More stories

  • in

    Occurrence, distribution, and health risk assessment of quinolone antibiotics in water, sediment, and fish species of Qingshitan reservoir, South China

    1.
    Yu, Z. Y. Analysis of current situation of antibiotic abuse and countermeasures. Econ. Res. Guide. 145(35), 314–315 (2011) (in Chinese).
    ADS  Google Scholar 
    2.
    Adachi, F. et al. Occurrence of fluoroquinolones and fluoroquinolone-resistance genes in the aquatic environment. Sci. Total Environ. 444(444C), 508–514 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Wu, T. T. et al. Investigation of the typical antibiotics in the sediments of the Yongjiang River, Nanning City, South China. China Environ. Sci. 33(2), 336–344 (2013) (in Chinese).
    CAS  Google Scholar 

    4.
    Ruan, Y. F. et al. Distribution characteristics of typical antibiotics in surface water and sediments from freshwater aquaculture water in Tianjin suburban areas, China. J. Agro-Environ. Sci. 30(12), 2586–2593 (2011) (in Chinese).
    CAS  Google Scholar 

    5.
    Liang, X. et al. The distribution and partitioning of common antibiotics in water and sediment of the Pearl River Estuary, South China. Chemosphere 92(11), 1410–1416 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Shi, H. The Analysis Method of Twenty Antibiotics in the Sediment and its Application (East China Normal University, Shanghai, 2014) (in Chinese).
    Google Scholar 

    7.
    Zhang, W. R. The Distribution of Typical Antibiotics Strains in the Sediment Environments of Dalian (Dalian University, Dalian, 2014) (in Chinese).
    Google Scholar 

    8.
    Xu C. Contamination of Antibiotics and antibiotics resistance genes in water, soil and sediment of the Three Gorges Reservoir. 2017. Wuhan: the Wuhan Botanical Garden of the Chinese Academy of Sciences (in Chinese).

    9.
    Yang, Y. T. et al. Preliminary investigation of three quinolones in the muscle tissues of four fishes collected from the markets in Guangzhou City. J. Environ. Health 26(2), 109–111 (2009).
    CAS  Google Scholar 

    10.
    Wang, H. et al. Antibiotic residues in meat, milk and aquatic products in Shanghai and human exposure assessment. Food Control 80, 217–225 (2017).
    CAS  Article  Google Scholar 

    11.
    Naik, O. A. et al. Characterization of multiple antibiotic resistance of culturable microorganisms and metagenomic analysis of total microbial diversity of marine fish sold in retail shops in Mumbai, India. Environ. Sci. Pollut. Res. Int. 25(7), 6228–6239 (2017).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    12.
    Uchida, K. et al. Monitoring of antibiotic residues in aquatic products in urban and rural areas of Vietnam. J. Agric. Food Chem. 64(31), 6133–6138 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Bakeraustin, C. et al. Antibiotic resistance in the shellfish pathogen Vibrio parahaemolyticus isolated from the coastal water and sediment of Georgia and South Carolina, USA. J. Food Prot. 71(12), 2552–2558 (2008).
    CAS  Article  Google Scholar 

    14.
    Richardson, B. J., Lam, P. K. S. & Martin, M. Emerging chemicals of concern: Pharmaceuticals and personal care products (PPCPs) in Asia, with particular reference to Southern China. Mar. Pollut. Bull. 50(9), 913–920 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Liu, X. Pollution Level, Source and Ecological Risk of Typical Antibiotics in the Dongting Lake, China (Shandong Normal University, Jinan, 2017) (in Chinese).
    Google Scholar 

    16.
    Turiel, E., Bordin, G. & Rodrı́guez, A. R. Trace enrichment of (fluoro)quinolone antibiotics in surface waters by solid-phase extraction and their determination by liquid chromatography-ultraviolet detection. J. Chromatogr. A 1008(2), 145–155 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Ying G G. Antibiotic use and pollution in the river basins of China. The 30th Academic Annual Meeting of China Chemical Society. 2016 (in Chinese).

    18.
    Sun, K. Contamination Characteristics and Ecological Risk Assessment of Typical Antibiotics in the Water of the Hongze Lake (Nanjing Agricultural University, Nanjing, 2015) (in Chinese).
    Google Scholar 

    19.
    Wang J W. Distribution characteristics and ecological risk assessment of antibiotics in surface water of Xi’an section of Weihe river. 2018. Xi’an: Xi’an University of Technology (in Chinese).

    20.
    Chen, L. et al. Investigation and evaluation of water quality of Qingshtan reservoir in Guilin city. Guangdong Agric. Sci. 40(5), 160–164 (2013) (in Chinese).
    CAS  Google Scholar 

    21.
    Zheng, Y. L. et al. Change of Inflow Runoff into the Qingshitan Reservoir in Guilin City. Water Conserv. Sci. Technol. Econ. 18(8), 46–48 (2012) (in Chinese).
    Google Scholar 

    22.
    Liang, Y. et al. Characteristics and risk assessment of organochlorine pesticide residues in surface sediments collected at the Qingshitan Reservoir. Toxicol. Environ. Chem. Rev. 98(5–6), 658–668 (2016).
    CAS  Article  Google Scholar 

    23.
    Cheng, Y. P. et al. Pollution characteristics and potential ecological risk assessment of heavy metals in sediments of Qingshitan reservoir. Yangtze River 48(10), 24–29 (2017) (in Chinese).
    Google Scholar 

    24.
    Kall, J. Limnology: Inland Water Ecosystem (Higher Education Press, Beijing, 2011).
    Google Scholar 

    25.
    Miu, Z. L., Zong, F. S. & Jiang, Y. P. Study on Hydrographic Karst and Tourism Resources in Guilin (China University of Geosciences Press, Wuhan, 2004) (in Chinese).
    Google Scholar 

    26.
    Qi, S. S. & Yang, X. Study on ecological restoration mode of reservoir eutrophication by fish cage culture. Environ. Sci. Manag. 37(11), 151–154 (2012) (in Chinese).
    CAS  Google Scholar 

    27.
    Xu, W. H. et al. Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using highperformance liquid chromatography-electrospray ionization tandem mass spectrometry. Environ. Pollut. 145, 672–679 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Liang, X. M. et al. Occurrence of antibiotics in typical aquaculture of the Pearl River Estuary. Ecol. Environ. Sci. 22(2), 304–310 (2013) (in Chinese).
    Google Scholar 

    29.
    Zhou, L. J. et al. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China. Environ. Pollut. 159(7), 1877–1885 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    He, X. T. et al. Residues and health risk assessment of sulfonamides in sediment and fish from typical marine aquaculture regions of Guangdong province, China. Environ. Sci. 35(7), 2728–2735 (2014) (in Chinese).
    Google Scholar 

    31.
    Lu, R. K. Soil Argrochemistry Analysis Protocoes (Agriculture Science Press, Beijing, 1999) (in Chinese).
    Google Scholar 

    32.
    Xu, J. Application of High Performance Liquid Chromatography in Analysis of Antibiotics in Seafood (Harbin, Harbin Institute of Technology, 2016) (in Chinese).
    Google Scholar 

    33.
    European Commission. Technical Guidance Document on Risk Assessment in support of Commission Directive 93/67/EEC on risk assessment for new notified substances. 2003.

    34.
    Vryzas, Z. et al. Determination and aquatic risk assessment of pesticide residues in riparian drainage canals in northeastern Greece. Ecotoxicol. Environ. Saf. 74(2), 174–181 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Backhaus, T., Scholze, M. & Grimme, L. H. The single substance and mixture toxicity of quinolones to the bioluminescent bacterium Vibrio fischeri. Aquat. Toxicol. 49(1), 49–61 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Ma, Y. et al. Occurrences and regional distributions of 20 antibiotics in water bodies during groundwater recharge. Sci. Total Environ. 518–519, 498–506 (2015).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    37.
    Zhang, P. W. et al. Spatial, temporal distribution characteristics and potential risk of PPCPs in surface sediments from Taihu Lake. Environ. Sci. 37(9), 3348–3355 (2016) (in Chinese).
    Google Scholar 

    38.
    Piao, H. S. et al. Estimation of sorption coefficients of organic compounds with KOW. Environ. Sci. Technol. 4, 8–13 (1999) (in Chinese).
    Google Scholar 

    39.
    Guérit, I. et al. Environmental risk assessment: a critical approach of the European TGD in an insitu application. Ecotoxicol. Environ. Saf. 71(1), 291–300 (2008).
    PubMed  Article  CAS  Google Scholar 

    40.
    Ren, K. J. et al. Residues characteristics of fluoroquinolones (FQs) in the river sediments and fish tissues in a drinking water protection area of Guangdong Province. Acta Sci. Circum. 36(3), 760–766 (2016) (in Chinese).
    CAS  Google Scholar 

    41.
    Wang, L. et al. Incorporating fish habitat requirements of the complete life cycle into ecological flow regime estimation of rivers. Ecohydrology 13(4), e2204 (2020).
    Article  Google Scholar 

    42.
    Brown, K. D. et al. Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico. Sci. Total Environ. 366(2), 772–783 (2006).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Chang, X. et al. Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China. Environ. Pollut. 158(5), 1444–1450 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    44.
    Hirsch, R. et al. Occurrence of antibiotics in the aquatic environment. Sci. Total Environ. 225(1/2), 109–111 (1999).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Guo, X. et al. Research progress on environmental exposure levels and environmental fate of veterinary antibiotics. Environ. Sci. Technol. 37(09), 76–86 (2014) (in Chinese).
    Google Scholar 

    46.
    Jiang, L. et al. Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai. China. Chemosphere 82(6), 822–828 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Li, J. et al. Distribution characteristics and ecological risk assessment of antibiotic pollution in Xiaoqing River watershed. J. Agro-Environ. Sci. 35(7), 1384–1391 (2016) (in Chinese).
    Google Scholar 

    48.
    Wu, X. et al. Occurrence, distribution and ecological risk of aantibiotics in surface water of the Gonghu Bay, Taihu Lake. Environ. Sci. 37(12), 4596–4604 (2016) (in Chinese).
    Google Scholar 

    49.
    Zhu, T. et al. Research on pollution and health risk by antibiotics in source water of Shiyan Reservoir in Shenzhen. J. Environ. Health 30(11), 1003–1006 (2013) (in Chinese).
    Google Scholar 

    50.
    Gao, L. et al. Research on pollution characteristics of antibiotics in Qinghe River in Beijing. Ecol. Sci. 33(1), 83–92 (2014) (in Chinese).
    Google Scholar 

    51.
    Nowara, A., Burhenne, J. & Spiteller, M. Binding of fluoroquinolone carboxylic acid derivatives to clay minerals. J. Agric. Food Chem. 45(4), 1459–1463 (1997).
    CAS  Article  Google Scholar 

    52.
    Li, B. Y. Study on Adsorption and Biodegradation of Norfloxacin in Soil (Zhengzhou University, Zhengzhou, 2010) (in Chinese).
    Google Scholar 

    53.
    Liu C, Li Y. Research Progress of Adsorption and Degradation of Ciprofloxacin in Soil. Beijing Agriculture. 2016, (4) (in Chinese).

    54.
    Wang, L. P., Zhang, M. K. & Zheng, S. A. Adsorption–desorption characteristics and biological effects of enrofloxacin in agricultural soils. Chin. J. Soil Sci. 39(2), 393–397 (2008) (in Chinese).
    CAS  Google Scholar 

    55.
    Jing, L. D. et al. Study on degradation kinetics of Ofloxacin at sediment–water interface. J. Southwest Univ. Nation. (Natural Science Edition). 42(4), 409–413 (2016) (in Chinese).
    CAS  Google Scholar 

    56.
    Dai, J. F. et al. Water quality analysis and segmentation of the pollution loads in different spatial scales of the upstream of Lijiang River. China Rural Water Hydropower 4, 67–71 (2017) (in Chinese).
    Google Scholar 

    57.
    Huang, J. et al. Residual levels of fluoroquinolones in freshwater fish from aquatic products markets in Guiyang. J. Environ. Health 34(2), 139–141 (2017) (in Chinese).
    Google Scholar 

    58.
    Sun, Y. C. Analysis and Distribution Characteristics of FQs in Environmental Water and Aquatic Product and its Effect on Environmental Stress (Harbin, Harbin Institute of Technology, 2014) (in Chinese).
    Google Scholar 

    59.
    Zhang, L. Y. Optimization of Quinolone Antibiotics Detection Method and in Water Photolysis and Hydrolysis Characteristics Research (Jilin Agricultural University, Jilin, 2016) (in Chinese).
    Google Scholar 

    60.
    Carrasquillo, A. J. et al. Sorption of ciprofloxacin and oxytetracycline zwitterions to soils and soil minerals: influence of compound structure. Environ. Sci. Technol. 42(20), 7634–7642 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    61.
    Zou, S. et al. Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: impacts of river discharge and aquaculture activities. Environ. Pollut. 159(10), 2913–2920 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    62.
    Fu, H. et al. Impacts of p H on adsorption of quinolones by PAC. China Water Wastewater 33(17), 64–67 (2017) (in Chinese).
    Google Scholar 

    63.
    Huang, S. et al. Study on the relationships among pH, dissolved oxygen and chlorophyll a I: aquaculture water. Chin. J. Environ. Eng. 5(6), 1201–1208 (2011) (in Chinese).
    CAS  Google Scholar 

    64.
    Chen, S. et al. Formation, harmfulness, prevention, control and treatment of waters eutrophication. Environ. Sci. Technol. 22(2), 11–15 (1999) (in Chinese).
    Google Scholar 

    65.
    Pang, H. L. Studies on the Sorption Behavior of two Fluoroquinolones on Marine Sediments (Ocean University of China, Qingdao, 2012) (in Chinese).
    Google Scholar 

    66.
    Qin, Y. et al. Pollution characteristics and ecological risk assessment of typical antibiotics in the surface water of Hunhe River. Res. Environ. Sci. 28(3), 361–368 (2015) (in Chinese).
    CAS  Google Scholar 

    67.
    Syberg, K. et al. On the use of mixture toxicity assessment in REACH and the water framework directive: a review. Hum. Ecol. Risk Assess. 15(6), 1257–1272 (2009).
    CAS  Article  Google Scholar 

    68.
    Liu, K. et al. Investigation on the typical quinolone antibiotics in the surface sediments of Jiaozhou bay China. Mar. Environ. Sci. 36(05), 655–661 (2017) (in Chinese).
    Google Scholar 

    69.
    Zhang, J. et al. Health risk assessment of antibiotics in the centralized drinking water source in the three gorges reservoir area. Environ. Sci. Technol. 41(8), 192–198 (2018) (in Chinese).
    Google Scholar 

    70.
    No. 235 Announcement of the Ministry of Agriculture. Maximum residue limits of veterinary drugs in animal foods. China Swine Industry 2010(8), 10–12 (2002) (in Chinese).
    Google Scholar 

    71.
    National Health and Family Planning Commission of PRC. Outline of China’s food and nutrition development (2014–2020). Chron. Pathematol. J. 36(2), 111–113 (2014) (in Chinese).
    Google Scholar 

    72.
    Zhang, Q. P., Li, J. & Wang, C. M. Residual level and safety assessment of quinolone antibiotics in aquatic products in Suzhou. Chin. J. Health Lab. Technol. 22(10), 2417–2418 (2012) (in Chinese).
    CAS  Google Scholar 

    73.
    Wu, X. L. Pollution Characteristics and Health Risk of Quinolones in Vegetables in the Pearl River Delta Region (Jinan University, Guangzhou, 2011) (in Chinese).
    Google Scholar 

    74.
    Li, W., Shi, Y., Gao, L., Liu, J. & Cai, Y. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China. Chemosphere 89(11), 1307–1315 (2012).

