K. J. The Archean atmosphere. Sci. Adv. 6, eaax1420 (2020).
    Article  Google Scholar 

    64.
    Risacher, F., Alonso, H. & Salazar, C. The origin of brines and salts in Chilean salars: a hydrochemical review. Earth-Sci. Rev. 63, 249–293 (2003).
    CAS  Article  Google Scholar 

    65.
    Arrigada, C., Roperch, P., Mpodozis, C. & Fernandez, R. Paleomagnetism and tectonics of the southern Atacama Desert (25–28° S), northern Chile. Tectonics 25, TC4001 (2006).
    Google Scholar 

    66.
    Fernandez, A. B. et al. Microbial diversity in sediment ecosystems (evaporites, domes, microbial mats, and crusts) of hypersaline Laguna Tebenquiche, Salar de Atacama, Chile. Front. Microbiol. 7, 1284 (2016).
    Article  Google Scholar 

    67.
    Corenthal, L. G., Boutt, D. F., Hynek, S. A. & Munk, L. A. Regional groundwater flow and accumulation of a massive evaporite deposit at the margin of the Chilean Altiplano. J. Geophys. Res. 43, 8017–8025 (2016).
    Google Scholar 

    68.
    Tapia, J. et al. Geology and geochemistry of the Atacama Desert. Ant. Leeuw. 111, 1273–1291 (2018).
    CAS  Article  Google Scholar 

    69.
    Rasuk, M. C., P. T. Visscher, M. Contreras, M. E. Farias. Mats and microbialites from Laguna La Brava. In Extremophile microbial ecosystems in Central Andes Extreme Environments: Biofilms Microbial, Mats, Microbialites and Endoevaporites. (ed. Farias, M. E.) (Springer Verlag, 2020) https://doi.org/10.1007/978-3-030-36192-1.

    70.
    Millero, F. J. The thermodynamics and kinetics of the hydrogen sulfide in natural waters. Mar. Chem. 18, 121–147 (1986).
    CAS  Article  Google Scholar 

    71.
    Kondratieva, E. N., Zhukov, V. G., Ivanovsky, R. N., Petushkova, Y. P. & Monosov, E. Z. The capacity of the phototrophic sulfur bacterium Thiocapsa roseopersicina for chemosynthesis. Arch. Microbiol. 108, 287–292 (1976).
    CAS  Article  Google Scholar 

    72.
    Megonigal, J. P., Hines, M. E. & Visscher, P. T. Anaerobic metabolism and production of trace gases. In Treatise on Geochemistry, Vol. 8. (eds Holland, H.D. & Turekian, K. K.) 317–424 (Elsevier, The Netherlands, 2003).

    73.
    Gallagher, K. L., Kading, T. J., Braissant, O., Dupraz, C. & Visscher, P. T. Inside the alkalinity engine: the role of electron donors in the organomineralization potential of sulfate reducing bacteria. Geobiology 10, 518–530 (2012).
    CAS  Article  Google Scholar 

    74.
    Stumm, W. & Morgan, J. J. Chemical equilibria and rates in natural waters. 3rd edn. 1040 (John Wiley, New York, 1995).

    75.
    Franz, C. M., Petryshyn, V. A. & Corsetti, F. A. Grain trapping by filamentous cyanobacterial and algal mats: implications for stromatolite microfabrics through time. Geobiology 13, 409–423 (2015).
    Article  Google Scholar 

    76.
    McCann, S. H. et al. Arsenite as an electron donor for anoxygenic photosynthesis: description of three strains of Ectothiorhodospira from Mono Lake, California and Big Soda Lake, Nevada. Life 7, 1, https://doi.org/10.3390/life7010001 (2016).
    CAS  Article  Google Scholar 

    77.
    Hoeft, S. E. et al. Alkalilimnicola ehrlichii sp. nov., a novel, arsenite- oxidizing haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor. Int. J. Syst. Evol. Microbiol. 57, 504–512 (2007).
    CAS  Article  Google Scholar 

    78.
    Zerkle, A. L. & Mikhail, S. The geobiological nitrogen cycle: from microbes to the mantle. Geobiology 15, 343–352 (2017).
    CAS  Article  Google Scholar 

    79.
    Wong, H. L. et al. Disentangling the drivers of functional complexity at the metagenomic level in Shark Bay microbial mat microbiomes. ISME J. https://doi.org/10.1038/s41396-018-0208-8 (2018).

    80.
    Poulton, S. W., Fralick, P. W. & Canfield, D. E. The transition to a sulphidic ocean ~1.84 billion years ago. Nature 431, 173–177 (2004).
    CAS  Article  Google Scholar 

    81.
    Kral, T. A., Brink, K. M., Miller, S. L. & McKay, C. P. Hydrogen consumption by methanogens on the early Earth. Org. Life Evol. Biosph. 28, 311–319 (1998).
    CAS  Article  Google Scholar 

    82.
    Vignais, P. M. & Biloud, B. Occurrence, classification and biological function of hydrogenases: an overview. Chem. Rev. 107, 4206–4272 (2007).
    CAS  Article  Google Scholar 

    83.
    Ward, L. M., Rasmussen, B. & Fischer, W. W. Primary productivity was limited by electron donors prior to the advent of oxygenic photosynthesis. J. Geophys. Res. Biogeosci. 124, 211–226 (2019).
    CAS  Article  Google Scholar 

    84.
    Czaja, A. D. et al. Biological Fe oxidation controlled deposition of banded iron formation in the ca. 3770 Ma Isua Supracrustal Belt (West Greenland). Earth Planet. Sci. Lett. 363, 192–203 (2013).
    CAS  Article  Google Scholar 

    85.
    Tice, M. M. & Lowe, D. R. Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature 431, 549–552 (2004).
    CAS  Article  Google Scholar 

    86.
    Halama, M., Swanner, E. D., Konhauser, K. O. & Kappler, A. Evaluation of siderite and magnetite formation in BIFs by pressure-temperature experiments of Fe(III) minerals and microbial biomass. Earth Planet. Sci. Lett. 450, 243–253 (2016).
    CAS  Article  Google Scholar 

    87.
    Martin, W. F., Bryant, D. A. & Beatty, J. T. A physiological perspective on the origin and evolution of photosynthesis. FEMS Microbiol. Rev. 42, 205–231 (2018).
    CAS  Article  Google Scholar 

    88.
    Duda, J. P. et al. A rare glimpse of paleoarchean life: geobiology of an exceptionally preserved microbial mat facies from the 3.4 Ga Strelley Pool Formation, Western Australia. PLoS ONE 11, e0147629 (2016).
    Article  CAS  Google Scholar 

    89.
    Fru, C. et al. Arsenic stress after Proterozoic glaciations. Sci. Rep. 5, 17789 (2015).
    Article  CAS  Google Scholar 

    90.
    Miralles-Robledillo, J. M., Torregrosa, J., Martinez-Espinosa, R. M. & Pire, C. DMSO reductase family: phylogenetics and applications of extremophiles. Int. J. Mol. Sci. 20, https://doi.org/10.3390/ijms20133349 (2019).

    91.
    Dupraz, C., Fowler, A., Tobias, C. & Visscher, P. T. Stromatolitic knobs in Storr’s Lake (San Salvador, Bahamas): a model system for formation and alteration of laminae. Geobiology 11, 527–548 (2013).
    CAS  Article  Google Scholar 

    92.
    Pace, A. et al. Formation of stromatolite lamina at the interface of oxygenic-anoxygenic photosynthesis. Geobiology 16, 378–398 (2018).
    CAS  Article  Google Scholar 

    93.
    Mitchell, M. K. & Stapp, W. Field manual for water quality monitoring. 5th edn. (Thomson Shore Printers, Dexter, MI, 1986).

    94.
    Stal, L. J., van Gemerden, H. & Krumbein, W. E. The simultaneous assay of chlorophyll and bacteriochlorophyll in natural microbial communities. J. Microbiol. Methods 2, 295–306 (1984).
    CAS  Article  Google Scholar 

    95.
    Visscher, P. T., Beukema, J. & van Gemerden, H. In situ characterization of sediments: Measurements of oxygen and sulfide profiles with a novel combined needle electrode. Limnol. Oceanogr. 36, 1476–1480 (1991).
    CAS  Article  Google Scholar 

    96.
    Pagès, A. et al. Diel fluctuations in solute distributions and biogeochemical cycling in a hypersaline microbial mat from Shark Bay, WA. Mar. Chem. 167, 102–112 (2014).
    Article  CAS  Google Scholar 

    97.
    Visscher, P. T. et al. Formation of lithified micritic laminae in modern marine stromatolites (Bahamas): the role of sulfur cycling. Am. Mineral. 83, 1482–1494 (1998).
    CAS  Article  Google Scholar 

    98.
    Epping, H. G., Khalili, A. & Thar, R. Photosynthesis and the dynamics of oxygen consumption in a microbial mat as calculated from transient oxygen microprofiles. Limnol. Oceanogr. 44, 1936–1948 (1999).
    Article  Google Scholar 

    99.
    Bednar, A. J., Garbino, J. R., Ranville, J. F. & Wildeman, T. R. Preserving the distribution of inorganic arsenic species in groundwater and acid mine drainage samples. Environ. Sci. Technol. 36, 2213–2218 (2002).
    CAS  Article  Google Scholar 

    100.
    Somogyi, A. et al. Optical design and multi-length-scale scanning spectro-microscopy possibilities at the Nanoscopium beamline of synchrotron Soleil. J. Synchrotron. Radiat. 22, 1118–1129 (2015).
    CAS  Article  Google Scholar 

    101.
    Visscher, P. T. et al. Dimethyl sulfide and methanethiol formation in microbial mats: Potential pathways for biogenic signatures. Environ. Microbiol. 5, 296–308 (2003).
    CAS  Article  Google Scholar 

    102.
    Kurth, D. et al. Arsenic metabolism in high altitude modern stromatolites revealed by metagenomic analysis. Sci. Rep. 7, 1024 (2017).
    Article  CAS  Google Scholar  More

  • in

    Rhizobacterial species richness improves sorghum growth and soil nutrient synergism in a nutrient-poor greenhouse soil

    1.
    Liu, Z. et al. Effect of simulated acid rain on soil CO2, CH4 and N2O emissions and microbial communities in an agricultural soil. Geoderma 366, 114222 (2020).
    ADS  CAS  Article  Google Scholar 
    2.
    Li, M. et al. Biochemical response, histopathological change and DNA damage in earthworm (Eisenia fetida) exposed to sulfentrazone herbicide. Ecol. Indic. 115, 106465 (2020).
    CAS  Article  Google Scholar 

    3.
    Zhang, Q., Saleem, M. & Wang, C. Effects of biochar on the earthworm (Eisenia foetida) in soil contaminated with and/or without pesticide mesotrione. Sci. Total Environ. 671, 52–58 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Wu, Y. et al. Ecological clusters based on responses of soil microbial phylotypes to precipitation explain ecosystem functions. Soil Biol. Biochem. 142, 107717 (2020).
    CAS  Article  Google Scholar 

    5.
    Saleem, M., Hu, J. & Jousset, A. More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health. Annu. Rev. Ecol. Evol. Syst. 50, 6.1-6.24 (2019).
    Article  Google Scholar 

    6.
    Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Saleem, M. Ecoevolutionary processes regulating microbiome community assembly in a changing global ecosystem. In Microbiome Community Ecology: Fundamentals and Applications (ed. Saleem, M.) 55–87 (Springer, Berlin, 2015). https://doi.org/10.1007/978-3-319-11665-5_3.
    Google Scholar 

    8.
    Loreau, M. et al. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294, 804–808 (2001).
    ADS  CAS  Article  Google Scholar 

    9.
    Prosser, J. I. et al. The role of ecological theory in microbial ecology. Nat. Rev. Micro. 5, 384–392 (2007).
    CAS  Article  Google Scholar 

    10.
    Lugtenberg, B. & Kamilova, F. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63, 541–556 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Bashan, Y., Bashan, L. E., Prabhu, S. R. & Hernandez, J.-P. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378, 1–33 (2013).
    Article  CAS  Google Scholar 

    12.
    Sun, T., Li, M., Saleem, M., Zhang, X. & Zhang, Q. The fungicide “fluopyram” promotes pepper growth by increasing the abundance of P-solubilizing and N-fixing bacteria. Ecotoxicol. Environ. Saf. 188, 109947 (2020).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    13.
    Dimkpa, C., Weinand, T. & Asch, F. Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ. 32, 1682–1694 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Sun, T. et al. Bacterial compatibility and immobilization with biochar improved tebuconazole degradation, soil microbiome composition and functioning. J. Hazard. Mater. 398, 122941 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    van Elsas, J. D. et al. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc. Natl. Acad. Sci. 109, 1159–1164 (2012).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Hu, J. et al. Probiotic Pseudomonas communities enhance plant growth and nutrient assimilation via diversity-mediated ecosystem functioning. Soil Biol. Biochem. 113, 122–129 (2017).
    CAS  Article  Google Scholar 

    18.
    Woo, S. L. & Pepe, O. Microbial consortia: promising probiotics as plant biostimulants for sustainable agriculture. Front. Plant Sci. 9, 1801 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Paterson, A. H. et al. The Sorghum bicolor genome and the diversification of grasses. Nature 457, 551–556 (2009).
    ADS  CAS  Article  Google Scholar 

    20.
    USDA. Sorghum Production by Country | World Agricultural Production 2019/2020. https://www.worldagriculturalproduction.com/crops/sorghum.aspxhttps://www.worldagriculturalproduction.com/crops/sorghum.aspx (2019).