    75.
    Minh, T. B. et al. Antibiotics in the Hong Kong metropolitan area: Ubiquitous distribution and fate in Victoria Harbour. Mar. Pollut. Bull. 58(7), 1052–1062 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    76.
    Riva, F., Zuccato, E., Davoli, E., Fattore, E. & Castiglioni, S. Risk assessment of a mixture of emerging contaminants in surface water in a highly urbanized area in Italy. J. Hazard. Mater. 361, 103–110 (2019).

    77.
    Watkinson, A. J., Murby, E. J., Kolpin, D. W. & Costanzo, S. D. The occurrence of antibiotics in an urban watershed: From wastewater to drinking water. Sci. Total Environ. 407(8), 2711–2723 (2009).

    78.
    Batt, A. L., Bruce, I. B. & Aga, D. S. Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges. Environ. Pollut. 142(2), 295–302 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    79.
    Golet, E. M., Strehler, A., Alder, A. C. & Giger, W. Determination of fluoroquinolone antibacterial agents in sewage sludge and sludge-treated soil using accelerated solvent extraction followed by solid-phase extraction. Anal. Chem. 74(21), 5455–5462 (2002).

    80.
    Gibs, J. et al. Occurrence and partitioning of antibiotic compounds found in the water column and bottom sediments from a stream receiving two wastewater treatment plant effluents in Northern New Jersey, 2008. Sci. Total Environ. 458–460, 107–116 (2013).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    81.
    Wang, G. Q. & Sun, T. Antibiotic residues in aquatic products of Hongze lake investigation and research. Guangdong Chem. 38(1), 151–153 (2011) (in Chinese).
    CAS  Google Scholar 

    82.
    Yang, Y. T. & Luan, L. J. Residues and health risk assessment of Quinolones in fishes from the markets in Jining City. J. Anhui Agric. Sci. 43(26), 141–143 (2015) (in Chinese).
    CAS  Google Scholar  More

  • in

    Unchartered waters: the unintended impacts of residual chlorine on water quality and biofilms

    Chlorine residual impacted discolouration
    Unexpectedly, flushing of the High-chlorine system (by incrementally increasing the flow rate) produced a significantly greater discolouration response (assessed via turbidity) than the Medium- or Low-chlorine systems across all stages of flushing, of both tests (Fig. 2). Compared to the other regimes, the High-chlorine system also had a greater final concentration of iron (known to be associated with discolouration) at the end of Flush 1 and a greater rate of iron mobilisation during Flush 2 (Fig. 2). Conversely, the Low-chlorine regime consistently resulted in the lowest impact on water quality with the lowest discolouration and metal concentrations. Even after just 28 days of growth, material was mobilised from the High-chlorine regime at sufficient volumes to approach or breach the water quality standards for discolouration and iron concentrations (Fig. 2 and Supplementary Table 1). This contradicts the common perception of residual chlorine impacts on water quality and also studies of cast iron pipes, which suggest increasing oxidant concentration (disinfectant or dissolved oxygen) in drinking water decreases iron release26,27. Although surprising, High-chlorine repeatedly resulted in the greatest discolouration and Low-chlorine the least; as observed during the flushing of test 1, test 2 (Fig. 2) and preliminary tests (Supplementary Fig. 2).
    Fig. 2: Discolouration responses to elevated shear stress during the flushing of the chlorine regimes.

    Discolouration was determined primarily by a Turbidity (506 ≤ n ≤ 1091) with consideration of b Iron (n = 3) and c Manganese (n = 3) concentrations. Flush1 refers to the flushing phase of test 1, Flush2 indicates data from the flushing phase of test 2. Data normalised to well-mixed concentrations (0.09 Pa) of each system, mean ± standard deviation plotted. Linear regressions in each plot had R2 values of a 0.82 ≤ R2 ≤ 0.99, b 0.89 ≤ R2 ≤ 1.00 and c 0.76 ≤ R2 ≤ 0.98. High-chlorine: metal concentrations only available for final flushing step for Flush1. Chlorine regimes differed in their turbidity (ANCOVA on raw data: F ≥ 2869, p  More

  • in

    Connectivity and population structure of albacore tuna across southeast Atlantic and southwest Indian Oceans inferred from multidisciplinary methodology

    1.
    Collette, B. & Nauen, C. Scombrids of the world—An annotated and illustrated catalogue of tunas, mackerels, bonitos and related species known to date. FAO Sp. Cat 2, 137 (1983).
    Google Scholar 
    2.
    ISSF. ISSF Tuna Stock Status Update, 2015: Status of the world fisheries for tuna. ISSF Technical Report 2015-03A. (International Seafood Sustainability Foundation, Washington, D.C., 2015).

    3.
    FAO. The State of World Fisheries and Aquaculture 2012. (2012).

    4.
    ISSF. Status of the world fisheries for tuna. ISSF Technical Report. 2019-07. International Seafood Sustainability Foundation, Washington, D.C., USA. https://iss-foundation.org/knowledge-tools/technical-and-meeting-reports/ (2019).

    5.
    ICCAT. ICCAT Report of the 2016 ICCAT North and South Atlantic Albacore stock assessment meeting. N & S Atlantic ALB stock assessment meeting–Madeira 2016. (2016).

    6.
    IOTC. Albacore executive summary. Status summary for species of tuna and tuna-like species under the IOTC mandate, as well as other species impacted by IOTC fisheries. (2016).

    7.
    IOTC. Albacore executive summary. Status summary species tuna and tuna species under iotc mandate well other species impacted by iotc fisheries. (2018).

    8.
    Nikolic, N. et al. Review of albacore tuna, Thunnus alalunga, biology, fisheries and management. Rev. Fish. Biol. Fisheries. 27, 775–810 (2016).
    Article  Google Scholar 

    9.
    Arrizabalaga, H., Lopez-Rodas, V., Costas, E. & González-Garcás, A. Use of genetic data to assess the uncertainty in stock assessments due to the assumed stock structure: The case of albacore (Thunnus alalunga) from the Atlantic Ocean. Fish. Bull. 105(1), 140–146 (2007).
    Google Scholar 

    10.
    Chow, S. & Kishino, H. Phylogenetic relationships between tuna species of the genus Thunnus (Scombridae: Teleostei): Inconsistent implications from morphology, nuclear and mitochondrial genomes. J. Mol. Evol. 41, 741–748 (1995).
    ADS  CAS  PubMed  Article  Google Scholar 

    11.
    Takagi, M., Okamura, T., Chow, S. & Taniguchi, N. Preliminary study of albacore (Thunnus alalunga) stock differentiation inferred from microsatellite DNA analysis. Fish. Bull. 99, 697–701 (2001).
    Google Scholar 

    12.
    Viñas, J., Bremer, J. A. & Pla, C. Inter-oceanic genetic differentiation among albacore (Thunnus alalunga) populations. Mar. Biol. 145, 225–232 (2004).
    Article  CAS  Google Scholar 

    13.
    Arrizabalaga, H. et al. Population structure of albacore, Thunnus alalunga, inferred from blood groups and tag recapture analyses. Mar. Ecol. Prog. Ser. 282, 245–252 (2004).
    ADS  Article  Google Scholar 

    14.
    Wu, G. C. C., Chiang, H. C., Chen, K. S., Hsu, C. C. & Yang, H. Y. Population structure of albacore (Thunnus alalunga) in the Northwestern Pacific Ocean inferred from mitochondrial DNA. Fish. Res. 95, 125–131 (2009).
    Article  Google Scholar 

    15.
    Davies, C. A., Gosling, E. M., Was, A., Brophy, D. & Tysklind, N. Microsatellite analysis of albacore tuna (Thunnus alalunga): Population genetic structure. Mar. Biol. 158, 2727–2740 (2011).
    Article  Google Scholar 

    16.
    Nikolic, N. & Bourjea, J. Differentiation of albacore stock: Review by oceanic regions. Collect. Vol. Sci. Pap. ICCAT 70(3), 1340–1354 (2014).
    Google Scholar 

    17.
    Pawson, M. G. & Jennings, S. A critique of methods for stock identification in marine capture fisheries. Fish. Res. 25, 203–217 (1996).
    Article  Google Scholar 

    18.
    Waldman, J. R. The importance of comparative studies in stock analysis. Fish. Res. 43, 237–246 (1999).
    Article  Google Scholar 

    19.
    Nielsen, E. E., Hemmer-Hansen, J., Larsen, P. F. & Bekkevold, D. Population genomics of marine fishes: Identifying adaptive variation in space and time. Mol. Ecol. 18, 3128–3150 (2009).
    PubMed  Article  Google Scholar 

    20.
    Waples, R. S. & Naish, K. A. Genetic and evolutionary considerations in fishery management: Research needs for the future. Future Fish. Sci. N. Am. 31, 427–451 (2009).
    Google Scholar 

    21.
    Montes, I. et al. Transcriptome analysis deciphers evolutionary mechanisms underlying genetic differentiation between coastal and offshore anchovy populations in the Bay of Biscay. Mar. Biol. 163, 205 (2016).
    Article  CAS  Google Scholar 

    22.
    Morita, S. On the relationship between the albacore stocks of the South Atlantic and Indian Oceans. Collect Vol. Sci. Pap. ICCAT 7, 232–237 (1977).
    Google Scholar 

    23.
    Gonzalez, E. G., Beerli, P. & Zardoya, R. Genetic structuring and migration patterns of Atlantic bigeye tuna, Thunnus obesus (Lowe, 1839). BMC Evol. Biol. 8, 252 (2008).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    24.
    Chow, S. & Ushiama, H. Global population structure of albacore (Thunnus alalunga) inferred by RFLP analysis of the mitochondrial ATPase gene. Mar. Biol. 123, 39–45 (1995).
    CAS  Article  Google Scholar 

    25.
    Graves, J. E. & Dizon, A. E. Mitochondrial DNA sequence similarity of Atlantic and Pacific albacore tuna (Thunnus alalunga). Can. J. Fish. Aquat. Sci. 46, 870–873 (1989).
    Article  Google Scholar 

    26.
    Viñas, J., Santiago, J. & Pla, C. Genetic characterization and Atlantic-Mediterranean stock structure of Albacore, Thunnus alalunga. Collect Vol. Sci. Pap. ICCAT. 49, 188–190 (1999).
    Google Scholar 

    27.
    Pujolar, J. M., Roldán, M. I. & Pla, C. Genetic analysis of tuna populations, Thunnus thynnus thynnus and T. alalunga. Mar. Biol. 3, 613–621 (2003).
    Article  Google Scholar 

    28.
    Nakadate, M. et al. Genetic isolation between Atlantic and Mediterranean albacore populations inferred from mitochondrial and nuclear DNA markers. J. Fish Biol. 66, 1545–1557 (2005).
    CAS  Article  Google Scholar 

    29.
    Abdul-Muneer, P. M. Application of microsatellite markers in conservation genetics and fisheries management: Recent advances in population structure analysis and conservation strategies. Genet. Res. Int. 2014, 691759 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    30.
    Albaina, A. et al. Single nucleotide polymorphism discovery in albacore and Atlantic bluefin tuna provides insights into worldwide population structure. Anim. Genet. 44, 678–692 (2013).
    CAS  PubMed  Article  Google Scholar 

    31.
    Laconcha, U. & Iriondo, M. New nuclear SNP markers unravel the genetic structure and effective population size of Albacore tuna (Thunnus alalunga). PLoS ONE 10, e0128247 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    32.
    Heincke, D. F. Naturgeschichte des herring. Abhandlungen Doutsch Seefisch Verein 2, 128–233 (1898).
    Google Scholar 

    33.
    Foote, C. J., Wood, C. C. & Withler, R. E. Biochemical genetic comparison of sockeye salmon and kokane, the anadromus and nonanadromus forms of Oncorhynchus nerka. Can. J. Fish. Aquat. Sci. 46, 149–158 (1989).
    Article  Google Scholar 

    34.
    Robinson, B. W. & Wilson, D. S. Genetic variation and phenotypic plasticity in a tropically polymorphic population of pumpkinseed sunfish (Lepomis gibbosus). Evol. Ecol. 10, 631–652 (1996).
    Article  Google Scholar 

    35.
    Cabral, H. N. et al. Genetic and morphologica variation of Synaptura lusitanica Capello, 1868, along the Portuguese coast. J. Sea Res. 50, 167–175 (2003).
    ADS  Article  Google Scholar 

    36.
    Dhurmeea, Z. et al. Reproductive biology of Albacore tuna (Thunnus alalunga) in the Western Indian Ocean. PLoS ONE 11, 0168605–0168610 (2016).
    Article  CAS  Google Scholar 

    37.
    Gonzalez, E. G. & Zardoya, R. Relative role of life-history traits and historical factors in shaping genetic population structure of sardines (Sardina pilchardus). BMC Evol. Biol. 7, 197 (2007).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    38.
    Young, E. F. et al. Oceanography and life history predict contrasting genetic population structure in two Antarctic fish species. Evol. Appl. 8, 486–509 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    39.
    Santos, A. M. P. et al. Sardine (Sardina pilchardus) larval dispersal in the Iberian Upwelling System, using coupled biophysical techniques. Prog. Oceanogr. 162, 83–97 (2018).
    ADS  Article  Google Scholar 

    40.
    Kaplan, D. M., Cuif, M. & Fauvelot, C. Uncertainty in empirical estimates of marine larval connectivity. ICES J. Mar. Sci 74(6), 1723–1734 (2016).
    Article  Google Scholar 

    41.
    Cowen, R. K., Paris, C. B. & Srinivasan, A. Scaling of connectivity in marine populations. Science 311, 522–527 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    42.
    Nickols, K. J., White, J. W., Largier, J. L. & Gaylord, B. Marine population connectivity: Reconciling large-scale dispersal and high self-retention. Am. Nat. 185, 196–211 (2015).
    PubMed  Article  Google Scholar 

    43.
    Nikolic, N. et al. GERMON project final report (GEnetic stRucture and Migration Of albacore tuna). IFREMER Re. 2015, 219 (2015).
    Google Scholar 

    44.
    Dhurmeea, Z. et al. Reproductive biology of albacore tuna (Thunnus. in alalunga) in the Western Indian Ocean. PLoS ONE 11(12), e0168605 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    45.
    Ueyanagi, S. Observations on the distribution of tuna larva in the Indo-Pacific Ocean with emphasis on the delineation of spawning areas of albacore, Thunnus alalunga. Bull. Far. Seas Fish. Res. Lab. 2, 177–219 (1969).
    Google Scholar 

    46.
    Bard, F. X. Le Thon Germon (Thunnus alalunga, Bonnaterre 1788) de l’Océan Atlantique. De la dynamique des populations à la stratégie démographique. Thèse de Doctorat d’Etat. Université Pierre et Marie Curie. (XI, 1981).

    47.
    Wu, C. L. & Kuo, C. L. Maturity and fecundity of albacore, Thunnus alalunga (Bonnaterre), from the Indian Ocean. J. Fish Soc. Taiwan 20(2), 135–151 (1993).
    Google Scholar 

    48.
    Lilliefors, H. W. On the Kolmogorov–Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc. 62, 399–402 (1967).
    Article  Google Scholar 

    49.
    Levene, H. Robust tests for equality of variances. In Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling (eds Olkin, I. et al.) 278–292 (Stanford University Press, Stanford, 1960).
    Google Scholar 

    50.
    Manly, B. Randomization bootstrap and Monte Carlo methods in biology (Chapman & Hall/CRC, Boca Raton, 2007).
    Google Scholar 

    51.
    Fay, M. P. & Shaw, P. A. Exact and Asymptotic Weighted Logrank Tests for Interval Censored Data: The Interval R Package. J. Stat. Softw. 36, 1–34 (2010).
    Article  Google Scholar 

    52.
    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, London, 2011).
    Google Scholar 

    53.
    Ogle, D. H. Introductory Fisheries Analyses with R (Chapman & Hall/CRC, Boca raton, 2016).
    Google Scholar 

    54.
    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn. (Springer, Berlin, 2002).
    Google Scholar 

    55.
    Ricker, W. E. Linear regression in fisheries research. J. Fish. Res. Board Can. 30, 409–434 (1973).
    Article  Google Scholar 

    56.
    Ricker, W. E. Methods for assessment of fish production in fresh waters. IBP Handbook N°3 (Blackwell Scientific Publications, Oxford and Edinburgh, 1968).
    Google Scholar 

    57.
    Rossiter, D. G. Technical note: Curve fitting with the R Environment for Statistical Computing. In Enschede (NL): 17, International Institute for Geo-information Science & Earth Observations (2009).

    58.
    Nikolic, N. et al. Discovery of genome-wide microsatellite markers in Scombridae: A pilot study on albacore tuna. PLoS ONE 10, e0141830 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    59.
    Rousset, F. Genepop’007: A complete reimplementation of the Genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).
    PubMed  Article  Google Scholar 

    60.
    Rousset, F. & Raymond, M. Testing heterozygote excess and deficiency. Genetics 140, 1413–1419 (1995).
    CAS  PubMed  PubMed Central  Google Scholar 

    61.
    Storey, J. D. A Direct Approach to False Discovery Rates. J. R. Stat. Soc. Ser. B Stat. Methodol. 64, 479–498 (2002).
    MathSciNet  MATH  Article  Google Scholar 

    62.
    Storey, J. D. The positive false discovery rate: A Bayesian interpretation and the q-value. Ann. Stat. 31, 2013–2035 (2003).
    MathSciNet  MATH  Article  Google Scholar 

    63.
    Storey, J. D. & Tibshirani, R. Statistical significance for genome wide studies. Proc. Natl. Acad. Sci. USA. 100, 9440–9445 (2003).
    ADS  MathSciNet  CAS  PubMed  MATH  Article  Google Scholar 

    64.
    Storey, J. D., Taylor, J. E. & Siegmund, D. Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: A unified approach. J. R. Stat. Soc. Ser. B Stat. Methodol. 66, 187–205 (2004).
    MathSciNet  MATH  Article  Google Scholar 

    65.
    Storey, J., Bass, A., Dabney, A. & Robinson, D. qvalue: Q-value Estimation for False Discovery Rate Control. https://github.com/jdstorey/qvalue (2019).

    66.
    Engels, W. R. Exact tests for Hardy-Weinberg proportions. Genetics 183, 1431–1441 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    67.
    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).
    CAS  PubMed  Google Scholar 

    68.
    Excoffier, L., Laval, G. & Schneider, S. Arlequin ver. 3.1: An integrated software package for population genetics data analysis. Evol. Bioinform. Online 1, 47–50 (2005).
    CAS  Article  Google Scholar 

    69.
    Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N. & Bonhomme, F. GENETIX, logiciel sous WindowsTM pour la génétique des populations. Laboratoire Génome, Populations, Interactions CNRS UMR 5000. (Université de, 1996).

    70.
    Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).
    CAS  PubMed  Article  Google Scholar 

    71.
    Jombart, T. & Ahmed, I. adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27(21), 3070–3071 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    72.
    Thioulouse, J., Chessel, D., Dolédec, S. & Olivier, J. M. ADE-4: A multivariate analysis and graphical display software. Stat. Comput. 7, 75–83 (1997).
    Article  Google Scholar 

    73.
    Pritchard, J. K., Stephens, P. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    74.
    Li, Y.-L. & Liu, J.-X. StructureSelector: A web-based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 18, 176–177 (2018).
    PubMed  Article  Google Scholar 

    75.
    Evanno, G. & Regnaut Sand Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).
    CAS  PubMed  Article  Google Scholar 

    76.
    Puechmaille, S. J. The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Mol. Ecol. Resour. 16, 608–627 (2016).
    PubMed  Article  Google Scholar 

    77.
    Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. CLUMPAK: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 5, 1179–1191 (2015).
    Article  CAS  Google Scholar 

    78.
    Takezaki, N., Nei, M. & Tamura, K. POPTREEW: Web version of POPTREE for constructing population trees from allele frequency data and computing some other quantities. Mol. Biol. Evol. 6, 1622–1624 (2014).
    Article  CAS  Google Scholar 

    79.
    Parks, D. H. et al. GenGIS 2: Geospatial analysis of traditional and genetic biodiversity, with new gradient algorithms and an extensible plugin framework. PLoS ONE 8, 69885 (2013).
    ADS  Article  CAS  Google Scholar 

    80.
    Takezaki, N., Nei, M. & Tamura, K. PopTree2: Software for constructing population trees from allele frequency data and computing other population statistics with Windows interface. Mol. Biol. Evol. 27, 747–752 (2010).
    CAS  PubMed  Article  Google Scholar 

    81.
    Peakall, R. & Smouse, P. GenAlEx 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).
    Article  Google Scholar 

    82.
    Mossman, C. A. & Waser, P. M. Genetic detection of sex-biased dispersal. Mol. Ecol. 8, 1063–1067 (1999).
    CAS  PubMed  Article  Google Scholar 

    83.
    R development Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, 2013). https://www.R-project.org.

    84.
    Gastwirth, J. L. et al. lawstat: Tools for Biostatistics. (Public Policy, and Law, 2017).

    85.
    Dray, S. & Dufour, A. B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22(4), 1–20 (2007).
    Article  Google Scholar 

    86.
    Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall/CRC, Boca Raton, 2006).
    Google Scholar 

    87.
    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73(1), 3–36 (2011).
    MathSciNet  MATH  Article  Google Scholar 

    88.
    Fournier, D. A. et al. AD Model Builder: Using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim. Methods Softw. 27, 233–249 (2012).
    MathSciNet  MATH  Article  Google Scholar 

    89.
    Skaug, H., Fournier, D., Nielsen, A., Magnusson, A. & Bolker, B. Generalized Linear Mixed Models using AD Model Builder. (2013).

    90.
    Chen, K.-Y. et al. assignPOP: An r package for population assignment using genetic, non-genetic, or integrated data in a machine-learning framework. Methods Ecol. Evol. 9, 439–446 (2018).
    Article  Google Scholar 

    91.
    Gibbs, R. & Colette, B. Comparative anatomy and systemics of the tunas, genus Thunnus. USA. Fish Wildl. Serv. Fish. Bull. 66, 65–130 (1967).
    Google Scholar 

    92.
    Cosgrove, R., Arregui, I., Arrizabalaga, H., Goni, N. & Sheridan, M. New insights to behaviour of North Atlantic albacore tuna (Thunnus alalunga) observed with pop-up satellite archival tags. Fish. Res. 150, 89–99 (2014).
    Article  Google Scholar 

    93.
    Schaefer, K. M. Reproductive biology of tunas. Fish Physiol. 19, 225–270 (2001).
    Article  Google Scholar 

    94.
    Ramon, D. & Bailey, K. Spawning seasonality of albacore, Thunnus alalunga, in the South Pacific Ocean. Fish. Bull. Natl. Oceanic Atmos. Admin. 94(4), 725–733 (1996).
    Google Scholar 

    95.
    Description and results. Ferry. Mercator global eddy permitting ocean reanalysis glorys1v1. Tech. Rep. Mercator Ocean Q. Newsl. 36, 15–28 (2010).
    Google Scholar 

    96.
    Gaspar, P. et al. Oceanic dispersal of juvenile leatherback turtles: Going beyond passive drift modeling. Mar. Ecol. Prog. Ser. 457, 265–284 (2012).
    ADS  Article  Google Scholar 

    97.
    Lalire, M. & Gaspar, P. Modeling the active dispersal of juvenile leatherback turtles in the North Atlantic Ocean. Mov. Ecol. 7, 7 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    98.
    Lehodey, P., Senina, L., Dragon, A. C. & Arrizabalaga, H. Spatially explicit estimates of stock size, structure and biomass of North Atlantic albacore tuna (Thunnus alalunga). Earth Syst. Sci. Data 6, 317–329 (2014).
    ADS  Article  Google Scholar 

    99.
    Ryman, N. & Palm, S. POWSIM: A computer program for assessing statistical power when testing for genetic differentiation. Mol. Ecol. Notes 6, 600–602 (2006).
    Article  Google Scholar 

    100.
    Saji, N. H., Goswami, B. N., Vinayachandran, P. N. & Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 401, 360 (1999).
    ADS  CAS  PubMed  Google Scholar 

    101.
    Li, J. et al. Impacts of the IOD-associated temperature and salinity anomalies on the intermittent equatorial undercurrent anomalies. Clim. Dyn. 51, 1391–1409 (2018).
    Article  Google Scholar 

    102.
    Schouten, M. W., de Ruijter, W. P., van Leeuwen, P. J. & Ridderinkhof, H. Eddies and variability in the Mozambique Channel. Deep Sea Res. Part II Top. Stud. Oceanogr. 50, 1987–2003 (2003).
    ADS  Article  Google Scholar 

    103.
    de Ruijter, W. P. M. et al. Eddies and dipoles around South Madagascar: Formation, pathways and large-scale impact. Deep Sea Res. Part I 51, 383–400 (2004).
    Article  Google Scholar 

    104.
    de Ruijter, W. P. M., Ridderinkhof, H., Lutjeharms, J. R. E., Schouten, M. W. & Veth, C. Observations of the flow in the Mozambique Channel: Observations in the Mozambique channel. Geophys. Res. Lett. 29, 140-1-140–3 (2002).
    Article  Google Scholar 

    105.
    Longhurst, A. R. Ecological Geography of the Sea (Academic Press, London, 2007).
    Google Scholar 

    106.
    New, A. et al. Physical and biochemical aspects of the flow across the Mascarene Plateau in the Indian Ocean. Philos. Trans. R Soc. Math. Phys. Eng. Sci. 363, 151–168 (2005).
    ADS  CAS  Google Scholar 

    107.
    Penney, A. J., Yeh, S. Y., Kuo, C. L. & Leslie, R. W. Relationships between albacore (Thunnus alalunga) stocks in the southern Atlantic and Indian Oceans. In Int Com Conserv AH Tuna Tuna Symp, Ponta Delgada, Azores (ed. Beckett, J. S.) 10–18 (1998).

    108.
    Postel, E. Sur deux lots de germon (Germo alalunga) capturés dans le Golfe de Guinée par les palangriers japonais. Cahiers ORSTOM Série Océanographique 2, 55–60 (1964).
    Google Scholar 

    109.
    Liorzou, B. Les nouveaux engins de pêche pour la capture du germon: Description, statistiques, impact sur le stock nord-Atlantique. Collect. Vol. Sci. Pap. 30(1), 203–217 (1989).
    Google Scholar 

    110.
    Koto, T. Studies on the albacore-XIV. Distribution and movement of the albacore in the Indian and the Atlantic Oceans based on the catch statistics of Japanese tuna long-line fishery. Bull. Far. Seas Fish. Res. Lab. 1, 115–129 (1969).
    Google Scholar 

    111.
    Conand, F. & Richards, W. J. Distribution of tuna larvae between Madagascar and the Equator, Indian Ocean. Biol. Oceanogr. 4, 321–336 (1982).
    Google Scholar 

    112.
    Shiohama, T. Overall fishing intensity and length composition of albacore caught by long line fishery. In The Indian Ocean, 1952–1982. IPTP, Vol. 22, 91–109 (1985).

    113.
    Fonteneau, A. A summarized presentation of the report of the 2nd. In IOTC WP of the Albacore Meeting held in Bangkok (2008).

    114.
    IOTC. Proposition: Résumé exécutive: GERMON. in IOTC, IOTC-2013-SC16-ES01 (2013).

    115.
    Nishikawa, Y., Honma, M., Ueyanagi, S. & Kikawa, S. Average distribution of larvae of oceanic species of scombroid fishes, 1956–1981. Far. Seas Fish. Res. Lab. 12, 1–99 (1985).
    Google Scholar 

    116.
    Nishida, T. & Tanaka, M. General reviews of Indian Ocean Albacore (Thunnus alalunga). IOTC-2004- WPTMT-03. (2004).

    117.
    Stéquert, B. & Marsac, F. La pêche de surface des thonidés tropicaux dans l’océan Indien. (1986).

    118.
    Fonteneau, A. & Marcille, J. Ressources, pêche et biologie des thonidés tropicaux de l’Atlantique centre-est. FAO Dot. Tech. Pêches 292. (1988).

    119.
    Hoyle, S., Sharma, R. & Herrera, M. Stock assessment of albacore tuna in the Indian Ocean for 2014 using stock synthesis. Indian Ocean Tuna Commission working party on temperate Tunas, Busan, Rep. of Korea, 28–31 July 2014, IOTC–2014–WPTmT05–24_Rev1. (2014).