    21.
    Zhao, Z.-Y., Che, P., Glassman, K. & Albertsen, M. Nutritionally enhanced sorghum for the arid and semiarid tropical areas of Africa. In Sorghum: Methods and Protocols (eds Zhao, Z.-Y. & Dahlberg, J.) 197–207 (Springer, Berlin, 2019).
    Google Scholar 

    22.
    Schlemper, T. R. et al. Rhizobacterial community structure differences among sorghum cultivars in different growth stages and soils. FEMS Microbiol. Ecol https://doi.org/10.1093/femsec/fix096/4002672 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    23.
    Xu, L. et al. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc. Natl. Acad. Sci. 115, E4284–E4293 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Hara, S. et al. Identification of nitrogen-fixing bradyrhizobium associated with roots of field-grown sorghum by metagenome and proteome analyses. Front. Microbiol. 10, 407 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    25.
    Idris, H. A., Labuschagne, N. & Korsten, L. Screening rhizobacteria for biological control of Fusarium root and crown rot of sorghum in Ethiopia. Biol. Control 40, 97–106 (2007).
    Article  Google Scholar 

    26.
    Idris, A., Labuschagne, N. & Korsten, L. Efficacy of rhizobacteria for growth promotion in sorghum under greenhouse conditions and selected modes of action studies. J. Agric. Sci. 147, 17–30 (2009).
    CAS  Article  Google Scholar 

    27.
    Kort, J., Collins, M. & Ditsch, D. A review of soil erosion potential associated with biomass crops. Biomass Bioenergy 14, 351–359 (1998).
    Article  Google Scholar 

    28.
    Truong, S. K., McCormick, R. F. & Mullet, J. E. Bioenergy sorghum crop model predicts VPD-limited transpiration traits enhance biomass yield in water-limited environments. Front. Plant Sci. 8, 335 (2017).
    PubMed  PubMed Central  Google Scholar 

    29.
    Li, C. et al. Soil carbon sequestration potential in semi-arid grasslands in the Conservation Reserve Program. Geoderma 294, 80–90 (2017).
    ADS  CAS  Article  Google Scholar 

    30.
    Saleem, M., Ji, H., Amirullah, A. & Brian Traw, M. Pseudomonas syringae pv tomato DC3000 growth in multiple gene knockouts predicts interactions among hormonal, biotic and abiotic stress responses. Eur. J. Plant Pathol. 149, 779–786 (2017).
    CAS  Article  Google Scholar 

    31.
    Zhang, Q., Saleem, M. & Wang, C. Probiotic strain Stenotrophomonas acidaminiphila BJ1 degrades and reduces chlorothalonil toxicity to soil enzymes, microbial communities and plant roots. AMB Express 7, 227 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    32.
    Mahmood, A., Turgay, O. C., Farooq, M. & Hayat, R. Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiw112 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    33.
    Mortlock, M. Y. & Vanderlip, R. L. Germination and establishment of pearl millet and sorghum of different seed qualities under controlled high-temperature environments. Field Crops Res. 22, 195–209 (1989).
    Article  Google Scholar 

    34.
    Bond, J. J., Army, T. J. & Lehman, O. R. Row spacing, plant populations and moisture supply as factors in dryland grain sorghum production 1. Agron. J. 56, 3–6 (1964).
    Article  Google Scholar 

    35.
    Jones, O. R. & Johnson, G. L. Row width and plant density effects on texas high plains sorghum. J. Prod. Agric. 4, 613–621 (1991).
    Article  Google Scholar 

    36.
    Faisal, M., Barani, A. R. S., Malik, A., Hussain, M. & Awan, S. I. Yield response of fodder sorghum (Sorghum bicolor) to seed rate and row spacing under rain-fed conditions. J. Agric. Soc. Sci. Pak. 3, 95 (2007).
    Google Scholar 

    37.
    McGuire, S. J. Vulnerability in farmer seed systems: Farmer practices for coping with seed insecurity for sorghum in Eastern Ethiopia. Econ. Bot. 61, 211 (2007).
    Article  Google Scholar 

    38.
    Snider, J. L., Raper, R. L. & Schwab, E. B. The effect of row spacing and seeding rate on biomass production and plant stand characteristics of non-irrigated photoperiod-sensitive sorghum (Sorghum bicolor (L.) Moench). Ind. Crops Prod. 37, 527–535 (2012).
    Article  Google Scholar 

    39.
    Place, G. T., Reberg-Horton, S. C., Dunphy, J. E. & Smith, A. N. Seeding rate effects on weed control and yield for organic soybean production. Weed Technol. 23, 497–502 (2009).
    Article  Google Scholar 

    40.
    Harvey, T. L. & Thompson, C. A. Effects of sorghum density and resistance on infestations of Greenbug, Schizaphis graminum (Homoptera: Aphididae). J. Kans. Entomol. Soc. 61, 68–71 (1988).
    Google Scholar 

    41.
    Riedell, W. E. Mineral-nutrient synergism and dilution responses to nitrogen fertilizer in field-grown maize. J. Plant Nutr. Soil Sci. 173, 869–874 (2010).
    CAS  Article  Google Scholar 

    42.
    Pii, Y., Cesco, S. & Mimmo, T. Shoot ionome to predict the synergism and antagonism between nutrients as affected by substrate and physiological status. Plant Physiol. Biochem. 94, 48–56 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Rietra, R. P. J. J., Heinen, M., Dimkpa, C. O. & Bindraban, P. S. Effects of Nutrient antagonism and synergism on yield and fertilizer use efficiency. Commun. Soil Sci. Plant Anal. 48, 1895–1920 (2017).
    CAS  Article  Google Scholar 

    44.
    Santos, E. F., Pongrac, P., Reis, A. R., White, P. J. & Lavres, J. Phosphorus–zinc interactions in cotton: consequences for biomass production and nutrient-use efficiency in photosynthesis. Physiol. Plant. 166, 996–1007 (2018).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    45.
    Egamberdiyeva, D. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl. Soil Ecol. 36, 184–189 (2007).
    Article  Google Scholar 

    46.
    Bindraban, P. S., Dimkpa, C., Nagarajan, L., Roy, A. & Rabbinge, R. Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants. Biol. Fertil. Soils 51, 897–911 (2015).
    CAS  Article  Google Scholar 

    47.
    Yahya, A. Salinity effects on growth and on uptake and distribution of sodium and some essential mineral nutrients in sesame. J. Plant Nutr. 21, 1439–1451 (1998).
    CAS  Article  Google Scholar 

    48.
    Alam, S., Kamei, S. & Kawai, S. Effect of iron deficiency on the chemical composition of the xylem sap of barley. Soil Sci. Plant Nutr. 47, 643–649 (2001).
    CAS  Article  Google Scholar 

    49.
    Wei Yang, T. J., Perry, P. J., Ciani, S., Pandian, S. & Schmidt, W. Manganese deficiency alters the patterning and development of root hairs in Arabidopsis. J. Exp. Bot. 59, 3453–3464 (2008).
    PubMed Central  Article  CAS  Google Scholar 

    50.
    Dimkpa, C. O. et al. ZnO nanoparticles and root colonization by a beneficial pseudomonad influence essential metal responses in bean (Phaseolus vulgaris). Nanotoxicology 9, 271–278 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Petti, C., Hirano, K., Stork, J. & DeBolt, S. Mapping of a cellulose-deficient mutant named dwarf1-1 in sorghum bicolor to the green revolution gene gibberellin20-oxidase reveals a positive regulatory association between gibberellin and cellulose biosynthesis. Plant Physiol. 169, 705–716 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Xia, Y., Greissworth, E., Mucci, C., Williams, M. A. & Bolt, S. D. Characterization of culturable bacterial endophytes of switchgrass (Panicum virgatum L.) and their capacity to influence plant growth. GCB Bioenergy 5, 674–682 (2013).
    Article  Google Scholar 

    53.
    Chaney, A. L. & Marbach, E. P. Modified reagents for determination of urea and ammonia. Clin. Chem. 8, 130–132 (1962).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    54.
    Fiske, C. H. & Subbarow, Y. The colorimetric determination of phosphorus. J. Biol. Chem. 66, 375–400 (1925).
    CAS  Google Scholar 

    55.
    Miller, G. L. & Dickens, R. Bermudagrass carbohydrate levels as influenced by potassium fertilization and cultivar. Crop Sci. 36(5), 1283–1289 (1996).
    Article  Google Scholar 

    56.
    Serson, W. et al. Development of whole and ground seed near-infrared spectroscopy calibrations for oil, protein, moisture, and fatty acids in Salvia hispanica. J. Am. Oil Chem. Soc. 97, 3–13 (2020).
    CAS  Article  Google Scholar 

    57.
    Saleem, M., Law, A. D. & Moe, L. A. Nicotiana roots recruit rare rhizosphere taxa as major root-inhabiting microbes. Microb. Ecol. 71, 469–472 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Meng, L. et al. Soil-applied biochar increases microbial diversity and wheat plant performance under herbicide fomesafen stress. Ecotoxicol. Environ. Saf. 171, 75–83 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Mounde, L. G., Boh, M. Y., Cotter, M. & Rasche, F. Potential of Rhizobacteria for promoting sorghum growth and suppressing Striga hermonthica development. J. Plant Dis. Prot. 122, 100–106 (2015).
    Article  Google Scholar 

    60.
    Kumar, H., Dubey, R. C. & Maheshwari, D. K. Seed-coating fenugreek with Burkholderia rhizobacteria enhances yield in field trials and can combat Fusarium wilt. Rhizosphere 3, 92–99 (2017).
    Article  Google Scholar 

    61.
    Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Van, A. L. & Dufresne, A. The importance of the microbiome of the plant holobiont. New Phytol. 206, 1196–1206 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    62.
    Singh, M. et al. Complementarity among plant growth promoting traits in rhizospheric bacterial communities promotes plant growth. Sci. Rep. 5, 15500 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Lei, S. A. Intraspecific competition among blackbrush (Coleogyne ramosissima) seedlings in a controlled environmental glasshouse. J. Ariz.-Nev. Acad. Sci. 37, 100–104 (2004).
    Article  Google Scholar 

    64.
    XiaoAn, Z. et al. Seasonal changes in the relationship between species richness and community biomass in grassland under grazing and exclosure, Horqin Sandy Land, northern China. Sci. Cold Arid Reg. 5, 177–183 (2013).
    Article  Google Scholar 

    65.
    de Aguiar, M. I., Fialho, J. S., de Araújo, F. C. S., Campanha, M. M. & de Oliveira, T. S. Does biomass production depend on plant community diversity?. Agrofor. Syst. 87, 699–711 (2013).
    Article  Google Scholar 

    66.
    Falzari, L. M., Menary, R. C. & Dragar, V. A. Optimum stand density for maximum essential oil yield in commercial fennel crops. HortScience 41, 646–650 (2006).
    Article  Google Scholar 

    67.
    Ghiasy-Oskoee, M., AghaAlikhani, M., Mokhtassi-Bidgoli, A., Sefidkon, F. & Ayyari, M. Seed and biomass yield responses of blessed thistle to nitrogen and density. Agron. J. 111, 601–611 (2019).
    CAS  Article  Google Scholar 

    68.
    Isaac, M. E., Ulzen-Appiah, F., Timmer, V. R. & Quashie-Sam, S. J. Early growth and nutritional response to resource competition in cocoa-shade intercropped systems. Plant Soil 298, 243–254 (2007).
    CAS  Article  Google Scholar 

    69.
    Blank, R. R. Intraspecific and interspecific pair-wise seedling competition between exotic annual grasses and native perennials: plant–soil relationships. Plant Soil 326, 331–343 (2010).
    CAS  Article  Google Scholar 

    70.
    Dobermann, A. R. et al. Understanding and Managing Corn Yield Potential. Agron. Hortic. — Fac. Publ. (2002).

    71.
    Sabais, A. C. W. et al. Soil organisms shape the competition between grassland plant species. Oecologia 170, 1021–1032 (2012).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    72.
    Munoz, A. E. & Weaver, R. W. Competition between Subterranean Clover and Rygrass for uptake of 15N-labeled fertilizer. Plant Soil 211, 173–178 (1999).
    CAS  Article  Google Scholar 