    120.
    Montes, I. et al. Worldwide genetic structure of albacore (Thunnus alalunga) revealed by microsatellite DNA markers. Mar. Ecol. Prog. Ser. 471, 183–191 (2012).
    ADS  CAS  Article  Google Scholar 

    121.
    Carlsson, J. et al. Microsatellite and mitochondrial DNA analyses of Atlantic bluefin tuna (Thunnus thynnus thynnus) population structure in the Mediterranean Sea. Mol. Ecol. 13, 3345–3356 (2004).
    CAS  PubMed  Article  Google Scholar 

    122.
    Carlsson, J., McDowell, J. R., Carlsson, J. E. & Graves, J. E. Genetic identity of YOY bluefin tuna from the eastern and western Atlantic spawning areas. J. Hered. 98, 23–28 (2007).
    CAS  PubMed  Article  Google Scholar 

    123.
    Riccioni, G., Landi, M., Ferrara, G. & Milano, I. Spatio-temporal population structuring and genetic diversity retention in depleted Atlantic bluefin tuna of the Mediterranean Sea. Proc. Natl. Acad. Sci. USA 107, 2102–2107 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    124.
    Yeh, S. Y., Treng, T. D., Hui, C. F. & Penney, A. J. Mitochondrial DNA sequence analysis on Albacore, Thunnus alalunga, meat samples collected from the waters off western South Africa and the Eastern Indian Ocean. ICCAT Col. Vol. Sci. Pap. 46, 152–159 (1997).
    Google Scholar 

    125.
    Durand, J. D., Collet, A., Chow, S., Guinand, B. & Borsa, P. Nuclear and mitochondrial DNA markers indicated unidirectional gene flow of Indo-Pacific to Atlantic bigeye tuna (Thunnus obesus) populations, and their admixture off southern Africa. Mar. Biol. 147, 313–322 (2005).
    CAS  Article  Google Scholar 

    126.
    Poulsen, N. A., Nielsen, E. E., Schierup, M. H., Loeschcke, V. & Gronkjaer, P. Long-term stability and effective population size in North Sea and Baltic Sea cod (Gadus morhua). Mol. Ecol. 15, 321–331 (2006).
    CAS  PubMed  Article  Google Scholar 

    127.
    Chow, S., Okamoto, H., Miyabe, N., Hiramatsu, K. & Barut, N. Genetic divergence between Atlantic and Indo-Pacific stocks of bigeye tuna (Thunnus obesus) and admixture around South Africa. Mol. Ecol. 9, 221–227 (2000).
    CAS  PubMed  Article  Google Scholar 

    128.
    Graham, M. H., Dayton, P. K. & Erlandson, J. M. Ice ages and ecological transitions on temperate coasts. Trends Ecol. Evol. 18, 33–40 (2003).
    Article  Google Scholar 

    129.
    Siddall, M. et al. Sea-level fluctuations during the last glacial cycle. Nature 423, 853–858 (2003).
    ADS  CAS  PubMed  Article  Google Scholar 

    130.
    Rohfritsch, A. & Borsa, P. Genetic structure of Indian scad mackerel Decapterus russelli: Pleistocene vicariance and secondary contact in the Central Indo-West Pacific Seas. Heredity 95, 315–326 (2005).
    CAS  PubMed  Article  Google Scholar 

    131.
    Janko, K. et al. Did glacial advances during the Pleistocene influence differently the demographic histories of benthic and pelagic Antarctic shelf fishes?—Inferences from intraspecific mitochondrial and nuclear DNA sequence diversity. BMC Evol. Biol. 7, 220 (2007).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    132.
    Ravago-Gotanco, R. G. & Juinio-Meñez, M. A. Phylogeography of the mottled spinefoot Siganus fuscescens: Pleistocene divergence and limited genetic connectivity across the Philippine archipelago. Mol. Ecol. 19, 4520–4534 (2010).
    CAS  PubMed  Article  Google Scholar 

    133.
    Pedrosa-Gerasmio, I. R., Agmata, A. B. & Santos, M. D. Genetic diversity, population genetic structure, and demographic history of Auxis thazard (Perciformes), Selar crumenophthalmus (Perciformes), Rastrelliger kanagurta (Perciformes) and Sardinella lemuru (Clupeiformes) in Sulu-Celebes Sea inferred by mitochondrial DNA sequences. Fish. Res. 162, 64–74 (2015).
    Article  Google Scholar 

    134.
    Barth, J. M. I., Damerau, M., Matschiner, M., Jentoft, S. & Hanel, R. Genomic differentiation and demographic histories of Atlantic and Indo-Pacific yellowfin tuna (Thunnus albacares) populations. Genome Biol. Evol. 9(4), 1084–1098 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    135.
    West, W. MSc thesis. Genetic stock structure and estimation of abundance of swordfish (Xiphias gladius) in South Africa. https://open.uct.ac.za/handle/11427/20432. (2016).

    136.
    Silva, D. M. et al. Evaluation of IMTA-produced seaweeds (Gracilaria, Porphyra, and Ulva) as dietary ingredients in Nile tilapia, Oreochromis niloticus L., juveniles. Effects on growth performance and gut histology. J. Appl. Phycol. 27, 1671–1680 (2015).
    CAS  Article  Google Scholar 

    137.
    Bourjea, J. et al. Phylogeography of the green turtle, Chelonia mydas, in the Southwest Indian Ocean. Mol. Ecol. 16, 175–186 (2007).
    CAS  PubMed  Article  Google Scholar 

    138.
    Rudomiotkina, G. P. Distribution of larval tunas (Thunnidae, Perciformes) in the Central-Atlantic Ocean. Int. Council Explor. Sea (ICES), Pelagic Fish (S.) Committee, J. 15 (1973).

    139.
    Piccinetti, C. & Piccinetti-Manfrin, G. Relation entre œufs et larves de thonidés et hydrologie en Méditerranée. CNEXO 8, 9–12 (1979).
    Google Scholar 

    140.
    Mullins, R. B., McKeown, N. J., Sauer, W. H. H. & Shaw, P. W. Genomic analysis reveals multiple mismatches between biological and management units in yellowfin tuna (Thunnus albacares). ICES J. Mar. Sci. 75, 2145–2152 (2018).
    Article  Google Scholar 

    141.
    Fonteneau, A. An overview of Indian Ocean albacore: Fisheries, stocks and research. IOTC-2004-WPTMT-02. (2004).

    142.
    Clemens, H. B. The migration, age and growth of Pacific albacore (Thunnus germo), 1951–1958. (1961).

    143.
    Talbot, F. H. & Penrith, M. J. Tunnies and Marlins of South Africa. Nature 193, 558–559 (1962).
    ADS  Article  Google Scholar 

    144.
    Flittner, G. A. Review of the 1962 seasonal movement of albacore tuna off the Pacific coast of the United States. Commer. Fish. Rev. 25(4), 7–13 (1963).
    Google Scholar 

    145.
    Laurs, R. M. & Lynn, R. J. Seasonal migration of North Pacific albacore, Thunnus alalunga, into North America coastal waters: Distribution, relative abundance and association with transition zone waters. US Fish. Bull. 75, 795–822 (1977).
    Google Scholar 

    146.
    Johnsson, J. H. Sea temperatures and the availability of albacore (Thunnus germo) off the coasts of Oregon and Washington. Paper presented to the Pacific Tuna biology conference (1961).

    147.
    Santiago, J. Dinamica de la poblacion de atun blanco (Thunnus alalunga, Bonaterre 1788) del Atlantico Norte. Thèse de Doctorat, Euskal Erico (2004).

    148.
    Boyce, D., Tittensor, D. P. & Worm, B. Effects of temperature on global patterns of tuna and billfish richness. Mar. Ecol. Prog. Ser. 355, 267–276 (2008).
    ADS  Article  Google Scholar 

    149.
    Childers, J., Snyder, S. & Kohin, S. Migration and behavior of juvenile North Pacific albacore (Thunnus alalunga). Fish. Oceanogr. 20, 157–173 (2011).
    Article  Google Scholar 

    150.
    Hauser, L. & Carvalho, G. R. Paradigm shifts in marine fisheries genetics: Ugly hypotheses slain by beautiful facts. Fish Fish. 9, 333–362 (2008).
    Article  Google Scholar 

    151.
    Logan, C. A., Alter, S. E., Haupt, A. J., Tomalty, K. & Palumbi, S. R. An impediment to consumer choice: Overfished species are sold as Pacific red snapper. Biol. Conserv. 141, 1591–1599 (2008).
    Article  Google Scholar 

    152.
    Primmer, C. R., Koskinen, M. T. & Piironen, J. The one that did not get away: Individual assignment using microsatellite data detects a case of fishing competition fraud. Proc. Biol. Sci. 267, 1699–1704 (2000).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    153.
    Carvalho, G. R. & Hauser, L. Molecular genetics and the stock concept in fisheries. in Molecular Genetics in Fisheries (eds. Carvalho, G. R. & Pitcher, T. J.) 55–79 (1995).

    154.
    Waples, R. S., Punt, A. E. & Cope, J. M. Integrating genetic data into management of marine resources: How can we do it better?. Fish Fish. 9, 423–449 (2008).
    Article  Google Scholar 

    155.
    Chouvelon, T. et al. Chemical contaminants (trace metals, persistent organic pollutants) in albacore tuna from western Indian and south-eastern Atlantic Oceans: Trophic influence and potential as tracers of populations. Sci. Total Environ. 597, 481–495 (2017).
    ADS  Article  CAS  Google Scholar 

    156.
    Penrith, M. J. G. The systematics and biology of the South African Tunas. (Masters Dissertation, University of Cape Town, 1963).

    157.
    IOTC. Report of the Fifteenth Session of the IOTC Scientific Committee. (2012).

    158.
    Stequert, B. & Marsac, F. Tropical tuna—surface fisheries in the Indian Ocean. Fisheries Technical Paper FAO, 282 (1989).

    159.
    Pecoraro, C. et al. The population genomics of yellowfin tuna (Thunnus albacares) at global geographic scale challenges current stock delineation. Sci. Rep. 8, 13890 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar  More

  • in

    Nutritional benefit of fungal spores for honey bee workers

    1.
    Gallai, N., Salles, J.-M., Settele, J. & Vaissière, B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821 (2009).
    Article  Google Scholar 
    2.
    Klein, D. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 274, 303–313. https://doi.org/10.1098/rspb.2006.3721 (2007).
    Article  Google Scholar 

    3.
    Southwick, E. E. & Southwick, L. Estimating the economic value of honey bees (Hymenoptera: Apidae) as agricultural pollinators in the United States. J. Econ. Entomol. 85, 621–633 (1992).
    Article  Google Scholar 

    4.
    Brodschneider, R. & Crailsheim, K. Nutrition and health in honey bees. Apidologie 41, 278–294. https://doi.org/10.1051/apido/2010012 (2010).
    Article  Google Scholar 

    5.
    Smart, M., Pettis, J., Rice, N., Browning, Z. & Spivak, M. Linking measures of colony and individual honey bee health to survival among apiaries exposed to varying agricultural land use. PLoS ONE 11, e0152685. https://doi.org/10.1371/journal.pone.0152685 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    6.
    Di Pasquale, G. et al. Influence of pollen nutrition on honey bee health: do pollen quality and diversity matter?. PLoS ONE 8, e72016. https://doi.org/10.1371/journal.pone.0072016 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    7.
    Simone-Finstrom, M. et al. Migratory management and environmental conditions affect lifespan and oxidative stress in honey bees. Sci. Rep. 6, 32023 (2016).
    ADS  CAS  Article  Google Scholar 

    8.
    de Vere, N. et al. Using DNA metabarcoding to investigate honey bee foraging reveals limited flower use despite high floral availability. Sci. Rep. 7, 42838. https://doi.org/10.1038/srep42838 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    9.
    Ahn, K., Xie, X., Riddle, J., Pettis, J. & Huang, Z. Y. Effects of long distance transportation on honey bee physiology. Psyche A J. Entomol. 2012, 1–9 (2012).
    Article  Google Scholar 

    10.
    Vaudo, A. D., Tooker, J. F., Grozinger, C. M. & Patch, H. M. Bee nutrition and floral resource restoration. Curr. Opin. Insect. Sci. 10, 133–141 (2015).
    Article  Google Scholar 

    11.
    Shaw, D. E. The incidental collection of fungal spores by bees and the collection of spores in lieu of pollen. Bee World 71, 158–176 (1990).
    Article  Google Scholar 

    12.
    Shaw, D. E. Bees and fungi, with special reference to certain plant pathogens. Aust. Plant Pathol. 28, 269–282. https://doi.org/10.1071/ap99044 (1999).
    Article  Google Scholar 

    13.
    Parker, R. L. The collection of pollen by the honey bee. Memoir: Cornell University Agricultural experiment Station 98, 1–55 (1926).

    14.
    Doull, K. M. An analysis of bee behaviour as it relates to pollination in The Indispensable pollinators (ed Warren L.O.). Report 9th Pollination Conference 12-15 (Hot Springs, Arkansas 1970).

    15.
    Inouye, D. W., Gill, D. E., Dudash, M. R. & Fenster, C. B. A model and lexicon for pollen fate. Am. J. Bot. 81, 1517–1530 (1994).
    Article  Google Scholar 

    16.
    Westerkamp, C. P. Pollen in bee flower relations. Some considerations on melittophily. Botanica. Acta 109, 325–332 (1996).
    Article  Google Scholar 

    17.
    Thorp, R. W. The collection of pollen by bees. Plant Syst. Evol. 222, 211–223 (2000).
    Article  Google Scholar 

    18.
    Portman, Z. M. & Tepedino, V. J. Convergent evolution of pollen transport mode in two distantly related bee genera (Hymenoptera: Andrenidae and Melittidae). Apidologie 48, 461–472 (2017).
    Article  Google Scholar 

    19.
    Schmidt, J. O., Thoenes, S. C. & Levin, M. D. Survival of honey bees, Apis mellifera (Hymenoptera: Apidae), fed various pollen sources. Ann. Entomol. Soc. Am. 80, 176–183 (1987).
    Article  Google Scholar 

    20.
    Renzi, M. T. et al. Combined effect of pollen quality and thiamethoxam on hypopharyngeal gland development and protein content in Apis mellifera. Apidologie 47, 779–788 (2016).
    CAS  Article  Google Scholar 

    21.
    Hrassnigg, N. & Crailsheim, K. Adaptation of hypopharyngeal gland development to the brood status of honeybee (Apis mellifera L.) colonies. J Insect Physiol 44, 929–939 (1998).

    22.
    Heylen, K., Gobin, B., Arckens, L., Huybrechts, R. & Billen, J. The effects of four crop protection products on the morphology and ultrastructure of the hypopharyngeal gland of the European honeybee, Apis mellifera. Apidologie 42, 103–116 (2011).
    CAS  Article  Google Scholar 

    23.
    Hoover, S. E., Higo, H. A. & Winston, M. L. Worker honey bee ovary development: seasonal variation and the influence of larval and adult nutrition. J. Comput. Physiol. B 176, 55–63 (2006).
    Article  Google Scholar 

    24.
    Modro, A. F. H., Silva, I. C., Message, D. & Luz, C. F. P. Saprophytic fungus collection by africanized bees in Brazil. Neotrop. Entomol. 38, 434–436 (2009).
    Article  Google Scholar 

    25.
    Gasparoto, M. C. G. et al. Honeybees can spread Colletotrichum acutatum and C. gloeosporioides among citrus plants. Plant Pathol. 66, 777–782. https://doi.org/10.1111/ppa.12625 (2017).
    CAS  Article  Google Scholar 

    26.
    Brouwers, E. Measurement of hypopharyngeal gland activity in the honeybee. J. Apic. Res. 21, 193–198 (1982).
    Article  Google Scholar 

    27.
    Pernal, S. F. & Currie, R. W. Pollen quality of fresh and 1-year-old single pollen diets for worker honey bees (Apis mellifera L.). Apidologie 31, 387–409. https://doi.org/10.1051/apido:2000130 (2000).
    Article  Google Scholar 

    28.
    Bartnicki-Garcia, S. Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu. Rev. Microbiol. 22, 87–108 (1968).
    CAS  Article  Google Scholar 

    29.
    Page, R. E. Jr. & Peng, C.Y.-S. Aging and development in social insects with emphasis on the honey bee, Apis mellifera L. Exp. Gerontol. 36, 695–711 (2001).
    Article  Google Scholar 

    30.
    Schmidt, L. S., Schmidt, J. O., Rao, H., Wang, W. & Xu, L. Feeding preference and survival of young worker honey bees (Hymenoptera: Apidae) fed rape, sesame, and sunflower pollen. J. Econ. Entomol. 88, 1591–1595 (1995).
    Article  Google Scholar 

    31.
    Goulson, D., Nicholls, E., Botias, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957. https://doi.org/10.1126/science.1255957 (2015).
    CAS  Article  PubMed  Google Scholar 

    32.
    Kleinschmidt, G., Kondos, A., Harden, J. & Turner, J. Colony management for eucalypt honey flows. Aust. Beekeeper 75, 261–264 (1974).
    Google Scholar 

    33.
    Anke, S., Niemüller, D., Moll, S., Hänsch, R. & Ober, D. Polyphyletic origin of pyrrolizidine alkaloids within the Asteraceae. Evidence from differential tissue expression of homospermidine synthase. Plant Physiol. 136, 4037–4047 (2004).

    34.
    Boppré, M., Colegate, S. M. & Edgar, J. A. Pyrrolizidine alkaloids of Echium vulgare honey found in pure pollen. J. Agr. Food. Chem. 53, 594–600 (2005).
    Article  Google Scholar 

    35.
    Hartmann, T. & Ober, D. Biosynthesis and metabolism of pyrrolizidine alkaloids in plants and specialized insect herbivores in Topics in Current Chemistry: Biosynthesis—Aromatic Polyketides, Isoprenoids, Alkaloids (ed Vederas J.C. Leeper F.J.) 207–243 (Springer, Berlin 2000).

    36.
    Praz, C. J., Müller, A. & Dorn, S. Specialized bees fail to develop on non-host pollen: do plants chemically protect their pollen. Ecology 89, 795–804 (2008).
    Article  Google Scholar 

    37.
    San-Blas, G., Guanipa, O., Moreno, B., Pekerar, S. & San-Blas, F. Cladosporium carrionii and Hormoconis resinae (C. resinae): cell wall and melanin studies. Curr. Microbiol. 32, 11–16 (1996).
    CAS  Article  Google Scholar 

    38.
    Szaniszlo, P., Cooper, B. & Voges, H. S. Chemical compositions of the hyphal walls of three chromomycosis agents. Sabouraudia: J Med Vet Mycol 10, 94–102 (1972).

    39.
    Soltanian, S., Stuyven, E., Cox, E., Sorgeloos, P. & Bossier, P. Beta-glucans as immunostimulant in vertebrates and invertebrates. Crit. Rev. Microbiol. 35, 109–138 (2009).
    CAS  Article  Google Scholar 

    40.
    Mazzei, M. et al. Effect of 1, 3–1, 6 β-glucan on natural and experimental deformed wing virus infection in newly emerged honeybees (Apis mellifera ligustica). PLoS ONE 11, e0166297 (2016).
    Article  Google Scholar 

    41.
    Stevanovic, J. et al. The effect of Agaricus brasiliensis extract supplementation on honey bee colonies. Anais da Academia Brasileira de Ciências 90, 219–229 (2018).
    CAS  Article  Google Scholar 

    42.
    Erdtman, G. Handbook of Palynology: Morphology, Taxonomy, Ecology (Munksgaard, Copenhagen, 1969).
    Google Scholar 

    43.
    Kearns, C. A. & Inouye, D. W. Techniques for pollination biologists. (University Press of Colorado, 1993).

    44.
    APSA. Australasian Pollen and Spore Atlas, (2007).

    45.
    Graystock, P. et al. Hygienic food to reduce pathogen risk to bumblebees. J. Invert. Pathol. 136, 68–73. https://doi.org/10.1016/j.jip.2016.03.007 (2016).
    CAS  Article  Google Scholar 

    46.
    Meeus, I. et al. Gamma irradiation of pollen and eradication of Israeli acute paralysis virus. J. Invert. Pathol. 121, 74–77. https://doi.org/10.1016/j.jip.2014.06.012 (2014).
    Article  Google Scholar 

    47.
    Bradstreet, R. B. Kjeldahl method for organic nitrogen. Anal. Chem. 26, 185–187 (1954).
    CAS  Article  Google Scholar 

    48.
    National Center for Biotechnology Information (NCBI)[Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; [1988]–[October 2019]. Available from: https://www.ncbi.nlm.nih.gov/

    49.
    Bensch, K. et al. Cladosporium species in indoor environments. Stud. Mycol. 89, 177–301 (2018).
    CAS  Article  Google Scholar 

    50.
    Scheuerell, S. J. & Mahaffee, W. F. Variability associated with suppression of gray mold (Botrytis cinerea) on geranium by foliar applications of nonaerated and aerated compost teas. Plant Dis. 90, 1201–1208 (2006).
    Article  Google Scholar 

    51.
    Preston, F. W. The volume of an egg. AOS 91, 132–138. https://doi.org/10.2307/4084667 (1974).
    Article  Google Scholar 

    52.
    R Core Team. R: A Language and Environment for Statistical Computing. v. 1.2.1335 (Vienna, Austria; 2019).

    53.
    Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge University Press, Cambridge, 2002).
    Google Scholar  More

  • in

    Parasite intensity drives fetal development and sex allocation in a wild ungulate

    1.
    Stien, A. et al. The impact of gastrointestinal nematodes on wild reindeer: experimental and cross-sectional studies. J. Anim. Ecol. 71, 937–945 (2002).
    Article  Google Scholar 
    2.
    Budischak, S. A., O’Neal, D., Jolles, A. E. & Ezenwa, V. O. Differential host responses to parasitism shape divergent fitness costs of infection. Funct. Ecol. 32, 324–333 (2018).
    Article  Google Scholar 

    3.
    Albon, S. D. et al. The role of parasites in the dynamics of a reindeer population. Proc. R. Soc. Lond. B 269, 1625–1632 (2002).
    CAS  Article  Google Scholar 

    4.
    Festa-Bianchet, M. Numbers of lungworm larvae in feces of bighorn sheep: yearly changes, influence of host sex, and effects on host survival. Can. J. Zool. 69, 547–554 (1991).
    Article  Google Scholar 

    5.
    Richner, H., Oppliger, A. & Christe, P. Effect of an ectoparasite on reproduction in great tits. J. Anim. Ecol. 62, 703–710 (1993).
    Article  Google Scholar 

    6.
    Fitze, P. S., Tschirren, B. & Richner, H. Life history and fitness consequences of ectoparasites. J. Anim. Ecol. 73, 216–226 (2004).
    Article  Google Scholar 

    7.
    Patterson, J. E. H., Neuhaus, P., Kutz, S. J. & Ruckstuhl, K. E. Parasite removal improves reproductive success of female North American red squirrels (Tamiasciurus hudsonicus). PLoS ONE 8, e55779 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Gilbert, S. F. Ecological developmental biology: developmental biology meets the real world. Dev. Biol. 233, 1–12 (2001).
    CAS  PubMed  Article  Google Scholar 

    9.
    Monaghan, P. Early growth conditions, phenotypic development and environmental change. Philos Trans. R. Soc. Lond. B Biol. Sci. 363, 1635–1645 (2008).
    PubMed  Article  Google Scholar 

    10.
    Bowers, E. K. et al. Neonatal body condition, immune responsiveness, and hematocrit predict longevity in a wild bird population. Ecology 95, 3027–3034 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    11.
    Gluckman, P. D., Hanson, M. A., Morton, S. M. B. & Pinal, C. S. Life-long echoes–a critical analysis of the developmental origins of adult disease model. Neonatology 87, 127–139 (2005).
    Article  Google Scholar 

    12.
    Gluckman, P. D., Hanson, M. A. & Beedle, A. S. Early life events and their consequences for later disease: A life history and evolutionary perspective. Am. J. Hum. Biol. 19, 1–19 (2007).
    PubMed  Article  Google Scholar 

    13.
    Lindström, J. Early development and fitness in birds and mammals. Trends Ecol. Evol. 14, 343–348 (1999).
    PubMed  Article  Google Scholar 

    14.
    Wu, G., Bazer, F. W., Wallace, J. M. & Spencer, T. E. Board-invited review: intrauterine growth retardation: implications for the animal sciences. J. Anim. Sci. 84, 2316–2337 (2006).
    CAS  PubMed  Article  Google Scholar 

    15.
    Greenwood, P. L. & Bell, A. W. Prenatal nutritional influences on growth and development of ruminants. Recent Adv. Animal Nutr. Aust. 14, 57 (2003).
    Google Scholar 

    16.
    Alexander, G. & Williams, D. Heat stress and development of the conceptus in domestic sheep. J. Agric. Sci. 76, 53–72 (1971).
    Article  Google Scholar 

    17.
    Holland, M. D. & Odde, K. G. Factors affecting calf birth weight: a review. Theriogenology 38, 769–798 (1992).
    CAS  PubMed  Article  Google Scholar 

    18.
    Reynolds, L. P., Ferrell, C. L., Nienaber, J. A. & Ford, S. P. Effects of chronic environmental heat stress on blood flow and nutrient uptake of the gravid bovine uterus and foetus. J. Agric. Sci. 104, 289–297 (1985).
    Article  Google Scholar 

    19.
    Johnson, J. S. et al. The impact of in utero heat stress and nutrient restriction on progeny body composition. J. Therm. Biol. 53, 143–150 (2015).
    PubMed  Article  Google Scholar 

    20.
    Lindström, J. & Kokko, H. Sexual reproduction and population dynamics: the role of polygyny and demographic sex differences. Proc. Biol. Sci. 265, 483–488 (1998).
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    de Figueiredo, P., Ficht, T. A., Rice-Ficht, A., Rossetti, C. A. & Adams, L. G. Pathogenesis and Immunobiology of Brucellosis: Review of Brucella-Host Interactions. Am. J. Pathol. 185, 1505–1517 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    22.
    Donahoe, S. L., Lindsay, S. A., Krockenberger, M., Phalen, D. & Šlapeta, J. A review of neosporosis and pathologic findings of Neospora caninum infection in wildlife. Int. J. Parasitol. Parasites Wildl. 4, 216–238 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Robbins, C. T. & Robbins, B. L. Fetal and Neonatal Growth Patterns and Maternal Reproductive Effort in Ungulates and Subungulates. Am. Nat. 114, 101–116 (1979).
    Article  Google Scholar 

    24.
    Martin, R. D. & MacLarnon, A. M. Gestation period, neonatal size and maternal investment in placental mammals.pdf. Nature 313, 220–223 (1985).
    ADS  Article  Google Scholar 

    25.
    O’Callaghan, D. & Boland, M. P. Nutritional effects on ovulation, embryo development and the establishment of pregnancy in ruminants. Anim. Sci. 68, 299–314 (1999).
    Article  Google Scholar 

    26.
    Blackwell, A. D. Helminth infection during pregnancy: insights from evolutionary ecology. Int. J. Womens Health 8, 651–661 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    27.
    Booksmythe, I., Mautz, B., Davis, J., Nakagawa, S. & Jennions, M. D. Facultative adjustment of the offspring sex ratio and male attractiveness: a systematic review and meta-analysis. Biol. Rev. Camb. Philos. Soc. 92, 108–134 (2017).
    PubMed  Article  Google Scholar 

    28.
    Trivers, R. L. & Willard, D. E. Natural selection of parental ability to vary the sex ratio of offspring. Science 179, 90–92 (1973).
    ADS  CAS  PubMed  Article  Google Scholar 

    29.
    Silk, J. B. Local Resource Competition and Facultative Adjustment of Sex Ratios in Relation to Competitive Abilities. Am. Nat. 121, 56–66 (1983).
    Article  Google Scholar 

    30.
    Ryan, C. P., Anderson, W. G., Gardiner, L. E. & Hare, J. F. Stress-induced sex ratios in ground squirrels: support for a mechanistic hypothesis. Behav. Ecol. 23, 160–167 (2012).
    Article  Google Scholar 

    31.
    Cameron, E. Z. Facultative adjustment of mammalian sex ratios in support of the Trivers-Willard hypothesis: evidence for a mechanism. Proc. Biol. Sci. 271, 1723–1728 (2004).
    PubMed  PubMed Central  Article  Google Scholar 

    32.
    Schwanz, L. E. & Robert, K. A. Proximate and ultimate explanations of mammalian sex allocation in a marsupial model. Behav. Ecol. Sociobiol. 68, 1085–1096 (2014).
    Article  Google Scholar 

    33.
    Silk, J. B. & Brown, G. R. Local resource competition and local resource enhancement shape primate birth sex ratios. Proc. Biol. Sci. 275, 1761–1765 (2008).
    PubMed  PubMed Central  Google Scholar 

    34.
    Ruckstuhl, K. E., Colijn, G. P., Amiot, V. & Vinish, E. Mother’s occupation and sex ratio at birth. BMC Public Health 10, 269 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    35.
    Flegr, J. & Kaňková, Š. The effects of toxoplasmosis on sex ratio at birth. Early Hum. Dev. 141, 104874 (2020).
    CAS  PubMed  Article  Google Scholar 

    36.
    Kanková, S. et al. Women infected with parasite Toxoplasma have more sons. Naturwissenschaften 94, 122–127 (2007).
    ADS  PubMed  Article  CAS  Google Scholar 

    37.
    Kanková, S. et al. Influence of latent toxoplasmosis on the secondary sex ratio in mice. Parasitology 134, 1709–1717 (2007).
    PubMed  Article  Google Scholar 

    38.
    Simmons, N. M., Bayer, M. B. & Sinkey, L. O. Demography of Dall’s Sheep in the Mackenzie Mountains Northwest Territories. J. Wildl. Manage 48, 156–162 (1984).
    Article  Google Scholar 

    39.
    Aleuy, O. A. et al. Diversity of gastrointestinal helminths in Dall’s sheep and the negative association of the abomasal nematode, Marshallagia marshalli, with fitness indicators. PLoS ONE 13, e0192825 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    40.
    Geist, V. Mountain Sheep: A Study in Behavior and Evolution (University of Chicago Press, Chicago, 1971).
    Google Scholar 

    41.
    Rachlow, J. L. & Bowyer, R. T. Interannual Variation in Timing and Synchrony of Parturition in Dall’s Sheep. J. Mammal. 72, 487–492 (1991).
    Article  Google Scholar 

    42.
    Goodrowe, K. L., Smak, B., Presley, N. & Nlonfort, S. L. Reproductive, behavioral, and endocrine characteristics of the Dall’s Sheep (Ovis dalli). Zoo Biol. 15, 45–54 (1996).
    Article  Google Scholar 

    43.
    Bunnell, F. L. & Nichols, L. Natural history of thinhorn sheep. In Mountain sheep of North America (ed. Valdez, R.) 23–77 (University of Arizona Press, Arizona, 1999).
    Google Scholar 

    44.
    Ernakovich, J. G. et al. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Glob. Chang. Biol. 20, 3256–3269 (2014).
    ADS  PubMed  Article  Google Scholar 

    45.
    Kutz, S. J. et al. Invasion, establishment, and range expansion of two parasitic nematodes in the Canadian Arctic. Glob. Chang. Biol. 19, 3254–3262 (2013).
    PubMed  Google Scholar 

    46.
    Kutz, S. J. et al. The Arctic as a model for anticipating, preventing, and mitigating climate change impacts on host–parasite interactions. Vet. Parasitol. 163, 217–228 (2009).
    PubMed  Article  Google Scholar 

    47.
    Altizer, S., Ostfeld, R. S., Johnson, P. T. J., Kutz, S. & Harvell, C. D. Climate change and infectious diseases: from evidence to a predictive framework. Science 341, 514–519 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    48.
    Parker, K. L., Barboza, P. S. & Gillingham, M. P. Nutrition integrates environmental responses of ungulates. Funct. Ecol. 23, 57–69 (2009).
    Article  Google Scholar 

    49.
    Pettorelli, N., Pelletier, F. & von Hardenberg, A. Early onset of vegetation growth vs. rapid green-up: impacts on juvenile mountain ungulates. Ecology 88(2), 381–390 (2007).
    PubMed  Article  Google Scholar 

    50.
    Sanchez, G. PLS Path Modeling with R. (Trowchez Editions, Berkeley, 2013). http://www.gastonsanchez.com/PLSPathModelingwithR.pdf.