    73.
    Eisenhauer, N. & Scheu, S. Invasibility of experimental grassland communities: the role of earthworms, plant functional group identity and seed size. Oikos 117, 1026–1036 (2008).
    Article  Google Scholar 

    74.
    Tesfaye, M. et al. Influence of enhanced malate dehydrogenase expression by alfalfa on diversity of rhizobacteria and soil nutrient availability. Soil Biol. Biochem. 35, 1103–1113 (2003).
    CAS  Article  Google Scholar 

    75.
    Fernandez, A. L. et al. Associations between soil bacterial community structure and nutrient cycling functions in long-term organic farm soils following cover crop and organic fertilizer amendment. Sci. Total Environ. 566–567, 949–959 (2016).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    76.
    Bashan, Y., Holguin, G. & de-Bashan, L. E. Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can. J. Microbiol. 50, 521–577 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    77.
    Dinesh, R. et al. Effects of plant growth-promoting rhizobacteria and NPK fertilizers on biochemical and microbial properties of soils under ginger (Zingiber officinale) Cultivation. Agric. Res. 2, 346–353 (2013).
    CAS  Article  Google Scholar 

    78.
    Li, Q. et al. Belowground interactions impact the soil bacterial community, soil fertility, and crop yield in maize/peanut intercropping systems. Int. J. Mol. Sci. 19, 622 (2018).
    CAS  PubMed Central  Article  Google Scholar 

    79.
    Maron, P.-A. et al. High microbial diversity promotes soil ecosystem functioning. Appl. Environ. Microbiol. 84, e02738-e2817 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    80.
    Loreau, M., Naeem, S. & Inchausti, P. Biodiversity and ecosystem functioning: synthesis and perspectives. In Biodiversity and Ecosystem Functioning: Synthesis and Perspectives (eds Loreau, M. et al.) (Oxford University Press, Oxford, 2002).
    Google Scholar 

    81.
    Patten, C. L. & Glick, B. R. Role of pseudomonas putida Indoleacetic Acid in development of the host plant root system. Appl. Environ. Microbiol. 68, 3795–3801 (2002).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    82.
    Compant, S., Clément, C. & Sessitsch, A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 42, 669–678 (2010).
    CAS  Article  Google Scholar 

    83.
    Sahn, D. E. The Fight Against Hunger and Malnutrition: The Role of Food, Agriculture, and Targeted Policies (OUP, Oxford, 2015).
    Google Scholar 

    84.
    Schmidt, S. B., Jensen, P. E. & Husted, S. Manganese deficiency in plants: the impact on photosystem II. Trends Plant Sci. 21, 622–632 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    85.
    Lambers, H., Hayes, P. E., Laliberté, E., Oliveira, R. S. & Turner, B. L. Leaf manganese accumulation and phosphorus-acquisition efficiency. Trends Plant Sci. 20, 83–90 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    86.
    de Santiago, A., Quintero, J. M., Avilés, M. & Delgado, A. Effect of Trichoderma asperellum strain T34 on iron, copper, manganese, and zinc uptake by wheat grown on a calcareous medium. Plant Soil 342, 97–104 (2011).
    CAS  Article  Google Scholar 

    87.
    Rajkumar, M., Sandhya, S., Prasad, M. N. V. & Freitas, H. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol. Adv. 30, 1562–1574 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    88.
    Gyaneshwar, P., Naresh Kumar, G., Parekh, L. J. & Poole, P. S. Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245, 83–93 (2002).
    CAS  Article  Google Scholar 

    89.
    Kuo, S. & Mikkelsen, D. S. Effect of P and Mn on growth response and uptake of Fe, Mn and P by sorghum. Plant Soil 62, 15–22 (1981).
    CAS  Article  Google Scholar 

    90.
    Shri, P. U. & Pillay, V. Excess of soil zinc interferes with uptake of other micro and macro nutrients in Sorghum bicolor (L.) plants. Indian J. Plant Physiol. 22, 304–308 (2017).
    CAS  Article  Google Scholar 

    91.
    Slaton, N. A., Roberts, T. L., Golden, B. R., Ross, W. J. & Norman, R. J. Soybean response to phosphorus and potassium supplied as inorganic fertilizer or poultry litter. Agron. J. 105, 812–820 (2013).
    CAS  Article  Google Scholar 

    92.
    Griffin, E. A., Wright, S. J., Morin, P. J. & Carson, W. P. Pervasive interactions between foliar microbes and soil nutrients mediate leaf production and herbivore damage in a tropical forest. New Phytol. 216, 99–112 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    93.
    Harpole, W. S. et al. Nutrient co-limitation of primary producer communities. Ecol. Lett. 14, 852–862 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    94.
    Zuo, Y. & Zhang, F. Soil and crop management strategies to prevent iron deficiency in crops. Plant Soil 339, 83–95 (2011).
    CAS  Article  Google Scholar  More

  • in

    Fueling of a marine-terrestrial ecosystem by a major seabird colony

    1.
    Blais, J. M. et al. Arctic seabirds transport marine-derived contaminants. Science  309, 445 (2005).
    CAS  PubMed  Article  Google Scholar 
    2.
    Qin, X. et al. From sea to land: assessment of the bio-transport of phosphorus by penguins in Antarctica. Chin. J. Oceanol. Limnol. 32, 148–154 (2014).
    ADS  CAS  Article  Google Scholar 

    3.
    Nicol, S. et al. Southern Ocean iron fertilization by baleen whales and Antarctic krill. Fish Fish. 11, 203–209 (2010).
    Article  Google Scholar 

    4.
    Doughty, C. E. et al. Global nutrient transport in a world of giants. Proc. Natl. Acad. Sci. 113, 868–873 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    5.
    Macavoy, S. E., Garman, G. C. & Macko, S. A. Anadromous fish as marine nutrient vectors. Fish. Bull. 107, 165–174 (2009).
    Google Scholar 

    6.
    Michelutti, N. et al. Seabird-driven shifts in Arctic pond ecosystems. Proc. R. Soc. B Biol. Sci. 276, 591–596 (2009).
    Article  Google Scholar 

    7.
    Otero, X. L., De La Peña-Lastra, S., Pérez-Alberti, A., Ferreira, T. O. & Huerta-Diaz, M. A. Seabird colonies as important global drivers in the nitrogen and phosphorus cycles. Nat. Commun. 9, 246 (2018).

    8.
    Ellis, J. R., Fariña, J. M. & Witman, J. D. Nutrient transfer from sea to land: the case of gulls and cormorants in the Gulf of Maine. J. Anim. Ecol. 75, 565–574 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    9.
    Kolb, G. S., Ekholm, J. & Hambäck, P. A. Effects of seabird nesting colonies on algae and aquatic invertebrates in coastal waters. Mar. Ecol. Prog. Ser. 417, 287–300 (2010).
    ADS  Article  Google Scholar 

    10.
    Anderson, W. & Polis, G. Nutrient fluxes from water to land: seabirds affect plant nutrient status on Gulf of California islands. Oecologia 118, 324–332 (1999).
    ADS  PubMed  Article  Google Scholar 

    11.
    Zwolicki, A., Zmudczyńska-Skarbek, K. M., Iliszko, L. & Stempniewicz, L. Guano deposition and nutrient enrichment in the vicinity of planktivorous and piscivorous seabird colonies in Spitsbergen. Polar Biol. 36, 363–372 (2013).
    Article  Google Scholar 

    12.
    Duda, M. P. et al. Long-term changes in terrestrial vegetation linked to shifts in a colonial seabird population. Ecosystems https://doi.org/10.1007/s10021-020-00494-8 (2020).
    Article  Google Scholar 

    13.
    Kolb, G. S., Jerling, L. & Hambäck, P. A. The impact of cormorants on plant-arthropod food webs on their nesting Islands. Ecosystems 13, 353–366 (2010).
    CAS  Article  Google Scholar 

    14.
    Christie, K. S., Hocking, M. D. & Reimchen, T. E. Tracing salmon nutrients in riparian food webs: isotopic evidence in a ground-foraging passerine. Can. J. Zool. 86, 1317–1323 (2008).
    CAS  Article  Google Scholar 

    15.
    Maron, J. L. et al. An introduced predator alters Aleutian Island plant communities by thwarting nutrient subsidies. Ecol. Monogr. 76, 3–24 (2006).
    Article  Google Scholar 

    16.
    Wainright, S. C., Haney, J. C., Kerr, C., Golovkin, A. N. & Flint, M. V. Utilization of nitrogen derived from seabird guano by terrestrial and marine plants at St. Paul, Pribilof Islands, Bering Sea, Alaska. Mar. Biol. 131, 63–71 (1998).
    CAS  Article  Google Scholar 

    17.
    Lorrain, A. et al. Seabirds supply nitrogen to reef-building corals on remote Pacific islets. Sci. Rep. 7, 1–11 (2017).
    CAS  Article  Google Scholar 

    18.
    Gagnon, K., Rothäusler, E., Syrjänen, A., Yli-Renko, M. & Jormalainen, V. Seabird guano fertilizes Baltic Sea littoral food webs. PLoS ONE 8, e61284 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).
    ADS  CAS  Article  Google Scholar 

    20.
    Gustafsson, B. et al. Reconstructing the development of Baltic sea eutrophication 1850–2006. Ambio 41, 534–548 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Cross, A. D. P., Hentati-Sundberg, J., Österblom, H., McGill, R. A. R. & Furness, R. W. Isotopic analysis of island House Martins Delichon urbica indicates marine provenance of nutrients. Ibis 156, 676–681 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    22.
    Armitage, P. D., Cranston, P. S. & Pinder, L. C. V. The Chironomidae. Biology and Ecology of Non-biting Midges (Springer, New York, 1995).
    Google Scholar 

    23.
    Olsson, O. & Hentati-Sundberg, J. Population trends and status of four seabird species (Uria aalge, Alca torda, Larus fuscus, Larus argentatus) at Stora Karlsö in the Baltic Sea. Ornis Svecica 27, 64–93 (2017).
    Article  Google Scholar 

    24.
    Hentati-Sundberg, J. et al. Fish and seabird spatial distribution and abundance around the largest seabird colony in the baltic sea. Mar. Ornithol. 46, 61–68 (2018).
    Google Scholar 

    25.
    Hentati-Sundberg, J., Österblom, H., Kadin, M., Jansson, Å & Olsson, O. The Karlsö Murre lab methodology can stimulate innovative seabird research. Mar. Ornithol. 40, 11–16 (2012).
    Google Scholar 

    26.
    Bond, A. L. & Hobson, K. A. Reporting stable-isotope ratios in ecology: recommended terminology, guidelines and best practices. Waterbirds 35, 324–331 (2012).
    Article  Google Scholar 

    27.
    Grasshoff, K., Kremling, K. & Ehrhardt, M. Methods of Seawater Analysis. Wiley, Hoboken. https://doi.org/10.1016/0043-1354(85)90057-0 (2009).
    Article  Google Scholar 

    28.
    Berg, P., Risgaard-Petersen, N. & Rysgaard, S. Interpretation of measured concentration profiles in sediment pore water. Limnol. Oceanogr. 43, 1500–1510 (1998).
    ADS  CAS  Article  Google Scholar 

    29.
    Iversen, N. & Jørgensen, B. B. Diffusion coefficients of sulfate and methane in marine sediments: Influence of porosity. Geochim. Cosmochim. Acta 57, 571–578 (1993).
    ADS  CAS  Article  Google Scholar 

    30.
    Berglund, P. A. Evaluating ten years of ecological seabird research in the Baltic Sea. (MSc thesis, Stockholm University, 2016).