    51.
    Tenenhaus, M., Vinzi, V. E., Chatelin, Y.-M. & Lauro, C. PLS path modeling. Comput. Stat. Data Anal. 48, 159–205 (2005).
    MathSciNet  MATH  Article  Google Scholar 

    52.
    Hair, J. F., Ringle, C. M. & Sarstedt, M. Partial least squares structural equation modeling: rigorous applications, better results and higher acceptance. Long Range Plann. 46, 1–12 (2013).
    Article  Google Scholar 

    53.
    Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118, 1883–1891 (2009).
    Article  Google Scholar 

    54.
    Labocha, M. K., Schutz, H. & Hayes, J. P. Which body condition index is best?. Oikos 123, 111–119 (2014).
    Article  Google Scholar 

    55.
    Sanchez, G., Trinchera, L. & Russolillo, G. plspm: Tools for partial least squares path modeling (PLS-PM). R package version 0.4. https://doi.org/10.1111/j.1600-0706.2013.00755.x (2017).
    Article  Google Scholar 

    56.
    Lê, S., Josse, J., Husson, F. Facto. & Mine, R. An R Package for multivariate analysis. J. Stat. Softw. https://doi.org/10.18637/jss.v025.i0 (2008).
    Article  Google Scholar 

    57.
    Clutton-Brock, T. H., Albon, S. D. & Guinness, F. E. Maternal dominance, breeding success and birth sex ratios in red deer. Nature 308, 358–360 (1984).
    ADS  Article  Google Scholar 

    58.
    De Roos, A. M., Galic, N. & Heesterbeek, H. How resource competition shapes individual life history for nonplastic growth: ungulates in seasonal food environments. Ecology 90, 945–960 (2009).
    PubMed  Article  Google Scholar 

    59.
    Festa-Bianchet, M. Individual Differences, Parasites, and the Costs of Reproduction for Bighorn Ewes (Ovis canadensis). J. Anim. Ecol. 58, 785–795 (1989).
    Article  Google Scholar 

    60.
    Festa-Bianchet, M., Jorgenson, J. T. & Wuhart, W. D. Early weaning in bighorn sheep, Ovis canadensis affects growth of males but not of females. Behav. Ecol. 5, 21–27 (1994).
    Article  Google Scholar 

    61.
    Singer, F. J., Williams, E., Miller, M. W. & Zeigenfuss, L. C. Population Growth, Fecundity, and Survivorship in Recovering Populations of Bighorn Sheep. Restor. Ecol. 8, 75–84 (2000).
    Article  Google Scholar 

    62.
    Simmons, N. M. Seasonal Ranges of Dall’s Sheep, Mackenzie Mountains Northwest Territories. Arctic 35, 512–518 (1982).
    Article  Google Scholar 

    63.
    Neilsen, C. & Neiland, K. Sheep Disease Report, Project Progress Report, Federal Aid in Wildlife Restoration. (1974).

    64.
    Kutz, S. J. et al. Chapter 2: parasites in ungulates of Arctic North America and Greenland—a view of contemporary diversity, ecology, and impact in a world under change. In Adv Parasit (ed. Rollinson, D.) 99–252 (Academic Press, Cambridge, 2012).
    Google Scholar 

    65.
    Moradpour, N., Borji, H., Razmi, G., Maleki, M. & Kazemi, H. The effect of Marshallagia marshalli on Serum Gastrin concentrations in experimentally infected lambs. J. Parasitol. 102, 436–439 (2016).
    CAS  PubMed  Article  Google Scholar 

    66.
    Moradpour, N., Borji, H., Razmi, G., Maleki, M. & Kazemi, H. Pathophysiology of Marshallagia marshalli in experimentally infected lambs. Parasitology 140, 1762–1767 (2013).
    PubMed  Article  Google Scholar 

    67.
    Simcock, D. C. et al. Hypergastrinaemia, abomasal bacterial population densities and pH in sheep infected with Ostertagia circumcincta. Int. J. Parasitol. 29, 1053–1063 (1999).
    CAS  PubMed  Article  Google Scholar 

    68.
    Jacobs, D., Fox, M., Gibbons, L. & Hermosilla, C. Principles of Veterinary Parasitology (Wiley, Hoboken, 2015).
    Google Scholar 

    69.
    Berger, T. Fertilization in ungulates. Anim. Reprod. Sci. 42, 351–360 (1996).
    MathSciNet  Article  Google Scholar 

    70.
    Hayward, A. D. Causes and consequences of intra- and inter-host heterogeneity in defence against nematodes. Parasite Immunol. https://doi.org/10.1111/pim.12054 (2013).
    Article  PubMed  Google Scholar 

    71.
    Hayward, A. D. et al. Natural selection on individual variation in tolerance of gastrointestinal nematode infection. PLoS Biol. 12, e1001917 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    72.
    Reimers, E. Growth rate and body size differences in Rangifer, a study of causes and effects. Rangifer 3, 3–15 (1983).
    Article  Google Scholar 

    73.
    Sontakke, S. D. Monitoring and controlling ovarian activities in wild ungulates. Theriogenology 109, 31–41 (2018).
    PubMed  Article  Google Scholar 

    74.
    Festa-Bianchet, M. Birthdate and survival in bighorn lambs (Ovis canadensis). J. Zool. 214, 653–661 (1988).
    Article  Google Scholar 

    75.
    Feder, C., Martin, J. G. A., Festa-Bianchet, M., Bérubé, C. & Jorgenson, J. Never too late? Consequences of late birthdate for mass and survival of bighorn lambs. Oecologia 156, 773–781 (2008).
    ADS  PubMed  Article  Google Scholar 

    76.
    Hewison, A. J. M. & Gaillard, J.-M. Successful sons or advantaged daughters? The Trivers-Willard model and sex-biased maternal investment in ungulates. Trends Ecol. Evol. 14, 229–234 (1999).
    CAS  PubMed  Article  Google Scholar 

    77.
    Leimar, O. Life-history analysis of the Trivers and Willard sex-ratio problem. Behav. Ecol. 7, 316–325 (1996).
    Article  Google Scholar 

    78.
    Sheldon, B. C. & West, S. A. Maternal dominance, maternal condition, and offspring sex ratio in ungulate mammals. Am. Nat. 163, 40–54 (2004).
    PubMed  Article  Google Scholar 

    79.
    Julliard, R. Sex-specific dispersal in spatially varying environments leads to habitat-dependent evolutionary stable offspring sex ratios. Behav. Ecol. 11, 421–428 (2000).
    Article  Google Scholar 

    80.
    Schindler, S. et al. Sex-specific demography and generalization of the Trivers-Willard theory.PDF. Nature 526, 249–252 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    81.
    Festa-Bianchet, M. Offspring sex ratio studies of mammals: Does publication depend upon the quality of the research or the direction of the results?. Écoscience 3, 42–44 (1996).
    Article  Google Scholar 

    82.
    Douhard, M. Offspring sex ratio in mammals and the Trivers-Willard hypothesis: In pursuit of unambiguous evidence. Bioessays 39(9), 1700043 (2017).
    Article  Google Scholar 

    83.
    Larson, M. A., Kimura, K., Michael Kubisch, H. & Michael Roberts, R. Sexual dimorphism among bovine embryos in their ability to make the transition to expanded blastocyst and in the expression of the signaling molecule IFN-τ. Proc. Natl. Acad. Sci. U. S. A. 98, 9677–9682 (2001).

    84.
    Cameron, E. Z., Lemons, P. R., Bateman, P. W. & Bennett, N. C. Experimental alteration of litter sex ratios in a mammal. Proc. Biol. Sci. 275, 323–327 (2008).
    PubMed  Google Scholar 

    85.
    Shea-Donohue, T., Qin, B. & Smith, A. Parasites, nutrition, immune responses and biology of metabolic tissues. Parasite Immunol. 39, e12422 (2017).
    Article  Google Scholar 

    86.
    Lafferty, K. D. The ecology of climate change and infectious diseases. Ecology 90, 888–900 (2009).
    PubMed  Article  Google Scholar 

    87.
    Kutz, S. J., Hoberg, E. P., Molnár, P. K., Dobson, A. & Verocai, G. G. A walk on the tundra: Host–parasite interactions in an extreme environment. Int. J. Parasitol. Parasites Wildl. 3, 198–208 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    88.
    Hoar, B. M., Ruckstuhl, K. & Kutz, S. Development and availability of the free-living stages of Ostertagia gruehneri, an abomasal parasite of barrenground caribou (Rangifer tarandus groenlandicus), on the Canadian tundra. Parasitology 139, 1093–1100 (2012).
    PubMed  Article  Google Scholar 

    89.
    Rose, H., Hoar, B., Kutz, S. J. & Morgan, E. R. Exploiting parallels between livestock and wildlife: Predicting the impact of climate change on gastrointestinal nematodes in ruminants. Int. J. Parasitol. Parasites Wildl. 3, 209–219 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    90.
    Morgan, E. R. et al. Assessing risks of disease transmission between wildlife and livestock: The Saiga antelope as a case study. Biol. Conserv. 131, 244–254 (2006).
    Article  Google Scholar  More

  • in

    COVID19: an announced pandemic

    1.
    Barrett, R., Kuzawa, C. W., McDade, T. & Armelagos, G. J. Emerging and re-emerging infectious diseases: the third epidemiologic transition. Annu. Rev. Anthropol. 27, 247–271 (1998).
    Article  Google Scholar 
    2.
    McMichael, A. J. Human culture, ecological change, and infectious disease: are we experiencing history’s fourth great transition? Ecosyst. Health 7, 107–115 (2001).
    Article  Google Scholar 

    3.
    Horby, P. W., Hoa, N. ., Pfeiffer, D. U. & Wertheim, H. F. L. Drivers of emerging zoonotic infectious diseases. Confronting Emerging Zoonoses (eds Yamada, A., Kahn, L., Kaplan, B., Monath, T., Woodall, J. & Conti, L.) (Springer Press, Tokyo, 2014).

    4.
    Wilcox, B. A. & Gubler, D. J. Disease ecology and the global emergence of zoonotic pathogens. Environ. Health Prev. Med. 10, 263–272 (2005).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    5.
    Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–994 (2008).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    6.
    Wilcox, B. A. & Colwell, R. R. Emerging and reemerging infectious diseases: biocomplexity as an interdisciplinary paradigm. Ecohealth 2, 244–257 (2005).
    PubMed Central  Article  PubMed  Google Scholar 

    7.
    Hooper, D. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).
    PubMed  Article  CAS  Google Scholar 

    8.
    Keesing, F., Holt, R. D. & Ostfeld, R. S. Effects of species diversity on disease risk. Ecol. Lett. 9, 485–498 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    9.
    Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    10.
    Woo, P. C. et al. Molecular diversity of coronaviruses in bats. Virology 351, 180–187 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    11.
    Wolfe, N. D., Daszak, P., Kilpatrick, A. M. & Burke, D. S. Bushmeat hunting, deforestation, and prediction of zoonotic disease emergence. Emerg. Infect. Dis. 11, 1822–1827 (2005).
    PubMed  PubMed Central  Article  Google Scholar 

    12.
    Lai, M. M. C. & Cavanagh, D. The molecular biology of coronaviruses. Adv. Virus Res. 48, 1–100 (1997).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    13.
    Ziebuhr, J. The Coronavirus replicase. Curr. Top. Microbiol. Immunol. 287, 57–94 (2005).
    PubMed  CAS  Google Scholar 

    14.
    Brian, D. A. & Baric, R. S. Coronavirus genome structure and replication. Curr. Top. Microbiol. Immunol. 287, 1–30 (2005).
    PubMed  CAS  Google Scholar 

    15.
    Li, W. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450–454 (2003).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    16.
    Walls, A. et al. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature 531, 114–117 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    17.
    Hoffmann, M., Hofmann-Winkler, H. & Poehlmann, S. Priming time: how cellular proteases arm coronavirus spike proteins, in Activation of viruses by host proteases. (eds Eva Boettger –Friebertsaeuser, Wolfgang Gartner, Hans Dieter Klenk) 71-–98 (Springer, Cham, 2018).

    18.
    Li, F., Li, W., Farzan, M. & Harrison, S. C. Interactions between Sars coronavirus and its receptors. Adv. Exp. Med. Biol. 581, 229–234 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    19.
    Hoffmann, M. et al. SARS-CoV-2 Cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 1–10 (2020).
    Article  CAS  Google Scholar 

    20.
    Hoffmann, M. et al. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. Preprint at BioRxiv https://doi.org/10.1101/2020.01.31.929042 (2020).

    21.
    Snijder, E. J., Decroly, E. & Ziebhur, J. The nonstructural proteins directing coronavirus RNA synthesis and processing. Adv. Virus Res. 96, 59–126 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    22.
    Gao, Y. et al. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 368, 779–782 (2020).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    23.
    Yin, W. et al. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Preprint at BioRxiv https://doi.org/10.1101/2020.04.08.032763 (2020).