    31.
    Brekke, B. & Gabrielsen, G. W. Assimilation efficiency of adult Kittiwakes and Brünnich’s Guillemots fed Capelin and Arctic Cod. Polar Biol. 14, 279–284 (1994).
    Article  Google Scholar 

    32.
    HELCOM. Sources and pathways of nutrients to the Baltic Sea. Balt. Sea Environ. Proc. 153, 48 (2018).
    Google Scholar 

    33.
    Lescroël, A. et al. Seeing the ocean through the eyes of seabirds: a new path for marine conservation?. Mar. Policy 68, 212–220 (2016).
    Article  Google Scholar 

    34.
    Yorio, P. Marine protected areas, spatial scales, and governance: implications for the conservation of breeding seabirds. Conserv. Lett. 2, 171–178 (2009).
    Article  Google Scholar 

    35.
    Länsstyrelsen Gotlands Län. Bevarandeplan för Natura 2000-området SE0340023 Stora Karlsö. (2018).

    36.
    Pinder, L. C. V. Biology of freshwater chironomidae. Annu. Rev. Entomol. 31, 1–23 (1986).
    Article  Google Scholar 

    37.
    Hirvenoja, M., Palmén, E. & Hirvenoja, E. The emergence of Halocladius variabilis (Staeger) (Diptera: Chironomidae) in the surroundings of the Tvärminne Biological Station in the northern Baltic Sea. Entomol. Fenn. 17, 87–89 (2006).
    Article  Google Scholar 

    38.
    Voss, M., Larsen, B., Leivuori, M. & Vallius, H. Stable isotope signals of eutrophication in Baltic Sea sediments. J. Mar. Syst. 25, 287–298 (2000).
    Article  Google Scholar 

    39.
    Deutsch, B., Alling, V., Humborg, C., Korth, F. & Mörth, C. M. Tracing inputs of terrestrial high molecular weight dissolved organic matter within the Baltic Sea ecosystem. Biogeosciences 9, 4465–4475 (2012).
    ADS  CAS  Article  Google Scholar 

    40.
    Griffiths, J. R. et al. The importance of benthic-pelagic coupling for marine ecosystem functioning in a changing world. Glob. Chang. Biol. 23, 2179–2196 (2017).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    41.
    Bonaglia, S., Deutsch, B., Bartoli, M., Marchant, H. K. & Brchert, V. Seasonal oxygen, nitrogen and phosphorus benthic cycling along an impacted Baltic Sea estuary: regulation and spatial patterns. Biogeochemistry 119, 139–160 (2014).
    CAS  Article  Google Scholar 

    42.
    Bianchi, T. S. et al. Cyanobacterial blooms in the Baltic Sea: Natural or human-induced?. Limnol. Oceanogr. 45, 716–726 (2000).
    ADS  CAS  Article  Google Scholar 

    43.
    Gunnars, A. & Blomqvist, S. Phosphate exchange across the sediment-water interface when shifting from anoxic to oxic conditions: an experimental comparison of freshwater and brackish-marine systems. Biogeochemistry 37, 203–226 (1997).
    CAS  Article  Google Scholar 

    44.
    Brook, B. W., Ellis, E. C., Perring, M. P., Mackay, A. W. & Blomqvist, L. Does the terrestrial biosphere have planetary tipping points?. Trends Ecol. Evol. 28, 396–401 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    45.
    Mackin, J. E. & Aller, R. C. Ammonium adsorption in marine sediments. Limnol. Oceanogr. 29, 250–257 (1984).
    ADS  CAS  Article  Google Scholar 

    46.
    Carstensen, J., Andersen, J. H., Gustafsson, B. & Conley, D. J. Deoxygenation of the Baltic Sea during the last century. Proc. Natl. Acad. Sci. 111, 5628–5633 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Cleary, D. M., Onac, B. P., Forray, F. L. & Wynn, J. G. Effect of diet, anthropogenic activity, and climate on δ15N values of cave bat guano. Palaeogeogr. Palaeoclimatol. Palaeoecol. 461, 87–97 (2016).
    Article  Google Scholar 

    48.
    Vahtera, E. et al. Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea. Ambio 36, 186–194 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Southern Ocean convection amplified past Antarctic warming and atmospheric CO2 rise during Heinrich Stadial 4

    1.
    Barker, S. et al. 800,000 years of abrupt climate variability. Science 334, 347–351 (2011).
    CAS  Article  Google Scholar 
    2.
    Stocker, T. F. & Johnsen, S. J. A minimum thermodynamic model for the bipolar seesaw. Paleoceanography 18, PA1087 (2003).
    Article  Google Scholar 

    3.
    Wais Divide Project Members et al. Precise interpolar phasing of abrupt climate change during the last ice age. Nature 520, 661, https://doi.org/10.1038/nature14401 (2015).
    CAS  Article  Google Scholar 

    4.
    EPICA community members. One-to-one coupling of glacial variability in Greenland and Antarctica. Nature 444, 195–198 (2006).
    Article  Google Scholar 

    5.
    Barker, S. et al. Interhemispheric Atlantic seesaw response during the last deglaciation. Nature 457, 1097–1102 (2009).
    CAS  Article  Google Scholar 

    6.
    Schmittner, A., Saenko, O. A. & Weaver, A. J. Coupling of the hemispheres in observations and simulations of glacial climate change. Quat. Sci. Rev. 22, 659–671 (2003).
    Article  Google Scholar 

    7.
    Seidov, D. & Maslin, M. Atlantic Ocean heat piracy and the bipolar climate see-saw during Heinrich and Dansgaard-Oeschger events. J Quat. Sci. 16, 321–328 (2001).
    Article  Google Scholar 

    8.
    Pedro, J. B. et al. Beyond the bipolar seesaw: toward a process understanding of interhemispheric coupling. Quat. Sci. Rev. 192, 27–46, https://doi.org/10.1016/j.quascirev.2018.05.005 (2018).
    Article  Google Scholar 

    9.
    Kageyama, M. et al. Climatic impacts of fresh water hosing under Last Glacial Maximum conditions: a multi-model study. Clim. Past 9, 935–953 (2013).
    Article  Google Scholar 

    10.
    Stouffer, R. et al. Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Clim. 19, 1365–1387 (2006).
    Article  Google Scholar 

    11.
    Ganopolski, A. & Rahmstorf, S. Rapid changes of glacial climate simulated in a coupled climate model. Nature 409, 153–158 (2001).
    CAS  Article  Google Scholar 

    12.
    Menviel, L., Spence, P. & England, M. H. Contribution of enhanced Antarctic Bottom Water formation to Antarctic warm events and millennial-scale atmospheric CO2 increase. Earth Planet. Sci. Lett. 413, 37–50, https://doi.org/10.1016/j.epsl.2014.12.050 (2015).
    CAS  Article  Google Scholar 

    13.
    Hemming, S. R. Heinrich events: massive late pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys. 42, 1–43 (2004).
    Article  Google Scholar 

    14.
    Henry, L. G. et al. North Atlantic ocean circulation and abrupt climate change during the last glaciation. Science 353, 470–474, https://doi.org/10.1126/science.aaf5529 (2016).
    CAS  Article  Google Scholar 

    15.
    Skinner, L. C. & Elderfield, H. Rapid fluctuations in the deep North Atlantic heat budget during the last glaciation. Paleoceanography 22, PA1205 (2007).
    Article  Google Scholar 

    16.
    Skinner, L. C., Shackleton, N. J. & Elderfield, H. Millennial-scale variability of deep-water temperature and d18Odw indicating deep-water source variations in the Northeast Atlantic, 0–34 cal. ka BP. Geochem. Geophys. Geosys. 4, 1–17 (2003).
    Article  Google Scholar 

    17.
    Weldeab, S., Friedrich, T., Timmermann, A. & Schneider, R. R. Strong middepth warming and weak radiocarbon imprints in the equatorial Atlantic during Heinrich 1 and Younger Dryas. Paleoceanography 31, 1070–1082, https://doi.org/10.1002/2016pa002957 (2016).
    Article  Google Scholar 

    18.
    Repschläger, J., Weinelt, M., Andersen, N., Garbe-Schönberg, D. & Schneider, R. Northern source for Deglacial and Holocene deepwater composition changes in the Eastern North Atlantic Basin. Earth Planet. Sci. Lett. 425, 256–267, https://doi.org/10.1016/j.epsl.2015.05.009 (2015).
    CAS  Article  Google Scholar 

    19.
    Marcott, S. A. et al. Ice-shelf collapse from subsurface warming as a trigger for Heinrich events. Proc. Natl Acad. Sci. USA 108, 13415–13419, https://doi.org/10.1073/pnas.1104772108 (2011).
    Article  Google Scholar 

    20.
    Weldeab, S., Arce, A. & Kasten, S. Mg/Ca- CO2−-temperature calibration for Globobulimina spp.: a sensitive paleothermometer for deep-sea temperature reconstruction. Earth Planet. Sci. Lett. 438, 95–102 (2016).
    CAS  Article  Google Scholar 

    21.
    Roberts, J. et al. Evolution of South Atlantic density and chemical stratification across the last deglaciation. Proc. Natl Acad. Sci. USA, 1–6, http://www.pnas.org/cgi/doi/10.1073/pnas.1511252113 (2016).

    22.
    Bryan, S. & Marchitto, T. Mg/Ca-temperature proxy in benthic foraminifera: new calibrations from the Florida Straits and a hypothesis regarding Mg/Li. Paleoceanography 23 (2008).

    23.
    Elderfield, H., Yu, J., Anand, P., Keifer, T. & Nyland, B. Calibrations for benthic foraminiferal Mg/Ca palaeothermometry and the carbonate ion hypothesis. Earth Planet. Sci. Lett. 250, 633–649 (2006).
    CAS  Article  Google Scholar 

    24.
    de Lavergne, C., Palter, J. B., Galbraith, E. D., Bernardello, R. & Marinov, I. Cessation of deep convection in the open Southern Ocean under anthropogenic climate change. Nat. Clim. Change 4, 278–282, https://doi.org/10.1038/nclimate2132 (2014).
    Article  Google Scholar 

    25.
    Gottschalk, J. et al. Abrupt changes in the southern extent of North Atlantic Deep Water during Dansgaard-Oeschger events. Nat. Geosci. 8, 950–954, https://doi.org/10.1038/ngeo2558 (2015).
    CAS  Article  Google Scholar 

    26.
    Stocker, T. F., Timmermann, A., Renold, M. & Timm, O. Effects of salt compensation on the climate model response in simulations of large changes of the Atlantic Meridional Overturning Circulation. J. Clim. 20, 5912–5928 (2007).
    Article  Google Scholar 

    27.
    Schmittner, A., Brook, E. J. & Ahn, J. In Ocean circulation: mechanisms and impacts (eds A. Schmittner A. et al.) 315–334 (AGU Monograph, 2007).

    28.
    Schmittner, A. & Galbraith, E. Glacial greenhouse-gas fluctuations controlled by ocean circulation changes. Nature 456, 373–376 (2008).
    CAS  Article  Google Scholar 

    29.
    Buizert, C. et al. Abrupt ice-age shifts in southern westerly winds and Antarctic climate forced from the north. Nature 563, 681–685, https://doi.org/10.1038/s41586-018-0727-5 (2018).
    CAS  Article  Google Scholar 

    30.
    Menviel, L. et al. Southern Hemisphere westerlies as a driver of the early deglacial atmospheric CO2 rise. Nature Communications 9, 2503, https://doi.org/10.1038/s41467-018-04876-4 (2018).
    CAS  Article  Google Scholar 

    31.
    Gottschalk, J. et al. Mechanisms of millennial-scale atmospheric CO2 change in numerical model simulations. Quat. Sci. Rev. 220, 30–74, https://doi.org/10.1016/j.quascirev.2019.05.013 (2019).
    Article  Google Scholar 

    32.
    Galbraith, E. D., Merlis, T. M. & Palter, J. B. Destabilization of glacial climate by the radiative impact of Atlantic Meridional Overturning Circulation disruptions. Geophys. Res. Lett. 43, 8214–8221, https://doi.org/10.1002/2016GL069846 (2016).
    Article  Google Scholar 

    33.
    Broecker, W. S. Palaeocean circulation during the last deglaciation: a bipolar seesaw? Paleoceanography 13, 119–121 (1998).
    Article  Google Scholar 

    34.
    Skinner, L. C., Waelbroeck, C., Scrivner, A. & Fallon, S. Radiocarbon evidence for alternating northern and southern sources of ventilation of the deep Atlantic carbon pool during the last deglaciation. Proc. Natl Acad. Sci. USA 111, 5480–5484, http://www.pnas.org/cgi/doi/10.1073/pnas.1400668111 (2014).
    CAS  Article  Google Scholar 

    35.
    Brown, N. & Galbraith, E. D. Hosed vs. unhosed: interruptions of the Atlantic Meridional Overturning Circulation in a global coupled model, with and without freshwater forcing. Clim. Past 12, 1663–1679, https://doi.org/10.5194/cp-12-1663-2016 (2016).
    Article  Google Scholar 

    36.
    Barker, S. et al. Icebergs not the trigger for North Atlantic cold events. Nature 520, 333–338 (2015).
    CAS  Article  Google Scholar 

    37.
    Gottschalk, J. et al. Biological and physical controls in the Southern Ocean on past millennial-scale atmospheric CO2 changes. Nat. Commun. 7, 11539, https://doi.org/10.1038/ncomms11539 (2016).
    CAS  Article  Google Scholar 

    38.
    Jaccard, S. L., Galbraith, E. D., Martínez-García, A. & Anderson, R. F. Covariation of deep Southern Ocean oxygenation and atmospheric CO2 through the last ice age. Nature 530, 207–210, https://doi.org/10.1038/nature16514 (2016).
    CAS  Article  Google Scholar 

    39.
    Thompson, A. F., Hines, S. K. V. & Adkins, J. F. A Southern Ocean mechanism for the interhemispheric coupling and phasing of the bipolar seesaw. J Clim. 32, 4347–4365 (2019).
    Article  Google Scholar 

    40.
    Hines, S. K. V., Thompson, A. F. & Adkins, J. F. The role of the Southern Ocean in abrupt transitions and hysteresis in glacial ocean circulation. Paleoceanogr. Paleoclimatol. 34, 490–510, https://doi.org/10.1029/2018pa003415 (2019).
    Article  Google Scholar 

    41.
    Skinner, L. C., Muschitiello, F. & Scrivner, A. E. Marine reservoir age variability over the last deglaciation: implications for marine carboncycling and prospects for regional radiocarbon calibrations. Paleoceanogr. Paleoclimatol. 34, 1807–1815, https://doi.org/10.1029/2019pa003667 (2019).
    Article  Google Scholar 

    42.
    Baggenstos, D. et al. Earth’s radiative imbalance from the Last Glacial Maximum to the present. Proc. Natl Acad. Sci. USA 116, 14881–14886, https://doi.org/10.1073/pnas.1905447116 (2019).
    CAS  Article  Google Scholar 

    43.
    Bereiter, B., Shackleton, S., Baggenstos, D., Kawamura, K. & Severinghaus, J. Mean global ocean temperatures during the last glacial transition. Nature 553, 39–44 (2018).
    CAS  Article  Google Scholar 

    44.
    Boiteau, R., Greaves, M. & Elderfield, H. Authigenic uranium in foraminiferal coatings: a proxy for ocean redox chemistry. Paleoceanography 27, https://doi.org/10.1029/2012pa002335 (2012).