    24.
    Zhang, X. et al. Nucleocapsid protein of SARS.CoV activates Interleukin-6 expression through cellular transcription factor NF-kB. Virology 365, 324–335 (2007).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    25.
    Ge, X. Y. et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503, 535–538 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    26.
    Menachery, V. D. et al. SARS-like WIV1-CoV poised for human emergence. Proc. Natl Acad. Sci. USA 113, 3048–3053 (2016).
    PubMed  Article  CAS  Google Scholar 

    27.
    Yang, X.-L. et al. Isolation and characterization of a novel bat coronavirus closely related to the direct progenitor of severe acute respiratory syndrome coronavirus. J. Virol. 90, 3253–3256 (2016).
    PubMed Central  Article  CAS  PubMed  Google Scholar 

    28.
    Li, W. et al. Bats are natural reservoirs of SARS-like coronaviruses. Science 310, 676–679 (2005).
    PubMed  Article  CAS  Google Scholar 

    29.
    Lau, S. K. P. et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl Acad. Sci. USA 102, 14040–14045 (2005).
    PubMed  Article  CAS  Google Scholar 

    30.
    Tang, X. C. et al. Prevalence and genetic diversity of coronaviruses in bats from China. J. Virol. 80, 7481–7490 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    31.
    Cui, J., Li, F. & Shi, Z. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 181–192 (2019).
    PubMed  Article  CAS  Google Scholar 

    32.
    Zhou, H. et al. A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the Spike protein. Curr. Biol. 30, 2196–2203 (2020).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    33.
    Wang, N. et al. Serological evidence of bat SARS-related Coronavirus infection in humans, China. Virol. Sin. 33, 104–107 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    34.
    Joyjinda, Y. et al. First complete genome sequence of human coronavirus HKU1 from a non hill bat guano miner in Thailand. Microbiol. Resour. Announc. 8, 1–3 (2019).
    Article  Google Scholar 

    35.
    Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C. & Garry, R. F. The proximal origin of SARS-CoV-2. Nat. Med. 26, 450–452 (2020).
    PubMed  Article  CAS  Google Scholar 

    36.
    Guan, Y. et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302, 276–278 (2003).
    PubMed  Article  CAS  Google Scholar 

    37.
    Centers for Disease Control. Prevalence of IgG antibody to SARS-associated coronavirus in animal traders: Guangdong Province, China. MMWR 52, 986–987 (2003).
    Google Scholar 

    38.
    Normile, D. Viral DNA match spurs China’s civet roundup. Science 303, 292 (2004).
    PubMed  Article  CAS  Google Scholar 

    39.
    Watts, J. China culls wild animals to prevent new SARS threat. Lancet 363, 134 (2004).
    PubMed  PubMed Central  Article  Google Scholar 

    40.
    Xu, H. F. et al. An epidemiologic investigation on infection with severe acute respiratory syndrome coronavirus in wild animals traders in Guangzhou. Zhonghua Yu Fang Yi Xue Za Zhi 38, 81–83 (2004).
    PubMed  Google Scholar 

    41.
    Wu, D. et al. Civets are equally susceptible to experimental infection by two different severe acute respiratory syndrome coronavirus isolates. J. Virol. 79, 2620–26255 (2005).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    42.
    Kan, B. et al. Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms. J. Virol. 79, 11892–11900 (2005).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    43.
    Wang, L. F. et al. Review of bats and SARS. Emerg. Infect. Dis. 12, 1834–1840 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    44.
    Tommy, T. L. et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 583, 282–285 (2020).
    Article  CAS  Google Scholar 

    45.
    Liu, P. et al. Are pangolins the intermediate host of the 2019 novel coronavirus (SARS-CoV-2)? PLOS Pathog. 16, 1–13 (2020).
    Google Scholar 

    46.
    Damas, J. et al. Broad host range of SARS-CoV-2 predicted Comparative and structural analysis of ACE2 in vertebrates. Preprint at BioRxiv https://doi.org/10.1101/2020.04.16.045302 (2020).

    47.
    Lee, J. et al. No evidence of coronaviruses or other potentially zoonotic viruses in Sunda pangolins (Manis javanica) entering the wildlife trade via Malaysia. Preprint at BioRxiv https://doi.org/10.1101/2020.06.19.158717 (2020).

    48.
    Xiang, X. Sichuan villager capture 33 bats isolated from their homes and have eaten them. Morning Post (February, 2020).

    49.
    Xu, D. Huanan market has more than a dozen of wildlife animals. China Business Network (March, 2020).

    50.
    Zhang, L., Zhu, G., Jones, G. & Zhang, S. Conservation of bats in China: problems and recommendations. Oryx 43, 179–182 (2009).
    Article  Google Scholar 

    51.
    Yu, W. B., Tang, G. D., Zhang, L. & Corlett, R. T. Decoding the evolution and transmissions of the novel pneumonia coronavirus (SARS-CoV-2/HCoV-19) using whole genomic data. Zool. Res. 41, 247–257 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    52.
    Chen, W. et al. SARS-associated coronavirus transmitted from human to pig. Emerg. Infect. Dis. 11, 446–448 (2005).
    PubMed  PubMed Central  Article  Google Scholar 

    53.
    Ling, H. Beijing Xinfa wholesale market temporarily closed! Imported salmon case board detected with new coronavirus. Science and Technology Daily Beijing (2020).

    54.
    Josephine M. Coronavirus: China’s first confirmed COVID-19 case traced back to November 17th. South China Morning Post (2020).

    55.
    Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506 (2020).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    56.
    Cohen, J. Wuhan seafood market may not be source of novel virus spreading globally. Science 367, 234–235 (2020).
    PubMed  Article  CAS  Google Scholar 

    57.
    Deslandes, A. et al. SARS-CoV-2 was already spreading in France in late December 2019. Int. J. Antimicrob. Agents https://doi.org/10.1016/j.ijantimicag.2020.106006 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    58.
    Forster, P., Forster, L., Renfrew, C. & Forster, M. M. Phylogenetic network analysis of SARS-CoV-2 genomes. Proc. Natl Acad. Sci. USA 117, 9241–9243 (2020).
    PubMed  Article  CAS  Google Scholar 

    59.
    Korber, B. et al. Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2. Preprint at BioRxiv https://doi.org/10.1101/2020.04.29.069054 (2020).

    60.
    Bhattacharyya, C., et al. Global spread of SARS-CoV-2 subtype with spike protein mutation D614G is shaped by human genomic variations that regulate expression of TMPRSS2 and MX1 genes. Preprint at BioRxiv https://doi.org/10.1101/2020.05.04.075911 (2020).

    61.
    Zhang, L. et al. The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. Preprint at BioRxiv https://doi.org/10.1101/2020.06.12.148726 (2020).

    62.
    Balboni, A., Palladini, A., Bogliani, G. & Battilani, M. Detection of a virus related to betacoronaviruses in Italian greater horseshoe bats. Epidemiol. Infect. 139, 216–219 (2011).
    PubMed  Article  CAS  Google Scholar 

    63.
    Mousavizadeh, L. & Ghasemi, S. Genotype and phenotype of COVID-19: Their role in patghogenesis. J. Microbiol. Immunol. Infection, 1–5 https://doi.org/10.1016/j.jmil.2020.03.022 (2020).

    64.
    Ellinghaus D. et al. Genome-wide association study of severe COVID-19 with respiratory failure. N. Engl. J. Med., 1–13 https://doi.org/10.1056/NEJMoa2020283 (2020).

    65.
    Zeberg, H. & Paabo, S. The major genetic risk factor for severe COVID-19 is inherited from Neandertals. Preprint at BioRxiv https://doi.org/10.1101/2020.07.03.186296 (2020).

    66.
    Drexler, J. F. et al. Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. J. Virol. 84, 11336–11349 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    67.
    Pfefferle, S. et al. Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats. Ghana. Emerg. Infect. Dis. 15, 1377–1384 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    68.
    Quan, P. L. et al. Identification of a severe acute respiratory syndrome coronavirus-like virus in a leaf-nosed bat in Nigeria. mBio 1(4), e00208–e00210 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    69.
    Ren, W. et al. Full-length genome sequences of two SARS-like coronaviruses in horseshoe bats and genetic variation analysis. J. Gen. Virol. 87, 3355–3359 (2006).
    PubMed  Article  CAS  Google Scholar 

    70.
    Wu, Z. et al. ORF8-related genetic evidence for Chinese horseshoe bats as the source of human severe acute respiratory syndrome coronavirus. J. Infect. Dis. 213, 579–583 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    71.
    Lau, S. K. P. et al. Severe acute respiratory syndrome (SARS) coronavirus ORF8 protein is acquired from SARS-related coronavirus from greater horseshoe bats through recombination. J. Virol. 89, 10532–10547 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar  More

  • in

    Conventional analysis methods underestimate the plant-available pools of calcium, magnesium and potassium in forest soils

    1.
    Marschner, H. Mineral Nutrition of Higher Plants (Academic Press, Cambridge, 1995).
    Google Scholar 
    2.
    Bormann, F. & Likens, G. Nutrient cycling. Science 155, 424–429 (1967).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Ranger, J. & Turpault, M. P. Input–output nutrient budgets as a diagnostic tool for sustainable forest management. For. Ecol. Manage. 122, 139–154 (1999).
    Article  Google Scholar 

    4.
    Badeau, V., Dambrine, E. & Walter, C. Propriétés des sols forestiers français: Résultats du premier inventaire systématique. Étude Gest. des Sols 6, 165 (1999).
    Google Scholar 

    5.
    van der Heijden, G. et al. Long-term sustainability of forest ecosystems on sandstone in the Vosges Mountains (France) facing atmospheric deposition and silvicultural change. For. Ecol. Manage. 261, 730–740 (2011).
    Article  Google Scholar 

    6.
    Johnson, J. et al. The response of soil solution chemistry in European forests to decreasing acid deposition. Glob. Change Biol. 24, 3603–3619 (2018).
    ADS  Article  Google Scholar 

    7.
    Jonard, M. et al. Deterioration of Norway spruce vitality despite a sharp decline in acid deposition: A long-term integrated perspective. Glob. Change Biol. 18, 711–725 (2012).
    ADS  Article  Google Scholar 

    8.
    Bailey, S. W., Horsley, S. B. & Long, R. P. Thirty years of change in forest soils of the Allegheny Plateau, Pennsylvania. Soil Sci. Soc. Am. J. 69, 681–690 (2005).
    ADS  CAS  Article  Google Scholar 

    9.
    Hedin, L. O. et al. Steep declines in atmospheric base cations in regions of Europe and North America. Nature 367, 351–354 (1994).
    ADS  CAS  Article  Google Scholar 

    10.
    Hedin, L. O. & Likens, G. E. Atmospheric dust and acid rain. Sci. Am. 275, 88–92 (1996).
    CAS  Article  Google Scholar 

    11.
    Likens, G. E. et al. The biogeochemistry of calcium at Hubbard Brook. Biogeochemistry 41, 89–173 (1998).
    CAS  Article  Google Scholar 

    12.
    Lövblad, G., Persson, C., & Roos, E. Deposition of Base Cations in Sweden. Swedish Environmental Protection Agency, Report 5119, ISBN 91-620-5119-9, ISSN 0282-7298. 60 (Stockholm, Sweden, 2000). https://www.naturvardsverket.se/Documents/publikationer/620-6145-3.pdf?pid=2834. Accessed 11 Aug 2020.

    13.
    Achat, D. L. et al. Quantifying consequences of removing harvesting residues on forest soils and tree growth—A meta-analysis. For. Ecol. Manage. 348, 124–141 (2015).
    Article  Google Scholar 

    14.
    Thiffault, E. et al. Effects of forest biomass harvesting on soil productivity in boreal and temperate forests—A review. Environ. Rev. 19, 278–309 (2011).
    Article  CAS  Google Scholar 

    15.
    Talkner, U. et al. (2019) Nutritional status of major forest tree species in Germany. In Status and Dynamics of Forests in Germany: Results of the National Forest Monitoring (eds Wellbrock, N. & Bolte, A.) 261–293 (Springer, New York, 2019).
    Google Scholar 

    16.
    Jonard, M. et al. Tree mineral nutrition is deteriorating in Europe. Glob. Change Biol. 21, 418–430 (2015).
    ADS  Article  Google Scholar 

    17.
    De Oliveira Garcia, W., Amann, T. & Hartmann, J. Increasing biomass demand enlarges negative forest nutrient budget areas in wood export regions. Sci. Rep. 8, 1–7 (2018).
    ADS  Article  CAS  Google Scholar 

    18.
    Legout, A., Hansson, K., van der Heijden, G., Augusto, L. & Ranger, J. Chemical fertility of forest soils: Basic concepts. Rev. For. Française 66, 21–32 (2014).
    Google Scholar 

    19.
    Löfgren, S., Ågren, A., Gustafsson, J. P., Olsson, B. A. & Zetterberg, T. Impact of whole-tree harvest on soil and stream water acidity in southern Sweden based on HD-MINTEQ simulations and pH-sensitivity. For. Ecol. Manage. 383, 49–60 (2017).
    Article  Google Scholar 

    20.
    Casetou-Gustafson, S. et al. Current, steady-state and historical weathering rates of base cations at two forest sites in northern and southern Sweden: A comparison of three methods. Biogeosciences 17, 281–304 (2020).
    ADS  CAS  Article  Google Scholar 

    21.
    van der Heijden, G. et al. Tracing and modeling preferential flow in a forest soil—Potential impact on nutrient leaching. Geoderma 195–196, 12–22 (2013).
    Article  CAS  Google Scholar 

    22.
    van Sundert, K. et al. Towards comparable assessment of the soil nutrient status across scales—Review and development of nutrient metrics. Glob. Change Biol. 26, 392–409 (2020).
    ADS  Article  Google Scholar 

    23.
    Hansson, K. et al. Chemical fertility of forest ecosystems. Part 1: Common soil chemical analyses were poor predictors of stand productivity across a wide range of acidic forest soils. For. Ecol. Manage. 461, 117843 (2020).
    Article  Google Scholar 

    24.
    Legout, A. et al. Chemical fertility of forest ecosystems. Part 2: Towards redefining the concept by untangling the role of the different components of biogeochemical cycling. For. Ecol. Manage. 461, 117844 (2020).
    Article  Google Scholar 

    25.
    Lucash, M. S., Yanai, R. D., Blum, J. D. & Park, B. B. Foliar nutrient concentrations related to soil sources across a range of sites in the northeastern United States citation details. Soil Sci. Soc. Am. J. 76, 674–683 (2012).
    ADS  CAS  Article  Google Scholar 

    26.
    Rosenstock, N. P. et al. Base cations in the soil bank: Non-exchangeable pools may sustain centuries of net loss to forestry and leaching. Soil 5, 351–366 (2019).
    CAS  Article  Google Scholar 

    27.
    Richardson, J. B., Petrenko, C. L. & Friedland, A. J. Base cations and micronutrients in forest soils along three clear-cut chronosequences in the northeastern United States. Nutr. Cycl. Agroecosyst. 109, 161–179 (2017).
    CAS  Article  Google Scholar 

    28.
    van der Heijden, G., Legout, A., Pollier, B., Ranger, J. & Dambrine, E. The dynamics of calcium and magnesium inputs by throughfall in a forest ecosystem on base poor soil are very slow and conservative: Evidence from an isotopic tracing experiment (26Mg and 44Ca). Biogeochemistry 118, 413–442 (2014).
    Article  CAS  Google Scholar 

    29.
    Smeck, N. E., Saif, H. T. & Bigham, J. M. Formation of a transient magnesium-aluminum double hydroxide in soils of southeastern Ohio. Soil Sci. Soc. Am. J. 58, 470–476 (1994).
    ADS  CAS  Article  Google Scholar 

    30.
    van Reeuwijk, L. P. & de Villiers, J. M. Potassium fixation by amorphous aluminosilica gels. Soil Sci. Soc. Am. J. 32, 238–240 (1968).
    Article  Google Scholar 

    31.
    Collignon, C., Ranger, J. & Turpault, M. P. Seasonal dynamics of Al- and Fe-bearing secondary minerals in an acid forest soil: Influence of Norway spruce roots (Picea abies (L.) Karst.). Eur. J. Soil Sci. 63, 592–602 (2012).
    CAS  Article  Google Scholar 

    32.
    Hall, S. J. & Huang, W. Iron reduction: A mechanism for dynamic cycling of occluded cations in tropical forest soils?. Biogeochemistry 136, 91–102 (2017).
    CAS  Article  Google Scholar 

    33.
    Sparks, D. L. Potassium dynamics in soils. In Advances in Soil Science (ed. Stewart, B. A.) 1–63 (Springer, New York, 1987).
    Google Scholar 

    34.
    Hinsinger, P. & Jaillard, B. Root-induced release of interlayer potassium and vermiculitization of phlogopite as related to potassium depletion in the rhizosphere of ryegrass. J. Soil Sci. 44, 525–534 (1993).
    CAS  Article  Google Scholar 

    35.
    Falk Øgaard, A. & Krogstad, T. Release of interlayer potassium in Norwegian grassland soils. J. Plant Nutr. Soil Sci. 168, 80–88 (2005).
    Article  CAS  Google Scholar 

    36.
    Hamon, R. E., Bertrand, I. & McLaughlin, M. J. Use and abuse of isotopic exchange data in soil chemistry. Aust. J. Soil Res. 40, 1371–1381 (2002).
    CAS  Article  Google Scholar 

    37.
    Ebelhar, S. A. Labile pool. In Encyclopedia of Earth Sciences Series (ed. Chesworth, W.) 425–426 (Springer, Dordrecht, 2008).
    Google Scholar 

    38.
    Tendille, C., de Ruere, J. G. & Barbier, G. Echanges isotopiques du potassium peu mobile des sols. C.R Acad. Sci. 243, 87–89 (1956).
    CAS  Google Scholar 

    39.
    Masozera, C. & Bouyer, S. Potassium et calicum labiles dans quelques types de sols tropicaux. in Sur l’emploi des radioisotopes et des rayonnments dans la recherche sur les relations sol-plante, vol. 12 (1971).