    45.
    Klinkhammer, G. & Palmer, M. R. Uranium in the oceans: where it goes and why. Geochim. Cosmochim. Acta 55, 1799–1806 (1991).
    CAS  Article  Google Scholar 

    46.
    Skinner, L. et al. Rare earth elements in the service of palaeoceanography: a novel microanalysis approach. Geochim. Cosmochim. Acta 245, 118–132 (2019).
    CAS  Article  Google Scholar 

    47.
    Barker, S., Greaves, M. & Elderfield, H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochem. Geophys. Geosys. 4, 84078 (2003).
    Article  Google Scholar 

    48.
    Yu, J., Day, J. A., Greaves, M. J. & Elderfield, H. Determination of multiple element/calcium ratios in foraminiferal calcite by quadrupole ICP-MS. Geochem. Geophys. Geosys. 6, Q08P01 (2005).
    Article  Google Scholar 

    49.
    Locarnini, R. A. et al. NOAA Atlas NESDIS Vol. 73 (eds Levitus S. & Mishonov, A. V.) (Maryland Ocean Climate Laboratory, 2013).

    50.
    Garcia, H. E. et al. In NOAA Atlas NESDIS Vol. 75 (eds Levitus S. & Mishonov A. V.) 27 (U.S Government Printing Office, 2004).

    51.
    Svensson, A. et al. A 60,000 year Greenland stratigraphic ice core chronology. Clim. Past 4, 47–57 (2008).
    Article  Google Scholar  More

  • in

    Isotopic systematics point to wild origin of mummified birds in Ancient Egypt

    1.
    Pinch, G. Handbook of Egyptian Mythology (ABC-CLIO, Santa Barbara, 2002).
    Google Scholar 
    2.
    Ikram, S. Animals in ancient Egyptian religion: belief, identity, power, and economy. In The Oxford Handbook of Zooarchaeolog (ed. Viner-Daniels, S.) 452–465 (Oxford University Press, Oxford, 2017).
    Google Scholar 

    3.
    Ikram, S. An eternal aviary: bird mummies from ancient egypt. In Between heaven and earth: Birds in Ancient Egypt 232 (ed. Rozenn, B. L.) (Rozenn Bailleul-Le Suer, London, 2012).
    Google Scholar 

    4.
    Von den Driesch, A., Kessler, D., Steinmann, F., Berteaux, V. & Peters, J. Mummified, Deified and Buried at Hermopolis Mgna: The Sacred Birds from Tuna el-Gebel, Middle Egypt. in Ägypten und Levante vol. 15 203–44 (Manfred Bietak, Vienna, 2005).

    5.
    de Diodore, S. Introduction générale. in Bibliothèque historique vol. 1 74 (1993).

    6.
    Strabon. Le voyage en Egypte. vol. 4 (1997).

    7.
    Ray, J. D. The archives of Hor. Texts from Excavations 2 (Londres EES, London, 1976).
    Google Scholar 

    8.
    Martin, G. T. The Sacred Animal Necropolis at North Saqqâra: The Southern Dependencies of the Main Temple Complex Vol. 50 (Egypt Exploration Society, London, 1981).
    Google Scholar 

    9.
    Meeks, D. Les couveuses artificielles en Égypte. in Techniques et économie antiques et médiévales: le temps de l’innovation: colloque international (C.N.R.S.) Aix-en-Provence, 21–23 mai 1996, 1997, Travaux du Centre Camille Jullian 21 132–136 (Errance, Providence, 1997).

    10.
    de Davies, N. G. Ancient Egyptian Paintings (University Press, Cambridge, 1936).
    Google Scholar 

    11.
    Wasef, S. et al. Mitogenomic diversity in Sacred Ibis Mummies sheds light on early Egyptian practices. PLoS ONE 14, e0223964 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Amiot, R. et al. Oxygen isotope fractionation between bird bone phosphate and drinking water. Sci. Nat. 104, 47 (2017).
    Article  CAS  Google Scholar 

    13.
    Craig, H. & Gordon, L. I. Deuterium and Oxygen 18 Variations in the Ocean and the Marine Atmosphere (Laboratorio di geologia nucleare, Pisa, 1965).
    Google Scholar 

    14.
    Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436–468 (1964).
    ADS  Article  Google Scholar 

    15.
    IAEA/WMO. Global Network of Isotopes in Precipitation. https://www.iaea.org/water (2019).

    16.
    IAEA/WMO. Global Network of Isotopes in Rivers. Global Network of Isotopes in Rivers https://www.iaea.org/water (2019).

    17.
    Stewart, M. K. Stable isotope fractionation due to evaporation and isotopic exchange of falling waterdrops: applications to atmospheric processes and evaporation of lakes. J. Geophys. Res. 80, 1133–1146 (1975).
    ADS  CAS  Article  Google Scholar 

    18.
    Hobson, K. A. & Clark, R. G. Assessing avian diets using stable isotopes II: factors influencing diet-tissue fractionation. Condor Ornithol. Appl. 94, 189–197 (1992).
    Google Scholar 

    19.
    Passey, B. H. et al. Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals. J. Archaeol. Sci. 32, 1459–1470 (2005).
    Article  Google Scholar 

    20.
    Mizutani, H., Fukuda, M. & Kabaya, Y. 13C and 15N enrichment factors of feathers of 11 species of adult birds. Ecology 73, 1391–1395 (1992).
    Article  Google Scholar 

    21.
    Angst, D. et al. Isotopic and anatomical evidence of an herbivorous diet in the Early Tertiary giant bird Gastornis. Implications for the structure of Paleocene terrestrial ecosystems. Naturwissenschaften 101, 313–322 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Hobson, K. A. Reconstructing Avian diets using stable-carbon and nitrogen isotope analysis of egg components: patterns of isotopic fractionation and turnover. The Condor 97, 752–762 (1995).
    Article  Google Scholar 

    23.
    Peterson, B. J. & Fry, B. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 18, 293–320 (1987).
    Article  Google Scholar 

    24.
    Caccamise, D. F., Reed, L. M., Castelli, P. M., Wainright, S. & Nichols, T. C. Distinguishing migratory and resident Canada geese using stable isotope analysis. J. Wildl. Manag. 64, 1084–1091 (2000).
    Article  Google Scholar 

    25.
    Hebert, C. E., Bur, M., Sherman, D. & Shutt, J. L. Sulfur isotopes link overwinter habitat use and breeding condition in double-crested cormorants. Ecol. Appl. 18, 561–567 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    26.
    Lott, C. A., Meehan, T. D. & Heath, J. A. Estimating the latitudinal origins of migratory birds using hydrogen and sulfur stable isotopes in feathers: influence of marine prey base. Oecologia 134, 505–510 (2003).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45, 341–351 (1981).
    ADS  CAS  Article  Google Scholar 

    28.
    Blum, J. D., Taliaferro, E. H. & Holmes, R. T. Changes in Sr/Ca, Ba/Ca and 87Sr/86Sr ratios between trophic levels in two forest ecosystems in the northeastern USA. Biochemistry 49, 87–101 (2000).
    CAS  Google Scholar 

    29.
    Capo, R. C., Stewart, B. W. & Chadwick, O. A. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma 82, 197–225 (1998).
    ADS  CAS  Article  Google Scholar 

    30.
    Graustein, W. C. 87Sr/86Sr ratios measure the sources and flow of strontium in terrestrial ecosystems. In Stable Isotopes in Ecological Research (eds Rundel, P. W. et al.) 491–512 (Springer, New York, 1989).
    Google Scholar 

    31.
    Blum, J. D., Taliaferro, E. H. & Holmes, R. T. Determining the sources of calcium for migratory songbirds using stable strontium isotopes. Oecologia 126, 569–574 (2001).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Libby, W. F., Berger, R., Mead, J. F., Alexander, G. V. & Ross, J. F. Replacement rates for human tissue from atmospheric radiocarbon. Science 146, 1170–1172 (1964).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Thompson, C. & Ballou, E. Studies of metabolic turnover with tritium as a tracer IV. Metabolically inert lipide and protein fractions from the rat. J. Biol. Chem. 200, 731–743 (1953).
    CAS  PubMed  PubMed Central  Google Scholar 

    34.
    Leeson, S. & Walsh, T. Feathering in commercial poultry II. Factors influencing feather growth and feather loss. Worlds Poult. Sci. J. World Poult. Sci J 60, 52–63 (2004).
    Article  Google Scholar 

    35.
    De la Hera, I., Pérez-Tris, J. & Tellería, J. Migratory behaviour affects the trade-off between feather growth rate and feather quality in a passerine bird. Biol. J. Linn. Soc. 97, 98–105 (2009).
    Article  Google Scholar 

    36.
    Bacon Wood, H. Growth bars in feathers. 3016 North Second St Harrisburd Pa. 67, (1949).

    37.
    Burke, W. H. et al. Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10, 516–519 (1982).
    ADS  CAS  Article  Google Scholar 

    38.
    Prokoph, A., Shields, G. A. & Veizer, J. Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth-Sci. Rev. 87, 113–133 (2008).
    ADS  CAS  Article  Google Scholar 

    39.
    Touzeau, A. et al. Egyptian mummies record increasing aridity in the Nile valley from 5500 to 1500yr before present. Earth Planet. Sci. Lett. 375, 92–100 (2013).
    ADS  CAS  Article  Google Scholar 

    40.
    Touzeau, A. et al. Diet of ancient Egyptians inferred from stable isotope systematics. J. Archaeol. Sci. 46, 114–124 (2014).
    CAS  Article  Google Scholar 

    41.
    Grimes, V. & Pellegrini, M. A comparison of pretreatment methods for the analysis of phosphate oxygen isotope ratios in bioapatite. Rapid Commun. Mass Spectrom. 27, 375–390 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Lécuyer, C. Oxygen isotope analysis of phosphate. In Handbook of Stable Isotope Analytical Techniques 482–496 (Elsevier, 2004).

    43.
    Lécuyer, C., Grandjean, P., O’Neil, J. R., Cappetta, H. & Martineau, F. Thermal excursions in the ocean at the Cretaceous—Tertiary boundary (northern Morocco): δ18O record of phosphatic fish debris. Palaeogeogr. Palaeoclimatol. Palaeoecol. 105, 235–243 (1993).
    Article  Google Scholar 

    44.
    Fourel, F. et al. Carbon and oxygen isotope variability among foraminifera and ostracod carbonated shells. Ann. Univ. Mariae Curie-Sklodowska Sect. Phys. 70, 133 (2015).
    Google Scholar 

    45.
    Coplen, T. B. et al. After two decades a second anchor for the VPDB δ13C scale. Rapid Commun. Mass Spectrom. 20, 3165–3166 (2006).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Friedman, I., O’neil, J. & Cebula, G. Two new carbonate stable-isotope standards. Geostand. Newsl. 6, 11–12 (1982).
    CAS  Article  Google Scholar 

    47.
    Hut, G. Consultants’ group meeting on stable isotope reference samples for geochemical and hydrological investigations. Consult. Group Meet. Stable Isot. Ref. Samples Geochem. Hydrol. Investig. (1987).

    48.
    Stichler, W. Interlaboratory comparison of new materials for carbon and oxygen isotope ratio measurements. Int. At. Energy Agency Vienna 825, 67–74 (1993).
    Google Scholar 

    49.
    Bondetti, M., Porcier, S., Ménager, M. & Vieillescazes, C. Analyse chimique de la composition de baumes provenant de momies animales égyptiennes. In Creatures of Earth, Water, and Sky Essays on Animals in Ancient Egypt and Nubia (ed. Pasquali, S.) (SideStone Press, Leiden, 2019).
    Google Scholar 

    50.
    De Muynck, D., Huelga-Suarez, G., Van-Heghe, L., Degryse, P. & Vanhaecke, F. Systematic evaluation of a strontium-specific extraction chromatographic resin for obtaining a purified Sr fraction with quantitative recovery from complex and Ca-rich matrices. J. Anal. At. Spectrom. 24, 1498–1510 (2009).
    Article  CAS  Google Scholar 

    51.
    Richardin, P., Coudert, M., Gandolfo, N. & Vincent, J. Radiocarbon dating of mummified human remains: application to a series of coptic mummies from the Louvre Museum. Radiocarbon 55, 345–352 (2013).
    CAS  Article  Google Scholar 

    52.
    Richardin, P., Perraud, A., Hertzog, J., Madrigal, K. & Berthet, D. Radiocarbon dating of a series of Egyptian mummies heads from Confluences Museum. Radiocarbon 59, 609–619 (2017).
    CAS  Article  Google Scholar 

    53.
    Richardin, P., Porcier, S., Ikram, S., Louarn, G. & Berthet, D. Cats, Crocodiles, cattle, and more: initial steps toward establishing a chronology of ancient egyptian animal mummies. Radiocarbon 59, 595–607 (2017).
    Article  Google Scholar 

    54.
    Richardin, P. & Coudert, M. Datation par le carbone 14 et restes humains. Une étude de cas: la momie dorée de Dunkerque. Techné 44, 75–78 (2016).
    Google Scholar 

    55.
    Moreau, C. et al. Research and development of the artemis 14C AMS facility: status report. Radiocarbon 55, 331–337 (2013).
    CAS  Article  Google Scholar 

    56.
    Bronk-Ramsey, C. Analysis of chronological information and radiocarbon calibration : the program OxCal. Archaeol. Comput. Newsl. 41, 11–16 (1994).
    Google Scholar 

    57.
    Dupras, T. L. & Schwarcz, H. P. Strangers in a strange land: stable isotope evidence for human migration in the Dakhleh Oasis Egypt. J. Archaeol. Sci. 28, 1199–1208 (2001).
    Article  Google Scholar 

    58.
    Thompson, A. H., Richards, M. P., Shortland, A. & Zakrzewski, S. R. Isotopic palaeodiet studies of Ancient Egyptian fauna and humans. J. Archaeol. Sci. 32, 451–463 (2005).
    Article  Google Scholar 

    59.
    Copley, M. S. et al. Short- and long-term foraging and foddering strategies of domesticated animals from Qasr Ibrim Egypt. J. Archaeol. Sci. 31, 1273–1286 (2004).
    Article  Google Scholar 

    60.
    Iacumin, P., Bocherens, H., Mariotti, A. & Longinelli, A. An isotopic palaeoenvironmental study of human skeletal remains from the Nile Valley. Palaeogeogr. Palaeoclimatol. Palaeoecol. 126, 15–30 (1996).
    Article  Google Scholar 

    61.
    Macko, S. A. et al. Documenting the diet in ancient human populations through stable isotope analysis of hair. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 354, 65–76 (1999).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Blake, R. E., Oneil, J. R. & Garcia, G. A. Oxygen isotope systematics of biologically mediated reactions of phosphate: I. Microbial degradation of organophosphorus compounds. Geochim. Cosmochim. Acta 61, 4411–4422 (1997).
    ADS  CAS  Article  Google Scholar 

    63.
    Lécuyer, C. et al. Stable isotope composition and rare earth element content of vertebrate remains from the Late Cretaceous of northern Spain (Laño): did the environmental record survive?. Palaeogeogr. Palaeoclimatol. Palaeoecol. 193, 457–471 (2003).
    Article  Google Scholar 

    64.
    Trueman, C., Chenery, C., Eberth, D. A. & Spiro, B. Diagenetic effects on the oxygen isotope composition of bones of dinosaurs and other vertebrates recovered from terrestrial and marine sediments. J. Geol. Soc. 160, 895–901 (2003).
    ADS  CAS  Article  Google Scholar 

    65.
    Zazzo, A., Lécuyer, C., Sheppard, S. M. F., Grandjean, P. & Mariotti, A. Diagenesis and the reconstruction of paleoenvironments: a method to restore original δ18O values of carbonate and phosphate from fossil tooth enamel. Geochim. Cosmochim. Acta 68, 2245–2258 (2004).
    ADS  CAS  Article  Google Scholar 

    66.
    Zazzo, A., Lécuyer, C. & Mariotti, A. Experimentally-controlled carbon and oxygen isotope exchange between bioapatites and water under inorganic and microbially-mediated conditions. Geochim. Cosmochim. Acta 68, 1–12 (2004).
    ADS  CAS  Article  Google Scholar 

    67.
    Stanton Thomas, K. J. & Carlson, S. J. Microscale δ18O and δ13C isotopic analysis of an ontogenetic series of the hadrosaurid dinosaur Edmontosaurus: implications for physiology and ecology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 206, 257–287 (2004).
    Article  Google Scholar 

    68.
    Kohn, M. J., Morris, J. & Olin, P. Trace element concentrations in teeth—a modern Idaho baseline with implications for archeometry, forensics, and palaeontology. J. Archaeol. Sci. 40, 1689–1699 (2013).
    CAS  Article  Google Scholar 

    69.
    Balter, V. & Lécuyer, C. Determination of Sr and Ba partition coefficients between apatite and water from 5 to 60°C: a potential new thermometer for aquatic paleoenvironments. Geochim. Cosmochim. Acta 68, 423–432 (2004).
    ADS  CAS  Article  Google Scholar 

    70.
    Buzon, M. R., Simonetti, A. & Creaser, R. A. Migration in the Nile Valley during the New Kingdom period: a preliminary strontium isotope study. J. Archaeol. Sci. 34, 1391–1401 (2007).
    Article  Google Scholar 

    71.
    Meyburg, B. U., Kirwan, G. M. & Garcia, E. F. J. Greater Spotted Eagle (Clanga clanga). In Handbook of the Birds of the World Alive (ed. de Juana, E.) (Lynx Edicions, Barcelona, 2019).
    Google Scholar 

    72.
    Orta, J., Boesman, P., Kirwan, G. M. & Marks, J. S. Long-legged Buzzard (Buteo rufinus). In Handbook of the Birds of the World Alive (ed. de Juana, E.) (Lynx Edicions, Barcelona, 2019).
    Google Scholar 

    73.
    Svensson, L. & Madge, S. (eds) Handbook of the Middle East, and North Africa: The Birds of the Western Palearctic (Oxford University Press, Oxford, 1977).
    Google Scholar 

    74.
    Hancock, J., Kushlan, J. A. & Kahl, M. P. Storks (Ibises and Spoonbills of the World. Academic Press, Cambridge, 2010).
    Google Scholar 

    75.
    Matheu, E., del Hoyo, J., Christie, D. A., Kirwan, G. M. & Garcia, E. F. J. African Sacred Ibis (Threskiornis aethiopicus). In Handbook of the Birds of the World Alive (ed. de Juana, E.) (Lynx Edicions, Barcelona, 2019).
    Google Scholar 

    76.
    Audouin, V. Explication sommaire des planches d’oiseaux de l’Egypte et de la Syrie, publiées par J.-C. Savigny, membre de l’Institut, offrant un exposé des caractères naturels des genres avec la distinction des espèces. in Description de l’Egypte, ou Recueil des observations et des recherches qui ont été faites en Egypte pendant l’expédition de l’armée française, publié par les ordres de sa Majesté–L’Empereur Napoléon le Grand vol. 1 251–318 (1809).

    77.
    Savigny, J.-C. Histoire Naturelle et Mythologique de l’Ibis. (1805).

    78.
    Lortet, C. E. & Gaillard, C. L. faune momifiée de l’Ancienne Egypte. Archives du Muséum d’histoire naturelle de Lyon 8, 1–205 (1903).
    Google Scholar 

    79.
    De Margerie, E. Fonction biomécanique des microstructures osseuses chez les oiseaux / Biomechanical function of bone microstructure in birds. C.R. Palevol 5, 619–628 (2006).
    Article  Google Scholar 

    80.
    Kerley, E. R. The microscopic determination of age in human bone. Am. J. Phys. Anthropol. 23, 149–163 (1965).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    81.
    Peek, S. & Clementz, M. T. Sr/Ca and Ba/Ca variations in environmental and biological sources: a survey of marine and terrestrial systems. Geochim. Cosmochim. Acta 95, 36–52 (2012).
    ADS  CAS  Article  Google Scholar 

    82.
    Zuberogoitia, I., Zabala, J. & Martínez, J. E. Moult in birds of prey: a review of current knowledge and future challenges for research. Ardeola 65, 183–207 (2018).
    Article  Google Scholar 

    83.
    Kovacs, G. Occurrence of the Long-legged buzzard (Buteo rufinus) in the Hortobagy between 1976 and 1991. Aquila 99, 41–48 (1992).
    Google Scholar 

    84.
    Bloom, P. H. & Clark, W. S. Molt and sequence of plumages of Golden eagles and a technique for in-hand ageing. North Am. Bird Bander 26, 97–116 (2001).
    Google Scholar 

    85.
    Lowe, K. W., Clark, A. & Clark, R. A. Body measurements, plumage and moult of the Sacred ibis in south Africa. Ostrich 56, 111–116 (1985).
    Article  Google Scholar 

    86.
    Van Neer, W. Evolution of prehistoric fishing in the Nile Valley. J. Afr. Archaeol. 2, 251–269 (2004).
    Article  Google Scholar 

    87.
    Porcier, S. et al. Wild crocodiles hunted to make mummies in Roman Egypt: Evidence from synchrotron imaging. J. Archaeol. Sci. 110, 105009 (2019).
    Article  Google Scholar 

    88.
    Kjellén, N. Moult in relation to migration in birds-a review. Ornis Svec. 4, 1–24 (1994).
    Google Scholar 

    89.
    Iacumin, P., Bocherens, H., Mariotti, A. & Longinelli, A. Oxygen isotope analyses of co-existing carbonate and phosphate in biogenic apatite: a way to monitor diagenetic alteration of bone phosphate?. Earth Planet. Sci. Lett. 142, 1–6 (1996).
    ADS  CAS  Article  Google Scholar  More

  • in

    Next-generation visitation models using social media to estimate recreation on public lands