    40.
    Fardeau, J. C., Hétier, J. M. & Jappe, J. Potassium assimilable du sol: Identification au comportement des ions isotopiquement diluables. C.R Acad. Sci. 288, 1039–1042 (1979).
    CAS  Google Scholar 

    41.
    Blume, J. M. & Smith, D. Detrmination of exchangeable calcium and cation-exchange capacity by equilibration with Ca-45. Soil Sci. 77, 9–18 (1954).
    ADS  CAS  Article  Google Scholar 

    42.
    Newbould, P. & Russell, R. S. Isotopic equilibration of calcium-45 with labile soil calcium. Plant Soil 18, 239–257 (1963).
    CAS  Article  Google Scholar 

    43.
    Reeve, N. G. & Sumner, M. E. Determination of exchangeable calcium in soils by isotopie dilution. Agrochemophysica 1, 13–18 (1969).
    CAS  Google Scholar 

    44.
    van der Heijden, G., Legout, A., Mareschal, L., Ranger, J. & Dambrine, E. Filling the gap in Ca input-output budgets in base-poor forest ecosystems: The contribution of non-crystalline phases evidenced by stable isotopic dilution. Geochim. Cosmochim. Acta 209, 135–148 (2017).
    ADS  Article  CAS  Google Scholar 

    45.
    van der Heijden, G. et al. Measuring plant-available Mg, Ca, and K pools in the soil—An isotopic dilution assay. ACS Earth Sp. Chem. 2, 292–313 (2018).
    Article  CAS  Google Scholar 

    46.
    Graham, E. R. & Fox, R. L. Tropical soil potassium as related to labile pool and calcium exchange equilibria calcium soil analysis. Soil Sci. 3, 318–322 (1971).
    ADS  Article  Google Scholar 

    47.
    Ross, D. S., Matschonat, G. & Skyllberg, U. Cation exchange in forest soils: The need for a new perspective. Eur. J. Soil Sci. 59, 1141–1159 (2008).
    CAS  Article  Google Scholar 

    48.
    Reuss, J. O. & Johnson, D. W. Soil-solution interactions. In Acid Deposition and the Acidification of Soils and Waters (eds Reuss, J. O. & Johnson, D. W.) 33–54 (Springer, New York, 1986).
    Google Scholar 

    49.
    Salmon, R. C. Cation exchange reactions. J. Soil Sci. 15, 273–283 (1964).
    CAS  Article  Google Scholar 

    50.
    André, J. P. & Pijarowski, L. Cation exchange properties of Sphagnumpeat: Exchange between two cations and protons. J. Soil Sci. 28, 573–584 (1977).
    Article  Google Scholar 

    51.
    Ponette, Q. Downward movement of dolomite, kieserite or a mixture of CaCO3 and kieserite through the upper layers of an acid forest soil. Water. Air. Soil Pollut. 95, 353–379 (1997).
    ADS  CAS  Google Scholar 

    52.
    Sparks, D. L. Inorganic soil components. In Environmental Soil Chemistry (ed. Sparks, D. L.) 43–73 (Academic Press, Cambridge, 2003).
    Google Scholar 

    53.
    Kosmulski, M. Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature. Adv. Colloid Interface Sci. 152, 14–25 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    54.
    Schwertmann, U. & Fechter, H. The point of zero charge of natural and synthetic ferrihydrites and its relation to adsorbed silicate. Clay Miner. 17, 471–476 (1982).
    ADS  CAS  Article  Google Scholar 

    55.
    Grove, J. H., Sumner, M. E. & Syers, J. K. Effect of lime on exchangeable magnesium in variable surface charge soils. Soil Sci. Soc. Am. J. 45, 497–500 (1981).
    ADS  CAS  Article  Google Scholar 

    56.
    Kinniburgh, D. G., Jackson, M. L. & Syers, J. K. Adsorption of alkaline earth, transition, and heavy metal cations by hydrous oxide gels of iron and aluminum. Soil Sci. Soc. Am. J. 40, 796–799 (1976).
    ADS  CAS  Article  Google Scholar 

    57.
    Myers, J. A., McLean, E. O. & Bigham, J. M. Reductions in exchangeable magnesium with liming of acid Ohio soils. Soil Sci. Soc. Am. J. 52, 131–136 (1988).
    ADS  CAS  Article  Google Scholar 

    58.
    Rowley, M. C., Grand, S. & Verrecchia, ÉP. Calcium-mediated stabilisation of soil organic carbon. Biogeochemistry 137, 27–49 (2018).
    CAS  Article  Google Scholar 

    59.
    Simpson, A. J. et al. Molecular structures and associations of humic substances in the terrestrial environment. Naturwissenschaften 89, 84–88 (2002).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    60.
    Clarholm, M., Skyllberg, U. & Rosling, A. Organic acid induced release of nutrients from metal-stabilized soil organic matter—The unbutton model. Soil Biol. Biochem. 84, 168–176 (2015).
    CAS  Article  Google Scholar 

    61.
    Sowers, T. D., Stuckey, J. W. & Sparks, D. L. The synergistic effect of calcium on organic carbon sequestration to ferrihydrite. Geochem. Trans. 19, 4 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    62.
    Meyer, D. & Jungk, A. A new approach to quantify the utilization of non-exchangeable soil potassium by plants. Plant Soil 149, 235–243 (1993).
    CAS  Article  Google Scholar 

    63.
    Moritsuka, N., Yanai, J. & Kosaki, T. Possible processes releasing nonexchangeable potassium from the rhizosphere of maize. Plant Soil 258, 261–268 (2004).
    CAS  Article  Google Scholar 

    64.
    Mareschal, L. Effet des substitutions d’essences forestières sur l’évolution des sols et de leur minéralogie: Bilan après 28 ans dans le site expérimental de Breuil (Morvan) (Henri Poincaré, Nancy, 2008).
    Google Scholar 

    65.
    York, L. M., Carminati, A., Mooney, S. J., Ritz, K. & Bennett, M. M. The holistic rhizosphere: Integrating zones, processes, and semantics in the soil influenced by roots. J. Exp. Bot. 67, 3629–3643 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    66.
    Pradier, C. et al. Rainfall reduction impacts rhizosphere biogeochemistry in eucalypts grown in a deep Ferralsol in Brazil. Plant Soil 414, 339–354 (2017).
    CAS  Article  Google Scholar 

    67.
    Nezat, C. A., Blum, J. D., Yanai, R. D. & Hamburg, S. P. A sequential extraction to determine the distribution of apatite in granitoid soil mineral pools with application to weathering at the Hubbard Brook Experimental Forest, NH, USA. Appl. Geochem. 22, 2406–2421 (2007).
    CAS  Article  Google Scholar 

    68.
    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2019). https://www.r-project.org/. Accessed 17 Mar 2019. More

  • in

    A novel universal primer pair for prokaryotes with improved performances for anammox containing communities

    Estimation of a generalized wastewater treatment plant microbial community
    In order to perform a deep taxonomic survey of microbial communities associated to wastewater treatment, we initially surveyed the EBI MGnify database11, collecting abundance profiles obtained by 16S amplicon based surveys of wastewater treatment communities.
    We were able to roughly identify 1465 prokaryotic genera in 3433 samples from 49 studies (see Supplementary Data S1.1), with members of the archaea kingdom in about 22.5% of samples. When we restricted the analysis on sludges the number of studies was reduced to 33 with 1363 samples, however we identified 1379 genera and the number of samples showing archaea was about 40% (see supplementary data S1.2). Such observation underlined the relevance of archaea in wastewater environments. Interestingly, in the wastewater biome we found 128 samples (about 3.7%) from 24 studies (about 50%) showing evidence of anammox species, a percent that grew to about 5% in sludge samples from 10 studies (30%). This result manifests the need of properly taking into account anammox communities when estimating microbial abundance profiles in such environments.
    Evaluation of existing primers
    We then sought to verify whether existing primer pairs with established high performances and good coverage over the widest range of microbial species were able to appropriately cover wastewater associated communities, especially for the anammox components, using the most updated 16S RDP collection.
    All Takahashi et al.10 and Albertsen et al.11 primers pairs were tested in silico using RDP ProbeMatch against updated 16S rRNA sequences from all genera available in the current RDP database. As shown in Fig. 1, we found that all Albertsen et al. primer pairs targeting the V1-V3 and V3-V4 and V4 only 16S region showed good performances for bacteria, but had relatively poor performances for archaeal species, that we have shown above to be relevant for wastewater associated communities12. On the contrary, Takahashi Pro pair (Pro341F and Pro805R) effectively showed high coverage for both bacteria and archaea, despite a surprisingly low performance for microbes highly relevant for the denitrification cycle, namely anammox bacteria especially of the Brocadiaceae family, Candidatus brocadia genus. Accordingly, our further efforts were focused on improving the Takahashi et al. primer pair.
    Figure 1

    Comparison of the overall theoretical performance in coverage (percent of members of the given rank mapped) of the different primer pairs used in this study.

    Full size image

    Predicted improvement of coverage on RDP database
    When specifically matched against Brocadiales sequences, we found the possibility of improving the coverage of the Takahashi PRO primer pair by introducing a purine degeneration in the forward primer Pro341F, so that most member of our community of interest was matched. To design this, we extracted from the RDP global dataset all high quality ( > 1200 bp) 16S classified as Brocadiaceae at the family rank. On this dataset we simulated amplicons formation with RDP probeMatch, systematically imposing degenerations that could accommodate members of this family in the most complete as well as parsimonious way. We ended up with a modified primer, Pro341FB, that was paired with the original reverse primer Pro805R and tested in silico using a mismatch 0 approach and considering the taxonomic coverage as a selection metric. As shown in Fig. 1, the primer pair Pro341FB + Pro805R (TAKB_v3v4) proved a very modest 0.007% coverage increase for archaea with respect to primer Pro341F + Pro805R (TAK_v3v4), while we found a noticeable 1% coverage increase for bacteria. Primer Pro341FB was theoretically able to amplify a total of 59% of the approximately 3.2 million sequences present in the bacteria data bank. In particular, primer Pro341FB was found to target phyla that were completely ignored by the primer Pro341F. As shown in Fig. 2, phyla which received an increase in coverage of more than 25% were found to be Chlamydiae (41%), Lentisphaerae (76%), Omnitrophica (63%), Parcubacteria (44%), candidate division WPS-1 (46%) and, importantly for this study, Planctomycetes (46%). Descending the taxonomic tree from phylum Planctomycetes to genera involved in anaerobic ammonium oxidation (anammox) we systematically observed an increase in coverage (class Planctomycetia 45%, order Candidatus Brocadiales 28%, family Candidatus Brocadiaceae 28%, genus Candidatus Brocadia 75%). As shown in Fig. 3, all anammox bacteria (genera Candidatus Brocadia, Candidatus Kuenenia, Candidatus Anammoxoglobus, Candidatus Jettenia and Candidatus Scalindua), that were almost neglected by the original Pro341F primer (red bars, secondary y-axis), resulted, as expected, markedly more covered when the Pro341FB primer was used. Major numerical details on the results of this comparison are available in supplementary materials (Supplementary data S2).
    Figure 2

    Improvement of taxonomic coverage by the newly optimized primer Pro341FB. The coverage percent value refers to the proportion between the total RDP database sequences annotated with the specific taxonomic rank and those that proved to generate an amplicon using the currently optimized Pro341FB primer and the original Pro341F (white bars), paired with the common reverse primer Pro805R. Only taxonomies with a difference in coverage higher than 25% are shown. The suffixes P, C, O, F and G refers to the ranks phylum, class, order, family and genus, respectively. Black columns mark taxonomic ranks associated with anammox bacteria.

    Full size image

    Figure 3

    Comparison of the theoretical coverage performance between the new Pro341FB (black, left axis) and the original Pro341F (red, right axis). The Brocadiaceae family consists of 5 genera, 4 of which are represented in the figure. A further genus named Candidatus jettenia is not present since no high-quality sequence (i.e.  > 1200 bp) was present in RDP database.

    Full size image

    Testing primer variations by NGS on selected communities
    In order to verify the increase in performances for anammox communities by our modified forward primer Pro341FB, we collected the microbial community samples from 5 different origins, namely activated sludges from a domestic WWTP plant (SCS), activated sludges from a tannery WWTP (CDS), aerobic granular sludge (AGS), and partial nitrification anammox granular sludge (PNA) from pilot scale reactors fed with domestic wastewater. For the two former plants, samples from their anaerobic digestion reactors were also collected (SCD and CDD, respectively). The samples were collected from bioreactors operated in widely different conditions (suspended vs biofilm and aerobic/anoxic vs anaerobic) and fed with various substrates, in order to allow the validation of the protocol in most of the selective conditions typical for microbial communities in wastewater treatment. The total DNA of all communities was extracted and amplicons were generated using the primer pairs Pro341F + Pro805R or Pro341FB + Pro805R. As shown in Fig. 4, NGS revealed that the percentage of identified phyla was almost the same in all samples but in the PNA, where anammox communities were largely underestimated by Pro341F with respect to Pro341FB. As a confirmation it has been recently reported that anammox species largely dominate the granule population1, underlining the underestimation by the original Pro341F primer.
    Figure 4

    NGS verification of the improvement of coverage percent for members of the Brocadiaceae family coverage by the optimized Pro341FB primer. The tested samples (CDS, CDD, SCS, SCD, AGS, PNA, see text for a description) were amplified with Pro341F (suffix 1) or Pro341FB (suffix 2). Samples marked with the suffix 2 are systematically higher in Brocadia associated ranks.

    Full size image More