    This study of recreation in two geographically distinct regions of the United States indicates that social media can predict visitation at recreation sites on public land. We conclude that social media data can be applied with moderate success to estimate visitation at sites that are unmonitored or otherwise lack on-site counts, even in new regions. A basic visitation model that relies solely on generic predictors (e.g., weather, holidays, and seasonality) is only modestly successful due to regional differences in visitor behavior (Model 1). Performance is improved by including relationships between visitation and social media (Flickr, Instagram, and Twitter), even when these relationships are transferred from a different region (WWA, Model 2). These results are consistent with prior research findings that social media counts are correlated with on-site visitor counts from public lands8,9,24,32, and extend earlier findings by showing the potential for statistical models to estimate absolute numbers of visitors at unmonitored sites with parameters derived from social media. This is evidence of patterns in how visitors use and share social media. Furthermore, it suggests that measurable variables associated with social media use could support transferable models for accurately estimating visitation to public lands across large geographies.
    We expected to detect regional differences in social media use given regional distinctions in climate, land management, population density, mobile phone signal coverage, and the demographics of visitors. Contrary to our expectations, we observed that the rate of posting to social media about recreation visits is similar across sites in NNM and WWA, and both regions displayed positive correlations between each of these social media data sources and observed visitation (Fig. 3). Furthermore, a model parameterized with social media use in WWA (Model 2) explains 45% of the variation in visitation across all 13 sites in NNM and 79% of the variability in visitation at the subset of sites that had social media posts. Re-parameterizing Model 2 with a portion of NNM visitation data does not improve its performance (Model 3) until these data are considered at the site level (Model 5). There is a noisy but consistent relationship between a destination’s popularity with visitors and its popularity on social media, regardless of whether the site is in NNM or WWA. We interpret this as evidence that visitors are equally likely to share their recreation experiences in NNM or WWA, despite the regional differences in the types of recreation opportunities and the people who are visiting.
    Although there are consistent relationships between social media use and visitation at a regional scale, we see large site-to-site variability in how visitors use social media within both regions. Beyond simple differences in numbers of posts by site, the proportion of people who post about their visits varies by destination, ranging from 7% of visitors to Kasha–Katuwe Tent Rocks National Monument posting on Instagram to zero recorded social media user-days at several trails in the Valles Caldera National Preserve. As a result, models with random effects that allow sites to have unique relationships between social media, weather, and visitation (Models 4–5) perform substantially better than models that assume social media use is consistently related to visitation for all types of sites (Models 1–3). This is especially true at the most and least visited sites (Figs. 4, 5), where visitors may be sharing social media differently than they do at moderately visited sites, and responding differently to other conditions such as weather or holidays. These results indicate that while data on social media use are helpful for predicting visitation with moderate certainty in an otherwise unknown region (Model 1 vs. 2), their utility for estimating visitation is less clear when local data on the effects of environmental and institutional conditions such as weather and holidays are available to parameterize site-specific models.
    A primary goal of this study is to test approaches for estimating visitation over relatively small areas in order to explore the limits of the data and methods. We find that six of the 13 sites in NNM—representing individual trails or groups of trails within a larger park—lack social media during the study period. Model 2, which depends on social media data to estimate visitation at unmonitored sites, consequently performs relatively poorly at these six sites (Fig. 4). Generally, sites that have sparse social media data tend to receive few visitors, but there are exceptions. Alcove House in Bandelier National Monument, for instance, is a very highly visited site that lacks Instagram images in our study because the site does not appear as a prescribed location for Instagram users. Our informal observation is that many visitors instead share untagged photographs of Alcove House or assign their images to other relevant place names such as Bandelier National Monument. Clearly, there are thresholds to where and how social media can be leveraged for visitor estimation. Our research suggests that future studies and visitation models could be improved by accounting for the popularity of sites on social media in the study design12. Visitation models that include predictors derived from social media (Models 2, 3, and 5, here) will likely out-perform alternative models for estimating use at popular sites or when longer time series are available. At locations with low or no posting activity, where social media contributes less to visitor estimates, it could be more useful to collect on-site data such as vehicle and pedestrian counts. Further research is necessary to understand what combination of on-site, social media, environmental, and other data is most valuable at different spatial and temporal scales.
    These observations suggest that variability in correlations between social media and on-site visitor counts seen here and in previous studies8,12,20 is derived from local factors influencing visitors’ day-to-day decisions about whether and how to share a destination on social media. Choices about whether to post to social media are likely influenced by the characteristics of the local site—perhaps its topography, amenities, predominant activity, or unique natural features—and the ways that people relate to these features33. The characteristics of the visitors and the relative contributions of the natural versus the social experience in the motivation for the trip may play a role. For example, if a given type of site attracts visitors wishing to “unplug” and have a nature-based outing (a calm forest glade, say), there may be fewer posts per visit than for a site attracting visitors who desire a social experience within a natural setting (a famous scenic overlook, for instance). Another possibility is that the prevailing popularity of certain destinations on social media creates a positive feedback, whereby new visitors feel compelled to share content about their visit in response to the posts of others or the local hashtags that may make it easier or more enticing to post. Variability could also arise from the recent trend towards discouraging visitors from posting geolocated content and attracting attention to less popular or back-country sites that are not equipped to sustain higher use, although this is probably of minor importance, currently.
    This is the first study to our knowledge that develops and tests models for estimating absolute numbers of visitors at unmonitored recreation sites or times using multiple social media data sources with differential effects. Building on earlier research exploring relationships of park visitation with numbers of posts to multiple social media platforms9,12,20,27, the present study tests whether models with a mixture of predictors to represent varying effects of three online platforms can estimate visitation in novel situations. We find that each social media data source contributes information that explains a statistically significant portion of the variability in visitation and improves the accuracy of the estimate. This is the case not only for Instagram, which captures 3–4% of visitor-days at our research sites in WWA and NNM, but also for Flickr and Twitter, with relatively small amounts of content shared ( More

  • in

    Summer warming explains widespread but not uniform greening in the Arctic tundra biome

    1.
    Arctic Monitoring and Assessment Programme. Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017 (Arctic Monitoring and Assessment Programme (AMAP), 2017).
    2.
    Chapin, F. S. 3rd et al. Role of land-surface changes in arctic summer warming. Science 310, 657–660 (2005).
    ADS  CAS  PubMed  Google Scholar 

    3.
    Tape, K. D., Christie, K., Carroll, G. & O’donnell, J. A. Novel wildlife in the Arctic: the influence of changing riparian ecosystems and shrub habitat expansion on snowshoe hares. Glob. Change Biol. 22, 208–219 (2016).
    ADS  Google Scholar 

    4.
    Downing, A. & Cuerrier, A. A synthesis of the impacts of climate change on the First Nations and Inuit of Canada. Indian J. Tradit. Knowl. 10, 57–70 (2011).
    Google Scholar 

    5.
    National Academies of Sciences. Understanding Northern Latitude Vegetation Greening and Browning: Proceedings of a Workshop (The National Academies Press, 2019).

    6.
    Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).
    ADS  CAS  PubMed  Google Scholar 

    7.
    Elmendorf, S. C. et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Change 2, 453–457 (2012).
    ADS  Google Scholar 

    8.
    Gauthier, G. et al. Long-term monitoring at multiple trophic levels suggests heterogeneity in responses to climate change in the Canadian Arctic tundra. Philos. Trans. R. Soc. Ser. B 368, 20120482 (2013).
    Google Scholar 

    9.
    Myers-Smith, I. H. et al. Eighteen years of ecological monitoring reveals multiple lines of evidence for tundra vegetation change. Ecol. Monogr. 89, e01351 (2019).
    Google Scholar 

    10.
    Tape, K. D., Hallinger, M., Welker, J. M. & Ruess, R. W. Landscape heterogeneity of shrub expansion in Arctic Alaska. Ecosystems 15, 711–724 (2012).
    CAS  Google Scholar 

    11.
    Pattison, R. R., Jorgenson, J. C., Raynolds, M. K. & Welker, J. M. Trends in NDVI and Tundra Community Composition in the Arctic of NE Alaska Between 1984 and 2009. Ecosystems 18, 707–719 (2015).
    Google Scholar 

    12.
    Gamm, C. M. et al. Declining growth of deciduous shrubs in the warming climate of continental western Greenland. J. Ecol. 106, 640–654 (2018).
    CAS  Google Scholar 

    13.
    Forchhammer M. Sea-ice induced growth decline in Arctic shrubs. Biol. Lett. 13, 20170122 (2017).

    14.
    Street, L., Shaver, G., Williams, M. & Van Wijk, M. What is the relationship between changes in canopy leaf area and changes in photosynthetic CO2 flux in arctic ecosystems? J. Ecol. 95, 139–150 (2007).
    Google Scholar 

    15.
    Raynolds, M. K., Walker, D. A., Epstein, H. E., Pinzon, J. E. & Tucker, C. J. A new estimate of tundra-biome phytomass from trans-Arctic field data and AVHRR NDVI. Remote Sens. Lett. 3, 403–411 (2012).
    Google Scholar 

    16.
    Berner, L. T., Jantz, P., Tape, K. D. & Goetz, S. J. Tundra plant aboveground biomass and shrub dominance mapped across the North Slope of Alaska. Environ. Res. Lett. 13, 035002 (2018).
    ADS  Google Scholar 

    17.
    Bhatt, U. S. et al. Changing seasonality of panarctic tundra vegetation in relationship to climatic variables. Environ. Res. Lett. 12, 1–18 (2017).
    Google Scholar 

    18.
    Guay, K. C. et al. Vegetation productivity patterns at high northern latitudes: a multi-sensor satellite data assessment. Glob. Change Biol. 20, 3147–3158 (2014).
    ADS  Google Scholar 

    19.
    Pinzon, J. & Tucker, C. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).
    ADS  Google Scholar 

    20.
    Ju, J. & Masek, J. G. The vegetation greenness trend in Canada and US Alaska from 1984–2012 Landsat data. Remote Sens. Environ. 176, 1–16 (2016).
    ADS  Google Scholar 

    21.
    Karlsen, S. R., Anderson, H. B., Van der Wal, R. & Hansen, B. B. A new NDVI measure that overcomes data sparsity in cloud-covered regions predicts annual variation in ground-based estimates of high arctic plant productivity. Environ. Res. Lett. 13, 025011 (2018).
    ADS  Google Scholar 

    22.
    McManus, kM. et al. Satellite-based evidence for shrub and graminoid tundra expansion in northern Quebec from 1986 to 2010. Glob. Change Biol. 18, 2313–2323 (2012).
    ADS  Google Scholar 

    23.
    Frost, G. V., Epstein, H. & Walker, D. Regional and landscape-scale variability of Landsat-observed vegetation dynamics in northwest Siberian tundra. Environ. Res. Lett. 9, 025004 (2014).
    ADS  Google Scholar 

    24.
    Raynolds, M. K. & Walker, D. A. Increased wetness confounds Landsat-derived NDVI trends in the central Alaska North Slope region, 1985–2011. Environ. Res. Lett. 11, 085004 (2016).
    ADS  Google Scholar 

    25.
    Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).
    ADS  Google Scholar 

    26.
    Zhu, Z., Wang, S. & Woodcock, C. E. Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 159, 269–277 (2015).
    ADS  Google Scholar 

    27.
    Pastick, N. J. et al. Spatiotemporal remote sensing of ecosystem change and causation across Alaska. Glob. Change Biol. 25, 1171–1189 (2019).
    ADS  Google Scholar 

    28.
    Walker, D. et al. Phytomass, LAI, and NDVI in northern Alaska: relationships to summer warmth, soil pH, plant functional types, and extrapolation to the circumpolar Arctic. J. Geophys. Res. 108, 8169 (2003).
    Google Scholar 

    29.
    Lucht, W. et al. Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science 296, 1687–1689 (2002).
    ADS  CAS  PubMed  Google Scholar 

    30.
    Fraser, R. H., Lantz, T. C., Olthof, I., Kokelj, S. V. & Sims, R. A. Warming-induced shrub expansion and lichen decline in the Western Canadian. Arct. Ecosyst. 17, 1151–1168 (2014).
    Google Scholar 

    31.
    Bonney, M. T., Danby, R. K. & Treitz, P. M. Landscape variability of vegetation change across the forest to tundra transition of central Canada. Remote Sens. Environ. 217, 18–29 (2018).
    ADS  Google Scholar 

    32.
    Cuerrier, A., Brunet, N. D., Gérin-Lajoie, J., Downing, A. & Lévesque, E. The study of Inuit knowledge of climate change in Nunavik, Quebec: a mixed methods approach. Hum. Ecol. 43, 379–394 (2015).
    Google Scholar 

    33.
    Forbes, B. C. & Stammler, F. Arctic climate change discourse: the contrasting politics of research agendas in the West and Russia. Polar Res. 28, 28–42 (2009).
    Google Scholar 

    34.
    Forbes, B. C., Fauria, M. M. & Zetterberg, P. Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows. Glob. Change Biol. 16, 1542–1554 (2010).
    ADS  Google Scholar 

    35.
    Tape, K., Sturm, M. & Racine, C. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob. Change Biol. 12, 686–702 (2006).
    ADS  Google Scholar 

    36.
    Ropars, P. & Boudreau, S. Shrub expansion at the forest–tundra ecotone: spatial heterogeneity linked to local topography. Environ. Res. Lett. 7, 015501 (2012).
    ADS  Google Scholar 

    37.
    Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020).
    ADS  Google Scholar 

    38.
    Park, T. et al. Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Environ. Res. Lett. 11, 084001 (2016).
    ADS  Google Scholar 

    39.
    Riihimäki, H., Heiskanen, J. & Luoto, M. The effect of topography on arctic-alpine aboveground biomass and NDVI patterns. Int. J. Appl. Earth Obs. Geoinf. 56, 44–53 (2017).
    ADS  Google Scholar 

    40.
    Fraser, R. H., Olthof, I., Lantz, T. C. & Schmitt, C. UAV photogrammetry for mapping vegetation in the low-Arctic. Arct. Sci. 2, 79–102 (2016).
    Google Scholar 

    41.
    Berner, L. T., Beck, P. S. A., Bunn, A. G. & Goetz, S. J. Plant response to climate change along the forest-tundra ecotone in northeastern Siberia. Glob. Change Biol. 19, 3449–3462 (2013).
    Google Scholar 

    42.
    Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5, 887–891 (2015).
    ADS  Google Scholar 

    43.
    Bjorkman, A. D., Vellend, M., Frei, E. R. & Henry, G. H. Climate adaptation is not enough: warming does not facilitate success of southern tundra plant populations in the high Arctic. Glob. Change Biol. 23, 1540–1551 (2017).
    ADS  Google Scholar 

    44.
    Post, E. & Pedersen, C. Opposing plant community responses to warming with and without herbivores. Proc. Natl Acad. Sci. USA 105, 12353–12358 (2008).
    ADS  CAS  PubMed  Google Scholar 

    45.
    Yu, Q., Epstein, H., Engstrom, R. & Walker, D. Circumpolar arctic tundra biomass and productivity dynamics in response to projected climate change and herbivory. Glob. Change Biol. 23, 3895–3907 (2017).
    ADS  Google Scholar 

    46.
    Liljedahl, A. K. et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 9, 312–318 (2016).
    ADS  CAS  Google Scholar 

    47.
    Perreault, N., Levesque, E., Fortier, D. & Lamarque, L. J. Thermo-erosion gullies boost the transition from wet to mesic tundra vegetation. Biogeosciences 13, 1237–1253 (2016).
    ADS  Google Scholar 

    48.
    Grant, R. F., Mekonnen, Z. A., Riley, W. J., Arora, B. & Torn, M. S. Mathematical modelling of Arctic Polygonal Tundra with Ecosys: 2. Microtopography determines how CO2 and CH4 exchange responds to changes in temperature and precipitation. J. Geophys. Res. 122, 3174–3187 (2017).
    CAS  Google Scholar 

    49.
    Phoenix, G. K. & Bjerke, J. W. Arctic browning: extreme events and trends reversing arctic greening. Glob. Change Biol. 22, 2960–2962 (2016).
    ADS  Google Scholar 

    50.
    Treharne, R., Bjerke, J. W., Tømmervik, H., Stendardi, L. & Phoenix, G. K. Arctic browning: Impacts of extreme climatic events on heathland ecosystem CO2 fluxes. Glob. Change Biol. 25, 489–503 (2018).
    ADS  Google Scholar 

    51.
    Forbes, B. C. et al. High resilience in the Yamal-Nenets social–ecological system, west Siberian Arctic, Russia. Proc. Natl Acad. Sci. USA 106, 22041–22048 (2009).
    ADS  CAS  PubMed  Google Scholar 

    52.
    Mekonnen, Z. A., Riley, W. J. & Grant, R. F. Accelerated nutrient cycling and increased light competition will lead to 21st century shrub expansion in North American Arctic tundra. J. Geophys. Res. 123, 1683–1701 (2018).
    CAS  Google Scholar 

    53.
    Rocha, A. V. et al. The footprint of Alaskan tundra fires during the past half-century: implications for surface properties and radiative forcing. Environ. Res. Lett. 7, 044039 (2012).
    ADS  Google Scholar 

    54.
    Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L. & Justice, C. O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 217, 72–85 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    55.
    Hu, F. S. et al. Arctic tundra fires: natural variability and responses to climate change. Front. Ecol. Environ. 13, 369–377 (2015).
    Google Scholar 

    56.
    Mack, M. C. et al. Carbon loss from an unprecedented Arctic tundra wildfire. Nature 475, 489–492 (2011).
    ADS  CAS  PubMed  Google Scholar 

    57.
    Jones, B. M. et al. Identification of unrecognized tundra fire events on the north slope of Alaska. J. Geophys. Res. 118, 1334–1344 (2013).
    Google Scholar 

    58.
    Loranty, M. M. et al. Siberian tundra ecosystem vegetation and carbon stocks four decades after wildfire. J. Geophys. Res. 119, 2144–2154 (2014).
    CAS  Google Scholar 

    59.
    Natali, S. M. et al. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Change 9, 852–857 (2019).
    ADS  CAS  Google Scholar 

    60.
    Schuur, E. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).
    ADS  CAS  PubMed  Google Scholar 

    61.
    Pearson, R. G. et al. Shifts in Arctic vegetation and associated feedbacks under climate change. Nat. Clim. Change 3, 673–677 (2013).
    ADS  Google Scholar 

    62.
    Loranty, M. M., Goetz, S. J. & Beck, P. S. A. Tundra vegetation effects on pan-Arctic albedo. Environ. Res. Lett. 6, 024014 (2011).
    ADS  Google Scholar 

    63.
    Loranty, M. M. et al. Reviews and syntheses: changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. Biogeosciences 15, 5287–5313 (2018).
    ADS  CAS  Google Scholar 

    64.
    Tape, K. D., Gustine, D. D., Ruess, R. W., Adams, L. G. & Clark, J. A. Range expansion of moose in Arctic Alaska linked to warming and increased shrub habitat. PLoS ONE 11, e0152636 (2016).
    PubMed  PubMed Central  Google Scholar 

    65.
    Tape, K. D., Jones, B. M., Arp, C. D., Nitze, I. & Grosse, G. Tundra be dammed: beaver colonization of the Arctic. Glob. Change Biol. 24, 4478–4488 (2018).
    ADS  Google Scholar 

    66.
    Joly, K., Jandt, R. R. & Klein, D. R. Decrease of lichens in Arctic ecosystems: the role of wildfire, caribou, reindeer, competition and climate in north‐western Alaska. Polar Res. 28, 433–442 (2009).
    Google Scholar 

    67.
    Macias-Fauria, M., Forbes, B. C., Zetterberg, P. & Kumpula, T. Eurasian Arctic greening reveals teleconnections and the potential for structurally novel ecosystems. Nat. Clim. Change 2, 613–618 (2012).
    ADS  Google Scholar 

    68.
    Wesche, S. D. & Chan, H. M. Adapting to the impacts of climate change on food security among Inuit in the Western Canadian Arctic. EcoHealth 7, 361–373 (2010).
    PubMed  Google Scholar 

    69.
    Kuhnlein, H. V. & Chan, H. M. Environment and contaminants in traditional food systems of northern indigenous peoples. Annu. Rev. Nutr. 20, 595–626 (2000).
    CAS  PubMed  Google Scholar 

    70.
    Tucker, C. J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8, 127–150 (1979).
    ADS  Google Scholar 

    71.
    Virtanen, R. et al. Where do the treeless tundra areas of northern highlands fit in the global biome system: toward an ecologically natural subdivision of the tundra biome. Ecol. Evol. 6, 143–158 (2016).
    PubMed  Google Scholar 

    72.
    Masek, J. G. et al. A Landsat surface reflectance dataset for North America, 1990-2000. IEEE Geosci. Remote Sens. Lett. 3, 68–72 (2006).
    ADS  Google Scholar 

    73.
    Vermote, E., Justice, C., Claverie, M. & Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 185, 46–56 (2016).
    ADS  PubMed  Google Scholar 

    74.
    Python Software Foundation. Python Language Software Version 3.7.3. https://www.python.org/ (2020).

    75.
    Foga, S. et al. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 194, 379–390 (2017).
    ADS  Google Scholar 

    76.
    Roy, D. P. et al. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 185, 57–70 (2016).
    ADS  PubMed  Google Scholar 

    77.
    Sulla-Menashe, D., Friedl, M. A. & Woodcock, C. E. Sources of bias and variability in long-term Landsat time series over Canadian boreal forests. Remote Sens. Environ. 177, 206–219 (2016).
    ADS  Google Scholar 

    78.
    Liaw, A. & Wiener, M. Classification and Regression by randomForest. R News 2, 18–22 (2002).
    Google Scholar 

    79.
    Wright, M. N. & Ziegler, A. Ranger: a fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 77, 1–17 (2017).
    Google Scholar 

    80.
    Melaas, E. K. et al. Multisite analysis of land surface phenology in North American temperate and boreal deciduous forests from Landsat. Remote Sens. Environ. 186, 452–464 (2016).
    ADS  Google Scholar 

    81.
    Markham, B. L. & Helder, D. L. Forty-year calibrated record of earth-reflected radiance from Landsat: a review. Remote Sens. Environ. 122, 30–40 (2012).
    ADS  Google Scholar 

    82.
    Markham, B. et al. Landsat-8 operational land imager radiometric calibration and stability. Remote Sens. 6, 12275–12308 (2014).
    ADS  Google Scholar 

    83.
    Kendall, M. G. Rank Correlation Methods 4th edn (Charles Griffin, 1975).

    84.
    Sen, P. K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).
    MathSciNet  MATH  Google Scholar 

    85.
    Bronaugh, D. & Werner, A. zyp: Zhang + Yue-Pilon Trends Package. R Package Version 0.10-1.1. https://CRAN.R-project.org/package=zyp (2012).

    86.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

    87.
    Rohde, R. et al. A new estimate of the average Earth surface land temperature spanning 1753 to 2011. Geoinform. Geostat. 7, https://doi.org/10.4172/2327-4581.1000101 (2013).

    88.
    Hansen, J., Ruedy, R., Sato, M. & Lo, K. Global surface temperature change. Rev. Geophys. 48, RG4004 (2010).
    ADS  Google Scholar 

    89.
    Cowtan, K. & Way, R. G. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Meteorol. Soc. 140, 1935–1944 (2014).
    ADS  Google Scholar 

    90.
    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).
    Google Scholar 

    91.
    Willmott, C. J. & Matsuura, K. Terrestrial Air Temperature and Precipitation: Monthly Time Series (1900–2017) v. 5.01. http://climate.geog.udel.edu/~climate (University of Deleware, 2018).

    92.
    Breiman, L. Random Forests. Mach. Learn. 45, 5–32 (2001).
    MATH  Google Scholar 

    93.
    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).
    PubMed  PubMed Central  Google Scholar 

    94.
    Obu, J. et al. ESA Permafrost Climate Change Initiative (Permafrost_cci): Permafrost Extent for the Northern Hemisphere, v1.0. https://doi.org/10.5285/c7590fe40d8e44169d511c70a60ccbcc (Centre for Environmental Data Analysis, 2019).

    95.
    Obu, J. et al. ESA Permafrost Climate Change Initiative (Permafrost_cci): Permafrost Ground Temperature for the Northern Hemisphere, v1.0. https://doi.org/10.5285/c7590fe40d8e44169d511c70a60ccbcc (Centre for Environmental Data Analysis, 2019).

    96.
    Obu, J. et al. ESA Permafrost Climate Change Initiative (Permafrost_cci): Permafrost Active Layer Thickness for the Northern Hemisphere, v1.0. https://doi.org/10.5285/1ee56c42cf6c4ef698693e00a63795f4 (Centre for Environmental Data Analysis, 2019).

    97.
    Olefeldt, D. et al. Arctic Circumpolar Distribution and Soil Carbon of Thermokarst Landscapes. https://doi.org/10.3334/ORNLDAAC/1332 (ORNL DAAC, 2015).

    98.
    Defourny, P. et al. Land Cover Climate Change Initiative—Product User Guide Version v2. http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (European Space Agency, 2017).

    99.
    Rizzoli, P. et al. Generation and performance assessment of the global TanDEM-X digital elevation model. ISPRS J. Photogramm. Remote Sens. 132, 119–139 (2017).
    ADS  Google Scholar 

    100.
    Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).
    Google Scholar 

    101.
    Greenwell, B. M. pdp: an R package for constructing partial dependence plots. R. J. 9, 421–436 (2017).
    Google Scholar 

    102.
    Le Moullec, M., Buchwal, A., Wal, R., Sandal, L. & Hansen, B. B. Annual ring growth of a widespread high arctic shrub reflects past fluctuations in community-level plant biomass. J. Ecol. 107, 436–451 (2019).
    Google Scholar 

    103.
    Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).
    Google Scholar 

    104.
    Euskirchen, E., Bret-Harte, M. S., Scott, G., Edgar, C. & Shaver G. R. Seasonal patterns of carbon dioxide and water fluxes in three representative tundra ecosystems in northern Alaska. Ecosphere 3, https://doi.org/10.1890/ES1811-00202.00201 (2012).

    105.
    Euskirchen, E. S. et al. Interannual and seasonal patterns of carbon dioxide, water, and energy fluxes from ecotonal and thermokarst-impacted ecosystems on carbon-rich permafrost soils in Northeastern Siberia. J. Geophys. Res. 122, 2651–2668 (2017).
    CAS  Google Scholar 

    106.
    Baldocchi, D. et al. FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 82, 2415–2434 (2001).
    ADS  Google Scholar 

    107.
    Reichstein, M. et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob. Change Biol. 11, 1424–1439 (2005).
    ADS  Google Scholar 

    108.
    Hijmans, R. J. raster: Geographic Analysis and Modeling. R package version 3.0-12. http://CRAN.R-project.org/package=raster (2019).

    109.
    Bivand, R., Keitt, T. & Rowlingson B. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. R Package Version 1.4-8. https://CRAN.R-project.org/package=rgdal (2019).

    110.
    Bivand, R. & Lewin-Koh, N. maptools: Tools for Handling Spatial Objects. R Package Version 0.9.9. https://CRAN.R-project.org/package=maptools (2019).

    111.
    Dawle, M. & Srinivasan, A. data.table: Extension of ‘data.frame’. R Package Version 1.12.8. https://CRAN.R-project.org/package=data.table (2019).

    112.
    Wickham, H. & Francois, R. dplyr: A Grammar of Data Manipulation. R Package Version 0.8.5. https://CRAN.R-project.org/package=dplyr (2015).

    113.
    Wickham, H. & Henry, L. tidyr: Tidy Messy Data. R Package Version 1.0.2. https://CRAN.R-project.org/package=tidyr (2020).

    114.
    Sarkar, D. Lattice: Multivariate Data Visualization with R (Springer, 2008).

    115.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2016).

    116.
    Kassambara, A. ggpubr: ‘ggplot2’ Basde Publication Ready Plots. R Package Version 0.2.5. https://CRAN.R-project.org/package=ggpubr (2020). More